WorldWideScience

Sample records for antisense elements genetics

  1. Archaeal extrachromosomal genetic elements

    DEFF Research Database (Denmark)

    Wang, Haina; Peng, Nan; Shah, Shiraz Ali

    2015-01-01

    SUMMARY: Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spind......SUMMARY: Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes...

  2. Antisense oligonucleotides targeting translation inhibitory elements in 5' UTRs can selectively increase protein levels.

    Science.gov (United States)

    Liang, Xue-Hai; Sun, Hong; Shen, Wen; Wang, Shiyu; Yao, Joyee; Migawa, Michael T; Bui, Huynh-Hoa; Damle, Sagar S; Riney, Stan; Graham, Mark J; Crooke, Rosanne M; Crooke, Stanley T

    2017-09-19

    A variety of diseases are caused by deficiencies in amounts or activity of key proteins. An approach that increases the amount of a specific protein might be of therapeutic benefit. We reasoned that translation could be specifically enhanced using trans-acting agents that counter the function of negative regulatory elements present in the 5' UTRs of some mRNAs. We recently showed that translation can be enhanced by antisense oligonucleotides (ASOs) that target upstream open reading frames. Here we report the amount of a protein can also be selectively increased using ASOs designed to hybridize to other translation inhibitory elements in 5' UTRs. Levels of human RNASEH1, LDLR, and ACP1 and of mouse ACP1 and ARF1 were increased up to 2.7-fold in different cell types and species upon treatment with chemically modified ASOs targeting 5' UTR inhibitory regions in the mRNAs encoding these proteins. The activities of ASOs in enhancing translation were sequence and position dependent and required helicase activity. The ASOs appear to improve the recruitment of translation initiation factors to the target mRNA. Importantly, ASOs targeting ACP1 mRNA significantly increased the level of ACP1 protein in mice, suggesting that this approach has therapeutic and research potentials. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Natural genetic variation impacts expression levels of coding, non-coding, and antisense transcripts in fission yeast

    DEFF Research Database (Denmark)

    Clément-Ziza, Mathieu; Marsellach, Francesc X.; Codlin, Sandra

    2014-01-01

    the first recombinant strain library for fission yeast and conducted an RNA-seq-based QTL study of the coding, non-coding, and antisense transcriptomes. We show that the frequency of distal effects (trans-eQTLs) greatly exceeds the number of local effects (cis-eQTLs) and that non-coding RNAs are as likely......Our current understanding of how natural genetic variation affects gene expression beyond well-annotated coding genes is still limited. The use of deep sequencing technologies for the study of expression quantitative trait loci (eQTLs) has the potential to close this gap. Here, we generated...... to be affected by eQTLs as protein-coding RNAs. We identified a genetic variation of swc5 that modifies the levels of 871 RNAs, with effects on both sense and antisense transcription, and show that this effect most likely goes through a compromised deposition of the histone variant H2A.Z. The strains, methods...

  4. Antisense-mediated RNA targeting: versatile and expedient genetic manipulation in the brain

    Directory of Open Access Journals (Sweden)

    Ioannis eZalachoras

    2011-07-01

    Full Text Available A limiting factor in brain research still is the difficulty to evaluate in vivo the role of the increasing number of proteins implicated in neuronal processes. We discuss here the potential of antisense-mediated RNA targeting approaches. We mainly focus on those that manipulate splicing (exon skipping and exon inclusion, but will also briefly discuss mRNA targeting. Classic knockdown of expression by mRNA targeting is only one possible application of antisense oligonucleotides (AON in the control of gene function. Exon skipping and inclusion are based on the interference of AONs with splicing of pre-mRNAs. These are powerful, specific and particularly versatile techniques, which can be used to circumvent pathogenic mutations, shift splice variant expression, knock down proteins, or to create molecular models using in-frame deletions. Pre-mRNA targeting is currently used both as a research tool, e.g. in models for motor neuron disease, and in clinical trials for Duchenne muscular dystrophy and amyotrophic lateral sclerosis.AONs are particularly promising in relation to brain research, as the modified AONs are taken up extremely fast in neurons and glial cells with a long residence, and without the need for viral vectors or other delivery tools, once inside the blood brain barrier. In this review we cover 1. The principles of antisense-mediated techniques, chemistry and efficacy.2. The pros and cons of AON approaches in the brain compared to other techniques of interfering with gene function, such as transgenesis and short hairpin RNAs, in terms of specificity of the manipulation, spatial and temporal control over gene expression, toxicity and delivery issues.3. The potential applications for Neuroscience. We conclude that there is good evidence from animal studies that the CNS can be successfully targeted, but the potential of the diverse AON-based approaches appears to be under-recognized.

  5. Mobile genetic elements in protozoan parasites

    Indian Academy of Sciences (India)

    Unknown

    function of these genetic elements. [Bhattacharya S., Bakre A. and Bhattacharya A. 2002 Mobile genetic ... The LTR elements have remarkable structural and functional resemblance to retroviruses, and ..... ponsible for antigenic variation, a possible role of these elements may be in the evolution of VSG gene reper- toires by ...

  6. Antisense RNA: a genetic approach to cell resistance against Parvovirus; RNA antisentido: una aproximacion de resistencia genetica a Parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Martinez, J.C.

    1992-12-31

    The Minute Virus of Mice (MVMp), an autonomous Parvovirus that replicates cytolytically in the A9 mouse fibroblast cell line, was interfered by constitutive expression of an antisense RNA targeted against the major non-structural NS-1 protein. Permanently transfected A9 clones expressing NS-1 antisense, showed increased proliferative capacity upon virus infection, and likewise cultures infected at low multiplicity by MVMp reached confluence overcoming virus growth. Correspondingly, an inhibition in virus multiplication was demonstrated by a significant lower virus production and plaque forming ability in clones expressing antisense RNa. At the molecular level, several fold reduction in viral DNA, RNA and proteins was quantitated by respective analysis of Southern, RNase protection and bidimensional gels. Remarkably, the accumulation of all three viral messengers(R1,R2,R3) was decreased both in the cytoplasm and in the nucleus, suggesting that antisense-mediated inhibition is primarily exerted at the level of viral transcription or nuclear post-transcriptional events. Thus, this system illustrates the possibility to create an antisense-mediated protective stage to highly cytotoxic viruses in permissive cells, by down-modulation the expression of a transactivator of virus genes. (author)180 refs., 25 figs.

  7. Antisense RNA: a genetic approach to cell resistance against Parvovirus. RNA antisentido: una aproximacion de resistencia genetica a Parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Martinez, J.C.

    1992-01-01

    The Minute Virus of Mice (MVMp), an autonomous Parvovirus that replicates cytolytically in the A9 mouse fibroblast cell line, was interfered by constitutive expression of an antisense RNA targeted against the major non-structural NS-1 protein. Permanently transfected A9 clones expressing NS-1 antisense, showed increased proliferative capacity upon virus infection, and likewise cultures infected at low multiplicity by MVMp reached confluence overcoming virus growth. Correspondingly, an inhibition in virus multiplication was demonstrated by a significant lower virus production and plaque forming ability in clones expressing antisense RNa. At the molecular level, several fold reduction in viral DNA, RNA and proteins was quantitated by respective analysis of Southern, RNase protection and bidimensional gels. Remarkably, the accumulation of all three viral messengers(R1,R2,R3) was decreased both in the cytoplasm and in the nucleus, suggesting that antisense-mediated inhibition is primarily exerted at the level of viral transcription or nuclear post-transcriptional events. Thus, this system illustrates the possibility to create an antisense-mediated protective stage to highly cytotoxic viruses in permissive cells, by down-modulation the expression of a transactivator of virus genes. (author)180 refs., 25 figs.

  8. Radionuclide antisense therapy

    International Nuclear Information System (INIS)

    Ou Xiaohong

    2002-01-01

    Radionuclide antisense therapy achieves the joint goals of antisense therapy and internal radiation therapy. There have been a small number of investigations on the radionuclide antisense therapy in tissue culture and in animal studies. Considerable research is required before this novel technique can become a working practice. The authors reviewed some question and development on the radionuclide antisense therapy, such as selection of the target gene sequence, labelling the antisense oligonucleotide, improvement of the uptake and target of radionuclide antisense oligonucleotides and evaluation of the toxicity of the radionuclide antisense therapy

  9. Mobile genetic elements in protozoan parasites

    Indian Academy of Sciences (India)

    Mobile genetic elements, by virtue of their ability to move to new chromosomal locations, are considered important in shaping the evolutionary course of the genome. They are widespread in the biological kingdom. Among the protozoan parasites several types of transposable elements are encountered. The largest variety ...

  10. Molecular genetics and epigenetics of CACTA elements

    KAUST Repository

    Fedoroff, Nina V.

    2013-08-21

    The CACTA transposons, so named for a highly conserved motif at element ends, comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) plant transposons. CACTA transposons characteristically include subterminal sequences of several hundred nucleotides containing closely spaced direct and inverted repeats of a short, conserved sequence of 14-15 bp. The Supressor-mutator (Spm) transposon, identified and subjected to detailed genetic analysis by Barbara McClintock, remains the paradigmatic element of the CACTA family. The Spm transposon encodes two proteins required for transposition, the transposase (TnpD) and a regulatory protein (TnpA) that binds to the subterminal repeats. Spm expression is subject to both genetic and epigenetic regulation. The Spm-encoded TnpA serves as an activator of the epigenetically inactivated, methylated Spm, stimulating both transient and heritable activation of the transposon. TnpA also serves as a negative regulator of the demethylated active element promoter and is required, in addition to the TnpD, for transposition. © Springer Science+Business Media, New York 2013.

  11. Stable propagation of 'selfish'genetic elements

    Indian Academy of Sciences (India)

    These elements exhibit a variety of `selfish' strategies to ensure their replication and propagation during the growth of their host cells. To establish long-term ... The 2 m plasmid of Saccharomyces cerevisiae and related yeast plasmids provide models for optimized eukaryotic selfish DNA elements. Selfish DNA elements ...

  12. Evolution of the Antisense Overlap between Genes for Thyroid Hormone Receptor and Rev-erbα and Characterization of an Exonic G-Rich Element That Regulates Splicing of TRα2 mRNA.

    Directory of Open Access Journals (Sweden)

    Stephen H Munroe

    Full Text Available The α-thyroid hormone receptor gene (TRα codes for two functionally distinct proteins: TRα1, the α-thyroid hormone receptor; and TRα2, a non-hormone-binding variant. The final exon of TRα2 mRNA overlaps the 3' end of Rev-erbα mRNA, which encodes another nuclear receptor on the opposite strand of DNA. To understand the evolution of this antisense overlap, we sequenced these genes and mRNAs in the platypus Orthorhynchus anatinus. Despite its strong homology with other mammals, the platypus TRα/Rev-erbα locus lacks elements essential for expression of TRα2. Comparative analysis suggests that alternative splicing of TRα2 mRNA expression evolved in a stepwise fashion before the divergence of eutherian and marsupial mammals. A short G-rich element (G30 located downstream of the alternative 3'splice site of TRα2 mRNA and antisense to the 3'UTR of Rev-erbα plays an important role in regulating TRα2 splicing. G30 is tightly conserved in eutherian mammals, but is absent in marsupials and monotremes. Systematic deletions and substitutions within G30 have dramatically different effects on TRα2 splicing, leading to either its inhibition or its enhancement. Mutations that disrupt one or more clusters of G residues enhance splicing two- to three-fold. These results suggest the G30 sequence can adopt a highly structured conformation, possibly a G-quadruplex, and that it is part of a complex splicing regulatory element which exerts both positive and negative effects on TRα2 expression. Since mutations that strongly enhance splicing in vivo have no effect on splicing in vitro, it is likely that the regulatory role of G30 is mediated through linkage of transcription and splicing.

  13. Evolution of the Antisense Overlap between Genes for Thyroid Hormone Receptor and Rev-erbα and Characterization of an Exonic G-Rich Element That Regulates Splicing of TRα2 mRNA

    Science.gov (United States)

    Munroe, Stephen H.; Morales, Christopher H.; Duyck, Tessa H.; Waters, Paul D.

    2015-01-01

    The α-thyroid hormone receptor gene (TRα) codes for two functionally distinct proteins: TRα1, the α-thyroid hormone receptor; and TRα2, a non-hormone-binding variant. The final exon of TRα2 mRNA overlaps the 3’ end of Rev-erbα mRNA, which encodes another nuclear receptor on the opposite strand of DNA. To understand the evolution of this antisense overlap, we sequenced these genes and mRNAs in the platypus Orthorhynchus anatinus. Despite its strong homology with other mammals, the platypus TRα/Rev-erbα locus lacks elements essential for expression of TRα2. Comparative analysis suggests that alternative splicing of TRα2 mRNA expression evolved in a stepwise fashion before the divergence of eutherian and marsupial mammals. A short G-rich element (G30) located downstream of the alternative 3’splice site of TRα2 mRNA and antisense to the 3’UTR of Rev-erbα plays an important role in regulating TRα2 splicing. G30 is tightly conserved in eutherian mammals, but is absent in marsupials and monotremes. Systematic deletions and substitutions within G30 have dramatically different effects on TRα2 splicing, leading to either its inhibition or its enhancement. Mutations that disrupt one or more clusters of G residues enhance splicing two- to three-fold. These results suggest the G30 sequence can adopt a highly structured conformation, possibly a G-quadruplex, and that it is part of a complex splicing regulatory element which exerts both positive and negative effects on TRα2 expression. Since mutations that strongly enhance splicing in vivo have no effect on splicing in vitro, it is likely that the regulatory role of G30 is mediated through linkage of transcription and splicing. PMID:26368571

  14. The mobile genetic element Alu in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Novick, G.E. [Florida International Univ., Miami, FL (United States); Batzer, M.A.; Deininger, P.L. [Louisiana State Univ. Medical Center, New Orleans, LA (United States)] [and others

    1996-01-01

    Genetic material has been traditionally envisioned as relatively static with the exception of occasional, often deleterious mutations. The sequence DNA-to-RNA-to-protein represented for many years the central dogma relating gene structure and function. Recently, the field of molecular genetics has provided revolutionary information on the dynamic role of repetitive elements in the function of the genetic material and the evolution of humans and other organisms. Alu sequences represent the largest family of short interspersed repetitive elements (SINEs) in humans, being present in an excess of 500,000 copies per haploid genome. Alu elements, as well as the other repetitive elements, were once considered to be useless. Today, the biology of Alu transposable elements is being widely examined in order to determine the molecular basis of a growing number of identified diseases and to provide new directions in genome mapping and biomedical research. 66 refs., 5 figs.

  15. Mobile genetic elements in Methanobacterium thermoformicicum

    NARCIS (Netherlands)

    Noelling, J.

    1993-01-01

    The identification of the Archaea as a third primary lineage of life and their adaptation to extreme environmental conditions have generated considerable interest in the molecular biology of these organisms. Most progress in the investigation of archaeal mobile genetic

  16. Mobile genetic elements in protozoan parasites

    Indian Academy of Sciences (India)

    Unknown

    of Caenorhabditis elegans. The second group, the retro- elements, move by reverse transcription of an RNA in- termediate. DNA transposons are common in bacteria, invertebrates and plants, whereas in the vertebrates retro- transposons are more abundant. Retrotransposons fall into two major classes—the long terminal ...

  17. Modularization of genetic elements promotes synthetic metabolic engineering.

    Science.gov (United States)

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Transposable elements and genetic instabilities in crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Burr, B.; Burr, F.

    1981-04-10

    Transposable elements have long been associated with certain unstable loci in maize and have been intensively studied by McClintock and others. It is known that a transposable element can control the expression of the structural genes at the locus where it resides. These controlling elements in maize are now beginning to be studied at the molecular level. Using recombinant molecular probes we have been able to describe the changes induced by the controlling element Ds at the shrunken locus. Ds elements appear to be large and dissimilar insertions into the wild-type locus - two elements actually map within the transcribed region of the gene. Genetic instabilities have been described in other economically important plants but the bases for these phenomena have not been understood. We believe that it is likely that some of these instabilities are the result of transposable element activity much as in the case of maize.

  19. Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease

    Directory of Open Access Journals (Sweden)

    Valentina Sardone

    2017-04-01

    Full Text Available Neuromuscular disorders such as Duchenne Muscular Dystrophy and Spinal Muscular Atrophy are neurodegenerative genetic diseases characterized primarily by muscle weakness and wasting. Until recently there were no effective therapies for these conditions, but antisense oligonucleotides, a new class of synthetic single stranded molecules of nucleic acids, have demonstrated promising experimental results and are at different stages of regulatory approval. The antisense oligonucleotides can modulate the protein expression via targeting hnRNAs or mRNAs and inducing interference with splicing, mRNA degradation, or arrest of translation, finally, resulting in rescue or reduction of the target protein expression. Different classes of antisense oligonucleotides are being tested in several clinical trials, and limitations of their clinical efficacy and toxicity have been reported for some of these compounds, while more encouraging results have supported the development of others. New generation antisense oligonucleotides are also being tested in preclinical models together with specific delivery systems that could allow some of the limitations of current antisense oligonucleotides to be overcome, to improve the cell penetration, to achieve more robust target engagement, and hopefully also be associated with acceptable toxicity. This review article describes the chemical properties and molecular mechanisms of action of the antisense oligonucleotides and the therapeutic implications these compounds have in neuromuscular diseases. Current strategies and carrier systems available for the oligonucleotides delivery will be also described to provide an overview on the past, present and future of these appealing molecules.

  20. Inadvertent presence of genetically modified elements in maize food ...

    African Journals Online (AJOL)

    owner

    2013-07-31

    Jul 31, 2013 ... assess the maize food products in the Kenyan market for the presence of genetic elements from GMOs. This was done by testing various maize food products, including grains from open air markets, relief food, maize seeds from seed companies and processed food sampled from various supermarkets in ...

  1. Pathological and Evolutionary Implications of Retroviruses as Mobile Genetic Elements

    Directory of Open Access Journals (Sweden)

    Mark A. Brown

    2013-10-01

    Full Text Available Retroviruses, a form of mobile genetic elements, have important roles in disease and primate evolution. Exogenous retroviruses, such as human immunodeficiency virus (HIV, have significant pathological implications that have created a massive public health challenge in recent years. Endogenous retroviruses (ERVs, which are the primary focus of this review, can also be pathogenic, as well as being beneficial to a host in some cases. Furthermore, retroviruses may have played a key role in primate evolution that resulted in the incorporation of these elements into the human genome. Retroviruses are mobile genetic elements that have important roles in disease and primate evolution. We will further discuss the pathogenic potential of retroviruses, including their role in cancer biology, and will briefly summarize their evolutionary implications.

  2. Antisense Treatments for Biothreat Agents

    National Research Council Canada - National Science Library

    Warfield, Kelly L; Panchal, Rekha G; Aman, M J; Bavari, Sina

    2006-01-01

    ... a variety of pathogens in cell culture studies and nonhuman primate models of infection. For these reasons, antisense technologies are being pursued as treatments against biothreat agents such as Ebola virus, dengue virus and Bacillus anthracis...

  3. Antisense oligonucleotides: the state of the art.

    Science.gov (United States)

    Aboul-Fadl, T

    2005-01-01

    The use of antisense oligonucleotides as therapeutic agents has generated considerable enthusiasm in the research and medical community. Antisense oligonucleotides as therapeutic agents were proposed as far back as in the 1970s when the antisense strategy was initially developed. Nonetheless, it has taken almost a quarter of a century for this potential to be realized. The principle of antisense technology is the sequence-specific binding of an antisense oligonucleotide to target mRNA, resulting in the prevention of gene translation. The specificity of hybridization by Watson-Crick base pairing make antisense oligonucleotides attractive as tools for targeted validation and functionalization, and as therapeutics to selectively modulate the expression of genes involved in the pathogenesis of diseases. The last few years have seen a rapid increase in the number of antisense molecules progressing past Phase I, II and III clinical trials. This review outlines the basic concept of the antisense technology, its development and recent potential therapeutic applications.

  4. Developmental transitions in Arabidopsis are regulated by antisense RNAs resulting from bidirectionally transcribed genes.

    Science.gov (United States)

    Krzyczmonik, Katarzyna; Wroblewska-Swiniarska, Agata; Swiezewski, Szymon

    2017-07-03

    Transcription terminators are DNA elements located at the 3' end of genes that ensure efficient cleavage of nascent RNA generating the 3' end of mRNA, as well as facilitating disengagement of elongating DNA-dependent RNA polymerase II. Surprisingly, terminators are also a potent source of antisense transcription. We have recently described an Arabidopsis antisense transcript originating from the 3' end of a master regulator of Arabidopsis thaliana seed dormancy DOG1. In this review, we discuss the broader implications of our discovery in light of recent developments in yeast and Arabidopsis. We show that, surprisingly, the key features of terminators that give rise to antisense transcription are preserved between Arabidopsis and yeast, suggesting a conserved mechanism. We also compare our discovery to known antisense-based regulatory mechanisms, highlighting the link between antisense-based gene expression regulation and major developmental transitions in plants.

  5. Studying Extrachromosomal Genetic Elements in Sulfolobus

    DEFF Research Database (Denmark)

    Guannan, Liu

    Archaea constitute a separate domain in the universal tree of life. They exhibit exceptional biological properties and provide important insights into the origin of cellular life. Rapid advances in DNA sequencing and bioinformatical methods as well as the development of versatile genetic tools have...... facilitated the characterization of viruses, plasmids and membrane vesicles. Studying the interactions between Sulfolobus and extrachromosomal genetic elements has provided many new insights into basic molecular processes. Secreted membrane vesicle seems to be a common characteristic for Sulfolobus. In order...... to gain a better understanding of the interactions between conjugative plasmids and hosts. The result also demonstrated why certain archaeal conjugative plasmids are gradually lost during continuous growth. Whereas loss of pKEF9 in S. islandicus was due to interference from the host CRISPR-Cas system...

  6. Dyslipidemia, sense, antisense or nonsense?

    NARCIS (Netherlands)

    Visser, M.E.

    2011-01-01

    Maartje Visser onderzocht het remmen van de synthese van apoB met behulp van antisense - een nieuwe farmacologische techniek. Dit blijkt het slechte LDL-cholesterol op een effectieve manier te verlagen. Bij sommige proefpersonen resulteerde dit in leververvetting. Of dit op de lange termijn

  7. Insulated transcriptional elements enable precise design of genetic circuits.

    Science.gov (United States)

    Zong, Yeqing; Zhang, Haoqian M; Lyu, Cheng; Ji, Xiangyu; Hou, Junran; Guo, Xian; Ouyang, Qi; Lou, Chunbo

    2017-07-03

    Rational engineering of biological systems is often complicated by the complex but unwanted interactions between cellular components at multiple levels. Here we address this issue at the level of prokaryotic transcription by insulating minimal promoters and operators to prevent their interaction and enable the biophysical modeling of synthetic transcription without free parameters. This approach allows genetic circuit design with extraordinary precision and diversity, and consequently simplifies the design-build-test-learn cycle of circuit engineering to a mix-and-match workflow. As a demonstration, combinatorial promoters encoding NOT-gate functions were designed from scratch with mean errors of 96% using our insulated transcription elements. Furthermore, four-node transcriptional networks with incoherent feed-forward loops that execute stripe-forming functions were obtained without any trial-and-error work. This insulation-based engineering strategy improves the resolution of genetic circuit technology and provides a simple approach for designing genetic circuits for systems and synthetic biology.Unwanted interactions between cellular components can complicate rational engineering of biological systems. Here the authors design insulated minimal promoters and operators that enable biophysical modeling of bacterial transcription without free parameters for precise circuit design.

  8. Mammalian small nucleolar RNAs are mobile genetic elements.

    Directory of Open Access Journals (Sweden)

    Michel J Weber

    2006-12-01

    Full Text Available Small nucleolar RNAs (snoRNAs of the H/ACA box and C/D box categories guide the pseudouridylation and the 2'-O-ribose methylation of ribosomal RNAs by forming short duplexes with their target. Similarly, small Cajal body-specific RNAs (scaRNAs guide modifications of spliceosomal RNAs. The vast majority of vertebrate sno/scaRNAs are located in introns of genes transcribed by RNA polymerase II and processed by exonucleolytic trimming after splicing. A bioinformatic search for orthologues of human sno/scaRNAs in sequenced mammalian genomes reveals the presence of species- or lineage-specific sno/scaRNA retroposons (sno/scaRTs characterized by an A-rich tail and an approximately 14-bp target site duplication that corresponds to their insertion site, as determined by interspecific genomic alignments. Three classes of snoRTs are defined based on the extent of intron and exon sequences from the snoRNA parental host gene they contain. SnoRTs frequently insert in gene introns in the sense orientation at genomic hot spots shared with other genetic mobile elements. Previously characterized human snoRNAs are encoded in retroposons whose parental copies can be identified by phylogenic analysis, showing that snoRTs can be faithfully processed. These results identify snoRNAs as a new family of mobile genetic elements. The insertion of new snoRNA copies might constitute a safeguard mechanism by which the biological activity of snoRNAs is maintained in spite of the risk of mutations in the parental copy. I furthermore propose that retroposition followed by genetic drift is a mechanism that increased snoRNA diversity during vertebrate evolution to eventually acquire new RNA-modification functions.

  9. Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes.

    Science.gov (United States)

    Parent, Jean-Sébastien; Jauvion, Vincent; Bouché, Nicolas; Béclin, Christophe; Hachet, Mélanie; Zytnicki, Matthias; Vaucheret, Hervé

    2015-09-30

    Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3' maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. The biology and potential for genetic research of transposable elements in filamentous fungi

    OpenAIRE

    Fávaro,Léia Cecilia de Lima; Araújo,Welington Luiz de; Azevedo,João Lúcio de; Paccola-Meirelles,Luzia Doretto

    2005-01-01

    Recently many transposable elements have been identified and characterized in filamentous fungi, especially in species of agricultural, biotechnological and medical interest. Similar to the elements found in other eukaryotes, fungal transposons can be classified as class I elements (retrotransposons) that use RNA and reverse transcriptase and class II elements (DNA transposons) that use DNA. The changes (transposition and recombination) caused by transposons can supply wide-ranging genetic va...

  11. Selfish genetic elements and the gene’s-eye view of evolution

    Science.gov (United States)

    2016-01-01

    During the last few decades, we have seen an explosion in the influx of details about the biology of selfish genetic elements. Ever since the early days of the field, the gene’s-eye view of Richard Dawkins, George Williams, and others, has been instrumental to make sense of new empirical observations and to the generation of new hypotheses. However, the close association between selfish genetic elements and the gene’s-eye view has not been without critics and several other conceptual frameworks have been suggested. In particular, proponents of multilevel selection models have used selfish genetic elements to criticize the gene’s-eye view. In this paper, I first trace the intertwined histories of the study of selfish genetic elements and the gene’s-eye view and then discuss how their association holds up when compared with other proposed frameworks. Next, using examples from transposable elements and the major transitions, I argue that different models highlight separate aspects of the evolution of selfish genetic elements and that the productive way forward is to maintain a plurality of perspectives. Finally, I discuss how the empirical study of selfish genetic elements has implications for other conceptual issues associated with the gene’s-eye view, such as agential thinking, adaptationism, and the role of fitness maximizing models in evolution. PMID:29491953

  12. Comprehensive expressional analyses of antisense transcripts in colon cancer tissues using artificial antisense probes

    Directory of Open Access Journals (Sweden)

    Kanai Akio

    2011-05-01

    Full Text Available Abstract Background Recent studies have identified thousands of sense-antisense gene pairs across different genomes by computational mapping of cDNA sequences. These studies have shown that approximately 25% of all transcriptional units in the human and mouse genomes are involved in cis-sense-antisense pairs. However, the number of known sense-antisense pairs remains limited because currently available cDNA sequences represent only a fraction of the total number of transcripts comprising the transcriptome of each cell type. Methods To discover novel antisense transcripts encoded in the antisense strand of important genes, such as cancer-related genes, we conducted expression analyses of antisense transcripts using our custom microarray platform along with 2376 probes designed specifically to detect the potential antisense transcripts of 501 well-known genes suitable for cancer research. Results Using colon cancer tissue and normal tissue surrounding the cancer tissue obtained from 6 patients, we found that antisense transcripts without poly(A tails are expressed from approximately 80% of these well-known genes. This observation is consistent with our previous finding that many antisense transcripts expressed in a cell are poly(A-. We also identified 101 and 71 antisense probes displaying a high level of expression specifically in normal and cancer tissues respectively. Conclusion Our microarray analysis identified novel antisense transcripts with expression profiles specific to cancer tissue, some of which might play a role in the regulatory networks underlying oncogenesis and thus are potential targets for further experimental validation. Our microarray data are available at http://www.brc.riken.go.jp/ncrna2007/viewer-Saito-01/index.html.

  13. Inadvertent presence of genetically modified elements in maize food ...

    African Journals Online (AJOL)

    Kenya has a biosafety law and has tested genetically modified (GM) maize under confinement and containment, but has neither released nor commercialized any GM crop. This study assessed various maize food products from the Kenyan farms and markets for the inadvertent presence of GMOs. It assessed the possibility ...

  14. Inadvertent presence of genetically modified elements in maize food ...

    African Journals Online (AJOL)

    owner

    2013-07-31

    Jul 31, 2013 ... such as corn flakes, corn puffs and corn syrup. These results suggest that high temperatures or other factors involved in the processing of the cornflakes degraded the. cry1Ab DNA. PCR is very efficient in detecting genetically modified genes in Bt maize seed and grains because it was able to amplify the ...

  15. The biology and potential for genetic research of transposable elements in filamentous fungi

    Directory of Open Access Journals (Sweden)

    Léia Cecilia de Lima Fávaro

    2005-12-01

    Full Text Available Recently many transposable elements have been identified and characterized in filamentous fungi, especially in species of agricultural, biotechnological and medical interest. Similar to the elements found in other eukaryotes, fungal transposons can be classified as class I elements (retrotransposons that use RNA and reverse transcriptase and class II elements (DNA transposons that use DNA. The changes (transposition and recombination caused by transposons can supply wide-ranging genetic variation, especially for species that do not have a sexual phase. The application of transposable elements to gene isolation and population analysis is an important tool for molecular biology and studies of fungal evolution.

  16. Role of natural antisense transcripts pertaining to tumor suppressor genes in human carcinomas

    International Nuclear Information System (INIS)

    Pelicci, G.; Pierotti, M.

    2009-01-01

    Overlapping transcripts in opposite orientations can potentially form perfect sense-antisense duplex RNA. Recently, several studies have revealed the extent of natural antisense transcripts (NATs) and their role in important biological phenomena also in higher organisms. In order to test the hypothesis that the function of NATs in man might represent an essential element in the regulation of gene expression, especially at transcriptional level, in this study we planned to look for, systematically examine, and characterize NATs belonging in the human genome to the tumour suppressor class of genes, so to identify physiological (and potentially pathological) modulators in this gene class

  17. Sense and antisense transcripts in the histone H1 (HIS-1) locus of Leishmania major.

    Science.gov (United States)

    Belli, Sabina I; Monnerat, Séverine; Schaff, Cédric; Masina, Slavica; Noll, Tanja; Myler, Peter J; Stuart, Kenneth; Fasel, Nicolas

    2003-08-01

    Histone H1 in the parasitic protozoan Leishmania is a developmentally regulated protein encoded by two genes, HIS-1.1 and HIS-1.2. These genes are separated by approximately 20 kb of sequence and are located on the same DNA strand of chromosome 27. When Northern blots of parasite RNA were probed with HIS-1 strand-specific riboprobes, we detected sense and antisense transcripts that were polyadenylated and developmentally regulated. When the HIS-1.2 coding region was replaced with the coding region of the neomycin phosphotransferase gene, antisense transcription of this gene was unaffected, indicating that the regulatory elements controlling antisense transcription were located outside of the HIS-1.2 gene, and that transcription in Leishmania can occur from both DNA strands even in the presence of transcription of a selectable marker in the complementary strand. A search for other antisense transcripts within the HIS-1 locus identified an additional transcript (SC-1) within the intervening HIS-1 sequence, downstream of adenine and thymine-rich sequences. These results show that gene expression in Leishmania is not only regulated polycistronically from the sense strand of genomic DNA, but that the complementary strand of DNA also contains sequences that could drive expression of open reading frames from the antisense strand of DNA. These findings suggest that the parasite has evolved in such a way as to maximise the transcription of its genome, a mechanism that might be important for it to maintain virulence.

  18. Transposable genetic elements in Spirulina and potential applications for genetic engineering

    Science.gov (United States)

    Hiroyuki, Kojima; Qin, Song; Thankappan, Ajith Kumar; Yoshikazu, Kawata; Shin-Ichi, Yano

    1998-03-01

    Transposable elements in cyanobacteria are briefly reviewed. Evidence is presented to show that transposable elements in Spirulina platensis is actually reflected on the phenotype change, i e., helical to straight filaments. Transposition intermediates of DNA were isolated from the extrachromosome and the transposition was related to helical variations in Spirulina. Uses of transposable elements for microalgal recombination are discussed based on the transposition mechanism.

  19. [Anti-HBV effects of genetically engineered replication-defective HBV with combined expression of antisense RNA and dominant negative mutants of core protein and construction of first-generation packaging cell line for HBV vector].

    Science.gov (United States)

    Sun, Dian Xing; Hu, Da Rong; Wu, Guang Hui; Hu, Xue Ling; Li, Juan; Fan, Gong Ren

    2002-08-01

    To explore the possibility of using HBV as a gene delivery vector, and to test the anti-HBV effects by intracellular combined expression of antisense RNA and dominant negative mutants of core protein. Full length of mutant HBV genome, which expresses core-partial P fusion protein and/or antisense RNA, was transfected into HepG2.2.15 cell lines. Positive clones were selected and mixed in respective groups with hygromycin in the culture medium. HBsAg and HBeAg, which exist in the culture medium, were tested by ELISA method. Intracellular HBc related HBV DNA was examined by dot blot hybridization. The existence of recombinant HBV virion in the culture medium was examined by PCR. Free of packaging signal, HBV genome, which express the HBV structural proteins including core, pol and preS/S proteins, was inserted into pCI-neo vector. HepG2 cell lines were employed to transfect with the construct. G418 selection was done at the concentration of 400mug/ml in the culture medium. The G418-resistant clones with the best expression of HBsAg and HBcAg were theoretically considered as packaging cell lines and propagated under the same conditions. It was transfected with plasmid pMEP-CPAS and then selected with G418 and hygromycin in the culture medium. The existence of recombinant HBV virion in the culture medium was examined by PCR. The mean inhibitory rates of HBsAg were 2.74% 3.83%, 40.08 2.05% (t=35.5, PDNA were 0, 82.0%, 59.9%, and 96.6%, respectively. Recombinant HB virion was detectable in the culture medium of all the three treatment groups. G418-resistant HBV packaging cell line, which harbored an HBV mutant whose packaging signal had been deleted, was generated. Expression of HBsAg and HBcAg was detectable. Transfected with plasmid pMEP-CPAS, it was found to secrete recombinant HB virion and no wild-type HBV was detectable in the culture medium. It has stronger anti-HBV effects by combined expression of antisense RNA and dominant negative mutants than by individual

  20. Peptide nucleic acid (PNA) antisense effects in Escherichia coli

    DEFF Research Database (Denmark)

    Good, L; Nielsen, P E

    1999-01-01

    to antisense PNAs than the wild type. This chapter details methods for testing the antisense activities of PNA in E. coli. As an example of the specific antisense inhibition possible, we show the effects of an anti-beta-galactosidase PNA in comparison to control PNAs. With improvements in cell uptake...

  1. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress.

    Science.gov (United States)

    Servant, Géraldine; Pinson, Benoit; Tchalikian-Cosson, Aurélie; Coulpier, Fanny; Lemoine, Sophie; Pennetier, Carole; Bridier-Nahmias, Antoine; Todeschini, Anne Laure; Fayol, Hélène; Daignan-Fornier, Bertrand; Lesage, Pascale

    2012-07-01

    Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages.

  2. Expression of RNA-interference/antisense transgenes by the cognate promoters of target genes is a better gene-silencing strategy to study gene functions in rice.

    Science.gov (United States)

    Li, Jing; Jiang, Dagang; Zhou, Hai; Li, Feng; Yang, Jiawei; Hong, Laifa; Fu, Xiao; Li, Zhibin; Liu, Zhenlan; Li, Jianming; Zhuang, Chuxiong

    2011-03-03

    Antisense and RNA interference (RNAi)-mediated gene silencing systems are powerful reverse genetic methods for studying gene function. Most RNAi and antisense experiments used constitutive promoters to drive the expression of RNAi/antisense transgenes; however, several reports showed that constitutive promoters were not expressed in all cell types in cereal plants, suggesting that the constitutive promoter systems are not effective for silencing gene expression in certain tissues/organs. To develop an alternative method that complements the constitutive promoter systems, we constructed RNAi and/or antisense transgenes for four rice genes using a constitutive promoter or a cognate promoter of a selected rice target gene and generated many independent transgenic lines. Genetic, molecular, and phenotypic analyses of these RNAi/antisense transgenic rice plants, in comparison to previously-reported transgenic lines that silenced similar genes, revealed that expression of the cognate promoter-driven RNAi/antisense transgenes resulted in novel growth/developmental defects that were not observed in transgenic lines expressing constitutive promoter-driven gene-silencing transgenes of the same target genes. Our results strongly suggested that expression of RNAi/antisense transgenes by cognate promoters of target genes is a better gene-silencing approach to discovery gene function in rice.

  3. Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge

    NARCIS (Netherlands)

    Liao, Hanpeng; Lu, Xiaomei; Rensing, Christopher; Friman, Ville Petri; Geisen, Stefan; Chen, Zhi; Yu, Zhen; Wei, Zhong; Zhou, Shungui; Zhu, Yongguan

    2018-01-01

    Composting is an efficient way to convert organic waste into fertilizers. However, waste materials often contain large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) that can reduce the efficacy of antibiotic treatments when transmitted to humans. Because

  4. Trans-Splicing Improvement by the Combined Application of Antisense Strategies

    Directory of Open Access Journals (Sweden)

    Ulrich Koller

    2015-01-01

    Full Text Available Spliceosome-mediated RNA trans-splicing has become an emergent tool for the repair of mutated pre-mRNAs in the treatment of genetic diseases. RNA trans-splicing molecules (RTMs are designed to induce a specific trans-splicing reaction via a binding domain for a respective target pre-mRNA region. A previously established reporter-based screening system allows us to analyze the impact of various factors on the RTM trans-splicing efficiency in vitro. Using this system, we are further able to investigate the potential of antisense RNAs (AS RNAs, presuming to improve the trans-splicing efficiency of a selected RTM, specific for intron 102 of COL7A1. Mutations in the COL7A1 gene underlie the dystrophic subtype of the skin blistering disease epidermolysis bullosa (DEB. We have shown that co-transfections of the RTM and a selected AS RNA, interfering with competitive splicing elements on a COL7A1-minigene (COL7A1-MG, lead to a significant increase of the RNA trans-splicing efficiency. Thereby, accurate trans-splicing between the RTM and the COL7A1-MG is represented by the restoration of full-length green fluorescent protein GFP on mRNA and protein level. This mechanism can be crucial for the improvement of an RTM-mediated correction, especially in cases where a high trans-splicing efficiency is required.

  5. Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile.

    Directory of Open Access Journals (Sweden)

    Michael S M Brouwer

    Full Text Available Clostridium difficile is the leading cause of hospital-associated diarrhoea in the US and Europe. Recently the incidence of C. difficile-associated disease has risen dramatically and concomitantly with the emergence of 'hypervirulent' strains associated with more severe disease and increased mortality. C. difficile contains numerous mobile genetic elements, resulting in the potential for a highly plastic genome. In the first sequenced strain, 630, there is one proven conjugative transposon (CTn, Tn5397, and six putative CTns (CTn1, CTn2 and CTn4-7, of which, CTn4 and CTn5 were capable of excision. In the second sequenced strain, R20291, two further CTns were described.CTn1, CTn2 CTn4, CTn5 and CTn7 were shown to excise from the genome of strain 630 and transfer to strain CD37. A putative CTn from R20291, misleadingly termed a phage island previously, was shown to excise and to contain three putative mobilisable transposons, one of which was capable of excision. In silico probing of C. difficile genome sequences with recombinase gene fragments identified new putative conjugative and mobilisable transposons related to the elements in strains 630 and R20291. CTn5-like elements were described occupying different insertion sites in different strains, CTn1-like elements that have lost the ability to excise in some ribotype 027 strains were described and one strain was shown to contain CTn5-like and CTn7-like elements arranged in tandem. Additionally, using bioinformatics, we updated previous gene annotations and predicted novel functions for the accessory gene products on these new elements.The genomes of the C. difficile strains examined contain highly related CTns suggesting recent horizontal gene transfer. Several elements were capable of excision and conjugative transfer. The presence of antibiotic resistance genes and genes predicted to promote adaptation to the intestinal environment suggests that CTns play a role in the interaction of C

  6. Conserved alternative and antisense transcripts at the programmed cell death 2 locus

    Czech Academy of Sciences Publication Activity Database

    Mihola, Ondřej; Forejt, Jiří; Trachtulec, Zdeněk

    2007-01-01

    Roč. 8, - (2007), s. 20 ISSN 1471-2164 R&D Projects: GA ČR(CZ) GA204/01/0997; GA ČR GA301/05/0738; GA AV ČR IAA5052406; GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : Pdcd2 * antisense * alternative transcript * imprinting Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.180, year: 2007

  7. Transcriptional control of the endogenous MYC protooncogene by antisense RNA

    International Nuclear Information System (INIS)

    Yokoyama, K.; Imamoto, F.

    1987-01-01

    A plasmid carrying antisense human MYC DNA and the gene encoding Esherichia coli xanthine/guanine phosphoribosyltransferase (Ecogpt) was introduced into human promyelocytic leukemia cell line HL-60 by protoplast fusion. High-level expression of antisense MYC RNA was obtained by selecting cells resistant to progressively higher levels of mycophenolic acid over a period of > 6 months. The constitutive production of MYC protein in clones producing high levels of antisense MYC RNA was reduced by 70% compared to parental HL-60 cells. Inhibition of MYC expression was observed not only at the translational but also at the transcriptional level, implying the antisense RNA can regulate transcription of the MYC gene. The Pst I-Pvu II fragment (920 base pairs) of the MYC leader sequence is the primary transcriptional target of the antisense RNA. The suppression of endogenous MYC gene expression by antisense RNA decreases cell proliferation and triggers monocytic differentiation

  8. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge

    OpenAIRE

    Zhang, T; Zhang, XX; Ye, L

    2011-01-01

    The overuse or misuse of antibiotics has accelerated antibiotic resistance, creating a major challenge for the public health in the world. Sewage treatment plants (STPs) are considered as important reservoirs for antibiotic resistance genes (ARGs) and activated sludge characterized with high microbial density and diversity facilitates ARG horizontal gene transfer (HGT) via mobile genetic elements (MGEs). However, little is known regarding the pool of ARGs and MGEs in sludge microbiome. In thi...

  9. Metagenomic Profiling of Antibiotic Resistance Genes and Mobile Genetic Elements in a Tannery Wastewater Treatment Plant

    OpenAIRE

    Wang, Zhu; Zhang, Xu-Xiang; Huang, Kailong; Miao, Yu; Shi, Peng; Liu, Bo; Long, Chao; Li, Aimin

    2013-01-01

    Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP). Metagenomic analysis showed that Pr...

  10. Detrimental effects of an autosomal selfish genetic element on sperm competitiveness in house mice.

    Science.gov (United States)

    Sutter, Andreas; Lindholm, Anna K

    2015-07-22

    Female multiple mating (polyandry) is widespread across many animal taxa and indirect genetic benefits are a major evolutionary force favouring polyandry. An incentive for polyandry arises when multiple mating leads to sperm competition that disadvantages sperm from genetically inferior mates. A reduction in genetic quality is associated with costly selfish genetic elements (SGEs), and studies in invertebrates have shown that males bearing sex ratio distorting SGEs are worse sperm competitors than wild-type males.We used a vertebrate model species to test whether females can avoid an autosomal SGE, the t haplotype, through polyandry. The t haplotype inhouse mice exhibits strong drive in t heterozygous males by affecting spermatogenesis and is associated with homozygous in utero lethality. We used controlled matings to test the effect of the t haplotype on sperm competitiveness. Regardless of mating order, t heterozygous males sired only 11% of zygotes when competing against wild-type males, suggesting a very strong effect of the t haplotype on sperm quality. We provide, to our knowledge,the first substantial evidence that polyandry ameliorates the harmful effects of an autosomal SGE arising through genetic incompatibility. We discuss potential mechanisms in our study species and the broader implications for the benefits of polyandry.

  11. Antibiotic and antiseptic resistance genes are linked on a novel mobile genetic element: Tn6087

    Science.gov (United States)

    Ciric, Lena; Mullany, Peter; Roberts, Adam P.

    2011-01-01

    Objectives Tn916-like elements are one of the most common types of integrative and conjugative element (ICE). In this study we aimed to determine whether novel accessory genes, i.e. genes whose products are not involved in mobility or regulation, were present on a Tn916-like element (Tn6087) isolated from Streptococcus oralis from the human oral cavity. Methods A minocycline-resistant isolate was analysed using restriction fragment length polymorphism (RFLP) analysis on amplicons derived from Tn916 and DNA sequencing to determine whether there were genetic differences in Tn6087 compared with Tn916. Mutational analysis was used to determine whether the novel accessory gene found was responsible for an observed extra phenotype. Results A novel Tn916-like element, Tn6087, is described that encodes both antibiotic and antiseptic resistance. The antiseptic resistance protein is encoded by a novel small multidrug resistance gene, designated qrg, that was shown to encode resistance to cetyltrimethylammonium bromide (CTAB), also known as cetrimide bromide. Conclusions This is the first Tn916-like element described that confers both antibiotic and antiseptic resistance, suggesting that selection of either antibiotic or antiseptic resistance will also select for the other and further highlights the need for prudent use of both types of compound. PMID:21816764

  12. Whole-Genome Sequencing of Seven Strains of Staphylococcus lugdunensis Allows Identification of Mobile Genetic Elements

    Science.gov (United States)

    Martin, Véronique; Loux, Valentin; Dahyot, Sandrine; Lebeurre, Jérémie; Guffroy, Aurélien; Martin, Mickael; Velay, Aurélie; Keller, Daniel; Riegel, Philippe; Hansmann, Yves; Paul, Nicodème; Prévost, Gilles

    2017-01-01

    Coagulase negative staphylococci are normal inhabitant of the human skin flora that account for an increasing number of infections, particularly hospital-acquired infections. Staphylococcus lugdunensis has emerged as a most virulent species causing various infections with clinical characteristics close to what clinicians usually observe with Staphylococcus aureus and both bacteria share more than 70% of their genome. Virulence of S. aureus relies on a large repertoire of virulence factors, many of which are encoded on mobile genetic elements. S. lugdunensis also bears various putative virulence genes but only one complete genome with extensive analysis has been published with one prophage sequence (φSL2) and a unique plasmid was previously described. In this study, we performed de novo sequencing, whole genome assembly and annotation of seven strains of S. lugdunensis from VISLISI clinical trial. We searched for the presence of virulence genes and mobile genetics elements using bioinformatics tools. We identified four new prophages, named φSL2 to φSL4, belonging to the Siphoviridae class and five plasmids, named pVISLISI_1 to pVISLISI_5. Three plasmids are homologous to known plasmids that include, amongst others, one S. aureus plasmid. The two other plasmids were not described previously. This study provides a new context for the study of S. lugdunensis virulence suggesting the occurrence of several genetic recombination’ with other staphylococci. PMID:28444231

  13. Antisense-induced suppression of taxoid 14β- hydroxylase gene ...

    African Journals Online (AJOL)

    Following the construction of an antisense RNA expression vector of 14OH from Taxus chinensis, the antisense 14OH cDNA (as14OH) was introduced into TM3 cells by Agrobacterium tumefaciens-mediated transformation. Southern blot analysis of hygromycin phosphotransferase gene (HYG) revealed that this selection ...

  14. Antisense transcription-dependent chromatin signature modulates sense transcript dynamics.

    Science.gov (United States)

    Brown, Thomas; Howe, Françoise S; Murray, Struan C; Wouters, Meredith; Lorenz, Philipp; Seward, Emily; Rata, Scott; Angel, Andrew; Mellor, Jane

    2018-02-12

    Antisense transcription is widespread in genomes. Despite large differences in gene size and architecture, we find that yeast and human genes share a unique, antisense transcription-associated chromatin signature. We asked whether this signature is related to a biological function for antisense transcription. Using quantitative RNA-FISH, we observed changes in sense transcript distributions in nuclei and cytoplasm as antisense transcript levels were altered. To determine the mechanistic differences underlying these distributions, we developed a mathematical framework describing transcription from initiation to transcript degradation. At GAL1 , high levels of antisense transcription alter sense transcription dynamics, reducing rates of transcript production and processing, while increasing transcript stability. This relationship with transcript stability is also observed as a genome-wide association. Establishing the antisense transcription-associated chromatin signature through disruption of the Set3C histone deacetylase activity is sufficient to similarly change these rates even in the absence of antisense transcription. Thus, antisense transcription alters sense transcription dynamics in a chromatin-dependent manner. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Genetic local search algorithm for optimization design of diffractive optical elements.

    Science.gov (United States)

    Zhou, G; Chen, Y; Wang, Z; Song, H

    1999-07-10

    We propose a genetic local search algorithm (GLSA) for the optimization design of diffractive optical elements (DOE's). This hybrid algorithm incorporates advantages of both genetic algorithm (GA) and local search techniques. It appears better able to locate the global minimum compared with a canonical GA. Sample cases investigated here include the optimization design of binary-phase Dammann gratings, continuous surface-relief grating array generators, and a uniform top-hat focal plane intensity profile generator. Two GLSA's whose incorporated local search techniques are the hill-climbing method and the simulated annealing algorithm are investigated. Numerical experimental results demonstrate that the proposed algorithm is highly efficient and robust. DOE's that have high diffraction efficiency and excellent uniformity can be achieved by use of the algorithm we propose.

  16. Fast Computation Technique of Genetic Algorithm Based on Finite Element Method

    Science.gov (United States)

    Kitagawa, Wataru; Ishihara, Yoshiyuki; Todaka, Toshiyuki; Hirata, Katsuhiro

    This paper presents the useful technique to save the computation time in the optimization process of the genetic algorithm (GA). In this technique, genes are encoded for elements as their material information to avoid re-meshing caused by the movement of nodes. Furthermore, the process of the GA is divided into two steps because it requires much computation time to apply the GA for the whole region to be analyzed at once. The usefulness and the flexibility of this technique are verified through the comparison with the usual one when it is applied to an electromagnetic clutch and a solenoid to obtain the maximum attractive force.

  17. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0.

    Science.gov (United States)

    Llorens, Carlos; Futami, Ricardo; Covelli, Laura; Domínguez-Escribá, Laura; Viu, Jose M; Tamarit, Daniel; Aguilar-Rodríguez, Jose; Vicente-Ripolles, Miguel; Fuster, Gonzalo; Bernet, Guillermo P; Maumus, Florian; Munoz-Pomer, Alfonso; Sempere, Jose M; Latorre, Amparo; Moya, Andres

    2011-01-01

    This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org.

  18. Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments

    KAUST Repository

    Adel, Mustafa

    2016-09-06

    The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 109 bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer.

  19. Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements

    Directory of Open Access Journals (Sweden)

    Hilario Elena

    2006-11-01

    Full Text Available Abstract Self splicing introns and inteins that rely on a homing endonuclease for propagation are parasitic genetic elements. Their life-cycle and evolutionary fate has been described through the homing cycle. According to this model the homing endonuclease is selected for function only during the spreading phase of the parasite. This phase ends when the parasitic element is fixed in the population. Upon fixation the homing endonuclease is no longer under selection, and its activity is lost through random processes. Recent analyses of these parasitic elements with functional homing endonucleases suggest that this model in its most simple form is not always applicable. Apparently, functioning homing endonuclease can persist over long evolutionary times in populations and species that are thought to be asexual or nearly asexual. Here we review these recent findings and discuss their implications. Reasons for the long-term persistence of a functional homing endonuclease include: More recombination (sexual and as a result of gene transfer than previously assumed for these organisms; complex population structures that prevent the element from being fixed; a balance between active spreading of the homing endonuclease and a decrease in fitness caused by the parasite in the host organism; or a function of the homing endonuclease that increases the fitness of the host organism and results in purifying selection for the homing endonuclease activity, even after fixation in a local population. In the future, more detailed studies of the population dynamics of the activity and regulation of homing endonucleases are needed to decide between these possibilities, and to determine their relative contributions to the long term survival of parasitic genes within a population. Two outstanding publications on the amoeba Naegleria group I intron (Wikmark et al. BMC Evol Biol 2006, 6:39 and the PRP8 inteins in ascomycetes (Butler et al.BMC Evol Biol 2006, 6:42 provide

  20. ICESpy009, a Conjugative Genetic Element Carrying mef(E) in Streptococcus pyogenes.

    Science.gov (United States)

    Del Grosso, Maria; Camilli, Romina; Rizzi, Ermanno; Pietrelli, Alessandro; De Bellis, Gianluca; Pantosti, Annalisa

    2016-07-01

    Efflux-mediated macrolide resistance due to mef(E) and mel, carried by the mega element, is common in Streptococcus pneumoniae, for which it was originally characterized, but it is rare in Streptococcus pyogenes In S. pyogenes, mega was previously found to be enclosed in Tn2009, a composite genetic element of the Tn916 family containing tet(M) and conferring erythromycin and tetracycline resistance. In this study, S. pyogenes isolates containing mef(E), apparently not associated with other resistance determinants, were examined to characterize the genetic context of mega. By whole-genome sequencing of one isolate, MB56Spyo009, we identified a novel composite integrative and conjugative element (ICE) carrying mega, designated ICESpy009, belonging to the ICESa2603 family. ICESpy009 was 55 kb long, contained 61 putative open reading frames (ORFs), and was found to be integrated into hylA, a novel integration site for the ICESa2603 family. The modular organization of the ICE was similar to that of members of the ICESa2603 family carried by different streptococcal species. In addition, a novel cluster of accessory resistance genes was found inside a region that encloses mega. PCR mapping targeting ICESpy009 revealed the presence of a similar ICE in five other isolates under study. While in three isolates the integration site was the same as that of ICESpy009, in two isolates the ICE was integrated into rplL, the typical integration site of the ICESa2603 family. ICESpy009 was able to transfer macrolide resistance by conjugation to both S. pyogenes and S. pneumoniae, showing the first evidence of the transferability of mega from S. pyogenes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Conservation of intron and intein insertion sites: implications for life histories of parasitic genetic elements

    Directory of Open Access Journals (Sweden)

    Senejani Alireza G

    2009-12-01

    Full Text Available Abstract Background Inteins and introns are genetic elements that are removed from proteins and RNA after translation or transcription, respectively. Previous studies have suggested that these genetic elements are found in conserved parts of the host protein. To our knowledge this type of analysis has not been done for group II introns residing within a gene. Here we provide quantitative statistical support from an analyses of proteins that host inteins, group I introns, group II introns and spliceosomal introns across all three domains of life. Results To determine whether or not inteins, group I, group II, and spliceosomal introns are found preferentially in conserved regions of their respective host protein, conservation profiles were generated and intein and intron positions were mapped to the profiles. Fisher's combined probability test was used to determine the significance of the distribution of insertion sites across the conservation profile for each protein. For a subset of studied proteins, the conservation profile and insertion positions were mapped to protein structures to determine if the insertion sites correlate to regions of functional activity. All inteins and most group I introns were found to be preferentially located within conserved regions; in contrast, a bacterial intein-like protein, group II and spliceosomal introns did not show a preference for conserved sites. Conclusions These findings demonstrate that inteins and group I introns are found preferentially in conserved regions of their respective host proteins. Homing endonucleases are often located within inteins and group I introns and these may facilitate mobility to conserved regions. Insertion at these conserved positions decreases the chance of elimination, and slows deletion of the elements, since removal of the elements has to be precise as not to disrupt the function of the protein. Furthermore, functional constrains on the targeted site make it more difficult

  2. Hybrid of Natural Element Method (NEM with Genetic Algorithm (GA to find critical slip surface

    Directory of Open Access Journals (Sweden)

    Shahriar Shahrokhabadi

    2014-06-01

    Full Text Available One of the most important issues in geotechnical engineering is the slope stability analysis for determination of the factor of safety and the probable slip surface. Finite Element Method (FEM is well suited for numerical study of advanced geotechnical problems. However, mesh requirements of FEM creates some difficulties for solution processing in certain problems. Recently, motivated by these limitations, several new Meshfree methods such as Natural Element Method (NEM have been used to analyze engineering problems. This paper presents advantages of using NEM in 2D slope stability analysis and Genetic Algorithm (GA optimization to determine the probable slip surface and the related factor of safety. The stress field is produced under plane strain condition using natural element formulation to simulate material behavior analysis utilized in conjunction with a conventional limit equilibrium method. In order to justify the preciseness and convergence of the proposed method, two kinds of examples, homogenous and non-homogenous, are conducted and results are compared with FEM and conventional limit equilibrium methods. The results show the robustness of the NEM in slope stability analysis.

  3. Gene isoform specificity through enhancer-associated antisense transcription.

    Directory of Open Access Journals (Sweden)

    Courtney S Onodera

    Full Text Available Enhancers and antisense RNAs play key roles in transcriptional regulation through differing mechanisms. Recent studies have demonstrated that enhancers are often associated with non-coding RNAs (ncRNAs, yet the functional role of these enhancer:ncRNA associations is unclear. Using RNA-Sequencing to interrogate the transcriptomes of undifferentiated mouse embryonic stem cells (mESCs and their derived neural precursor cells (NPs, we identified two novel enhancer-associated antisense transcripts that appear to control isoform-specific expression of their overlapping protein-coding genes. In each case, an enhancer internal to a protein-coding gene drives an antisense RNA in mESCs but not in NPs. Expression of the antisense RNA is correlated with expression of a shorter isoform of the associated sense gene that is not present when the antisense RNA is not expressed. We demonstrate that expression of the antisense transcripts as well as expression of the short sense isoforms correlates with enhancer activity at these two loci. Further, overexpression and knockdown experiments suggest the antisense transcripts regulate expression of their associated sense genes via cis-acting mechanisms. Interestingly, the protein-coding genes involved in these two examples, Zmynd8 and Brd1, share many functional domains, yet their antisense ncRNAs show no homology to each other and are not present in non-murine mammalian lineages, such as the primate lineage. The lack of homology in the antisense ncRNAs indicates they have evolved independently of each other and suggests that this mode of lineage-specific transcriptional regulation may be more widespread in other cell types and organisms. Our findings present a new view of enhancer action wherein enhancers may direct isoform-specific expression of genes through ncRNA intermediates.

  4. Gene Isoform Specificity through Enhancer-Associated Antisense Transcription

    Science.gov (United States)

    Onodera, Courtney S.; Underwood, Jason G.; Katzman, Sol; Jacobs, Frank; Greenberg, David; Salama, Sofie R.; Haussler, David

    2012-01-01

    Enhancers and antisense RNAs play key roles in transcriptional regulation through differing mechanisms. Recent studies have demonstrated that enhancers are often associated with non-coding RNAs (ncRNAs), yet the functional role of these enhancer:ncRNA associations is unclear. Using RNA-Sequencing to interrogate the transcriptomes of undifferentiated mouse embryonic stem cells (mESCs) and their derived neural precursor cells (NPs), we identified two novel enhancer-associated antisense transcripts that appear to control isoform-specific expression of their overlapping protein-coding genes. In each case, an enhancer internal to a protein-coding gene drives an antisense RNA in mESCs but not in NPs. Expression of the antisense RNA is correlated with expression of a shorter isoform of the associated sense gene that is not present when the antisense RNA is not expressed. We demonstrate that expression of the antisense transcripts as well as expression of the short sense isoforms correlates with enhancer activity at these two loci. Further, overexpression and knockdown experiments suggest the antisense transcripts regulate expression of their associated sense genes via cis-acting mechanisms. Interestingly, the protein-coding genes involved in these two examples, Zmynd8 and Brd1, share many functional domains, yet their antisense ncRNAs show no homology to each other and are not present in non-murine mammalian lineages, such as the primate lineage. The lack of homology in the antisense ncRNAs indicates they have evolved independently of each other and suggests that this mode of lineage-specific transcriptional regulation may be more widespread in other cell types and organisms. Our findings present a new view of enhancer action wherein enhancers may direct isoform-specific expression of genes through ncRNA intermediates. PMID:22937057

  5. Mobile genetic elements, a key to microbial adaptation in extreme environments

    Science.gov (United States)

    van Houdt, Rob; Mijnendonckx, Kristel; Provoost, Ann; Monsieurs, Pieter; Mergeay, Max; Leys, Natalie

    To ensure well-being of the crew during manned spaceflight, continuous monitoring of different microbial contaminants in air, in water and on surfaces in the spacecraft is vital. Next to microorganisms originating mainly from human activity, strains from the closely related gen-era Cupriavidus and Ralstonia have been identified and isolated during numerous monitoring campaigns from different space-related environments. These strains have been found in the air of the Mars Exploration Rover assembly room, on the surface of the Mars Odyssey Orbiter and in different water sources from the International Space Station, Shuttle and Mir space station. In previous studies, we investigated the response of the model bacterium Cupriavidus metallidurans CH34 when cultured in the international space station (ISS) and space gravity and radiation simulation facilities, to understand it's ways to adapt to space flight conditions. It was also demonstrated that genetic rearrangements due to the movement of IS (insertion sequence) elements, enabled CH34 to adapt to toxic zinc concentrations, in space flight and on ground. In this study, we screened the full genome sequence of C. metallidurans CH34 for the presence of mobile genetic elements (MGEs), with the purpose to identified their putative role in adaptation to the new environments. Eleven genomic islands (GI) were identified in chro-mosome 1, three on the native plasmid pMOL28 and two on the native plasmid pMOL30. On the plasmids pMOL28 and pMOL30, all genes involved in the response to metals were located within GIs. Three of the GIs on chromosome 1 contained genes involved in the response to metals. Three GIs (CMGI-2, -3 and -4) on chromosome 1 belonged to the Tn4371 family, with CMGI-2 containing at least 25 genes involved in the degradation of toluene corresponding to CH34's ability to grow at expense of toluene, benzene or xylene as sole carbon source. CMGI-3 sheltered accessory genes involved in CO2 fixation and

  6. Transcriptional Regulatory Circuitries in the Human Pathogen Candida albicans Involving Sense–Antisense Interactions

    Science.gov (United States)

    Ahmad, Ausaf; Kravets, Anatoliy; Rustchenko, Elena

    2012-01-01

    Candida albicans, a major human fungal pathogen, usually contains a diploid genome, but controls adaptation to a toxic alternative carbon source L-sorbose, by the reversible loss of one chromosome 5 (Ch5). We have previously identified multiple unique regions on Ch5 that repress the growth on sorbose. In one of the regions, the CSU51 gene determining the repressive property of the region was identified. We report here the identification of the CSU53 gene from a different region on Ch5. Most importantly, we find that CSU51 and CSU53 are associated with novel regulatory elements, ASUs, which are embedded within CSUs in an antisense configuration. ASUs act opposite to CSUs by enhancing the growth on sorbose. In respect to the CSU transcripts, the ASU long antisense transcripts are in lesser amounts, are completely overlapped, and are inversely related. ASUs interact with CSUs in natural CSU/ASU cis configurations, as well as when extra copies of ASUs are placed in trans to the CSU/ASU configurations. We suggest that ASU long embedded antisense transcripts modulate CSU sense transcripts. PMID:22135347

  7. Transcriptional regulatory circuitries in the human pathogen Candida albicans involving sense--antisense interactions.

    Science.gov (United States)

    Ahmad, Ausaf; Kravets, Anatoliy; Rustchenko, Elena

    2012-02-01

    Candida albicans, a major human fungal pathogen, usually contains a diploid genome, but controls adaptation to a toxic alternative carbon source L-sorbose, by the reversible loss of one chromosome 5 (Ch5). We have previously identified multiple unique regions on Ch5 that repress the growth on sorbose. In one of the regions, the CSU51 gene determining the repressive property of the region was identified. We report here the identification of the CSU53 gene from a different region on Ch5. Most importantly, we find that CSU51 and CSU53 are associated with novel regulatory elements, ASUs, which are embedded within CSUs in an antisense configuration. ASUs act opposite to CSUs by enhancing the growth on sorbose. In respect to the CSU transcripts, the ASU long antisense transcripts are in lesser amounts, are completely overlapped, and are inversely related. ASUs interact with CSUs in natural CSU/ASU cis configurations, as well as when extra copies of ASUs are placed in trans to the CSU/ASU configurations. We suggest that ASU long embedded antisense transcripts modulate CSU sense transcripts.

  8. Ribonucleases, antisense RNAs and the control of bacterial plasmids.

    Science.gov (United States)

    Saramago, Margarida; Bárria, Cátia; Arraiano, Cecília M; Domingues, Susana

    2015-03-01

    In the last decade regulatory RNAs have emerged as powerful tools to regulate the expression of genes both in prokaryotes and in eukaryotes. RNases, by degrading these RNA molecules, control the right amount of regulatory RNAs, which is fundamental for an accurate regulation of gene expression in the cell. Remarkably the first antisense RNAs identified were plasmid-encoded and their detailed study was crucial for the understanding of prokaryotic antisense RNAs. In this review we highlight the role of RNases in the precise modulation of antisense RNAs that control plasmid replication, maintenance and transfer. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Movable Genetic Elements: Detection of Changes in Maize DNA at the Shrunken Locus Due to the Intervention of Ds Elements

    Science.gov (United States)

    Burr, B.; Burr, F.A.

    1980-05-28

    This report describes our initial attempts at the molecular characterization of a maize controlling element. We have prepared a cDNA probe and used it to detect changes at a locus where Ds elements are found. Evidence of their presence are indicated by changes in the restriction patterns, but there is as yet no information on the physical nature of the controlling elements nor on the kinds of rearrangements they cause.

  10. Mobile genetic elements of Pseudomonas aeruginosa isolates from hydrotherapy facility and respiratory infections.

    Science.gov (United States)

    Pereira, S G; Cardoso, O

    2014-03-01

    The content of mobile genetic elements in Pseudomonas aeruginosa isolates of a pristine natural mineral water system associated with healthcare was compared with clinical isolates from respiratory infections. One isolate, from the therapy pool circuit, presented a class 1 integron, with 100% similarity to a class 1 integron contained in plasmid p4800 of the Klebsiella pneumoniae Kp4800 strain, which is the first time it has been reported in P. aeruginosa. Class 1 integrons were found in 25.6% of the clinical isolates. PAGI1 orf3 was more prevalent in environmental isolates, while PAGI2 c105 and PAGI3 sg100 were more prevalent in clinical isolates. Plasmids were not observed in either population. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  11. Peptide nucleic acid (PNA) antisense effects in Escherichia coli

    DEFF Research Database (Denmark)

    Good, L; Nielsen, P E

    1999-01-01

    Antisense peptide nucleic acid (PNA) can be used to control cell growth, gene expression and growth phenotypes in the bacteria Escherichia coli. PNAs targeted to the RNA components of the ribosome can inhibit translation and cell growth, and PNAs targeted to mRNA can limit gene expression with gene...... and sequence specificity. In an E. coli cell extract, efficient inhibition is observed when using PNA concentrations in the nanomolar range, whereas micromolar concentrations are required for inhibition in growing cells. A mutant strain of E. coli that is more permeable to antibiotics also is more susceptible...... to antisense PNAs than the wild type. This chapter details methods for testing the antisense activities of PNA in E. coli. As an example of the specific antisense inhibition possible, we show the effects of an anti-beta-galactosidase PNA in comparison to control PNAs. With improvements in cell uptake...

  12. A mobile genetic element profoundly increases heat resistance of bacterial spores.

    Science.gov (United States)

    Berendsen, Erwin M; Boekhorst, Jos; Kuipers, Oscar P; Wells-Bennik, Marjon H J

    2016-11-01

    Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient deprivation. Although the macromolecular structures of spores from different bacterial species are similar, their resistance to environmental insults differs widely. It is not known which of the factors attributed to spore resistance confer very high-level heat resistance. Here, we provide conclusive evidence that in Bacillus subtilis, this is due to the presence of a mobile genetic element (Tn1546-like) carrying five predicted operons, one of which contains genes that encode homologs of SpoVAC, SpoVAD and SpoVAEb and four other genes encoding proteins with unknown functions. This operon, named spoVA 2mob , confers high-level heat resistance to spores. Deletion of spoVA 2mob in a B. subtilis strain carrying Tn1546 renders heat-sensitive spores while transfer of spoVA 2mob into B. subtilis 168 yields highly heat-resistant spores. On the basis of the genetic conservation of different spoVA operons among spore-forming species of Bacillaceae, we propose an evolutionary scenario for the emergence of extremely heat-resistant spores in B. subtilis, B. licheniformis and B. amyloliquefaciens. This discovery opens up avenues for improved detection and control of spore-forming bacteria able to produce highly heat-resistant spores.

  13. The key elements for genetic response in Finnish dairy cattle breeding

    Directory of Open Access Journals (Sweden)

    J. JUGA

    2008-12-01

    Full Text Available This paper reviews some key elements of Finnish animal breeding research contributing to the Finnish dairy cattle breeding programme and discusses the possibilities and problems in collecting data for genetic evaluation, prediction of breeding values both within and across countries, estimation of the economic value of important traits, and selection of bulls and cows. Economic values are calculated for fertility, udder health and production traits when one genetic standard deviation unit (gen. sd. is changed in each trait independently and the financial returns from selection response in the Finnish dairy cattle breeding programme are estimated. The following components were used to calculate the economic value of mastitis treatments: 1 cost of mastitis including discarded milk and treatment costs, 2 reduction in milk price due to higher somatic cell count, 3 replacement costs and 4 lower production level of the herd due to involuntary culling of cows because of udder problems. A high somatic cell count lowers the price of milk and eventually leads to involuntary culling. For treatments for fertility disorders the following costs were included: 1 treatment costs 2 higher replacement costs and 3 decreased milk production in the herd. Days open included the following costs: 1 extra insemination, 2 reduced annual milk yield and 3 fewer calves born. Animal breeding was found to be a very cost effective investment, yielding returns of FIM 876.9 per cow from one round of selection when the gene flow was followed for over 25 years in the Finnish dairy cattle breeding programme.;

  14. Detection, characterization and regulation of antisense transcripts in HIV-1

    Directory of Open Access Journals (Sweden)

    Mesnard Jean-Michel

    2007-10-01

    Full Text Available Abstract Background We and others have recently demonstrated that the human retrovirus HTLV-I was producing a spliced antisense transcript, which led to the synthesis of the HBZ protein. The objective of the present study was to demonstrate the existence of antisense transcription in HIV-1 and to provide a better characterization of the transcript and its regulation. Results Initial experiments conducted by standard RT-PCR analysis in latently infected J1.1 cell line and pNL4.3-transfected 293T cells confirmed the existence of antisense transcription in HIV-1. A more adapted RT-PCR protocol with limited RT-PCR artefacts also led to a successful detection of antisense transcripts in several infected cell lines. RACE analyses demonstrated the existence of several transcription initiation sites mapping near the 5' border of the 3'LTR (in the antisense strand. Interestingly, a new polyA signal was identified on the antisense strand and harboured the polyA signal consensus sequence. Transfection experiments in 293T and Jurkat cells with an antisense luciferase-expressing NL4.3 proviral DNA showed luciferase reporter gene expression, which was further induced by various T-cell activators. In addition, the viral Tat protein was found to be a positive modulator of antisense transcription by transient and stable transfections of this proviral DNA construct. RT-PCR analyses in 293T cells stably transfected with a pNL4.3-derived construct further confirmed these results. Infection of 293T, Jurkat, SupT1, U937 and CEMT4 cells with pseudotyped virions produced from the antisense luciferase-expressing NL4.3 DNA clone led to the production of an AZT-sensitive luciferase signal, which was however less pronounced than the signal from NL4.3Luc-infected cells. Conclusion These results demonstrate for the first time that antisense transcription exists in HIV-1 in the context of infection. Possible translation of the predicted antisense ORF in this transcript should

  15. Labeling of phosphorothioate antisense oligonucleotides with yttrium-90

    International Nuclear Information System (INIS)

    Watanabe, Naoyuki; Sawai, Hiroaki; Endo, Keigo; Shinozuka, Kazuo; Ozaki, Hiroaki; Tanada, Shuji; Murata, Hajime; Sasaki, Yasuhito

    1999-01-01

    Novel yttrium-90 ( 90 Y)-labeled phosphorothioate antisense oligonucleotides were designed as a potential targeted radionuclide method for the purification of IQNP for use imer phosphorothioate antisense oligonucleotide, which was complementary to the translation start region of the N-myc oncogene mRNA, was conjugated with isothiocyanobenzyl ethylenediamine tetraacetic acid (SCN-Bn-EDTA), via a C-5-substituted deoxyuridine that had replaced a thymine in the oligonucleotide, and was then labeled with 90 Y-acetate. Following purification, the radiochemical purity of the 90 Y-Bn-EDTA-phosphorothioate antisense oligonucleotides was estimated by 2.0% agarose gel electrophoresis, and the specific hybridization of 90 Y-Bn-EDTA-phosphorothioate antisense oligonucleotide to a phosphorodiester sense oligonucleotide was investigated by 20% polyacrylamide gel electrophoresis in a cell-free system. Radiochemical purity was 98.7±0.4% at 72 h after labeling and 90.3±0.9% after 72-h incubation with human normal serum. The 90 Y-Bn-EDTA-phosphorothioate antisense oligonucleotide hybridized specifically to a complementary phosphorodiester sense oligonucleotide. In conclusion, phosphorothioate antisense oligonucleotides can be labeled stably with 90 Y using SCN-Bn-EDTA without loss of hybridization properties

  16. Essential elements of genetic cancer risk assessment, counseling, and testing: updated recommendations of the National Society of Genetic Counselors.

    Science.gov (United States)

    Riley, Bronson D; Culver, Julie O; Skrzynia, Cécile; Senter, Leigha A; Peters, June A; Costalas, Josephine W; Callif-Daley, Faith; Grumet, Sherry C; Hunt, Katherine S; Nagy, Rebecca S; McKinnon, Wendy C; Petrucelli, Nancie M; Bennett, Robin L; Trepanier, Angela M

    2012-04-01

    Updated from their original publication in 2004, these cancer genetic counseling recommendations describe the medical, psychosocial, and ethical ramifications of counseling at-risk individuals through genetic cancer risk assessment with or without genetic testing. They were developed by members of the Practice Issues Subcommittee of the National Society of Genetic Counselors Familial Cancer Risk Counseling Special Interest Group. The information contained in this document is derived from extensive review of the current literature on cancer genetic risk assessment and counseling as well as the personal expertise of genetic counselors specializing in cancer genetics. The recommendations are intended to provide information about the process of genetic counseling and risk assessment for hereditary cancer disorders rather than specific information about individual syndromes. Essential components include the intake, cancer risk assessment, genetic testing for an inherited cancer syndrome, informed consent, disclosure of genetic test results, and psychosocial assessment. These recommendations should not be construed as dictating an exclusive course of management, nor does use of such recommendations guarantee a particular outcome. These recommendations do not displace a health care provider's professional judgment based on the clinical circumstances of a client.

  17. Plant 7SL RNA and tRNA(Tyr) genes with inserted antisense sequences are efficiently expressed in an in vitro transcription system from Nicotiana tabacum cells

    Czech Academy of Sciences Publication Activity Database

    Yukawa, Y.; Matoušek, Jaroslav; Grimm, M.; Vrba, Lukáš; Steger, G.; Sugiura, M.; Beier, H.

    2002-01-01

    Roč. 50, - (2002), s. 713-723 ISSN 0167-4412 R&D Projects: GA ČR GA521/99/1591; GA MŠk ME 463 Keywords : antisense RNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.529, year: 2002

  18. Commensal E. coli as an Important Reservoir of Resistance Encoding Genetic Elements

    Directory of Open Access Journals (Sweden)

    Azam Mahmoudi-Aznaveh

    2013-11-01

    Full Text Available Background: Diarrheagenic E. coli is the most important cause of diarrhea in children and is a public health concern in developing countries. A major public problem is acquisition and transmission of antimicrobial resistance via mobile genetic elements including plasmids, conjugative transposons, and integrons which may occur through horizontal gene transfer. Objectives: The aim of this study was to investigate the distribution of class 1 and 2 integrons among commensal and enteropathogenic E. coli isolates and assess the role of commensal E. coli population as a reservoir in the acquisition and transmission of antimicrobial resistance. Materials and Methods: Swabs were collected directly from stool samples of the children with diarrhea admitted to three hospitals in Tehran, Iran during July 2012 through October 2012. Antimicrobial susceptibility testing and PCR analysis were performed for analysis of the resistance pattern and integron content of isolates. Results: A total of 20 enteropathogenic E.coli (identified as eae+stx1-stx2- and 20 commensal E.coli were selected for analysis. The resistance pattern in commensal and pathogenic E.coli was very similar. In both groups a high rate of resistance was seen to tetracycline, streptomycin, cotrimoxazole, nalidixic acid, and minocycline. Of 20 EPEC strains, 3 strains (15 % and 1 strain (5% had positive results for int and hep genes, respectively. Among 20 commensal, 65% (13 strains and 10% (2 strains had positive results for int and hep genes, respectively. Conclusions: The higher rate of class 1 integron occurrence among commensal population proposes the commensal intestinal organisms as a potential reservoir of mobile resistance gene elements which could transfer the resistance gene cassettes to other pathogenic and/or nonpathogenic organisms in the intestinal lumen at different occasions.

  19. Contribution of exogenous genetic elements to the group A Streptococcus metagenome.

    Directory of Open Access Journals (Sweden)

    Stephen B Beres

    2007-08-01

    Full Text Available Variation in gene content among strains of a bacterial species contributes to biomedically relevant differences in phenotypes such as virulence and antimicrobial resistance. Group A Streptococcus (GAS causes a diverse array of human infections and sequelae, and exhibits a complex pathogenic behavior. To enhance our understanding of genotype-phenotype relationships in this important pathogen, we determined the complete genome sequences of four GAS strains expressing M protein serotypes (M2, M4, and 2 M12 that commonly cause noninvasive and invasive infections. These sequences were compared with eight previously determined GAS genomes and regions of variably present gene content were assessed. Consistent with the previously determined genomes, each of the new genomes is approximately 1.9 Mb in size, with approximately 10% of the gene content of each encoded on variably present exogenous genetic elements. Like the other GAS genomes, these four genomes are polylysogenic and prophage encode the majority of the variably present gene content of each. In contrast to most of the previously determined genomes, multiple exogenous integrated conjugative elements (ICEs with characteristics of conjugative transposons and plasmids are present in these new genomes. Cumulatively, 242 new GAS metagenome genes were identified that were not present in the previously sequenced genomes. Importantly, ICEs accounted for 41% of the new GAS metagenome gene content identified in these four genomes. Two large ICEs, designated 2096-RD.2 (63 kb and 10750-RD.2 (49 kb, have multiple genes encoding resistance to antimicrobial agents, including tetracycline and erythromycin, respectively. Also resident on these ICEs are three genes encoding inferred extracellular proteins of unknown function, including a predicted cell surface protein that is only present in the genome of the serotype M12 strain cultured from a patient with acute poststreptococcal glomerulonephritis. The data

  20. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Zhu Wang

    Full Text Available Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs and mobile genetic elements (MGEs in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP. Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.

  1. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant.

    Science.gov (United States)

    Wang, Zhu; Zhang, Xu-Xiang; Huang, Kailong; Miao, Yu; Shi, Peng; Liu, Bo; Long, Chao; Li, Aimin

    2013-01-01

    Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP). Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet) were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.

  2. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements.

    Science.gov (United States)

    Guo, Jianhua; Li, Jie; Chen, Hui; Bond, Philip L; Yuan, Zhiguo

    2017-10-15

    The intensive use of antibiotics results in their continuous release into the environment and the subsequent widespread occurrence of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). This study used Illumina high-throughput sequencing to investigate the broad-spectrum profiles of both ARGs and MGEs in activated sludge and anaerobically digested sludge from a full-scale wastewater treatment plant. A pipeline for identifying antibiotic resistance determinants was developed that consisted of four categories: gene transfer potential, ARG potential, ARGs pathway and ARGs phylogenetic origin. The metagenomic analysis showed that the activated sludge and the digested sludge exhibited different microbial communities and changes in the types and occurrence of ARGs and MGEs. In total, 42 ARGs subtypes were identified in the activated sludge, while 51 ARG subtypes were detected in the digested sludge. Additionally, MGEs including plasmids, transposons, integrons (intI1) and insertion sequences (e.g. ISSsp4, ISMsa21 and ISMba16) were abundant in the two sludge samples. The co-occurrence pattern between ARGs and microbial taxa revealed by network analysis indicated that some environmental bacteria (e.g. Clostridium and Nitrosomonas) might be potential hosts of multiple ARGs. The findings increase our understanding of WWTPs as hotspots of ARGs and MGEs, and contribute towards preventing their release into the downstream environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge.

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    Full Text Available The overuse or misuse of antibiotics has accelerated antibiotic resistance, creating a major challenge for the public health in the world. Sewage treatment plants (STPs are considered as important reservoirs for antibiotic resistance genes (ARGs and activated sludge characterized with high microbial density and diversity facilitates ARG horizontal gene transfer (HGT via mobile genetic elements (MGEs. However, little is known regarding the pool of ARGs and MGEs in sludge microbiome. In this study, the transposon aided capture (TRACA system was employed to isolate novel plasmids from activated sludge of one STP in Hong Kong, China. We also used Illumina Hiseq 2000 high-throughput sequencing and metagenomics analysis to investigate the plasmid metagenome. Two novel plasmids were acquired from the sludge microbiome by using TRACA system and one novel plasmid was identified through metagenomics analysis. Our results revealed high levels of various ARGs as well as MGEs for HGT, including integrons, transposons and plasmids. The application of the TRACA system to isolate novel plasmids from the environmental metagenome, coupled with subsequent high-throughput sequencing and metagenomic analysis, highlighted the prevalence of ARGs and MGEs in microbial community of STPs.

  4. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge.

    Science.gov (United States)

    Zhang, Tong; Zhang, Xu-Xiang; Ye, Lin

    2011-01-01

    The overuse or misuse of antibiotics has accelerated antibiotic resistance, creating a major challenge for the public health in the world. Sewage treatment plants (STPs) are considered as important reservoirs for antibiotic resistance genes (ARGs) and activated sludge characterized with high microbial density and diversity facilitates ARG horizontal gene transfer (HGT) via mobile genetic elements (MGEs). However, little is known regarding the pool of ARGs and MGEs in sludge microbiome. In this study, the transposon aided capture (TRACA) system was employed to isolate novel plasmids from activated sludge of one STP in Hong Kong, China. We also used Illumina Hiseq 2000 high-throughput sequencing and metagenomics analysis to investigate the plasmid metagenome. Two novel plasmids were acquired from the sludge microbiome by using TRACA system and one novel plasmid was identified through metagenomics analysis. Our results revealed high levels of various ARGs as well as MGEs for HGT, including integrons, transposons and plasmids. The application of the TRACA system to isolate novel plasmids from the environmental metagenome, coupled with subsequent high-throughput sequencing and metagenomic analysis, highlighted the prevalence of ARGs and MGEs in microbial community of STPs.

  5. Sludge bio-drying: Effective to reduce both antibiotic resistance genes and mobile genetic elements.

    Science.gov (United States)

    Zhang, Junya; Sui, Qianwen; Tong, Juan; Buhe, Chulu; Wang, Rui; Chen, Meixue; Wei, Yuansong

    2016-12-01

    Sewage sludge is considered as one of major contributors to the increased environmental burden of ARGs. Sludge bio-drying was increasingly adopted due to its faster sludge reduction compared with composting. The fate of ARGs during full-scale sludge bio-drying was investigated to determine whether it could effectively reduce ARGs, and the contributions of bacterial community, horizontal gene transfer (HGT) through mobile genetic elements (MGEs) and co-selection from heavy metals to ARGs profiles were discussed in detail. Two piles with different aeration strategies (Pile I, the improved and Pile II, the control) were operated to elucidate effects of aeration strategy on ARGs profiles. Results showed that sludge bio-drying could effectively reduce both most of targeted ARGs (0.4-3.1 logs) and MGEs (0.8-3.3 logs) by the improved aeration strategy, which also enhanced both the sludge bio-drying performance and ARGs reduction. The enrichment of ARGs including ermF, tetX and sulII could be well explained by the evolution of bioavailable heavy metals, not HGT through MGEs, and their potential host bacteria mainly existed in Bacteroidetes. Although changes of bacterial community contributed the most to ARGs profiles, HGT through MGEs should be paid more attention especially in the thermophilic stage of sludge bio-drying. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Antibiotic Resistance Patterns and Related Mobile Genetic Elements of Pneumococci and β-Hemolytic Streptococci in Thai Healthy Children.

    Science.gov (United States)

    Tantivitayakul, P; Lapirattanakul, J; Vichayanrat, T; Muadchiengka, T

    2016-12-01

    Transmission of antibiotic resistance genes among Streptococcus pneumoniae and beta-hemolytic streptococcus (BHS) was generally associated with transmissible genetic elements. The objectives of this study were to investigate carriage rate, antibiotic resistance and related mobile genetic elements of pneumococci and BHS from school-children. The pneumococci and BHS were recovered from 220 Thai school-children, and then tested for antibiotic susceptibility pattern by disc diffusion. Antibiotic resistance genes and related genetic elements were detected by PCR with specific primers. A total of 77 pneumococcal isolates were resistant to erythromycin (42 %), tetracycline (44 %), clindamycin (8 %), or penicillin (3 %). Fifty-four BHS isolates were resistant to erythromycin (28 %), tetracycline (52 %), or clindamycin (13 %). All isolates tested were 100 % sensitive to penicillin and levofloxacin. Among erythromycin-resistant streptococcal isolates showed different phenotypes of clindamycin resistance. It was found that isolated pneumococci showed constitutive clindamycin resistance (19 %), and inducible clindamycin resistance (12 %). The BHS isolates exhibited constitutive clindamycin resistance (40 %), and inducible resistance (20 %) phenotypes. The predominant erythromycin resistance genes in pneumococci and BHS were mef E and erm B, while the most common tetracycline resistance gene in this population was tet M. Furthermore, almost all erythromycin- and tetracycline-resistant streptococci (97 %) mainly contained various genetic elements, including mega elements and six different transposon types (Tn 2009 , Tn 2017 , Tn 917 , Tn 3872 , Tn 6002 and Tn 916 ). Therefore, carriages of pneumococci and BHS with multidrug resistance in children might be important reservoirs of antibiotic-resistance genes carried by transposons. Tn 916 -like elements could lead to dissemination of the antibiotic resistance genes among genus streptococcus in human oral cavity and

  7. Resistance Genes and Genetic Elements Associated with Antibiotic Resistance in Clinical and Commensal Isolates of Streptococcus salivarius.

    Science.gov (United States)

    Chaffanel, Fanny; Charron-Bourgoin, Florence; Libante, Virginie; Leblond-Bourget, Nathalie; Payot, Sophie

    2015-06-15

    The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. A dystrophic Duchenne mouse model for testing human antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Marcel Veltrop

    Full Text Available Duchenne muscular dystrophy (DMD is a severe muscle-wasting disease generally caused by reading frame disrupting mutations in the DMD gene resulting in loss of functional dystrophin protein. The reading frame can be restored by antisense oligonucleotide (AON-mediated exon skipping, allowing production of internally deleted, but partially functional dystrophin proteins as found in the less severe Becker muscular dystrophy. Due to genetic variation between species, mouse models with mutations in the murine genes are of limited use to test and further optimize human specific AONs in vivo. To address this we have generated the del52hDMD/mdx mouse. This model carries both murine and human DMD genes. However, mouse dystrophin expression is abolished due to a stop mutation in exon 23, while the expression of human dystrophin is abolished due to a deletion of exon 52. The del52hDMD/mdx model, like mdx, shows signs of muscle dystrophy on a histological level and phenotypically mild functional impairment. Local administration of human specific vivo morpholinos induces exon skipping and dystrophin restoration in these mice. Depending on the number of mismatches, occasional skipping of the murine Dmd gene, albeit at low levels, could be observed. Unlike previous models, the del52hDMD/mdx model enables the in vivo analysis of human specific AONs targeting exon 51 or exon 53 on RNA and protein level and muscle quality and function. Therefore, it will be a valuable tool for optimizing human specific AONs and genome editing approaches for DMD.

  9. [The sorption of antisense oligodeoxyribonucleotides by Mycoplasma cells].

    Science.gov (United States)

    Egorov, O V; Panchenko, L P; Skripal', I G

    1996-01-01

    The paper deals with kinetics of binding of antisense oligodesoxyribonucleotides, complementary to certain sequences 16 S RNA of mollicutes, by the cells of three representatives of class Mollicutes: Acholeplasma laidlawii PG-8. Mycoplasma pneumoniae FH and M. fermentans PG-18. It is shown that binding of antisense oligonucleotides by the mollicute cells depends on temperature and age of cultures. The highest level of sorption of labelled antisense oligodesoxyribonucleotides by the cells of mycoplasmas corresponded to the phase of logarithmic growth of each of the studied mollicute strains. The lengthening of nucleotide chain from 5 to 15 nucleotide bases did not result in the decrease of sorption of the studied oligodesoxyribonucleotides by the mollicute cells.

  10. Inhibition of Human Immunodeficiency Virus Replication by Antisense Oligodeoxynucleotides

    Science.gov (United States)

    Goodchild, John; Agrawal, Sudhir; Civeira, Maria P.; Sarin, Prem S.; Sun, Daisy; Zamecnik, Paul C.

    1988-08-01

    Twenty different target sites within human immunodeficiency virus (HIV) RNA were selected for studies of inhibition of HIV replication by antisense oligonucleotides. Target sites were selected based on their potential capacity to block recognition functions during viral replication. Antisense oligomers complementary to sites within or near the sequence repeated at the ends of retrovirus RNA (R region) and to certain splice sites were most effective. The effect of antisense oligomer length on inhibiting virus replication was also investigated, and preliminary toxicity studies in mice show that these compounds are toxic only at high levels. The results indicate potential usefulness for these oligomers in the treatment of patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex either alone or in combination with other drugs.

  11. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies

    NARCIS (Netherlands)

    Gerard, X.; Garanto Iglesias, A.; Rozet, J.M.; Collin, R.W.J.

    2016-01-01

    Inherited retinal dystrophies (IRDs) are an extremely heterogeneous group of genetic diseases for which currently no effective treatment strategies exist. Over the last decade, significant progress has been made utilizing gene augmentation therapy for a few genetic subtypes of IRD, although several

  12. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back

    Science.gov (United States)

    Makarova, Kira S.

    2017-01-01

    Abstract The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-CRISPR-associated proteins (Cas) systems of bacterial and archaeal adaptive immunity show multifaceted evolutionary relationships with at least five classes of mobile genetic elements (MGE). First, the adaptation module of CRISPR-Cas that is responsible for the formation of the immune memory apparently evolved from a Casposon, a self-synthesizing transposon that employs the Cas1 protein as the integrase and might have brought additional cas genes to the emerging immunity loci. Second, a large subset of type III CRISPR-Cas systems recruited a reverse transcriptase from a Group II intron, providing for spacer acquisition from RNA. Third, effector nucleases of Class 2 CRISPR-Cas systems that are responsible for the recognition and cleavage of the target DNA were derived from transposon-encoded TnpB nucleases, most likely, on several independent occasions. Fourth, accessory nucleases in some variants of types I and III toxin and type VI effectors RNases appear to be ultimately derived from toxin nucleases of microbial toxin–antitoxin modules. Fifth, the opposite direction of evolution is manifested in the recruitment of CRISPR-Cas systems by a distinct family of Tn7-like transposons that probably exploit the capacity of CRISPR-Cas to recognize unique DNA sites to facilitate transposition as well as by bacteriophages that employ them to cope with host defense. Additionally, individual Cas proteins, such as the Cas4 nuclease, were recruited by bacteriophages and transposons. The two-sided evolutionary connection between CRISPR-Cas and MGE fits the “guns for hire” paradigm whereby homologous enzymatic machineries, in particular nucleases, are shuttled between MGE and defense systems and are used alternately as means of offense or defense. PMID:28985291

  13. Fitness costs of various mobile genetic elements in Enterococcus faecium and Enterococcus faecalis

    Science.gov (United States)

    Starikova, Irina; Al-Haroni, Mohammed; Werner, Guido; Roberts, Adam P.; Sørum, Vidar; Nielsen, Kaare M.; Johnsen, Pål J.

    2013-01-01

    Objectives To determine the fitness effects of various mobile genetic elements (MGEs) in Enterococcus faecium and Enterococcus faecalis when newly acquired. We also tested the hypothesis that the biological cost of vancomycin resistance plasmids could be mitigated during continuous growth in the laboratory. Methods Different MGEs, including two conjugative transposons (CTns) of the Tn916 family (18 and 33 kb), a pathogenicity island (PAI) of 200 kb and vancomycin-resistance (vanA) plasmids (80–200 kb) of various origins and classes, were transferred into common ancestral E. faecium and E. faecalis strains by conjugation assays and experimentally evolved (vanA plasmids only). Transconjugants were characterized by PFGE, S1 nuclease assays and Southern blotting hybridization analyses. Single specific primer PCR was performed to determine the target sites for the insertion of the CTns. The fitness costs of various MGEs in E. faecium and E. faecalis were estimated in head-to-head competition experiments, and evolved populations were generated in serial transfer assays. Results The biological cost of a newly acquired PAI and two CTns were both host- and insertion-locus-dependent. Newly acquired vanA plasmids may severely reduce host fitness (25%–27%), but these costs were rapidly mitigated after only 400 generations of continuous growth in the absence of antibiotic selection. Conclusions Newly acquired MGEs may impose an immediate biological cost in E. faecium. However, as demonstrated for vanA plasmids, the initial costs of MGE carriage may be mitigated during growth and beneficial plasmid–host association can rapidly emerge. PMID:23833178

  14. Natural antisense transcripts are significantly involved in regulation of drought stress in maize

    Science.gov (United States)

    Xu, Jie; Wang, Qi; Freeling, Micheal; Zhang, Xuecai; Xu, Yunbi; Mao, Yan; Tang, Xin; Wu, Fengkai; Lan, Hai; Cao, Moju; Rong, Tingzhao

    2017-01-01

    Abstract Natural antisense transcripts (NATs) are a prominent and complex class of regulatory RNAs. Using strand-specific RNA sequencing, we identified 1769 sense and antisense transcript pairs (NAT pairs) in two maize inbreds with different sensitivity to drought, as well as in two derivative recombination inbred lines (RILs). A significantly higher proportion of NATs relative to non-NATs are specifically expressed under water stress (WS). Surprisingly, expression of sense and antisense transcripts produced by NAT pairs is significantly correlated, particularly under WS. We found an unexpected large proportion of NATs with protein coding potential, as estimated by ribosome release scores. Small RNAs significantly accumulate within NAT pairs, with 21 nt smRNA particularly enriched in overlapping regions of these pairs of genes. The abundance of these smRNAs is significantly altered in the leafbladeless1 mutant, suggesting that these genes may be regulated by the tasiRNA pathway. Further, NATs are significantly hypomethylated and include fewer transposable element sequences relative to non-NAT genes. NAT gene regions also exhibit higher levels of H3K36me3, H3K9ac, and H3K4me3, but lower levels of H3K27me3, indicating that NAT gene pairs generally exhibit an open chromatin configuration. Finally, NAT pairs in 368 diverse maize inbreds and 19 segregating populations were specifically enriched for polymorphisms associated with drought tolerance. Taken together, the data highlight the potential impact of that small RNAs and histone modifications have in regulation of NAT expression, and the significance of NATs in response to WS. PMID:28175341

  15. Efficacy and Safety Profile of Tricyclo-DNA Antisense Oligonucleotides in Duchenne Muscular Dystrophy Mouse Model

    Directory of Open Access Journals (Sweden)

    Karima Relizani

    2017-09-01

    Full Text Available Antisense oligonucleotides (AONs hold promise for therapeutic splice-switching correction in many genetic diseases. However, despite advances in AON chemistry and design, systemic use of AONs is limited due to poor tissue uptake and sufficient therapeutic efficacy is still difficult to achieve. A novel class of AONs made of tricyclo-DNA (tcDNA is considered very promising for the treatment of Duchenne muscular dystrophy (DMD, a neuromuscular disease typically caused by frameshifting deletions or nonsense mutations in the gene-encoding dystrophin and characterized by progressive muscle weakness, cardiomyopathy, and respiratory failure in addition to cognitive impairment. Herein, we report the efficacy and toxicology profile of a 13-mer tcDNA in mdx mice. We show that systemic delivery of 13-mer tcDNA allows restoration of dystrophin in skeletal muscles and to a lower extent in the brain, leading to muscle function improvement and correction of behavioral features linked to the emotional/cognitive deficiency. More importantly, tcDNA treatment was generally limited to minimal glomerular changes and few cell necroses in proximal tubules, with only slight variation in serum and urinary kidney toxicity biomarker levels. These results demonstrate an encouraging safety profile for tcDNA, albeit typical of phosphorothiate AONs, and confirm its therapeutic potential for the systemic treatment of DMD patients. Keywords: antisense oligonucleotides, Duchenne muscular dystrophy, preclinical, splice switching, tcDNA-AONs

  16. Highly expressed genes are associated with inverse antisense ...

    Indian Academy of Sciences (India)

    from inverted sequences on the MGU74A chip. Therefore we were not able to draw conclusion for their results. How- ever, we have investigated the inverse sense/antisense ratio in the investigated/control cell lines (table 1). Four of the tran- scripts were RIKEN genes without a complete gene annota- tion. Two known genes ...

  17. Lysine metabolism in antisense C-hordein barley grains

    DEFF Research Database (Denmark)

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A

    2015-01-01

    The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition, with ...

  18. LNA-antisense rivals siRNA for gene silencing

    DEFF Research Database (Denmark)

    Jepsen, Jan Stenvang; Wengel, Jesper; Stenvang, Jan

    2004-01-01

    applied. LNA oligonucleotides are commercially available, can be transfected using standard techniques, are non-toxic, lead to increased target accessibility, can be designed to activate RNase H, and function in steric block approaches. LNA-Antisense, including gapmer LNA containing a central DNA...

  19. Antisense mediated exon skipping therapy for duchenne muscular dystrophy (DMD)

    DEFF Research Database (Denmark)

    Brolin, Camilla; Shiraishi, Takehiko

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most...

  20. Local dystrophin restoration with antisense oligonucleotide PRO051

    NARCIS (Netherlands)

    van Deutekom, Judith C.; Janson, Anneke A.; Ginjaar, Ieke B.; Frankhuizen, Wendy S.; Aartsma-Rus, Annemieke; Bremmer-Bout, Mattie; den Dunnen, Johan T.; Koop, Klaas; van der Kooi, Anneke J.; Goemans, Nathalie M.; de Kimpe, Sjef J.; Ekhart, Peter F.; Venneker, Edna H.; Platenburg, Gerard J.; Verschuuren, Jan J.; van Ommen, Gert-Jan B.

    2007-01-01

    Background: Duchenne's muscular dystrophy is associated with severe, progressive muscle weakness and typically leads to death between the ages of 20 and 35 years. By inducing specific exon skipping during messenger RNA (mRNA) splicing, antisense compounds were recently shown to correct the open

  1. Highly expressed genes are associated with inverse antisense ...

    Indian Academy of Sciences (India)

    Nucleic Acids Res. 25, 4513–4522. Thakur N., Tiwari V. K., Thomassin H., Pandey R. R., Kanduri M.,. Gondor A. et al. 2004 An antisense RNA regulates the bidirec- tional silencing property of the Kcnq1 imprinting control region. Mol. Cell. Biol. 24, 7855–7862. Trinklein N. D., Aldred S. F., Hartman S. J., Schroeder D. I., Otil-.

  2. Nanoparticle delivery of antisense oligonucleotides and their application in the exon skipping strategy for Duchenne muscular dystrophy.

    Science.gov (United States)

    Falzarano, Maria Sofia; Passarelli, Chiara; Ferlini, Alessandra

    2014-02-01

    Antisense therapy is a powerful tool for inducing post-transcriptional modifications and thereby regulating target genes associated with disease. There are several classes of antisense oligonucleotides (AONs) with therapeutic use, such as double-stranded RNAs (interfering RNAs, utilized for gene silencing, and single-stranded AONs with various chemistries, which are useful for antisense targeting of micro-RNAs and mRNAs. In particular, the use of AONs for exon skipping, by targeting pre-mRNA, is proving to be a highly promising therapy for some genetic disorders like Duchenne muscular dystrophy and spinal muscular atrophy. However, AONs are unable to cross the plasma membrane unaided, and several other obstacles still remain to be overcome, in particular their instability due to their nuclease sensitivity and their lack of tissue specificity. Various drug delivery systems have been explored to improve the bioavailability of nucleic acids, and nanoparticles (NPs) have been suggested as potential vectors for DNA/RNA. This review describes the recent progress in AON conjugation with natural and synthetic delivery systems, and provides an overview of the efficacy of NP-AON complexes as an exon-skipping treatment for Duchenne muscular dystrophy.

  3. The Dynamics of Compound, Transcript, and Protein Effects After Treatment With 2OMePS Antisense Oligonucleotides in mdx Mice

    Directory of Open Access Journals (Sweden)

    Ingrid E C Verhaart

    2014-01-01

    Full Text Available Antisense-mediated exon skipping is currently in clinical development for Duchenne muscular dystrophy (DMD to amend the consequences of the underlying genetic defect and restore dystrophin expression. Due to turnover of compound, transcript, and protein, chronic treatment with effector molecules (antisense oligonucleotides will be required. To investigate the dynamics and persistence of antisense 2′-O-methyl phosphorothioate oligonucleotides, exon skipping, and dystrophin expression after dosing was concluded, mdx mice were treated subcutaneously for 8 weeks with 100 mg/kg oligonucleotides twice weekly. Thereafter, mice were sacrificed at different time points after the final injection (36 hours–24 weeks. Oligonucleotide half-life was longer in heart (~65 days compared with that in skeletal muscle, liver, and kidney (~35 days. Exon skipping half-lives varied between 33 and 53 days, whereas dystrophin protein showed a long half-life (>100 days. Oligonucleotide and exon-skipping levels peaked in the first week and declined thereafter. By contrast, dystrophin expression peaked after 3–8 weeks and then slowly declined, remaining detectable after 24 weeks. Concordance between levels of oligonucleotides, exon skipping, and proteins was observed, except in heart, wherein high oligonucleotide levels but low exon skipping and dystrophin expression were seen. Overall, these results enhance our understanding of the pharmacokinetics and pharmacodynamics of 2′-O-methyl phosphorothioate oligos used for the treatment of DMD.

  4. A novel Drosophila antisense scaRNA with a predicted guide function.

    Science.gov (United States)

    Tortoriello, Giuseppe; Accardo, Maria Carmela; Scialò, Filippo; Angrisani, Alberto; Turano, Mimmo; Furia, Maria

    2009-05-01

    A significant portion of eukaryotic small ncRNA transcriptome is composed by small nucleolar RNAs. From archaeal to mammalian cells, these molecules act as guides in the site-specific pseudouridylation or methylation of target RNAs. We used a bioinformatics search program to detect Drosophila putative orthologues of U79, one out of ten snoRNAs produced by GAS5, a human ncRNA involved in apoptosis, susceptibility to cancer and autoimmune diseases. This search led to the definition of a list of U79-related fly snoRNAs whose genomic organization, evolution and expression strategy are discussed here. We report that an intriguing novel specimen, named Dm46E3, is transcribed as a longer, unspliced precursor from the reverse strand of eiger, a fly regulatory gene that plays a key role in cell differentiation, apoptosis and immune response. Expression of Dm46E3 was found significantly up-regulated in a mutant strain in which eiger transcription is greatly reduced, suggesting that these two sense-antisense genes may be mutually regulated. Relevant to its function, Dm46E3 concentrated specifically in the Cajal bodies, followed a dynamic spatial expression profile during embryogenesis and displayed a degenerate antisense element that enables it to target U1b, a developmentally regulated isoform of the U1 spliceosomal snRNA that is particularly abundant in embryos.

  5. RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes.

    Science.gov (United States)

    Le Rhun, Anaïs; Beer, Yan Yan; Reimegård, Johan; Chylinski, Krzysztof; Charpentier, Emmanuelle

    2016-01-01

    Streptococcus pyogenes is a human pathogen responsible for a wide spectrum of diseases ranging from mild to life-threatening infections. During the infectious process, the temporal and spatial expression of pathogenicity factors is tightly controlled by a complex network of protein and RNA regulators acting in response to various environmental signals. Here, we focus on the class of small RNA regulators (sRNAs) and present the first complete analysis of sRNA sequencing data in S. pyogenes. In the SF370 clinical isolate (M1 serotype), we identified 197 and 428 putative regulatory RNAs by visual inspection and bioinformatics screening of the sequencing data, respectively. Only 35 from the 197 candidates identified by visual screening were assigned a predicted function (T-boxes, ribosomal protein leaders, characterized riboswitches or sRNAs), indicating how little is known about sRNA regulation in S. pyogenes. By comparing our list of predicted sRNAs with previous S. pyogenes sRNA screens using bioinformatics or microarrays, 92 novel sRNAs were revealed, including antisense RNAs that are for the first time shown to be expressed in this pathogen. We experimentally validated the expression of 30 novel sRNAs and antisense RNAs. We show that the expression profile of 9 sRNAs including 2 predicted regulatory elements is affected by the endoribonucleases RNase III and/or RNase Y, highlighting the critical role of these enzymes in sRNA regulation.

  6. Suicidal genetic elements and their use in biological containment of bacteria

    DEFF Research Database (Denmark)

    Molin, Søren; Boe, Lars; Jensen, Lars Bogø

    1993-01-01

    . The possibilities of reducing such potential risks and increasing the predictability of the organisms are discussed for genetically engineered bacteria. Different approaches towards designing disabled strains without seriously reducing their beneficial effects are presented. Principally two types of strain design...

  7. Isomorphisms between psychological processes and neural mechanisms: from stimulus elements to genetic markers of activity.

    Science.gov (United States)

    Fanselow, Michael S; Zelikowsky, Moriel; Perusini, Jennifer; Barrera, Vanessa Rodriguez; Hersman, Sarah

    2014-02-01

    Traditional learning theory has developed models that can accurately predict and describe the course of learned behavior. These "psychological process" models rely on hypothetical constructs that are usually thought to be not directly measurable or manipulable. Recently, and mostly in parallel, the neural mechanisms underlying learning have been fairly well elucidated. The argument in this essay is that we can successfully uncover isomorphisms between process and mechanism and that this effort will help advance our theories about both processes and mechanisms. We start with a brief review of error-correction circuits as a successful example. Then we turn to the concept of stimulus elements, where the conditional stimulus is hypothesized to be constructed of a multitude of elements only some of which are sampled during any given experience. We discuss such elements with respect to how they explain acquisition of associative strength as an incremental process. Then we propose that for fear conditioning, stimulus elements and basolateral amygdala projection neurons are isomorphic and that the activational state of these "elements" can be monitored by the expression of the mRNA for activity-regulated cytoskeletal protein (ARC). Finally we apply these ideas to analyze recent data examining ARC expression during contextual fear conditioning and find that there are indeed many similarities between stimulus elements and amygdala neurons. The data also suggest some revisions in the conceptualization of how the population of stimulus elements is sampled from. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Os DNA sintéticos anti-sentido Antisense Synthtetic DNA

    Directory of Open Access Journals (Sweden)

    Alfredo Cravador

    1998-07-01

    Full Text Available One old dream of the chemist in the field of the drug research is to create molecules capable of reaching their target with the precision of a missile. To accomplish it these molecules must have the propriety of distinguishing qualitative differences between healthy and diseased cells. A therapy based on this principle, able of eradicating specifically defective cells, or cells affected by a pathogen has an enormous advantage with the regard to the classical approach in which the cytotoxic drugs merely exploit quantitative biochemical and kinetic differences between abnormal and normal cells. We present in this article a review on the chemical synthesis of analogues of desoxyribonucleotides and on results obtained on the specific and irreversible inhibition of undesired genetic expression using the antisense principle.

  9. cAMP response element binding protein (CREB activates transcription via two distinct genetic elements of the human glucose-6-phosphatase gene

    Directory of Open Access Journals (Sweden)

    Stefano Luisa

    2005-01-01

    Full Text Available Abstract Background The enzyme glucose-6-phosphatase catalyzes the dephosphorylation of glucose-6-phosphatase to glucose, the final step in the gluconeogenic and glycogenolytic pathways. Expression of the glucose-6-phosphatase gene is induced by glucocorticoids and elevated levels of intracellular cAMP. The effect of cAMP in regulating glucose-6-phosphatase gene transcription was corroborated by the identification of two genetic motifs CRE1 and CRE2 in the human and murine glucose-6-phosphatase gene promoter that resemble cAMP response elements (CRE. Results The cAMP response element is a point of convergence for many extracellular and intracellular signals, including cAMP, calcium, and neurotrophins. The major CRE binding protein CREB, a member of the basic region leucine zipper (bZIP family of transcription factors, requires phosphorylation to become a biologically active transcriptional activator. Since unphosphorylated CREB is transcriptionally silent simple overexpression studies cannot be performed to test the biological role of CRE-like sequences of the glucose-6-phosphatase gene. The use of a constitutively active CREB2/CREB fusion protein allowed us to uncouple the investigation of target genes of CREB from the variety of signaling pathways that lead to an activation of CREB. Here, we show that this constitutively active CREB2/CREB fusion protein strikingly enhanced reporter gene transcription mediated by either CRE1 or CRE2 derived from the glucose-6-phosphatase gene. Likewise, reporter gene transcription was enhanced following expression of the catalytic subunit of cAMP-dependent protein kinase (PKA in the nucleus of transfected cells. In contrast, activating transcription factor 2 (ATF2, known to compete with CREB for binding to the canonical CRE sequence 5'-TGACGTCA-3', did not transactivate reporter genes containing CRE1, CRE2, or both CREs derived from the glucose-6-phosphatase gene. Conclusions Using a constitutively active CREB2

  10. Comparison and calibration of a real-time virtual stenting algorithm using Finite Element Analysis and Genetic Algorithms.

    Science.gov (United States)

    Spranger, K; Capelli, C; Bosi, G M; Schievano, S; Ventikos, Y

    2015-08-15

    In this paper, we perform a comparative analysis between two computational methods for virtual stent deployment: a novel fast virtual stenting method, which is based on a spring-mass model, is compared with detailed finite element analysis in a sequence of in silico experiments. Given the results of the initial comparison, we present a way to optimise the fast method by calibrating a set of parameters with the help of a genetic algorithm, which utilises the outcomes of the finite element analysis as a learning reference. As a result of the calibration phase, we were able to substantially reduce the force measure discrepancy between the two methods and validate the fast stenting method by assessing the differences in the final device configurations.

  11. Structural optimisation of a high speed Organic Rankine Cycle generator using a genetic algorithm and a finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Palko, S. [Machines Division, ABB industry Oy, Helsinki (Finland)

    1997-12-31

    The aim in this work is to design a 250 kW high speed asynchronous generator using a genetic algorithm and a finite element method for Organic Rankine Cycle. The characteristics of the induction motors are evaluated using two-dimensional finite element method (FEM) The movement of the rotor and the non-linearity of the iron is included. In numerical field problems it is possible to find several local extreme for an optimisation problem, and therefore the algorithm has to be capable of determining relevant changes, and to avoid trapping to a local minimum. In this work the electromagnetic (EM) losses at the rated point are minimised. The optimisation includes the air gap region. Parallel computing is applied to speed up optimisation. (orig.) 2 refs.

  12. Antisense downregulation of mutant huntingtin in a cell model

    DEFF Research Database (Denmark)

    Hasholt, L.; Abell, K.; Norremolle, A.

    2003-01-01

    or by addition to the culture medium. Results Expression of the fusion protein containing the mutant huntingtin fragment resulted in diffuse green fluorescence in the cytoplasm and formation of aggregates in some of the NT2 cells and NT2-N neurons. We obtained antisense sequence-specific inhibition of expression......Background Huntington's disease (HD) is an inherited neurodegenerative disorder which is caused by an expansion of a CAG repeat sequence in the HD gene. The repeat encodes an expanded polyglutamine tract in the protein huntingtin. The still unknown pathological mechanisms leading to death...... transfected with plasmid constructs containing exon 1 of the HD gene with expanded CAG repeats in frame with the reporter protein EGFP. The transfected cell cultures were treated with a phosphorothioated antisense oligonucleotide (PS-ASHD/20+) or a control oligonucleotide either by cotransfection...

  13. Identification of genetic elements in metabolism by high-throughput mouse phenotyping

    DEFF Research Database (Denmark)

    Rozman, Jan; Rathkolb, Birgit; Oestereicher, Manuela A.

    2018-01-01

    Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic da...

  14. Identification of genetic elements in metabolism by high-throughput mouse phenotyping

    Czech Academy of Sciences Publication Activity Database

    Sedláček, Radislav

    2018-01-01

    Roč. 9, zima (2018), č. článku 288. ISSN 2041-1723 Institutional support: RVO:68378050 Keywords : Insulin-resistance * Diabetes-mellitus * Glycemic traits * Variants * Architecture * Association * Consortiuj * Pathways * Disease * Biology Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Other biological topics Impact factor: 12.124, year: 2016

  15. Intravesical NGF Antisense Therapy Using Lipid Nanoparticle for Interstitial Cystitis

    Science.gov (United States)

    2014-10-01

    DD, Novakovic KR, Lillard JW Jr. CXCL10 blockade protects mice from cyclophosphamide-induced cystitis. J. Immune Based Ther. Vaccines 2008; 6: 6. 85...functionality of a truncated dystrophin protein in dog model of Duchenne muscular dystrophy [60]. Nevertheless, applied research for bladder diseases has...Takeda, “Antisense oligo- mediated multiple exon skipping in a dog model of duchenne muscular dystrophy,”Methods inMolecular Biology, vol. 709, pp. 299

  16. Oligonucleotide N3'-->P5' phosphoramidates as antisense agents.

    Science.gov (United States)

    Gryaznov, S; Skorski, T; Cucco, C; Nieborowska-Skorska, M; Chiu, C Y; Lloyd, D; Chen, J K; Koziolkiewicz, M; Calabretta, B

    1996-01-01

    Uniformly modified oligonucleotide N3'-->P5' phosphoramidates, where every 3'-oxygen is replaced by a 3'-amino group, were synthesized. These compounds have very high affinity to single-stranded RNAs and thus have potential utility as antisense agents. As was shown in this study, the oligonucleotide phosphoramidates are resistant to digestion with snake venom phosphodiesterase, to nuclease activity in a HeLa cell nuclear extract, or to nuclease activity in 50% human plasma, where no significant hydrolysis was observed after 8 h. These compounds were used in various in vitro cellular systems as antisense compounds addressed to different targeted regions of c-myb, c-myc and bcr-abl mRNAs. C-myb antisense phosphoramidates at 5 microM caused sequence and dose-dependent inhibition of HL-60 cell proliferation and a 75% reduction in c-myb protein and RNA levels, as determined by Western blot and RT-PCR analysis. Analogous results were observed for anti-c-myc phosphoramidates, where a complete cytostatic effect for HL-60 cells was observed at 1 microM concentration for fully complementary, but not for mismatched compounds, which were indistinguishable from untreated controls. This was correlated with a 93% reduction in c-myc protein level. Moreover, colony formation by the primary CML cells was also inhibited 75-95% and up to 99% by anti-c-myc and anti-bcr-abl phosphoramidate oligonucleotides, respectively, in a sequence- and dose-dependent manner within a 0.5 nM-5 microM dose range. At these concentrations the colony-forming ability of normal bone marrow cells was not affected. The presented in vitro data indicate that oligonucleotide N3'-->P5' phosphoramidates could be used as specific and efficient antisense agents. PMID:8628685

  17. Intravesical NGF Antisense Therapy Using Lipid Nanoparticle for Interstitial Cystitis

    Science.gov (United States)

    2015-10-01

    1): (1) behavioral modification 160 with patient education, (2) physical therapies , oral agents and/or intravesical medications, (3) bladder...human monoclonal D2E7 light chain, dimer Rheumatoid arthritis , Crohn’s disease, ulcerative colites Phase III, not recruiting TNF alpha antagonist Calcium...Award Number: W81XWH-12-1-0565 TITLE: Intravesical NGF Antisense Therapy Using Lipid Nanoparticle For Interstitial Cystitis PRINCIPAL

  18. Genetic diversity and association mapping of mineral element concentrations in spinach leaves

    Science.gov (United States)

    Spinach is one of the healthiest vegetables in the human diet due to its high concentrations of nutrients and mineral elements. Breeding new spinach cultivars with high nutritional value is one of the main goals in spinach breeding programs worldwide, and identification of single nucleotide polymorp...

  19. Genetic difference in macro-element mineral concentrations among 52 historically important tomato varieties

    Science.gov (United States)

    Tomato (Solanum lycopersicum) fruit quality and yield are highly dependent on adequate uptake of nutrients. Potassium, magnesium and calcium are essential elements that influence fruit quality traits such as color, uniformity of ripening, hollow fruit, fruit shape, firmness, and acidity. Sodium is n...

  20. Micro-scale spatial expansion of microbial cells and mobile genetic elements

    DEFF Research Database (Denmark)

    Smets, Barth F.; Kreft, Jan-Ulrich; Or, Dani

    Microbes can actively explore their local spatial environment when sufficiently hydrated pathways are present - mobile gene elements can also travel in local environments when cellular density is sufficient. In this presentation, I will present our efforts at predicting the dynamics of these two...... processes, and how they are affected by physical and biological constraints, using spatially-explicit agent-based models....

  1. Research on rolling element bearing fault diagnosis based on genetic algorithm matching pursuit

    Science.gov (United States)

    Rong, R. W.; Ming, T. F.

    2017-12-01

    In order to solve the problem of slow computation speed, matching pursuit algorithm is applied to rolling bearing fault diagnosis, and the improvement are conducted from two aspects that are the construction of dictionary and the way to search for atoms. To be specific, Gabor function which can reflect time-frequency localization characteristic well is used to construct the dictionary, and the genetic algorithm to improve the searching speed. A time-frequency analysis method based on genetic algorithm matching pursuit (GAMP) algorithm is proposed. The way to set property parameters for the improvement of the decomposition results is studied. Simulation and experimental results illustrate that the weak fault feature of rolling bearing can be extracted effectively by this proposed method, at the same time, the computation speed increases obviously.

  2. Genetically Regulated Temporal Variation of Novel Courtship Elements in the Hawaiian Cricket Genus Laupala

    Science.gov (United States)

    deCarvalho, Tagide N.; Shaw, Kerry L.

    2011-01-01

    The Hawaiian cricket genus Laupala (Gryllidae: Trigonidiinae) has undergone rapid and extensive speciation, with divergence in male song and female acoustic preference playing a role in maintaining species boundaries. Recent study of interspecific differences in the diel rhythmicity of singing and mating, suggests that temporal variation in behavior may reduce gene flow between species. In addition, Laupala perform an elaborate and protracted courtship, providing potential for further temporal variation. However, whether these behavioral differences have a genetic basis or result from environmental variation is unknown. We observed courtship and mating in a common garden study of the sympatric species, Laupala cerasina and Laupala paranigra. We document interspecific differences in the onset and duration of courtship, spermatophore production rate, and diel mating rhythmicity. Our study demonstrates a genetic contribution to interspecific behavioral differences, and suggests an evolutionary pathway to the origins of novel timing phenotypes. PMID:20878226

  3. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Almeida, Mathieu; Juncker, Agnieszka

    2014-01-01

    , such as particular bacterial strains or viruses, remains a largely unsolved problem. Here we present a method, based on binning co-abundant genes across a series of metagenomic samples, that enables comprehensive discovery of new microbial organisms, viruses and co-inherited genetic entities and aids assembly...... of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify...... affiliations between MGS and hundreds of viruses or genetic entities. Our method provides the means for comprehensive profiling of the diversity within complex metagenomic samples....

  4. Viruses comprise an extensive pool of mobile genetic elements in eukaryote cell cultures and human clinical samples.

    Science.gov (United States)

    Thannesberger, Jakob; Hellinger, Hans-Joerg; Klymiuk, Ingeborg; Kastner, Marie-Theres; Rieder, Franz J J; Schneider, Martina; Fister, Susanne; Lion, Thomas; Kosulin, Karin; Laengle, Johannes; Bergmann, Michael; Rattei, Thomas; Steininger, Christoph

    2017-05-01

    Viruses shape a diversity of ecosystems by modulating their microbial, eukaryotic, or plant host metabolism. The complexity of virus-host interaction networks is progressively fathomed by novel metagenomic approaches. By using a novel metagenomic method, we explored the virome in mammalian cell cultures and clinical samples to identify an extensive pool of mobile genetic elements in all of these ecosystems. Despite aseptic treatment, cell cultures harbored extensive and diverse phage populations with a high abundance of as yet unknown and uncharacterized viruses (viral dark matter). Unknown phages also predominated in the oropharynx and urine of healthy individuals and patients infected with cytomegalovirus despite demonstration of active cytomegalovirus replication. The novelty of viral sequences correlated primarily with the individual evaluated, whereas relative abundance of encoded protein functions was associated with the ecologic niches probed. Together, these observations demonstrate the extensive presence of viral dark matter in human and artificial ecosystems.-Thannesberger, J., Hellinger, H.-J., Klymiuk, I., Kastner, M.-T., Rieder, F. J. J., Schneider, M., Fister, S., Lion, T., Kosulin, K., Laengle, J., Bergmann, M., Rattei, T., Steininger, C. Viruses comprise an extensive pool of mobile genetic elements in eukaryote cell cultures and human clinical samples. © FASEB.

  5. Detection and linkage to mobile genetic elements of tetracycline resistance gene tet(M) in Escherichia coli isolates from pigs

    DEFF Research Database (Denmark)

    Jurado-Rabadan, Sonia; de la Fuente, Ricardo; Ruiz-Santa-Quiteria, Jose A.

    2014-01-01

    from pigs, as well as the detection of mobile genetic elements linked to tet(M) in E. coli and its possible transfer from enterococci. Results: tet(A) was the most frequently detected gene (87.9%) in doxycycline-resistant isolates. tet(M) was found in 13.1% E. coli isolates. The tet(M) gene......Background: In Escherichia coli the genes involved in the acquisition of tetracycline resistance are mainly tet(A) and tet(B). In addition, tet(M) is the most common tetracycline resistance determinant in enterococci and it is associated with conjugative transposons and plasmids. Although tet......(M) has been identified in E. coli, to our knowledge, there are no previous reports studying the linkage of the tet(M) gene in E. coli to different mobile genetic elements. The aim of this study was to determine the occurrence of tet(A), tet(B), and tet(M) genes in doxycycline-resistant E. coli isolates...

  6. Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Huang Jian-dong

    2011-04-01

    Full Text Available Abstract Background SXT is an integrating conjugative element (ICE originally isolated from Vibrio cholerae, the bacterial pathogen that causes cholera. It houses multiple antibiotic and heavy metal resistance genes on its ca. 100 kb circular double stranded DNA (dsDNA genome, and functions as an effective vehicle for the horizontal transfer of resistance genes within susceptible bacterial populations. Here, we characterize the activities of an alkaline exonuclease (S066, SXT-Exo and single strand annealing protein (S065, SXT-Bet encoded on the SXT genetic element, which share significant sequence homology with Exo and Bet from bacteriophage lambda, respectively. Results SXT-Exo has the ability to degrade both linear dsDNA and single stranded DNA (ssDNA molecules, but has no detectable endonuclease or nicking activities. Adopting a stable trimeric arrangement in solution, the exonuclease activities of SXT-Exo are optimal at pH 8.2 and essentially require Mn2+ or Mg2+ ions. Similar to lambda-Exo, SXT-Exo hydrolyzes dsDNA with 5'- to 3'-polarity in a highly processive manner, and digests DNA substrates with 5'-phosphorylated termini significantly more effectively than those lacking 5'-phosphate groups. Notably, the dsDNA exonuclease activities of both SXT-Exo and lambda-Exo are stimulated by the addition of lambda-Bet, SXT-Bet or a single strand DNA binding protein encoded on the SXT genetic element (S064, SXT-Ssb. When co-expressed in E. coli cells, SXT-Bet and SXT-Exo mediate homologous recombination between a PCR-generated dsDNA fragment and the chromosome, analogous to RecET and lambda-Bet/Exo. Conclusions The activities of the SXT-Exo protein are consistent with it having the ability to resect the ends of linearized dsDNA molecules, forming partially ssDNA substrates for the partnering SXT-Bet single strand annealing protein. As such, SXT-Exo and SXT-Bet may function together to repair or process SXT genetic elements within infected V

  7. Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements.

    Science.gov (United States)

    Richard, D; Ravigné, V; Rieux, A; Facon, B; Boyer, C; Boyer, K; Grygiel, P; Javegny, S; Terville, M; Canteros, B I; Robène, I; Vernière, C; Chabirand, A; Pruvost, O; Lefeuvre, P

    2017-04-01

    Copper-based antimicrobial compounds are widely used to control plant bacterial pathogens. Pathogens have adapted in response to this selective pressure. Xanthomonas citri pv. citri, a major citrus pathogen causing Asiatic citrus canker, was first reported to carry plasmid-encoded copper resistance in Argentina. This phenotype was conferred by the copLAB gene system. The emergence of resistant strains has since been reported in Réunion and Martinique. Using microsatellite-based genotyping and copLAB PCR, we demonstrated that the genetic structure of the copper-resistant strains from these three regions was made up of two distant clusters and varied for the detection of copLAB amplicons. In order to investigate this pattern more closely, we sequenced six copper-resistant X. citri pv. citri strains from Argentina, Martinique and Réunion, together with reference copper-resistant Xanthomonas and Stenotrophomonas strains using long-read sequencing technology. Genes involved in copper resistance were found to be strain dependent with the novel identification in X. citri pv. citri of copABCD and a cus heavy metal efflux resistance-nodulation-division system. The genes providing the adaptive trait were part of a mobile genetic element similar to Tn3-like transposons and included in a conjugative plasmid. This indicates the system's great versatility. The mining of all available bacterial genomes suggested that, within the bacterial community, the spread of copper resistance associated with mobile elements and their plasmid environments was primarily restricted to the Xanthomonadaceae family. © 2017 John Wiley & Sons Ltd.

  8. Hfq restructures RNA-IN and RNA-OUT and facilitates antisense pairing in the Tn10/IS10 system

    Science.gov (United States)

    Ross, Joseph A.; Ellis, Michael J.; Hossain, Shahan; Haniford, David B.

    2013-01-01

    Hfq functions in post-transcriptional gene regulation in a wide range of bacteria, usually by promoting base-pairing of mRNAs and trans-encoded sRNAs that share partial sequence complementarity. It is less clear if Hfq is required for pairing of cis-encoded RNAs (i.e., antisense RNAs) with their target mRNAs. In the current work, we have characterized the interactions between Escherichia coli Hfq and the components of the Tn10/IS10 antisense system, RNA-IN and RNA-OUT. We show that Hfq interacts with RNA-OUT through its proximal RNA-binding surface, as is typical for Hfq and trans-encoded sRNAs. In contrast, RNA-IN binds both proximal and distal RNA-binding surfaces in Hfq with a higher affinity for the latter, as is typical for mRNA interactions in canonical sRNA-mRNA pairs. Importantly, an amino acid substitution in Hfq that interferes with RNA binding to the proximal site negatively impacts RNA-IN:OUT pairing in vitro and suppresses the ability of Hfq to negatively regulate IS10 transposition in vivo. We also show that Hfq binding to RNA-IN and RNA-OUT alters secondary structure elements in both of these RNAs and speculate that this could be important in how Hfq facilitates RNA-IN:OUT pairing. Based on the results presented here, we suggest that Hfq could be involved in regulating RNA pairing in other antisense systems, including systems encoded by other transposable elements. PMID:23510801

  9. Resveratrol stimulates c-Fos gene transcription via activation of ERK1/2 involving multiple genetic elements.

    Science.gov (United States)

    Thiel, Gerald; Rössler, Oliver G

    2018-06-05

    The polyphenol resveratrol is found in many plant and fruits and is a constituent of our diet. Resveratrol has been proposed to have chemopreventive and anti-inflammatory activities. On the cellular level, resveratrol activates stimulus-regulated transcription factors. To identify resveratrol-responsive elements within a natural gene promoter, the molecular pathway leading to c-Fos gene expression by resveratrol was dissected. The c-Fos gene encodes a basic region leucine zipper transcription factor and is a prototype of an immediate-early gene that is regulated by a wide range of signaling molecules. We analyzed chromatin-integrated c-Fos promoter-luciferase reporter genes where transcription factor binding sites were destroyed by point mutations or deletion mutagenesis. The results show that mutation of the binding sites for serum response factor (SRF), activator protein-1 (AP-1) and cAMP response element binding protein (CREB) significantly reduced reporter gene transcription following stimulation of the cells with resveratrol. Inactivation of the binding sites for signal transducer and activator of transcription (STAT) or ternary complex factors did not influence resveratrol-regulated c-Fos promoter activity. Thus, the c-Fos promoter contains three resveratrol-responsive elements, the cAMP response element (CRE), and the binding sites for SRF and AP-1. Moreover, we show that the transcriptional activation potential of the c-Fos protein is increased in resveratrol-stimulated cells, indicating that the biological activity of c-Fos is elevated by resveratrol stimulation. Pharmacological and genetic experiments revealed that the protein kinase ERK1/2 is the signal transducer that connects resveratrol treatment with the c-Fos gene. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements

    Directory of Open Access Journals (Sweden)

    Kagawa Todd F

    2010-04-01

    Full Text Available Abstract Background The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen. Results Four homologues of the streptococcal virulence factor SpeB were identified in the B. fragilis genome. These four protease genes, two were directly contiguous to open reading frames predicted to encode staphostatin-like inhibitors, with which the protease genes were co-transcribed. Two of these protease genes are unique to B. fragilis 638R and are associated with two large genomic insertions. Gene annotation indicated that one of these insertions was a conjugative Tn-like element and the other was a prophage-like element, which was shown to be capable of excision. Homologues of the B. fragilis C10 protease genes were present in a panel of clinical isolates, and in DNA extracted from normal human faecal microbiota. Conclusions This study suggests a mechanism for the evolution and dissemination of an important class of protease in major members of the normal human microbiota.

  11. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements

    LENUS (Irish Health Repository)

    Thornton, Roibeard F

    2010-04-23

    Abstract Background The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen. Results Four homologues of the streptococcal virulence factor SpeB were identified in the B. fragilis genome. These four protease genes, two were directly contiguous to open reading frames predicted to encode staphostatin-like inhibitors, with which the protease genes were co-transcribed. Two of these protease genes are unique to B. fragilis 638R and are associated with two large genomic insertions. Gene annotation indicated that one of these insertions was a conjugative Tn-like element and the other was a prophage-like element, which was shown to be capable of excision. Homologues of the B. fragilis C10 protease genes were present in a panel of clinical isolates, and in DNA extracted from normal human faecal microbiota. Conclusions This study suggests a mechanism for the evolution and dissemination of an important class of protease in major members of the normal human microbiota.

  12. Genetic elements associated with antimicrobial resistance among avian pathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Amal Awad

    2016-11-01

    Full Text Available Abstract Background Avian-pathogenic Escherichia coli (APEC are pathogenic strains of E. coli that are responsible for one of the most predominant bacterial disease affecting poultry worldwide called avian colibacillosis. This study describes the genetic determinants implicated in antimicrobial resistance among APEC isolated from different broiler farms in Egypt. Methods A total of 116 APEC were investigated by serotyping, antimicrobial resistance patterns to 10 antimicrobials, and the genetic mechanisms underlying the antimicrobial-resistant phenotypes. Results Antibiogram results showed that the highest resistance was observed for ampicillin, tetracycline, nalidixic acid, and chloramphenicol. The detected carriage rate of integron was 29.3% (34/116. Further characterization of gene cassettes revealed the presence gene cassettes encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, streptomycin/spectinomycin (aadA1, aadA2, aadA5, aadA23, and streptothricin (sat2. To our knowledge, this the first description of the presence of aadA23 in APEC isolates. Analysis of other antimicrobial resistance types not associated with integrons revealed the predominance of resistance genes encoding resistance to tetracycline (tetA and tetB, ampicillin (bla TEM, chloramphenicol (cat1, kanamycin (aphA1, and sulphonamide (sul1 and sul2. Among ciprofloxacin-resistant isolates, the S83L mutation was the most frequently substitution observed in the quinolone resistance-determining region of gyrA (56.3%. The bla TEM and bla CTX−M−1 genes were the most prevalent among APEC isolates producing extended-spectrum beta-lactamase (ESβL. Conclusions These findings provided important clues about the role of integron-mediated resistance genes together with other independent resistance genes and chromosomal mutations in shaping the epidemiology of antimicrobial resistance in E. coli isolates from poultry farms in Egypt.

  13. Genetic elements associated with antimicrobial resistance among avian pathogenic Escherichia coli.

    Science.gov (United States)

    Awad, Amal; Arafat, Nagah; Elhadidy, Mohamed

    2016-11-25

    Avian-pathogenic Escherichia coli (APEC) are pathogenic strains of E. coli that are responsible for one of the most predominant bacterial disease affecting poultry worldwide called avian colibacillosis. This study describes the genetic determinants implicated in antimicrobial resistance among APEC isolated from different broiler farms in Egypt. A total of 116 APEC were investigated by serotyping, antimicrobial resistance patterns to 10 antimicrobials, and the genetic mechanisms underlying the antimicrobial-resistant phenotypes. Antibiogram results showed that the highest resistance was observed for ampicillin, tetracycline, nalidixic acid, and chloramphenicol. The detected carriage rate of integron was 29.3% (34/116). Further characterization of gene cassettes revealed the presence gene cassettes encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12), streptomycin/spectinomycin (aadA1, aadA2, aadA5, aadA23), and streptothricin (sat2). To our knowledge, this the first description of the presence of aadA23 in APEC isolates. Analysis of other antimicrobial resistance types not associated with integrons revealed the predominance of resistance genes encoding resistance to tetracycline (tetA and tetB), ampicillin (bla TEM ), chloramphenicol (cat1), kanamycin (aphA1), and sulphonamide (sul1 and sul2). Among ciprofloxacin-resistant isolates, the S83L mutation was the most frequently substitution observed in the quinolone resistance-determining region of gyrA (56.3%). The bla TEM and bla CTX-M-1 genes were the most prevalent among APEC isolates producing extended-spectrum beta-lactamase (ESβL). These findings provided important clues about the role of integron-mediated resistance genes together with other independent resistance genes and chromosomal mutations in shaping the epidemiology of antimicrobial resistance in E. coli isolates from poultry farms in Egypt.

  14. A method of predicting changes in human gene splicing induced by genetic variants in context of cis-acting elements

    Directory of Open Access Journals (Sweden)

    Hicks Chindo

    2010-01-01

    Full Text Available Abstract Background Polymorphic variants and mutations disrupting canonical splicing isoforms are among the leading causes of human hereditary disorders. While there is a substantial evidence of aberrant splicing causing Mendelian diseases, the implication of such events in multi-genic disorders is yet to be well understood. We have developed a new tool (SpliceScan II for predicting the effects of genetic variants on splicing and cis-regulatory elements. The novel Bayesian non-canonical 5'GC splice site (SS sensor used in our tool allows inference on non-canonical exons. Results Our tool performed favorably when compared with the existing methods in the context of genes linked to the Autism Spectrum Disorder (ASD. SpliceScan II was able to predict more aberrant splicing isoforms triggered by the mutations, as documented in DBASS5 and DBASS3 aberrant splicing databases, than other existing methods. Detrimental effects behind some of the polymorphic variations previously associated with Alzheimer's and breast cancer could be explained by changes in predicted splicing patterns. Conclusions We have developed SpliceScan II, an effective and sensitive tool for predicting the detrimental effects of genomic variants on splicing leading to Mendelian and complex hereditary disorders. The method could potentially be used to screen resequenced patient DNA to identify de novo mutations and polymorphic variants that could contribute to a genetic disorder.

  15. Variation on a theme; an overview of the Tn916 / Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci.

    Directory of Open Access Journals (Sweden)

    Francesco eSantoro

    2014-10-01

    Full Text Available The oral and nasopharyngeal streptococci are a major part of the normal microbiota in humans. Most human associated streptococci are considered commensals however a small number of them are pathogenic, causing a wide range of diseases including oral infections such as dental caries and periodontitis and diseases at other body sites including sinusitis and endocarditis, and in the case of Streptococcus pneumoniae, meningitis. Both phenotypic and sequence based studies have shown that the human associated streptococci from the mouth and nasopharynx harbour a large number of antibiotic resistance genes and these are often located on mobile genetic elements known as conjugative transposons or integrative and conjugative elements of the Tn916 / Tn1545 family. These mobile genetic elements are responsible for the spread of the resistance genes between streptococci and also between streptococci and other bacteria. In this review we describe the resistances conferred by, and the genetic variations between the many different Tn916-like elements found in recent studies of oral and nasopharyngeal streptococci and show that Tn916-like elements are important mediators of antibiotic resistance genes within this genus. We will also discuss the role of the oral environment and how this is conducive to the transfer of these elements and discuss the contribution of both transformation and conjugation on the transfer and evolution of these elements in different streptococci.

  16. Intra-Amygdala Injections of CREB Antisense Impair Inhibitory Avoidance Memory: Role of Norepinephrine and Acetylcholine

    Science.gov (United States)

    Canal, Clinton E.; Chang, Qing; Gold, Paul E.

    2008-01-01

    Infusions of CREB antisense into the amygdala prior to training impair memory for aversive tasks, suggesting that the antisense may interfere with CRE-mediated gene transcription and protein synthesis important for the formation of new memories within the amygdala. However, the amygdala also appears to modulate memory formation in distributed…

  17. Identification and characterization of mobile genetic elements LINEs from Brassica genome.

    Science.gov (United States)

    Nouroz, Faisal; Noreen, Shumaila; Khan, Muhammad Fiaz; Ahmed, Shehzad; Heslop-Harrison, J S Pat

    2017-09-05

    Among transposable elements (TEs), the LTR retrotransposons are abundant followed by non-LTR retrotransposons in plant genomes, the lateral being represented by LINEs and SINEs. Computational and molecular approaches were used for the characterization of Brassica LINEs, their diversity and phylogenetic relationships. Four autonomous and four non-autonomous LINE families were identified and characterized from Brassica. Most of the autonomous LINEs displayed two open reading frames, ORF1 and ORF2, where ORF1 is a gag protein domain, while ORF2 encodes endonuclease (EN) and a reverse transcriptase (RT). Three of four families encoded an additional RNase H (RH) domain in pol gene common to 'R' and 'I' type of LINEs. The PCR analyses based on LINEs RT fragments indicate their high diversity and widespread occurrence in tested 40 Brassica cultivars. Database searches revealed the homology in LINE sequences in closely related genera Arabidopsis indicating their origin from common ancestors predating their separation. The alignment of 58 LINEs RT sequences from Brassica, Arabidopsis and other plants depicted 4 conserved domains (domain II-V) showing similarity to previously detected domains. Based on RT alignment of Brassica and 3 known LINEs from monocots, Brassicaceae LINEs clustered in separate clade, further resolving 4 Brassica-Arabidopsis specific families in 2 sub-clades. High similarities were observed in RT sequences in the members of same family, while low homology was detected in members across the families. The investigation led to the characterization of Brassica specific LINE families and their diversity across Brassica species and their cultivars. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Silencing MIG1 in Saccharomyces cerevisiae: Effects of antisense MIG1 expression and MIG1 gene disruption

    DEFF Research Database (Denmark)

    Olsson, Lisbeth; Larsen, M.E.; Rønnow, B.

    1997-01-01

    , However, silencing of MIG1 expression was not achieved by expressing antisense MIG1, even though antisense MIG1 RNA was sufficiently stable to be detected. In the wild-type and Delta mig1 strains, the specific growth rate was 0.32 to 0.33 h(-1), whereas it was lower in the antisense strains, 0.25 to 0...

  19. Development of Multiexon Skipping Antisense Oligonucleotide Therapy for Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Yoshitsugu Aoki

    2013-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is an incurable, X-linked progressive muscle degenerative disorder that results from the absence of dystrophin protein and leads to premature death in affected individuals due to respiratory and/or cardiac failure typically by age of 30. Very recently the exciting prospect of an effective oligonucleotide therapy has emerged which restores dystrophin protein expression to affected tissues in DMD patients with highly promising data from a series of clinical trials. This therapeutic approach is highly mutation specific and thus is personalised. Therefore DMD has emerged as a model genetic disorder for understanding and overcoming of the challenges of developing personalised genetic medicines. One of the greatest weaknesses of the current oligonucleotide approach is that it is a mutation-specific therapy. To address this limitation, we have recently demonstrated that exons 45–55 skipping therapy has the potential to treat clusters of mutations that cause DMD, which could significantly reduce the number of compounds that would need to be developed in order to successfully treat all DMD patients. Here we discuss and review the latest preclinical work in this area as well as a variety of accompanying issues, including efficacy and potential toxicity of antisense oligonucleotides, prior to human clinical trials.

  20. Multilevel Regulation of Bacterial Gene Expression with the Combined STAR and Antisense RNA System.

    Science.gov (United States)

    Lee, Young Je; Kim, Soo-Jung; Moon, Tae Seok

    2018-02-16

    Synthetic small RNA regulators have emerged as a versatile tool to predictably control bacterial gene expression. Owing to their simple design principles, small size, and highly orthogonal behavior, these engineered genetic parts have been incorporated into genetic circuits. However, efforts to achieve more sophisticated cellular functions using RNA regulators have been hindered by our limited ability to integrate different RNA regulators into complex circuits. Here, we present a combined RNA regulatory system in Escherichia coli that uses small transcription activating RNA (STAR) and antisense RNA (asRNA) to activate or deactivate target gene expression in a programmable manner. Specifically, we demonstrated that the activated target output by the STAR system can be deactivated by expressing two different types of asRNAs: one binds to and sequesters the STAR regulator, affecting the transcription process, while the other binds to the target mRNA, affecting the translation process. We improved deactivation efficiencies (up to 96%) by optimizing each type of asRNA and then integrating the two optimized asRNAs into a single circuit. Furthermore, we demonstrated that the combined STAR and asRNA system can control gene expression in a reversible way and can regulate expression of a gene in the genome. Lastly, we constructed and simultaneously tested two A AND NOT B logic gates in the same cell to show sophisticated multigene regulation by the combined system. Our approach establishes a methodology for integrating multiple RNA regulators to rationally control multiple genes.

  1. Development of Multiexon Skipping Antisense Oligonucleotide Therapy for Duchenne Muscular Dystrophy

    Science.gov (United States)

    Yokota, Toshifumi; Wood, Matthew J. A.

    2013-01-01

    Duchenne muscular dystrophy (DMD) is an incurable, X-linked progressive muscle degenerative disorder that results from the absence of dystrophin protein and leads to premature death in affected individuals due to respiratory and/or cardiac failure typically by age of 30. Very recently the exciting prospect of an effective oligonucleotide therapy has emerged which restores dystrophin protein expression to affected tissues in DMD patients with highly promising data from a series of clinical trials. This therapeutic approach is highly mutation specific and thus is personalised. Therefore DMD has emerged as a model genetic disorder for understanding and overcoming of the challenges of developing personalised genetic medicines. One of the greatest weaknesses of the current oligonucleotide approach is that it is a mutation-specific therapy. To address this limitation, we have recently demonstrated that exons 45–55 skipping therapy has the potential to treat clusters of mutations that cause DMD, which could significantly reduce the number of compounds that would need to be developed in order to successfully treat all DMD patients. Here we discuss and review the latest preclinical work in this area as well as a variety of accompanying issues, including efficacy and potential toxicity of antisense oligonucleotides, prior to human clinical trials. PMID:23984357

  2. Extensive polycistronism and antisense transcription in the mammalian Hox clusters.

    Directory of Open Access Journals (Sweden)

    Gaëll Mainguy

    Full Text Available The Hox clusters play a crucial role in body patterning during animal development. They encode both Hox transcription factor and micro-RNA genes that are activated in a precise temporal and spatial sequence that follows their chromosomal order. These remarkable collinear properties confer functional unit status for Hox clusters. We developed the TranscriptView platform to establish high resolution transcriptional profiling and report here that transcription in the Hox clusters is far more complex than previously described in both human and mouse. Unannotated transcripts can represent up to 60% of the total transcriptional output of a cluster. In particular, we identified 14 non-coding Transcriptional Units antisense to Hox genes, 10 of which (70% have a detectable mouse homolog. Most of these Transcriptional Units in both human and mouse present conserved sizeable sequences (>40 bp overlapping Hox transcripts, suggesting that these Hox antisense transcripts are functional. Hox clusters also display at least seven polycistronic clusters, i.e., different genes being co-transcribed on long isoforms (up to 30 kb. This work provides a reevaluated framework for understanding Hox gene function and dys-function. Such extensive transcriptions may provide a structural explanation for Hox clustering.

  3. Exploring the Antarctic soil metagenome as a source of novel cold-adapted enzymes and genetic mobile elements

    Directory of Open Access Journals (Sweden)

    Renaud Berlemont

    2011-06-01

    Full Text Available Metagenomic library PP1 was obtained from Antarctic soil samples. Both functional and genotypic metagenomic screening were used for the isolation of novel cold-adapted enzymes with potential applications, and for the detection of genetic elements associated with gene mobilization, respectively. Fourteen lipase/esterase-, 14 amylase-, 3 protease-, and 11 cellulase-producing clones were detected by activity-driven screening, with apparent maximum activities around 35 °C for both amylolytic and lipolytic enzymes, and 35-55 °C for cellulases, as observed for other cold-adapted enzymes. However, the behavior of at least one of the studied cellulases is more compatible to that observed for mesophilic enzymes. These enzymes are usually still active at temperatures above 60 °C, probably resulting in a psychrotolerant behavior in Antarctic soils. Metagenomics allows to access novel genes encoding for enzymatic and biophysic properties from almost every environment with potential benefits for biotechnological and industrial applications. Only intI- and tnp-like genes were detected by PCR, encoding for proteins with 58-86 %, and 58-73 % amino acid identity with known entries, respectively. Two clones, BAC 27A-9 and BAC 14A-5, seem to present unique syntenic organizations, suggesting the occurrence of gene rearrangements that were probably due to evolutionary divergences within the genus or facilitated by the association with transposable elements. The evidence for genetic elements related to recruitment and mobilization of genes (transposons/integrons in an extreme environment like Antarctica reinforces the hypothesis of the origin of some of the genes disseminated by mobile elements among "human-associated" microorganisms.A partir de muestras de suelo antártico se obtuvo la metagenoteca PP1. Esta fue sometida a análisis funcionales y genotípicos para el aislamiento de nuevas enzimas adaptadas al frío con potenciales aplicaciones, y para la detecci

  4. [Establishment of a cell line with antisense-blocked POLH and the role of POLH in alkylating agent MNNG induced nontargeted mutagenesis].

    Science.gov (United States)

    Luo, Yue-qiu; Yang, Jun; Yu, Ying-nian

    2003-10-01

    To investigate the function of POLH(polymerase eta) through establishment of the POLH gene-blocked cell line FL-POLH(-). A mammalian expression vector expressing antisense POLH gene fragment pMAMneo-amp-POLHA (-) was constructed by cloning the 1473 - 2131 fragment of POLH gene into the mammalian expression vector pMAMneo-amp(-) in antisense orientation. The FL cells were transfected with this antisense RNA expressing vector and selected by G418. The mutation assay was conducted using the shuttle plasmid pZ189. The spontaneous mutation frequency of SupF tRNA gene in the plasmid replicated in the FL-POLH(-) was 13.5 x 10(-4), while it was 4.9x10(-4) and 3.7x10(-4) in the control cells FL and FL-M, respectively. The nontargeted mutation frequency of SupF tRNA gene decreased in the plasmid replicated in these cell lines pretreated with MNNG. POLH plays an important role in maintenance of genetic stability and genesis of nontargeted mutation.

  5. A selfish genetic element influencing longevity correlates with reactive behavioural traits in female house mice (Mus domesticus.

    Directory of Open Access Journals (Sweden)

    Yannick Auclair

    Full Text Available According to theory in life-history and animal personality, individuals with high fitness expectations should be risk-averse, while individuals with low fitness expectations should be more bold. In female house mice, a selfish genetic element, the t haplotype, is associated with increased longevity under natural conditions, representing an appropriate case study to investigate this recent theory empirically. Following theory, females heterozygous for the t haplotype (+/t are hypothesised to express more reactive personality traits and be more shy, less explorative and less active compared to the shorter-lived homozygous wildtype females (+/+. As males of different haplotype do not differ in survival, no similar pattern is expected. We tested these predictions by quantifying boldness, exploration, activity, and energetic intake in both +/t and +/+ mice. +/t females, unlike +/+ ones, expressed some reactive-like personality traits: +/t females were less active, less prone to form an exploratory routine and tended to ingest less food. Taken together these results suggest that differences in animal personality may contribute to the survival advantage observed in +/t females but fail to provide full empirical support for recent theory.

  6. Primer-Independent DNA Synthesis by a Family B DNA Polymerase from Self-Replicating Mobile Genetic Elements

    Directory of Open Access Journals (Sweden)

    Modesto Redrejo-Rodríguez

    2017-11-01

    Full Text Available Family B DNA polymerases (PolBs play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB, that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance.

  7. The Influence of Copy-Number of Targeted Extrachromosomal Genetic Elements on the Outcome of CRISPR-Cas Defense

    Science.gov (United States)

    Severinov, Konstantin; Ispolatov, Iaroslav; Semenova, Ekaterina

    2016-01-01

    Prokaryotic type I CRISPR-Cas systems respond to the presence of mobile genetic elements such as plasmids and phages in two different ways. CRISPR interference efficiently destroys foreign DNA harboring protospacers fully matching CRISPR RNA spacers. In contrast, even a single mismatch between a spacer and a protospacer can render CRISPR interference ineffective but causes primed adaptation—efficient and specific acquisition of additional spacers from foreign DNA into the CRISPR array of the host. It has been proposed that the interference and primed adaptation pathways are mediated by structurally different complexes formed by the effector Cascade complex on matching and mismatched protospacers. Here, we present experimental evidence and present a simple mathematical model that shows that when plasmid copy number maintenance/phage genome replication is taken into account, the two apparently different outcomes of the CRISPR-Cas response can be accounted for by just one kind of effector complex on both targets. The results underscore the importance of consideration of targeted genome biology when considering consequences of CRISPR-Cas systems action. PMID:27630990

  8. Identification of differentially expressed sense and antisense transcript pairs in breast epithelial tissues

    Directory of Open Access Journals (Sweden)

    Kendrick Howard

    2009-07-01

    Full Text Available Abstract Background More than 20% of human transcripts have naturally occurring antisense products (or natural antisense transcripts – NATs, some of which may play a key role in a range of human diseases. To date, several databases of in silico defined human sense-antisense (SAS pairs have appeared, however no study has focused on differential expression of SAS pairs in breast tissue. We therefore investigated the expression levels of sense and antisense transcripts in normal and malignant human breast epithelia using the Affymetrix HG-U133 Plus 2.0 and Almac Diagnostics Breast Cancer DSA microarray technologies as well as massively parallel signature sequencing (MPSS data. Results The expression of more than 2500 antisense transcripts were detected in normal breast duct luminal cells and in primary breast tumors substantially enriched for their epithelial cell content by DSA microarray. Expression of 431 NATs were confirmed by either of the other two technologies. A corresponding sense transcript could be identified on DSA for 257 antisense transcripts. Of these SAS pairs, 163 have not been previously reported. A positive correlation of differential expression between normal and malignant breast samples was observed for most SAS pairs. Orientation specific RT-QPCR of selected SAS pairs validated their expression in several breast cancer cell lines and solid breast tumours. Conclusion Disease-focused and antisense enriched microarray platforms (such as Breast Cancer DSA confirm the assumption that antisense transcription in the human breast is more prevalent than previously anticipated. Expression of a proportion of these NATs has already been confirmed by other technologies while the true existence of the remaining ones has to be validated. Nevertheless, future studies will reveal whether the relative abundances of antisense and sense transcripts have regulatory influences on the translation of these mRNAs.

  9. Antisense oligonucleotide for tissue factor inhibits hepatic ischemic reperfusion injury.

    Science.gov (United States)

    Nakamura, Kenji; Kadotani, Yayoi; Ushigome, Hidetaka; Akioka, Kiyokazu; Okamoto, Masahiko; Ohmori, Yoshihiro; Yaoi, Takeshi; Fushiki, Shinji; Yoshimura, Rikio; Yoshimura, Norio

    2002-09-27

    Tissue factor (TF) is an initiation factor for blood coagulation and its expression is induced on endothelial cells during inflammatory or immune responses. We designed an antisense oligodeoxynucleotide (AS-1/TF) for rat TF and studied its effect on hepatic ischemic reperfusion injury. AS-1/TF was delivered intravenously to Lewis rats. After 10 h, hepatic artery and portal vein were partially clamped. Livers were reperfused after 180 min and harvested. TF expression was studied using immunohistochemical staining. One of 10 rats survived in a 5-day survival rate and TF was strongly stained on endothelial cells in non-treatment group. However, by treatment with AS-1/TF, six of seven survived and TF staining was significantly reduced. Furthermore, we observed that fluorescein-labeled AS-1/TF was absorbed into endothelial cells. These results suggest that AS-1/TF can strongly suppress the expression of TF and thereby inhibit ischemic reperfusion injury to the rat liver.

  10. Intracerebral Infusion of Antisense Oligonucleotides Into Prion-infected Mice

    Directory of Open Access Journals (Sweden)

    Karah Nazor Friberg

    2012-01-01

    Full Text Available Mice deficient for the cellular prion protein (PrPC do not develop prion disease; accordingly, gene-based strategies to diminish PrPC expression are of interest. We synthesized a series of chemically modified antisense oligonucleotides (ASOs targeted against mouse Prnp messenger RNA (mRNA and identified those that were most effective in decreasing PrPC expression. Those ASOs were also evaluated in scrapie-infected cultured cells (ScN2a for their efficacy in diminishing the levels of the disease-causing prion protein (PrPSc. When the optimal ASO was infused intracerebrally into FVB mice over a 14-day period beginning 1 day after infection with the Rocky Mountain Laboratory (RML strain of mouse prions, a prolongation of the incubation period of almost 2 months was observed. Whether ASOs can be used to develop an effective therapy for patients dying of Creutzfeldt–Jakob disease remains to be established.

  11. Genetics

    Science.gov (United States)

    ... Likelihood of getting certain diseases Mental abilities Natural talents An abnormal trait (anomaly) that is passed down ... one of them has a genetic disorder. Information Human beings have cells with 46 chromosomes . These consist ...

  12. Macrolide resistance gene erm(TR) and erm(TR)-carrying genetic elements in Streptococcus agalactiae: characterization of ICESagTR7, a new composite element containing IMESp2907.

    Science.gov (United States)

    Mingoia, Marina; Morici, Eleonora; Marini, Emanuela; Brenciani, Andrea; Giovanetti, Eleonora; Varaldo, Pietro E

    2016-03-01

    The objective of this study was to investigate macrolide-resistant Streptococcus agalactiae isolates harbouring erm(TR), an erm(A) gene subclass, with emphasis on their erm(TR)-carrying genetic elements. Four erm(TR)-carrying elements have been described to date: three closely related (ICE10750-RD.2, Tn1806 and ICESp1108) in Streptococcus pyogenes, Streptococcus pneumoniae and S. pyogenes, respectively; and one completely different (IMESp2907, embedded in ICESp2906 to form ICESp2905) in S. pyogenes. Seventeen macrolide-resistant erm(TR)-positive S. agalactiae isolates were phenotypically and genotypically characterized. Their erm(TR)-carrying elements were explored by analysing the distinctive recombination genes of known erm(TR)-carrying integrative and conjugative elements (ICEs) and by PCR mapping. The new genetic context and organization of IMESp2907 in S. agalactiae were explored using several experimental procedures and in silico analyses. Five isolates harboured ICE10750-RD.2/Tn1806, five isolates harboured ICESp1108 and five isolates bore unknown erm(TR)-carrying elements. The remaining two isolates, exhibiting identical serotypes and pulsotypes, harboured IMESp2907 in a new genetic environment, which was further investigated in one of the two isolates, SagTR7. IMESp2907 was circularizable in S. agalactiae, as described in S. pyogenes. The new IMESp2907 junctions were identified based on its site-specific integration; the att sites were almost identical to those in S. pyogenes. In strain SagTR7, erm(TR)-carrying IMESp2907 was embedded in an erm(TR)-less internal element related to ICE10750-RD.2/Tn1806, which, in turn, was embedded in an ICESde3396-like element. The resulting whole ICE, ICESagTR7 (∼129 kb), was integrated into the chromosome downstream of the rplL gene, and was excisable in circular form and transferable by conjugation. This is the first study exploring erm(TR)-carrying genetic elements in S. agalactiae. © The Author 2015. Published by

  13. Tuning growth cycles of Brassica crops via natural antisense transcripts of BrFLC.

    Science.gov (United States)

    Li, Xiaorong; Zhang, Shaofeng; Bai, Jinjuan; He, Yuke

    2016-03-01

    Several oilseed and vegetable crops of Brassica are biennials that require a prolonged winter cold for flowering, a process called vernalization. FLOWERING LOCUS C (FLC) is a central repressor of flowering. Here, we report that the overexpression of natural antisense transcripts (NATs) of Brassica rapa FLC (BrFLC) greatly shortens plant growth cycles. In rapid-, medium- and slow-cycling crop types, there are four copies of the BrFLC genes, which show extensive variation in sequences and expression levels. In Bre, a biennial crop type that requires vernalization, five NATs derived from the BrFLC2 locus are rapidly induced under cold conditions, while all four BrFLC genes are gradually down-regulated. The transgenic Bre lines overexpressing a long NAT of BrFLC2 do not require vernalization, resulting in a gradient of shortened growth cycles. Among them, a subset of lines both flower and set seeds as early as Yellow sarson, an annual crop type in which all four BrFLC genes have non-sense mutations and are nonfunctional in flowering repression. Our results demonstrate that the growth cycles of biennial crops of Brassica can be altered by changing the expression levels of BrFLC2 NATs. Thus, BrFLC2 NATs and their transgenic lines are useful for the genetic manipulation of crop growth cycles. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  15. Antisense silencing of the creA gene in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Bautista, L. F.; Aleksenko, Alexei Y.; Hentzer, Morten

    2000-01-01

    Antisense expression of a portion of the gene encoding the major carbon catabolite repressor CREA in Aspergillus nidulans resulted in a substantial increase in the levels of glucose-repressible enzymes, both endogenous and heterologous, in the presence of glucose. The derepression effect was appr...... was approximately one-half of that achieved in a null creA mutant. Unlike results for that mutant, however, growth parameters and colony morphology in the antisense transformants were not affected....

  16. High prevalence of multidrug resistance and random distribution of mobile genetic elements among uropathogenic Escherichia coli (UPEC) of the four major phylogenetic groups.

    Science.gov (United States)

    Rijavec, Matija; Starcic Erjavec, Marjanca; Ambrozic Avgustin, Jerneja; Reissbrodt, Rolf; Fruth, Angelika; Krizan-Hergouth, Veronika; Zgur-Bertok, Darja

    2006-08-01

    One hundred and ten UTI Escherichia coli strains, from Ljubljana, Slovenia, were analyzed for antibiotic resistances, mobile DNA elements, serotype, and phylogenetic origin. A high prevalence of drug resistance and multidrug resistance was found. Twenty-six percent of the isolates harbored a class 1 integron, while a majority of the strains (56%) harbored rep sequences characteristic of F-like plasmids. int as well as rep sequences were found to be distributed in a random manner among strains of the four major phylogenetic groups indicating that all groups have a similar tendency to acquire and maintain mobile genetic elements frequently associated with resistance determinants.

  17. Antitumor activity of antisense oligonucleotide p45Skp2 in soft palate carcinoma cell squamous in vitro

    Directory of Open Access Journals (Sweden)

    Supriatno Supriatno

    2013-03-01

    Full Text Available Background: Human soft palate cancers are characterized by a high degree of local invasion and metastasis to the regional lymph nodes. Treatment options for this cancer are limited. However, a new strategy for refractory cancer, gene therapy is watched with keen interest. p45Skp2 gene as a tumor promoter gene is one of target of the oral cancer therapy. To inhibit the activity of p45Skp2 gene is carried-out the genetic engineering via antisense technique. Purpose: To examine the antitumor activity of p45Skp2 antisense (p45Skp2 AS gene therapy in human soft palate [Hamakawa-Inoue (HI] cancer cells. Methods: Pure laboratory experimental study with post test only control group design was conducted as a research design. To investigate the apoptosis induction of p45Skp2 AStransfected cell was evaluated by colorimetric caspase-3 assay and Flow cytometry. Furthermore, to detect the suppression of in vitro HI cell invasion and cell growth of p45Skp2 AS-treatment cell was examined by Boyden chamber kit and MTT assay, respectively. Results: The cell number of p45Skp2 AS-treated HI cell was significant decreased when compared with that of p45Skp2 sense (p45Skp2 S cells (p<0.05. p45Skp2 AS-treated cell induced apoptosis characterized by an increase in the early and late apoptosis, and activation of caspase-3 (p<0.05. Therefore, suppression of HI cell invasion and cell growth were markedly increased by p45Skp2 AS treatment (p<0.05. Conclusion: Antisense oligonucleotide p45Skp2 has a high antitumor activity in human soft palate cancer cell, targeting this molecule could represent a promising new therapeutics approach for this type of cancer.Latar belakang: Kanker palatum lunak mempunyai karakteristik invasi dan metastasis ke limfonodi regional yang tinggi. Pilihan perawatan kanker tersebut masih sangat terbatas. Walaupun demikian, strategi baru untuk penanganan kanker yaitu terapi gen menjadi pilihan utama. Gen p45Skp2 sebagai gen pemacu tumor merupakan salah

  18. SINEUPs are modular antisense long-non coding RNAs that increase synthesis of target proteins in cells

    Directory of Open Access Journals (Sweden)

    Silvia eZucchelli

    2015-05-01

    Full Text Available Despite recent efforts in discovering novel long non-coding RNAs (lncRNAs and unveiling their functions in a wide range of biological processes their applications as biotechnological or therapeutic tools are still at their infancy. We have recently shown that AS Uchl1, a natural lncRNA antisense to the Parkinson’s disease-associated gene Ubiquitin carboxyl-terminal esterase L1 (Uchl1, is able to increase UchL1 protein synthesis at post-transcriptional level. Its activity requires two RNA elements: an embedded inverted SINEB2 sequence to increase translation and the overlapping region to target its sense mRNA. This functional organization is shared with several mouse lncRNAs antisense to protein coding genes. The potential use of AS Uchl1-derived lncRNAs as enhancers of target mRNA translation remains unexplored. Here we define AS Uchl1 as the representative member of a new functional class of natural and synthetic antisense lncRNAs that activate translation. We named this class of RNAs SINEUPs for their requirement of the inverted SINEB2 sequence to UP-regulate translation in a gene-specific manner. The overlapping region is indicated as the Binding Doman (BD while the embedded inverted SINEB2 element is the Effector Domain (ED. By swapping BD, synthetic SINEUPs are designed targeting mRNAs of interest. SINEUPs function in an array of cell lines and can be efficiently directed towards N-terminally tagged proteins. Their biological activity is retained in a miniaturized version within the range of small RNAs length. Its modular structure was exploited to successfully design synthetic SINEUPs targeting endogenous Parkinson’s disease-associated DJ-1 and proved to be active in different neuronal cell lines.In summary, SINEUPs represent the first scalable tool to increase synthesis of proteins of interest. We propose SINEUPs as reagents for molecular biology experiments, in protein manufacturing as well as in therapy of haploinsufficiencies.

  19. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  20. An inverse model for locating skin tumours in 3D using the genetic algorithm with the Dual Reciprocity Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Fabrício Ribeiro Bueno

    Full Text Available Here, the Dual Reciprocity Boundary Element Method is used to solve the 3D Pennes Bioheat Equation, which together with a Genetic Algorithm, produces an inverse model capable of obtaining the location and the size of a tumour, having as data input the temperature distribution measured on the skin surface. Given that the objective function, which is solved inversely, involves the DRBEM (Dual Reciprocity Boundary Element Method the Genetic Algorithm in its usual form becomes slower, in such a way that it was necessary to develop functions based the solution history in order that the process becomes quicker and more accurate. Results for 8 examples are presented including cases with convection and radiation boundary conditions. Cases involving noise in the readings of the equipment are also considered. This technique is intended to assist health workers in the diagnosis of tumours.

  1. Increased cell survival by inhibition of BRCA1 using an antisense approach in an estrogen responsive ovarian carcinoma cell line

    International Nuclear Information System (INIS)

    Annab, Lois A; Hawkins, Rebecca E; Solomon, Greg; Barrett, J Carl; Afshari, Cynthia A

    2000-01-01

    We tested the hypothesis that BRCA1 may play a role in the regulation of ovarian tumor cell death as well as the inhibition of ovarian cell proliferation. Introduction of BRCA1 antisense retroviral constructs into BG-1 estrogen-dependent ovarian adenocarcinoma cells resulted in reduced BRCA1 expression. BRCA1 antisense pooled populations and derived subclones were able to proliferate in monolayer culture without estrogen, whereas control cells began to die after 10 days of estrogen deprivation. In addition, both populations and subclones of BRCA1 antisense infected cells demonstrated a growth advantage in monolayer culture in the presence of estrogen and were able to proliferate in monolayer culture without estrogen, while control cells did not. Furthermore, clonal studies demonstrated that reduced levels of BRCA1 protein correlated with growth in soft agar and greater tumor formation in nude mice in the absence of estrogen. These data suggest that reduction of BRCA1 protein in BG-1 ovarian adenocarcinoma cells may have an effect on cell survival during estrogen deprivation both in vitro and in vivo. Germline mutations in the breast and ovarian cancer susceptibility gene BRCA1, which is located on chromosome 17q21, are associated with a predisposition to the development of cancer in these organs [1,2]. No mutations in the BRCA1 gene have been detected in sporadic breast cancer cases, but mutations have been detected in sporadic cases of ovarian cancer [3,4]. Although there is debate regarding the level of cancer risk associated with mutations in BRCA1 and the significance of the lack of mutations in sporadic tumors, it is possible that alterations in the function of BRCA1 may occur by mechanisms other than mutation, leading to an underestimation of risk when it is calculated solely on the basis of mutational analysis. Such alterations cannot be identified until the function and regulation of BRCA1 are better understood. The BRCA1 gene encodes a 220-kDa nuclear

  2. Multitasking of the piRNA Silencing Machinery: Targeting Transposable Elements and Foreign Genes in the Bdelloid Rotifer Adineta vaga.

    Science.gov (United States)

    Rodriguez, Fernando; Arkhipova, Irina R

    2016-05-01

    RNA-mediated silencing processes play a key role in silencing of transposable elements, especially in the germ line, where piwi-interacting RNAs (piRNAs) are responsible for suppressing transposon mobility and maintaining genome integrity. We previously reported that the genome of Adineta vaga, the first sequenced representative of the phylum Rotifera (class Bdelloidea), is characterized by massive levels of horizontal gene transfer, by unusually low transposon content, and by highly diversified RNA-mediated silencing machinery. Here, we investigate genome-wide distribution of pi-like small RNAs, which in A. vaga are 25-31 nucleotides in length and have a strong 5'-uridine bias, while lacking ping-pong amplification signatures. In agreement with expectations, 71% of mapped reads corresponded to annotated transposons, with 93% of these reads being in the antisense orientation. Unexpectedly, a significant fraction of piRNAs originate from predicted coding regions corresponding to genes of putatively foreign origin. The distribution of piRNAs across foreign genes is not biased toward 3'-UTRs, instead resembling transposons in uniform distribution pattern throughout the gene body, and in predominantly antisense orientation. We also find that genes with small RNA coverage, including a number of genes of metazoan origin, are characterized by higher occurrence of telomeric repeats in the surrounding genomic regions, and by higher density of transposons in the vicinity, which have the potential to promote antisense transcription. Our findings highlight the complex interplay between RNA-based silencing processes and acquisition of genes at the genome periphery, which can result either in their loss or eventual domestication and integration into the host genome. Copyright © 2016 by the Genetics Society of America.

  3. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-01-01

    splicing correction of the mutated luciferase gene in the HeLa pLuc705 cell line, reporting cellular (nuclear) uptake of the antisense PNA via luciferase activity measurement. Carrier CPP-PNA constructs were studied in terms of construct modification (with octaarginine and/or decanoic acid) and carrier PNA......We have explored the merits of a novel delivery strategy for the antisense oligomers based on cell penetrating peptide (CPP) conjugated to a carrier PNA with sequence complementary to part of the antisense oligomer. The effect of these carrier CPP-PNAs was evaluated by using antisense PNA targeting...

  4. A cautionary tale of sense-antisense gene pairs: independent regulation despite inverse correlation of expression.

    Science.gov (United States)

    Goyal, Ashish; Fiškin, Evgenij; Gutschner, Tony; Polycarpou-Schwarz, Maria; Groß, Matthias; Neugebauer, Julia; Gandhi, Minakshi; Caudron-Herger, Maiwen; Benes, Vladimir; Diederichs, Sven

    2017-12-01

    Long non-coding RNAs (lncRNAs) have been proven to play important roles in diverse cellular processes including the DNA damage response. Nearly 40% of annotated lncRNAs are transcribed in antisense direction to other genes and have often been implicated in their regulation via transcript- or transcription-dependent mechanisms. However, it remains unclear whether inverse correlation of gene expression would generally point toward a regulatory interaction between the genes. Here, we profiled lncRNA and mRNA expression in lung and liver cancer cells after exposure to DNA damage. Our analysis revealed two pairs of mRNA-lncRNA sense-antisense transcripts being inversely expressed upon DNA damage. The lncRNA NOP14-AS1 was strongly upregulated upon DNA damage, while the mRNA for NOP14 was downregulated, both in a p53-dependent manner. For another pair, the lncRNA LIPE-AS1 was downregulated, while its antisense mRNA CEACAM1 was upregulated. To test whether as expected the antisense genes would regulate each other resulting in this highly significant inverse correlation, we employed antisense oligonucleotides and RNAi to study transcript-dependent effects as well as dCas9-based transcriptional modulation by CRISPRi/CRISPRa for transcription-dependent effects. Surprisingly, despite the strong stimulus-dependent inverse correlation, our data indicate that neither transcript- nor transcription-dependent mechanisms explain the inverse regulation of NOP14-AS1:NOP14 or LIPE-AS1:CEACAM1 expression. Hence, sense-antisense pairs whose expression is strongly-positively or negatively-correlated can be nonetheless regulated independently. This highlights the requirement of individual experimental studies for each antisense pair and prohibits drawing conclusions on regulatory mechanisms from expression correlations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Bone Strength Estimated by Micro-Finite Element Analysis (µFEA) Is Heritable and Shares Genetic Predisposition With Areal BMD: The Framingham Study.

    Science.gov (United States)

    Karasik, David; Demissie, Serkalem; Lu, Darlene; Broe, Kerry E; Boyd, Steven K; Liu, Ching-Ti; Hsu, Yi-Hsiang; Bouxsein, Mary L; Kiel, Douglas P

    2017-11-01

    Genetic factors contribute to the risk of bone fractures, partly because of effects on bone strength. High-resolution peripheral quantitative computed tomography (HR-pQCT) estimates bone strength using micro-finite element analysis (µFEA). The goal of this study was to investigate if the bone failure load estimated by HR-pQCT-based µFEA is heritable and to what extent it shares genetic regulation with areal bone mineral density (aBMD). Bone microarchitecture was measured by HR-pQCT at the ultradistal tibia and ultradistal radius in adults from the Framingham Heart Study (n = 1087, mean age 72 years; 57% women). Radial and tibial failure load in compression were estimated by µFEA. Femoral neck (FN) and ultradistal forearm (UD) aBMD were measured by dual-energy X-ray absorptiometry (DXA). Heritability (h 2 ) of failure load and aBMD and genetic correlations between them was estimated adjusting for covariates (age and sex). Failure load values at the non-weight-bearing ultradistal radius and at the weight-bearing ultradistal tibia were highly correlated (r = 0.906; p analysis, there was a high phenotypic and genetic correlation between covariate-adjusted failure load at the radius and UD aBMD (ρ P  = 0.826, ρ G  = 0.954, respectively), whereas environmental correlations were lower (ρ E  = 0.696), all highly significant (p micro-finite element analysis is heritable and shares some genetic composition with areal BMD, regardless of the skeletal site. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  6. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn's disease.

    Science.gov (United States)

    Monteleone, Giovanni; Neurath, Markus F; Ardizzone, Sandro; Di Sabatino, Antonio; Fantini, Massimo C; Castiglione, Fabiana; Scribano, Maria L; Armuzzi, Alessandro; Caprioli, Flavio; Sturniolo, Giacomo C; Rogai, Francesca; Vecchi, Maurizio; Atreya, Raja; Bossa, Fabrizio; Onali, Sara; Fichera, Maria; Corazza, Gino R; Biancone, Livia; Savarino, Vincenzo; Pica, Roberta; Orlando, Ambrogio; Pallone, Francesco

    2015-03-19

    Crohn's disease-related inflammation is characterized by reduced activity of the immunosuppressive cytokine transforming growth factor β1 (TGF-β1) due to high levels of SMAD7, an inhibitor of TGF-β1 signaling. Preclinical studies and a phase 1 study have shown that an oral SMAD7 antisense oligonucleotide, mongersen, targets ileal and colonic SMAD7. In a double-blind, placebo-controlled, phase 2 trial, we evaluated the efficacy of mongersen for the treatment of persons with active Crohn's disease. Patients were randomly assigned to receive 10, 40, or 160 mg of mongersen or placebo per day for 2 weeks. The primary outcomes were clinical remission at day 15, defined as a Crohn's Disease Activity Index (CDAI) score of less than 150, with maintenance of remission for at least 2 weeks, and the safety of mongersen treatment. A secondary outcome was clinical response (defined as a reduction of 100 points or more in the CDAI score) at day 28. The proportions of patients who reached the primary end point were 55% and 65% for the 40-mg and 160-mg mongersen groups, respectively, as compared with 10% for the placebo group (P<0.001). There was no significant difference in the percentage of participants reaching clinical remission between the 10-mg group (12%) and the placebo group. The rate of clinical response was significantly greater among patients receiving 10 mg (37%), 40 mg (58%), or 160 mg (72%) of mongersen than among those receiving placebo (17%) (P=0.04, P<0.001, and P<0.001, respectively). Most adverse events were related to complications and symptoms of Crohn's disease. We found that study participants with Crohn's disease who received mongersen had significantly higher rates of remission and clinical response than those who received placebo. (Funded by Giuliani; EudraCT number, 2011-002640-27.).

  7. Profiled support vector machines for antisense oligonucleotide efficacy prediction

    Directory of Open Access Journals (Sweden)

    Martín-Guerrero José D

    2004-09-01

    Full Text Available Abstract Background This paper presents the use of Support Vector Machines (SVMs for prediction and analysis of antisense oligonucleotide (AO efficacy. The collected database comprises 315 AO molecules including 68 features each, inducing a problem well-suited to SVMs. The task of feature selection is crucial given the presence of noisy or redundant features, and the well-known problem of the curse of dimensionality. We propose a two-stage strategy to develop an optimal model: (1 feature selection using correlation analysis, mutual information, and SVM-based recursive feature elimination (SVM-RFE, and (2 AO prediction using standard and profiled SVM formulations. A profiled SVM gives different weights to different parts of the training data to focus the training on the most important regions. Results In the first stage, the SVM-RFE technique was most efficient and robust in the presence of low number of samples and high input space dimension. This method yielded an optimal subset of 14 representative features, which were all related to energy and sequence motifs. The second stage evaluated the performance of the predictors (overall correlation coefficient between observed and predicted efficacy, r; mean error, ME; and root-mean-square-error, RMSE using 8-fold and minus-one-RNA cross-validation methods. The profiled SVM produced the best results (r = 0.44, ME = 0.022, and RMSE= 0.278 and predicted high (>75% inhibition of gene expression and low efficacy (http://aosvm.cgb.ki.se/. Conclusions The SVM approach is well suited to the AO prediction problem, and yields a prediction accuracy superior to previous methods. The profiled SVM was found to perform better than the standard SVM, suggesting that it could lead to improvements in other prediction problems as well.

  8. Transfection of mouse cytotoxic T lymphocyte with an antisense granzyme A vector reduces lytic activity.

    Science.gov (United States)

    Talento, A; Nguyen, M; Law, S; Wu, J K; Poe, M; Blake, J T; Patel, M; Wu, T J; Manyak, C L; Silberklang, M

    1992-12-15

    Murine CTL have seven serine proteases, known as granzymes, in their lytic granules. Despite considerable effort, convincing evidence that these enzymes play an obligatory role in the lytic process has not been presented. To investigate the function of one of these proteases, granzyme A (GA), we utilized an antisense expression vector to lower the level of the enzyme in the cells. An expression vector containing antisense cDNA for GA and the gene for hygromycin B resistance was constructed and electroporated into the murine CTL line, AR1. Transfectants were selected based on resistance to hygromycin B, and a number of stable lines were developed. One of the antisense lines had greatly reduced levels of GA mRNA, when compared to the parental cells or to control lines transfected with the vector lacking the antisense DNA. The message levels for two other CTL granule proteins, granzyme B and perforin, were unaffected by the antisense vector. The amount of GA, as measured by enzymatic activity, was 3- to 10-fold lower in the transfectant. Most significantly, this line also consistently showed 50 to 70% lower ability to lyse nucleated target cells and to degrade their DNA. Furthermore, it exhibited 90 to 95% lower lytic activity to anti-CD3-coated SRBC. Conjugate formation with target cells, however, was normal. These data provide strong evidence that GA plays an important role in the cytolytic cycle, and that the quantity of enzyme is a limiting factor in these cytolytic cells.

  9. A Simple Three-Step Method for Design and Affinity Testing of New Antisense Peptides: An Example of Erythropoietin

    Directory of Open Access Journals (Sweden)

    Nikola Štambuk

    2014-05-01

    Full Text Available Antisense peptide technology is a valuable tool for deriving new biologically active molecules and performing peptide–receptor modulation. It is based on the fact that peptides specified by the complementary (antisense nucleotide sequences often bind to each other with a higher specificity and efficacy. We tested the validity of this concept on the example of human erythropoietin, a well-characterized and pharmacologically relevant hematopoietic growth factor. The purpose of the work was to present and test simple and efficient three-step procedure for the design of an antisense peptide targeting receptor-binding site of human erythropoietin. Firstly, we selected the carboxyl-terminal receptor binding region of the molecule (epitope as a template for the antisense peptide modeling; Secondly, we designed an antisense peptide using mRNA transcription of the epitope sequence in the 3'→5' direction and computational screening of potential paratope structures with BLAST; Thirdly, we evaluated sense–antisense (epitope–paratope peptide binding and affinity by means of fluorescence spectroscopy and microscale thermophoresis. Both methods showed similar Kd values of 850 and 816 µM, respectively. The advantages of the methods were: fast screening with a small quantity of the sample needed, and measurements done within the range of physicochemical parameters resembling physiological conditions. Antisense peptides targeting specific erythropoietin region(s could be used for the development of new immunochemical methods. Selected antisense peptides with optimal affinity are potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines.

  10. Stabilized lipid coated lipoplexes for the delivery of antisense oligonucleotides to liver endothelial cells in vitro and in vivo

    NARCIS (Netherlands)

    Bartsch, M; Weeke-Klimp, AH; Hoenselaar, EPD; Stuart, MCA; Meijer, DKF; Scherphof, GL; Kamps, JAAM

    2004-01-01

    We report on the preparation and in vivo / in vitro disposition of antisense ODN encapsulating coated cationic lipoplexes (CCLs), prepared by a procedure essentially developed by Stuart and Allen (Stuart, D.D. and Allen, T.M. (2000) "A new liposomal formulation for antisense oligodeoxynucleotides

  11. Antisense long non-coding RNAs in rainbow trout: Discovery and potential role in muscle growth and quality traits

    Science.gov (United States)

    Endogenous mRNA-antisense transcripts are involved in regulation of a wide range of biological processes including muscle development and quality traits of farm animals. Standard RNA-Seq can be used to identify sense-antisense transcripts. However, strand-specific RNA-Seq is required to resolve ambi...

  12. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    Directory of Open Access Journals (Sweden)

    Settles Matthew L

    2009-05-01

    Full Text Available Abstract Background Natural antisense transcripts (NATs are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded or a different locus (trans-encoded. They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation. NATs give rise to sense-antisense transcript pairs and the number of these identified has escalated greatly with the availability of DNA sequencing resources and public databases. Traditionally, NATs were identified by the alignment of full-length cDNAs or expressed sequence tags to genome sequences, but an alternative method for large-scale detection of sense-antisense transcript pairs involves the use of microarrays. In this study we developed a novel protocol to assay sense- and antisense-strand transcription on the 55 K Affymetrix GeneChip Wheat Genome Array, which is a 3' in vitro transcription (3'IVT expression array. We selected five different tissue types for assay to enable maximum discovery, and used the 'Chinese Spring' wheat genotype because most of the wheat GeneChip probe sequences were based on its genomic sequence. This study is the first report of using a 3'IVT expression array to discover the expression of natural sense-antisense transcript pairs, and may be considered as proof-of-concept. Results By using alternative target preparation schemes, both the sense- and antisense-strand derived transcripts were labeled and hybridized to the Wheat GeneChip. Quality assurance verified that successful hybridization did occur in the antisense-strand assay. A stringent threshold for positive hybridization was applied, which resulted in the identification of 110 sense-antisense transcript pairs, as well as 80 potentially antisense-specific transcripts. Strand-specific RT-PCR validated the microarray observations, and showed that antisense transcription is likely to be tissue specific. For the annotated sense-antisense

  13. Enhanced anti-tumor effects with microencapsulated c-myc antisense oligonucleotide.

    Science.gov (United States)

    Putney, S D; Brown, J; Cucco, C; Lee, R; Skorski, T; Leonetti, C; Geiser, T; Calabretta, B; Zupi, G; Zon, G

    1999-10-01

    A phosphorothioate c-myc antisense oligonucleotide was complexed with zinc and encapsulated into injectable biodegradable microspheres. The efficacy of this novel formulation was compared with intravenous administration of the unencapsulated drug in human melanoma and leukemia xenografts in immunocompromised mice. The microencapsulated formulation was more effective as shown by reduced tumor growth, a decreased number of metastases, reduced c-myc expression, and increased survival in the melanoma model, and decreased metastatic potential and increased survival in the leukemia model. These results show that, as has been demonstrated previously with protein and peptide drugs, greater therapeutic efficacy can be obtained when antisense oligonucleotides are delivered from sustained-release formulations.

  14. The zebrafish progranulin gene family and antisense transcripts

    Directory of Open Access Journals (Sweden)

    Baranowski David

    2005-11-01

    Full Text Available Abstract Background Progranulin is an epithelial tissue growth factor (also known as proepithelin, acrogranin and PC-cell-derived growth factor that has been implicated in development, wound healing and in the progression of many cancers. The single mammalian progranulin gene encodes a glycoprotein precursor consisting of seven and one half tandemly repeated non-identical copies of the cystine-rich granulin motif. A genome-wide duplication event hypothesized to have occurred at the base of the teleost radiation predicts that mammalian progranulin may be represented by two co-orthologues in zebrafish. Results The cDNAs encoding two zebrafish granulin precursors, progranulins-A and -B, were characterized and found to contain 10 and 9 copies of the granulin motif respectively. The cDNAs and genes encoding the two forms of granulin, progranulins-1 and -2, were also cloned and sequenced. Both latter peptides were found to be encoded by precursors with a simplified architecture consisting of one and one half copies of the granulin motif. A cDNA encoding a chimeric progranulin which likely arises through the mechanism of trans-splicing between grn1 and grn2 was also characterized. A non-coding RNA gene with antisense complementarity to both grn1 and grn2 was identified which may have functional implications with respect to gene dosage, as well as in restricting the formation of the chimeric form of progranulin. Chromosomal localization of the four progranulin (grn genes reveals syntenic conservation for grna only, suggesting that it is the true orthologue of mammalian grn. RT-PCR and whole-mount in situ hybridization analysis of zebrafish grns during development reveals that combined expression of grna and grnb, but not grn1 and grn2, recapitulate many of the expression patterns observed for the murine counterpart. This includes maternal deposition, widespread central nervous system distribution and specific localization within the epithelial

  15. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat

    Science.gov (United States)

    Meiri, Noam; Ghelardini, Carla; Tesco, Giuseppina; Galeotti, Nicoletta; Dahl, Dennis; Tomsic, Daniel; Cavallaro, Sebastiano; Quattrone, Alessandro; Capaccioli, Sergio; Bartolini, Alessandro; Alkon, Daniel L.

    1997-01-01

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic “knockouts”. PMID:9114006

  16. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat.

    Science.gov (United States)

    Meiri, N; Ghelardini, C; Tesco, G; Galeotti, N; Dahl, D; Tomsic, D; Cavallaro, S; Quattrone, A; Capaccioli, S; Bartolini, A; Alkon, D L

    1997-04-29

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic "knockouts".

  17. Identification of Essential Genetic Baculoviral Elements for Recombinant Protein Expression by Transactivation in Sf21 Insect Cells.

    Directory of Open Access Journals (Sweden)

    Maren Bleckmann

    Full Text Available The Baculovirus Expression Vector System (BEVS is widely used to produce high amounts of recombinant proteins. Nevertheless, generating recombinant baculovirus in high quality is rather time-consuming and labor-intensive. Alternatively, virus-free expression in insect cells did not achieve similar expression levels for most proteins so far. The transactivation method is a promising approach for protein expression in Sf21 cells. It combines advantages of BEVS and plasmid-based expression by activating strong virus-dependent promoters on a transfected plasmid by baculoviral coinfection. Here, we identified expression elements required for transactivation. Therefore, we designed several vectors comprising different viral promoters or promoter combinations and tested them for eGFP expression using the automated BioLector microcultivation system. Remarkably, only the combination of the very late promoter p10 together with the homologous region 5 (hr5 could boost expression during transactivation. Other elements, like p10 alone or the late viral promoter polH, did not respond to transactivation. A new combination of hr5 and p10 with the strongest immediate early OpMNPV viral promoter OpIE2 improved the yield of eGFP by ~25% in comparison to the previous applied hr5-IE1-p10 expression cassette. Furthermore, we observed a strong influence of the transcription termination sequence and vector backbone on the level of expression. Finally, the expression levels for transactivation, BEVS and solely plasmid-based expression were compared for the marker protein eGFP, underlining the potential of transactivation for fast recombinant protein expression in Sf21 cells. In conclusion, essential elements for transactivation could be identified. The optimal elements were applied to generate an improved vector applicable in virus-free plasmid-based expression, transactivation and BEVS.

  18. Identification of Essential Genetic Baculoviral Elements for Recombinant Protein Expression by Transactivation in Sf21 Insect Cells

    Science.gov (United States)

    Chen, Fang-Fang; Yen, Zen-Zen; Lindemann, Nils; Meyer, Steffen; Spehr, Johannes; van den Heuvel, Joop

    2016-01-01

    The Baculovirus Expression Vector System (BEVS) is widely used to produce high amounts of recombinant proteins. Nevertheless, generating recombinant baculovirus in high quality is rather time-consuming and labor-intensive. Alternatively, virus-free expression in insect cells did not achieve similar expression levels for most proteins so far. The transactivation method is a promising approach for protein expression in Sf21 cells. It combines advantages of BEVS and plasmid-based expression by activating strong virus-dependent promoters on a transfected plasmid by baculoviral coinfection. Here, we identified expression elements required for transactivation. Therefore, we designed several vectors comprising different viral promoters or promoter combinations and tested them for eGFP expression using the automated BioLector microcultivation system. Remarkably, only the combination of the very late promoter p10 together with the homologous region 5 (hr5) could boost expression during transactivation. Other elements, like p10 alone or the late viral promoter polH, did not respond to transactivation. A new combination of hr5 and p10 with the strongest immediate early OpMNPV viral promoter OpIE2 improved the yield of eGFP by ~25% in comparison to the previous applied hr5-IE1-p10 expression cassette. Furthermore, we observed a strong influence of the transcription termination sequence and vector backbone on the level of expression. Finally, the expression levels for transactivation, BEVS and solely plasmid-based expression were compared for the marker protein eGFP, underlining the potential of transactivation for fast recombinant protein expression in Sf21 cells. In conclusion, essential elements for transactivation could be identified. The optimal elements were applied to generate an improved vector applicable in virus-free plasmid-based expression, transactivation and BEVS. PMID:26934632

  19. Drug evaluation: ISIS-301012, an antisense oligonucleotide for the treatment of hypercholesterolemia.

    Science.gov (United States)

    Burnett, John R

    2006-10-01

    ISIS-301012 is an antisense oligonucleotide inhibitor of apolipoprotein B-100, which is being developed by Isis Pharmaceuticals Inc for the potential treatment of hypercholesterolemia. A subcutaneous injectable formulation is currently undergoing phase 11 clinical trials, while phase I trials are underway with an oral formulation of the drug.

  20. Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene

    DEFF Research Database (Denmark)

    Le Gall, G.; Metzdorff, Stine Broeng; Pedersen, Jan W.

    2005-01-01

    A metabolite profiling study has been carried out on Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija and a series of transgenic lines of the ecotype transformed with a CHS (chalcone synthase) antisense construct. Compound identifications by LC/MS and H-1 NMR are discussed. The glucosinolate...

  1. Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria ananassa)

    NARCIS (Netherlands)

    Lunkenbein, S.; Coiner, H.; Vos, de C.H.; Schaart, J.G.; Boone, M.J.; Krens, F.A.; Schwab, W.; Salentijn, E.M.J.

    2006-01-01

    An octaploid (Fragaria × ananassa cv. Calypso) genotype of strawberry was transformed with an antisense chalcone synthase (CHS) gene construct using a ripening related CHS cDNA from Fragaria × ananassa cv. Elsanta under the control of the constitutive CaMV 35S promoter via Agrobacterium tumefaciens.

  2. Antisense to the glucocorticoid receptor in hippocampal dentate gyrus reduces immobility in forced swim test

    NARCIS (Netherlands)

    Korte, S.M.; de Kloet, E.R.; Buwalda, B; Bouman, S.D.; Bohus, B

    1996-01-01

    Immobility time of rats in the forced swim test was reduced after bilateral infusion of an 18-mer antisense phosphorothioate oligodeoxynucleotide targeted to the glucocorticoid receptor mRNA into the dentate gyrus of the hippocampus. Vehicle-, sense- and scrambled sequence-treated animals spent

  3. Inhibition of leukemia cell proliferation by receptor-mediated uptake of c-myb antisense oligodeoxynucleotides.

    Science.gov (United States)

    Citro, G; Perrotti, D; Cucco, C; D'Agnano, I; Sacchi, A; Zupi, G; Calabretta, B

    1992-01-01

    Exposure of human leukemia HL-60 cells to an oligodeoxynucleotide complementary to an 18-base sequence (codons 2-7) of c-myb-encoded mRNA has previously been shown to result in inhibition of cell proliferation. Because HL-60 cells express high levels of transferrin receptor we adapted a DNA delivery system based on receptor-mediated endocytosis to introduce myb oligomers complexed with a transferrin-polylysine conjugate into those cells. A DNA.RNA duplex resistant to S1 nuclease digestion was detected as early as 12 hr after culture of HL-60 cells in the presence of the myb antisense/transferrin-polylysine complex. Exposure of HL-60 cells to the myb antisense/transferrin-polylysine complex resulted in rapid and profound inhibition of proliferation and loss of cell viability much more pronounced than that occurring in cells exposed to free myb antisense oligodeoxynucleotides. The transferrin-polylysine/myb sense complex or the transferrin-polylysine conjugate alone had no effect on HL-60 cell proliferation and viability. These findings indicate that myb synthetic oligodeoxynucleotides enter efficiently into HL-60 by transferrin receptor-mediated endocytosis and exert a profound biological effect. Such a delivery system could exploit other ligand-receptor interactions for the selective delivery of oncogene-targeted antisense oligodeoxynucleotides. Images PMID:1495997

  4. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients

    NARCIS (Netherlands)

    Aartsma-Rus, Annemieke; Janson, Anneke A. M.; Kaman, Wendy E.; Bremmer-Bout, Mattie; den Dunnen, Johan T.; Baas, Frank; van Ommen, Gert-Jan B.; van Deutekom, Judith C. T.

    2003-01-01

    The dystrophin deficiency leading to the severely progressing muscle degeneration in Duchenne muscular dystrophy (DMD) patients is caused by frame-shifting mutations in the DMD gene. We are developing a reading frame correction therapy aimed at the antisense-induced skipping of targeted exons from

  5. Potent Antibacterial Antisense Peptide-Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ghosal, Anubrata; Nielsen, Peter E

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections in hospital settings, especially with immune compromised patients, and the increasing prevalence of multidrug resistant strains urges search for new drugs with novel mechanisms of action. In this study we introduce...... significantly reduced bacterial survival. These results open the possibility of development of antisense antibacterials for treatment of Pseudomonas infections....

  6. Mismatched single stranded antisense oligonucleotides can induce efficient dystrophin splice switching

    Directory of Open Access Journals (Sweden)

    Kole Ryszard

    2011-10-01

    Full Text Available Abstract Background Antisense oligomer induced exon skipping aims to reduce the severity of Duchenne muscular dystrophy by redirecting splicing during pre-RNA processing such that the causative mutation is by-passed and a shorter but partially functional Becker muscular dystrophy-like dystrophin isoform is produced. Normal exons are generally targeted to restore the dystrophin reading frame however, an appreciable subset of dystrophin mutations are intra-exonic and therefore have the potential to compromise oligomer efficiency, necessitating personalised oligomer design for some patients. Although antisense oligomers are easily personalised, it remains unclear whether all patient polymorphisms within antisense oligomer target sequences will require the costly process of producing and validating patient specific compounds. Methods Here we report preclinical testing of a panel of splice switching antisense oligomers, designed to excise exon 25 from the dystrophin transcript, in normal and dystrophic patient cells. These patient cells harbour a single base insertion in exon 25 that lies within the target sequence of an oligomer shown to be effective at removing exon 25. Results It was anticipated that such a mutation would compromise oligomer binding and efficiency. However, we show that, despite the mismatch an oligomer, designed and optimised to excise exon 25 from the normal dystrophin mRNA, removes the mutated exon 25 more efficiently than the mutation-specific oligomer. Conclusion This raises the possibility that mismatched AOs could still be therapeutically applicable in some cases, negating the necessity to produce patient-specific compounds.

  7. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-03-03

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression.

  8. Scintigraphic imaging of oncogenes with antisense probes: does it make sense?

    International Nuclear Information System (INIS)

    Urbain, J.L.C.; Shore, S.K.; Vekemans, M.C.; Cosenza, S.C.; DeRiel, K.; Patel, G.V.; Charkes, N.D.; Malmud, L.S.; Reddy, E.P.

    1995-01-01

    The aim of this study was to demonstrate that cells which are expressing a particular mRNA transcript do preferentially and specifically retain the antisense probe targeting that mRNA. Using a mouse plasmacytoma cell line (MOPC315) which produces high levels of IgA heavy chain mRNA, a control mouse pre B cell line (7OZ/3B), a human mammary cell line (MCF7) which expresses the erbB2 or neu oncogene, MOPC315 cells as neu-negative controls, and antisense DNA oligonucleotides complementary to the 5' region of the mRNAs and the sense sequence, we have shown that there is a preferential, specific retention of the IgA and neu antisense sequence in MOPC315 and MCF7 cells, respectively. We have further demonstrated that this retention is time and concentration dependent with a maximum at 24 h. We conclude that cancer cells which express a particular oncogene are suitable targets for radiolabeled antisense deoxyoligonucleotides directed toward the oncogene transcript. (orig.)

  9. Photoactivatable antisense DNA: suppression of ampicillin resistance in normally resistant Escherichia coli.

    Science.gov (United States)

    Gasparro, F P; Edelson, R L; O'Malley, M E; Ugent, S J; Wong, H H

    1991-01-01

    Antisense oligodeoxyribonucleotides complementary to a segment of the beta-lactamase gene and containing psoralen monoadducts at specific sites were examined for their ability to make normally resistant bacteria sensitive to ampicillin. Irradiation of oligonucleotides and psoralens with long-wavelength ultraviolet radiation (380-400 nm) produced monoadducted antisense molecules. High-performance liquid chromatography was used to purify microgram quantities of photoactivatable antisense DNA. Escherichia coli transformed with a plasmid containing the gene for beta-lactamase were used to test a series of oligonucleotides containing psoralen monoadducts after additional exposure to the photoactivating effects of long-wavelength ultraviolet radiation (320-400 nm). Normally resistant bacteria treated with this photoactivatable form of antisense DNA (0.4 microM) were specifically sensitized to ampicillin. The reduction in colony formation ranged from 31 to 79% in comparison to control oligonucleotides which did not contain photoactivatable monoadduct moieties. Bacteria treated in a similar manner but in the presence of tetracycline instead of ampicillin were not affected. The activity of beta-galactosidase, whose gene is located on the same plasmid as beta-lactamase, was not affected.

  10. A pilot study on genetic variation in purine-rich elements in the nephrin gene promoter in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    RODRIGO GONZÁLEZ

    2007-01-01

    Full Text Available Diabetic nephropathy (DN is one of the major complications of type 2 diabetes and is associated with coronary disease. Nephrin, a protein mainly expressed in glomeruli, is decreased in DN and other kidney diseases. Since insulin levels are misregulated in type 2 diabetes, a possible connection between DN and its decreased nephrin expression could be the presence of regulatory elements responsive to insulin in the nephrin gene (NPHS1 promoter region. In this work, using bioinformatic tools, we identified a purine-rich GAGA element in the nephrin gene promoter and conducted a genomic study in search of the presence of polymorphisms in this element and its possible association with DN in type 2 diabetic patients. We amplified and sequenced a 514 bp promoter region of 100 individuals and found no genetic variants in the purine-rich GAGA-box of the nephrin gene promoter between groups of patients with diabetes type 2 with and without renal and coronary complications, control patients without diabetes and healthy controls

  11. Antisense oligonucleotide inhibition of Heat Shock Protein (HSP 47 improves bleomycin-induced pulmonary fibrosis in rats

    Directory of Open Access Journals (Sweden)

    Noguchi Takayuki

    2007-05-01

    Full Text Available Abstract Background The most common pathologic form of pulmonary fibrosis arises from excessive deposition of extracellular matrix proteins such as collagen. The 47 kDa heat shock protein 47 (HSP47 is a collagen-specific molecular chaperone that has been shown to play a major role during the processing and/or secretion of procollagen. Objectives To determine whether inhibition of HSP47 could have beneficial effects in mitigating bleomycin-induced pulmonary fibrosis in rats. Methods All experiments were performed with 250–300 g male Wistar rats. Animals were randomly divided into five experimental groups that were administered: 1 saline alone, 2 bleomycin alone, 3 antisense HSP47 oligonucleotides alone, 4 bleomycin + antisense HSP47 oligonucleotides, and 5 bleomycin + sense control oligonucleotides. We investigated lung histopathology and performed immunoblot and immunohistochemistry analyses. Results In rats treated with HSP47 antisense oligonucleotides, pulmonary fibrosis was significantly reduced. In addition, treatment with HSP47 antisense oligonucleotides significantly improved bleomycin-induced morphological changes. Treatment with HSP47 antisense oligonucleotides alone did not produce any significant changes to lung morphology. Immunoblot analyses of lung homogenates confirmed the inhibition of HSP47 protein by antisense oligonucleotides. The bleo + sense group, however, did not exhibit any improvement in lung pathology compared to bleomycin alone groups, and also had no effect on HSP47 expression. Conclusion These findings suggest that HSP47 antisense oligonucleotide inhibition of HSP47 improves bleomycin-induced pulmonary fibrosis pathology in rats.

  12. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen

  13. Mycobacterium avium restriction fragment lenght polymorphism-IS IS1245 and the simple double repetitive element polymerase chain reaction typing method to screen genetic diversity in Brazilian strains

    Directory of Open Access Journals (Sweden)

    Patrícia Carvalho de Sequeira

    2005-11-01

    Full Text Available Simple double repetitive element polymerase chain reaction (MaDRE-PCR and Pvu II-IS1245 restriction fragment length polymorphism (RFLP typing methods were used to type 41 Mycobacterium avium isolates obtained from 14 Aids inpatients and 10 environment and animals specimens identified among 53 mycobacteria isolated from 237 food, chicken, and pig. All environmental and animals strains showed orphan patterns by both methods. By MaDRE-PCR four patients, with multiple isolates, showed different patterns, suggesting polyclonal infection that was confirmed by RFLP in two of them. This first evaluation of MaDRE-PCR on Brazilian M. avium strains demonstrated that the method seems to be useful as simple and less expensive typing method for screening genetic diversity in M. avium strains on selected epidemiological studies, although with limitation on analysis identical patterns except for one band.

  14. Antisense oligonucleotide therapy rescues disruptions in organization of exploratory movements associated with Usher syndrome type 1C in mice.

    Science.gov (United States)

    Donaldson, Tia N; Jennings, Kelsey T; Cherep, Lucia A; McNeela, Adam M; Depreux, Frederic F; Jodelka, Francine M; Hastings, Michelle L; Wallace, Douglas G

    2018-02-15

    Usher syndrome, Type 1C (USH1C) is an autosomal recessive inherited disorder in which a mutation in the gene encoding harmonin is associated with multi-sensory deficits (i.e., auditory, vestibular, and visual). USH1C (Usher) mice, engineered with a human USH1C mutation, exhibit these multi-sensory deficits by circling behavior and lack of response to sound. Administration of an antisense oligonucleotide (ASO) therapeutic that corrects expression of the mutated USH1C gene, has been shown to increase harmonin levels, reduce circling behavior, and improve vestibular and auditory function. The current study evaluates the organization of exploratory movements to assess spatial organization in Usher mice and determine the efficacy of ASO therapy in attenuating any such deficits. Usher and heterozygous mice received the therapeutic ASO, ASO-29, or a control, non-specific ASO treatment at postnatal day five. Organization of exploratory movements was assessed under dark and light conditions at two and six-months of age. Disruptions in exploratory movement organization observed in control-treated Usher mice were consistent with impaired use of self-movement and environmental cues. In general, ASO-29 treatment rescued organization of exploratory movements at two and six-month testing points. These observations are consistent with ASO-29 rescuing processing of multiple sources of information and demonstrate the potential of ASO therapies to ameliorate topographical disorientation associated with other genetic disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients.

    Science.gov (United States)

    Skotte, Niels H; Southwell, Amber L; Østergaard, Michael E; Carroll, Jeffrey B; Warby, Simon C; Doty, Crystal N; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T; Freier, Susan M; Hung, Gene; Seth, Punit P; Bennett, C Frank; Swayze, Eric E; Hayden, Michael R

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder.

  16. Antisense Oligonucleotide (AON-based Therapy for Leber Congenital Amaurosis Caused by a Frequent Mutation in CEP290

    Directory of Open Access Journals (Sweden)

    Rob WJ Collin

    2012-01-01

    Full Text Available Leber congenital amaurosis (LCA is the most severe form of inherited retinal degeneration, with an onset in the first year of life. The most frequent mutation that causes LCA, present in at least 10% of individuals with LCA from North-American and Northern-European descent, is an intronic mutation in CEP290 that results in the inclusion of an aberrant exon in the CEP290 mRNA. Here, we describe a genetic therapy approach that is based on antisense oligonucleotides (AONs, small RNA molecules that are able to redirect normal splicing of aberrantly processed pre-mRNA. Immortalized lymphoblastoid cells of individuals with LCA homozygously carrying the intronic CEP290 mutation were transfected with several AONs that target the aberrant exon that is incorporated in the mutant CEP290 mRNA. Subsequent RNA isolation and reverse transcription-PCR analysis revealed that a number of AONs were capable of almost fully redirecting normal CEP290 splicing, in a dose-dependent manner. Other AONs however, displayed no effect on CEP290 splicing at all, indicating that the rescue of aberrant CEP290 splicing shows a high degree of sequence specificity. Together, our data show that AON-based therapy is a promising therapeutic approach for CEP290-associated LCA that warrants future research in animal models to develop a cure for this blinding disease.

  17. Design of a novel integration-deficient lentivector technology that incorporates genetic and posttranslational elements to target human dendritic cells.

    Science.gov (United States)

    Tareen, Semih U; Kelley-Clarke, Brenna; Nicolai, Christopher J; Cassiano, Linda A; Nelson, Lisa T; Slough, Megan M; Vin, Chintan D; Odegard, Jared M; Sloan, Derek D; Van Hoeven, Neal; Allen, James M; Dubensky, Thomas W; Robbins, Scott H

    2014-03-01

    As sentinels of the immune system, dendritic cells (DCs) play an essential role in regulating cellular immune responses. One of the main challenges of developing DC-targeted therapies includes the delivery of antigen to DCs in order to promote the activation of antigen-specific effector CD8 T cells. With the goal of creating antigen-directed immunotherapeutics that can be safely administered directly to patients, Immune Design has developed a platform of novel integration-deficient lentiviral vectors that target and deliver antigen-encoding nucleic acids to human DCs. This platform, termed ID-VP02, utilizes a novel genetic variant of a Sindbis virus envelope glycoprotein with posttranslational carbohydrate modifications in combination with Vpx, a SIVmac viral accessory protein, to achieve efficient targeting and transduction of human DCs. In addition, ID-VP02 incorporates safety features in its design that include two redundant mechanisms to render ID-VP02 integration-deficient. Here, we describe the characteristics that allow ID-VP02 to specifically transduce human DCs, and the advances that ID-VP02 brings to conventional third-generation lentiviral vector design as well as demonstrate upstream production yields that will enable manufacturing feasibility studies to be conducted.

  18. Transcription and translation products of the cytolysin gene psm-mec on the mobile genetic element SCCmec regulate Staphylococcus aureus virulence.

    Directory of Open Access Journals (Sweden)

    Chikara Kaito

    Full Text Available The F region downstream of the mecI gene in the SCCmec element in hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA contains two bidirectionally overlapping open reading frames (ORFs, the fudoh ORF and the psm-mec ORF. The psm-mec ORF encodes a cytolysin, phenol-soluble modulin (PSM-mec. Transformation of the F region into the Newman strain, which is a methicillin-sensitive S. aureus (MSSA strain, or into the MW2 (USA400 and FRP3757 (USA300 strains, which are community-acquired MRSA (CA-MRSA strains that lack the F region, attenuated their virulence in a mouse systemic infection model. Introducing the F region to these strains suppressed colony-spreading activity and PSMα production, and promoted biofilm formation. By producing mutations into the psm-mec ORF, we revealed that (i both the transcription and translation products of the psm-mec ORF suppressed colony-spreading activity and promoted biofilm formation; and (ii the transcription product of the psm-mec ORF, but not its translation product, decreased PSMα production. These findings suggest that both the psm-mec transcript, acting as a regulatory RNA, and the PSM-mec protein encoded by the gene on the mobile genetic element SCCmec regulate the virulence of Staphylococcus aureus.

  19. The complex genetic context of blaPER-1 flanked by miniature inverted-repeat transposable elements in Acinetobacter johnsonii.

    Directory of Open Access Journals (Sweden)

    Zhiyong Zong

    Full Text Available On a large plasmid of Acinetobacter johnsonii strain XBB1 from hospital sewage, blaPER-1 and ISCR1 were found in a complex Tn402-like integron carrying an arr3-aacA4 cassette array. The integron was truncated by the same 439-bp miniature inverted-repeat transposable element (MITE at both ends. blaPER-1 and its complex surroundings might have been mobilized by the MITEst into an orf of unknown function, evidenced by the presence of the characteristic 5-bp direct target repeats. The same 439-bp MITEs have also been found flanking class 1 integrons carrying metallo-β-lactamases genes bla IMP-1, bla IMP-5 and bla VIM-2 before but without ISCR1. Although the cassette arrays are different, integrons have always been truncated by the 439-bp MITEs at the exact same locations. The results suggested that MITEs might be able to mobilize class 1 integrons via transposition or homologous recombination and therefore represent a possible common mechanism for mobilizing antimicrobial resistance determinants.

  20. Overcoming imatinib resistance conferred by the BIM deletion polymorphism in chronic myeloid leukemia with splice-switching antisense oligonucleotides

    Science.gov (United States)

    Liu, Jun; Bhadra, Malini; Sinnakannu, Joanna Rajeswary; Yue, Wan Lin; Tan, Cheryl Weiqi; Rigo, Frank; Ong, S.Tiong; Roca, Xavier

    2017-01-01

    Many tyrosine kinase-driven cancers, including chronic myeloid leukemia (CML), are characterized by high response rates to specific tyrosine kinase inhibitors (TKIs) like imatinib. In East Asians, primary imatinib resistance is caused by a deletion polymorphism in Intron 2 of the BIM gene, whose product is required for TKI-induced apoptosis. The deletion biases BIM splicing from exon 4 to exon 3, generating splice isoforms lacking the exon 4-encoded pro-apoptotic BH3 domain, which impairs the ability of TKIs to induce apoptosis. We sought to identify splice-switching antisense oligonucleotides (ASOs) that block exon 3 but enhance exon 4 splicing, and thereby resensitize BIM deletion-containing cancers to imatinib. First, we mapped multiple cis-acting splicing elements around BIM exon 3 by minigene mutations, and found an exonic splicing enhancer acting via SRSF1. Second, by a systematic ASO walk, we isolated ASOs that corrected the aberrant BIM splicing. Eight of 67 ASOs increased exon 4 levels in BIM deletion-containing cells, and restored imatinib-induced apoptosis and TKI sensitivity. This proof-of-principle study proves that resistant CML cells by BIM deletion polymorphism can be resensitized to imatinib via splice-switching BIM ASOs. Future optimizations might yield a therapeutic ASO as precision-medicine adjuvant treatment for BIM-polymorphism-associated TKI-resistant CML and other cancers. PMID:29100409

  1. Overcoming imatinib resistance conferred by the BIM deletion polymorphism in chronic myeloid leukemia with splice-switching antisense oligonucleotides.

    Science.gov (United States)

    Liu, Jun; Bhadra, Malini; Sinnakannu, Joanna Rajeswary; Yue, Wan Lin; Tan, Cheryl Weiqi; Rigo, Frank; Ong, S Tiong; Roca, Xavier

    2017-09-29

    Many tyrosine kinase-driven cancers, including chronic myeloid leukemia (CML), are characterized by high response rates to specific tyrosine kinase inhibitors (TKIs) like imatinib. In East Asians, primary imatinib resistance is caused by a deletion polymorphism in Intron 2 of the BIM gene, whose product is required for TKI-induced apoptosis. The deletion biases BIM splicing from exon 4 to exon 3, generating splice isoforms lacking the exon 4-encoded pro-apoptotic BH3 domain, which impairs the ability of TKIs to induce apoptosis. We sought to identify splice-switching antisense oligonucleotides (ASOs) that block exon 3 but enhance exon 4 splicing, and thereby resensitize BIM deletion-containing cancers to imatinib. First, we mapped multiple cis -acting splicing elements around BIM exon 3 by minigene mutations, and found an exonic splicing enhancer acting via SRSF1. Second, by a systematic ASO walk, we isolated ASOs that corrected the aberrant BIM splicing. Eight of 67 ASOs increased exon 4 levels in BIM deletion-containing cells, and restored imatinib-induced apoptosis and TKI sensitivity. This proof-of-principle study proves that resistant CML cells by BIM deletion polymorphism can be resensitized to imatinib via splice-switching BIM ASOs. Future optimizations might yield a therapeutic ASO as precision-medicine adjuvant treatment for BIM -polymorphism-associated TKI-resistant CML and other cancers.

  2. Nucleobase-modified antisense oligonucleotides containing 5-(phenyltriazol)-2′-deoxyuridine nucleotides induce exon-skipping

    DEFF Research Database (Denmark)

    Le, Bao T.; Hornum, Mick; Sharma, Pawan K.

    2017-01-01

    Chemically-modified antisense oligonucleotide-mediated exon-skipping has been validated as a therapeutic strategy for tackling several disease pathologies, particularly duchenne muscular dystrophy. To date, only sugar-modified and internucleotide linkage-modified oligonucleotide chemistries have...

  3. Transmission of ESBL-producing Enterobacteriaceae and their mobile genetic elements-identification of sources by whole genome sequencing: study protocol for an observational study in Switzerland.

    Science.gov (United States)

    Stadler, Tanja; Meinel, Dominik; Aguilar-Bultet, Lisandra; Huisman, Jana S; Schindler, Ruth; Egli, Adrian; Seth-Smith, Helena M B; Eichenberger, Lucas; Brodmann, Peter; Hübner, Philipp; Bagutti, Claudia; Tschudin-Sutter, Sarah

    2018-02-17

    Extended-spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae were first described in relation with hospital-acquired infections. In the 2000s, the epidemiology of ESBL-producing organisms changed as especially ESBL-producing Escherichia coli was increasingly described as an important cause of community-acquired infections, supporting the hypothesis that in more recent years ESBL-producing Enterobacteriaceae have probably been imported into hospitals rather than vice versa. Transmission of ESBL-producing Enterobacteriaceae is complicated by ESBL genes being encoded on self-transmissible plasmids, which can be exchanged among the same and different bacterial species. The aim of this research project is to quantify hospital-wide transmission of ESBL-producing Enterobacteriaceae on both the level of bacterial species and the mobile genetic elements and to determine if hospital-acquired infections caused by ESBL producers are related to strains and mobile genetic elements predominantly circulating in the community or in the healthcare setting. This distinction is critical in prevention since the former emphasises the urgent need to establish or reinforce antibiotic stewardship programmes, and the latter would call for more rigorous infection control. This protocol presents an observational study that will be performed at the University Hospital Basel and in the city of Basel, Switzerland. ESBL-producing Enterobacteriaceae will be collected from any specimens obtained by routine clinical practice or by active screening in both inpatient and outpatient settings, as well as from wastewater samples and foodstuffs, both collected monthly over a 12-month period for analyses by whole genome sequencing. Bacterial chromosomal, plasmid and ESBL-gene sequences will be compared within the cohort to determine genetic relatedness and migration between humans and their environment. This study has been approved by the local ethics committee (Ethikkommission Nordwest

  4. The genetic link between the Azores Archipelago and the Southern Azores Seamount Chain (SASC): The elemental, isotopic and chronological evidences

    Science.gov (United States)

    Ribeiro, Luisa Pinto; Martins, Sofia; Hildenbrand, Anthony; Madureira, Pedro; Mata, João

    2017-12-01

    New geochemical, isotopic (Sr-Nd-Hf-Pb) and K-Ar data, are presented here on samples from the Southern Azores Seamount Chain (SASC) located south of the Azores Plateau. The SASC also includes the Great Meteor, Small Meteor and Closs seamounts, morphologically connected by a saddle at - 4100 m deep. We conclude that the SASC are characterized by a narrow isotopic variability that falls within the Azores isotopic field. Although each seamount has its own isotopic signature, their mantle source must comprise four local mantle end-members, three of which are common to the Azores, e.g. Plato isotopic signature results from the mixing between HIMU and N-MORB while Great Meteor signature results from this mix with the Azores Common Component (AzCC). A fourth end-member with high 208Pb/204Pb and decoupled Th/U ratios (Δ8/4 up to 59.2) is identified on Great Meteor northern flank. New K-Ar ages on Plato (33.4 ± 0.5 Ma) and Small Hyeres (31.6 ± 0.4 Ma) show nearly coeval volcanism, which is contemporaneous with the E-MORBs erupted at the MAR, drilled on oceanic crust with 30-34 Ma (DSDP82). This study endorses the genetic link between the Azores Archipelago and the SASC to the long-term activity of the Azores plume and the large-scale ridge-hotspot interaction, contributing to better constrain the temporal-spatial evolution of this region of the North Atlantic.

  5. Proposal for new European pharmaceutical legislation to permit access to custom-made anti-sense oligonucleotide medicinal products.

    Science.gov (United States)

    Johnston, John D; Feldschreiber, Peter

    2014-06-01

    Current European pharmaceutical legislation is not adequate to meet advances in science and technologies that will lead to rapid development of custom-made medicines. Using existing legislation for custom-made medical devices as a template and anti-sense oligonucleotides as model medicinal products, we propose new European pharmaceutical legislation to permit timely access to custom-made anti-sense oligonucleotide medicinal products. The proposals may be more widely applicable to other medicinal products. © 2013 The British Pharmacological Society.

  6. Disruption of tetR type regulator adeN by mobile genetic element confers elevated virulence in Acinetobacter baumannii.

    Science.gov (United States)

    Saranathan, Rajagopalan; Pagal, Sudhakar; Sawant, Ajit R; Tomar, Archana; Madhangi, M; Sah, Suresh; Satti, Annapurna; Arunkumar, K P; Prashanth, K

    2017-10-03

    Acinetobacter baumannii is an important human pathogen and considered as a major threat due to its extreme drug resistance. In this study, the genome of a hyper-virulent MDR strain PKAB07 of A. baumannii isolated from an Indian patient was sequenced and analyzed to understand its mechanisms of virulence, resistance and evolution. Comparative genome analysis of PKAB07 revealed virulence and resistance related genes scattered throughout the genome, instead of being organized as an island, indicating the highly mosaic nature of the genome. Many intermittent horizontal gene transfer events, insertion sequence (IS) element insertions identified were augmenting resistance machinery and elevating the SNP densities in A. baumannii eventually aiding in their swift evolution. ISAba1, the most widely distributed insertion sequence in A. baumannii was found in multiple sites in PKAB07. Out of many ISAba1 insertions, we identified novel insertions in 9 different genes wherein insertional inactivation of adeN (tetR type regulator) was significant. To assess the significance of this disruption in A. baumannii, adeN mutant and complement strains were constructed in A. baumannii ATCC 17978 strain and studied. Biofilm levels were abrogated in the adeN knockout when compared with the wild type and complemented strain of adeN knockout. Virulence of the adeN knockout mutant strain was observed to be high, which was validated by in vitro experiments and Galleria mellonella infection model. The overexpression of adeJ, a major component of AdeIJK efflux pump observed in adeN knockout strain could be the possible reason for the elevated virulence in adeN mutant and PKB07 strain. Knocking out of adeN in ATCC strain led to increased resistance and virulence at par with the PKAB07. Disruption of tetR type regulator adeN by ISAba1 consequently has led to elevated virulence in this pathogen.

  7. Cell number and transfection volume dependent peptide nucleic acid antisense activity by cationic delivery methods

    DEFF Research Database (Denmark)

    Llovera Nadal, Laia; Berthold, Peter; Nielsen, Peter E

    2012-01-01

    Efficient intracellular delivery is essential for high activity of nucleic acids based therapeutics, including antisense agents. Several strategies have been developed and practically all rely on auxiliary transfection reagents such as cationic lipids, cationic polymers and cell penetrating...... peptides as complexing agents and carriers of the nucleic acids. However, uptake mechanisms remain rather poorly understood, and protocols always require optimization of transfection parameters. Considering that cationic transfection complexes bind to and thus may up-concentrate on the cell surface, we......-octaarginine conjugate upon varying the cell culture transfection volume (and cell density) at fixed PNA concentration. The results show that for all delivery modalities the cellular antisense activity increases (less than proportionally) with increasing volume (in some cases accompanied with increased toxicity...

  8. Study of HIV-2 primer-template initiation complex using antisense oligonucleotides

    DEFF Research Database (Denmark)

    Boulmé, F; Freund, F; Gryaznov, S

    2000-01-01

    HIV-2 reverse transcription is initiated by the retroviral DNA polymerase (reverse transcriptase) from a cellular tRNALys3 partially annealed to the primer binding site in the 5'-region of viral RNA. The HIV-2 genome has two A-rich regions upstream of the primer binding site. In contrast to HIV-1...... RNA, no direct evidence of interactions with the U-rich anticodon loop of tRNALys3 has been described to date. Here we address the question of the potential role of the interactions between these highly structured regions in the initiation of viral DNA synthesis. To evaluate this we used an antisense...... approach, first validated in our in vitro HIV-1 reverse transcription system. Annealing of the antisense oligonucleotides to the pre-primer binding site (the upstream region contiguous to the HIV-2 primer binding site) was determined in the presence of native tRNALys3 or synthetic primers. Using natural...

  9. Effects of overexpression and antisense RNA expression of Orf17, a MutT-type enzyme.

    Science.gov (United States)

    Hori, Mika; Asanuma, Taketoshi; Inanami, Osamu; Kuwabara, Mikinori; Harashima, Hideyoshi; Kamiya, Hiroyuki

    2006-06-01

    The Escherichia coli Orf17 (NtpA, NudB) protein, a MutT-type enzyme, hydrolyzes oxidized deoxyribonucleotides, including 8-hydroxy-2'-deoxyadenosine 5'-triphosphate and 8-hydroxy-2'-deoxyguanosine 5'-triphosphate, in vitro. To examine its in vivo role(s) in bacteria, plasmid DNAs containing the orf17 gene in the sense and antisense orientations were introduced. When the Orf17 protein was overexpressed in mutT cells, the rpoB mutant frequency was decreased. On the other hand, similar effects were not observed when Orf17 was overexpressed in wild type and orf135 cells. Expression of the antisense RNA of the orf17 gene did not produce an obvious phenotype, such as increased mutant frequency and resistance to ionizing radiation. These results suggest that the role of the Orf17 protein is to back up the MutT function, and to assist in the elimination of 8-hydroxy-2'-deoxyguanosine nucleotides.

  10. Photodynamic antisense regulation of mRNA having a point mutation with psoralen-conjugated oligonucleotide.

    Science.gov (United States)

    Higuchi, Maiko; Yamayoshi, Asako; Kobori, Akio; Murakami, Akira

    2008-01-01

    Nucleic acid-based drugs, such as antisense oligonucleotide, ribozyme, and small interfering RNA, are specific compounds that inhibit gene expression at the post-transcriptional level. To develop more effective nucleic acid-based drugs, we focused on photo-reactive antisense oligonucleotides. We have optimized the structure of psoralen-conjugated oligonucleotide to improve their sequence selectivity and photo-crosslinking efficiency. Previously, we reported that photo reactive oligonucleotides containing 2'-O-psoralenyl-methoxyethyl adenosine (2'-Ps-eom) showed drastic photo-reactivity with a strictly sequence specific manner in vitro. In this report, we evaluated the binding ability toward intracellular target mRNA. The 2'-Ps-eom selectively photo-cross-linked to the target mRNA extracted from cells. The 2'-Ps-eom also cross-linked to target mRNA in cells. Furthermore, 2'-Ps-eom did not cross-link to mRNA having a mismatch base. These results suggest that 2'-Ps-eom is a powerful antisense molecule to inhibit the expression of mRNA having a point mutation.

  11. Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Xiu-Jie; Gaasterland, Terry; Chua, Nam-Hai

    2005-01-01

    Natural antisense transcripts (NAT) are a class of endogenous coding or non-protein-coding RNAs with sequence complementarity to other transcripts. Several lines of evidence have shown that cis- and trans-NATs may participate in a broad range of gene regulatory events. Genome-wide identification of cis-NATs in human, mouse and rice has revealed their widespread occurrence in eukaryotes. However, little is known about cis-NATs in the model plant Arabidopsis thaliana. We developed a new computational method to predict and identify cis-encoded NATs in Arabidopsis and found 1,340 potential NAT pairs. The expression of both sense and antisense transcripts of 957 NAT pairs was confirmed using Arabidopsis full-length cDNAs and public massively parallel signature sequencing (MPSS) data. Three known or putative Arabidopsis imprinted genes have cis-antisense transcripts. Sequences and the genomic arrangement of two Arabidopsis NAT pairs are conserved in rice. We combined information from full-length cDNAs and Arabidopsis genome annotation in our NAT prediction work and reported cis-NAT pairs that could not otherwise be identified by using one of the two datasets only. Analysis of MPSS data suggested that for most Arabidopsis cis-NAT pairs, there is predominant expression of one of the two transcripts in a tissue-specific manner.

  12. Polymerase-endonuclease amplification reaction (PEAR for large-scale enzymatic production of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR, for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.

  13. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    International Nuclear Information System (INIS)

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong; Hao, Hui; Gong, Biao; Yu, Xiyan; Wang, Xiufeng

    2010-01-01

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leaves and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.

  14. Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5.

    Science.gov (United States)

    Bahal, Raman; McNeer, Nicole Ali; Ly, Danith H; Saltzman, W Mark; Glazer, Peter M

    2013-01-01

    The development of a new class of peptide nucleic acids (PNAs), i.e., gamma PNAs (γPNAs), creates the need for a general and effective method for its delivery into cells for regulating gene expression in mammalian cells. Here we report the antisense activity of a recently developed hydrophilic and biocompatible diethylene glycol (miniPEG)-based gamma peptide nucleic acid called MPγPNAs via its delivery by poly(lactide-co-glycolide) (PLGA)-based nanoparticle system. We show that MPγPNA oligomers designed to bind to the selective region of chemokine receptor 5 (CC R5) transcript, induce potent and sequence-specific antisense effects as compared with regular PNA oligomers. In addition, PLGA nanoparticle delivery of MPγPNAs is not toxic to the cells. The findings reported in this study provide a combination of γPNA technology and PLGA-based nanoparticle delivery method for regulating gene expression in live cells via the antisense mechanism.

  15. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    Science.gov (United States)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  16. Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Lonardi Stefano

    2008-01-01

    Full Text Available Abstract Background In spite of large intergenic spaces in plant and animal genomes, 7% to 30% of genes in the genomes encode overlapping cis-natural antisense transcripts (cis-NATs. The widespread occurrence of cis-NATs suggests an evolutionary advantage for this type of genomic arrangement. Experimental evidence for the regulation of two cis-NAT gene pairs by natural antisense transcripts-generated small interfering RNAs (nat-siRNAs via the RNA interference (RNAi pathway has been reported in Arabidopsis. However, the extent of siRNA-mediated regulation of cis-NAT genes is still unclear in any genome. Results The hallmarks of RNAi regulation of NATs are 1 inverse regulation of two genes in a cis-NAT pair by environmental and developmental cues and 2 generation of siRNAs by cis-NAT genes. We examined Arabidopsis transcript profiling data from public microarray databases to identify cis-NAT pairs whose sense and antisense transcripts show opposite expression changes. A subset of the cis-NAT genes displayed negatively correlated expression profiles as well as inverse differential expression changes under at least one of the examined developmental stages or treatment conditions. By searching the Arabidopsis Small RNA Project (ASRP and Massively Parallel Signature Sequencing (MPSS small RNA databases as well as our stress-treated small RNA dataset, we found small RNAs that matched at least one gene in 646 pairs out of 1008 (64% protein-coding cis-NAT pairs, which suggests that siRNAs may regulate the expression of many cis-NAT genes. 209 putative siRNAs have the potential to target more than one gene and half of these small RNAs could target multiple members of a gene family. Furthermore, the majority of the putative siRNAs within the overlapping regions tend to target only one transcript of a given NAT pair, which is consistent with our previous finding on salt- and bacteria-induced nat-siRNAs. In addition, we found that genes encoding plastid- or

  17. Genetic Analysis of Serum-Derived Defective Hepatitis C Virus Genomes Revealed Novel ViralcisElements for Virus Replication and Assembly.

    Science.gov (United States)

    Li, Qingchao; Tong, Yimin; Xu, Yongfen; Niu, Junqi; Zhong, Jin

    2018-04-01

    Defective viral genomes (DVGs) of hepatitis C virus (HCV) exist, but their biological significances have not been thoroughly investigated. Here, we analyzed HCV DVGs circulating in patient sera that possess deletions in the structural protein-encoding region. About 30% of 41 HCV clinical isolates possess DVGs that originated from the full-length genome in the same patients. No correlation between DVGs, viremia, and alanine aminotransferase (ALT) levels was found. Sequencing analysis of DVGs revealed the existence of deletion hot spots, with upstream sites in E1 and downstream sites in E2 and NS2. Interestingly, the coding sequences for the core protein and the C-terminal protease domain of NS2 were always intact in DVGs despite the fact that both proteins are dispensable for HCV genome replication. Mechanistic studies showed that transmembrane segment 3 (TMS3) of NS2, located immediately upstream of its protease domain, was required for the cleavage of NS2-NS3 and the replication of DVGs. Moreover, we identified a highly conserved secondary structure (SL750) within the core domain 2-coding region that is critical for HCV genome packaging. In summary, our analysis of serum-derived HCV DVGs revealed novel viral cis elements that play important roles in virus replication and assembly. IMPORTANCE HCV DVGs have been identified in vivo and in vitro , but their biogenesis and physiological significances remain elusive. In addition, a conventional packaging signal has not yet been identified on the HCV RNA genome, and mechanisms underlying the specificity in the encapsidation of the HCV genome into infectious particles remain to be uncovered. Here, we identified new viral cis elements critical for the HCV life cycle by determining genetic constraints that define the boundary of serum-derived HCV DVGs. We found that transmembrane segment 3 of NS2, located immediately upstream of its protease domain, was required for the cleavage of NS2-NS3 and the replication of DVGs. We

  18. Antisense PMO found in dystrophic dog model was effective in cells from exon 7-deleted DMD patient.

    Science.gov (United States)

    Saito, Takashi; Nakamura, Akinori; Aoki, Yoshitsugu; Yokota, Toshifumi; Okada, Takashi; Osawa, Makiko; Takeda, Shin'ichi

    2010-08-18

    Antisense oligonucleotide-induced exon skipping is a promising approach for treatment of Duchenne muscular dystrophy (DMD). We have systemically administered an antisense phosphorodiamidate morpholino oligomer (PMO) targeting dystrophin exons 6 and 8 to a dog with canine X-linked muscular dystrophy in Japan (CXMD(J)) lacking exon 7 and achieved recovery of dystrophin in skeletal muscle. To date, however, antisense chemical compounds used in DMD animal models have not been directly applied to a DMD patient having the same type of exon deletion. We recently identified a DMD patient with an exon 7 deletion and tried direct translation of the antisense PMO used in dog models to the DMD patient's cells. We converted fibroblasts of CXMD(J) and the DMD patient to myotubes by FACS-aided MyoD transduction. Antisense PMOs targeting identical regions of dog and human dystrophin exons 6 and 8 were designed. These antisense PMOs were mixed and administered as a cocktail to either dog or human cells in vitro. In the CXMD(J) and human DMD cells, we observed a similar efficacy of skipping of exons 6 and 8 and a similar extent of dystrophin protein recovery. The accompanying skipping of exon 9, which did not alter the reading frame, was different between cells of these two species. Antisense PMOs, the effectiveness of which has been demonstrated in a dog model, achieved multi-exon skipping of dystrophin gene on the FACS-aided MyoD-transduced fibroblasts from an exon 7-deleted DMD patient, suggesting the feasibility of systemic multi-exon skipping in humans.

  19. Antisense PMO found in dystrophic dog model was effective in cells from exon 7-deleted DMD patient.

    Directory of Open Access Journals (Sweden)

    Takashi Saito

    Full Text Available BACKGROUND: Antisense oligonucleotide-induced exon skipping is a promising approach for treatment of Duchenne muscular dystrophy (DMD. We have systemically administered an antisense phosphorodiamidate morpholino oligomer (PMO targeting dystrophin exons 6 and 8 to a dog with canine X-linked muscular dystrophy in Japan (CXMD(J lacking exon 7 and achieved recovery of dystrophin in skeletal muscle. To date, however, antisense chemical compounds used in DMD animal models have not been directly applied to a DMD patient having the same type of exon deletion. We recently identified a DMD patient with an exon 7 deletion and tried direct translation of the antisense PMO used in dog models to the DMD patient's cells. METHODOLOGY/PRINCIPAL FINDINGS: We converted fibroblasts of CXMD(J and the DMD patient to myotubes by FACS-aided MyoD transduction. Antisense PMOs targeting identical regions of dog and human dystrophin exons 6 and 8 were designed. These antisense PMOs were mixed and administered as a cocktail to either dog or human cells in vitro. In the CXMD(J and human DMD cells, we observed a similar efficacy of skipping of exons 6 and 8 and a similar extent of dystrophin protein recovery. The accompanying skipping of exon 9, which did not alter the reading frame, was different between cells of these two species. CONCLUSION/SIGNIFICANCE: Antisense PMOs, the effectiveness of which has been demonstrated in a dog model, achieved multi-exon skipping of dystrophin gene on the FACS-aided MyoD-transduced fibroblasts from an exon 7-deleted DMD patient, suggesting the feasibility of systemic multi-exon skipping in humans.

  20. A temperature-tolerant multiplex elements and genes screening system for genetically modified organisms based on dual priming oligonucleotide primers and capillary electrophoresis.

    Science.gov (United States)

    Fu, Wei; Wei, Shuang; Wang, Chenguang; Du, Zhixin; Zhu, Pengyu; Wu, Xiyang; Wu, Gang; Zhu, Shuifang

    2017-08-15

    High throughput screening systems are the preferred solution to meet the urgent requirement of increasing number of genetically modified organisms (GMOs). In this study, we have successfully developed a multiplex GMO element screening system with dual priming oligonucleotide (DPO) primers. This system can detect the cauliflower mosaic virus 35S (CaMV 35S), terminator of nopaline synthase gene (NOS), figwort mosaic virus 35S (FMV 35S) promoter, neomycin phosphotransferaseII (NPTII), Bt Cry 1Ab, phosphinothricin acetyltransferase genes (bar) and Streptomyces viridochromogenes (pat) simultaneously, which covers more than 90% of all authorized GMO species worldwide. This system exhibits a high tolerance to annealing temperatures, high specificity and a limit of detection equal to conventional PCR. A total of 214 samples from markets, national entry-exit agencies, the Institute for Reference Materials and Measurement (IRMM) and the American Oil Chemists' Society (AOCS) were also tested for applicability. This screening system is therefore suitable for GMO screening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects of superabsorbent polymers on the abundances of antibiotic resistance genes, mobile genetic elements, and the bacterial community during swine manure composting.

    Science.gov (United States)

    Guo, Aiyun; Gu, Jie; Wang, Xiaojuan; Zhang, Ranran; Yin, Yanan; Sun, Wei; Tuo, Xiaxia; Zhang, Li

    2017-11-01

    Superabsorbent polymers (SAPs) are considered suitable amendments for reducing the selection pressure due to heavy metals and the abundances of antibiotic resistance genes (ARGs) during composting. In this study, three SAP (sodium polyacrylate) levels (0, 5, and 15mgkg -1 of compost) were applied and their effects on the abundances of ARGs, mobile genetic elements (MGEs), and the bacterial community were investigated. After composting, the abundances of ARGs and MGEs decreased to different extent, where the removal efficiencies for tetW, dfrA7, ermX, aac(6')-ib-cr and MGEs exceeded 90%. The high SAP concentration significantly reduced the abundances of ARGs and MGEs, and changed the microbial community. Redundancy analysis indicated that the moisture content mainly explained the changes in ARGs and MGEs. Network analysis determined the potential hosts of ARGs and MGEs, and their co-occurrence. The results suggested that applying 15mgkg -1 SAP is appropriate for reducing ARGs in compost. Copyright © 2017. Published by Elsevier Ltd.

  2. Occurrence of antibiotic resistance genes and mobile genetic elements in enterococci and genomic DNA during anaerobic digestion of pharmaceutical waste sludge with different pretreatments.

    Science.gov (United States)

    Tong, Juan; Lu, XueTing; Zhang, JunYa; Sui, Qianwen; Wang, Rui; Chen, Meixue; Wei, Yuansong

    2017-07-01

    Pharmaceutical waste sludge harbors large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), and it is necessary to study the reduction of ARGs and MGEs during sludge treatment. Therefore, the antibiotic resistance phenotypes and genotypes of enterococci, and the ARGs and MGEs in genomic DNA were investigated during anaerobic digestion (AD) with microwave (MW), thermal hydrolysis (TH) and ozone pretreatment. Results showed that sludge pretreatment increased the occurrence of the resistance phenotypes and genotypes of enterococci. During AD, the resistance of enterococci to macrolides decreased, except for in the MW-pretreated sludge. Horizontal gene transfer and co-occurrence of ermB and tetM in enterococci resulted in increased tetracycline resistance of enterococci throughout the sludge treatment. MGEs such as intI1, ISCR1 and Tn916/1545 had a significant effect on the distribution of ARGs. AD with pretreatment, especially TH pretreatment, resulted in greater ARGs and MGEs reduction and improved methane production. Copyright © 2017. Published by Elsevier Ltd.

  3. Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures.

    Science.gov (United States)

    Kuno, Sotaro; Yoshida, Takashi; Kaneko, Takakazu; Sako, Yoshihiko

    2012-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids.

  4. Impacts of biochar on the environmental risk of antibiotic resistance genes and mobile genetic elements during anaerobic digestion of cattle farm wastewater.

    Science.gov (United States)

    Sun, Wei; Gu, Jie; Wang, Xiaojuan; Qian, Xun; Tuo, Xiaxia

    2018-05-01

    Biochar has positive effects on nitrogen conservation during anaerobic digestion, but its impacts on antibiotic resistance genes (ARGs) are unclear. Therefore, the effect of biochar (0, 5, 20, and 50 g/L) on the environmental risk of ARGs during cattle manure wastewater anaerobic digestion were investigated. The results showed that 5 g/L biochar reduced the relative abundances (RAs) of 5/13 ARGs while 20 g/L biochar significantly reduced the total RAs of ARGs in the digestion products, where the RA of ISCR1 was 0.89 log lower than the control. Biochar mainly affected the distribution of ARGs by influencing the RAs of Firmicutes and Proteobacteria, and the influence of 20 g/L biochar was greater than that of 5 g/L. Mobile genetic elements also influenced the ARG profiles, especially intI2 and ISCR1. The addition of 20 g/L biochar to cattle farm wastewater anaerobic digestion systems could reduce the environmental risk of ARGs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Antileukemia effect of c-myc N3′→P5′ phosphoramidate antisense oligonucleotides in vivo

    Science.gov (United States)

    Skorski, Tomasz; Perrotti, Danilo; Nieborowska-Skorska, Malgorzata; Gryaznov, Sergei; Calabretta, Bruno

    1997-01-01

    In vitro, uniformly modified oligonucleotide N3′→P5′ phosphoramidates are apparently more potent antisense agents than phosphorothioate derivatives. To determine whether such compounds are also effective in vivo, severe combined immunodeficiency mice injected with HL-60 myeloid leukemia cells were treated systemically with equal doses of either phosphoramidate or phosphorothioate c-myc antisense or mismatched oligonucleotides. Compared with mice treated with mismatched oligodeoxynucleotides, the peripheral blood leukemic load of mice treated with the antisense sequences was markedly reduced, and such effects were associated with significantly prolonged survival of the antisense-treated mice. Moreover, with each of three different treatment schedules (100, 300, or 900 μg/day for 6 consecutive days), survival of the phosphoramidate-treated mice was significantly longer than that of the phosphorothioate-treated mice. Both phosphoramidate and phosphorothioate oligonucleotides were efficiently taken up by leukemic cells in vivo and were capable of specifically down-regulating c-Myc expression. Moreover, tissue distribution of the phosphoramidate derivatives was undistinguishable from that of the phosphorothioate derivatives. Collectively, these studies suggest that phosphoramidate oligonucleotides can serve as potent and specific antisense agents in the treatment of human leukemia and probably of other malignancies. PMID:9108088

  6. Nanomolar cellular antisense activity of peptide nucleic acid (PNA) cholic acid ("umbrella") and cholesterol conjugates delivered by cationic lipids.

    Science.gov (United States)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-02-15

    Limited cellular uptake and low bioavailability of peptide nucleic acids (PNAs) have restricted widespread use of PNAs as antisense/antigene agents for cells in culture and not least for in vivo applications. We now report the synthesis and cellular antisense activity in cultured HeLa pLuc705 cells of cholesterol and cholic acid ("umbrella") derivatives of splice correction antisense PNA oligomers. While the conjugates alone were practically inactive up to 1 μM, their activity was dramatically improved when delivered by a cationic lipid transfection agent (LipofectAMINE2000). In particular, PNAs, conjugated to cholesterol through an ester hemisuccinate linker or to cholic acid, exhibited low nanomolar activity (EC(50) ∼ 25 nM). Excellent sequence specificity was retained, as mismatch PNA conjugates did not show any significant antisense activity. Furthermore, we show that increasing the transfection volume improved transfection efficiency, suggesting that accumulation (condensation) of the PNA/lipid complex on the cellular surface is part of the uptake mechanism. These results provide a novel, simple method for very efficient cellular delivery of PNA oligomers, especially using PNA-cholic acid conjugates which, in contrast to PNA-cholesterol conjugates, exhibit sufficient water solubility. The results also question the generality of using cholic acid "umbrella" derivatives as a delivery modality for antisense oligomers.

  7. Identification and characterization of a cis-encoded antisense RNA associated with the replication process of Salmonella enterica serovar Typhi.

    Directory of Open Access Journals (Sweden)

    Isaac Dadzie

    Full Text Available Antisense RNAs that originate from the complementary strand of protein coding genes are involved in the regulation of gene expression in all domains of life. In bacteria, some of these antisense RNAs are transcriptional noise while others play a vital role to adapt the cell to changing environmental conditions. By deep sequencing analysis of transcriptome of Salmonella enterica serovar Typhi, a partial RNA sequence encoded in-cis to the dnaA gene was revealed. Northern blot and RACE analysis confirmed the transcription of this antisense RNA which was expressed mostly in the stationary phase of the bacterial growth and also under iron limitation and osmotic stress. Pulse expression analysis showed that overexpression of the antisense RNA resulted in a significant increase in the mRNA levels of dnaA, which will ultimately enhance their translation. Our findings have revealed that antisense RNA of dnaA is indeed transcribed not merely as a by-product of the cell's transcription machinery but plays a vital role as far as stability of dnaA mRNA is concerned.

  8. Identification and characterization of a cis-encoded antisense RNA associated with the replication process of Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Dadzie, Isaac; Xu, Shungao; Ni, Bin; Zhang, Xiaolei; Zhang, Haifang; Sheng, Xiumei; Xu, Huaxi; Huang, Xinxiang

    2013-01-01

    Antisense RNAs that originate from the complementary strand of protein coding genes are involved in the regulation of gene expression in all domains of life. In bacteria, some of these antisense RNAs are transcriptional noise while others play a vital role to adapt the cell to changing environmental conditions. By deep sequencing analysis of transcriptome of Salmonella enterica serovar Typhi, a partial RNA sequence encoded in-cis to the dnaA gene was revealed. Northern blot and RACE analysis confirmed the transcription of this antisense RNA which was expressed mostly in the stationary phase of the bacterial growth and also under iron limitation and osmotic stress. Pulse expression analysis showed that overexpression of the antisense RNA resulted in a significant increase in the mRNA levels of dnaA, which will ultimately enhance their translation. Our findings have revealed that antisense RNA of dnaA is indeed transcribed not merely as a by-product of the cell's transcription machinery but plays a vital role as far as stability of dnaA mRNA is concerned.

  9. Global analysis of cis-natural antisense transcripts and their heat-responsive nat-siRNAs in Brassica rapa.

    Science.gov (United States)

    Yu, Xiang; Yang, Jun; Li, Xiaorong; Liu, Xuxin; Sun, Chuanbao; Wu, Feijie; He, Yuke

    2013-12-10

    Brassica rapa includes several important leaf vegetable crops whose production is often damaged by high temperature. Cis-natural antisense transcripts (cis-NATs) and cis-NATs-derived small interfering RNAs (nat-siRNAs) play important roles in plant development and stress responses. However, genome-wide cis-NATs in B. rapa are not known. The NATs and nat-siRNAs that respond to heat stress have never been well studied in B. rapa. Here, we took advantage of RNA-seq and small RNA (sRNA) deep sequencing technology to identify cis-NATs and heat responsive nat-siRNAs in B. rapa. Analyses of four RNA sequencing datasets revealed 1031 cis-NATs B. rapa ssp. chinensis cv Wut and B. rapa ssp. pekinensis cv. Bre. Based on sequence homology between Arabidopsis thaliana and B. rapa, 303 conserved cis-NATs in B. rapa were found to correspond to 280 cis-NATs in Arabidopsis; the remaining 728 novel cis-NATs were identified as Brassica-specific ones. Using six sRNA libraries, 4846 nat-siRNAs derived from 150 cis-NATs were detected. Differential expression analysis revealed that nat-siRNAs derived from 12 cis-NATs were responsive to heat stress, and most of them showed strand bias. Real-time PCR indicated that most of the transcripts generating heat-responsive nat-siRNAs were upregulated under heat stress, while the transcripts from the opposite strands of the same loci were downregulated. Our results provide the first subsets of genome-wide cis-NATs and heat-responsive nat-siRNAs in B. rapa; these sRNAs are potentially useful for the genetic improvement of heat tolerance in B. rapa and other crops.

  10. Establishment of a genome-wide and quantitative protocol for assessment of transcriptional activity at human retrotransposon L1 antisense promoters.

    Science.gov (United States)

    Ishiguro, Koichi; Higashino, Saneyuki; Hirakawa, Hideki; Sato, Shusei; Aizawa, Yasunori

    2017-04-03

    Long interspersed element 1 (L1) retrotransposon sequences are widespread in the human genome, occupying ~500,000 locations. The majority of L1s have lost their retrotransposition capability, although a significant population of human L1s maintains bidirectional transcriptional activity from the internal promoter. While the sense promoter drives transcription of the entire L1 mRNA and leads to L1 retrotransposition, the antisense promoter (ASP) transcribes L1-gene chimeric RNAs that include neighboring exon sequences. Activation mechanisms and functional impacts of L1ASP transcription are thought to vary at every L1ASP location. To explore the locus-specific regulation and function of L1ASP transcription, quantitative methodology is necessary for identifying the genomic positions of highly active L1ASPs on a genome-wide scale. Here, we employed deep-sequencing techniques and built a 3' RACE-based experimental and bioinformatics protocol, named the L1 antisense transcriptome protocol (LATRAP). In LATRAP, the PCR primer and the read mapping scheme were designed to reduce false positives and negatives, which may have been included as hits in previous cloning studies. LATRAP was here applied to the A549 human lung cancer cell line, and 313 L1ASP loci were detected to have transcriptional activity but differed in the number of mapped reads by four orders of magnitude. This indicates that transcriptional activities of the individual L1ASPs can vary greatly and that only a small population of L1ASP loci is active within a single nucleus. LATRAP is the first experimental method for ranking L1ASPs according to their transcriptional activity and will thus open a new avenue to unveiling the locus-specific biology of L1ASPs.

  11. Technetium-99m labeled antisense oligonucleotide-noninvasive tumor imaging in mice

    International Nuclear Information System (INIS)

    Qin, G.M.; Zhang, Y.X.; An, R.; Gao, Z.R.; Cao, W.; Cao, G.X.; Hnatowich, D.J.

    2002-01-01

    Single-stranded RNA and DNA oligonucleotides may be useful as radiopharmaceuticals for antisense and other in vivo applications if convenient methods for stably attaching radionuclides such as 99m Tc can be developed. The c-myc oncogene works in cooperation with other oncogenes in a variety of malignant tumors. The concentration of c-myc messenger RNA increases rapidly 30 to 50 fold during DNA synthesis, thus making it a suitable target for following the progression of malignancy by noninvasive imaging with radiolabeled antisense oligonucleotide probes. Methods: 1 Oligonucleotide Conjugation: A solution of single stranded amine-derivatized DNA (100-1000μg) was prepared at a concentration of 2 mg/ml in 0.25M sodium bicarbonate, 1 M sodium chloride, 1mM EDTA, pH8.5. 2 Oligonucleotide Labeling: A fresh 50mg/ml solution of sodium tartrate was prepared in sterile 0.5 M ammonium The ability of the labeled DNA to hybridize to its complement was analyzed by Sep-Pak column chromatography before and after the addition of the complementary DNA. 3 Biodistribution and Tumor Imaging Studies: A colony of KM mice (15-20g) were inoculated with 1x10 6 Ehrlich carcinoma tumor cells in the right thigh, and the tumors were allowed to grow for 6-7 days to a size of 1.0-1.5 cm in diameter. Biodistribution studies were performed in 32 KM mice after 50 μCi per mouse of 99m Tc-labeled oncogene probes were injected intravenously. A total of 8 mice were injected intravenously in the tail vein with 1-2 mCi of 99m Tc-labeled sense or antisense probes, immobilized with ketamine hydrochloride and imaged periodically from 0.5hr to 24hr with a gamma camera. Results: Essentially complete conjugation was achieved by reverse-phase Sep-Pak C18 chromatography analysis. The labeled antisense DNA still remained the ability to hybridize with its complementary DNA. The highest accumulation of label was in the liver first, with the kidney and small bowel next. The injected activity localized in the lesion

  12. Antisense Oligonucleotides Promote Exon Inclusion and Correct the Common c.-32-13T>G GAA Splicing Variant in Pompe Disease

    Directory of Open Access Journals (Sweden)

    Erik van der Wal

    2017-06-01

    Full Text Available The most common variant causing Pompe disease is c.-32-13T>G (IVS1 in the acid α-glucosidase (GAA gene, which weakens the splice acceptor of GAA exon 2 and induces partial and complete exon 2 skipping. It also allows a low level of leaky wild-type splicing, leading to a childhood/adult phenotype. We hypothesized that cis-acting splicing motifs may exist that could be blocked using antisense oligonucleotides (AONs to promote exon inclusion. To test this, a screen was performed in patient-derived primary fibroblasts using a tiling array of U7 small nuclear RNA (snRNA-based AONs. This resulted in the identification of a splicing regulatory element in GAA intron 1. We designed phosphorodiamidate morpholino oligomer-based AONs to this element, and these promoted exon 2 inclusion and enhanced GAA enzyme activity to levels above the disease threshold. These results indicate that the common IVS1 GAA splicing variant in Pompe disease is subject to negative regulation, and inhibition of a splicing regulatory element using AONs is able to restore canonical GAA splicing and endogenous GAA enzyme activity.

  13. Cellular delivery and antisense effects of peptide nucleic acid conjugated to polyethyleneimine via disulfide linkers

    DEFF Research Database (Denmark)

    Berthold, Peter R; Shiraishi, Takehiko; Nielsen, Peter E

    2010-01-01

    Peptide nucleic acid (PNA) is potentially an attractive antisense and antigene agent for which more efficient cellular delivery systems are still warranted. The cationic polymer polyethylenimine (PEI) is commonly used for cellular transfection of DNA and RNA complexes, but is not readily applicable...... for PNA due to the (inherent) charge neutrality of PNA. However, PEI could function as an efficient scaffold for PNA via chemical conjugation. Accordingly, we modified PEI with the amine-reactive heterobifunctional linker agent N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) (with and without a PEG...

  14. Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5

    OpenAIRE

    Bahal, Raman; McNeer, Nicole Ali; Ly, Danith H.; Saltzman, W. Mark; Glazer, Peter M.

    2013-01-01

    The development of a new class of peptide nucleic acids (PNAs), i.e., gamma PNAs (γPNAs), creates the need for a general and effective method for its delivery into cells for regulating gene expression in mammalian cells. Here we report the antisense activity of a recently developed hydrophilic and biocompatible diethylene glycol (miniPEG)-based gamma peptide nucleic acid called MPγPNAs via its delivery by poly(lactide-co-glycolide) (PLGA)-based nanoparticle system. We show that MPγPNA oligome...

  15. High Levels of Antibiotic Resistance Genes and Their Correlations with Bacterial Community and Mobile Genetic Elements in Pharmaceutical Wastewater Treatment Bioreactors.

    Science.gov (United States)

    Tao, Wenda; Zhang, Xu-Xiang; Zhao, Fuzheng; Huang, Kailong; Ma, Haijun; Wang, Zhu; Ye, Lin; Ren, Hongqiang

    2016-01-01

    To understand the diversity and abundance of antibiotic resistance genes (ARGs) in pharmaceutical wastewater treatment bioreactors, the ARGs in sludge from two full-scale pharmaceutical wastewater treatment plants (PWWTPs) were investigated and compared with sludge samples from three sewage treatment plants (STPs) using metagenomic approach. The results showed that the ARG abundances in PWWTP sludge ranged from 54.7 to 585.0 ppm, which were higher than those in STP sludge (27.2 to 86.4 ppm). Moreover, the diversity of ARGs in PWWTP aerobic sludge (153 subtypes) was higher than that in STP aerobic sludge (118 subtypes). In addition, it was found that the profiles of ARGs in PWWTP aerobic sludge were similar to those in STP aerobic sludge but different from those in PWWTP anaerobic sludge, suggesting that dissolve oxygen (DO) could be one of the important factors affecting the profiles of ARGs. In PWWTP aerobic sludge, aminoglycoside, sulfonamide and multidrug resistance genes were frequently detected. While, tetracycline, macrolide-lincosamide-streptogramin and polypeptide resistance genes were abundantly present in PWWTP anaerobic sludge. Furthermore, we investigated the microbial community and the correlation between microbial community and ARGs in PWWTP sludge. And, significant correlations between ARG types and seven bacterial genera were found. In addition, the mobile genetic elements (MGEs) were also examined and correlations between the ARGs and MGEs in PWWTP sludge were observed. Collectively, our results suggested that the microbial community and MGEs, which could be affected by DO, might be the main factors shaping the profiles of ARGs in PWWTP sludge.

  16. The role of the genetic elements bla oxa and IS Aba 1 in the Acinetobacter calcoaceticus-Acinetobacter baumannii complex in carbapenem resistance in the hospital setting.

    Science.gov (United States)

    Kobs, Vanessa Cristine; Ferreira, Jéssica Augustini; Bobrowicz, Thaís Alexandra; Ferreira, Leslie Ecker; Deglmann, Roseneide Campos; Westphal, Glauco Adrieno; França, Paulo Henrique Condeixa de

    2016-01-01

    Members of the Acinetobacter genus are key pathogens that cause healthcare-associated infections, and they tend to spread and develop new antibiotic resistance mechanisms. Oxacillinases are primarily responsible for resistance to carbapenem antibiotics. Higher rates of carbapenem hydrolysis might be ascribed to insertion sequences, such as the ISAba1 sequence, near bla OXA genes. The present study examined the occurrence of the genetic elements bla OXA and ISAba1 and their relationship with susceptibility to carbapenems in clinical isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Isolates identified over 6 consecutive years in a general hospital in Joinville, Southern Brazil, were evaluated. The investigation of 5 families of genes encoding oxacillinases and the ISAba1 sequence location relative to bla OXA genes was conducted using polymerase chain reaction. All isolates presented the bla OXA-51-like gene (n = 78), and 91% tested positive for the bla OXA-23-like gene (n = 71). The presence of ISAba1 was exclusively detected in isolates carrying the bla OXA-23-like gene. All isolates in which ISAba1 was found upstream of the bla OXA-23-like gene (n = 69) showed resistance to carbapenems, whereas the only isolate in which ISAba1 was not located near the bla OXA-23-like gene was susceptible to carbapenems. The ISAba1 sequence position of another bla OXA-23-like-positive isolate was inconclusive. The isolates exclusively carrying the bla OXA-51-like gene (n = 7) showed susceptibility to carbapenems. The presence of the ISAba1 sequence upstream of the bla OXA-23-like gene was strongly associated with carbapenem resistance in isolates of the A. calcoaceticus-A. baumannii complex in the hospital center studied.

  17. The role of the genetic elements bla oxa and IS Aba 1 in the Acinetobacter calcoaceticus-Acinetobacter baumannii complex in carbapenem resistance in the hospital setting

    Directory of Open Access Journals (Sweden)

    Vanessa Cristine Kobs

    Full Text Available Abstract: INTRODUCTION: Members of the Acinetobacter genus are key pathogens that cause healthcare-associated infections, and they tend to spread and develop new antibiotic resistance mechanisms. Oxacillinases are primarily responsible for resistance to carbapenem antibiotics. Higher rates of carbapenem hydrolysis might be ascribed to insertion sequences, such as the ISAba1 sequence, near bla OXA genes. The present study examined the occurrence of the genetic elements bla OXA and ISAba1 and their relationship with susceptibility to carbapenems in clinical isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. METHODS: Isolates identified over 6 consecutive years in a general hospital in Joinville, Southern Brazil, were evaluated. The investigation of 5 families of genes encoding oxacillinases and the ISAba1 sequence location relative to bla OXA genes was conducted using polymerase chain reaction. RESULTS: All isolates presented the bla OXA-51-like gene (n = 78, and 91% tested positive for the bla OXA-23-like gene (n = 71. The presence of ISAba1 was exclusively detected in isolates carrying the bla OXA-23-like gene. All isolates in which ISAba1 was found upstream of the bla OXA-23-like gene (n = 69 showed resistance to carbapenems, whereas the only isolate in which ISAba1 was not located near the bla OXA-23-like gene was susceptible to carbapenems. The ISAba1 sequence position of another bla OXA-23-like-positive isolate was inconclusive. The isolates exclusively carrying the bla OXA-51-like gene (n = 7 showed susceptibility to carbapenems. CONCLUSIONS: The presence of the ISAba1 sequence upstream of the bla OXA-23-like gene was strongly associated with carbapenem resistance in isolates of the A. calcoaceticus-A. baumannii complex in the hospital center studied.

  18. High Levels of Antibiotic Resistance Genes and Their Correlations with Bacterial Community and Mobile Genetic Elements in Pharmaceutical Wastewater Treatment Bioreactors.

    Directory of Open Access Journals (Sweden)

    Wenda Tao

    Full Text Available To understand the diversity and abundance of antibiotic resistance genes (ARGs in pharmaceutical wastewater treatment bioreactors, the ARGs in sludge from two full-scale pharmaceutical wastewater treatment plants (PWWTPs were investigated and compared with sludge samples from three sewage treatment plants (STPs using metagenomic approach. The results showed that the ARG abundances in PWWTP sludge ranged from 54.7 to 585.0 ppm, which were higher than those in STP sludge (27.2 to 86.4 ppm. Moreover, the diversity of ARGs in PWWTP aerobic sludge (153 subtypes was higher than that in STP aerobic sludge (118 subtypes. In addition, it was found that the profiles of ARGs in PWWTP aerobic sludge were similar to those in STP aerobic sludge but different from those in PWWTP anaerobic sludge, suggesting that dissolve oxygen (DO could be one of the important factors affecting the profiles of ARGs. In PWWTP aerobic sludge, aminoglycoside, sulfonamide and multidrug resistance genes were frequently detected. While, tetracycline, macrolide-lincosamide-streptogramin and polypeptide resistance genes were abundantly present in PWWTP anaerobic sludge. Furthermore, we investigated the microbial community and the correlation between microbial community and ARGs in PWWTP sludge. And, significant correlations between ARG types and seven bacterial genera were found. In addition, the mobile genetic elements (MGEs were also examined and correlations between the ARGs and MGEs in PWWTP sludge were observed. Collectively, our results suggested that the microbial community and MGEs, which could be affected by DO, might be the main factors shaping the profiles of ARGs in PWWTP sludge.

  19. Calcium ions effectively enhance the effect of antisense peptide nucleic acids conjugated to cationic tat and oligoarginine peptides

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Pankratova, Stanislava; Nielsen, Peter E

    2005-01-01

    Cell-penetrating peptides have been widely used to improve cellular delivery of a variety of proteins and antisense agents. However, recent studies indicate that such cationic peptides are predominantly entering cells via an endosomal pathway. We now show that the nuclear antisense effect in He......La cells of a variety of peptide nucleic acid (PNA) peptide conjugates is significantly enhanced by addition of 6 mM Ca(2+) (as well as by the lysosomotrophic agent chloroquine). In particular, the antisense activities of Tat(48-60) and heptaarginine-conjugated PNAs were increased 44-fold and 8.5-fold......, respectively. Evidence is presented that the mechanism involves endosomal release. The present results show that Ca(2+) can be used as an effective enhancer for in vitro cellular delivery of cationic peptide-conjugated PNA oligomers, and also emphasize the significance of the endosomal escape route...

  20. ED-XRF spectrometry-based trace element composition of genetically engineered rhizoclones vis-a-vis natural roots of a multi-medicinal plant, butterfly pea (Clitoria ternatea L.)

    International Nuclear Information System (INIS)

    Swain, S.S.; Chand, P.K.

    2012-01-01

    The energy dispersive X-ray fluorescence set-up incorporating a molybdenum secondary exciter was used for quantitative determination of major and minor elements in genetically transformed root somaclones (rhizoclones) of butterfly pea (Clitoria ternatea L.) which had been established via explant co-cultivation with Agrobacterium rhizogenes. The multi-elemental composition of these transformed rhizoclones was compared with that of the naturally grown in vivo donor plant. Trace elements namely Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb in addition to two macro-elements K and Ca were identified and quantified in root tissues of both sources. The elemental content of transformed root cultures was found to be at par with that of the natural roots of in vivo grown plants of the same species. These findings are implicated on the context of utilization of such Agrobacterium-mediated genetically transformed root cultures as a viable alternative to natural roots, the former being a fast-proliferating renewable resource of medicinally useful minerals essential for designing of effective drugs, besides providing an ex situ means for plant conservation. (author)

  1. Distinct features of post-transcriptional gene silencing by antisense transgenes in single copy and inverted T-DNA repeat loci.

    NARCIS (Netherlands)

    Stam, M.; de Bruin, R.A.M.; van Blokland, H.J.M.; van der Hoorn, R.; Mol, J.N.M.; Kooter, J.M.

    2000-01-01

    The application of antisense transgenes in plants is a powerful tool to inhibit gene expression. The underlying mechanism of this inhibition is still poorly understood. High levels of antisense RNA (as-RNA) are expected to result in strong silencing but often there is no clear correlation between

  2. Selection of effective antisense oligodeoxynucleotides with a green fluorescent protein-based assay. Discovery of selective and potent inhibitors of glutathione S-transferase Mu expression

    NARCIS (Netherlands)

    Hoen, P.A.; Rosema, B.S.; Commandeur, J.N.M.; Vermeulen, N.P.E.; Manoharan, M.; van Berkel, T.J.; Biessen, E.A.; Bijsterbosch, M.K.

    2002-01-01

    Antisense oligodeoxynucleotides (AS-ODNs) are frequently used for the down-regulation of protein expression. Because the majority of potential antisense sequences lacks effectiveness, fast screening methods for the selection of effective AS-ODNs are needed. We describe a new cellular screening assay

  3. Selection of effective antisense oligodeoxynucleotides with a green fluorescent protein-based assay. Discovery of selective and potent inhibitors of glutathione S-transferase Mu expression.

    NARCIS (Netherlands)

    Hoen, P.A.; Rosema, B.S.; Commandeur, J.N.M.; Vermeulen, N.P.E.; Manoharan, M.; van Berkel, T.J.; Biessen, E.A.; Bijsterbosch, M.K.

    2002-01-01

    Antisense oligodeoxynucleotides (AS-ODNs) are frequently used for the down-regulation of protein expression. Because the majority of potential antisense sequences lacks effectiveness, fast screening methods for the selection of effective AS-ODNs are needed. We describe a new cellular screening assay

  4. Selection of effective antisense oligodeoxynucleotides with a green fluorescent protein-based assay. Discovery of selective and potent inhibitors of glutathione S-transferase Mu expression

    NARCIS (Netherlands)

    ’t Hoen, Peter a.C; Rosema, Bram-Sieben; Commandeur, Jan N M; Vermeulen, Nico P E; Manoharan, Muthiah; van Berkel, Theo J C; Biessen, Eric A L; Bijsterbosch, Martin K

    Antisense oligodeoxynucleotides (AS-ODNs) are frequently used for the down-regulation of protein expression. Because the majority of potential antisense sequences lacks effectiveness, fast screening methods for the selection of effective AS-ODNs are needed. We describe a new cellular screening assay

  5. Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acides antisense to the dopamine transporter

    International Nuclear Information System (INIS)

    Porat, S.; Gabbay, M.; Tauber, M.; Ratovitski, T.; Blinder, E.; Simantov, R.

    1996-01-01

    Human neuroblastoma NMB cells take up [ 3 H]dopamine in a selective manner indicating that dopamine transporters are responsible for this uptake. These cells were therefore used as a model to study dopamine neurotoxicity, and to elucidate the role of dopamine transporters in controlling cell death. Treatment with 0.05-0.4 mM dopamine changed cells' morphology within 4 h, accompanied by retraction of processes, shrinkage, apoptosis-like atrophy, accumulation of apoptotic particles, DNA fragmentation and cell death. Cycloheximide inhibited dopamine's effect, suggesting that induction of apoptosis by dopamine was dependent upon protein synthesis. Dopamine cytotoxicity, monitored morphologically by flow cytometric analysis, and by lactate dehydrogenase released, was blocked by cocaine but not by the noradrenaline and serotonin uptake blockers desimipramine and imipramine, respectively. Attempting to inhibit dopamine transport and toxicity in a drug-free and highly selective way, three 18-mer dopamine transporter antisense phosphorothioate oligonucleotides (numbers 1, 2 and 3) and a new plasmid vector expressing the entire rat dopamine transporter complementary DNA in the antisense orientation were prepared and tested. Antisense phosphorothioate oligonucleotide 3 inhibited [ 3 H]dopamine uptake in a time- and dose-dependent manner. Likewise, transient transfection of NMB cells with the plasmid expressing dopamine transporter complementary DNA in the antisense orientation partially blocked [ 3 H]dopamine uptake. Antisense phosphorothioate oligonucleotide 3 also decreased, dose-dependently, the toxic effect of dopamine and 6-hydroxydopamine. Western blot analysis with newly prepared anti-human dopamine transporter antibodies showed that antisense phosphorothioate oligonucleotide 3 decreased the transporter protein level. These studies contribute to better understand the mechanism of dopamine-induced apoptosis and neurotoxicity. (Copyright (c) 1996 Elsevier Science B

  6. A study on the transfection of antisense oligonucletide into kidney mediated by lipid microbubbles.

    Science.gov (United States)

    Li, Huiling; Chen, Jinwen; Xu, Xuan; Yang, Ruhao; Xiang, Xudong; Zhang, Dongshan

    2016-02-01

    To study the safety and efficiency of the transfection of antisense oligonucletide into kidney mediated by lipid microbubbles, and to evaluate its potential clinical application. The potential and conditions regarding the transfection self-made lipid microbubbles (CY5)-labeled-oligonucleotide (ODN) or CY5-labeled-ODN connective tissue growth factor (CTGF) into the rat kidney were evaluated. Th e safety was evaluated by HE staining, liver and renal function tests. The transfection efficiency was evaluated by fluorescence microscopy. Th e expression of CTGF was detected by RT-PCR and Western blot. Self-made lipid microbubble and/or ultrasound significantly enhanced the efficiency of gene transfer and expression in the kidney. Especially, 85%-90% of total glomerular could be transfected. CY5-labeled-ODN expression could be observed in glomerular, tubular and interstitial area. Th ere was no significant change in blood tests aft er gene transfer. Levels of LDH in 7 days were decreased compared with that at the fi rst day aft er the transfection (Ptransfection of CTGF-antisense-ODN into kidney. The ultrasound-mediated gene transfer by self-made lipid microbubble could enhance the efficiency of ODN and expression in the rat kidney. Th is self-made lipid microbubbles supplement may be use for transfection of target genes.

  7. Topical delivery of anti-sense oligonucleotides using low-frequency sonophoresis.

    Science.gov (United States)

    Tezel, Ahmet; Dokka, Sujatha; Kelly, Susan; Hardee, Gregory E; Mitragotri, Samir

    2004-12-01

    Topical delivery of oligonucleotides, though attractive for the treatment of skin disorders, is limited by the low permeability of the stratum corneum. Herein, we assessed the potential of low-frequency ultrasound (20 kHz, 2.4 W/cm2) in delivering therapeutically significant quantities of anti-sense oligonucleotides into skin. Dermal penetration of oligonucleotides penetration was quantified in vitro using radiolabeled oligonucleotides. Estimated concentrations of oligonucleotides (ODNs) in the superficial layers of the skin ranged from approximately 0.5% to 5% of the donor concentration after a 10-min application of ultrasound and ODN. Microscopic evaluations using fluorescently labeled oligonucleotides and sulforhodamine B revealed heterogeneous penetration into the skin. Heterogenous penetration led to the formation of localized transport pathways (LTPs), which occupied about 5% of the total exposed skin area. Immuno-histochemical studies using an oligonucleotide that reacts specifically with an antibody also confirmed penetration of ODNs into LTPs. Histologic studies revealed that no gross structural changes were induced in the skin due to ultrasound application. These results show successful delivery of anti-sense oligonucleotides using low-frequency ultrasound.

  8. Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit.

    Science.gov (United States)

    Klann, E M; Hall, B; Bennett, A B

    1996-11-01

    Invertase (beta-fructosidase, EC 3.2.1.26) hydrolyzes sucrose to hexose sugars and thus plays a fundamental role in the energy requirements for plant growth and maintenance. Transgenic plants with altered extracellular acid invertase have highly disturbed growth habits. We investigated the role of intracellular soluble acid invertase in plant and fruit development. Transgenic tomato (Lycopersicon esculentum Mill.) plants expressing a constitutive antisense invertase transgene grew identically to wild-type plants. Several lines of transgenic fruit expressing a constitutive antisense invertase gene had increased sucrose and decreased hexose sugar concentrations. Each transgenic line with fruit that had increased sucrose concentrations also had greatly reduced levels of acid invertase in ripe fruit. Sucrose-accumulating fruit were approximately 30% smaller than control fruit, and this differential growth correlated with high rates of sugar accumulation during the last stage of development. These data suggest that soluble acid invertase controls sugar composition in tomato fruit and that this change in composition contributes to alterations in fruit size. In addition, sucrose-accumulating fruit have elevated rates of ethylene evolution relative to control fruit, perhaps as a result of the smaller fruit size of the sucrose-accumulating transgenic lines.

  9. Small regulatory RNAs in lambdoid bacteriophages and phage-derived plasmids: Not only antisense.

    Science.gov (United States)

    Nejman-Faleńczyk, Bożena; Bloch, Sylwia; Licznerska, Katarzyna; Felczykowska, Agnieszka; Dydecka, Aleksandra; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2015-03-01

    Until recently, only two small regulatory RNAs encoded by lambdoid bacteriophages were known. These transcripts are derived from paQ and pO promoters. The former one is supposed to act as an antisense RNA for expression of the Q gene, encoding a transcription antitermination protein. The latter transcript, called oop RNA, was initially proposed to have a double role, in establishing expression of the cI gene and in providing a primer for DNA replication. Although the initially proposed mechanisms by which oop RNA could influence the choice between two alternative developmental pathways of the phage and the initiation of phage DNA replication were found not true, the pO promoter has been demonstrated to be important for both regulation of phage development and control of DNA replication. Namely, the pO-derived transcript is an antisense RNA for expression of the cII gene, and pO is a part of a dual promoter system responsible for regulation of initiation of DNA synthesis from the oriλ region. Very recent studies identified a battery of small RNAs encoded by lambdoid bacteriophages existing as prophages in chromosomes of enterohemorrhagic Escherichia coli strains. Some of them have very interesting functions, like anti-small RNAs. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Search for antisense copies of beta-globin mRNA in anemic mouse spleen

    Directory of Open Access Journals (Sweden)

    Taylor John M

    2001-03-01

    Full Text Available Abstract Background Previous studies by Volloch and coworkers have reported that during the expression of high levels of β-globin mRNA in the spleen of anemic mice, they could also detect small but significant levels of an antisense (AS globin RNA species, which they postulated might have somehow arisen by RNA-directed RNA synthesis. For two reasons we undertook to confirm and possibly extend these studies. First, previous studies in our lab have focussed on what is an unequivocal example of host RNA-directed RNA polymerase activity on the RNA genome of human hepatitis delta virus. Second, if AS globin species do exist they could in turn form double-stranded RNA species which might induce post-transcriptional gene silencing, a phenomenon somehow provoked in eukaryotic cells by AS RNA sequences. Results We reexamined critical aspects of the previous globin studies. We used intraperitoneal injections of phenylhydrazine to induce anemia in mice, as demonstrated by the appearance and ultimate disappearance of splenomegaly. While a 30-fold increase in globin mRNA was detected in the spleen, the relative amount of putative AS RNA could be no more than 0.004%. Conclusions Contrary to earlier reports, induction of a major increase in globin transcripts in the mouse spleen was not associated with a detectable level of antisense RNA to globin mRNA.

  11. [High expression of p15 antisense RNA is a frequent event in acute myeloid leukemia].

    Science.gov (United States)

    Liao, Yufeng; Le, Donghai; Zhu, Zhankun

    2016-04-01

    To detect the presence of p15 antisense RNA(p15AS) in acute myeloid leukemia(AML). p15AS and p15 mRNA in two leukemia cell lines was detected with strand-specific primer RT-qPCR. To explore the connection between p15AS and AML, 43 patients with newly diagnosed AML and 21 patients with benign diseases (Iron deficiency anemia) as controls were enrolled. The expression level of p15AS in bone marrow cells derived from the patients and the controls were determined by strand-specific primer RT-qPCR, and its relationship with clinical features was analyzed. The two AML lines displayed high p15AS and low p15 expression. Samples derived from the AML patients showed relatively increased expression of p15AS and down-regulated p15 expression in their bone cells. In contrast, the 21 controls showed high expression of p15 but relatively low expression of the p15AS. Compared with the normal controls, the expression levels of p15 protein were significantly lower among the AML patients (PFAB subtype, total white blood cell count, platelet count, proliferative degree of bone marrow cell and karyotype classification (P>0.05 for all comparisons). High expression of p15 antisense RNA was frequently found among AML patients, and may play an important role in epigenetic silencing of p15.

  12. FGF-2 antisense RNA encodes a nuclear protein with MutT-like antimutator activity.

    Science.gov (United States)

    Li, A W; Too, C K; Knee, R; Wilkinson, M; Murphy, P R

    1997-10-20

    Bidirectional transcription of the basic fibroblast growth factor (FGF-2) gene gives rise to multiple polyadenylated sense mRNAs and a unique 1.5 kb antisense transcript (FGF-AS) which is complementary to the 3'-untranslated region of the FGF-2 mRNA. The rat FGF-AS cDNA encodes a novel 35 kDa nuclear protein (GFG) with homology to the MutT family of antimutator NTPases. Antibodies against the deduced amino acid sequence of GFG detected intense immunoreactivity in the nuclei of adult rat hepatocytes. Subcellular fractionation and Western blotting confirmed the presence of a 35 kDa immunoreactive protein in the nuclear fraction and, to a lesser extent, in the mitochondrial fractions of rat liver homogenates. Recombinant GFG suppressed the spontaneous mutation rate of MutT-deficient E. coli in a complementation assay. In-frame deletion of the 53 amino acids encompassing the MutT domain eliminated this activity, confirming the catalytic function of this region in the FGF antisense gene product. These findings demonstrate for the first time that the FGF-AS transcript encodes a functional nuclear protein with MutT-related enzymatic activity.

  13. Analysis of double-stranded RNA from microbial communities identifies double-stranded RNA virus-like elements.

    Science.gov (United States)

    Decker, Carolyn J; Parker, Roy

    2014-05-08

    Double-stranded RNA (dsRNA) can function as genetic information and may have served as genomic material before the existence of DNA-based life. By developing a method to purify dsRNA, we have investigated the diversity of dsRNA in microbial populations. We detect large dsRNAs in multiple microbial populations. Analysis of an aquatic microbial population reveals that some dsRNA sequences match metagenomic DNA, suggesting that microbes contain pools of sense-antisense transcripts. In addition, ∼30% of the dsRNA sequences are not present in the corresponding DNA pool and are strongly biased toward encoding novel proteins. Of these "dsRNA unique" sequences, only a small percentage share similarity to known viruses, a large fraction assemble into RNA virus-like contigs, and the remaining fraction has an unexplained origin. These results have uncovered dsRNA virus-like elements and underscore that dsRNA potentially represents an additional reservoir of genetic information in microbial populations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Splicing modulation therapy in the treatment of genetic diseases

    Directory of Open Access Journals (Sweden)

    Arechavala-Gomeza V

    2014-12-01

    Full Text Available Virginia Arechavala-Gomeza,1 Bernard Khoo,2 Annemieke Aartsma-Rus3 1Neuromuscular Disorders Group, BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain; 2Endocrinology, Division of Medicine, University College London, London, UK; 3Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands All authors contributed equally to this manuscript Abstract: Antisense-mediated splicing modulation is a tool that can be exploited in several ways to provide a potential therapy for rare genetic diseases. This approach is currently being tested in clinical trials for Duchenne muscular dystrophy and spinal muscular atrophy. The present review outlines the versatility of the approach to correct cryptic splicing, modulate alternative splicing, restore the open reading frame, and induce protein knockdown, providing examples of each. Finally, we outline a possible path forward toward the clinical application of this approach for a wide variety of inherited rare diseases. Keywords: splicing, therapy, antisense oligonucleotides, cryptic splicing, alternative splicing

  15. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith–Wiedemann syndrome

    Science.gov (United States)

    Smilinich, Nancy J.; Day, Colleen D.; Fitzpatrick, Galina V.; Caldwell, Germaine M.; Lossie, Amy C.; Cooper, P. R.; Smallwood, Allan C.; Joyce, Johanna A.; Schofield, Paul N.; Reik, Wolf; Nicholls, Robert D.; Weksberg, Rosanna; Driscoll, D. J.; Maher, Eamonn R.; Shows, Thomas B.; Higgins, Michael J.

    1999-01-01

    Loss of imprinting at IGF2, generally through an H19-independent mechanism, is associated with a large percentage of patients with the overgrowth and cancer predisposition condition Beckwith–Wiedemann syndrome (BWS). Imprinting control elements are proposed to exist within the KvLQT1 locus, because multiple BWS-associated chromosome rearrangements disrupt this gene. We have identified an evolutionarily conserved, maternally methylated CpG island (KvDMR1) in an intron of the KvLQT1 gene. Among 12 cases of BWS with normal H19 methylation, 5 showed demethylation of KvDMR1 in fibroblast or lymphocyte DNA; whereas, in 4 cases of BWS with H19 hypermethylation, methylation at KvDMRl was normal. Thus, inactivation of H19 and hypomethylation at KvDMR1 (or an associated phenomenon) represent distinct epigenetic anomalies associated with biallelic expression of IGF2. Reverse transcription–PCR analysis of the human and syntenic mouse loci identified the presence of a KvDMR1-associated RNA transcribed exclusively from the paternal allele and in the opposite orientation with respect to the maternally expressed KvLQT1 gene. We propose that KvDMR1 and/or its associated antisense RNA (KvLQT1-AS) represents an additional imprinting control element or center in the human 11p15.5 and mouse distal 7 imprinted domains. PMID:10393948

  16. Structure and expression of two nuclear receptor genes in marsupials: insights into the evolution of the antisense overlap between the α-thyroid hormone receptor and Rev-erbα

    Directory of Open Access Journals (Sweden)

    Brown M Scott

    2010-12-01

    Full Text Available Abstract Background Alternative processing of α-thyroid hormone receptor (TRα, NR1A1 mRNAs gives rise to two functionally antagonistic nuclear receptors: TRα1, the α-type receptor, and TRα2, a non-hormone binding variant that is found only in mammals. TRα2 shares an unusual antisense coding overlap with mRNA for Rev-erbα (NR1D1, another nuclear receptor protein. In this study we examine the structure and expression of these genes in the gray short-tailed opossum, Monodelphis domestica, in comparison with that of eutherian mammals and three other marsupial species, Didelphis virginiana, Potorous tridactylus and Macropus eugenii, in order to understand the evolution and regulatory role of this antisense overlap. Results The sequence, expression and genomic organization of mRNAs encoding TRα1 and Rev-erbα are very similar in the opossum and eutherian mammals. However, the sequence corresponding to the TRα2 coding region appears truncated by almost 100 amino acids. While expression of TRα1 and Rev-erbα was readily detected in all tissues of M. domestica ages 0 days to 18 weeks, TRα2 mRNA was not detected in any tissue or stage examined. These results contrast with the widespread and abundant expression of TRα2 in rodents and other eutherian mammals. To examine requirements for alternative splicing of TRα mRNAs, a series of chimeric minigenes was constructed. Results show that the opossum TRα2-specific 5' splice site sequence is fully competent for splicing but the sequence homologous to the TRα2 3' splice site is not, even though the marsupial sequences are remarkably similar to core splice site elements in rat. Conclusions Our results strongly suggest that the variant nuclear receptor isoform, TRα2, is not expressed in marsupials and that the antisense overlap between TRα and Rev-erbα thus is unique to eutherian mammals. Further investigation of the TRα and Rev-erbα genes in marsupial and eutherian species promises to yield

  17. Structure and expression of two nuclear receptor genes in marsupials: insights into the evolution of the antisense overlap between the α-thyroid hormone receptor and Rev-erbα

    Science.gov (United States)

    2010-01-01

    Background Alternative processing of α-thyroid hormone receptor (TRα, NR1A1) mRNAs gives rise to two functionally antagonistic nuclear receptors: TRα1, the α-type receptor, and TRα2, a non-hormone binding variant that is found only in mammals. TRα2 shares an unusual antisense coding overlap with mRNA for Rev-erbα (NR1D1), another nuclear receptor protein. In this study we examine the structure and expression of these genes in the gray short-tailed opossum, Monodelphis domestica, in comparison with that of eutherian mammals and three other marsupial species, Didelphis virginiana, Potorous tridactylus and Macropus eugenii, in order to understand the evolution and regulatory role of this antisense overlap. Results The sequence, expression and genomic organization of mRNAs encoding TRα1 and Rev-erbα are very similar in the opossum and eutherian mammals. However, the sequence corresponding to the TRα2 coding region appears truncated by almost 100 amino acids. While expression of TRα1 and Rev-erbα was readily detected in all tissues of M. domestica ages 0 days to 18 weeks, TRα2 mRNA was not detected in any tissue or stage examined. These results contrast with the widespread and abundant expression of TRα2 in rodents and other eutherian mammals. To examine requirements for alternative splicing of TRα mRNAs, a series of chimeric minigenes was constructed. Results show that the opossum TRα2-specific 5' splice site sequence is fully competent for splicing but the sequence homologous to the TRα2 3' splice site is not, even though the marsupial sequences are remarkably similar to core splice site elements in rat. Conclusions Our results strongly suggest that the variant nuclear receptor isoform, TRα2, is not expressed in marsupials and that the antisense overlap between TRα and Rev-erbα thus is unique to eutherian mammals. Further investigation of the TRα and Rev-erbα genes in marsupial and eutherian species promises to yield additional insight into the

  18. CD49d antisense drug ATL1102 reduces disease activity in patients with relapsing-remitting MS

    NARCIS (Netherlands)

    Limmroth, V.; Barkhof, F.; Desem, N.; Diamond, M.P.; Tachas, G.

    2014-01-01

    Objective: This study evaluated the efficacy and safety of ATL1102, an antisense oligonucleotide that selectively targets the RNA for human CD49d, the a subunit of very late antigen 4, in patients with relapsing-remitting multiple sclerosis (RRMS). Methods: In a multicenter, double-blind,

  19. Intracellular Distribution and Nuclear Activity of Antisense Oligonucleotides After Unassisted Uptake in Myoblasts and Differentiated Myotubes In Vitro

    NARCIS (Netherlands)

    Gonzalez, A.M.; Nillessen, B.; Kranzen, J.; Kessel, I.D.G. van; Croes, H.J.E.; Aguilera, B.; Visser, P.C. de; Datson, N.A.; Mulders, S.A.; Deutekom, J.C. van; Wieringa, B.; Wansink, D.G.

    2017-01-01

    Clinical efficacy of antisense oligonucleotides (AONs) for the treatment of neuromuscular disorders depends on efficient cellular uptake and proper intracellular routing to the target. Selection of AONs with highest in vitro efficiencies is usually based on chemical or physical methods for forced

  20. Subnanomolar antisense activity of phosphonate-peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Hamzavi, Ramin; Nielsen, Peter E

    2008-01-01

    oligomer. This modification of the PNA does not interfere with the nucleic acid target binding affinity based on thermal stability of the PNA/RNA duplexes. When delivered to cultured HeLa pLuc705 cells by Lipofectamine, the PNAs showed dose-dependent nuclear antisense activity in the nanomolar range...

  1. Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents

    Science.gov (United States)

    Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Peter Kitin; Steven H. Strauss

    2011-01-01

    Reduced lignin content in perennial crops has been sought as a means to improve biomass processability for paper and biofuels production, but it is unclear how this could affect wood properties and tree form. Here, we studied a nontransgenic control and 14 transgenic events containing an antisense 4-coumarate:coenzyme A ligase (4CL) to discern the...

  2. A novel dual lock method for down-regulation of genes, in which a target mRNA is captured at 2 independent positions by linked locked nucleic acid antisense oligonucleotides.

    Science.gov (United States)

    Takata, Ryohei; Makado, Gouki; Kitamura, Ayaka; Watanabe, Hajime; Wada, Tadashi

    2016-01-01

    Nuclear factor κB (NFκB), which is composed of the RelA and p50 subunits, binds to NFκB response elements (NREs) and stimulates the transcription of inflammation-related genes. Here, locked nucleic acid (LNA) antisense oligonucleotides (ASOs) complementary to the termini of the 3'- and 5'-untranslated regions (UTRs) of the RelA mRNA were generated; these molecules were named 3'-LNA and 5'-LNA, respectively. To evaluate their effects on NFκB activity, HeLa cells were co-transfected with the LNA ASOs and a luciferase reporter gene carrying an NRE. Transfection of the cells with 3'-LNA reduced NFκB activity by 30-40%, without affecting RelA mRNA accumulation. Concomitant transfection of HeLa cells with 5'-LNA and 3'-LNA resulted in a 70% reduction in NFκB activity. Furthermore, partial poly(A) tail shortening occurred in LNA ASO-transfected cells. We also employed triethylene glycol as a spacer to link 5'-LNA and 3'-LNA. Reporter gene assays showed that the spacer-linked LNA ASO reduced NFκB activity similarly to a combination of 5'-LNA and 3'-LNA. In addition, an in vitro translation assay revealed that spacer-linked LNA ASOs inhibited the translation of a target mRNA in a specific manner. In summary, this study describes a novel antisense method capturing the target mRNA at independent positions.

  3. BC047440 antisense eukaryotic expression vectors inhibited HepG2 cell proliferation and suppressed xenograft tumorigenicity

    International Nuclear Information System (INIS)

    Lu, Zheng; Ping, Liang; JianBo, Zhou; XiaoBing, Huang; Yu, Wen; Zheng, Wang; Jing, Li

    2012-01-01

    The biological functions of the BC047440 gene highly expressed by hepatocellular carcinoma (HCC) are unknown. The objective of this study was to reconstruct antisense eukaryotic expression vectors of the gene for inhibiting HepG 2 cell proliferation and suppressing their xenograft tumorigenicity. The full-length BC047440 cDNA was cloned from human primary HCC by RT-PCR. BC047440 gene fragments were ligated with pMD18-T simple vectors and subsequent pcDNA3.1(+) plasmids to construct the recombinant antisense eukaryotic vector pcDNA3.1(+)BC047440AS. The endogenous BC047440 mRNA abundance in target gene-transfected, vector-transfected and naive HepG 2 cells was semiquantitatively analyzed by RT-PCR and cell proliferation was measured by the MTT assay. Cell cycle distribution and apoptosis were profiled by flow cytometry. The in vivo xenograft experiment was performed on nude mice to examine the effects of antisense vector on tumorigenicity. BC047440 cDNA fragments were reversely inserted into pcDNA3.1(+) plasmids. The antisense vector significantly reduced the endogenous BC047440 mRNA abundance by 41% in HepG 2 cells and inhibited their proliferation in vitro (P < 0.01). More cells were arrested by the antisense vector at the G 1 phase in an apoptosis-independent manner (P = 0.014). Additionally, transfection with pcDNA3.1(+) BC047440AS significantly reduced the xenograft tumorigenicity in nude mice. As a novel cell cycle regulator associated with HCC, the BC047440 gene was involved in cell proliferation in vitro and xenograft tumorigenicity in vivo through apoptosis-independent mechanisms

  4. Rescue of peripheral vestibular function in Usher syndrome mice using a splice-switching antisense oligonucleotide.

    Science.gov (United States)

    Vijayakumar, Sarath; Depreux, Frederic F; Jodelka, Francine M; Lentz, Jennifer J; Rigo, Frank; Jones, Timothy A; Hastings, Michelle L

    2017-09-15

    Usher syndrome type 1C (USH1C/harmonin) is associated with profound retinal, auditory and vestibular dysfunction. We have previously reported on an antisense oligonucleotide (ASO-29) that dramatically improves auditory function and balance behavior in mice homozygous for the harmonin mutation Ush1c c.216G > A following a single systemic administration. The findings were suggestive of improved vestibular function; however, no direct vestibular assessment was made. Here, we measured vestibular sensory evoked potentials (VsEPs) to directly assess vestibular function in Usher mice. We report that VsEPs are absent or abnormal in Usher mice, indicating profound loss of vestibular function. Strikingly, Usher mice receiving ASO-29 treatment have normal or elevated vestibular response thresholds when treated during a critical period between postnatal day 1 and 5, respectively. In contrast, treatment of mice with ASO-29 treatment at P15 was minimally effective at rescuing vestibular function. Interestingly, ASO-29 treatment at P1, P5 or P15 resulted in sufficient vestibular recovery to support normal balance behaviors, suggesting a therapeutic benefit to balance with ASO-29 treatment at P15 despite the profound vestibular functional deficits that persist with treatment at this later time. These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity.

    Science.gov (United States)

    Xu, Huibin; Wei, Yidong; Zhu, Yongsheng; Lian, Ling; Xie, Hongguang; Cai, Qiuhua; Chen, Qiushi; Lin, Zhongping; Wang, Zonghua; Xie, Huaan; Zhang, Jianfu

    2015-05-01

    Lipid peroxidation plays a major role in seed longevity and viability. In rice grains, lipid peroxidation is catalyzed by the enzyme lipoxygenase 3 (LOX3). Previous reports showed that grain from the rice variety DawDam in which the LOX3 gene was deleted had less stale flavour after grain storage than normal rice. The molecular mechanism by which LOX3 expression is regulated during endosperm development remains unclear. In this study, we expressed a LOX3 antisense construct in transgenic rice (Oryza sativa L.) plants to down-regulate LOX3 expression in rice endosperm. The transgenic plants exhibited a marked decrease in LOX mRNA levels, normal phenotypes and a normal life cycle. We showed that LOX3 activity and its ability to produce 9-hydroperoxyoctadecadienoic acid (9-HPOD) from linoleic acid were significantly lower in transgenic seeds than in wild-type seeds by measuring the ultraviolet absorption of 9-HPOD at 234 nm and by high-performance liquid chromatography. The suppression of LOX3 expression in rice endosperm increased grain storability. The germination rate of TS-91 (antisense LOX3 transgenic line) was much higher than the WT (29% higher after artificial ageing for 21 days, and 40% higher after natural ageing for 12 months). To our knowledge, this is the first report to demonstrate that decreased LOX3 expression can preserve rice grain quality during storage with no impact on grain yield, suggesting potential applications in agricultural production. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    van Ommen Gert-Jan B

    2007-07-01

    Full Text Available Abstract Background Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD. Using antisense oligonucleotides (AONs targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mutations, we now focus on single and multiple exon duplications. These mutations are in principle ideal targets for this approach since the specific skipping of duplicated exons would generate original, full-length transcripts. Methods Cultured muscle cells from DMD patients carrying duplications were transfected with AONs targeting the duplicated exons, and the dystrophin RNA and protein were analyzed. Results For two brothers with an exon 44 duplication, skipping was, even at suboptimal transfection conditions, so efficient that both exons 44 were skipped, thus generating, once more, an out-of-frame transcript. In such cases, one may resort to multi-exon skipping to restore the reading frame, as is shown here by inducing skipping of exon 43 and both exons 44. By contrast, in cells from a patient with an exon 45 duplication we were able to induce single exon 45 skipping, which allowed restoration of wild type dystrophin. The correction of a larger duplication (involving exons 52 to 62, by combinations of AONs targeting the outer exons, appeared problematic due to inefficient skipping and mistargeting of original instead of duplicated exons. Conclusion The correction of DMD duplications by exon skipping depends on the specific exons targeted. Its options vary from the ideal one, restoring for the first time the true, wild type dystrophin, to requiring more 'classical' skipping strategies, while the correction of multi-exon deletions may need the design of tailored approaches.

  7. Development of a rapid and inexpensive method to reveal natural antisense transcripts

    Directory of Open Access Journals (Sweden)

    Collani Silvio

    2012-09-01

    Full Text Available Abstract Background Natural antisense transcripts (NATs are a group of RNAs encoded within a cell that have transcript complementarity to other RNA transcripts. NATs have been identified in multiple eukaryotes, including humans, mice, yeast and several plants, and are known to play crucial roles in gene regulation and modification via RNA interference, alternative splicing and genomic imprinting. NATs are also involved in several human diseases. Results We describe a novel method to detect the occurrence of target NATs in specific plant tissues. This method differs from the others currently used in molecular biology laboratories for a number of reasons, particularly the simplicity and versatility of application, low cost and lower material requirement. We demonstrate that NATs can be detected by using diluted cDNA, avoiding the need for a large amount of RNA, thus differing from basic techniques, such as Northern blot hybridisation and reverse-transcription PCR amplification. Furthermore, our method also allows the precise detection of long NATs and their cloning into plasmid vectors for downstream applications. We also reported the first case of a tissue-specific NAT occurring in Oleaceae family and, the antisense orientation of this transcript, allows the splicing of two introns otherwise impossible in the sense orientation. Conclusions This method is the first that combines the polymerisation and cleavage activity of DNA polymerase and exonuclease enzymes, respectively, to discover NATs in living organisms. It may simplify the discovery of NATs in plants providing a new strategy for an easy identification and characterization of this group of RNA molecules. Furthermore, since NATs are found in multiple eukaryotes, our method can be easily applied to a wide range of organisms, including human, mice and yeast.

  8. Long noncoding nature brain-derived neurotrophic factor antisense is associated with poor prognosis and functional regulation in non-small cell lung caner.

    Science.gov (United States)

    Shen, MingJing; Xu, Zhonghua; Jiang, Kanqiu; Xu, Weihua; Chen, Yongbin; Xu, ZhongHeng

    2017-05-01

    In this study, we evaluated the prognostic potential and functional regulation of human nature antisense, brain-derived neurotrophic factor antisense, in non-small cell lung cancer. Non-small cell lung cancer carcinoma and adjacent non-carcinoma lung tissues were extracted from 151 patients. Their endogenous brain-derived neurotrophic factor antisense expression levels were compared by quantitative reverse transcription polymerase chain reaction. Clinical relevance between endogenous brain-derived neurotrophic factor antisense expression level and patients' clinicopathological variances or overall survival was analyzed. The potential of brain-derived neurotrophic factor antisense being an independent prognostic factor in non-small cell lung cancer was also evaluated. In in vitro non-small cell lung cancer cell lines, brain-derived neurotrophic factor antisense was upregulated through forced overexpression. The effects of brain-derived neurotrophic factor antisense upregulation on non-small cell lung cancer in vitro survival, proliferation, and migration were evaluated by viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, and transwell assays. Brain-derived neurotrophic factor antisense is lowly expressed in non-small cell lung cancer carcinoma tissues and further downregulated in late-stage carcinomas. Brain-derived neurotrophic factor antisense downregulation was closely associated with non-small cell lung cancer patients' advanced tumor, lymph node, metastasis stage, and positive status of lymph node metastasis, and confirmed to be an independent prognostic factor for patients' poor overall survival. In non-small cell lung cancer A549 and H226 cell lines, forced overexpression of brain-derived neurotrophic factor antisense did not alter cancer cell viability but had significantly tumor suppressive effect in inhibiting in vitro non-small cell lung cancer proliferation and migration. Endogenous brain-derived neurotrophic factor antisense in

  9. The structure of the transposable genetic element ISBsu2 from the cryptic plasmid p1516 of a soil Bacillus subtilis strain and the presence of homologues of this element in the chromosomes of various Bacillus subtilis strains

    NARCIS (Netherlands)

    Holsappel, S; Gagarina, EY; Poluektova, EU; Nezametdinova, VZ; Gel'fand, MS; Prozorov, AA; Bron, S

    2003-01-01

    A cryptic plasmid from a soil strain of Bacillus subtilis was found to contain a sequence having features of an IS element. Homologous sequences were also found in the chromosome of this strain and in the chromosomes of some other B. subtilis strains.

  10. Antisense Proline-Arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death

    Science.gov (United States)

    Wen, Xinmei; Tan, Wenzhi; Westergard, Thomas; Krishnamurthy, Karthik; ShamamandriMarkandaiah, Shashirekha; Shi, Yingxiao; Lin, Shaoyu; Shneider, Neil A.; Monaghan, John; Pandey, Udai B.; Pasinelli, Piera; Ichida, Justin K.; Trotti, Davide

    2015-01-01

    SUMMARY Expanded GGGGCC nucleotide repeats within the C9ORF72 gene are the most common genetic mutation associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Sense and antisense transcripts of these expansions are translated to form five dipeptide repeat proteins (DRPs). We employed primary cortical and motor neuron cultures, live-cell imaging, and transgenic fly models and found that the arginine-rich dipeptides, in particular Proline-Arginine (PR), are potently neurotoxic. Factors that anticipated their neurotoxicity included aggregation in nucleoli, decreased number of processing bodies, and stress granules formation, implying global translational dysregulation as path accountable for toxicity. Nuclear PR aggregates were also found in human-induced motor neurons and postmortem spinal cord tissues from C9ORF72 ALS and ALS/FTD patients. Intronic G4C2 transcripts, but not loss of C9ORF72 protein, are also toxic to motor and cortical neurons. Interestingly, G4C2 transcript-mediated neurotoxicity synergizes with that of PR aggregates, suggesting convergence of mechanisms. PMID:25521377

  11. A Novel Antisense CAG Repeat Transcript at JPH3 Locus Mediating Expanded Polyglutamine Protein Toxicity in Huntington’s Disease-Like 2 (HDL2) Mice

    Science.gov (United States)

    Wilburn, Brian; Rudnicki, Dobrila D.; Zhao, Jing; Weitz, Tara Murphy; Cheng, Yin; Gu, Xiaofeng; Greiner, Erin; Park, Chang Sin; Wang, Nan; Sopher, Bryce L.; La Spada, Albert R.; Osmand, Alex; Margolis, Russell L.; Sun, Yi E.; Yang, X. William

    2011-01-01

    SUMMARY Huntington’s disease like-2 (HDL2) is a phenocopy of Huntington’s disease caused by CTG/CAG repeat expansion at the Junctophilin-3 (JPH3) locus. The mechanisms underlying HDL2 pathogenesis remain unclear. Here we developed a BAC transgenic mouse model of HDL2 (BAC-HDL2) that exhibits progressive motor deficits, selective neurodegenerative pathology and ubiquitin-positive nuclear inclusions (NIs). Molecular analyses reveal a novel promoter at the transgene locus driving the expression of a CAG repeat transcript (HDL2-CAG) from the strand antisense to JPH3, which encodes an expanded polyglutamine (polyQ) protein. Importantly, BAC-HDL2 but not control BAC mice accumulate polyQ-containing NIs in a pattern strikingly similar to those in the patients. Furthermore, BAC mice with genetic silencing of the expanded CUG transcript still express HDL2-CAG transcript and manifest polyQ pathogenesis. Finally, studies of HDL2 mice and patients revealed CBP sequestration into NIs and evidence for interference of CBP-mediated transcriptional activation. These results suggest overlapping polyQ-mediated pathogenic mechanisms in HD and HDL2 PMID:21555070

  12. Antisense-mediated suppression of C-hordein biosynthesis in the barley grain results in correlated changes in the transcriptome, protein profile, and amino acid composition

    DEFF Research Database (Denmark)

    Hansen, Mette; Lange, Marianne; Friis, Carsten

    2007-01-01

    Antisense- or RNAi-mediated suppression of the biosynthesis of nutritionally inferior storage proteins is a promising strategy for improving the amino acid profile of seeds. However, the potential pleiotropic effects of this on interconnected pathways and the agronomic quality traits need...... to be addressed. In the current study, a transcriptomic analysis of an antisense C-hordein line of barley was performed, using a grain-specific cDNA array. The C-hordein antisense line is characterized by marked changes in storage protein and amino acid profiles, while the seed weight is within the normal range...... and no external morphological irregularities were observed. The results of the transcriptome analysis showed excellent correlation with data on changes in the relative proportions of storage proteins and amino acid composition. The antisense line had a lower C-hordein level and down-regulated transcript encoding...

  13. Antisense experiments demonstrate an exon 4 minus splice variant mRNA as the basis for expression of tNOX, a cancer-specific cell surface protein.

    Science.gov (United States)

    Tang, Xiaoyu; Morré, D James; Morré, Dorothy M

    2007-01-01

    A novel hydroquinone and NADH oxidase with protein disulfide-thiol interchange activity (designated ENOX2 or tNOX), associated exclusively with the outer leaflet of the plasma membrane at the surface of cancer cells and in sera of cancer patients, is absent from the surface of noncancer cells and from sera from healthy individuals. Transfection of HeLa (human cervical carcinoma) cells with antisense oligonucleotides and measurement of mRNA levels by real-time quantitative PCR and growth and drug response by in vitro cytotoxicity assays were combined to demonstrate encoding of a cancer-specific and growth-related cell surface protein, tNOX, via an exon 4 minus splice variant. tNOX mRNA levels of HeLa cells were determined following transfection with antisense relative to control cells transfected with Lipofectamine using the cycle threshold method normalized for GAPDH mRNA. Antisense to tNOX exon 4 mRNA blocked generation of full-length tNOX mRNA but not of exon 4 minus mRNA. Antisense to exon 5 mRNA inhibited the production of exon 4 minus mRNA and full-length tNOX mRNA. Scrambled antisense to exon 5 mRNA was without effect. Antisense to exon 5 mRNA decreased the amount of tNOX protein on the surface of cancer cells. As a control, antisense-mediated downregulation of exon 5 minus mRNA of tNOX also was demonstrated as detected using exon 4/exon 6 primers. Exon 5 antisense blocked the cell surface expression of tNOX whereas exon 4 antisense was without effect. In contrast to nontransfected HeLa cells, cells transfected with exon 5 antisense were not inhibited by the green tea catechin, (-)-epigallocatechin-3-gallate. A relationship of tNOX to unregulated growth of cancer cells was provided by data where growth of HeLa cells was inhibited by transfection with the exon 5 antisense oligonucleotides. Growth inhibition was followed by apoptosis in greater than 70% of the transfected cells.

  14. Antisense oligonucleotide mediated knockdown of HOXC13 affects cell growth and induces apoptosis in tumor cells and over expression of HOXC13 induces 3D-colony formation

    OpenAIRE

    Kasiri, Sahba; Ansari, Khairul I.; Hussain, Imran; Bhan, Arunoday; Mandal, Subhrangsu S.

    2012-01-01

    HOXC13 is a homeobox containing gene that plays crucial roles in hair development and origin of replication. Herein, we investigated the biochemical functions of HOXC13 and explored its potential roles in tumor cell viability. We have designed a phosphorothioate based antisense-oligonucleotide that specifically knockdown HOXC13 in cultured cells. Cell viability and cytotoxicity assays demonstrated that HOXC13 is essential for cell growth and viability. Antisense-mediated knockdown of HOXC13 a...

  15. Analysis of 14-3-3 Family Member Function in Xenopus Embryos by Microinjection of Antisense Morpholino Oligos

    Science.gov (United States)

    Lau, Jeffrey M. C.; Muslin, Anthony J.

    The 14-3-3 intracellular phosphoserine/threonine-binding proteins are adapter molecules that regulate signal transduction, cell cycle, nutrient sensing, apoptotic, and cytoskeletal pathways. There are seven 14-3-3 family members, encoded by separate genes, in vertebrate organisms. To evaluate the role of individual 14-3-3 proteins in vertebrate embryonic development, we utilized an antisense morpholino oligo microinjection technique in Xenopus laevis embryos. By use of this method, we showed that embryos lacking specific 14-3-3 proteins displayed unique phenotypic abnormalities. Specifically, embryos lacking 14-3-3 τ exhibited gastrulation and axial patterning defects, but embryos lacking 14-3-3 γ exhibited eye defects without other abnormalities, and embryos lacking 14-3-3 ζ appeared completely normal. These and other results demonstrate the power and specificity of the morpholino antisense oligo microinjection technique.

  16. [The creation of transgenic tobacco plants expressing fragments of the ARGOS and NtEXPA4 genes in antisense orientation].

    Science.gov (United States)

    Kuluev, B R; Kniazev, A V; Postrigan', B N; Chemeris, A V

    2014-01-01

    Transgenic tobacco plants expressing the fragments of the ARGOS and NtEXPA4 genes in antisense orientation have been created. Eleven lines of transgenic plants were investigated and five of them were characterized by a decrease in the sizes of the leaves and flowers as compared to control. Stalk sizes decreased when only the NtEXPA4 gene fragment was used. The organ size of the experimental plants decreased because of a reduction in the level of both cell division and cell expansion. Two lines of transgenic tobacco plants expressing the part of the ARGOS gene in antisense orientation were characterized by a reduction in the level of the NtEXPA1 and NtEXPA4 gene expression.

  17. Nanomolar Cellular Antisense Activity of Peptide Nucleic Acid (PNA) Cholic Acid ("Umbrella") and Cholesterol Conjugates Delivered by Cationic Lipids

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-01-01

    of cholesterol and cholic acid ("umbrella") derivatives of splice correction antisense PNA oligomers. While the conjugates alone were practically inactive up to 1 µM, their activity was dramatically improved when delivered by a cationic lipid transfection agent (LipofectAMINE2000). In particular, PNAs...... volume improved transfection efficiency, suggesting that accumulation (condensation) of the PNA/lipid complex on the cellular surface is part of the uptake mechanism. These results provide a novel, simple method for very efficient cellular delivery of PNA oligomers, especially using PNA-cholic acid...... conjugates which, in contrast to PNA-cholesterol conjugates, exhibit sufficient water solubility. The results also question the generality of using cholic acid "umbrella" derivatives as a delivery modality for antisense oligomers....

  18. Overexpression of D-Xylose Reductase (xyl1) Gene and Antisense Inhibition of D-Xylulokinase (xyiH) Gene Increase Xylitol Production in Trichoderma reesei

    Science.gov (United States)

    Hong, Yuanyuan; Dashtban, Mehdi; Kepka, Greg; Chen, Sanfeng; Qin, Wensheng

    2014-01-01

    T. reesei is an efficient cellulase producer and biomass degrader. To improve xylitol production in Trichoderma reesei strains by genetic engineering, two approaches were used in this study. First, the presumptive D-xylulokinase gene in T. reesei (xyiH), which has high homology to known fungi D-xylulokinase genes, was silenced by transformation of T. reesei QM9414 strain with an antisense construct to create strain S6-2-2. The expression of the xyiH gene in the transformed strain S6-2-2 decreased at the mRNA level, and D-xylulokinase activity decreased after 48 h of incubation. This led to an increase in xylitol production from undetectable levels in wild-type T. reesei QM9414 to 8.6 mM in S6-2-2. The T. reesei Δxdh is a xylose dehydrogenase knockout strain with increased xylitol production compared to the wild-type T. reesei QM9414 (22.8 mM versus undetectable). The copy number of the xylose reductase gene (xyl1) in T. reesei Δxdh strain was increased by genetic engineering to create a new strain Δ9-5-1. The Δ9-5-1 strain showed a higher xyl1 expression and a higher yield of xylose reductase, and xylitol production was increased from 22.8 mM to 24.8 mM. Two novel strains S6-2-2 and Δ9-5-1 are capable of producing higher yields of xylitol. T. reesei has great potential in the industrial production of xylitol. PMID:25013760

  19. Overexpression of D-Xylose Reductase (xyl1 Gene and Antisense Inhibition of D-Xylulokinase (xyiH Gene Increase Xylitol Production in Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Yuanyuan Hong

    2014-01-01

    Full Text Available T. reesei is an efficient cellulase producer and biomass degrader. To improve xylitol production in Trichoderma reesei strains by genetic engineering, two approaches were used in this study. First, the presumptive D-xylulokinase gene in T. reesei (xyiH, which has high homology to known fungi D-xylulokinase genes, was silenced by transformation of T. reesei QM9414 strain with an antisense construct to create strain S6-2-2. The expression of the xyiH gene in the transformed strain S6-2-2 decreased at the mRNA level, and D-xylulokinase activity decreased after 48 h of incubation. This led to an increase in xylitol production from undetectable levels in wild-type T. reesei QM9414 to 8.6 mM in S6-2-2. The T. reesei Δxdh is a xylose dehydrogenase knockout strain with increased xylitol production compared to the wild-type T. reesei QM9414 (22.8 mM versus undetectable. The copy number of the xylose reductase gene (xyl1 in T. reesei Δxdh strain was increased by genetic engineering to create a new strain Δ9-5-1. The Δ9-5-1 strain showed a higher xyl1 expression and a higher yield of xylose reductase, and xylitol production was increased from 22.8 mM to 24.8 mM. Two novel strains S6-2-2 and Δ9-5-1 are capable of producing higher yields of xylitol. T. reesei has great potential in the industrial production of xylitol.

  20. The endogenous transposable element Tgm9 is suitable for functional analyses of soybean genes and generating novel mutants for genetic improvement of soybean

    Science.gov (United States)

    In soybean, variegated flowers can be caused by somatic excision of the CACTA-type transposable element Tgm9 from intron 2 of the DFR2 gene encoding dihydroflavonol-4-reductase in the anthocyanin pigment biosynthetic pathway. DFR2 has been mapped to the W4 locus where the allele containing the elem...

  1. [Antiviral effects of dual-target antisense rna: an experimental study with hepatitis B virus transgenic mice].

    Science.gov (United States)

    Zhao, Wei; Chen, Hong; Peng, Zhao-yuan; Li, Wen-gang; Xi, Hong-li; Xu, Xiao-yuan

    2005-12-28

    To investigate the curative effects of dual-target antisense RNA targeting the X and P regions in the genome of hepatitis B virus (HBV). Retrovirus vector pLXSN was used to construct 4 kinds of recombinant vector plasmids expressing dual-target antisense RNA complementary to the X and P regions in the genome of HBV, namely, pLXSN-asX, pLXSN-asP, pLXSN-asXP, and pLXSN-seX. 48 HBV transgenic mice were randomly divided into 6 equal groups: pLXSN-asX group, pLXSN-asX group, pLXSN-asX group, pLXSN-asX group, and blank plasmid blank (pLXSN) group, to be injected into the caudal vein with corresponding plasmids thrice for every other day, and blank control group. Venous blood samples were collected before, 1 day and 3 days, and 2, 4, and 8 weeks after the injection to undergo detection of serum HBV DNA and HBsAg. Eight weeks later the mice were killed and immunohistochemistry was used t examine the HBsAg and HBcAg in the tissues. Pathological examination of the tissues was performed. The serum HBsAg concentrations 4 and 8 weeks after injection were significantly lower than that before injection in the.pLXSN-asX and pLXSN-asXP groups (all P asX group (P asX, pLXSN-asP, and pLXSN-asXP groups than in other groups (P < 0.05). No significant abnormality was found in the tissues in all groups. Dual-target antisense RNA targeting the X and P regions in the genome of HBV inhibits the replication and expression of HBV, significantly stronger than single-target antisense-RNA.

  2. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning.

    Science.gov (United States)

    Tang, G Q; Lüscher, M; Sturm, A

    1999-02-01

    To unravel the functions of cell wall and vacuolar invertases in carrot, we used an antisense technique to generate transgenic carrot plants with reduced enzyme activity. Phenotypic alterations appeared at very early stages of development; indeed, the morphology of cotyledon-stage embryos was markedly changed. At the stage at which control plantlets had two to three leaves and one primary root, shoots of transgenic plantlets did not separate into individual leaves but consisted of stunted, interconnected green structures. When transgenic plantlets were grown on media containing a mixture of sucrose, glucose, and fructose rather than sucrose alone, the malformation was alleviated, and plantlets looked normal. Plantlets from hexose-containing media produced mature plants when transferred to soil. Plants expressing antisense mRNA for cell wall invertase had a bushy appearance due to the development of extra leaves, which accumulated elevated levels of sucrose and starch. Simultaneously, tap root development was markedly reduced, and the resulting smaller organs contained lower levels of carbohydrates. Compared with control plants, the dry weight leaf-to-root ratio of cell wall invertase antisense plants was shifted from 1:3 to 17:1. Plants expressing antisense mRNA for vacuolar invertase also had more leaves than did control plants, but tap roots developed normally, although they were smaller, and the leaf-to-root ratio was 1.5:1. Again, the carbohydrate content of leaves was elevated, and that of roots was reduced. Our data suggest that acid invertases play an important role in early plant development, most likely via control of sugar composition and metabolic fluxes. Later in plant development, both isoenzymes seem to have important functions in sucrose partitioning.

  3. In depth analysis of the Sox4 gene locus that consists of sense and natural antisense transcripts

    OpenAIRE

    King-Hwa Ling; Peter J. Brautigan; Sarah Moore; Rachel Fraser; Melody Pui-Yee Leong; Jia-Wen Leong; Shahidee Zainal Abidin; Han-Chung Lee; Pike-See Cheah; Joy M. Raison; Milena Babic; Young Kyung Lee; Tasman Daish; Deidre M. Mattiske; Jeffrey R. Mann

    2016-01-01

    SRY (Sex Determining Region Y)-Box 4 or Sox4 is an important regulator of the pan-neuronal gene expression during post-mitotic cell differentiation within the mammalian brain. Sox4 gene locus has been previously characterized with multiple sense and overlapping natural antisense transcripts [1], [2]. Here we provide accompanying data on various analyses performed and described in Ling et al. [2]. The data include a detail description of various features found at Sox4 gene locus, additional ex...

  4. Inositol-1-phosphate synthetase mRNA as a new target for antisense inhibition of Mycobacterium tuberculosis.

    Science.gov (United States)

    Li, Yuanyuan; Chen, Zhifei; Li, Xiaobo; Zhang, Hongling; Huang, Qiang; Zhang, Ying; Xu, Shunqing

    2007-03-10

    The need for novel antimicrobial agents to combat the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis is a worldwide urgency. This study has investigated the effects on phosphorothioate-modified antisense oligodeoxyribonucleotides (PS-ODNs) against the mRNA of inositol-1-phosphate synthase, the key enzyme in the first step in inositol synthesis. Inositol is utilized by M. tuberculosis in the production of its major thiol, which is an antioxidant that helps M. tuberculosis to get rid of reactive oxygen species and electrophilic toxins. Real-time RT-PCR analysis revealed that mRNA expression of inositol-1-phosphate (I-1-P) synthase was significantly reduced upon addition of 20 microM PS-ODNs. Treatment with antisense PS-ODNs also reduced the level of mycothiol and the proliferation of M. tuberculosis and enhanced susceptibility to antibiotics. The experiments indicated that the antisense PS-ODNs could enter the cytoplasm of M. tuberculosis and inhibit the expression of I-1-P synthase. This study demonstrates that the M. tuberculosis I-1-P synthase is a target for the development of novel antibiotics and PS-ODN to I-1-P synthase is a promising antimycobaterial candidate.

  5. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors.

    Science.gov (United States)

    Lobos-González, Lorena; Silva, Verónica; Araya, Mariela; Restovic, Franko; Echenique, Javiera; Oliveira-Cruz, Luciana; Fitzpatrick, Christopher; Briones, Macarena; Villegas, Jaime; Villota, Claudio; Vidaurre, Soledad; Borgna, Vincenzo; Socias, Miguel; Valenzuela, Sebastián; Lopez, Constanza; Socias, Teresa; Varas, Manuel; Díaz, Jorge; Burzio, Luis O; Burzio, Verónica A

    2016-09-06

    We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats. Knockdown of ASncmtRNAs with specific antisense oligonucleotides (ASO) reduces murine melanoma B16F10 cell proliferation and induces apoptosis in vitro through downregulation of pro-survival and metastasis markers, particularly survivin. For in vivo studies, subcutaneous B16F10 melanoma tumors in C57BL/6 mice were treated systemically with specific and control antisense oligonucleotides (ASO). For metastasis studies, tumors were resected, followed by systemic administration of ASOs and the presence of metastatic nodules in lungs and liver was assessed. Treatment with specific ASO inhibited tumor growth and metastasis after primary tumor resection. In a metastasis-only assay, mice inoculated intravenously with cells and treated with the same ASO displayed reduced number and size of melanoma nodules in the lungs, compared to controls. Our results suggest that ASncmtRNAs could be potent targets for melanoma therapy. To our knowledge, the ASncmtRNAs are the first potential non-nuclear targets for melanoma therapy.

  6. Rapid blockade of telomerase activity and tumor cell growth by the DPL lipofection of ribbon antisense to hTR.

    Science.gov (United States)

    Bajpai, Arun K; Park, Jeong-Hoh; Moon, Ik-Jae; Kang, Hyungu; Lee, Yun-Han; Doh, Kyung-Oh; Suh, Seong-Il; Chang, Byeong-Churl; Park, Jong-Gu

    2005-09-29

    Ribbon antisense (RiAS) to the hTR RNA, a component of the telomerase complex, was employed to inhibit telomerase activity and cancer cell growth. The antisense molecule, hTR-RiAS, combined with enhanced cellular uptake was shown to effectively inhibit telomerase activity and cause rapid cell death in various cancer cell lines. When cancer cells were treated with hTR-RiAS, the level of hTR RNA was reduced by more than 90% accompanied with reduction in telomerase activity. When checked for cancer cell viability, cancer cell lines treated with hTR-RiAS using DNA+Peptide+Lipid complex showed 70-80% growth inhibition in 3 days. The reduced cell viability was due to apoptosis as the percentage of cells exhibiting the sub-G0 arrest and DNA fragmentation increased after antisense treatment. Further, when subcutaneous tumors of a colon cancer cell line (SW480) were treated intratumorally with hTR-RiAS, tumor growth was markedly suppressed with almost total ablation of hTR RNA in the tumor tissue. Cells in the tumor tissue were also found to undergo apoptosis after hTR-RiAS treatment. These results suggest that hTR-RiAS is an effective anticancer reagent, with a potential for broad efficacy to diverse malignant tumors.

  7. Reversion of antibiotic resistance by inhibiting mecA in clinical methicillin-resistant Staphylococci by antisense phosphorothioate oligonucleotide.

    Science.gov (United States)

    Meng, Jingru; He, Gonghao; Wang, Hui; Jia, Min; Ma, Xue; Da, Fei; Wang, Ning; Hou, Zheng; Xue, Xiaoyan; Li, Mingkai; Zhou, Ying; Luo, Xiaoxing

    2015-03-01

    Methicillin-resistant Staphylococci (MRS), methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE) have become a challenging problem in nosocomial infections and are connected with high morbidity and mortality rates. This is due to the increasing incidence of resistance to virtually all β-lactams and a wide variety of antimicrobials. The spread of MRS severely limits therapeutic options and generates the need for novel antibiotics that are able to combat MRS infections. One method of inhibiting bacterial growth is by blocking the expression of conserved bacterial genes and provides potential new avenues for generating a new generation of antimicrobials. The mecA gene is highly conserved among Staphylococcal species, and this makes it an ideal target for antisense inhibition. We had identified a target sequence (854-871 nt) within the mecA mRNA coding region that is particularly sensitive to antisense inhibition. The anti-mecA PS-ODN04 oligonucleotide was encapsulated into an anionic liposome. MRSA01 and MRSE01 clinical strains treated with this antisense sequence became susceptible to existing β-lactam antibiotics, and their growth was inhibited by oxacillin in vitro and in vivo. PS-ODN04 reduced the bacterial titers in the blood of mice infected with MRSA01 and MRSE01 and significantly improved their survival rate. Our data offer a possible new strategy for treating MRS infections.

  8. The endogenous retroviral insertion in the human complement C4 gene modulates the expression of homologous genes by antisense inhibition.

    Science.gov (United States)

    Schneider, P M; Witzel-Schlömp, K; Rittner, C; Zhang, L

    2001-02-01

    Intron 9 contains the complete endogenous retrovirus HERV-K(C4) as a 6.4-kb insertion in 60% of human C4 genes. The retroviral insertion is in reverse orientation to the C4 coding sequence. Therefore, expression of C4 could lead to the transcription of an antisense RNA, which might protect against exogenous retroviral infections. To test this hypothesis, open reading frames from the HERV sequence were subcloned in sense orientiation into a vector allowing expression of a beta-galactosidase fusion protein. Mouse L cells which had been stably transfected with either the human C4A or C4B gene both carrying the HERV insertion (LC4 cells), and L(Tk-) cells without the C4 gene were transiently transfected either with a retroviral construct or with the wild-type vector. Expression was monitored using an enzymatic assay. We demonstrated that (1) HERV-K(C4) antisense mRNA transcripts are present in cells constitutively expressing C4, (2) expression of retroviral-like constructs is significantly downregulated in cells expressing C4, and (3) this downregulation is further modulated in a dose-dependent fashion following interferon-gamma stimulation of C4 expression. These results support the hypothesis of a genomic antisense strategy mediated by the HERV-K(C4) insertion as a possible defense mechanism against exogenous retroviral infections.

  9. Anomalous behavior of the steel alloying elements in the genetic structure of the solid metal at its smelting in electric furnaces

    Directory of Open Access Journals (Sweden)

    Олександр Михайлович Скребцов

    2016-07-01

    Full Text Available Melting process in an electric arc furnace and transformations taking place in solidified metals are not thoroughly understood yet. This article is devoted to these phenomena in liquid and solid metal and therefore is relevant at the moment. The authors sampled molten metal during all periods of mild steel smelting in an electric arc furnace beginning from melting the charge up to metal outlet out of the furnace into the ladle. Samples were analyzed for chemical elements content, and the microstructure of solidified samples (the ratio of ferrite and pearlite. It has been found that elements expanding γ – phase domain of existence (Mn, Ni during oxidation act similarly at deoxidation, but much weaker. This fact is interesting for science, it is advisable that these phenomena should be checked for the metal melted in other melting units – induction and crucible furnaces

  10. Factors that affect the efficiency of antisense oligodeoxyribonucleotide transfection by insonated gas-filled lipid microbubbles

    International Nuclear Information System (INIS)

    Zhao Yingzheng; Lu Cuitao

    2008-01-01

    Objective: To investigate the factors that affect the efficiency of antisense oligodeoxyribonucleotide(AS-ODNs) transfection by insonated gas-filled lipid microbubbles. Methods: Lipid microbubbles filled with two types of gases-air and C 3 F 8 , were prepared respectively. An AS-ODNs sequence HA824 and a breast cancer cell line SK-BR-3 were used to define the various operating variables determining the transfection efficiency of insonated microbubbles. Two mixing methods, three levels of mixing speed, different mixing durations and various ultrasound initiation time after mixing were examined respectively. Transfection efficiency was detected by fluorescence microscopy. Results: C 3 F 8 microbubbles gave higher levels of AS-ODNs transfection efficiency than air microbubbles in all test conditions. Transfection efficiency resulted from mixing method A (incubation of HA824 and microbubbles before mixing cells) did not show significant difference with that of mixing method B (without incubation of HA824 and microbubbles before mixing cells). Mixing speed, duration of mixing and ultrasound initiation time after mixing were central to determining HA824 transfection efficiency in vitro. The optimum parameters for SK-BR-3 cells were found at a mixing speed of 40-50 rpm for 30-60 s with less than 60 s delay before ultrasound. Conclusion: Ultrasound-mediated AS-ODNs transfection enhanced by C 3 F 8 -filled lipid microbubbles represents an effective avenue for AS-ODNs transfer

  11. Autolysis of cell walls from polygalacturonase-antisense tomato fruit in simulated apoplastic solutions.

    Science.gov (United States)

    Almeida, Domingos P F; Huber, Donald J

    2011-06-01

    Autolysis of cell walls from polygalacturonase (PG)-antisense tomato fruit was studied in a conventional buffer designed to maximize the catalytic activity of PG (30 mM sodium acetate, 150 mM NaCl, pH 4.5), and in solutions mimicking the pH and mineral composition of the fruit apoplast at the mature-green and ripe stages. Autolytic release of uronic acids was very limited under simulated apoplastic conditions compared with the conventional buffer, but minimal differences in the release of reducing groups were observed among the incubation conditions. Autolytic release of uronic acids from active walls was lower than solubilization from enzymically inactive walls. Uronic acids that remained ionically bound to the cell walls during autolysis were subsequently extracted and analyzed by size exclusion chromatography. The elution profiles of ionically bound uronic acids from cell walls incubated under optimal conditions were similar for all ripening stages. In solutions mimicking the pH and mineral composition of the apoplast of mature-green and ripe fruit, uronic acids extracted from pink and ripe fruit cell walls showed a decrease in average molecular mass compared with polymers from mature-green cell walls. The results suggest that the composition of the incubation solution exert strong influence on PG-independent cell wall autolysis and that enzymically active walls restrain PG-independent pectin solubilization. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  12. Molecular imaging of atherosclerotic plaques with technetium-99m-labelled antisense oligonucleotides

    International Nuclear Information System (INIS)

    Qin Guangming; Zhang Yongxue; Cao Wei; An Rui; Gao Zairong; Xu Wendai; Zhang Kaijun; Li Guiling; Li Shuren

    2005-01-01

    The purpose of this study was to visualise experimental atherosclerotic lesions using radiolabelled antisense oligonucleotides (ASONs). Atherosclerosis was induced in New Zealand White rabbits fed 1% cholesterol for approximately 60 days. In vivo and ex vivo imaging was performed in atherosclerotic rabbits and normal control rabbits after i.v. injection of 92.5±18.5 MBq 99m Tc-labelled ASON or 99m Tc-labelled sense oligonucleotides. Immediately after the in vivo imaging, the animals were sacrificed and ex vivo imaging of the aortic specimens was performed. Biodistribution of radiolabelled c-mycASON was evaluated in vivo in atherosclerotic rabbits. Planar imaging revealed accumulation of 99m Tc-labelled c-mycASON in atherosclerotic lesions along the artery wall. Ex vivo imaging further demonstrated that the area of activity accumulation matched the area of atherosclerotic lesions. In contrast, no atherosclerotic lesions were found in the vessel wall and no positive imaging results were obtained in animals of the control group. This molecular imaging approach has potential for non-invasive imaging of atherosclerotic plaques at an early stage. (orig.)

  13. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy.

    Science.gov (United States)

    Wojtkowiak-Szlachcic, Agnieszka; Taylor, Katarzyna; Stepniak-Konieczna, Ewa; Sznajder, Lukasz J; Mykowska, Agnieszka; Sroka, Joanna; Thornton, Charles A; Sobczak, Krzysztof

    2015-03-31

    Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder caused by expansion of CTG triplet repeats in 3'-untranslated region of DMPK gene. The pathomechanism of DM1 is driven by accumulation of toxic transcripts containing expanded CUG repeats (CUG(exp)) in nuclear foci which sequester several factors regulating RNA metabolism, such as Muscleblind-like proteins (MBNLs). In this work, we utilized very short chemically modified antisense oligonucleotides composed exclusively of locked nucleic acids (all-LNAs) complementary to CUG repeats, as potential therapeutic agents against DM1. Our in vitro data demonstrated that very short, 8- or 10-unit all-LNAs effectively bound the CUG repeat RNA and prevented the formation of CUG(exp)/MBNL complexes. In proliferating DM1 cells as well as in skeletal muscles of DM1 mouse model the all-LNAs induced the reduction of the number and size of CUG(exp) foci and corrected MBNL-sensitive alternative splicing defects with high efficacy and specificity. The all-LNAs had low impact on the cellular level of CUG(exp)-containing transcripts and did not affect the expression of other transcripts with short CUG repeats. Our data strongly indicate that short all-LNAs complementary to CUG repeats are a promising therapeutic tool against DM1. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation

    International Nuclear Information System (INIS)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-01-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA–RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners

  15. Changes in Oleic Acid Content of Transgenic Soybeans by Antisense RNA Mediated Posttranscriptional Gene Silencing

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2014-01-01

    Full Text Available The Delta-12 oleate desaturase gene (FAD2-1, which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of seed oil. In this study, we inhibited the expression of endogenous Delta-12 oleate desaturase GmFad2-1b gene by using antisense RNA in soybean Williams 82. By employing the soybean cotyledonary-node method, a part of the cDNA of soybean GmFad2-1b 801 bp was cloned for the construction of a pCAMBIA3300 vector under the soybean seed promoter BCSP. Leaf painting, LibertyLink strip, PCR, Southern blot, qRT-PCR, and fatty acid analysis were used to detect the insertion and expression of GmFad2-1b in the transgenic soybean lines. The results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 51.71% and a reduction in palmitic acid (to <3% in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and the nontransgenic oil extracts.

  16. Anti-sense expression of a metallopeptidase gene enhances nuclear entry of HBV-DNA

    International Nuclear Information System (INIS)

    Yeh, C.-T.; Lai, H.-Y.; Chu, S.-P.; Tseng, I-Chu

    2004-01-01

    Although several putative hepatitis B virus (HBV) receptors have been identified, none of them is capable of initiating HBV replication in a non-permissive human cell line. Using an Epstein-Barr virus-based extrachromosomal replication system, we have screened through a human liver cDNA library and successfully identified a clone capable of facilitating nuclear transport of HBV-DNA during the early phase of HBV infection. This clone contained a cDNA encoding a metallopeptidase-like protein in anti-sense orientation. Pretreatment of naive HepG2 cells with 1,10-phenanthroline, an inhibitor for liver metallopeptidases, led to nuclear entry of HBV-DNA after HBV infection. However, cccDNA was still undetectable in the nuclei, indicating other cellular factors required to complete the replication cycle were still missing. Our present data suggest that in the initial stage of HBV infection, liver metallopeptidase constitutes a barrier for effective nuclear entry of HBV genomic DNA. Attenuation of metallopeptidase activity may facilitate HBV infection

  17. Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript.

    Science.gov (United States)

    Fedak, Halina; Palusinska, Malgorzata; Krzyczmonik, Katarzyna; Brzezniak, Lien; Yatusevich, Ruslan; Pietras, Zbigniew; Kaczanowski, Szymon; Swiezewski, Szymon

    2016-11-29

    Seed dormancy is one of the most crucial process transitions in a plant's life cycle. Its timing is tightly controlled by the expression level of the Delay of Germination 1 gene (DOG1). DOG1 is the major quantitative trait locus for seed dormancy in Arabidopsis and has been shown to control dormancy in many other plant species. This is reflected by the evolutionary conservation of the functional short alternatively polyadenylated form of the DOG1 mRNA. Notably, the 3' region of DOG1, including the last exon that is not included in this transcript isoform, shows a high level of conservation at the DNA level, but the encoded polypeptide is poorly conserved. Here, we demonstrate that this region of DOG1 contains a promoter for the transcription of a noncoding antisense RNA, asDOG1, that is 5' capped, polyadenylated, and relatively stable. This promoter is autonomous and asDOG1 has an expression profile that is different from known DOG1 transcripts. Using several approaches we show that asDOG1 strongly suppresses DOG1 expression during seed maturation in cis, but is unable to do so in trans Therefore, the negative regulation of seed dormancy by asDOG1 in cis results in allele-specific suppression of DOG1 expression and promotes germination. Given the evolutionary conservation of the asDOG1 promoter, we propose that this cis-constrained noncoding RNA-mediated mechanism limiting the duration of seed dormancy functions across the Brassicaceae.

  18. Intravesical Liposome and Antisense Treatment for Detrusor Overactivity and Interstitial Cystitis/Painful Bladder Syndrome

    Science.gov (United States)

    Kashyap, Mahendra P.; Kawamorita, Naoki; Yoshizawa, Tsuyoshi; Chancellor, Michael

    2014-01-01

    Purpose. The following review focuses on the recent advancements in intravesical drug delivery, which brings added benefit to the therapy of detrusor overactivity and interstitial cystitis/painful bladder syndrome (IC/PBS). Results. Intravesical route is a preferred route of administration for restricting the action of extremely potent drugs like DMSO for patients of interstitial cystitis/painful bladder syndrome (IC/PBS) and botulinum toxin for detrusor overactivity. Patients who are either refractory to oral treatment or need to mitigate the adverse effects encountered with conventional routes of administration also chose this route. Its usefulness in some cases can be limited by vehicle (carrier) toxicity or short duration of action. Efforts have been underway to overcome these limitations by developing liposome platform for intravesical delivery of biotechnological products including antisense oligonucleotides. Conclusions. Adoption of forward-thinking approaches can achieve advancements in drug delivery systems targeted to future improvement in pharmacotherapy of bladder diseases. Latest developments in the field of nanotechnology can bring this mode of therapy from second line of treatment for refractory cases to the forefront of disease management. PMID:24527221

  19. Efficient SMN Rescue following Subcutaneous Tricyclo-DNA Antisense Oligonucleotide Treatment

    Directory of Open Access Journals (Sweden)

    Valérie Robin

    2017-06-01

    Full Text Available Spinal muscular atrophy (SMA is a recessive disease caused by mutations in the SMN1 gene, which encodes the protein survival motor neuron (SMN, whose absence dramatically affects the survival of motor neurons. In humans, the severity of the disease is lessened by the presence of a gene copy, SMN2. SMN2 differs from SMN1 by a C-to-T transition in exon 7, which modifies pre-mRNA splicing and prevents successful SMN synthesis. Splice-switching approaches using antisense oligonucleotides (AONs have already been shown to correct this SMN2 gene transition, providing a therapeutic avenue for SMA. However, AON administration to the CNS presents additional hurdles. In this study, we show that systemic delivery of tricyclo-DNA (tcDNA AONs in a type III SMA mouse augments retention of exon 7 in SMN2 mRNA both in peripheral organs and the CNS. Mild type III SMA mice were selected as opposed to the severe type I model in order to test tcDNA efficacy and their ability to enter the CNS after maturation of the blood brain barrier (BBB. Furthermore, subcutaneous treatment significantly improved the necrosis phenotype and respiratory function. In summary, our data support that tcDNA oligomers effectively cross the blood-brain barrier and offer a promising systemic alternative for treating SMA.

  20. Antisense inhibition of hyaluronan synthase-2 in human osteosarcoma cells inhibits hyaluronan retention and tumorigenicity

    International Nuclear Information System (INIS)

    Nishida, Yoshihiro; Knudson, Warren; Knudson, Cheryl B.; Ishiguro, Naoki

    2005-01-01

    Osteosarcoma is a common malignant bone tumor associated with childhood and adolescence. The results of numerous studies have suggested that hyaluronan plays an important role in regulating the aggressive behavior of various types of cancer cells. However, no studies have addressed hyaluronan with respect to osteosarcomas. In this investigation, the mRNA expression copy number of three mammalian hyaluronan synthases (HAS) was determined using competitive RT-PCR in the osteoblastic osteosarcoma cell line, MG-63. MG-63 are highly malignant osteosarcoma cells with an abundant hyaluronan-rich matrix. The results demonstrated that HAS-2 is the predominant HAS in MG-63. Accumulation of intracellular hyaluronan increased in association with the proliferative phase of these cells. The selective inhibition of HAS-2 mRNA in MG-63 cells by antisense phosphorothioate oligonucleotides resulted in reduced hyaluronan accumulation by these cells. As expected, the reduction in hyaluronan disrupted the assembly of cell-associated matrices. However, of most interest, coincident with the reduction in hyaluronan, there was a substantial decrease in cell proliferation, a decrease in cell motility and a decrease in cell invasiveness. These data suggest that hyaluronan synthesized by HAS-2 in MG-63 plays a crucial role in osteosarcoma cell proliferation, motility, and invasion

  1. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation.

    Science.gov (United States)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-07-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA-RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners.

  2. Antimicrobial resistance and genetic diversity of the SXT element in Vibrio cholerae from clinical and environmental water samples in northeastern Thailand.

    Science.gov (United States)

    Mala, Wanida; Faksri, Kiatichai; Samerpitak, Kittipan; Yordpratum, Umaporn; Kaewkes, Wanlop; Tattawasart, Unchalee; Chomvarin, Chariya

    2017-08-01

    Multidrug resistance in V. cholerae has been increasing around the world including northeastern Thailand. The aquatic environment is a reservoir of V. cholerae and might be an important source of resistant strains. The aims of this study were to investigate the phylogenetic relationships of int SXT gene sequences from 31 clinical and 14 environmental V. cholerae O1 and non-O1/non-O139 isolates and 11 sequences amplified directly from environmental water samples. We also amplified class 1 integrons, the SXT elements (targeting the int SXT gene) and antimicrobial resistance genes directly from water samples. Phylogenetic analysis displayed two major distinct clusters (clusters 1 and 2). Most V. cholerae O1 (19/20, 95%) and non-O1/non-O139 isolates (8/11, 72.7%) from clinical sources, and all sequences obtained directly from water samples, belonged to cluster 1. Cluster 2 mostly comprised environmental non-O1/non-O139 isolates (10/12, 83.3%). We successfully amplified the SXT elements directly from17.5% of water samples. Associated resistance genes were also amplified as follows: sul2 (41.3% of water samples), dfrA1 (60%), dfr18 (33.8%), strB (70%) and tetA (2.5%). Class 1 integrons were not found in water samples, indicating that the SXT element was the major contributor of multidrug resistance determinants in this region. The SXT element and antimicrobial resistance genes could be transferred from clinical V. cholerae O1 to environmental V. cholerae non-O1/non-O139 was demonstrated by conjugation experiment. These findings indicate that there may have been cross dissemination and horizontal gene transfer (HGT) of the SXT element harbored by V. cholerae O1 and non-O1/non-O139 strains isolated from clinical and environmental water sources. Environmental water might be an important source of antimicrobial resistance genes in V. cholerae in this region. Direct detection of antimicrobial resistance genes in water samples can be used for monitoring the spread of such

  3. An in silico approach reveals associations between genetic and epigenetic factors within regulatory elements in B cells from primary Sjögren’s syndrome patients

    Directory of Open Access Journals (Sweden)

    Orsia D. Konsta

    2015-08-01

    Full Text Available Recent advances in genetics have highlighted several regions and candidate genes associated with primary Sjögren's syndrome (SS, a systemic autoimmune epithelitis that combines exocrine gland dysfunctions, and focal lymphocytic infiltrations. In addition to genetic factors, it is now clear that epigenetic deregulations are present during SS and restricted to specific cell type subsets such as lymphocytes and salivary gland epithelial cells. In this study, 72 single nucleotide polymorphisms (SNPs associated with 43 SS gene risk factors were selected from publicly available and peer reviewed literature for further in silico analysis. SS risk variant location was tested revealing a broad distribution in coding sequences (5.6%, intronic sequences (55.6%, upstream/downstream genic regions (30.5%, and intergenic regions (8.3%. Moreover, a significant enrichment of regulatory motifs (promoter, enhancer, insulator, DNAse peak and eQTL characterizes SS risk variants (94.4%. Next, screening SNPs in high linkage disequilibrium (r2 ≥ 0.8 in Caucasians revealed 645 new variants including 5 SNPs with missense mutations, and indicated an enrichment of transcriptionally active motifs according to the cell type (B cells > monocytes > T cells >> A549. Finally, we looked at SS risk variants for histone markers in B cells (GM12878, monocytes (CD14+ and epithelial cells (A548. Active histone markers were associated with SS risk variants at both promoters and enhancers in B cells, and within enhancers in monocytes. In conclusion and based on the obtained in silico results, that need further confirmation, associations were observed between SS genetic risk factors and epigenetic factors and these associations predominate in B cells such as those observed at the FAM167A-BLK locus.

  4. Expression of an antisense Datura stramonium S-adenosylmethionine decarboxylase cDNA in tobacco: changes in enzyme activity, putrescine-spermidine ratio, rhizogenic potential, and response to methyl jasmonate.

    Science.gov (United States)

    Torrigiani, Patrizia; Scaramagli, Sonia; Ziosi, Vanina; Mayer, Melinda; Biondi, Stefania

    2005-05-01

    S-adenosylmethionine decarboxylase activity (SAMDC; EC 4.1.1.21) leads to spermidine and spermine synthesis through specific synthases which use putrescine, spermidine and decarboxylated S-adenosylmethionine as substrates. In order to better understand the regulation of polyamine (PA), namely spermidine and spermine, biosynthesis, a SAMDC cDNA of Datura stramonium was introduced in tobacco (Nicotiana tabacum L. cv. Xanthi) in antisense orientation under the CaMV 35S promoter, by means of Agrobacterium tumefaciens and leaf disc transformation. The effect of the genetic manipulation on PA metabolism, ethylene production and plant morphology was analysed in primary transformants (R0), and in the transgenic progeny (second generation, R1) of self-fertilised primary transformants, relative to empty vector-transformed (pBin19) and wild-type (WT) controls. All were maintained in vitro by micropropagation. Primary transformants, which were confirmed by Southern and northern analyses, efficiently transcribed the antisense SAMDC gene, but SAMDC activity and PA titres did not change. By contrast, in most transgenic R1 shoots, SAMDC activity was remarkably lower than in controls, and the putrescine-to-spermidine ratio was altered, mainly due to increased putrescine, even though putrescine oxidising activity (diamine oxidase, EC 1.4.3.6) did not change relative to controls. Despite the reduction in SAMDC activity, the production of ethylene, which shares with PAs the common precursor SAM, was not influenced by the foreign gene. Some plants were transferred to pots and acclimatised in a growth chamber. In these in vivo-grown second generation transgenic plants, at the vegetative stage, SAMDC activity was scarcely reduced, and PA titres did not change. Finally, the rhizogenic potential of in vitro-cultured leaf explants excised from antisense plants was significantly diminished as compared with WT ones, and the response to methyl jasmonate, a stress-mimicking compound, in terms

  5. The genomes of closely related Pantoea ananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements

    Directory of Open Access Journals (Sweden)

    Raheleh eSheibani-Tezerji

    2015-05-01

    Full Text Available The seed as a habitat for microorganisms is as yet under-explored and has quite distinct characteristics as compared to other vegetative plant tissues. In this study, we investigated three closely related P. ananatis strains (named S6, S7 and S8, which were isolated from maize seeds of healthy plants. Plant inoculation experiments revealed that each of these strains exhibited a different phenotype ranging from weak pathogenic (S7, commensal (S8, to a beneficial, growth-promoting effect (S6 in maize. We performed a comparative genomics analysis in order to find genetic determinants responsible for the differences observed. Recent studies provided exciting insight into the genetic drivers of niche adaption and functional diversification of the genus Pantoea. However, we report here for the first time on the analysis of P. ananatis strains colonizing the same ecological niche but showing distinct interaction strategies with the host plant. Our comparative analysis revealed that genomes of these three strains are highly similar. However, genomic differences in genes encoding protein secretion systems and putative effectors, and transposase/integrases/phage related genes could be observed.

  6. Genetic and molecular studies of a composite chromosomal element (Tn3705) containing a Tn916-modified structure (Tn3704) in Streptococcus anginosus F22.

    Science.gov (United States)

    Clermont, D; Horaud, T

    1994-01-01

    The plasmid-free Streptococcus anginosus F22 contained a conjugative element, Tn3705, encoding resistance to erythromycin (Emr) and tetracycline-minocycline (Tcr-Mnr). We mapped a chromosomal region (> 52 kb) of F22, corresponding to the internal part of Tn3705. Molecular analysis of Tn3705 revealed it to be a composite structure: it included in its central part a transposon designated Tn3704 (20.3 kb +/- 0.5 kb), which had a modified structure in comparison with that of Tn916 and on which the Emr Tcr-Mn4 markers were localized. Tn3705 inserted from F22 into the chromosome of various streptococcal transconjugants as well as that of Enterococcus faecalis transconjugants without changing its structure. In contrast, from the chromosome of an E. faecalis::Tn3705 transconjugant only Tn3704 inserted, at various sites, into another E. faecalis chromosome. Sugar fermentations occurred after the insertion of Tn3704 into the chromosome of an asaccharolytic E. faecalis strain. Transposition of only Tn3704 from the chromosome of E. faecalis::Tn3705 onto pIP964, an E. faecalis hemolysin plasmid, yielded two different pIP964 derivatives. The size of the entire element Tn3705 was estimated to be about 70.0 kb by pulsed-field electrophoresis.

  7. Toxic Elements

    DEFF Research Database (Denmark)

    Hajeb, Parvaneh; Shakibazadeh, Shahram; Sloth, Jens Jørgen

    2016-01-01

    Food is considered the main source of toxic element (arsenic, cadmium, lead, and mercury) exposure to humans, and they can cause major public health effects. In this chapter, we discuss the most important sources for toxic element in food and the foodstuffs which are significant contributors...... to human exposure. The occurrence of each element in food classes from different regions is presented. Some of the current toxicological risk assessments on toxic elements, the human health effect of each toxic element, and their contents in the food legislations are presented. An overview of analytical...... techniques and challenges for determination of toxic elements in food is also given....

  8. S-phase reduction in T47D human breast cancer epithelial cells induced by an S100P antisense-retroviral construct.

    Science.gov (United States)

    Beissel, Bettina; Silva, Ismael D C G; Pesquero, João B; Russo, Jose; Schor, Nestor; Bellini, Maria Helena

    2007-03-01

    S100P is expressed in several malignant neoplasms. It was previously demonstrated that S100P is involved in the very early stages of breast carcinogenesis. In the present study we used a retrovirus-mediated transfer of antisense-S100P in order to check whether the decrease in expression of this protein could lead to alterations in the cell cycle of epithelial cells of human breast cancer. The T47D breast carcinoma cell line, a human breast epithelial cell that expresses high levels of S100P, was a tool used in this study to investigate the alteration in cell cycle induced by a retrovirus-mediated transfer of antisense-S100P. First we used the real-time PCR technique to quantify the gene expression. The results showed a reduction of 63% of expression within the T47D-S100P-A/S infected population compared with control T47D-LXSN clones. To determine the impact of the S100P antisense technique on protein expression in T47D cells, we performed immunofluorescence staining and analyzed the resulting images using a confocal microscope. The images showed much less pronounced antibody marking of the S100P protein in the T47D-S100P-A/S compared with control cells. To evaluate whether the antisense approach caused any alteration in the cell cycle, we concluded the study with flow cytometric analysis of the cell distribution. Our findings indicated that, in our model, S100P-antisense cells showed a 23% reduction of cells at the S-phase. Using transduction techniques with an S100P antisense-retroviral construct we were able to demonstrate a significant reduction in S-phase of the T47D cell cycle. To the best of our knowledge, this is the first time that an antisense approach has been used against S100P mRNA in breast cancer epithelial cells. The results showed here seem to further classify S100P as a protein that might be involved in the cell cycle imbalance observed during breast carcinogenesis.

  9. Genome Dynamics of Escherichia coli during Antibiotic Treatment: Transfer, Loss, and Persistence of Genetic Elements In situ of the Infant Gut

    DEFF Research Database (Denmark)

    Porse, Andreas; Gumpert, Heidi; Kubicek-Sutherland, Jessica Z.

    2017-01-01

    genomic content during subsequent antibiotic treatment. Interestingly, all isolates of this uropathogenic E. coli strain carried a highly stable plasmid implicated in virulence of diverse pathogenic strains from all over the world. While virulence elements are certainly beneficial during infection...... made to elucidate the genome dynamics of E. coli in its native settings. Here, we follow the genome dynamics of co-existing E. coli lineages in situ of the infant gut during the first year of life. One E. coli lineage causes a urinary tract infection (UTI) and experiences several alterations of its......Elucidating the adaptive strategies and plasticity of bacterial genomes in situ is crucial for understanding the epidemiology and evolution of pathogens threatening human health. While much is known about the evolution of Escherichia coli in controlled laboratory environments, less effort has been...

  10. Antisense inhibition of cyclin D1 expression is equivalent to flavopiridol for radiosensitization of zebrafish embryos

    International Nuclear Information System (INIS)

    Purpose: Flavopiridol, a small molecule pan-cyclin inhibitor, has been shown to enhance Radiation response of tumor cells both in vitro and in vivo. The clinical utility of flavopiridol, however, is limited by toxicity, previously attributed to pleiotropic inhibitory effects on several targets affecting multiple signal transduction pathways. Here we used zebrafish embryos to investigate radiosensitizing effects of flavopiridol in normal tissues. Methods and Materials: Zebrafish embryos at the 1- to 4-cell stage were treated with 500 nM flavopiridol or injected with 0.5 pmol antisense hydroxylprolyl-phosphono nucleic acid oligomers to reduce cyclin D1 expression, then subjected to ionizing radiation (IR) or no radiation. Results: Flavopiridol-treated embryos demonstrated a twofold increase in mortality after exposure to 40 Gy by 96 hpf and developed distinct radiation-induced defects in midline development (designated as the 'curly up' phenotype) at higher rates when compared with embryos receiving IR only. Cyclin D1-deficient embryos had virtually identical IR sensitivity profiles when compared with embryos treated with flavopiridol. This was particularly evident for the IR-induced curly up phenotype, which was greatly exacerbated by both flavopriridol and cyclin D1 downregulation. Conclusions: Treatment of zebrafish embryos with flavopiridol enhanced radiation sensitivity of zebrafish embryos to a degree that was very similar to that associated with downregulation of cyclin D1 expression. These results are consistent with the hypothesis that inhibition of cyclin D1 is sufficient to account for the radiosensitizing action of flavopiridol in the zebrafish embryo vertebrate model

  11. Defining the factors that contribute to on-target specificity of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Walt F Lima

    Full Text Available To better understand the factors that influence the activity and specificity of antisense oligonucleotides (ASOs, we designed a minigene encoding superoxide dismutase 1 (SOD-1 and cloned the minigene into vectors for T7 transcription of pre-mRNA and splicing in a nuclear extract or for stable integration in cells. We designed a series of ASOs that covered the entire mRNA and determined the binding affinities and activities of the ASOs in a cell-free system and in cells. The mRNA bound known RNA-binding proteins on predicted binding sites in the mRNA. The higher order structure of the mRNA had a significantly greater effect than the RNA-binding proteins on ASO binding affinities as the ASO activities in cells and in the cell-free systems were consistent. We identified several ASOs that exhibited off-target hybridization to the SOD-1 minigene mRNA in the cell-free system. Off-target hybridization occurred only at highly accessible unstructured sites in the mRNA and these interactions were inhibited by both the higher order structure of the mRNA and by RNA-binding proteins. The same off-target hybridization interactions were identified in cells that overexpress E. coli RNase H1. No off-target activity was observed for cells expressing only endogenous human RNase H1. Neither were these off-target heteroduplexes substrates for recombinant human RNase H1 under multiple-turnover kinetics suggesting that the endogenous enzyme functions under similar kinetic parameters in cells and in the cell-free system. These results provide a blueprint for design of more potent and more specific ASOs.

  12. Contributions of Japanese patients to development of antisense therapy for DMD.

    Science.gov (United States)

    Matsuo, Masafumi; Takeshima, Yasuhiro; Nishio, Hisahide

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a fatal progressive muscle wasting disease considered untreatable since its first description in 1868. In 1987, the dystrophin gene responsible for DMD was cloned. This paved the way for the development of therapies. Antisense oligonucleotide (AO)-mediated exon skipping therapy is now reaching the stage of marketing authorization. On the 20th anniversary of the proposal of AO-mediated exon skipping therapy for DMD, this review explores the contributions of Japanese patients. In 1990, a Japanese DMD patient was reported as having a small deletion within dystrophin exon 19 and complicating exon 19 skipping in the absence of any mutation at the consensus splice sites. This led to identification of a splicing enhancer sequence within exon 19. Remarkably, AOs against this sequence were shown to induce exon skipping. This encouraged us to propose AO-mediated exon skipping therapy for DMD in 1995. The therapy's effectiveness was verified in a Japanese patient with a nonsense dystrophin mutation manifesting as Becker muscular dystrophy. The patient showed skipping of the nonsense mutation-encoding exon. Finally, a DMD patient carrying a deletion of exon 20 volunteered to undergo intravenous AO infusion, enabling us to obtain proof of concept. The findings from these three patients greatly facilitated studies on exon skipping therapy. As a result, more than 300 reports on AO-mediated exon skipping therapy for DMD have been published, including at least two a month during the last few years. We greatly appreciate the important contributions of Japanese patients to development of the exon skipping therapy for DMD. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  13. Selective Neuromuscular Denervation in Taiwanese Severe SMA Mouse Can Be Reversed by Morpholino Antisense Oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Te-Lin Lin

    Full Text Available Spinal muscular atrophy (SMA is an autosomal recessive motor neuron disease caused by deficiency of the survival of motor neuron (SMN protein, which leads to synaptic defects and spinal motor neuron death. Neuromuscular junction (NMJ abnormalities have been found to be involved in SMA pathogenesis in the SMNΔ7 SMA mouse model. However, whether similar NMJ pathological findings present in another commonly used mouse model, the Taiwanese SMA mouse, has not been fully investigated. To examine the NMJs of the Taiwanese severe SMA mouse model (Smn-/-; SMN2tg/0, which is characterized by severe phenotype and death before postnatal day (P 9, we investigated 25 axial and appendicular muscles from P1 to P9. We labelled the muscles with anti-neurofilament and anti-synaptophysin antibodies for nerve terminals and α-bungarotoxin for acetylcholine receptors (AChRs. We found that severe NMJ denervation (<50% fully innervated endplates selectively occurred in the flexor digitorum brevis 2 and 3 (FDB-2/3 muscles from P5, and an increased percentage of fully denervated endplates correlated with SMA progression. Furthermore, synaptophysin signals were absent at the endplate compared to control littermate mice, suggesting that vesicle transport might only be affected at the end stage. Subsequently, we treated the Taiwanese severe SMA mice with morpholino (MO antisense oligonucleotides (80 μg/g via subcutaneous injection at P0. We found that MO significantly reversed the NMJ denervation in FDB-2/3 muscles and extended the survival of Taiwanese severe SMA mice. We conclude that early NMJ denervation in the FDB-2/3 muscles of Taiwanese severe SMA mice can be reversed by MO treatment. The FDB-2/3 muscles of Taiwanese severe SMA mice provide a very sensitive platform for assessing the effectiveness of drug treatments in SMA preclinical studies.

  14. Elucidation of the Biotransformation Pathways of a Galnac3-conjugated Antisense Oligonucleotide in Rats and Monkeys

    Directory of Open Access Journals (Sweden)

    Colby S Shemesh

    2016-01-01

    Full Text Available Triantennary N-acetyl galactosamine (GalNAc3 is a high-affinity ligand for hepatocyte-specific asialoglycoprotein receptors. Conjugation with GalNAc3 via a trishexylamino (THA-C6 cluster significantly enhances antisense oligonucleotide (ASO potency. Herein, the biotransformation, disposition, and elimination of the THA cluster of ION-681257, a GalNAc3-conjugated ASO currently in clinical development, are investigated in rats and monkey. Rats were administered a single subcutaneous dose of 3H-radiolabeled (3H placed in THA or nonradiolabeled ION-681257. Mass balance included radiometric profiling and metabolite fractionation with characterization by mass spectrometry. GalNAc3-conjugated ASOs were extensively distributed into liver. The THA-C6 triantenerrary GalNAc3 conjugate at the 5′-end of the ASO was rapidly metabolized and excreted with 25.67 ± 1.635% and 71.66 ± 4.17% of radioactivity recovered in urine and feces within 48 hours postdose. Unchanged drug, short-mer ASOs, and linker metabolites were detected in urine. Collectively, 14 novel linker associated metabolites were discovered including oxidation at each branching arm, initially by monooxidation at the β-position followed by dioxidation at the α-arm, and lastly, tri and tetra oxidations on the two remaining β-arms. Metabolites in bile and feces were identical to urine except for oxidized linear and cyclic linker metabolites. Enzymatic reaction phenotyping confirmed involvement of N-acetyl-β-glucosaminidase, deoxyribonuclease II, alkaline phosphatase, and alcohol + aldehyde dehydrogenases on the complex metabolism pathway for THA supplementing in vivo findings. Lastly, excreta from monkeys treated with ION-681257 revealed the identical series as observed in rat. In summary, our findings provide an improved understanding of GalNAc3-conjugated-ASO metabolism pathways which facilitate similar development programs.

  15. Regulation of anti-sense transcription by Mot1p and NC2 via removal of TATA-binding protein (TBP) from the 3'-end of genes.

    Science.gov (United States)

    Koster, Maria J E; Timmers, H Th Marc

    2015-01-01

    The activity and dynamic nature of TATA-binding protein (TBP) crucial to RNA polymerase II-mediated transcription is under control of the Mot1p and NC2 complexes. Here we show that both TBP regulatory factors play 'hidden' roles in ensuring transcription fidelity by restricting anti-sense non-coding RNA (ncRNA) synthesis. Production of anti-sense ncRNA transcripts is suppressed by Mot1p- and NC2-mediated release of TBP from binding sites at the 3'-end of genes. In this, Mot1p and NC2 collaborate with the Nrd1p-Nab3p-Sen1p (NNS) complex that terminates the synthesis of anti-sense ncRNAs. In several cases anti-sense ncRNA expression interferes with expression of the cognate sense transcript. Our data reveal a novel regulatory mechanism to suppress anti-sense ncRNA expression and pre-initiation complex (PIC) formation at spurious sites. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Elements for the Design of a Decision-making Information System for activities related to genetically modified organisms: Contributions from a case study

    International Nuclear Information System (INIS)

    Benavides Molineros, Julia; Aguirre Ramirez, Nestor

    2012-01-01

    In Colombia, decisions related to genetically modified organisms (GMOs) must be supported by assessment of the risk to biodiversity, human health and agricultural production. Based on this assessment, authorities can make decisions involving authorization or denial of the requested activities. The rationality of the decision-making process is very well established with respect to human health, particularly toxicity and allergenicity, but that is not the case for biodiversity issues. One of the biggest problems in this area is the lack of definition of a decision-making methodology, which leads to decisions made in an intuitive and non-systematic manner. Authorities in the field have recognized the need for a decision-making information system to help solve this situation. A proposal for the basic structure of a decision-making information system oriented to authorities involved in the process is presented. The proposal was developed based on a review of the main existing methodologies for GMO risk assessment and on a case study of the gene flow from GMOs to wild relatives. The structure is presented as a broad entity-relationship model from which the detailed design of the system can be developed. The proposal emphasizes the documentation of the decision protocols and the rationality of use of the information inputs.

  17. The detection of T-Nos, a genetic element present in GMOs, by cross-priming isothermal amplification with real-time fluorescence.

    Science.gov (United States)

    Zhang, Fang; Wang, Liu; Fan, Kai; Wu, Jian; Ying, Yibin

    2014-05-01

    An isothermal cross-priming amplification (CPA) assay for Agrobacterium tumefaciens nopaline synthase terminator (T-Nos) was established and investigated in this work. A set of six specific primers, recognizing eight distinct regions on the T-Nos sequence, was designed. The CPA assay was performed at a constant temperature, 63 °C, and detected by real-time fluorescence. The results indicated that real-time fluorescent CPA had high specificity, and the limit of detection was 1.06 × 10(3) copies of rice genomic DNA, which could be detected in 40 min. Comparison of real-time fluorescent CPA and conventional polymerase chain reaction (PCR) was also performed. Results revealed that real-time fluorescent CPA had a comparable sensitivity to conventional real-time PCR and had taken a shorter time. In addition, different contents of genetically modified (GM)-contaminated rice seed powder samples were detected for practical application. The result showed real-time fluorescent CPA could detect 0.5 % GM-contaminated samples at least, and the whole reaction could be finished in 35 min. Real-time fluorescent CPA is sensitive enough to monitor labeling systems and provides an attractive method for the detection of GMO.

  18. Potential pitfalls in the accuracy of analysis of natural sense-antisense RNA pairs by reverse transcription-PCR

    Directory of Open Access Journals (Sweden)

    Guo Hongyan

    2007-05-01

    Full Text Available Abstract Background The ability to accurately measure patterns of gene expression is essential in studying gene function. The reverse transcription polymerase chain reaction (RT-PCR has become the method of choice for the detection and measurement of RNA expression patterns in both cells and small quantities of tissue. Our previous results show that there is a significant production of primer-independent cDNA synthesis using a popular RNase H- RT enzyme. A PCR product was amplified from RT reactions that were carried out without addition of RT-primer. This finding jeopardizes the accuracy of RT-PCR when analyzing RNA that is expressed in both orientations. Current literature findings suggest that naturally occurring antisense expression is widespread in the mammalian transcriptome and consists of both coding and non-coding regulatory RNA. The primary purpose of this present study was to investigate the occurrence of primer-independent cDNA synthesis and how it may influence the accuracy of detection of sense-antisense RNA pairs. Results Our findings on cellular RNA and in vitro synthesized RNA suggest that these products are likely the results of RNA self-priming to generate random cDNA products, which contributes to the loss of strand specificity. The use of RNase H+ RT enzyme and carrying the RT reaction at high temperature (50°C greatly improved the strand specificity of the RT-PCR detection. Conclusion While RT PCR is a basic method used for the detection and quantification of RNA expression in cells, primer-independent cDNA synthesis can interfere with RT specificity, and may lead to misinterpretation of the results, especially when both sense and antisense RNA are expressed. For accurate interpretation of the results, it is essential to carry out the appropriate negative controls.

  19. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Xing Xian Yu

    Full Text Available Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4 in peripheral tissues. Treatment of diet-induce obese (DIO mice with FGFR4 antisense oligonucleotides (ASO specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  20. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Science.gov (United States)

    Yu, Xing Xian; Watts, Lynnetta M; Manchem, Vara Prasad; Chakravarty, Kaushik; Monia, Brett P; McCaleb, Michael L; Bhanot, Sanjay

    2013-01-01

    Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  1. Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft

    Directory of Open Access Journals (Sweden)

    Baldi Alfonso

    2011-07-01

    Full Text Available Abstract Background Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139 as well as the efficacy of combination chemotherapy in human melanoma xenografts. Methods Melanoma-bearing nude mice were treated i.v. with G3139 and/or cisplatin (DDP followed by the application of trains of electric pulses to tumors. Western blot, immunohistochemistry and real-time PCR were performed to analyze protein and mRNA expression. The effect of electroporation on muscles was determined by histology, while tumor apoptosis and the proliferation index were analyzed by immunohistochemistry. Antisense oligodeoxynucleotides tumor accumulation was measured by FACS and confocal microscopy. Results The G3139/Electroporation combined therapy produced a significant inhibition of tumor growth (TWI, more than 50% accompanied by a marked tumor re-growth delay (TRD, about 20 days. The efficacy of this treatment was due to the higher G3139 uptake in tumor cells which led to a marked down-regulation of bcl-2 protein expression. Moreover, the G3139/EP combination treatment resulted in an enhanced apoptotic index and a decreased proliferation rate of tumors. Finally, an increased tumor response was observed after treatment with the triple combination G3139/DDP/EP, showing a TWI of about 75% and TRD of 30 days. Conclusions These results demonstrate that electroporation is an effective strategy to improve the delivery of antisense oligodeoxynucleotides within tumor cells in vivo and it may be instrumental in optimizing the response of melanoma to chemotherapy. The high response rate observed in this study suggest to apply this strategy for the treatment of melanoma patients.

  2. Modulation of splicing of the preceding intron by antisense oligonucleotide complementary to intra-exon sequence deleted in dystrophin Kobe

    Energy Technology Data Exchange (ETDEWEB)

    Takeshima, Y.; Matuso, M.; Sakamoto, H.; Nishio, H. [Kobe Univ. School of Medicine and Science (Japan)

    1994-09-01

    Molecular analysis of dystrophin Kobe showed that exon 19 of the dystrophin gene bearing a 52 bp deletion was skipped during splicing, although the known consensus sequences at the 5{prime} and 3{prime} splice site of exon 19 were maintained. These data suggest that the deleted sequence of exon 19 may function as a cis-acting factor for exact splicing for the upstream intron. To investigate this potential role, an in vitro splicing system using dystrophin precursors was established. A two-exon precursor containing exon 18, truncated intron 18, and exon 19 was accurately spliced. However, splicing of intron 18 was dramatically inhibited when wild exon 19 was replaced with mutated exon 19. Even though the length of exon 19 was restored to normal by replacing the deleted sequence with other sequence, splicing of intron 18 was not fully reactivated. Characteristically, splicing of intron 18 was inactivated more markedly when the replaced sequence contained less polypurine stretches. These data suggested that modification of the exon sequence would result in a splicing abnormality. Antisense 31 mer 2`-O-methyl ribonucleotide was targeted against 5{prime} end of deleted region of exon 19 to modulate splicing of the mRNA precursor. Splicing of intron 18 was inhibited in a dose- and time-dependent manner. This is the first in vitro evidence to show splicing of dystrophin pre-mRNA can be managed by antisense oligonucleotides. These experiments represent an approach in which antisense oligonucleotides are used to restore the function of a defective dystrophin gene in Duchenne muscular dystrophy by inducing skipping of certain exons during splicing.

  3. Delivery of antisense oligonucleotide into cells using synthetic peptide; Gosei pepuchido wo mochiita anchisensu origonukureochido no saibounai donyu

    Energy Technology Data Exchange (ETDEWEB)

    Niidome, Takuro [Nagasaki University, Nagasaki (Japan). Dept. of Applied Chemistry

    1999-12-16

    Much attention has been attracted to the antisense oligonucleotide as a novel nucleic acid medicine. However, many problems to be solved such as delivery system in vivo and permeation through cell membrane are pointed out. In this study, we found out that some cationic peptides were useful as an oligonucleotide-carrier molecule into cells. Furthermore, to develop a cell specific gene delivery system using the cationic peptide, we modified the peptides with several galactose residues. As a result, the modified peptides showed high transfer efficiencies into hepatoma cells, and then, it was clear that the internalization into cells was mediated by asialoglycoprotein receptor on hepatoma cell. (author)

  4. Improved cellular uptake of antisense Peptide nucleic acids by conjugation to a cell-penetrating Peptide and a lipid domain

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    based on a splicing correction of a mutated luciferase gene in HeLa pLuc705 cells by targeting antisense oligonucleotides to a cryptic splice site. Further improvement in the delivery of CatLip-PNA conjugates is achieved by using auxiliary agents/treatments (e.g., chloroquine, calcium ions...... peptides known as cell-penetrating peptides (CPPs) is attracting wide attention for a variety of biologically active molecules. CPP-mediated delivery is typically based on the covalent conjugation of the (therapeutic) cargo to CPPs, and is particularly relevant for the delivery of noncharged RNA...

  5. HIV Sequence Variation Associated With env Antisense Adoptive T-cell Therapy in the hNSG Mouse Model

    OpenAIRE

    Mukherjee, Rithun; Plesa, Gabriela; Sherrill-Mix, Scott; Richardson, Max W; Riley, James L; Bushman, Frederic D

    2010-01-01

    The first use of lentiviral vectors in humans involved transduction of mature T-cells with an human immunodeficiency virus (HIV)–derived env antisense (envAS) vector to protect cells from HIV infection. In that study, only a minority of the patient T-cell population could be gene-modified, raising the question of whether the altered cells could affect replicating HIV populations. We investigated this using humanized NOD/SCID IL-2Rγnull (hNSG) mice reconstituted with ~4–11% envAS-modified huma...

  6. Splicing Regulatory Elements and mRNA-abundance of dlg1 and capt, Genetically Interacting with dFMRP in Drosophila Brain

    Directory of Open Access Journals (Sweden)

    Maria Petrova

    2014-09-01

    Full Text Available To further understand the molecular and cellular mechanisms underlying the disease, we used the Drososphila FraX model and investigated a not well studied role of Drosophila Fragile X Mental Retardation Protein (dFMRP in alternative splicing of neuronal mRNAs to which it binds via a G-quartet sequence. By means of qRT-PCR we established the relative abundance of some isoforms of the gene dlg1, resulting from alternative exon skipping nearby a G-quartet and an exonic ESE-sequence, both acting as exonic splicing enhancers. We also investigated the relative mRNA-abundance of all capt-isoforms and the pre-mRNAs of both genes. We proposed a possible involvement of dFMRP in alternative splicing of genes, interacting with dfmr1. In the absence of dFMRP in larval and pupal brains, we found a change in the mRNA-level of one of the studied isoforms of dlg1 and of its pre-mRNA.We also established previously reported splicing regulatory elements and predicted computationally novel hexamere sequences in the exonic/intronic ends of both genes with p upative regulatory roles in alternative splicing.

  7. Antisense oligonucleotide mediated knockdown of HOXC13 affects cell growth and induces apoptosis in tumor cells and over expression of HOXC13 induces 3D-colony formation.

    Science.gov (United States)

    Kasiri, Sahba; Ansari, Khairul I; Hussain, Imran; Bhan, Arunoday; Mandal, Subhrangsu S

    2013-01-01

    HOXC13 is a homeobox containing gene that plays crucial roles in hair development and origin of replication. Herein, we investigated the biochemical functions of HOXC13 and explored its potential roles in tumor cell viability. We have designed a phosphorothioate based antisense-oligonucleotide that specifically knockdown HOXC13 in cultured cells. Cell viability and cytotoxicity assays demonstrated that HOXC13 is essential for cell growth and viability. Antisense-mediated knockdown of HOXC13 affected the cell viability and induced apoptosis in cultured tumor cells. HOXC13 regulates the expression of cyclins and antisense-mediated knockdown of HOXC13 resulted in cell cycle arrest and apoptosis in colon cancer cells. Finally over expression of HOXC13 resulted in 3D-colony formation in soft-agar assay indicating its potential roles in cell proliferation and tumorigenesis.

  8. Molecular Alliance of Lymantria dispar Multiple Nucleopolyhedrovirus and a Short Unmodified Antisense Oligonucleotide of Its Anti-Apoptotic IAP-3 Gene: A Novel Approach for Gypsy Moth Control.

    Science.gov (United States)

    Oberemok, Volodymyr V; Laikova, Kateryna V; Zaitsev, Aleksei S; Shumskykh, Maksym N; Kasich, Igor N; Gal'chinsky, Nikita V; Bekirova, Viktoriya V; Makarov, Valentin V; Agranovsky, Alexey A; Gushchin, Vladimir A; Zubarev, Ilya V; Kubyshkin, Anatoly V; Fomochkina, Iryna I; Gorlov, Mikhail V; Skorokhod, Oleksii A

    2017-11-17

    Baculovirus IAP (inhibitor-of-apoptosis) genes originated by capture of host genes. Unmodified short antisense DNA oligonucleotides (oligoDNAs) from baculovirus IAP genes can down-regulate specific gene expression profiles in both baculovirus-free and baculovirus-infected insects. In this study, gypsy moth ( Lymantria dispar ) larvae infected with multiple nucleopolyhedrovirus (LdMNPV), and LdMNPV-free larvae, were treated with oligoDNA antisense to the RING (really interesting new gene) domain of the LdMNPV IAP-3 gene. The results with respect to insect mortality, biomass accumulation, histological studies, RT-PCR, and analysis of DNA apoptotic fragmentation suggest that oligoRING induced increased apoptotic processes in both LdMNPV-free and LdMNPV-infected insect cells, but were more pronounced in the latter. These data open up possibilities for promising new routes of insect pest control using antisense phosphodiester DNA oligonucleotides.

  9. Molecular Alliance of Lymantria dispar Multiple Nucleopolyhedrovirus and a Short Unmodified Antisense Oligonucleotide of Its Anti-Apoptotic IAP-3 Gene: A Novel Approach for Gypsy Moth Control

    Directory of Open Access Journals (Sweden)

    Volodymyr V. Oberemok

    2017-11-01

    Full Text Available Baculovirus IAP (inhibitor-of-apoptosis genes originated by capture of host genes. Unmodified short antisense DNA oligonucleotides (oligoDNAs from baculovirus IAP genes can down-regulate specific gene expression profiles in both baculovirus-free and baculovirus-infected insects. In this study, gypsy moth (Lymantria dispar larvae infected with multiple nucleopolyhedrovirus (LdMNPV, and LdMNPV-free larvae, were treated with oligoDNA antisense to the RING (really interesting new gene domain of the LdMNPV IAP-3 gene. The results with respect to insect mortality, biomass accumulation, histological studies, RT-PCR, and analysis of DNA apoptotic fragmentation suggest that oligoRING induced increased apoptotic processes in both LdMNPV-free and LdMNPV-infected insect cells, but were more pronounced in the latter. These data open up possibilities for promising new routes of insect pest control using antisense phosphodiester DNA oligonucleotides.

  10. Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances paraquat-induced photooxidative stress and nitric oxide-induced cell death.

    Science.gov (United States)

    Tarantino, Delia; Vannini, Candida; Bracale, Marcella; Campa, Manuela; Soave, Carlo; Murgia, Irene

    2005-08-01

    The production and characterization of Arabidopsis plants containing a transgene in which the Arabidopsis tAPX is inserted in antisense orientation, is described. tAPX activity in these transgenic tAPX plants is around 50% of control level. The tAPX antisense plants are phenotypically indistinguishable from control plants under normal growth conditions; they show, however, enhanced sensitivity to the O2- -generating herbicide, Paraquat. Interestingly, the tAPX antisense plants show enhanced symptoms of damage when cell death is triggered through treatment with the nitric oxide-donor, SNP. These results are in accordance with the ones recently obtained with transgenic plants overexpressing tAPX; altogether, they suggest that tAPX, besides the known ROS scavenging role, is also involved in the fine changes of H2O2 concentration during signaling events.

  11. Transposable elements in mosquitoes.

    Science.gov (United States)

    Boulesteix, M; Biémont, C

    2005-01-01

    We describe the current state of knowledge about transposable elements (TEs) in different mosquito species. DNA-based elements (class II elements), non-LTR retrotransposons (class I elements), and MITEs (Miniature Inverted Repeat Transposable Elements) are found in the three genera, Anopheles, Aedes and Culex, whereas LTR retrotransposons (class I elements) are found only in Anopheles and Aedes. Mosquitoes were the first insects in which MITEs were reported; they have several LTR retrotransposons belonging to the Pao family, which is distinct from the Gypsy-Ty3 and Copia-Ty1 families. The number of TE copies shows huge variations between classes of TEs within a given species (from 1 to 1000), in sharp contrast to Drosophila, which shows only relatively minor differences in copy number between elements (from 1 to 100). The genomes of these insects therefore display major differences in the amount of TEs and therefore in their structure and global composition. We emphasize the need for more population genetic data about the activity of TEs, their distribution over chromosomes and their frequencies in natural populations of mosquitoes, to further the current attempts to develop a transgenic mosquito unable to transmit malaria that is intended to replace the natural populations.

  12. Combination of vascular endothelial growth factor antisense oligonucleotide therapy and radiotherapy increases the curative effects against maxillofacial VX2 tumors in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Linfeng, E-mail: zhenglinfeng04@yahoo.com.cn [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Li Yujie, E-mail: yujieli01@yahoo.com.cn [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Wang Han, E-mail: bingowh@hotmail.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Zhao Jinglong, E-mail: jinglongz@yahoo.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Wang Xifu, E-mail: wangxiechen001@163.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Hu Yunsheng, E-mail: springmorninghu@163.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Zhang Guixiang, E-mail: guixiangzhang@sina.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China)

    2011-05-15

    Purpose: To study the effects of combination of vascular endothelial growth factor (VEGF) antisense oligonucleotide therapy and radiotherapy on maxillofacial VX2 tumors in rabbits. Methods: We used 24 New Zealand white rabbits as a model to induce maxillofacial VX2 tumor. The rabbits were randomly divided into the following 4 groups: radiotherapy group (group A), treated with 16 Gy of radiotherapy; VEGF antisense oligonucleotide treatment group (group B), treated with an injection of 150 {mu}g of VEGF antisense oligonucleotide into the local tumor; VEGF antisense oligonucleotide combined with radiotherapy group (group C), treated with an injection of 150 {mu}g of VEGF antisense oligonucleotide into the local tumor immediately after 16 Gy of radiotherapy; and control group (group D), treated with an injection of 300 {mu}l 5% aqueous glucose solution into the local tumor. On days 3 and 14 after treatment, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was performed to calculate maximal enhancement ratio (MER), slope of enhancement (SLE), and tumor volume change. Rabbits were killed on day 14 to obtain samples for pathological examination and immunohistochemical staining for VEGF. Results: In group C, tumor volume was significantly reduced on day 14 after treatment, and the difference was statistically different as compared to that before treatment, on day 3 after treatment and other groups (P < 0.01). Values of both MER and SLE after treatment were significantly lower than the values before treatment (P < 0.05). Pathological specimen revealed tumor cell edema, bleeding, necrosis, vascular wall thickening and occlusion, and decreased VEGF expression. The immunohistochemical score (IHS) of group C was significantly different from groups A and D respectively (P < 0.05). Conclusion: Injecting the tumor with VEGF antisense oligonucleotide immediately after radiotherapy can enhance the curative effect on rabbit maxillofacial VX2 tumor, and DCE-MRI can serve

  13. In vitro and in vivo reversal of multidrug resistance in a human leukemia-resistant cell line by mdr1 antisense oligodeoxynucleotides.

    Science.gov (United States)

    Cucco, C; Calabretta, B

    1996-10-01

    A major obstacle to successful cancer chemotherapy is the development of multidrug resistance (MDR) by tumor cells. Overexpression of the mdrl gene product P-glycoprotein (P-170) is characteristic of such cells. In this study, in vitro and in vivo reversion of MDR was attempted in a human leukemia cell line resistant to vincristine (HL-60/Vinc) using an 18-mer mdr1 antisense phosphorothioate oligodeoxynucleotide ([S]ODN) in combination with vincristine. As control of sequence specificity, both sense and scrambled [S]ODNs were used. The ability of these [S]ODNs to reverse MDR was studied in vitro and in severe combined immunodeficient (SCID) mice. In vitro treatment with antisense [S]ODNs restored vincristine sensitivity of HL-60/Vinc cells, whereas no changes in drug sensitivity were observed upon treatment with the sense or scrambled sequence. The in vitro effects correlated with inhibition of P-170 expression in HL-60/Vinc cells exposed to the mdr1 antisense [S]ODNs. In vivo reversal of MDR was obtained in SCID mice given injections of HL-60/Vinc cells and systemically treated with [S]ODNs plus vincristine, as indicated by a significantly prolonged survival of SCID mice that received the combination therapy of mdr1 antisense [S]ODNs + vincristine. Treatments with mdr1 antisense or scrambled [S]ODNs, vincristine, or scrambled [S]ODNs + vincristine had no effect on survival. These results suggest that the use of mdr1 antisense ODNs in combination with standard antineoplastic drugs might be useful in reversing MDR in vitro and in vivo.

  14. Permissive Sense and Antisense Transcription from the 5′ and 3′ Long Terminal Repeats of Human T-Cell Leukemia Virus Type 1

    Science.gov (United States)

    Polakowski, Nicholas; Hoang, Kimson

    2016-01-01

    ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus, and, as such, its genome becomes chromosomally integrated following infection. The resulting provirus contains identical 5′ and 3′ peripheral long terminal repeats (LTRs) containing bidirectional promoters. Antisense transcription from the 3′ LTR regulates expression of a single gene, hbz, while sense transcription from the 5′ LTR controls expression of all other viral genes, including tax. Both the HBZ and Tax proteins are implicated in the development of adult T-cell leukemia (ATL), a T-cell malignancy caused by HTLV-1 infection. However, these proteins appear to harbor opposing molecular functions, indicating that they may act independently and at different time points prior to leukemogenesis. Here, we used bidirectional reporter constructs to test whether transcriptional interference serves as a mechanism that inhibits simultaneous expression of Tax and HBZ. We found that sense transcription did not interfere with antisense transcription from the 3′ LTR and vice versa, even with strong transcription emanating from the opposing direction. Therefore, bidirectional transcription across the provirus might not restrict hbz or tax expression. Single-cell analyses revealed that antisense transcription predominates in the absence of Tax, which transactivates viral sense transcription. Interestingly, a population of Tax-expressing cells exhibited antisense but not activated sense transcription. Consistent with the ability of Tax to induce cell cycle arrest, this population was arrested in G0/G1 phase. These results imply that cell cycle arrest inhibits Tax-mediated activation of sense transcription without affecting antisense transcription, which may be important for long-term viral latency. IMPORTANCE The chromosomally integrated form of the retrovirus human T-cell leukemia virus type 1 (HTLV-1) contains identical DNA sequences, known as long terminal repeats (LTRs), at its 5′ and 3

  15. Permissive Sense and Antisense Transcription from the 5' and 3' Long Terminal Repeats of Human T-Cell Leukemia Virus Type 1.

    Science.gov (United States)

    Laverdure, Sylvain; Polakowski, Nicholas; Hoang, Kimson; Lemasson, Isabelle

    2016-01-20

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus, and, as such, its genome becomes chromosomally integrated following infection. The resulting provirus contains identical 5' and 3' peripheral long terminal repeats (LTRs) containing bidirectional promoters. Antisense transcription from the 3' LTR regulates expression of a single gene, hbz, while sense transcription from the 5' LTR controls expression of all other viral genes, including tax. Both the HBZ and Tax proteins are implicated in the development of adult T-cell leukemia (ATL), a T-cell malignancy caused by HTLV-1 infection. However, these proteins appear to harbor opposing molecular functions, indicating that they may act independently and at different time points prior to leukemogenesis. Here, we used bidirectional reporter constructs to test whether transcriptional interference serves as a mechanism that inhibits simultaneous expression of Tax and HBZ. We found that sense transcription did not interfere with antisense transcription from the 3' LTR and vice versa, even with strong transcription emanating from the opposing direction. Therefore, bidirectional transcription across the provirus might not restrict hbz or tax expression. Single-cell analyses revealed that antisense transcription predominates in the absence of Tax, which transactivates viral sense transcription. Interestingly, a population of Tax-expressing cells exhibited antisense but not activated sense transcription. Consistent with the ability of Tax to induce cell cycle arrest, this population was arrested in G(0)/G(1) phase. These results imply that cell cycle arrest inhibits Tax-mediated activation of sense transcription without affecting antisense transcription, which may be important for long-term viral latency. The chromosomally integrated form of the retrovirus human T-cell leukemia virus type 1 (HTLV-1) contains identical DNA sequences, known as long terminal repeats (LTRs), at its 5' and 3' ends. The LTRs modulate

  16. Chemosensitization of Human Renal Cell Cancer Using Antisense Oligonucleotides Targeting the Antiapoptotic Gene Clusterin

    Directory of Open Access Journals (Sweden)

    Tobias Zellweger

    2001-01-01

    Full Text Available BACKGROUND: Renal cell cancer (RCC is a chemoresistant disease with no active chemotherapeutic agent achieving objective response rates higher than 15%. Clusterin is a cell survival gene that increases in human renal tubular epithelial cells after various states of injury and disease. Downregulation of clusterin, using antisense oligonucleotides (ASO, has recently been shown to increase chemosensitivity in several prostate cancer models. The objectives in this study were to evaluate clusterin expression levels in human RCC and normal kidney tissue, and to test whether clusterin ASO could also enhance chemosensitivity in human RCC Caki-2 cells both in vitro and in vivo. METHODS: Immunohistochemical staining was used to characterize clusterin expression in 67 RCC and normal kidney tissues obtained from radical nephrectomy specimens. Northern blot analysis was used to assess changes in clusterin mRNA expression after ASO and paclitaxel treatment. The effects of combined clusterin ASO and paclitaxel treatment on Caki-2 cell growth was examined using an MTT assay. Athymic mice bearing Caki-2 tumors were treated with clusterin ASO alone, clusterin ASO plus paclitaxel, and mismatch control oligonucleotides plus paclitaxel, over a period of 28 days with measurement of tumor volumes once weekly over 8 weeks. RESULTS: Immunohistochemistry of normal and malignant kidney tissue sections of 67 patients demonstrated positive clusterin staining for almost all RCC (98% and an overexpression, compared to normal tissue, in a majority of RCC (69%. Clusterin ASO, but not mismatch control oligonucleotides, decreased clusterin mRNA expression in Caki-2 cells in a dosedependent and sequence-specific manner. Pretreatment of Caki-2 cells with clusterin ASO significantly enhanced chemosensitivity to paclitaxel in vitro. Characteristic apoptotic DNA laddering was observed after combined treatment with ASO plus paclitaxel, but not with either agent alone. In vivo

  17. Unravelling the Secrets of Mycobacterial Cidality through the Lens of Antisense.

    Directory of Open Access Journals (Sweden)

    Parvinder Kaur

    Full Text Available One of the major impediments in anti-tubercular drug discovery is the lack of a robust grammar that governs the in-vitro to the in-vivo translation of efficacy. Mycobacterium tuberculosis (Mtb is capable of growing both extracellular as well as intracellular; encountering various hostile conditions like acidic milieu, free radicals, starvation, oxygen deprivation, and immune effector mechanisms. Unique survival strategies of Mtb have prompted researchers to develop in-vitro equivalents to simulate in-vivo physiologies and exploited to find efficacious inhibitors against various phenotypes. Conventionally, the inhibitors are screened on Mtb under the conditions that are unrelated to the in-vivo disease environments. The present study was aimed to (1. Investigate cidality of Mtb targets using a non-chemical inhibitor antisense-RNA (AS-RNA under in-vivo simulated in-vitro conditions.(2. Confirm the cidality of the targets under in-vivo in experimental tuberculosis. (3. Correlate in-vitro vs. in-vivo cidality data to identify the in-vitro condition that best predicts in-vivo cidality potential of the targets. Using cidality as a metric for efficacy, and AS-RNA as a target-specific inhibitor, we delineated the cidality potential of five target genes under six different physiological conditions (replicating, hypoxia, low pH, nutrient starvation, nitrogen depletion, and nitric oxide.In-vitro cidality confirmed in experimental tuberculosis in BALB/c mice using the AS-RNA allowed us to identify cidal targets in the rank order of rpoB>aroK>ppk>rpoC>ilvB. RpoB was used as the cidality control. In-vitro and in-vivo studies feature aroK (encoding shikimate kinase as an in-vivo mycobactericidal target suitable for anti-TB drug discovery. In-vitro to in-vivo cidality correlations suggested the low pH (R = 0.9856 in-vitro model as best predictor of in-vivo cidality; however, similar correlation studies in pathologically relevant (Kramnik mice are warranted. In

  18. Sterilization of sterlet Acipenser ruthenus by using knockdown agent, antisense morpholino oligonucleotide, against dead end gene.

    Science.gov (United States)

    Linhartová, Zuzana; Saito, Taiju; Kašpar, Vojtěch; Rodina, Marek; Prášková, Eva; Hagihara, Seishi; Pšenička, Martin

    2015-10-15

    Sturgeons (chondrostean, acipenseridae) are ancient fish species, widely known for their caviar. Nowadays, most of them are critically endangered. The sterlet (Acipenser ruthenus) is a common Eurasian sturgeon species with a small body size and the fastest reproductive cycle among sturgeons. Such species can be used as a host for surrogate production; application is of value for recovery of critically endangered and huge sturgeon species with an extremely long reproductive cycle. One prerequisite for production of the donor's gametes only is to have a sterile host. Commonly used sterilization techniques in fishes such as triploidization or hybridization do not guarantee sterility in sturgeon. Alternatively, sterilization can be achieved by using a temporary germ cell exclusion-specific gene by a knockdown agent, the antisense morpholino oligonucleotide (MO). The targeted gene for the MO is the dead end gene (dnd) which is a vertebrate-specific gene encoding a RNA-binding protein which is crucial for migration and survival of primordial germ cells (PGCs). For this purpose, a dnd homologue of Russian sturgeon (Agdnd), resulting in the same sequence in the start codon region with isolated fragments of sterlet dnd (Ardnd), was used. Reverse transcription polymerase chain reaction confirmed tissue-specific expression of Ardnd only in the gonads of both sexes. Dnd-MO for depletion of PGCs together with fluorescein isothiocyanate (FITC)-biotin-dextran for PGCs labeling was injected into the vegetal region of one- to four-cell-stage sterlet embryos. In the control groups, only FITC was injected to validate the injection method and labeling of PGCs. After optimization of MO concentration together with volume injection, 250-μM MO was applied for sterilization of sturgeon embryos. Primordial germ cells were detected under a fluorescent stereomicroscope in the genital ridge of the FITC-labeled control group only, whereas no PGCs were present in the body cavities of morphants

  19. Inhibition of enterovirus 71 infection by antisense octaguanidinium dendrimer-conjugated morpholino oligomers.

    Science.gov (United States)

    Tan, Chee Wah; Chan, Yoke Fun; Quah, Yi Wan; Poh, Chit Laa

    2014-07-01

    Enterovirus 71 (EV-71) infections are generally manifested as mild hand, foot and mouth disease, but have been reported to cause severe neurological complications with high mortality rates. Treatment options remain limited due to the lack of antivirals. Octaguanidinium-conjugated morpholino oligomers (vivo-MOs) are single-stranded DNA-like antisense agents that can readily penetrate cells and reduce gene expression by steric blocking of complementary RNA sequences. In this study, inhibitory effects of three vivo-MOs that are complementary to the EV-71 internal ribosome entry site (IRES) and the RNA-dependent RNA polymerase (RdRP) were tested in RD cells. Vivo-MO-1 and vivo-MO-2 targeting the EV-71 IRES showed significant viral plaque reductions of 2.5 and 3.5 log10PFU/ml, respectively. Both vivo-MOs reduced viral RNA copies and viral capsid expression in RD cells in a dose-dependent manner. In contrast, vivo-MO-3 targeting the EV-71 RdRP exhibited less antiviral activity. Both vivo-MO-1 and 2 remained active when administered either 4h before or within 6h after EV-71 infection. Vivo-MO-2 exhibited antiviral activities against poliovirus (PV) and coxsackievirus A16 but vivo-MO-1 showed no antiviral activities against PV. Both the IRES-targeting vivo-MO-1 and vivo-MO-2 inhibit EV-71 RNA translation. Resistant mutants arose after serial passages in the presence of vivo-MO-1, but none were isolated against vivo-MO-2. A single T to C substitution at nucleotide position 533 was sufficient to confer resistance to vivo-MO-1. Our findings suggest that IRES-targeting vivo-MOs are good antiviral candidates for treating early EV-71 infection, and vivo-MO-2 is a more favorable candidate with broader antiviral spectrum against enteroviruses and are refractory to antiviral resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Delivery of antisense oligonucleotides using poly(alkylene oxide)-poly(propylacrylic acid) graft copolymers in conjunction with cationic liposomes.

    Science.gov (United States)

    Peddada, Lavanya Y; Garbuzenko, Olga B; Devore, David I; Minko, Tamara; Roth, Charles M

    2014-11-28

    The clinical application of gene silencing is hindered by poor stability and low delivery efficiency of naked oligonucleotides. Here, we present the in vitro and in vivo behaviors of a rationally designed, ternary, self-assembled nanoparticle complex, consisting of an anionic copolymer, cationic DOTAP liposome, and antisense oligonucleotide (AON). The multifunctional copolymers are based on backbone poly(propylacrylic acid) (PPAA), a pH-sensitive hydrophobic polymer, with grafted poly(alkylene oxides) (PAOs) varying in extent of grafting and PAO chemistry. The nanoparticle complexes with PPAA-g-PAO copolymers enhance antisense gene silencing effects in A2780 human ovarian cancer cells. A greater amount of AON is delivered to ovarian tumor xenografts using the ternary copolymer-stabilized delivery system, compared to a binary DOTAP/AON complex, following intraperitoneal injection in mice. Further, intratumoral injection of the nanoparticle complexes containing 1 mol% grafted PAO reduced tumoral bcl-2 expression by up to 60%. The data for complexes across the set of PAO polymers support a strong role for the hydrophilic-lipophilic balance of the graft copolymer in achieving serum stability and cellular uptake. Based upon these results, we anticipate that this novel nanoparticle delivery system can be extended to the delivery of plasmid DNA, siRNA, or aptamers for preclinical and clinical development. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Inhibition of EGF Uptake by Nephrotoxic Antisense Drugs In Vitro and Implications for Preclinical Safety Profiling

    Directory of Open Access Journals (Sweden)

    Annie Moisan

    2017-03-01

    Full Text Available Antisense oligonucleotide (AON therapeutics offer new avenues to pursue clinically relevant targets inaccessible with other technologies. Advances in improving AON affinity and stability by incorporation of high affinity nucleotides, such as locked nucleic acids (LNA, have sometimes been stifled by safety liabilities related to their accumulation in the kidney tubule. In an attempt to predict and understand the mechanisms of LNA-AON-induced renal tubular toxicity, we established human cell models that recapitulate in vivo behavior of pre-clinically and clinically unfavorable LNA-AON drug candidates. We identified elevation of extracellular epidermal growth factor (EGF as a robust and sensitive in vitro biomarker of LNA-AON-induced cytotoxicity in human kidney tubule epithelial cells. We report the time-dependent negative regulation of EGF uptake and EGF receptor (EGFR signaling by toxic but not innocuous LNA-AONs and revealed the importance of EGFR signaling in LNA-AON-mediated decrease in cellular activity. The robust EGF-based in vitro safety profiling of LNA-AON drug candidates presented here, together with a better understanding of the underlying molecular mechanisms, constitutes a significant step toward developing safer antisense therapeutics.

  2. Regulation of S-like ribonuclease levels in Arabidopsis. Antisense inhibition of RNS1 or RNS2 elevates anthocyanin accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Bariola, P.A.; MacIntosh, G.C.; Green, P.J. [Michigan State Univ., East Lansing, MI (United States). Plant Research Lab.

    1999-01-01

    The S-like ribonucleases (RNases) RNS1 and RNS2 of Arabidopsis are members of the widespread T{sub 2} ribonuclease family, whose members also include the S-RNases, involved in gametophytic self-incompatibility in plants. Both RNS1 and RNS2 mRNAs have been shown previously to be induced by inorganic phosphate (Pi) starvation. In this study the authors examined this regulation at the protein level and determined the effects of diminishing RNS1 and RNS2 expression using antisense techniques. The Pi-starvation control of RNS1 and RNS2 was confirmed using antibodies specific for each protein. These specific antibodies also demonstrated that RNS1 is secreted, whereas RNS2 is intracellular. By introducing antisense constructs, mRNA accumulation was inhibited by up to 90% for RNS1 and up to 65% for NS2. These plants contained abnormally high levels of anthocyanins, the production of which is often associated with several forms of stress, including Pi starvation. This effect demonstrates that diminishing the amounts of either RNS1 or RNS2 leads to effects that cannot be compensated for by the actions of other RNases, even though Arabidopsis contains a large number of different RNase activities. These results, together with the differential localization of the proteins, imply that RNS1 and RNS2 have distinct functions in the plant.

  3. Antisense RNA controls LRP1 Sense transcript expression through interaction with a chromatin-associated protein, HMGB2.

    Science.gov (United States)

    Yamanaka, Yasunari; Faghihi, Mohammad Ali; Magistri, Marco; Alvarez-Garcia, Oscar; Lotz, Martin; Wahlestedt, Claes

    2015-05-12

    Long non-coding RNAs (lncRNAs), including natural antisense transcripts (NATs), are expressed more extensively than previously anticipated and have widespread roles in regulating gene expression. Nevertheless, the molecular mechanisms of action of the majority of NATs remain largely unknown. Here, we identify a NAT of low-density lipoprotein receptor-related protein 1 (Lrp1), referred to as Lrp1-AS, that negatively regulates Lrp1 expression. We show that Lrp1-AS directly binds to high-mobility group box 2 (Hmgb2) and inhibits the activity of Hmgb2 to enhance Srebp1a-dependent transcription of Lrp1. Short oligonucleotides targeting Lrp1-AS inhibit the interaction of antisense transcript and Hmgb2 protein and increase Lrp1 expression by enhancing Hmgb2 activity. Quantitative RT-PCR analysis of brain tissue samples from Alzheimer's disease patients and aged-matched controls revealed upregulation of LRP1-AS and downregulation of LRP1. Our data suggest a regulatory mechanism whereby a NAT interacts with a ubiquitous chromatin-associated protein to modulate its activity in a locus-specific fashion. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Antisense RNA Controls LRP1 Sense Transcript Expression through Interaction with a Chromatin-Associated Protein, HMGB2

    Directory of Open Access Journals (Sweden)

    Yasunari Yamanaka

    2015-05-01

    Full Text Available Long non-coding RNAs (lncRNAs, including natural antisense transcripts (NATs, are expressed more extensively than previously anticipated and have widespread roles in regulating gene expression. Nevertheless, the molecular mechanisms of action of the majority of NATs remain largely unknown. Here, we identify a NAT of low-density lipoprotein receptor-related protein 1 (Lrp1, referred to as Lrp1-AS, that negatively regulates Lrp1 expression. We show that Lrp1-AS directly binds to high-mobility group box 2 (Hmgb2 and inhibits the activity of Hmgb2 to enhance Srebp1a-dependent transcription of Lrp1. Short oligonucleotides targeting Lrp1-AS inhibit the interaction of antisense transcript and Hmgb2 protein and increase Lrp1 expression by enhancing Hmgb2 activity. Quantitative RT-PCR analysis of brain tissue samples from Alzheimer’s disease patients and aged-matched controls revealed upregulation of LRP1-AS and downregulation of LRP1. Our data suggest a regulatory mechanism whereby a NAT interacts with a ubiquitous chromatin-associated protein to modulate its activity in a locus-specific fashion.

  5. In depth analysis of the Sox4 gene locus that consists of sense and natural antisense transcripts

    Directory of Open Access Journals (Sweden)

    King-Hwa Ling

    2016-06-01

    Full Text Available SRY (Sex Determining Region Y-Box 4 or Sox4 is an important regulator of the pan-neuronal gene expression during post-mitotic cell differentiation within the mammalian brain. Sox4 gene locus has been previously characterized with multiple sense and overlapping natural antisense transcripts [1,2]. Here we provide accompanying data on various analyses performed and described in Ling et al. [2]. The data include a detail description of various features found at Sox4 gene locus, additional experimental data derived from RNA-Fluorescence in situ Hybridization (RNA-FISH, Western blotting, strand-specific reverse-transcription quantitative polymerase chain reaction (RT-qPCR, gain-of-function and in situ hybridization (ISH experiments. All the additional data provided here support the existence of an endogenous small interfering- or PIWI interacting-like small RNA known as Sox4_sir3, which origin was found within the overlapping region consisting of a sense and a natural antisense transcript known as Sox4ot1.

  6. In depth analysis of the Sox4 gene locus that consists of sense and natural antisense transcripts

    Science.gov (United States)

    Ling, King-Hwa; Brautigan, Peter J.; Moore, Sarah; Fraser, Rachel; Leong, Melody Pui-Yee; Leong, Jia-Wen; Zainal Abidin, Shahidee; Lee, Han-Chung; Cheah, Pike-See; Raison, Joy M.; Babic, Milena; Lee, Young Kyung; Daish, Tasman; Mattiske, Deidre M.; Mann, Jeffrey R.; Adelson, David L.; Thomas, Paul Q.; Hahn, Christopher N.; Scott, Hamish S.

    2016-01-01

    SRY (Sex Determining Region Y)-Box 4 or Sox4 is an important regulator of the pan-neuronal gene expression during post-mitotic cell differentiation within the mammalian brain. Sox4 gene locus has been previously characterized with multiple sense and overlapping natural antisense transcripts [1], [2]. Here we provide accompanying data on various analyses performed and described in Ling et al. [2]. The data include a detail description of various features found at Sox4 gene locus, additional experimental data derived from RNA-Fluorescence in situ Hybridization (RNA-FISH), Western blotting, strand-specific reverse-transcription quantitative polymerase chain reaction (RT-qPCR), gain-of-function and in situ hybridization (ISH) experiments. All the additional data provided here support the existence of an endogenous small interfering- or PIWI interacting-like small RNA known as Sox4_sir3, which origin was found within the overlapping region consisting of a sense and a natural antisense transcript known as Sox4ot1. PMID:26958646

  7. Data in support of transcriptional regulation and function of Fas-antisense long noncoding RNA during human erythropoiesis

    Directory of Open Access Journals (Sweden)

    Olga Villamizar

    2016-06-01

    Full Text Available This paper describes data related to a research article titled, “Fas-antisense long noncoding RNA is differentially expressed during maturation of human erythrocytes and confers resistance to Fas-mediated cell death” [1]. Long noncoding RNAs (lncRNAs are increasingly appreciated for their capacity to regulate many steps of gene expression. While recent studies suggest that many lncRNAs are functional, the scope of their actions throughout human biology is largely undefined including human red blood cell development (erythropoiesis. Here we include expression data for 82 lncRNAs during early, intermediate and late stages of human erythropoiesis using a commercial qPCR Array. From these data, we identified lncRNA Fas-antisense 1 (Fas-AS1 or Saf described in the research article. Also included are 5′ untranslated sequences (UTR for lncRNA Saf with transcription factor target sequences identified. Quantitative RT-PCR data demonstrate relative levels of critical erythroid transcription factors, GATA-1 and KLF1, in K562 human erythroleukemia cells and maturing erythroblasts derived from human CD34+ cells. End point and quantitative RT-PCR data for cDNA prepared using random hexamers versus oligo(dT18 revealed that lncRNA Saf is not effectively polyadenylated. Finally, we include flow cytometry histograms demonstrating Fas levels on maturing erythroblasts derived from human CD34+ cells transduced using mock conditions or with lentivirus particles encoding for Saf.

  8. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells

    Science.gov (United States)

    Descostes, Nicolas; Heidemann, Martin; Spinelli, Lionel; Schüller, Roland; Maqbool, Muhammad Ahmad; Fenouil, Romain; Koch, Frederic; Innocenti, Charlène; Gut, Marta; Gut, Ivo; Eick, Dirk; Andrau, Jean-Christophe

    2014-01-01

    In mammals, the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II consists of 52 conserved heptapeptide repeats containing the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Post-translational modifications of the CTD coordinate the transcription cycle and various steps of mRNA maturation. Here we describe Tyr1 phosphorylation (Tyr1P) as a hallmark of promoter (5′ associated) Pol II in mammalian cells, in contrast to what was described in yeast. Tyr1P is predominantly found in antisense orientation at promoters but is also specifically enriched at active enhancers. Mutation of Tyr1 to phenylalanine (Y1F) prevents the formation of the hyper-phosphorylated Pol IIO form, induces degradation of Pol II to the truncated Pol IIB form, and results in a lethal phenotype. Our results suggest that Tyr1P has evolved specialized and essential functions in higher eukaryotes associated with antisense promoter and enhancer transcription, and Pol II stability. DOI: http://dx.doi.org/10.7554/eLife.02105.001 PMID:24842994

  9. Efficient Skipping of Single Exon Duplications in DMD Patient-Derived Cell Lines Using an Antisense Oligonucleotide Approach.

    Science.gov (United States)

    Wein, Nicolas; Vulin, Adeline; Findlay, Andrew R; Gumienny, Felecia; Huang, Nianyuan; Wilton, Steve D; Flanigan, Kevin M

    2017-01-01

    Exon skipping strategies in Duchenne muscular dystrophy (DMD) have largely been directed toward altering splicing of exons flanking out-of-frame deletions, with the goal of restoring an open mRNA reading frame that leads to production of an internally deleted but partially functional dystrophin protein. We sought to apply exon skipping to duplication mutations, assuming that the inherently limited efficiency of antisense oligonucleotide-induced exon skipping would more frequently skip a single copy of a duplicated exon, rather than both and result in significant amounts of wild-type DMD mRNA. We tested this hypothesis in fibroblast cell lines derived from patients with a variety of single or multiple exon duplications that have been modified to allow transdifferentiation into a myogenic lineage. Using a variety of 2'O-methyl antisense oligonucleotides, significant skipping was induced for each duplication leading to a wild-type transcript as a major mRNA product. This study provides another proof of concept for the feasibility of therapeutic skipping in patients carrying exon duplications in order to express wild-type, full-length mRNA, although careful evaluation of the skipping efficiency should be performed as some exons are easier to skip than others. Such a personalized strategy is expected to be highly beneficial for this subset of DMD patients, compared to inducing expression of an internally-deleted dystrophin.

  10. Long-term Exon Skipping Studies With 2′-O-Methyl Phosphorothioate Antisense Oligonucleotides in Dystrophic Mouse Models

    Directory of Open Access Journals (Sweden)

    Christa L Tanganyika-de Winter

    2012-01-01

    Full Text Available Antisense-mediated exon skipping for Duchenne muscular dystrophy (DMD is currently tested in phase 3 clinical trials. The aim of this approach is to modulate splicing by skipping a specific exon to reframe disrupted dystrophin transcripts, allowing the synthesis of a partly functional dystrophin protein. Studies in animal models allow detailed analysis of the pharmacokinetic and pharmacodynamic profile of antisense oligonucleotides (AONs. Here, we tested the safety and efficacy of subcutaneously administered 2′-O-methyl phosphorothioate AON at 200 mg/kg/week for up to 6 months in mouse models with varying levels of disease severity: mdx mice (mild phenotype and mdx mice with one utrophin allele (mdx/utrn+/−; more severe phenotype. Long-term treatment was well tolerated and exon skipping and dystrophin restoration confirmed for all animals. Notably, in the more severely affected mdx/utrn+/− mice the therapeutic effect was larger: creatine kinase (CK levels were more decreased and rotarod running time was more increased. This suggests that the mdx/utrn+/− model may be a more suitable model to test potential therapies than the regular mdx mouse. Our results also indicate that long-term subcutaneous treatment in dystrophic mouse models with these AONs is safe and beneficial.

  11. Combination Antisense Treatment for Destructive Exon Skipping of Myostatin and Open Reading Frame Rescue of Dystrophin in Neonatal mdx Mice.

    Science.gov (United States)

    Lu-Nguyen, Ngoc B; Jarmin, Susan A; Saleh, Amer F; Popplewell, Linda; Gait, Michael J; Dickson, George

    2015-08-01

    The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD.

  12. Antisense Oligonucleotides Targeting Parasite Inositol 1,4,5-Trisphosphate Receptor Inhibits Mammalian Host Cell Invasion by Trypanosoma cruzi

    Science.gov (United States)

    Hashimoto, Muneaki; Nara, Takeshi; Hirawake, Hiroko; Morales, Jorge; Enomoto, Masahiro; Mikoshiba, Katsuhiko

    2014-02-01

    Chagas disease is caused by an intracellular parasitic protist, Trypanosoma cruzi. As there are no highly effective drugs against this agent that also demonstrate low toxicity, there is an urgent need for development of new drugs to treat Chagas disease. We have previously demonstrated that the parasite inositol 1,4,5-trisphosphate receptor (TcIP3R) is crucial for invasion of the mammalian host cell by T. cruzi. Here, we report that TcIP3R is a short-lived protein and that its expression is significantly suppressed in trypomastigotes. Treatment of trypomastigotes, an infective stage of T. cruzi, with antisense oligonucleotides specific to TcIP3R deceased TcIP3R protein levels and impaired trypomastigote invasion of host cells. Due to the resulting instability and very low expression level of TcIP3R in trypomastigotes indicates that TcIP3R is a promising target for antisense therapy in Chagas disease.

  13. Detection of genetically modified tomato using PCR coupled with muParaflo microfluidics microarrays.

    Science.gov (United States)

    Feng, Junli; Liang, Yanjun; Wang, Fengjun; Chen, Jishuang

    2013-12-01

    Genetically modified (GM) tomatoes have been approved for commercialization in many countries since the first GM tomato FLAVR SAVR was permitted for planting in 1994. To meet the requirement of the GM tomatoes labeling policy, in this study we firstly set up the conventional PCR and multiplex PCR detection system for screening the universal elements transformed into tomato, such as cauliflower mosaic virus 35s (CaMV 35s) promoter, nopaline synthase (nos) terminator of Agrobacterium tumefaciens, neomycinphosphotransferase (nptII) gene, and the specifically inserted heterologous DNA sequence between CaMV 35s promoter and anti-sense ethylene-forming enzyme (anti-EFE) gene in GM tomato "Huafan No. 1." Tomato lat52, mcpi, fru and apx genes were used as endogenous reference genes. Besides these, a muParaflo microfluidic microarray was also developed to screen the exogenous or endogenous genes of GM tomatoes. A total of 957 probes were designed, which can be classified into two categories according to their purpose: the first for screening GM plants from un-transgenic plants based on the common elements such as promoter, reporter and terminator genes, and the second for specific gene confirmation based on target sequences such as anti-EFE or aminocyclopropane cyclase synthase (acc) gene. To ensure the reliability of this method, different kinds of positive and negative controls (such as the probes complementary to cp gene of CaMV) were included in microarray detection system. Four tomato species were identified by means of these methods, and the results indicated that microarray is a high-throughput and more efficient screening method, which could complement PCR-based screening procedures by providing direct conclusive evidence and also may be useful to resolve masking of unknown events by known events.

  14. Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity

    DEFF Research Database (Denmark)

    Yarani, Reza; Shiraishi, Takehiko; Nielsen, Peter E.

    2018-01-01

    Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginine...

  15. Thiolated carboxymethyl dextran as a nanocarrier for colon delivery of hSET1 antisense: In vitro stability and efficiency study

    International Nuclear Information System (INIS)

    Kiani, Melika; Mirzazadeh Tekie, Farnaz Sadat; Dinarvand, Meshkat; Soleimani, Masoud; Dinarvand, Rassoul; Atyabi, Fatemeh

    2016-01-01

    Gene therapy is an optimistic approach in cancer treatment. However, for efficient delivery of gene materials, designing an appropriate vector is necessary. Polyelectrolyte complexes (PECs) of chitosan and dextran could be considered a proper nanoparticulate carrier for sensitive biomaterials. In this study, PECs of chitosan and thiolated dextran were used as either an injectable or oral gene delivery system. hSET1 antisense was loaded into the PECs to suppress proliferation of colon cancer cell line. The prepared nanoparticles have ~ 115 nm diameter size and positive zeta potential with high mucoadhesion properties. They are able to protect antisense from degradation in serum and biorelevant fluids (FaSSIF and FaSSGF). Furthermore, prepared nanoparticles demonstrated superior cellular penetration and inhibitory effect on SW480 colon cancer cell proliferation. All nanoparticles significantly down regulated hSET1 in comparison with naked antisense. It can be concluded that thiolated PECs have potential use for injectable or oral delivery of nucleic acids such as antisense. - Highlights: • Formation of stable nanoparticle with dextran and chitosan derivatives for oral and intravenous gene delivery. • Satifactory cellular uptake of nanoparticles and approximately complete suppression of hSET1 expression in SW480 cell lines • Prolonged stability of nanoparticles against biorelevent media with desirable release rate.

  16. Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates

    DEFF Research Database (Denmark)

    Straarup, Ellen Marie; Fisker, Niels; Hedtjärn, Maj

    2010-01-01

    The potency and specificity of locked nucleic acid (LNA) antisense oligonucleotides was investigated as a function of length and affinity. The oligonucleotides were designed to target apolipoprotein B (apoB) and were investigated both in vitro and in vivo. The high affinity of LNA enabled the des...

  17. Data in support of a functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II

    Directory of Open Access Journals (Sweden)

    Liliana Matos

    2015-12-01

    The interpretation of these data and further extensive experiments into the analysis of these three mutations and also into the methodology applied to correct one of them can be found in “Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II” Matos et al. (2015 [1].

  18. Feasibility of SPECT-CT imaging to study the pharmacokinetics of antisense oligonucleotides in a mouse model of Duchenne muscular dystrophy

    NARCIS (Netherlands)

    Steeg, E. van de; Läppchen, T.; Aguilera, B.; Jansen, H.T.; Muilwijk, D.; Vermue, R.; Hoorn, J.W. van der; Donato, K.; Rossin, R.; Visser, P.C. de; Vlaming, M.L.H.

    2017-01-01

    Antisense oligonucleotides (AONs) are promising candidates for treatment of Duchenne muscular dystrophy (DMD), a severe and progressive disease resulting in premature death. However, more knowledge on the pharmacokinetics of new AON drug candidates is desired for effective application in the clinic.

  19. Preliminary studies on gene therapy with TGF β1 antisense gene/liposome complexes and adenovirus transfer vector in RPF rats

    International Nuclear Information System (INIS)

    Liu Chunjie; Wang Dewen; Zhang Zhaoshan; Gao Yabing; Xiong Chengqi; Long Jianyin; Wang Huixin; Peng Ruiyun; Cui Xuemei

    2001-01-01

    Objective: To observed the efficiency of gene therapy with TGF β1 antisense gene/liposome complexes and adenovirus transfer vector in RPF rats. Methods: TGFβ1 sense and antisense gene expression vectors and adenovirus transfer vector were introduced into rat bronchus by way of intratracheal instillation. Results: At day 1.5 after TGFβ1 sense and antisense gene transfer, PCR amplification using neo gene-specific primer from lung tissue DNA was all positive. After day 5.5, 67% (2/3) of lung tissue DNA was positive. RNA dot blot hybridization indicated that TGFβ1 mRNA content of lung tissue transfected with pMAMneo-antiTGFβ1 gene decreased. Detection of lung hydroxyproline (Hyp) content after day 35 of gene transfer showed that even in lung of rats received pMAMneo-AntiTGFβ1 lipid complexes it raised remarkably (P 9 pfu/ml were instilled into bronchus at 0.5 ml per rat. After day 2 day 6, the lung tissues of all six rats (three per each group )expressed the transfected luciferase gene by luminometer. Conclusion: Cationic lipid-mediated TGFβ1 antisense gene therapy was a simple and easy method. It can slow down the course of pathogenesis of lung fibrosis. Replication-deficient recombinant adenovirus-mediated gene therapy of lung diseases is a good and efficient method

  20. Thiolated carboxymethyl dextran as a nanocarrier for colon delivery of hSET1 antisense: In vitro stability and efficiency study

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Melika, E-mail: Melika.kiani@gmail.com [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Mirzazadeh Tekie, Farnaz Sadat, E-mail: mirzazadehf@yahoo.com [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Dinarvand, Meshkat, E-mail: mdinarvand@hotmail.com [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Soleimani, Masoud, E-mail: soleim_m@modares.ac.ir [Stem Cell Technology Research Centre, P.O. Box 14155-3174, Tehran (Iran, Islamic Republic of); Department of Hematology, School of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran (Iran, Islamic Republic of); Dinarvand, Rassoul, E-mail: dinarvand@tums.ac.ir [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Atyabi, Fatemeh, E-mail: atyabifa@tums.ac.ir [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-05-01

    Gene therapy is an optimistic approach in cancer treatment. However, for efficient delivery of gene materials, designing an appropriate vector is necessary. Polyelectrolyte complexes (PECs) of chitosan and dextran could be considered a proper nanoparticulate carrier for sensitive biomaterials. In this study, PECs of chitosan and thiolated dextran were used as either an injectable or oral gene delivery system. hSET1 antisense was loaded into the PECs to suppress proliferation of colon cancer cell line. The prepared nanoparticles have ~ 115 nm diameter size and positive zeta potential with high mucoadhesion properties. They are able to protect antisense from degradation in serum and biorelevant fluids (FaSSIF and FaSSGF). Furthermore, prepared nanoparticles demonstrated superior cellular penetration and inhibitory effect on SW480 colon cancer cell proliferation. All nanoparticles significantly down regulated hSET1 in comparison with naked antisense. It can be concluded that thiolated PECs have potential use for injectable or oral delivery of nucleic acids such as antisense. - Highlights: • Formation of stable nanoparticle with dextran and chitosan derivatives for oral and intravenous gene delivery. • Satifactory cellular uptake of nanoparticles and approximately complete suppression of hSET1 expression in SW480 cell lines • Prolonged stability of nanoparticles against biorelevent media with desirable release rate.

  1. Effect of cisplatin and c-myb antisense phosphorothioate oligodeoxynucleotides combination on a human colon carcinoma cell line in vitro and in vivo.

    Science.gov (United States)

    Del Bufalo, D.; Cucco, C.; Leonetti, C.; Citro, G.; D'Agnano, I.; Benassi, M.; Geiser, T.; Zon, G.; Calabretta, B.; Zupi, G.

    1996-01-01

    We investigated the effect of c-myb antisense phosphorothioate oligodeoxynucleotides [(S)ODNs] and cisplatin (CDDP) combination on the human colon carcinoma cell line LoVo Dx both in vitro and in nude mice bearing LoVo Dx solid tumour. We show that antisense (S)ODN treatment decreases c-myb mRNA and protein expression, induces growth arrest in the G1 phase of the cell cycle, and inhibits cell proliferation. In vivo treatment with c-myb antisense (S)ODNs results in a reduction in tumour growth. A greater inhibition of cell proliferation in vitro and a higher increase of tumour growth inhibition and growth delay in vivo were obtained with the combination of (S)ODNs and CDDP than when the two agents were administered separately. This comparative study, using the same tumour cell line in vitro and in vivo, suggests that c-myb antisense (S)ODNs might be useful in the therapy of colon cancer in combination with antineoplastic drugs. Images Figure 1 Figure 4 PMID:8695353

  2. Antisense down-regulation of strawberry endo-beta (1,4)-glucanase genes does not prevent fruit softening during ripening

    NARCIS (Netherlands)

    Palomer, X.; Llop-Tous, I.; Vendrell, M.; Krens, F.A.; Schaart, J.G.; Boone, M.J.; Valk, van der H.C.P.M.; Salentijn, E.M.J.

    2006-01-01

    Strawberry (Fragaria × ananassa Duch.) fruit softening during ripening is associated with the overlapping presence of two divergent endo-ß-(1,4)-glucanases (EC 3.2.1.4; EGases), Cel1 and Cel2. Antisense down-regulation of both genes was performed to assess the precise role of these

  3. Downregulation of p21(WAF1/CIP1) and estrogen receptor alpha in MCF-7 cells by antisense oligonucleotides containing locked nucleic acid (LNA)

    DEFF Research Database (Denmark)

    Jepsen, Jan Stenvang; Pfundheller, Henrik M; Lykkesfeldt, Anne E

    2004-01-01

    of phosphorothioate oligonucleotides (PS AONs). The antisense efficiency of LNA-containing oligonucleotides was systematically compared with standard PS AONs targeting expression of two endogenous proteins in the human breast cancer cell line MCF-7, namely, the cyclin-dependent kinase inhibitor p21(WAF1/CIP1...

  4. Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro.

    Science.gov (United States)

    Goh, Shan; Loeffler, Anette; Lloyd, David H; Nair, Sean P; Good, Liam

    2015-11-11

    Antibiotic resistance genes can be targeted by antisense agents, which can reduce their expression and thus restore cellular susceptibility to existing antibiotics. Antisense inhibitors can be gene and pathogen specific, or designed to inhibit a group of bacteria having conserved sequences within resistance genes. Here, we aimed to develop antisense peptide nucleic acids (PNAs) that could be used to effectively restore susceptibility to β-lactams in methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP). Antisense PNAs specific for conserved regions of the mobilisable gene mecA, and the growth essential gene, ftsZ, were designed. Clinical MRSA and MRSP strains of high oxacillin resistance were treated with PNAs and assayed for reduction in colony forming units on oxacillin plates, reduction in target gene mRNA levels, and cell size. Anti-mecA PNA at 7.5 and 2.5 μM reduced mecA mRNA in MRSA and MRSP (p resistance in staphylococci. Further studies are warranted as clinical treatment alternatives are needed.

  5. Inhibiting the growth of methicillin-resistant Staphylococcus aureus in vitro with antisense peptide nucleic acid conjugates targeting the ftsZ gene

    Directory of Open Access Journals (Sweden)

    Shumei Liang

    2015-01-01

    Conclusion: Our results demonstrate that the potent effects of PNAs on bacterial growth and cell viability were mediated by the down-regulation or even knock-out of ftsZ gene expression. This highlights the utility of ftsZ as a promising target for the development of new antisense antibacterial agents to treat MRSA infections.

  6. Experimental study on imaging of 99Tcm labeled c-myc mRNA antisense PNA in colorectal cancer tumor-bearing nude mice

    International Nuclear Information System (INIS)

    Zhang Shaoqi; Zhao Xinpeng; Wang Jianfang; Zhang Jingmian; Wang Yincheng; Sun Li; Dai Chunnuan; Li Dezhi; Jiang Zhihua

    2008-01-01

    Objective: C-myc mRNA may become active before cancer development. The aim of this study was to explore the feasibility by using 99 Tc m labeled c-myc mRNA antisense peptide nucleic acid PNA) to early diagnose colorectal cancer. Methods: Four amino acid [G (D)-A-G-G] and an Aba aminobutyric acid) were linked to the 5' end of c-myc mRNA antisense PNA by chemical synthesize, then it was labeled with 99Tcm in ligands exchange method. 99 Tc m labeled c-myc mRNA mismatch PNA was pre- pared in the same way as control. 99 Tc m labeled c-myc mRNA antisense or mismatch PNA (37 MBq) was intravenously injected into nude mice bearing human colorectal LS174-T cell through tail vein. Radionuclide imaging was performed at 1, 2 and 4 h postinjection. Statistical analysis was performed with SAS 6.12. Results: The in vitro study showed that the labeling efficiency of 99 Tc m labeled c-myc mRNA antisense PNA fragment was high (>95% at 6 h). The in vivo study showed that the tumor uptake of 99 Tc m labeled c-myc mRNA antisense PNA was high from 1 h [the radioactivity ratios of tumor to non-tumor (T/N) were 5.06 ± 1.35 and 1.53 ± 0.30 in 99 Tc m labeled c-myc mRNA antisense PNA group and 99 Tc m labeled mRNA mis-match PNA group, respectively; t=4.47, P=0.04] to 4 h after injection. In contrast, there was little 99 Tc m labeled mRNA mismatch PNA accumulated in tumor within 4 h. Conclusions: 99 Tc m labeled c-myc mRNA antisense PNA exhibited high sensitivity and high specificity in binding with the colorectal LS174-T tumor tissue. The optimal imaging time for in vivo in the future may be at 4 h after injection. (authors)

  7. Full-scale mesophilic biogas plants using manure as C-source: bacterial community shifts along the process cause changes in the abundance of resistance genes and mobile genetic elements.

    Science.gov (United States)

    Wolters, Birgit; Ding, Guo-Chun; Kreuzig, Robert; Smalla, Kornelia

    2016-02-01

    The application of manure, typically harboring bacteria carrying resistance genes (RGs) and mobile genetic elements (MGEs), as co-substrate in biogas plants (BGPs) might be critical when digestates are used as fertilizers. In the present study, the relative abundance of RGs and MGEs in total community (TC-) DNA from manure, fermenters and digestate samples taken at eight full-scale BGPs co-fermenting manure were determined by real-time PCR. In addition, the bacterial community composition of all digestates as well as manure and fermenter material from one BGP (BGP3) was characterized by 454-pyrosequencing of 16S rRNA amplicons from TC-DNA. Compared to respective input manures, relative abundances determined for sul1, sul2, tet(M), tet(Q), intI1, qacEΔ1, korB and traN were significantly lower in fermenters, whereas relative abundances of tet(W) were often higher in fermenters. The bacterial communities in all digestates were dominated by Firmicutes and Bacteroidetes while Proteobacteria were low in abundance and no Enterobacteriaceae were detected. High-throughput sequencing revealed shifts in bacterial communities during treatment for BGP3. Although in comparison to manure, digestate bacteria had lower relative abundances of RGs and MGEs except for tet(W), mesophilic BGPs seem not to be effective for prevention of the spread of RGs and MGEs via digestates into arable soils. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice

    Directory of Open Access Journals (Sweden)

    Lu Tingting

    2012-12-01

    Full Text Available Abstract Background Cis-natural antisense transcripts (cis-NATs are RNAs transcribed from the antisense strand of a gene locus, and are complementary to the RNA transcribed from the sense strand. Common techniques including microarray approach and analysis of transcriptome databases are the major ways to globally identify cis-NATs in various eukaryotic organisms. Genome-wide in silico analysis has identified a large number of cis-NATs that may generate endogenous short interfering RNAs (nat-siRNAs, which participate in important biogenesis mechanisms for transcriptional and post-transcriptional regulation in rice. However, the transcriptomes are yet to be deeply sequenced to comprehensively investigate cis-NATs. Results We applied high-throughput strand-specific complementary DNA sequencing technology (ssRNA-seq to deeply sequence mRNA for assessing sense and antisense transcripts that were derived under salt, drought and cold stresses, and normal conditions, in the model plant rice (Oryza sativa. Combined with RAP-DB genome annotation (the Rice Annotation Project Database build-5 data set, 76,013 transcripts corresponding to 45,844 unique gene loci were assembled, in which 4873 gene loci were newly identified. Of 3819 putative rice cis-NATs, 2292 were detected as expressed and giving rise to small RNAs from their overlapping regions through integrated analysis of ssRNA-seq data and small RNA data. Among them, 503 cis-NATs seemed to be associated with specific conditions. The deep sequence data from isolated epidermal cells of rice seedlings further showed that 54.0% of cis-NATs were expressed simultaneously in a population of homogenous cells. Nearly 9.7% of rice transcripts were involved in one-to-one or many-to-many cis-NATs formation. Furthermore, only 17.4-34.7% of 223 many-to-many cis-NAT groups were all expressed and generated nat-siRNAs, indicating that only some cis-NAT groups may be involved in complex regulatory networks. Conclusions

  9. Modulation of p53 expression using antisense oligonucleotides complementary to the 5'-terminal region of p53 mRNA in vitro and in the living cells.

    Directory of Open Access Journals (Sweden)

    Agnieszka Gorska

    Full Text Available The p53 protein is a key player in cell response to stress events and cancer prevention. However, up-regulation of p53 that occurs during radiotherapy of some tumours results in radio-resistance of targeted cells. Recently, antisense oligonucleotides have been used to reduce the p53 level in tumour cells which facilitates their radiation-induced apoptosis. Here we describe the rational design of antisense oligomers directed against the 5'-terminal region of p53 mRNA aimed to inhibit the synthesis of p53 protein and its ΔNp53 isoform. A comprehensive analysis of the sites accessible to oligomer hybridization in this mRNA region was performed. Subsequently, translation efficiency from the initiation codons for both proteins in the presence of selected oligomers was determined in rabbit reticulocyte lysate and in MCF-7 cells. The antisense oligomers with 2'-OMe and LNA modifications were used to study the mechanism of their impact on translation. It turned out that the remaining RNase H activity of the lysate contributed to modulation of protein synthesis efficiency which was observed in the presence of antisense oligomers. A possibility of changing the ratio of the newly synthetized p53 and ΔNp53 in a controlled manner was revealed which is potentially very attractive considering the relationship between the functioning of these two proteins. Selected antisense oligonucleotides which were designed based on accessibility mapping of the 5'-terminal region of p53 mRNA were able to significantly reduce the level of p53 protein in MCF-7 cells. One of these oligomers might be used in the future as a support treatment in anticancer therapy.

  10. Physicochemical and biological properties of self-assembled antisense/poly(amidoamine dendrimer nanoparticles: the effect of dendrimer generation and charge ratio

    Directory of Open Access Journals (Sweden)

    Alireza Nomani

    2010-05-01

    Full Text Available Alireza Nomani1,6, Ismaeil Haririan1,5, Ramin Rahimnia2,4, Shamileh Fouladdel2, Tarane Gazori1, Rassoul Dinarvand1, Yadollah Omidi3, Ebrahim Azizi2,41Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 2Molecular Research Lab, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 3Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; 4Department of Medical Biotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; 5Biomaterials Research Center (BRC Tehran, Iran; 6Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, IranAbstract: To gain a deeper understanding of the physicochemical phenomenon of self-assembled nanoparticles of different generations and ratios of poly (amidoamine dendrimer (PAMAM dendrimer and a short-stranded DNA (antisense oligonucleotide, multiple methods were used to characterize these nanoparticles including photon correlation spectroscopy (PCS; zeta potential measurement; and atomic force microscopy (AFM. PCS and AFM results revealed that, in contrast to larger molecules of DNA, smaller molecules produce more heterodisperse and large nanoparticles when they are condensed with a cationic dendrimer. AFM images also showed that such nanoparticles were spherical. The stability of the antisense content of the nanoparticles was investigated over different charge ratios using polyacrylamide gel electrophoresis. It was clear from such analyses that much more than charge neutrality point was required to obtain stable nanoparticles. For cell uptake, self-assembled nanoparticles were prepared with PAMAM G5 and 5’-FITC labeled antisense and the uptake experiment was carried out in T47D cell culture. This investigation also shows that the cytotoxicity of the nanoparticles was

  11. Effects of Antisense Oligonucleotides against C-Reactive Protein on the Development of Atherosclerosis in WHHL Rabbits

    Directory of Open Access Journals (Sweden)

    Qi Yu

    2014-01-01

    Full Text Available Increased plasma levels of C-reactive protein (CRP are closely associated with cardiovascular diseases, but whether CRP is directly involved in the pathogenesis of atherosclerosis is still under debate. Many controversial and contradictory results using transgenic mice and rabbits have been published but it is also unclear whether CRP lowering can be used for the treatment of atherosclerosis. In the current study, we examined the effects of the rabbit CRP antisense oligonucleotides (ASO on the development of atherosclerosis in WHHL rabbits. CRP ASO treatment led to a significant reduction of plasma CRP levels; however, both aortic and coronary atherosclerotic lesions were not significantly changed compared to those of control WHHL rabbits. These results suggest that inhibition of plasma CRP does not affect the development of atherosclerosis in WHHL rabbits.

  12. The antisense expression of AhPEPC1 increases seed oil production in peanuts (Arachis hypogaea L.

    Directory of Open Access Journals (Sweden)

    L. Pan

    2016-12-01

    Full Text Available Although phosphoenolpyruvate carboxylases (PEPCs are reported to be involved in fatty acid accumulation, nitrogen assimilation, and salt and drought stresses, knowledge regarding PEPC gene functions is still limited, particularly in peanuts (Arachis hypogaea L.. In this study, the antisense expression of the peanut PEPC isoform 1 (AhPEPC1 gene increased the lipid content by 5.7%–10.3%. This indicated that AhPEPC1 might be related to plant lipid accumulation. The transgenic plants underwent more root elongation than the wild-type under salinity stress. Additionally, the specific down regulation of the AhPEPC1 gene improved the salt tolerance in peanuts. This is the first report on the role of PEPC in lipid accumulation and salt tolerance in peanuts.

  13. Comparative analysis of antisense oligonucleotide sequences targeting exon 53 of the human DMD gene: Implications for future clinical trials.

    Science.gov (United States)

    Popplewell, Linda J; Adkin, Carl; Arechavala-Gomeza, Virginia; Aartsma-Rus, Annemieke; de Winter, Christa L; Wilton, Steve D; Morgan, Jennifer E; Muntoni, Francesco; Graham, Ian R; Dickson, George

    2010-02-01

    Duchenne muscular dystrophy (DMD) is caused by the lack of functional dystrophin protein, most commonly as a result of a range of out-of-frame mutations in the DMD gene. Modulation of pre-mRNA splicing with antisense oligonucleotides (AOs) to restore the reading frame has been demonstrated in vitro and in vivo, such that truncated but functional dystrophin is expressed. AO-induced skipping of exon 51 of the DMD gene, which could treat 13% of DMD patients, has now progressed to clinical trials. We describe here the methodical, cooperative comparison, in vitro (in DMD cells) and in vivo (in a transgenic mouse expressing human dystrophin), of 24 AOs of the phosphorodiamidate morpholino oligomer (PMO) chemistry designed to target exon 53 of the DMD gene, skipping of which could be potentially applicable to 8% of patients. A number of the PMOs tested should be considered worthy of development for clinical trial. Copyright 2009 Elsevier B.V. All rights reserved.

  14. The antisense expression of AhPEPC1 increases seed oil production in peanuts (Arachis hypogaea L.)

    Energy Technology Data Exchange (ETDEWEB)

    Pan, L.; Zhang, J.; Chi, X.; Chen, N.; Chen, M.; Wang, M.; Wang, T.; Yang, Z.; Zhang, Z.; Wan, Y.; Yu, S.; Liu, F.

    2016-07-01

    Although phosphoenolpyruvate carboxylases (PEPCs) are reported to be involved in fatty acid accumulation, nitrogen assimilation, and salt and drought stresses, knowledge regarding PEPC gene functions is still limited, particularly in peanuts (Arachis hypogaea L.). In this study, the antisense expression of the peanut PEPC isoform 1 (AhPEPC1) gene increased the lipid content by 5.7%–10.3%. This indicated that AhPEPC1 might be related to plant lipid accumulation. The transgenic plants underwent more root elongation than the wild-type under salinity stress. Additionally, the specific down regulation of the AhPEPC1 gene improved the salt tolerance in peanuts. This is the first report on the role of PEPC in lipid accumulation and salt tolerance in peanuts.

  15. Formulation and drug-content assay of microencapsulated antisense oligonucleotide to NF-κB using ATR-FTIR

    International Nuclear Information System (INIS)

    Siwale, Rodney; Meadows, Fred; Mody, Vicky V; Shah, Samit

    2013-01-01

    Antisense oligonucleotide to NF-κB sequence: 5′-GGA AAC ACA TCC TCC ATG-3′, was microencapsulated in an albumin matrix by the method of spray drying TM . Spectral analysis was performed on varying drug loading formulations of both drugs by mid-IR attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An out of plane O–H bending vibration at 948 cm −1 , unique to both the native and microencapsulated drugs was identified. The calculated peak areas corresponded to the drug loadings in the microsphere formulations. A standard curve could then be used to determine the drug content of an unknown microsphere formulation. Accuracy and precision were determined to be comparable to other analytical techniques such as HPLC. (paper)

  16. Stable propagation of 'selfish'genetic elements

    Indian Academy of Sciences (India)

    Unknown

    viruses such as the Epstein-Barr virus (Harris et al 1985;. Kanda et al 2001) and bovine papilloma virus (Lehman and Botchan 1998; Ilves et al 1999), which exist pre- dominantly as extrachromosomal episomes, have been shown to utilize chromosome tethering as a means for stable segregation. The tethering mechanism ...

  17. HTLV Deregulation of the NF-κB Pathway: An Update on Tax and Antisense Proteins Role.

    Science.gov (United States)

    Fochi, Stefania; Mutascio, Simona; Bertazzoni, Umberto; Zipeto, Donato; Romanelli, Maria G

    2018-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4 + /CD25 + T-cell malignancy and of a severe neurodegenerative disease, HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The chronic activation or deregulation of the canonical and non-canonical nuclear factor kappa B (NF-κB) pathways play a crucial role in tumorigenesis. The HTLV-1 Tax-1 oncoprotein is a potent activator of the NF-κB transcription factors and the NF-κB response is required for promoting the development of HTLV-1 transformed cell lines. The homologous retrovirus HTLV-2, which also expresses a Tax-2 transforming protein, is not associated with ATL. In this review, we provide an updated synopsis of the role of Tax-1 in the deregulation of the NF-κB pathway, highlighting the differences with the homologous Tax-2. Special emphasis is directed toward the understanding of the molecular mechanisms involved in NF-κB activation resulting from Tax interaction with host factors affecting several cellular processes, such as cell cycle, apoptosis, senescence, cell proliferation, autophagy, and post-translational modifications. We also discuss the current knowledge on the role of the antisense viral protein HBZ in down-regulating the NF-κB activation induced by Tax, and its implication in cellular senescence. In addition, we review the recent studies on the mechanism of HBZ-mediated inhibition of NF-κB activity as compared to that exerted by the HTLV-2 antisense protein, APH-2. Finally, we discuss recent advances aimed at understanding the role exerted in the development of ATL by the perturbation of NF-κB pathway by viral regulatory proteins.

  18. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides.

    Science.gov (United States)

    Lennox, Kim A; Behlke, Mark A

    2016-01-29

    Thousands of long non-coding RNAs (lncRNAs) have been identified in mammalian cells. Some have important functions and their dysregulation can contribute to a variety of disease states. However, most lncRNAs have not been functionally characterized. Complicating their study, lncRNAs have widely varying subcellular distributions: some reside predominantly in the nucleus, the cytoplasm or in both compartments. One method to query function is to suppress expression and examine the resulting phenotype. Methods to suppress expression of mRNAs include antisense oligonucleotides (ASOs) and RNA interference (RNAi). Antisense and RNAi-based gene-knockdown methods vary in efficacy between different cellular compartments. It is not known if this affects their ability to suppress lncRNAs. To address whether localization of the lncRNA influences susceptibility to degradation by either ASOs or RNAi, nuclear lncRNAs (MALAT1 and NEAT1), cytoplasmic lncRNAs (DANCR and OIP5-AS1) and dual-localized lncRNAs (TUG1, CasC7 and HOTAIR) were compared for knockdown efficiency. We found that nuclear lncRNAs were more effectively suppressed using ASOs, cytoplasmic lncRNAs were more effectively suppressed using RNAi and dual-localized lncRNAs were suppressed using both methods. A mixed-modality approach combining ASOs and RNAi reagents improved knockdown efficacy, particularly for those lncRNAs that localize to both nuclear and cytoplasmic compartments. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Molecular and preclinical aspects of antisense oligonucleotide treatment for myotonic dystrophy type 1

    NARCIS (Netherlands)

    Gonzalez Barriga, A.M.M.

    2017-01-01

    Myotonic Dystrophy type 1 (DM1) is a genetic disorder caused by an expansion of a (CTG)n repeat in the DMPK gene, which is carried by all individuals, but normally contains less than 37 triplets. Only when this threshold is exceeded the person carrying it will develop DM1, with an age of onset and

  20. Genetic therapies to lower cholesterol.

    Science.gov (United States)

    Khoo, Bernard

    2015-01-01

    This review surveys the state-of-the-art in genetic therapies for familial hypercholesterolaemia (FH), caused most commonly by mutations in the LDL receptor (LDLR) gene. FH manifests as highly elevated low density lipoprotein (LDL) cholesterol levels and consequently accelerated atherosclerosis. Modern pharmacological therapies for FH are insufficiently efficacious to prevent premature cardiovascular disease, can cause significant adverse effects and can be expensive. Genetic therapies for FH have been mooted since the mid 1990s but gene replacement strategies using viral vectors have so far been unsuccessful. Other strategies involve knocking down the expression of Apolipoprotein B100 (APOB100) and the protease PCSK9 which designates LDLR for degradation. The antisense oligonucleotide mipomersen, which knocks down APOB100, is currently marketed (with restrictions) in the USA, but is not approved in Europe due to its adverse effects. To address this problem, we have devised a novel therapeutic concept, APO-skip, which is based on modulation of APOB splicing, and which has the potential to deliver a cost-effective, efficacious and safe therapy for FH. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. PELTIER ELEMENTS

    CERN Document Server

    Tani, Laurits

    2015-01-01

    To control Peltier elements, temperature controller was used. I used TEC-1091 that was manufactured my Meerstetter Engineering. To gain control with the temperature controller, software had to be intalled on a controlling PC. There were different modes to control the Peltier: Tempererature controller to control temperature, Static current/voltage to control voltage and current and LIVE ON/OFF to auto-tune the controller respectively to the system. Also, since near the collision pipe there is much radiation, radiation-proof Peltier elements have to be used. To gain the best results, I had to find the most efficient Peltier elements and try to get their cold side to -40 degrees Celsius.

  2. FUEL ELEMENT

    Science.gov (United States)

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  3. Radiographic element

    International Nuclear Information System (INIS)

    Abbott, T.I.; Jones, C.G.

    1983-01-01

    Radiographic elements are disclosed having first and second silver halide emulsion layers comprised of a dispersing medium and radiation-sensitive silver halide grains, and a support interposed between said silver halide emulsion layers capable of transmitting radiation to which said second silver halide emulsion layer is responsive. These elements are characterized in that at least said first silver halide emulsion layer contains tabular silver halide grains and spectral sensitizing dye adsorbed to the surface of the grains. Crossover can be improved in relation to the imaging characteristics. (author)

  4. Osteoporosis and trace elements

    DEFF Research Database (Denmark)

    Aaseth, J.; Boivin, G.; Andersen, Ole

    2012-01-01

    More than 200 million people are affected by osteoporosis worldwide, as estimated by 2 million annual hip fractures and other debilitating bone fractures (vertebrae compression and Colles' fractures). Osteoporosis is a multi-factorial disease with potential contributions from genetic, endocrine...... in new bone and results in a net gain in bone mass, but may be associated with a tissue of poor quality. Aluminum induces impairment of bone formation. Gallium and cadmium suppresses bone turnover. However, exact involvements of the trace elements in osteoporosis have not yet been fully clarified...

  5. The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function

    DEFF Research Database (Denmark)

    Scheele, Camilla; Petrovic, Natasa; Faghihi, Mohammad A

    2007-01-01

    . RESULTS: Herein we characterize a novel splice variant of PINK1 (svPINK1) that is homologous to the C-terminus regulatory domain of the protein kinase. Naturally occurring non-coding antisense provides sophisticated mechanisms for diversifying genomes and we describe a human specific non-coding antisense...... expressed at the PINK1 locus (naPINK1). We further demonstrate that PINK1 varies in vivo when human skeletal muscle mitochondrial content is enhanced, supporting the idea that PINK1 has a physiological role in mitochondrion. The observation of concordant regulation of svPINK1 and naPINK1 during in vivo......-transcribed mRNA under physiological abundance conditions. While our analysis implies a possible human specific and dsRNA-mediated mechanism for stabilizing the expression of svPINK1, it also points to a broader genomic strategy for regulating a human disease locus and increases the complexity through which...

  6. Inhibition of flower formation by antisense repression of mitochondrial citrate synthase in transgenic potato plants leads to a specific disintegration of the ovary tissues of flowers.

    OpenAIRE

    Landschütze, V; Willmitzer, L; Müller-Röber, B

    1995-01-01

    The tricarboxylic acid (TCA) cycle constitutes a major component of the mitochondrial metabolism of eucaryotes, including higher plants. To analyze the importance of this pathway, we down-regulated mitochondrial citrate synthase (mCS; EC 4.1.3.7), the first enzyme of the TCA cycle, in transgenic potato plants using an antisense RNA approach. Several transformants were identified with reduced citrate synthase activity (down to approximately 6% of wild-type activity). These plants were indistin...

  7. [Construction of anti-sense cDNA library of human breast cancer cells during apoptosis induced by trichostatin A and preliminary screening of essential genes].

    Science.gov (United States)

    Ma, Xiao-Li; Wang, Bei-Bei; Wu, Peng; Lu, Yun-Ping; Zhou, Jian-Feng; Ma, Ding

    2009-02-24

    To construct an anti-sense cDNA library of human breast cancer cells to screen essential genes with anti-tumor effects on apoptosis of human breast cancer cells induced by trichostatin A. Poly (A)(+)RNA was extracted from human breast cancer cells of the line MCF-7 treated by trichostatin A for 0, 12, 24, 36, 48, 60, or 72 h. cDNA were synthesized and inserted reversely into PCEP 4 vector to construct an anti-sense cDNA library. HeLa cells were transfected with the library DNA or blank PCEP 4 vector as control group. All the transfected cells were screened by 200 nmol/L trichostatin A and 200 microg/ml hygromycin B. Screening was stopped when the control cells died. Then the surviving cell clones were amplified and Hirt DNA was extracted. Several expressed sequence tags were thus obtained. The data were analyzed by bioinformatics and interested EST fragment was chosen for preliminary functional screening. An anti-sense cDNA library was constructed containing 2 x 10(6) independent clones with an insert efficiency of more than 90%; DNA sequencing and bioinformatic analysis suggested that the No.27 survival clone was zinc transporter LIV1 showing a strong resistance against trichostatin A-induced apoptosis during functional screening. An anti-sense cDNA library with high quantity and quality has been successfully constructed; LIV1 gene may be one of the essential genes with anti-tumor effects on apoptosis induced by trichostatin A.

  8. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jane; Hall, William W. [Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 (Ireland); Ratner, Lee [Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America (United States); Sheehy, Noreen [Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 (Ireland)

    2016-07-15

    The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells. - Highlights: • This study demonstrates for the first time interactions between NF90/110 and the HTLV antisense proteins HBZ and APH-2. • We show that NF90/110 significantly enhance LTR activation by the HTLV Tax protein, an effect that is abolished by HBZ but enhanced by APH-2. • The study shows that even though the HTLV antisense proteins activate survivin expression they antagonize the ability of NF90/110 to do so. • Overall we found that NF90/110 positively regulate HTLV infection and as such might represent a therapeutic target in infected cells.

  9. Physicochemical and biological properties of self-assembled antisense/poly(amidoamine) dendrimer nanoparticles: the effect of dendrimer generation and charge ratio

    OpenAIRE

    Nomani, Alireza; Haririan, Ismaeil; Rahimnia, Ramin; Fouladdel, Shamileh; Gazori, Tarane; Dinarvand, Rassoul; Omidi, Yadollah; Azizi, Ebrahim

    2010-01-01

    To gain a deeper understanding of the physicochemical phenomenon of self-assembled nanoparticles of different generations and ratios of poly (amidoamine) dendrimer (PAMAM) dendrimer and a short-stranded DNA (antisense oligonucleotide), multiple methods were used to characterize these nanoparticles including photon correlation spectroscopy (PCS); zeta potential measurement; and atomic force microscopy (AFM). PCS and AFM results revealed that, in contrast to larger molecules of DNA, smaller mol...

  10. Locally instilled tumor necrosis factor α antisense oligonucleotide contributes to inhibition of TH 2-driven pulmonary fibrosis via induced CD4+ CD25+ Foxp3+ regulatory T cells.

    Science.gov (United States)

    Luo, Yi; Wang, Min; Pang, Zhonghua; Jiang, Fengtao; Chen, Jiangning; Zhang, Junfeng

    2013-01-01

    Anti-tumor necrosis factor α therapeutics has the potential to alleviate pulmonary fibrosis. However, the systemic administration of anti-tumor necrosis factor α agents has brought about contradictory results and frequent adverse effects, such as infections, immunogenicity and malignancies, amongst others. In the present study, we attempted the local administration of tumor necrosis factor α antisense oligonucleotide and evaluated the treatment effects on pulmonary fibrosis in a bleomycin-induced pulmonary fibrosis mouse model. Flow cytometry for regulatory T cells, reverse transcriptase-polymerase chain reaction for crucial gene expression, western blotting for crucial protein products, immunofluorescent analysis for T(H)2 cells and myofibroblasts, as well as histology analysis for pathological examination, were used. By local administration of tumor necrosis factor α antisense oligonucleotide, we investigated whether tumor necrosis factor α expression in epithelial cells was significantly inhibited and extracellular matrix overexpression was dramatically reduced. These treatment effects were associated with induced regulatory T cells, reduced T(H)2 cells and generally decreased T(H)2-type cytokine expression. Systemic immunosuppression was not triggered by local antisense oligonucleotide administration because the proportion of regulatory T cells in the blood, thymus or spleen was not affected. These findings demonstrate that local administration of tumor necrosis factor α antisense oligonucleotide contributes to anti-fibrotic action via a sustained up-regulated level of regulatory T cells, which inhibits T(H)2-biased responses, pro-fibrotic mediator production and extracellular matrix deposition, with no systemic immunosupression associated with systemically induced regulatory T cells. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles

    International Nuclear Information System (INIS)

    Murphy, Jane; Hall, William W.; Ratner, Lee; Sheehy, Noreen

    2016-01-01

    The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells. - Highlights: • This study demonstrates for the first time interactions between NF90/110 and the HTLV antisense proteins HBZ and APH-2. • We show that NF90/110 significantly enhance LTR activation by the HTLV Tax protein, an effect that is abolished by HBZ but enhanced by APH-2. • The study shows that even though the HTLV antisense proteins activate survivin expression they antagonize the ability of NF90/110 to do so. • Overall we found that NF90/110 positively regulate HTLV infection and as such might represent a therapeutic target in infected cells.

  12. Role of Leishmania (Leishmania chagasi amastigote cysteine protease in intracellular parasite survival: studies by gene disruption and antisense mRNA inhibition

    Directory of Open Access Journals (Sweden)

    Kucknoor Ashwini S

    2005-02-01

    Full Text Available Abstract Background The parasitic protozoa belonging to Leishmania (L. donovani complex possess abundant, developmentally regulated cathepsin L-like cysteine proteases. Previously, we have reported the isolation of cysteine protease gene, Ldccys2 from Leishmania (L. chagasi. Here, we have further characterized this cysteine protease gene and demonstrated its role during infection and survival of Leishmania (L. chagasi within the U937 macrophage cells. Results The amastigote specific Ldccys2 genes of L. (L. chagasi and L. (L. donovani have identical gene organization, as determined by southern blots. In vivo expression analyses by Northern blots showed that Ldccys2 is amastigote specific. Western blot using anti-Ldccys2 antibody confirmed the amastigote specific protein expression. Recombinant expression of Ldccys2, a 30 kDA protein, was functionally active in a gelatin assay. Results from Ldccys2 heterozygous knockout mutants showed its role during macrophage infection and in intra-macrophage survival of the parasites. Since attempts to generate null mutants failed, we used antisense RNA inhibition to regulate Ldcccys2 gene expression. Not surprisingly, the results from antisense studies further confirmed the results from heterozygous knockout mutants, reiterating the importance of amastigote specific cysteine proteases in Leishmania infection and pathogenesis. Conclusions The study shows that Ldccys2 is a developmentally regulated gene and that Ldccys2 is expressed only in infectious amastigote stages of the parasite. The collective results from both the heterozygous knockout mutants and antisense mRNA inhibition studies shows that Ldccys2 helps in infection and survival of L. (L. chagasi amastigotes within the macrophage cells. Finally, antisense RNA technique can be used as an alternate approach to gene knockout, for silencing gene expression in L. (L. chagasi, especially in cases such as this, where a null mutant cannot be achieved by

  13. Epitope-tagged yeast strains reveal promoter driven changes to 3′-end formation and convergent antisense-transcription from common 3′ UTRs

    Science.gov (United States)

    Swaminathan, Angavai; Beilharz, Traude H.

    2016-01-01

    Epitope-tagging by homologous recombination is ubiquitously used to study gene expression, protein localization and function in yeast. This is generally thought to insulate the regulation of gene expression to that mediated by the promoter and coding regions because native 3′ UTR are replaced. Here we show that the 3′ UTRs, CYC1 and ADH1, contain cryptic promoters that generate abundant convergent antisense-transcription in Saccharomyces cerevisiae. Moreover we show that aberrant, truncating 3′ –end formation is often associated with regulated transcription in TAP-tagged strains. Importantly, the steady-state level of both 3′ –truncated and antisense transcription products is locus dependent. Using TAP and GFP-tagged strains we show that the transcriptional state of the gene-of-interest induces changes to 3′ –end formation by alternative polyadenylation and antisense transcription from a universal 3′ UTR. This means that these 3′ UTRs contains plastic features that can be molded to reflect the regulatory architecture of the locus rather than bringing their own regulatory paradigm to the gene-fusions as would be expected. Our work holds a cautionary note for studies utilizing tagged strains for quantitative biology, but also provides a new model for the study of promoter driven rewiring of 3′ –end formation and regulatory non-coding transcription. PMID:26481348

  14. Epitope-tagged yeast strains reveal promoter driven changes to 3'-end formation and convergent antisense-transcription from common 3' UTRs.

    Science.gov (United States)

    Swaminathan, Angavai; Beilharz, Traude H

    2016-01-08

    Epitope-tagging by homologous recombination is ubiquitously used to study gene expression, protein localization and function in yeast. This is generally thought to insulate the regulation of gene expression to that mediated by the promoter and coding regions because native 3' UTR are replaced. Here we show that the 3' UTRs, CYC1 and ADH1, contain cryptic promoters that generate abundant convergent antisense-transcription in Saccharomyces cerevisiae. Moreover we show that aberrant, truncating 3' -end formation is often associated with regulated transcription in TAP-tagged strains. Importantly, the steady-state level of both 3' -truncated and antisense transcription products is locus dependent. Using TAP and GFP-tagged strains we show that the transcriptional state of the gene-of-interest induces changes to 3' -end formation by alternative polyadenylation and antisense transcription from a universal 3' UTR. This means that these 3' UTRs contains plastic features that can be molded to reflect the regulatory architecture of the locus rather than bringing their own regulatory paradigm to the gene-fusions as would be expected. Our work holds a cautionary note for studies utilizing tagged strains for quantitative biology, but also provides a new model for the study of promoter driven rewiring of 3' -end formation and regulatory non-coding transcription. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Specific regulation of point-mutated K-ras-immortalized cell proliferation by a photodynamic antisense strategy.

    Science.gov (United States)

    Higuchi, Maiko; Yamayoshi, Asako; Kato, Kiyoko; Kobori, Akio; Wake, Norio; Murakami, Akira

    2010-02-01

    It has been reported that point mutations in genes are responsible for various cancers, and the selective regulation of gene expression is an important factor in developing new types of anticancer drugs. To develop effective drugs for the regulation of point-mutated genes, we focused on photoreactive antisense oligonucleotides. Previously, we reported that photoreactive oligonucleotides containing 2'-O-psoralenylmethoxyethyl adenosine (2'-Ps-eom) showed drastic photoreactivity in a strictly sequence-specific manner. Here, we demonstrated the specific gene regulatory effects of 2'-Ps-eom on [(12)Val]K-ras mutant (GGT --> GTT). Photo-cross-linking between target mRNAs and 2'-Ps-eom was sequence-specific, and the effect was UVA irradiation-dependent. Furthermore, 2'-Ps-eom was able to inhibit K-ras-immortalized cell proliferation (K12V) but not Vco cells that have the wild-type K-ras gene. These results suggest that the 2'-Ps-eom will be a powerful nucleic acid drug to inhibit the expression of disease-causing point mutation genes, and has great therapeutic potential in the treatment of cancer.

  16. Regulated expression of PTPRJ/CD148 and an antisense long noncoding RNA in macrophages by proinflammatory stimuli.

    Directory of Open Access Journals (Sweden)

    Richa K Dave

    Full Text Available PTPRJ/CD148 is a tyrosine phosphatase that has tumour suppressor-like activity. Quantitative PCR of various cells and tissues revealed that it is preferentially expressed in macrophage-enriched tissues. Within lymphoid tissues immunohistochemistry revealed that PTPRJ/CD148 co-localised with F4/80, indicating that macrophages most strongly express the protein. Macrophages express the highest basal level of ptprj, and this is elevated further by treatment with LPS and other Toll-like receptor ligands. In contrast, CSF-1 treatment reduced basal and stimulated Ptprj expression in human and mouse cells, and interferon also repressed Ptprj expression. We identified a 1006 nucleotide long noncoding RNA species, Ptprj-as1 that is transcribed antisense to Ptprj. Ptprj-as1 was highly expressed in macrophage-enriched tissue and was transiently induced by Toll-like receptor ligands with a similar time course to Ptprj. Finally, putative transcription factor binding sites in the promoter region of Ptprj were identified.

  17. 2′-O-Methyl RNA/Ethylene-Bridged Nucleic Acid Chimera Antisense Oligonucleotides to Induce Dystrophin Exon 45 Skipping

    Directory of Open Access Journals (Sweden)

    Tomoko Lee

    2017-02-01

    Full Text Available Duchenne muscular dystrophy (DMD is a fatal muscle-wasting disease characterized by dystrophin deficiency from mutations in the dystrophin gene. Antisense oligonucleotide (AO-mediated exon skipping targets restoration of the dystrophin reading frame to allow production of an internally deleted dystrophin protein with functional benefit for DMD patients who have out-of-frame deletions. After accelerated US approval of eteplirsen (Exondys 51, which targets dystrophin exon 51 for skipping, efforts are now focused on targeting other exons. For improved clinical benefits, this strategy requires more studies of the delivery method and modification of nucleic acids. We studied a nucleotide with a 2′-O,4′-C-ethylene-bridged nucleic acid (ENA, which shows high nuclease resistance and high affinity for complementary RNA strands. Here, we describe the process of developing a 2′-O-methyl RNA(2′-OMeRNA/ENA chimera AO to induce dystrophin exon 45 skipping. One 18-mer 2′-OMeRNA/ENA chimera (AO85 had the most potent activity for inducing exon 45 skipping in cultured myotubes. AO85 was administered to mdx mice without significant side effects. AO85 transfection into cultured myotubes from 13 DMD patients induced exon 45 skipping in all samples at different levels and dystrophin expression in 11 patients. These results suggest the possible efficacy of AO-mediated exon skipping changes in individual patients and highlight the 2′-OMeRNA/ENA chimera AO as a potential fundamental treatment for DMD.

  18. Presymptomatic Treatment with Acetylcholinesterase Antisense Oligonucleotides Prolongs Survival in ALS (G93A-SOD1 Mice

    Directory of Open Access Journals (Sweden)

    Gotkine Marc

    2013-01-01

    Full Text Available Objective. Previous research suggests that acetylcholinesterase (AChE may be involved in ALS pathogenesis. AChE enzyme inhibitors can upregulate AChE transcription which in certain contexts can have deleterious (noncatalytic effects, making them theoretically harmful in ALS, whilst AChE antisense-oligonucleotides (mEN101, which downregulate AChE may be beneficial. Our aim was to investigate whether downregulation of AChE using mEN101 is beneficial in an ALS mouse model. Methods. ALS (G93A-SOD1 mice received saline, mEN101, inverse-EN101, or neostigmine. Treatments were administered from 5 weeks. Disease-onset and survival were recorded. Additional mice were sacrificed for pathological analysis at 15 weeks of age. In a follow-up experiment treatment was started at the symptomatic stage at a higher dose. Results. mEN101 given at the presymptomatic (but not symptomatic stage prolonged survival and attenuated motor-neuron loss in ALS mice. In contrast, neostigmine exacerbated the clinical parameters. Conclusions. These results suggest that AChE may be involved in ALS pathogenesis. The accelerated disease course with neostigmine suggests that any beneficial effects of mEN101 occur through a non-catalytic rather than cholinergic mechanism.

  19. Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening.

    Science.gov (United States)

    Santiago-Doménech, Nieves; Jiménez-Bemúdez, Silvia; Matas, Antonio J; Rose, Jocelyn K C; Muñoz-Blanco, Juan; Mercado, José A; Quesada, Miguel A

    2008-01-01

    Cell wall disassembly in softening fruits is a complex process involving the cumulative action of many families of wall-modifying proteins on interconnected polysaccharide matrices. One strategy to elucidate the in vivo substrates of specific enzymes and their relative importance and contribution to wall modification is to suppress their expression in transgenic fruit. It has been reported previously that inhibiting the expression of pectate lyase genes by antisense technology in strawberry (Fragaria x ananassa Duch.) fruit resulted in prolonged fruit firmness. This suggested that pectin depolymerization might make a more important contribution to strawberry fruit softening than is often stated. In this present study, three independent transgenic lines were identified exhibiting a greater than 90% reduction in pectate lyase transcript abundance. Analyses of sequential cell wall extracts from the transgenic and control fruit collectively showed clear quantitative and qualitative differences in the extractability and molecular masses of populations of pectin polymers. Wall extracts from transgenic fruits showed a reduction in pectin solubility and decreased depolymerization of more tightly bound polyuronides. Additional patterns of differential extraction of other wall-associated pectin subclasses were apparent, particularly in the sodium carbonate- and chelator-soluble polymers. In addition, microscopic studies revealed that the typical ripening-associated loss of cell-cell adhesion was substantially reduced in the transgenic fruits. These results indicate that pectate lyase plays an important degradative role in the primary wall and middle lamella in ripening strawberry fruit, and should be included in synergistic models of cell wall disassembly.

  20. Optimization of Peptide Nucleic Acid Antisense Oligonucleotides for Local and Systemic Dystrophin Splice Correction in the mdx Mouse

    Science.gov (United States)

    Yin, HaiFang; Betts, Corinne; Saleh, Amer F; Ivanova, Gabriela D; Lee, Hyunil; Seow, Yiqi; Kim, Dalsoo; Gait, Michael J; Wood, Matthew JA

    2010-01-01

    Antisense oligonucleotides (AOs) have the capacity to alter the processing of pre-mRNA transcripts in order to correct the function of aberrant disease-related genes. Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle degenerative disease that arises from mutations in the DMD gene leading to an absence of dystrophin protein. AOs have been shown to restore the expression of functional dystrophin via splice correction by intramuscular and systemic delivery in animal models of DMD and in DMD patients via intramuscular administration. Major challenges in developing this splice correction therapy are to optimize AO chemistry and to develop more effective systemic AO delivery. Peptide nucleic acid (PNA) AOs are an alternative AO chemistry with favorable in vivo biochemical properties and splice correcting abilities. Here, we show long-term splice correction of the DMD gene in mdx mice following intramuscular PNA delivery and effective splice correction in aged mdx mice. Further, we report detailed optimization of systemic PNA delivery dose regimens and PNA AO lengths to yield splice correction, with 25-mer PNA AOs providing the greatest splice correcting efficacy, restoring dystrophin protein in multiple peripheral muscle groups. PNA AOs therefore provide an attractive candidate AO chemistry for DMD exon skipping therapy. PMID:20068555

  1. Preclinical Studies on Intestinal Administration of Antisense Oligonucleotides as a Model for Oral Delivery for Treatment of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Maaike van Putten

    2014-01-01

    Full Text Available Antisense oligonucleotides (AONs used to reframe dystrophin mRNA transcripts for Duchenne muscular dystrophy (DMD patients are tested in clinical trials. Here, AONs are administered subcutaneously and intravenously, while the less invasive oral route would be preferred. Oral delivery of encapsulated AONs supplemented with a permeation enhancer, sodium caprate, has been successfully used to target tumor necrosis factor (TNF-α expression in liver. To test the feasibility of orally delivered AONs for DMD, we applied 2′-O-methyl phosphorothioate AONs (with or without sodium caprate supplementation directly to the intestine of mdx mice and compared pharmacokinetics and -dynamics with intravenous, intraperitoneal, and subcutaneous delivery. Intestinally infused AONs were taken up, but resulted in lower plasma levels compared to other delivery routes, although bioavailability could be largely improved by supplementation of sodium caprate. After intestinal infusion, AON levels in all tissues were lower than for other administration routes, as were the ratios of target versus nontarget organ levels, except for diaphragm and heart where comparable levels and ratios were observed. For each administration route, low levels of exon skipping in triceps was observed 3 hours post-AON administration. These data suggest that oral administration of naked 2′-O-methyl phosphorothioate AONs may be feasible, but only when high AON concentrations are used in combination with sodium caprate.

  2. Targeting TGF-β Signaling by Antisense Oligonucleotide-mediated Knockdown of TGF-β Type I Receptor

    Directory of Open Access Journals (Sweden)

    Dwi U Kemaladewi

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is caused by lack of functional dystrophin and results in progressive myofiber damage and degeneration. In addition, impaired muscle regeneration and fibrosis contribute to the progressive pathology of DMD. Importantly, transforming growth factor-β (TGF-β is implicated in DMD pathology and is known to stimulate fibrosis and inhibit muscle regeneration. In this study, we present a new strategy to target TGF-β signaling cascades by specifically inhibiting the expression of TGF-β type I receptor TGFBR1 (ALK5. Antisense oligonucleotides (AONs were designed to specifically induce exon skipping of mouse ALK5 transcripts. AON-induced exon skipping of ALK5 resulted in specific downregulation of full-length receptor transcripts in vitro in different cell types, repression of TGF-β activity, and enhanced C2C12 myoblast differentiation. To determine the effect of these AONs in dystrophic muscles, we performed intramuscular injections of ALK5 AONs in mdx mice, which resulted in a decrease in expression of fibrosis-related genes and upregulation of Myog expression compared to control AON-injected muscles. In summary, our study presents a novel method to target TGF-β signaling cascades with potential beneficial effects for DMD.

  3. Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance.

    Science.gov (United States)

    Wang, Hongyun; Sui, Xiaolei; Guo, Jinju; Wang, Zhenyu; Cheng, Jintao; Ma, Si; Li, Xiang; Zhang, Zhenxian

    2014-03-01

    Sucrose synthase (SUS; EC 2.4.1.13) plays important roles in sugar metabolism and abiotic stress response. But the genes encoding SUS in cucumber (Cucumis sativus L.) have not been well studied. Here, we isolated four cucumber sucrose synthase genes (CsSUS). Among them, CsSUS3, which highly expressed in the roots, was chosen for further study. Immunolocalization and subcellular localization analysis indicated that CsSUS3 localized in the cytosol and the plasma membrane, and mainly existed in the companion cells of phloem in the roots. When suffering hypoxia stress from flooding, CsSUS3 expression and SUS activity in roots increased, especially in the lateral roots; moreover, the soluble SUS activity increased clearly, but the membrane fraction hardly changed. Compared with the wild-type cucumbers, the transgenic lines with antisense expression of CsSUS3 were more sensitive to flooding. After 6 d of flooding, the SUS activity, soluble sugar and uridine 5'-diphosphate glucose (UDPG) content and the ratio of ATP/ADP in the roots of transgenic plants were significantly lower than that in wild-type plants. Moreover, the transgenic lines grew more slowly with more yellow necrosis in the leaves. These findings suggested CsSUS3 participated in resisting hypoxic stress. Furthermore, the mechanism of CsSUS3 in resisting hypoxic stress was also discussed. © 2013 John Wiley & Sons Ltd.

  4. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition

    Science.gov (United States)

    Beltran, Manuel; Puig, Isabel; Peña, Cristina; García, José Miguel; Álvarez, Ana Belén; Peña, Raúl; Bonilla, Félix; de Herreros, Antonio García

    2008-01-01

    Expression of Snail1 in epithelial cells triggers an epithelial–mesenchymal transition (EMT). Here, we demonstrate that the synthesis of Zeb2, a transcriptional repressor of E-cadherin, is up-regulated after Snail1-induced EMT. Snail1 does not affect the synthesis of Zeb2 mRNA, but prevents the processing of a large intron located in its 5′-untranslated region (UTR). This intron contains an internal ribosome entry site (IRES) necessary for the expression of Zeb2. Maintenance of 5′-UTR Zeb2 intron is dependent on the expression of a natural antisense transcript (NAT) that overlaps the 5′ splice site in the intron. Ectopic overexpression of this NAT in epithelial cells prevents splicing of the Zeb2 5′-UTR, increases the levels of Zeb2 protein, and consequently down-regulates E-cadherin mRNA and protein. The relevance of these results is demonstrated by the strong association between NAT presence and conservation of the 5′-UTR intron in cells that have undergone EMT or in human tumors with low E-cadherin expression. Therefore, the results presented in this article reveal the existence of a NAT capable of activating Zeb2 expression, explain the mechanism involved in this activation, and demonstrate that this NAT regulates E-cadherin expression. PMID:18347095

  5. Characterization of an Hfq dependent antisense sRNA in the Gram-positive human pathogen Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nielsen, Jesper Sejrup; Lei Kristensen, Lisbeth; Hanghøj Chrisitansen, Mie

    between sRNA and target mRNA rely on the RNA chaperone Hfq. Hfq is a ubiquitous protein found in almost all genres of bacterial life. However, so far its role as an RNA chaperone has only been described in Gram-negative species such as Escherichia coli and Salmonella (Vogel, J. 2009). We previously....... A large proportion of regulatory sRNAs function through an antisense based mechanism in which they bind to trans-encoded target mRNAs in or near the ribosomal binding site thereby affecting translation of one or more target mRNAs (Aiba H. 2007). In most of the cases studied so far, the in vivo interaction...... identified several Hfq-binding sRNAs in the Gram-positive human pathogen L. monocytogenes (Christiansen et al 2006). Through bioinformatics, we have identified a number of candidate targets for one of these sRNAs (LhrA). Here, we present the characterization of one of these targets. Our results suggest...

  6. Natural antisense transcripts in plants: a review and identification in soybean infected with Phakopsora pachyrhizi SuperSAGE library.

    Science.gov (United States)

    Britto-Kido, Suzana de Aragão; Ferreira Neto, José Ribamar Costa; Pandolfi, Valesca; Marcelino-Guimarães, Francismar Corrêa; Nepomuceno, Alexandre Lima; Vilela Abdelnoor, Ricardo; Benko-Iseppon, Ana Maria; Kido, Ederson Akio

    2013-01-01

    Natural antisense ranscripts (NAT) are RNA molecules complementary to other endogenous RNAs. They are capable of regulating the expression of target genes at different levels (transcription, mRNA stability, translation, etc.). Such a property makes them ideal for interventions in organisms' metabolism. The present study reviewed plant NAT aspects, including features, availability and genesis, conservation and distribution, coding capacity, NAT pair expression, and functions. Besides, an in silico identification of NATs pairs was presented, using deepSuperSAGE libraries of soybean infected or not with Phakopsora pachyrhizi. Results showed that around 1/3 of the 77,903 predicted trans-NATs (by PlantsNATsDB database) detected had unitags mapped in both sequences of each pair. The same 1/3 of the 436 foreseen cis-NATs showed unitags anchored in both sequences of the related pairs. For those unitags mapped in NAT pairs, a modulation expression was assigned as upregulated, downregulated, or constitutive, based on the statistical analysis (P < 0.05). As a result, the infected treatment promoted the expression of 2,313 trans-NATs pairs comprising unitags exclusively from that library (1,326 pairs had unitags only found in the mock library). To understand the regulation of these NAT pairs could be a key aspect in the ASR plant response.

  7. Natural Antisense Transcripts in Plants: A Review and Identification in Soybean Infected with Phakopsora pachyrhizi SuperSAGE Library

    Directory of Open Access Journals (Sweden)

    Suzana de Aragão Britto-Kido

    2013-01-01

    Full Text Available Natural antisense ranscripts (NAT are RNA molecules complementary to other endogenous RNAs. They are capable of regulating the expression of target genes at different levels (transcription, mRNA stability, translation, etc.. Such a property makes them ideal for interventions in organisms' metabolism. The present study reviewed plant NAT aspects, including features, availability and genesis, conservation and distribution, coding capacity, NAT pair expression, and functions. Besides, an in silico identification of NATs pairs was presented, using deepSuperSAGE libraries of soybean infected or not with Phakopsora pachyrhizi. Results showed that around 1/3 of the 77,903 predicted trans-NATs (by PlantsNATsDB database detected had unitags mapped in both sequences of each pair. The same 1/3 of the 436 foreseen cis-NATs showed unitags anchored in both sequences of the related pairs. For those unitags mapped in NAT pairs, a modulation expression was assigned as upregulated, downregulated, or constitutive, based on the statistical analysis (P<0.05. As a result, the infected treatment promoted the expression of 2,313 trans-NATs pairs comprising unitags exclusively from that library (1,326 pairs had unitags only found in the mock library. To understand the regulation of these NAT pairs could be a key aspect in the ASR plant response.

  8. PMP22 antisense oligonucleotides reverse Charcot-Marie-Tooth disease type 1A features in rodent models

    Science.gov (United States)

    Zhao, Hien Tran; Damle, Sagar; Ikeda-Lee, Karli; Kuntz, Steven; Li, Jian; Mohan, Apoorva; Kim, Aneeza; Hung, Gene; Scheideler, Mark A.; Scherer, Steven S.; Swayze, Eric E.; Kordasiewicz, Holly B.

    2017-01-01

    Charcot-Marie-Tooth disease type 1A (CMT1A) is caused by duplication of peripheral myelin protein 22 (PMP22) and is the most common hereditary peripheral neuropathy. CMT1A is characterized by demyelination and axonal loss, which underlie slowed motor nerve conduction velocity (MNCV) and reduced compound muscle action potentials (CMAP) in patients. There is currently no known treatment for this disease. Here, we show that antisense oligonucleotides (ASOs) effectively suppress PMP22 mRNA in affected nerves in 2 murine CMT1A models. Notably, initiation of ASO treatment after disease onset restored myelination, MNCV, and CMAP almost to levels seen in WT animals. In addition to disease-associated gene expression networks that were restored with ASO treatment, we also identified potential disease biomarkers through transcriptomic profiling. Furthermore, we demonstrated that reduction of PMP22 mRNA in skin biopsies from ASO-treated rats is a suitable biomarker for evaluating target engagement in response to ASO therapy. These results support the use of ASOs as a potential treatment for CMT1A and elucidate potential disease and target engagement biomarkers for use in future clinical trials. PMID:29202483

  9. Graphical models for genetic analyses

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt; Sheehan, Nuala A.

    2003-01-01

    This paper introduces graphical models as a natural environment in which to formulate and solve problems in genetics and related areas. Particular emphasis is given to the relationships among various local computation algorithms which have been developed within the hitherto mostly separate areas...... of graphical models and genetics. The potential of graphical models is explored and illustrated through a number of example applications where the genetic element is substantial or dominating....

  10. Fuel element

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1982-01-01

    Purpose: To increase the plenum space in a fuel element used for a liquid metal cooled reactor. Constitution: A fuel pellet is secured at one end with an end plug and at the other with a coil spring in a tubular container. A mechanism for fixing the coil spring composed of a tubular unit is mounted by friction with the inner surface of the tubular container. Accordingly, the recoiling force of the coil spring can be retained by fixing mechanism with a small volume, and since a large amount of plenum space can be obtained, the internal pressure rise in the cladding tube can be suppressed even if large quantities of fission products are discharged. (Kamimura, M.)

  11. Synthetic Genetic Arrays: Automation of Yeast Genetics.

    Science.gov (United States)

    Kuzmin, Elena; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2016-04-01

    Genome-sequencing efforts have led to great strides in the annotation of protein-coding genes and other genomic elements. The current challenge is to understand the functional role of each gene and how genes work together to modulate cellular processes. Genetic interactions define phenotypic relationships between genes and reveal the functional organization of a cell. Synthetic genetic array (SGA) methodology automates yeast genetics and enables large-scale and systematic mapping of genetic interaction networks in the budding yeast,Saccharomyces cerevisiae SGA facilitates construction of an output array of double mutants from an input array of single mutants through a series of replica pinning steps. Subsequent analysis of genetic interactions from SGA-derived mutants relies on accurate quantification of colony size, which serves as a proxy for fitness. Since its development, SGA has given rise to a variety of other experimental approaches for functional profiling of the yeast genome and has been applied in a multitude of other contexts, such as genome-wide screens for synthetic dosage lethality and integration with high-content screening for systematic assessment of morphology defects. SGA-like strategies can also be implemented similarly in a number of other cell types and organisms, includingSchizosaccharomyces pombe,Escherichia coli, Caenorhabditis elegans, and human cancer cell lines. The genetic networks emerging from these studies not only generate functional wiring diagrams but may also play a key role in our understanding of the complex relationship between genotype and phenotype. © 2016 Cold Spring Harbor Laboratory Press.

  12. Analysis of Double-Stranded RNA from Microbial Communities Identifies Double-Stranded RNA Virus-like Elements

    OpenAIRE

    Decker, Carolyn J.; Parker, Roy

    2014-01-01

    Double-stranded RNA (dsRNA) can function as genetic information and may have served as genomic material before the existence of DNA-based life. By developing a method to purify dsRNA, we have investigated the diversity of dsRNA in microbial populations. We detect large dsRNAs in multiple microbial populations. Analysis of an aquatic microbial population reveals that some dsRNA sequences match metagenomic DNA, suggesting that microbes contain pools of sense-antisense transcripts. In addition, ...

  13. Element Method

    Directory of Open Access Journals (Sweden)

    Fong Kah Soon

    2017-01-01

    Full Text Available The vibration of damped pipeline conveying fluid with the effect of fluid-structure interaction is known to pose challenging problems in oil and gas industry. In this study, the natural frequency of fluid-structure interaction in pipeline conveying fluid set on viscoelastic foundation is investigated by using finite element method. The governing partial differential equation is modelled based on Euler-Bernoulli beam theory. By applying Galerkin weighted residual method, the stiffness, damping, and mass matrices are obtained. For a given boundary condition which is simply supported, two components of the foundation (foundation stiffness and damping which are influencing the damped natural frequency of the pipeline are studied for different fluid velocity. The results indicate that increasing the foundation stiffness from 10 kN/m3 to 30 kN/m3 increases the natural frequency of the pipeline, while increasing the foundation damping from 1 kN.s/m3 to 3 kN.s/m3 and fluid velocity decrease the natural frequency of the pipeline. The accuracy of the results obtained is validated against data from literature.

  14. Development of Antisense Therapeutic and Imaging Agents to Detect and Suppress Inducible Nitric Oxide Synthase (iNOS) Expression in Acute Lung Injury (ALI)

    Science.gov (United States)

    Shen, Yuefei

    This dissertation focuses on the development and investigation of antisense imaging and therapeutic agents, combined with nanotechnology, to detect and suppress inducible nitric oxide synthase (iNOS) expression for the diagnosis and treatment of acute lung injury (ALI). To achieve this goal, several efforts were made. The first effort was the identification and characterization of high binding affinity antisense peptide nucleic acids (PNAs) and shell-crosslinked knedel-like nanoparticle (SCK)-PNA conjugates to the iNOS mRNA. Antisense binding sites on the iNOS mRNA were first mapped by a procedure for rapidly generating a library of antisense accessible sites on native mRNAs (MASL) which involves reverse transcription of whole cell mRNA extracts with a random oligodeoxynucleotide primer followed by mRNA-specific PCR. Antisense PNAs against the antisense accessible sites were accordingly synthesized and characterized. The second effort was the investigation of cationic shell crosslinked knedel-like nanoparticle (cSCK)-mediated siRNA delivery to suppress iNOS expression for the treatment of ALI. siRNA with its unique gene-specific properties could serve as a promising therapeutic agent, however success in this area has been challenged by a lack of efficient biocompatible transfection agents. cSCK with its nanometer size and positive charge previously showed efficient cellular delivery of phosphorothioate ODNs (oligodeoxynucleotides), plasmid DNA and PNA. Herein, cSCK showed good siRNA binding and facilitated efficient siRNA transfection in HeLa, a mouse macrophage cell line and other human cell lines. cSCK led to greater silencing efficiency than Lipofectamine 2000 in HeLa cells as determined by the viability following transfection with cytotoxic and non-cytotoxic siRNAs, as well in 293T and HEK cells, and was comparable in BEAS-2B and MCF10a cells. The third effort was the preparation of an iNOS imaging probe through electrostatic complexation between a radiolabeled

  15. Nanostructure of polyplexes formed between cationic diblock copolymer and antisense oligodeoxynucleotide and its influence on cell transfection efficiency.

    Science.gov (United States)

    Zhao, Xiubo; Pan, Fang; Zhang, ZhuoQi; Grant, Colin; Ma, YingHua; Armes, Steven P; Tang, YiQing; Lewis, Andrew L; Waigh, Thomas; Lu, Jian R

    2007-11-01

    Although various cationic polymers have been used to condense anionically charged DNA to improve their transfection efficiency, there is still a lack of fundamental understanding about how to control the nanostructure and charge of the polyplexes formed and how to relate such information to cell transfection efficiency. In this work, we have synthesized a weak cationic and phosphorylcholine-containing diblock copolymer and used it as a model vector to deliver an antisense oligodeoxynucleotide (ODN) into HeLa cells. Small angle neutron scattering (SANS) was used to determine the copolymer/ODN polyplex structure. The SANS data revealed the formation of polyplex nanocylinders at high copolymer (N)/ODN (P) charge ratios, where N symbolizes the amine groups on the copolymer and P symbolizes the phosphate groups. However, the cylindrical lengths remained constant, indicating that the ODN binding over this region did not alter the cylindrical shape of the copolymer in solution. As the N/P ratio decreased and became close to unity the polyplex diameters remained constant, but their lengths increased substantially, suggesting the end-to-end bridging by ODN binding between copolymer cylinders. As the N/P ratios went below unity (with ODN in excess), the polyplex diameters increased substantially, indicating different ODN bridging to bundle the small polyplexes together. Transfection studies from HeLa cells indicated a steady increase in transfection efficiency with increasing cationic charge and decreasing polyplex size. Cell growth inhibition assay showed significant growth inhibition by the polyplexes coupled with weak cytotoxicity, indicating effective ODN delivery. While this study has confirmed the overall charge effect, it has also revealed progressive structural changes of the polyplexes against varying charge ratio, thereby providing useful insight into the mechanistic process behind the ODN delivery.

  16. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells.

    Science.gov (United States)

    Talaei, Fatemeh; Azizi, Ebrahim; Dinarvand, Rassoul; Atyabi, Fatemeh

    2011-01-01

    Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan) and NAP-C (N-acetyl penicillamine-chitosan) in anticancer drug delivery targeting epidermal growth factor receptor (EGFR). Doxorubicin (DOX) and antisense oligonucleotide (ASOND)-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D) were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo.

  17. Dynamics of co-transcriptional pre-mRNA folding influences the induction of dystrophin exon skipping by antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Keng Boon Wee

    Full Text Available Antisense oligonucleotides (AONs mediated exon skipping offers potential therapy for Duchenne muscular dystrophy. However, the identification of effective AON target sites remains unsatisfactory for lack of a precise method to predict their binding accessibility. This study demonstrates the importance of co-transcriptional pre-mRNA folding in determining the accessibility of AON target sites for AON induction of selective exon skipping in DMD. Because transcription and splicing occur in tandem, AONs must bind to their target sites before splicing factors. Furthermore, co-transcriptional pre-mRNA folding forms transient secondary structures, which redistributes accessible binding sites. In our analysis, to approximate transcription elongation, a "window of analysis" that included the entire targeted exon was shifted one nucleotide at a time along the pre-mRNA. Possible co-transcriptional secondary structures were predicted using the sequence in each step of transcriptional analysis. A nucleotide was considered "engaged" if it formed a complementary base pairing in all predicted secondary structures of a particular step. Correlation of frequency and localisation of engaged nucleotides in AON target sites accounted for the performance (efficacy and efficiency of 94% of 176 previously reported AONs. Four novel insights are inferred: (1 the lowest frequencies of engaged nucleotides are associated with the most efficient AONs; (2 engaged nucleotides at 3' or 5' ends of the target site attenuate AON performance more than at other sites; (3 the performance of longer AONs is less attenuated by engaged nucleotides at 3' or 5' ends of the target site compared to shorter AONs; (4 engaged nucleotides at 3' end of a short target site attenuates AON efficiency more than at 5' end.

  18. Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide.

    Science.gov (United States)

    Jacobson, Blake A; Thumma, Saritha C; Jay-Dixon, Joseph; Patel, Manish R; Dubear Kroening, K; Kratzke, Marian G; Etchison, Ryan G; Konicek, Bruce W; Graff, Jeremy R; Kratzke, Robert A

    2013-01-01

    Aberrant cap-dependent translation is implicated in tumorigenesis in multiple tumor types including mesothelioma. In this study, disabling the eIF4F complex by targeting eIF4E with eIF4E-specific antisense oligonucleotide (4EASO) is assessed as a therapy for mesothelioma. Mesothelioma cells were transfected with 4EASO, designed to target eIF4E mRNA, or mismatch-ASO control. Cell survival was measured in mesothelioma treated with 4EASO alone or combined with either gemcitabine or pemetrexed. Levels of eIF4E, ODC, Bcl-2 and β-actin were assessed following treatment. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation following treatment. eIF4E level and the formation of eIF4F cap-complex decreased in response to 4EASO, but not mismatch control ASO, resulting in cleavage of PARP indicating apoptosis. 4EASO treatment resulted in dose dependent decrease in eIF4E levels, which corresponded to cytotoxicity of mesothelioma cells. 4EASO resulted in decreased levels of eIF4E in non-malignant LP9 cells, but this did not correspond to increased cytotoxicity. Proteins thought to be regulated by cap-dependent translation, Bcl-2 and ODC, were decreased upon treatment with 4EASO. Combination therapy of 4EASO with pemetrexed or gemcitabine further reduced cell number. 4EASO is a novel drug that causes apoptosis and selectively reduces eIF4E levels, eIF4F complex formation, and proliferation of mesothelioma cells. eIF4E knockdown results in decreased expression of anti-apoptotic and pro-growth proteins and enhances chemosensitivity.

  19. Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Blake A Jacobson

    Full Text Available BACKGROUND: Aberrant cap-dependent translation is implicated in tumorigenesis in multiple tumor types including mesothelioma. In this study, disabling the eIF4F complex by targeting eIF4E with eIF4E-specific antisense oligonucleotide (4EASO is assessed as a therapy for mesothelioma. METHODS: Mesothelioma cells were transfected with 4EASO, designed to target eIF4E mRNA, or mismatch-ASO control. Cell survival was measured in mesothelioma treated with 4EASO alone or combined with either gemcitabine or pemetrexed. Levels of eIF4E, ODC, Bcl-2 and β-actin were assessed following treatment. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation following treatment. RESULTS: eIF4E level and the formation of eIF4F cap-complex decreased in response to 4EASO, but not mismatch control ASO, resulting in cleavage of PARP indicating apoptosis. 4EASO treatment resulted in dose dependent decrease in eIF4E levels, which corresponded to cytotoxicity of mesothelioma cells. 4EASO resulted in decreased levels of eIF4E in non-malignant LP9 cells, but this did not correspond to increased cytotoxicity. Proteins thought to be regulated by cap-dependent translation, Bcl-2 and ODC, were decreased upon treatment with 4EASO. Combination therapy of 4EASO with pemetrexed or gemcitabine further reduced cell number. CONCLUSION: 4EASO is a novel drug that causes apoptosis and selectively reduces eIF4E levels, eIF4F complex formation, and proliferation of mesothelioma cells. eIF4E knockdown results in decreased expression of anti-apoptotic and pro-growth proteins and enhances chemosensitivity.

  20. Antisense Reduction of NADP-Malic Enzyme in Flaveria bidentis Reduces Flow of CO2 through the C4 Cycle[W][OA

    Science.gov (United States)

    Pengelly, Jasper J.L.; Tan, Jackie; Furbank, Robert T.; von Caemmerer, Susanne

    2012-01-01

    An antisense construct targeting the C4 isoform of NADP-malic enzyme (ME), the primary enzyme decarboxylating malate in bundle sheath cells to supply CO2 to Rubisco, was used to transform the dicot Flaveria bidentis. Transgenic plants (α-NADP-ME) exhibited a 34% to 75% reduction in NADP-ME activity relative to the wild type with no visible growth phenotype. We characterized the effect of reducing NADP-ME on photosynthesis by measuring in vitro photosynthetic enzyme activity, gas exchange, and real-time carbon isotope discrimination (Δ). In α-NADP-ME plants with less than 40% of wild-type NADP-ME activity, CO2 assimilation rates at high intercellular CO2 were significantly reduced, whereas the in vitro activities of both phosphoenolpyruvate carboxylase and Rubisco were increased. Δ measured concurrently with gas exchange in these plants showed a lower Δ and thus a lower calculated leakiness of CO2 (the ratio of CO2 leak rate from the bundle sheath to the rate of CO2 supply). Comparative measurements on antisense Rubisco small subunit F. bidentis plants showed the opposite effect of increased Δ and leakiness. We use these measurements to estimate the C4 cycle rate, bundle sheath leak rate, and bundle sheath CO2 concentration. The comparison of α-NADP-ME and antisense Rubisco small subunit demonstrates that the coordination of the C3 and C4 cycles that exist during environmental perturbations by light and CO2 can be disrupted through transgenic manipulations. Furthermore, our results suggest that the efficiency of the C4 pathway could potentially be improved through a reduction in C4 cycle activity or increased C3 cycle activity. PMID:22846191

  1. GPR39 splice variants versus antisense gene LYPD1: expression and regulation in gastrointestinal tract, endocrine pancreas, liver, and white adipose tissue

    DEFF Research Database (Denmark)

    Egerod, Kristoffer L; Holst, Birgitte; Petersen, Pia S

    2007-01-01

    five-transmembrane form, GPR39-1b. The 3' exon of the GPR39 gene overlaps with an antisense gene called LYPD1 (Ly-6/PLAUR domain containing 1). Quantitative RT-PCR analysis demonstrated that GPR39-1a is expressed selectively throughout the gastrointestinal tract, including the liver and pancreas...... important for the expression of GPR39. In vivo experiments in rats demonstrated that GPR39 is up-regulated in adipose tissue during fasting and in response to streptozotocin treatment, although its expression is kept constant in the liver from the same animals. GPR39-1a was expressed in white but not brown...

  2. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    We retrieved and correlated the expression of sense and antisense sequences of 1182 mouse transcripts to assess the prevalence and to find the characteristic pattern of antisense transcription. We contrasted ... 46., H-1085 Budapest, Hungary; Department of Histology and Embryology, University School of Medicine, ul.

  3. Genetic Mapping

    Science.gov (United States)

    ... Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for Teachers Genomic ... genetic mapping? Among the main goals of the Human Genome Project (HGP) was to develop new, better and cheaper ...

  4. Genetic Disorders

    Science.gov (United States)

    ... This can cause a medical condition called a genetic disorder. You can inherit a gene mutation from ... during your lifetime. There are three types of genetic disorders: Single-gene disorders, where a mutation affects ...

  5. Genetic Testing

    Science.gov (United States)

    ... risk factor for the development of celiac disease, genetic predisposition. Without this factor, it is impossible that the ... with antibody testing in the future. When the genetic predisposition for celiac disease was detected (on Chromosome 6) ...

  6. Genetic counseling

    Science.gov (United States)

    ... have a high risk of having babies with Tay-Sachs or Canavan's disease. African-Americans, who may risk ... yours to make. Images Genetic counseling and prenatal diagnosis References Simpson JL, Holzgreve W, Driscoll DA. Genetic ...

  7. Genetic risk

    OpenAIRE

    ten Kate, Leo P.

    2012-01-01

    In this paper I will review different aspects of genetic risk in the context of preconception care. I restrict myself to the knowledge of risk which is relevant for care and/or enables reproductive choice. The paper deals with chromosomes, genes and the genetic classification of diseases, and it explains why Mendelian disorders frequently do not show the expected pattern of occurrence in families. Factors that amplify genetic risk are also discussed. Of the two methods of genetic risk assessm...

  8. The design and partial analysis of RNAseIII anti-PVS antisense complex system to induce plant resistance

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Jaroslav; Schubert, J.; Kuchař, M.; Dědič, P.; Ptáček, J.; Vrba, Lukáš; Lichtenstein, C. P.

    2001-01-01

    Roč. 33, - (2001), s. 381-394 ISSN 0323-5408 R&D Projects: GA ČR GA521/96/1308; GA MZe(CZ) EP9111; GA MŠk ME 463 Grant - others:NAZV(CZ) EP9111 Program:EP Keywords : Plant genetic * induced resistance Subject RIV: EB - Genetics ; Molecular Biology

  9. Gene transfection using lipid-mediated TGFβ1 sense and antisense gene expression vectors and its effects on TGFβ1 and procollagen I mRNA expression in 60Co-irradiated human embryo lung fibroblasts

    International Nuclear Information System (INIS)

    Liu Chunjie; Wang Dewen; Zhang Zhaoshan

    2001-01-01

    Objective: To investigate the effects on gene expression of 60 Co-irradiated human embryo lung fibroblasts after gene transfection using lipid-mediated TGFβ1 sense and antisense gene expression vectors. Methods: TGFβ1 sense and antisense gene expression vectors were transfected using a lipid-mediated method. Gene expression was analysed by RNA dot blot. Results: HELFs irradiated with 5 Gy were transfected with an expression vector encoding the human TGFβ1 sense or antisense gene under control of the mouse mammary tumor virus long terminal repeat(MMTV-LTR) promoter/enhance sequence (pMAMneo-TGFβ1, or pMAMneo-anti-TGFβ1). The transfected cells elected by G418 resistance were cultured in DMEM containing dexamethasone. The chromosomal DNA and RNA were extracted. Positive reaction was showed from chromosomal DNA by a PCR method of neo-specific primers and DNA dot blot with Dig-labelling neo-specific probe. RNA dot blot analysis showed that TGFβ1 mRNA level of the cells transfected with pMAM neo-anti TGFβ1 decreased, but that of transfected with pMAM neo-TGFβ1 increasing. For procollagen I mRNA, the transfected pMAM neo-anti TGFβ1 was lower than un-transfected cells and the transfected pMAM neo-TGFβ1 was higher. Conclusion: After TGFβ1 sense and antisense gene transfection, TGFβ1 mRNA level of the cells transfected with TGFβ1 antisense gene decreased, but that with TGFβ1 sense gene increased. For procollagen I mRNA, the cells transfected with TGFβ1 antisense gene was lower than un-transfected cells and the cells transfected with TGFβ1 sense gene was higher than un-transfected cells

  10. Imaging Genetics

    Science.gov (United States)

    Munoz, Karen E.; Hyde, Luke W.; Hariri, Ahmad R.

    2009-01-01

    Imaging genetics is an experimental strategy that integrates molecular genetics and neuroimaging technology to examine biological mechanisms that mediate differences in behavior and the risks for psychiatric disorder. The basic principles in imaging genetics and the development of the field are discussed.

  11. What Use Is Population Genetics?

    Science.gov (United States)

    Charlesworth, Brian

    2015-07-01

    The Genetic Society of America's Thomas Hunt Morgan Medal is awarded to an individual GSA member for lifetime achievement in the field of genetics. For over 40 years, 2015 recipient Brian Charlesworth has been a leader in both theoretical and empirical evolutionary genetics, making substantial contributions to our understanding of how evolution acts on genetic variation. Some of the areas in which Charlesworth's research has been most influential are the evolution of sex chromosomes, transposable elements, deleterious mutations, sexual reproduction, and life history. He also developed the influential theory of background selection, whereby the recurrent elimination of deleterious mutations reduces variation at linked sites, providing a general explanation for the correlation between recombination rate and genetic variation. Copyright © 2015 by the Genetics Society of America.

  12. A locked nucleic acid antisense oligonucleotide (LNA silences PCSK9 and enhances LDLR expression in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Nidhi Gupta

    2010-05-01

    Full Text Available The proprotein convertase subtilisin/kexin type 9 (PCSK9 is an important factor in the etiology of familial hypercholesterolemia (FH and is also an attractive therapeutic target to reduce low density lipoprotein (LDL cholesterol. PCSK9 accelerates the degradation of hepatic low density lipoprotein receptor (LDLR and low levels of hepatic PCSK9 activity are associated with reduced levels of circulating LDL-cholesterol.The present study presents the first evidence for the efficacy of a locked nucleic acid (LNA antisense oligonucleotide (LNA ASO that targets both human and mouse PCSK9. We employed human hepatocytes derived cell lines HepG2 and HuH7 and a pancreatic mouse beta-TC3 cell line known to express high endogenous levels of PCSK9. LNA ASO efficiently reduced the mRNA and protein levels of PCSK9 with a concomitant increase in LDLR protein levels after transfection in these cells. In vivo efficacy of LNA ASO was further investigated in mice by tail vein intravenous administration of LNA ASO in saline solution. The level of PCSK9 mRNA was reduced by approximately 60%, an effect lasting more than 16 days. Hepatic LDLR protein levels were significantly up-regulated by 2.5-3 folds for at least 8 days and approximately 2 fold for 16 days. Finally, measurement of liver alanine aminotransferase (ALT levels revealed that long term LNA ASO treatment (7 weeks does not cause hepatotoxicity.LNA-mediated PCSK9 mRNA inhibition displayed potent reduction of PCSK9 in cell lines and mouse liver. Our data clearly revealed the efficacy and safety of LNA ASO in reducing PCSK9 levels, an approach that is now ready for testing in primates. The major significance and take home message of this work is the development of a novel and promising approach for human therapeutic intervention of the PCSK9 pathway and hence for reducing some of the cardiovascular risk factors associated with the metabolic syndrome.

  13. Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene

    Directory of Open Access Journals (Sweden)

    Herington Adrian C

    2008-10-01

    Full Text Available Abstract Background The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS, which spans the promoter and untranslated regions of the ghrelin gene (GHRL. Here we further characterise GHRLOS. Results We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2. Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis, as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. Conclusion GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA genes, including 5' capping, polyadenylation, extensive splicing and short open reading

  14. An Approach to Detect and Study DNA Double-Strand Break Repair by Transcript RNA Using a Spliced-Antisense RNA Template.

    Science.gov (United States)

    Keskin, Havva; Storici, Francesca

    2018-01-01

    A double-strand break (DSB) is one of the most dangerous DNA lesion, and its repair is crucial for genome stability. Homologous recombination is considered the safest way to repair a DNA DSB and requires an identical or nearly identical DNA template, such as a sister chromatid or a homologous chromosome for accurate repair. Can transcript RNA serve as donor template for DSB repair? Here, we describe an approach that we developed to detect and study DNA repair by transcript RNA. Key features of the method are: (i) use of antisense (noncoding) RNA as template for DSB repair by RNA, (ii) use of intron splicing to distinguish the sequence of the RNA template from that of the DNA that generates the RNA template, and (iii) use of a trans and cis system to study how RNA repairs a DSB in homologous but distant DNA or in its own DNA, respectively. This chapter provides details on how to use a spliced-antisense RNA template to detect and study DSB repair by RNA in trans or cis in yeast cells. Our approach for detection of DSB repair by RNA in cells can be applied to cell types other than yeast, such as bacteria, mammalian cells, or other eukaryotic cells. © 2018 Elsevier Inc. All rights reserved.

  15. Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy.

    Science.gov (United States)

    Vidaurre, Soledad; Fitzpatrick, Christopher; Burzio, Verónica A; Briones, Macarena; Villota, Claudio; Villegas, Jaime; Echenique, Javiera; Oliveira-Cruz, Luciana; Araya, Mariela; Borgna, Vincenzo; Socías, Teresa; Lopez, Constanza; Avila, Rodolfo; Burzio, Luis O

    2014-09-26

    Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3'-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Down-regulation of the Antisense Mitochondrial Non-coding RNAs (ncRNAs) Is a Unique Vulnerability of Cancer Cells and a Potential Target for Cancer Therapy*

    Science.gov (United States)

    Vidaurre, Soledad; Fitzpatrick, Christopher; Burzio, Verónica A.; Briones, Macarena; Villota, Claudio; Villegas, Jaime; Echenique, Javiera; Oliveira-Cruz, Luciana; Araya, Mariela; Borgna, Vincenzo; Socías, Teresa; Lopez, Constanza; Avila, Rodolfo; Burzio, Luis O.

    2014-01-01

    Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3′-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy. PMID:25100722

  17. Preparation of Pluronic Grafted Dendritic alpha,epsilon-poly(L-lysine)s and Characterization as a Delivery Adjuvant of Antisense Oligonucleotide.

    Science.gov (United States)

    Dung, T H; Le, T D; Eom, K D; Kim, S J; Yoo, H

    2016-02-01

    A series of pluronic grafted dendritic alpha,epsilon-poly(L-lysine)s (DPL-PF127) were synthesized by a conjugation reaction and evaluated the potential use of DPL-PF127 as a delivery agent of antisense oligonucleotide into A375 B3 cells. The structural features of the DPL-PF127 were identified by NMR and FT-IR. The number of pluronic F127 on DPL surface, determined by fluorescamine assay, increased proportionally to the mole ratio between DPL and activated PF127 in reaction. DPL- PF127 showed the physical properties of decrease in zetapotential and increase in size as the mole ratio of PF127 to DPL increased. The complex formation of DPL-PF127 with oligonucleotide was confirmed by running capillary zone electrophoresis (CZE) and agarose gel electrophoresis. DPL-PF127, prepared at the mole ratio of 1:10 in reaction, was the most suitable as a delivery adjuvant of oligonucleotide. In addition, DPL-PF127/oligonucleotide complexes were taken into A375B3 cell without cellular toxicity and delivered antisense oligonucleotide into cell.

  18. Effect of bcl-2 antisense oligodexynucleotides on chemotherapy efficacy of Vp-16 on human small cell lung cancer cell line NCI-H69

    International Nuclear Information System (INIS)

    He Wenqian; Liu Zhonghua

    2007-01-01

    Objective: To study the effect of bcl-2 antisense oligodexynucleotides on chemotherapy efficacy of Vp-16 on human small cell lung cancer cell line NCI-H69. Methods: Cultured NCI-H69 cells were derided into 4 groups: bcl-2 antisense oligodexynucleotides (ASODN) added, sense oligodexynucleotides (SODN) added, nonsense oligodexynucleotides (NSODN) added and control (no nucleotides added), the oligodexynucleotides were transfected into the cultured cells with oligofectamine. The cellular expression of Bcl-2 protein 72h later was examined with Western-Blot. The four different groups of cultured tumor cells were treated with etopside(Vp-16) at different concentrations (0, 0.25, 0.5, 1.0, 2.0 and 4.0 μg/ml) for 48hr then the cell survival fraction was assessed with MTY test. Results: The apoptotic rate of cells in the ASODN group was significantly higher than that of the control group, also, the survival fraction of cells in ASODN group was significantly lower than that of the control group. The Bcl-2 protein expression in ASODN group was significantly lower than that in the control group, but no inhibition was observed in SODN and NSODN groups. Conclusion: The bcl-2 ASODN could enhance the sensitivity to chemotherapy with Vp-16 in small cell lung cancer cell line NCI-H69 by effectively blocking bcl-2 gene expression. (authors)

  19. [Double-antisense ACC oxidase and ACC synthase fusion gene introduced into tomato by Agrobacterium-mediated transformation and analysis the ethylene production of transgenic plants].

    Science.gov (United States)

    Xiong, Ai Sheng; Yao, Quan Hong; Li, Xian; Fan, Hui Qin; Peng, Ri He

    2003-12-01

    The tomato fruit-specific promoter 2A11 was amplified from tomato genomic DNA using PCR techniques. Total RNA was isolated from ripen fruit of tomato, then ACC oxidase gene and ACC synthase gene were obtained using reverse-transcription polymerase chain reaction. The fusion encoding ACC oxidase and ACC synthase gene was obtained through ACC oxidase gene and ACC synthase gene ligation. The fusion gene was then inserted into a plant binary vector pYPX145 in an inverted orientation. Finally, the binary plant expression vector pOSACC was constructed in which the double-antisense fusion gene was controlled by fruit-specific 2A11 promoter. By using hypocotyls and cotyledon petioles as explants, the unit of double-antisense fusion gene was successfully introduced into tomato (Lycopersicon esculentum Mill) cultivar "Hezuo 903" by Agrobacterium tumefaciens-mediated transformation. 105 transgenic plants were obtained through 200 mg/L kanamycin selection and GUS assay. Two lines of DR-1 and DR-2 were obtained through selecting the characteristics of prolonged shelf life and agriculture. The transgenic plants showed the characteristics of prolonged shelf life over 50 d. The amount of ethylene released from DR-1 and DR-2 fruits were reduced significantly to about 9.5% of that released by non-transformed controls.

  20. About Genetic Counselors

    Science.gov (United States)

    ... clinical care in many areas of medicine. Assisted Reproductive Technology/Infertility Genetics Cancer Genetics Cardiovascular Genetics Cystic Fibrosis Genetics Fetal Intervention and Therapy Genetics Hematology Genetics Metabolic Genetics ...

  1. Photosynthetic system as a biological functional element

    International Nuclear Information System (INIS)

    Zakhidov, E.A.; Zakhidova, M.A.; Kasymdzhanov, M.A.; Kurbanov, S.S.; Nematov, Sh.K.; Khabibullaev, P.K.

    2005-01-01

    Photosynthetic apparatus of high plants and photosynthetic bacteria is essentially autonomic system in terms of genetics and structural -functional properties located in specific medium, a bio-membrane. Processes of light absorption and exciton migration in light harvesting antenna, separation and further transfer of charges in reaction centers have specific features, which may be used for application of these objects as key elements in construction of future biological functional elements. Progress in study and genetic modification of photosynthetic membranes achieved during the last decade opens great prospects in development biological functional elements and systems. The main characteristics of photosynthetic system for these purposes are: (i) energy conversion processes in the first light phase of the photosynthesis have very short periods, up to picoseconds, which indicates possibility of creation of ultrafast functional elements on their basis; (ii) characteristics sizes of photosynthetic units, 10-100 nm, and possibility to arrange regularly disposed elements in relevant membranes could be prospective point for creation of nano structures and on their basis relevant biologic functional elements; (iii) elements based on modified photosynthetic apparatus and bio-membranes might be efficiently created by methods of gene engineering and manipulation, that open huge opportunities for development of read biological functional systems. In the paper structural-functional properties and characteristics of high plants and purple photosynthetic bacteria, which may be useful for creation of future biological functional elements are considered. (author)

  2. Antisense gene silencing

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Nielsen, Jørgen E

    2013-01-01

    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied...... to mammalian cells, the technology of RNAi expanded from being a valuable experimental tool to being an applicable method for gene-specific therapeutic regulation, and much effort has been put into further refinement of the technique. This review will focus on how RNAi has developed over the years and how...

  3. Genetic barcodes

    Science.gov (United States)

    Weier, Heinz -Ulrich G

    2015-08-04

    Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.

  4. [The Human Genome Project, genetic viability and genetic epidemiology].

    Science.gov (United States)

    Hagymási, Krisztina; Tulassay, Zsolt

    2005-12-18

    The goal of the Human Genome Project to elucidate the complete sequence of the human genome has been achieved. The aims of the "post-genome" era are explaining the genetic information, characterisation of functional elements encoded in the human genome and mapping the human genetic variability as well. Two unrelated human beings also share 99.9% of their genomic sequence. The difference of 0.1% is the result of genetic polymorphisms: single nucleotide polymorphisms, repetitive sequences and insertion/deletion. The genetic differences, coupled with environmental exposures will determine the phenotypic variation we observe in health or disease. The disease-causing genetic variants can be identified by linkage analysis or association studies. The knowledge of human genome and application of multiple biomarkers will improve our ability to identify individuals at risk, so that preventive interventions can be applied, earlier diagnosis can be made and treatment can be optimized.

  5. Mineral elements in milk and dairy products

    Directory of Open Access Journals (Sweden)

    Šimun Zamberlin

    2012-06-01

    Full Text Available Mineral elements occur in milk and dairy products as inorganic ions and salts, as well as part of organic molecules, such as proteins, fats, carbohydrates and nucleic acids. The chemical form of mineral elements is important because it determines their absorption in the intestine and their biological utilization. The mineral composition of milk is not constant because it depends on lactation phase, nutritional status of the animal, and environmental and genetic factors. The objective of this research is to point out the research results of chemical form, content and nutritional importance of individual mineral elements that are present in various milks and dairy products.

  6. Genetic modification and genetic determinism

    Directory of Open Access Journals (Sweden)

    Vorhaus Daniel B

    2006-06-01

    Full Text Available Abstract In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions.

  7. Antisense myb inhibition of purified erythroid progenitors in development and differentiation is linked to cycling activity and expression of DNA polymerase alpha

    International Nuclear Information System (INIS)

    Valtieri, M.; Venturelli, D.; Care, A.; Fossati, C.; Pelosi, E.; Labbaye, C.; Mattia, G.; Gewirtz, A.M.; Calabretta, B.; Peschle, C.

    1991-01-01

    These studies aimed to determine the expression and functional role of c-myb in erythroid progenitors with different cycling activities. In the first series of experiments the erythroid burst-forming unit (BFU-E) and colony-forming unit (CFU-E) populations from adult peripheral blood (PB), bone marrow (BM), and embryonic-fetal liver (FL) were treated with either c-myb antisense oligomers or 3H-thymidine (3H-TdR). A direct correlation was always observed between the inhibitory effect of anti-myb oligomers and the level of cycling activity. Thus, the inhibitory effect of antisense c-myb on the number of BFU-E colonies was 28.3% +/- 15.8% in PB, 53.4% +/- 9.3% in BM, and 68.2% +/- 24.5% in FL. Both adult and embryonic CFU-E were markedly inhibited. Using purified PB progenitors, we observed a similar pattern, although with slightly lower inhibitory effects. In the 3H-TdR suicide assay the killing index of BFU-E was 8.9% +/- 4.2% in PB, 29.4% +/- 6.5% in BM, and 40.1% +/- 9.6% in FL. The values for adult and embryonic CFU-E were 55.7% +/- 7.9% and 60.98% +/- 6.6%, respectively. We then investigated the kinetics of c-myb mRNA level during the erythroid differentiation of purified adult PB and FL BFU-E, as evaluated in liquid-phase culture by reverse transcription-polymerase chain reaction. Adult erythroid precursors showed a gradual increase of c-myb mRNA from day 4 through day 8 of culture and a sharp decrease at later times, whereas the expression of c-myb mRNA and protein in differentiation embryonic precursors peaked 2 days earlier. In both cases, c-myb mRNA level peaked at the CFU-E stage of differentiation. Finally, highly purified adult PB BFU-E were stimulated into cycling by a 3-day treatment with interleukin-3 in liquid phase: both the sensitivity to c-myb antisense oligomers and the 3H-TdR suicide index showed a gradual, strictly parallel increase

  8. Delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA as a cancer therapeutic: a proof-of-concept study

    Directory of Open Access Journals (Sweden)

    Lin KY

    2016-05-01

    Full Text Available Kun-Yuan Lin,1 Siao Muk Cheng,2 Shing-Ling Tsai,2 Ju-Ya Tsai,1 Chun-Hui Lin,1 Chun Hei Antonio Cheung1,2 1Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC; 2Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC Abstract: Survivin is a member of the inhibitor-of-apoptosis proteins family. It is overexpressed in many different cancer types but not in the differentiated normal tissue. In addition, overexpression of survivin promotes cancer cell survival and induces chemotherapeutic drug resistance, making it an attractive target for new anticancer interventions. Despite survivin being a promising molecular target for anticancer treatment, it is widely accepted that survivin is only a “semi-druggable” target. Therefore, it is important to develop a new strategy to target survivin for anticancer treatment. In this study, we constructed a novel survivin promoter-driven full-length antisense survivin (pSur/AS-Sur expression plasmid DNA. Promoter activity assay revealed that the activity of the survivin promoter of pSur/AS-Sur correlated with the endogenous expression of survivin at the transcriptional level in the transfected A549, MDA-MB-231, and PANC-1 cancer cells. Western blot analysis showed that liposomal delivery of pSur/AS-Sur successfully downregulated the expression of survivin in A549, MBA-MB-231, and PANC-1 cells in vitro. In addition, delivery of pSur/AS-Sur induced autophagy, caspase-dependent apoptosis, and caspase-independent apoptosis as indicated by the increased LC3B-II conversion, autophagosome formation, caspase-9/-3 and poly(ADP-ribose polymerase-1 cleavage, and apoptosis-inducing factor nuclear translocation in A549, MBA-MB-231, and PANC-1 cells. Importantly, liposomal delivery of pSur/AS-Sur was also capable of decreasing the proliferation of the survivin/MDR1 coexpressing multidrug-resistant KB-TAX50 cancer cells and

  9. Genetic Engineering

    Science.gov (United States)

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  10. Genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Grefenstette, J.J.

    1994-12-31

    Genetic algorithms solve problems by using principles inspired by natural population genetics: They maintain a population of knowledge structures that represent candidate solutions, and then let that population evolve over time through competition and controlled variation. GAs are being applied to a wide range of optimization and learning problems in many domains.

  11. Genetic Counseling.

    Science.gov (United States)

    Exceptional Parent, 1987

    1987-01-01

    Information is presented on a number of tests used in genetic counseling (e.g., genetic evaluation, chromosome evaluation, consideration of multifactorial conditions, prenatal testing, and chorionic villus sampling) which help parents with one disabled child make family planning decisions. (CB)

  12. Genetic risk

    NARCIS (Netherlands)

    ten Kate, L.P.

    2012-01-01

    In this paper I will review different aspects of genetic risk in the context of preconception care. I restrict myself to the knowledge of risk which is relevant for care and/or enables reproductive choice. The paper deals with chromosomes, genes and the genetic classification of diseases, and it

  13. Genetic Romanticism

    DEFF Research Database (Denmark)

    Tupasela, Aaro

    2016-01-01

    . This article compares and contrasts the work of two doctors in Finland, Elias Lönnrot and Reijo Norio, working over a century and a half apart, to examine the ways in which they have contributed to the formation of national identity and unity. The notion of genetic romanticism is introduced as a term...... to complement the notion of national romanticism that has been used to describe the ways in which nineteenth-century scholars sought to create and deploy common traditions for national-romantic purposes. Unlike national romanticism, however, strategies of genetic romanticism rely on the study of genetic...... inheritance as a way to unify populations within politically and geographically bounded areas. Thus, new genetics have contributed to the development of genetic romanticisms, whereby populations (human, plant, and animal) can be delineated and mobilized through scientific and medical practices to represent...

  14. The Ekamanganese elements

    International Nuclear Information System (INIS)

    Noddack, W.; Tacke, I.; Berg, O.

    1988-03-01

    A recent study tends to revalidate the search for element 43 done in 1925. In ores with properties similar to the hypothetical chemical properties of the missing elements 43 and 75, the unknown elements were concentrated by chemical means. Roentgen-ray spectroscopy was applied in order to observe the characteristic Roentgen L lines for element 75 and K lines for element 43. Element 43 was observed in sperrylith, gadolinit, fergusonit and columbit. The name masurium was proposed. Similarly, element 75 was observed in tantalit, wolframit and platinit. The name rhenium was chosen. (MCB)

  15. Anti-Urokinase Receptor Antisense Oligonucleotide (uPAR-aODN) to Prevent and Cure Long-Term Space Exploration-Related Retinal Pathological Angiogenesis

    Science.gov (United States)

    Lazzarano, Stefano; Lulli, Matteo; Fibbi, Gabriella; Margheri, Francesca; Papucci, Laura; Serrati, Simona; Witort, Ewa; Chilla, Anastasia; Lapucci, Andrea; Donnini, Martino; Quaglierini, Paolo; Romiti, Alice; Specogna, Rebecca; Del Rosso, Mario; Capaccioli, Sergio

    2008-06-01

    Angiogenesis underlies a variety of physiological processes and its possible deregulation during long term space exploration needs to be investigated. Angiogenesis is a multistep process of new blood capillary formation, where degradation of the extracellular matrix (ECM) by proteolytic enzymes, including uPA (urokinase plasminogen activator) and opening the way to migration of endothelial cells (EC), is critical. Plasminogen activation system regulates angiogenesis by both uPA-driven ECM degradation and uPA receptor (uPAR). Microgravity and low dose irradiations promote tissue neoangiogeenesis and neovascularization is often common occurence in ophthalmologic pathologies. We have designed and patented the uPAR antisense oligonucleotide (aODN) and evaluated its antiangiogenetic activity by EC cellular migration and capillary morphogenesis assays. The uPAR aODN treatment caused a 75% inhibition of human microvascular EC migration and a complete inhibition of capillary morphogenesis, suggesting its therapeutic application to prevent neoangiogenesis-related ophthalmologic pathologies during space exploration.

  16. Genetic therapy for the nervous system.

    Science.gov (United States)

    Bowers, William J; Breakefield, Xandra O; Sena-Esteves, Miguel

    2011-04-15

    Genetic therapy is undergoing a renaissance with expansion of viral and synthetic vectors, use of oligonucleotides (RNA and DNA) and sequence-targeted regulatory molecules, as well as genetically modified cells, including induced pluripotent stem cells from the patients themselves. Several clinical trials for neurologic syndromes appear quite promising. This review covers genetic strategies to ameliorate neurologic syndromes of different etiologies, including lysosomal storage diseases, Alzheimer's disease and other amyloidopathies, Parkinson's disease, spinal muscular atrophy, amyotrophic lateral sclerosis and brain tumors. This field has been propelled by genetic technologies, including identifying disease genes and disruptive mutations, design of genomic interacting elements to regulate transcription and splicing of specific precursor mRNAs and use of novel non-coding regulatory RNAs. These versatile new tools for manipulation of genetic elements provide the ability to tailor the mode of genetic intervention to specific aspects of a disease state.

  17. An intranasal selective antisense oligonucleotide impairs lung cyclooxygenase-2 production and improves inflammation, but worsens airway function, in house dust mite sensitive mice

    Directory of Open Access Journals (Sweden)

    Pujols Laura

    2008-11-01

    Full Text Available Abstract Background Despite its reported pro-inflammatory activity, cyclooxygenase (COX-2 has been proposed to play a protective role in asthma. Accordingly, COX-2 might be down-regulated in the airway cells of asthmatics. This, together with results of experiments to assess the impact of COX-2 blockade in ovalbumin (OVA-sensitized mice in vivo, led us to propose a novel experimental approach using house dust mite (HDM-sensitized mice in which we mimicked altered regulation of COX-2. Methods Allergic inflammation was induced in BALBc mice by intranasal exposure to HDM for 10 consecutive days. This model reproduces spontaneous exposure to aeroallergens by asthmatic patients. In order to impair, but not fully block, COX-2 production in the airways, some of the animals received an intranasal antisense oligonucleotide. Lung COX-2 expression and activity were measured along with bronchovascular inflammation, airway reactivity, and prostaglandin production. Results We observed impaired COX-2 mRNA and protein expression in the lung tissue of selective oligonucleotide-treated sensitized mice. This was accompanied by diminished production of mPGE synthase and PGE2 in the airways. In sensitized mice, the oligonucleotide induced increased airway hyperreactivity (AHR to methacholine, but a substantially reduced bronchovascular inflammation. Finally, mRNA levels of hPGD synthase remained unchanged. Conclusion Intranasal antisense therapy against COX-2 in vivo mimicked the reported impairment of COX-2 regulation in the airway cells of asthmatic patients. This strategy revealed an unexpected novel dual effect: inflammation was improved but AHR worsened. This approach will provide insights into the differential regulation of inflammation and lung function in asthma, and will help identify pharmacological targets within the COX-2/PG system.

  18. Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome.

    Science.gov (United States)

    Baier, Markus C; Barsch, Aiko; Küster, Helge; Hohnjec, Natalija

    2007-12-01

    We analyzed the role of the sucrose (Suc) synthase MtSucS1 during nodulation of the model legume Medicago truncatula, integrating data for the developmental, transcriptional, and metabolic processes affected downstream of an impaired Suc cleavage in root nodules. To reduce carbohydrate supply to nodule tissues, transgenic plants expressing a p35S-driven MtSucS1-antisense fusion were constructed. These plants displayed an up to 90% reduction of MtSucS1 proteins in roots and nodules. Phenotypic studies of two independent MtSucS1-reduced lines demonstrated that only under conditions depending on nodulation, these plants appeared to be impaired in above-ground growth. Specifically plant height, shoot weight, leaf development, flowering, as well as seed maturation were reduced, and the efficiency of photosynthesis was affected. Concomitantly, a significantly enhanced root to shoot ratio with a marked increase in root tip numbers was observed. Root nodule formation was found retarded and the impaired nodulation was accompanied by a less efficient nitrogen (N) acquisition. The decreased total N content of MtSucS1-antisense lines and an enhanced carbon to N ratio in roots, nodules, and shoots correlated with the extent of MtSucS1 knockdown. On the level of transcription, effects of an MtSucS1 reduction were evident for genes representing important nodes of the nodule carbon and N metabolism, while metabolite profiling revealed significantly lower levels of amino acids and their derivatives particularly in strongly MtSucS1-reduced nodules. Our results support the model that nodule-enhanced Suc synthase 1 of the model legume M. truncatula is required for the establishment and maintenance of an efficient N-fixing symbiosis.

  19. Selection, optimization, and pharmacokinetic properties of a novel, potent antiviral locked nucleic acid-based antisense oligomer targeting hepatitis C virus internal ribosome entry site.

    Science.gov (United States)

    Laxton, Carl; Brady, Kevin; Moschos, Sterghios; Turnpenny, Paul; Rawal, Jaiessh; Pryde, David C; Sidders, Ben; Corbau, Romu; Pickford, Chris; Murray, E J

    2011-07-01

    We have screened 47 locked nucleic acid (LNA) antisense oligonucleotides (ASOs) targeting conserved (>95% homology) sequences in the hepatitis C virus (HCV) genome using the subgenomic HCV replicon assay and generated both antiviral (50% effective concentration [EC(50)]) and cytotoxic (50% cytotoxic concentration [CC(50)]) dose-response curves to allow measurement of the selectivity index (SI). This comprehensive approach has identified an LNA ASO with potent antiviral activity (EC(50) = 4 nM) and low cytotoxicity (CC(50) >880 nM) targeting the 25- to 40-nucleotide region (nt) of the HCV internal ribosome entry site (IRES) containing the distal and proximal miR-122 binding sites. LNA ASOs targeting previously known accessible regions of the IRES, namely, loop III and the initiation codon in loop IV, had poor SI values. We optimized the LNA ASO sequence by performing a 1-nucleotide walk through the 25- to 40-nt region and show that the boundaries for antiviral efficacy are extremely precise. Furthermore, we have optimized the format for the LNA ASO using different gapmer and mixomer patterns and show that RNase H is required for antiviral activity. We demonstrate that RNase H-refractory ASOs targeting the 25- to 40-nt region have no antiviral effect, revealing important regulatory features of the 25- to 40-nt region and suggesting that RNase H-refractory LNA ASOs can act as potential surrogates for proviral functions of miR-122. We confirm the antisense mechanism of action using mismatched LNA ASOs. Finally, we have performed pharmacokinetic experiments to demonstrate that the LNA ASOs have a very long half-life (>5 days) and attain hepatic maximum concentrations >100 times the concentration required for in vitro antiviral activity.

  20. beta-Cyclodextrin derivatives as carriers to enhance the antiviral activity of an antisense oligonucleotide directed toward a coronavirus intergenic consensus sequence.

    Science.gov (United States)

    Abdou, S; Collomb, J; Sallas, F; Marsura, A; Finance, C

    1997-01-01

    The ability of cyclodextrins to enhance the antiviral activity of a phosphodiester oligodeoxynucleotide has been investigated. A 18-mer oligodeoxynucleotide complementary to the initiation region of the mRNA coding for the spike protein and containing the intergenic consensus sequence of an enteric coronavirus has been tested for antiviral action against virus growth in human adenocarcinoma cells. The phosphodiester oligodeoxynucleotide only showed a limited effect on virus growth rate (from 12 to 34% viral inhibition in cells treated with 7.5 to 25 microM oligodeoxynucleotide, respectively, at a multiplicity of infection of 0.1 infectious particle per cell). In the same conditions, the phosphorothioate analogue exhibited stronger antiviral activity, the inhibition increased from 56 to 90%. The inhibitory effect of this analogue was antisense and sequence-specific. Northern blot analysis showed that the sequence-dependent mechanism of action appears to be the inhibition of mRNA transcription. We conclude that the coronavirus intergenic consensus sequence is a good target for an antisense oligonucleotide antiviral action. The properties of the phosphodiester oligonucleotide was improved after its complexation with cyclodextrins. The most important increase of the antiviral activity (90% inhibition) was obtained with only 7.5 microM oligonucleotide complexed to a cyclodextrin derivative, 6-deoxy-6-S-beta-D-galactopyranosyl-6-thio-cyclomalto-heptaose+ ++ in a molar ratio of 1:100. These studies suggest that the use of cyclodextrin derivatives as carrier for phosphodiester oligonucleotides delivery may be an effective method for increasing the therapeutic potential of these compounds in viral infections.

  1. Synthesis, Improved Antisense Activity and Structural Rationale for the Divergent RNA Affinities of 3;#8242;-Fluoro Hexitol Nucleic Acid (FHNA and Ara-FHNA) Modified Oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Egli, Martin; Pallan, Pradeep S.; Allerson, Charles R.; Prakash, Thazha P.; Berdeja, Andres; Yu, Jinghua; Lee, Sam; Watt, Andrew; Gaus, Hans; Bhat, Balkrishen; Swayze, Eric E.; Seth, Punit P. (Isis Pharm.); (Vanderbilt)

    2012-03-16

    The synthesis, biophysical, structural, and biological properties of both isomers of 3'-fluoro hexitol nucleic acid (FHNA and Ara-FHNA) modified oligonucleotides are reported. Synthesis of the FHNA and Ara-FHNA thymine phosphoramidites was efficiently accomplished starting from known sugar precursors. Optimal RNA affinities were observed with a 3'-fluorine atom and nucleobase in a trans-diaxial orientation. The Ara-FHNA analog with an equatorial fluorine was found to be destabilizing. However, the magnitude of destabilization was sequence-dependent. Thus, the loss of stability is sharply reduced when Ara-FHNA residues were inserted at pyrimidine-purine (Py-Pu) steps compared to placement within a stretch of pyrimidines (Py-Py). Crystal structures of A-type DNA duplexes modified with either monomer provide a rationalization for the opposing stability effects and point to a steric origin of the destabilization caused by the Ara-FHNA analog. The sequence dependent effect can be explained by the formation of an internucleotide C-F {hor_ellipsis} H-C pseudo hydrogen bond between F3' of Ara-FHNA and C8-H of the nucleobase from the 3'-adjacent adenosine that is absent at Py-Py steps. In animal experiments, FHNA-modified antisense oligonucleotides formulated in saline showed a potent downregulation of gene expression in liver tissue without producing hepatotoxicity. Our data establish FHNA as a useful modification for antisense therapeutics and also confirm the stabilizing influence of F(Py) {hor_ellipsis} H-C(Pu) pseudo hydrogen bonds in nucleic acid structures.

  2. Defining global gene expression changes of the hypothalamic-pituitary-gonadal axis in female sGnRH-antisense transgenic common carp (Cyprinus carpio.

    Directory of Open Access Journals (Sweden)

    Jing Xu

    Full Text Available BACKGROUND: The hypothalamic-pituitary-gonadal (HPG axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus, 16 and 12 (pituitary, 119 and 93 (ovary, respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. CONCLUSIONS/SIGNIFICANCE: This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the

  3. Convergent Transcription in the Butyrolactone Regulon in Streptomyces coelicolor Confers a Bistable Genetic Switch for Antibiotic Biosynthesis

    Science.gov (United States)

    Chatterjee, Anushree; Drews, Laurie; Mehra, Sarika; Takano, Eriko; Kaznessis, Yiannis N.; Hu, Wei-Shou

    2011-01-01

    cis-encoded antisense RNAs (cis asRNA) have been reported to participate in gene expression regulation in both eukaryotic and prokaryotic organisms. Its presence in Streptomyces coelicolor has also been reported recently; however, its role has yet to be fully investigated. Using mathematical modeling we explore the role of cis asRNA produced as a result of convergent transcription in scbA-scbR genetic switch. scbA and scbR gene pair, encoding repressor–amplifier proteins respectively, mediates the synthesis of a signaling molecule, the γ-butyrolactone SCB1 and controls the onset of antibiotic production. Our model considers that transcriptional interference caused by convergent transcription of two opposing RNA polymerases results in fatal collision and transcriptional termination, which suppresses transcription efficiency. Additionally, convergent transcription causes sense and antisense interactions between complementary sequences from opposing strands, rendering the full length transcript inaccessible for translation. We evaluated the role of transcriptional interference and the antisense effect conferred by convergent transcription on the behavior of scbA-scbR system. Stability analysis showed that while transcriptional interference affects the system, it is asRNA that confers scbA-scbR system the characteristics of a bistable switch in response to the signaling molecule SCB1. With its critical role of regulating the onset of antibiotic synthesis the bistable behavior offers this two gene system the needed robustness to be a genetic switch. The convergent two gene system with potential of transcriptional interference is a frequent feature in various genomes. The possibility of asRNA regulation in other such gene-pairs is yet to be examined. PMID:21765930

  4. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. Dharani Dhar Dubey. Articles written in Journal of Genetics. Volume 86 Issue 2 August 2007 pp 139-148 Research Article. Mapping autonomously replicating sequence elements in a 73-kb region of chromosome II of the fission yeast, Schizosaccharomyces pombe · Vinay Kumar ...

  5. Mikromechanisches Element und Sensor zur Ueberwachung eines mikromechanischen Elements

    OpenAIRE

    Klose, T.; Conrad, H.; Grasshoff, T.

    2008-01-01

    DE 102008049647 A1 UPAB: 20100428 NOVELTY - The micromechanical element (100) has a mobile functional element (110) and a retaining element (120), where a retaining element and the functional element are connected at a junction (122). Another retaining element (130) and the functional element are connected at another junction (132). The former retaining element has a piezoelectric drive element (124) and the latter retaining element has another piezoelectric drive element (134). DETAILED DESC...

  6. Genetic Discrimination

    Science.gov (United States)

    Skip to main content Genetic Discrimination Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features Funding Divisions ...

  7. Genetic Testing

    Science.gov (United States)

    ... on to their children Screening embryos for disease Testing for genetic diseases in adults before they cause ... provide information about the pros and cons of testing. NIH: National Human Genome Research Institute

  8. Genetic GIScience

    DEFF Research Database (Denmark)

    Jacquez, Geoffrey; Sabel, Clive E; Shi, Chen

    2015-01-01

    The exposome, defined as the totality of an individual's exposures over the life course, is a seminal concept in the environmental health sciences. Although inherently geographic, the exposome as yet is unfamiliar to many geographers. This article proposes a place-based synthesis, genetic geograp....... These methodological developments and exemplar provide the basis for a new synthesis in health geography: genetic GIScience.......The exposome, defined as the totality of an individual's exposures over the life course, is a seminal concept in the environmental health sciences. Although inherently geographic, the exposome as yet is unfamiliar to many geographers. This article proposes a place-based synthesis, genetic...... geographic information science (genetic GIScience), that is founded on the exposome, genome+, and behavome. It provides an improved understanding of human health in relation to biology (the genome+), environmental exposures (the exposome), and their social, societal, and behavioral determinants (the behavome...

  9. Arthropod Genetics.

    Science.gov (United States)

    Zumwalde, Sharon

    2000-01-01

    Introduces an activity on arthropod genetics that involves phenotype and genotype identification of the creature and the construction process. Includes a list of required materials and directions to build a model arthropod. (YDS)

  10. Overlapping genetic codes for overlapping frameshifted genes in Testudines, and Lepidochelys olivacea as special case.

    Science.gov (United States)

    Seligmann, Hervé

    2012-12-01

    Mitochondrial genes code for additional proteins after +2 frameshifts by reassigning stops to code for amino acids, which defines overlapping genetic codes for overlapping genes. Turtles recode stops UAR → Trp and AGR → Lys (AGR → Gly in the marine Olive Ridley turtle, Lepidochelys olivacea). In Lepidochelys the +2 frameshifted mitochondrial Cytb gene lacks stops, open reading frames from other genes code for unknown proteins, and for regular mitochondrial proteins after frameshifts according to the overlapping genetic code. Lepidochelys' inversion between proteins coded by regular and overlapping genetic codes substantiates the existence of overlap coding. ND4 differs among Lepidochelys mitochondrial genomes: it is regular in DQ486893; in NC_011516, the open reading frame codes for another protein, the regular ND4 protein is coded by the frameshifted sequence reassigning stops as in other turtles. These systematic patterns are incompatible with Genbank/sequencing errors and DNA decay. Random mixing of synonymous codons, conserving main frame coding properties, shows optimization of natural sequences for overlap coding; Ka/Ks analyses show high positive (directional) selection on overlapping genes. Tests based on circular genetic codes confirm programmed frameshifts in ND3 and ND4l genes, and predicted frameshift sites for overlap coding in Lepidochelys. Chelonian mitochondria adapt for overlapping gene expression: cloverleaf formation by antisense tRNAs with predicted anticodons matching stops coevolves with overlap coding; antisense tRNAs with predicted expanded anticodons (frameshift suppressor tRNAs) associate with frameshift-coding in ND3 and ND4l, a potential regulation of frameshifted overlap coding. Anaeroby perhaps switched between regular and overlap coding genes in Lepidochelys. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Element-ary Development.

    Science.gov (United States)

    Schamp, Homer W., Jr.

    1989-01-01

    Describes the historic development of the periodic table from the four-element theory to the Lavoisier's table. Presents a table listing the old and new names of chemicals and the Lavoisier's table of elements. Lists two references. (YP)

  12. Data Element Registry Services

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data Element Registry Services (DERS) is a resource for information about value lists (aka code sets / pick lists), data dictionaries, data elements, and EPA data...

  13. J. Genet. classic 101

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 85, No. 2, August 2006. 101. Page 2. J. Genet. classic. 102. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 3. J. Genet. classic. Journal of Genetics, Vol. 85, No. 2, August 2006. 103. Page 4. J. Genet. classic. 104. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 5. J. Genet. classic.

  14. J. Genet. classic 37

    Indian Academy of Sciences (India)

    Unknown

    Journal of Genetics, Vol. 84, No. 1, April 2005. 37. Page 2. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 38. Page 3. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 39. Page 4. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 40. Page 5. J. Genet. classic. Journal of ...

  15. J. Genet. classic 125

    Indian Academy of Sciences (India)

    Unknown

    Journal of Genetics, Vol. 83, No. 2, August 2004. 125. Page 2. J. Genet. classic. Journal of Genetics, Vol. 83, No. 2, August 2004. 126. Page 3. J. Genet. classic. Journal of Genetics, Vol. 83, No. 2, August 2004. 127. Page 4. J. Genet. classic. Journal of Genetics, Vol. 83, No. 2, August 2004. 128. Page 5. J. Genet. classic.

  16. Advanced Running Performance by Genetic Predisposition in Male Dummerstorf Marathon Mice (DUhTP Reveals Higher Sterol Regulatory Element-Binding Protein (SREBP Related mRNA Expression in the Liver and Higher Serum Levels of Progesterone.

    Directory of Open Access Journals (Sweden)

    Daniela Ohde

    Full Text Available Long-term-selected DUhTP mice represent a non-inbred model for inborn physical high-performance without previous training. Abundance of hepatic mRNA in 70-day male DUhTP and control mice was analyzed using the Affymetrix mouse array 430A 2.0. Differential expression analysis with PLIER corrected data was performed using AltAnalyze. Searching for over-representation in biochemical pathways revealed cholesterol metabolism being most prominently affected in DUhTP compared to unselected control mice. Furthermore, pathway analysis by AltAnalyze plus PathVisio indicated significant induction of glycolysis, fatty acid synthesis and cholesterol biosynthesis in the liver of DUhTP mice versus unselected control mice. In contrast, gluconeogenesis was partially inactivated as judged from the analysis of hepatic mRNA transcript abundance in DUhTP mice. Analysis of mRNA transcripts related to steroid hormone metabolism inferred elevated synthesis of progesterone and reduced levels of sex steroids. Abundance of steroid delta isomerase-5 mRNA (Hsd3b5, FC 4.97 was increased and steroid 17-alpha-monooxygenase mRNA (Cyp17a1, FC -11.6 was massively diminished in the liver of DUhTP mice. Assessment of steroid profiles by LC-MS revealed increased levels of progesterone and decreased levels of sex steroids in serum from DUhTP mice versus controls. Analysis of hepatic mRNA transcript abundance indicates that sterol regulatory element-binding protein-1 (SREBP-1 may play a major role in metabolic pathway activation in the marathon mouse model DUhTP. Thus, results from bioinformatics modeling of hepatic mRNA transcript abundance correlated with direct steroid analysis by mass spectrometry and further indicated functions of SREBP-1 and steroid hormones for endurance performance in DUhTP mice.

  17. Basic Finite Element Method

    International Nuclear Information System (INIS)

    Lee, Byeong Hae

    1992-02-01

    This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.

  18. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  19. Desktop Genetics.

    Science.gov (United States)

    Hough, Soren H; Ajetunmobi, Ayokunmi; Brody, Leigh; Humphryes-Kirilov, Neil; Perello, Edward

    2016-11-01

    Desktop Genetics is a bioinformatics company building a gene-editing platform for personalized medicine. The company works with scientists around the world to design and execute state-of-the-art clustered regularly interspaced short palindromic repeats (CRISPR) experiments. Desktop Genetics feeds the lessons learned about experimental intent, single-guide RNA design and data from international genomics projects into a novel CRISPR artificial intelligence system. We believe that machine learning techniques can transform this information into a cognitive therapeutic development tool that will revolutionize medicine.

  20. Vliv hipokampální aplikace Nr1/Nr2 antisense oligodeoxynukleotidů na expresi proteinů postsynaptické denzity a na prepulzní inhibici

    Czech Academy of Sciences Publication Activity Database

    Vrajová, M.; Klaschka, Jan; Tejkalová, H.; Bubeníková-Valešová, V.

    2011-01-01

    Roč. 15, Suppl. 2 (2011), s. 11-14 ISSN 1211-7579 R&D Projects: GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z10300504 Keywords : NMDA receptor * PSD proteins * antisense oligodeoxynucleotides for NMDA-NR1/NR2 subunits * prepulse inhibition Subject RIV: FL - Psychiatry, Sexuology http://www.tigis.cz/images/stories/psychiatrie/2011/s2/03_vrajova_cns_2-11.pdf

  1. The antisense RNA As1_flv4 in the Cyanobacterium Synechocystis sp. PCC 6803 prevents premature expression of the flv4-2 operon upon shift in inorganic carbon supply.

    Science.gov (United States)

    Eisenhut, Marion; Georg, Jens; Klähn, Stephan; Sakurai, Isamu; Mustila, Henna; Zhang, Pengpeng; Hess, Wolfgang R; Aro, Eva-Mari

    2012-09-28

    The functional relevance of natural cis-antisense transcripts is mostly unknown. Here we have characterized the association of three antisense RNAs and one intergenically encoded noncoding RNA with an operon that plays a crucial role in photoprotection of photosystem II under low carbon conditions in the cyanobacterium Synechocystis sp. PCC 6803. Cyanobacteria show strong gene expression dynamics in response to a shift of cells from high carbon to low levels of inorganic carbon (C(i)), but the regulatory mechanisms are poorly understood. Among the most up-regulated genes in Synechocystis are flv4, sll0218, and flv2, which are organized in the flv4-2 operon. The flavodiiron proteins encoded by this operon open up an alternative electron transfer route, likely starting from the Q(B) site in photosystem II, under photooxidative stress conditions. Our expression analysis of cells shifted from high carbon to low carbon demonstrated an inversely correlated transcript accumulation of the flv4-2 operon mRNA and one antisense RNA to flv4, designated as As1_flv4. Overexpression of As1_flv4 led to a decrease in flv4-2 mRNA. The promoter activity of as1_flv4 was transiently stimulated by C(i) limitation and negatively regulated by the AbrB-like transcription regulator Sll0822, whereas the flv4-2 operon was positively regulated by the transcription factor NdhR. The results indicate that the tightly regulated antisense RNA As1_flv4 establishes a transient threshold for flv4-2 expression in the early phase after a change in C(i) conditions. Thus, it prevents unfavorable synthesis of the proteins from the flv4-2 operon.

  2. The Antisense RNA As1_flv4 in the Cyanobacterium Synechocystis sp. PCC 6803 Prevents Premature Expression of the flv4-2 Operon upon Shift in Inorganic Carbon Supply*

    Science.gov (United States)

    Eisenhut, Marion; Georg, Jens; Klähn, Stephan; Sakurai, Isamu; Mustila, Henna; Zhang, Pengpeng; Hess, Wolfgang R.; Aro, Eva-Mari

    2012-01-01

    The functional relevance of natural cis-antisense transcripts is mostly unknown. Here we have characterized the association of three antisense RNAs and one intergenically encoded noncoding RNA with an operon that plays a crucial role in photoprotection of photosystem II under low carbon conditions in the cyanobacterium Synechocystis sp. PCC 6803. Cyanobacteria show strong gene expression dynamics in response to a shift of cells from high carbon to low levels of inorganic carbon (Ci), but the regulatory mechanisms are poorly understood. Among the most up-regulated genes in Synechocystis are flv4, sll0218, and flv2, which are organized in the flv4-2 operon. The flavodiiron proteins encoded by this operon open up an alternative electron transfer route, likely starting from the QB site in photosystem II, under photooxidative stress conditions. Our expression analysis of cells shifted from high carbon to low carbon demonstrated an inversely correlated transcript accumulation of the flv4-2 operon mRNA and one antisense RNA to flv4, designated as As1_flv4. Overexpression of As1_flv4 led to a decrease in flv4-2 mRNA. The promoter activity of as1_flv4 was transiently stimulated by Ci limitation and negatively regulated by the AbrB-like transcription regulator Sll0822, whereas the flv4-2 operon was positively regulated by the transcription factor NdhR. The results indicate that the tightly regulated antisense RNA As1_flv4 establishes a transient threshold for flv4-2 expression in the early phase after a change in Ci conditions. Thus, it prevents unfavorable synthesis of the proteins from the flv4-2 operon. PMID:22854963

  3. Snížená exprese proteinu NR1 podjednotky po antisense oligodeoxynukleotidu NMDA-R1 neovlivní reakci potkana na akustický podnět

    Czech Academy of Sciences Publication Activity Database

    Vrajová, M.; Tejkalová, H.; Klaschka, Jan; Šťastný, František

    2007-01-01

    Roč. 11, Suppl. 3 (2007), s. 4-7 ISSN 1211-7579 R&D Projects: GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z50110509 Keywords : schizofrenie * NMDA receptor * proteinová exprese NR1 podjednotky * genetický animální model * antisense oligodeoxynukleotid (aODN) * prepulzní inhibice akustického úleku Subject RIV: FL - Psychiatry, Sexuology

  4. Genetic effects

    International Nuclear Information System (INIS)

    Kato, Hiroo

    1975-01-01

    In 1948-1953 a large scale field survey was conducted to investigate the possible genetic effects of A-bomb radiation on over 70,000 pregnancy terminations in the cities of Hiroshima and Nagasaki. The indices of possible genetic effect including sex ratio, birth weight, frequency of malformation, stillbirth, neonatal death, deaths within 9 months and anthropometric measurements at 9 months of age for these children were investigated in relation to their parent's exposure status to the A-bomb. There were no detectable genetic effects in this sample, except for a slight change in sex ratio which was in the direction to be expected if exposure had induced sex-linked lethal mutations. However, continued study of the sex ratio, based upon birth certificates in Hiroshima and Nagasaki for 1954-1962, did not confirm the earlier trend. Mortality in these children of A-bomb survivors is being followed using a cohort of 54,000 subjects. No clearly significant effect of parental exposure on survival of the children has been demonstrated up to 1972 (age 17 on the average). On the basis of the regression data, the minimal genetic doubling dose of this type of radiation for mutations resulting in death is estimated at 46 rem for the father and 125 rem for the mother. (auth.)

  5. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  6. Melanoma genetics

    DEFF Research Database (Denmark)

    Read, Jazlyn; Wadt, Karin A W; Hayward, Nicholas K

    2015-01-01

    Approximately 10% of melanoma cases report a relative affected with melanoma, and a positive family history is associated with an increased risk of developing melanoma. Although the majority of genetic alterations associated with melanoma development are somatic, the underlying presence of herita......Approximately 10% of melanoma cases report a relative affected with melanoma, and a positive family history is associated with an increased risk of developing melanoma. Although the majority of genetic alterations associated with melanoma development are somatic, the underlying presence...... in a combined total of approximately 50% of familial melanoma cases, the underlying genetic basis is unexplained for the remainder of high-density melanoma families. Aside from the possibility of extremely rare mutations in a few additional high penetrance genes yet to be discovered, this suggests a likely...... polygenic component to susceptibility, and a unique level of personal melanoma risk influenced by multiple low-risk alleles and genetic modifiers. In addition to conferring a risk of cutaneous melanoma, some 'melanoma' predisposition genes have been linked to other cancers, with cancer clustering observed...

  7. Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in Δ48-50 DMD cells

    Science.gov (United States)

    De Angelis, Fernanda Gabriella; Sthandier, Olga; Berarducci, Barbara; Toso, Silvia; Galluzzi, Giuliana; Ricci, Enzo; Cossu, Giulio; Bozzoni, Irene

    2002-01-01

    Deletions and point mutations in the dystrophin gene cause either the severe progressive myopathy Duchenne muscular dystrophy (DMD) or the milder Becker muscular dystrophy, depending on whether the translational reading frame is lost or maintained. Because internal in-frame deletions in the protein produce only mild myopathic symptoms, it should be possible, by preventing the inclusion of specific mutated exon(s) in the mature dystrophin mRNA, to restore a partially corrected phenotype. Such control has been previously accomplished by the use of synthetic oligonucleotides; nevertheless, a significant drawback to this approach is caused by the fact that oligonucleotides would require periodic administrations. To circumvent this problem, we have produced several constructs able to express in vivo, in a stable fashion, large amounts of chimeric RNAs containing antisense sequences. In this paper we show that antisense molecules against exon 51 splice junctions are able to direct skipping of this exon in the human DMD deletion 48–50 and to rescue dystrophin synthesis. We also show that the highest skipping activity was found when antisense constructs against the 5′ and 3′ splice sites are coexpressed in the same cell. PMID:12077324

  8. An antisense oligodeoxynucleotide targeted against the type IIβ regulatory subunit mRNA of protein kinase inhibits cAMP-induced differentiation in HL-60 leukemia cells without affecting phorbol ester effects

    International Nuclear Information System (INIS)

    Tortora, G.; Clair, T.; Cho-Chung, Y.S.

    1990-01-01

    The type II β regulatory subunit of cAMP-dependent protein kinase (RII β ) has been hypothesized to play an important role in the growth inhibition and differentiation induced by site-selective cAMP analogs in human cancer cells, but direct proof of this function has been lacking. To address this tissue, HL-60 human promyelocytic leukemia cells were exposed to RII β antisense synthetic oligodeoxynucleotide, and the effects on cAMP-induced growth regulation were examined. Exposure of these cells to RII β antisense oligodeoxynucleotide resulted in a decrease in cAMP analog-induced growth inhibition and differentiation without apparent effect on differentiation induced by phorbol esters. This loss in cAMP growth regulatory function correlated with a decrease in basal and induced levels of RII β protein. Exposure to RII β sense, RI α and RII α antisense, or irrelevant oligodeoxynucleotides had no such effect. These results show that the RII β regulatory subunit of protein kinase plays a critical role in the cAMP-induced growth regulation of HL-60 leukemia cells

  9. A small molecule for a big transformation: Topical application of a 20-nucleotide-long antisense fragment of the DIAP-2 gene inhibits the development of Drosophila melanogaster female imagos

    Directory of Open Access Journals (Sweden)

    Nyadar Palmah M.

    2018-01-01

    Full Text Available Several genes have been identified to play important roles associated with sex selection in Drosophila melanogaster. An essential part is attributed to the sex-lethal gene that depends on the expression of the X:A (number of chromosomes to autosomes ratio signal controlling both sex selection and dosage compensation processes in D. melanogaster. Interestingly, for sex selection in D. melanogaster there are no documented data addressing the role of the inhibitor of apoptosis (IAP genes and their signaling influence on this biological process. In this study, we found that topical application of a 20-nucleotide-long antisense DNA fragment (oligoDIAP-2 from the death-associated inhibitor of apoptosis (DIAP-2 gene interferes with D. melanogaster development and significantly decreases the number of female imagos and their biomass. We show that the applied antisense oligoDIAP-2 fragment downregulates the target DIAP-2 gene whose normal concentration is necessary for the development of female D. melanogaster. These data correspond to the results on downregulation of the target host IAP-Z gene of Lymantria dispar L. female imagos after topical treatment with an 18-nucleotide-long antisense DNA fragment from the L. dispar multicapsid nuclear polyhedrosis virus IAP-3 gene at the larval stage. The observed novel phenomenon linking the downregulation of insect IAP genes and the low rate of female imago development could have practical application, especially in insect pest control and molecular pathology.

  10. Suffix-specific RNAi leads to silencing of F element in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Nickolai A Tchurikov

    2007-05-01

    Full Text Available Separate conserved copies of suffix, a short interspersed Drosophila retroelement (SINE, and also divergent copies in the 3' untranslated regions of the three genes, have already been described. Suffix has also been identified on the 3' end of the Drosophila non-LTR F element, where it forms the last conserved domain of the reverse transcriptase (RT. In our current study, we show that the separate copies of suffix are far more actively transcribed than their counterparts on the F element. Transcripts from both strands of suffix are present in RNA preparations during all stages of Drosophila development, providing the potential for the formation of double-stranded RNA and the initiation of RNA interference (RNAi. Using in situ RNA hybridization analysis, we have detected the expression of both sense and antisense suffix transcripts in germinal cells. These sense and antisense transcripts are colocalized in the primary spermatocytes and in the cytoplasm of the nurse cells, suggesting that they form double-stranded RNA. We performed further analyses of suffix-specific small RNAs using northern blotting and SI nuclease protection assays. Among the total RNA preparations isolated from embryos, larvae, pupae and flies, suffix-specific small interfering RNAs (siRNAs were detected only in pupae. In wild type ovaries, both the siRNAs and longer suffix-specific Piwi-interacting RNAs (piRNAs were observed, whereas in ovaries of the Dicer-2 mutant, only piRNAs were detected. We further found by 3' RACE that in pupae and ovaries, F element transcripts lacking the suffix sequence are also present. Our data provide direct evidence that suffix-specific RNAi leads to the silencing of the relative LINE (long interspersed element, F element, and suggests that SINE-specific RNA interference could potentially downregulate a set of genes possessing SINE stretches in their 5' or 3' non-coding regions. These data also suggest that double stranded RNAs possessing suffix

  11. J. Genet. classic 235

    Indian Academy of Sciences (India)

    Unknown

    Journal of Genetics, Vol. 83, No. 3, December 2004. 235. Page 2. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 236. Page 3. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 237. Page 4. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 238. Page 5 ...

  12. Genetic effects

    International Nuclear Information System (INIS)

    Bender, M.A.; Abrahamson, S.; Denniston, C.; Schull, W.J.

    1989-01-01

    In this chapter, we present a comprehensive analysis of the major classes of genetic diseases that would be increased as a result of an increased gonadal radiation exposure to a human population. The risk analysis takes on two major forms: the increase in genetic disease that would be observed in the immediate offspring of the exposed population, and the subsequent transmission of the newly induced mutations through future generations. The major classes of genetic disease will be induced at different frequencies, and will also impact differentially in terms of survivability and fertility on the affected individuals and their descendants. Some classes of disease will be expected to persist for only a few generations at most. Other types of genetic disease will persist through a longer period. The classes of genetic diseases studied are: dominant gene mutation, X-linked gene mutation, chromosome disorders and multifactorial disorders which involve the interaction of many mutant genes and environmental factors. For each of these classes we have derived the general equations of mutation induction for the male and female germ cells of critical importance in the mutation process. The frequency of induced mutations will be determined initially by the dose received, the type of radiation and, to some extent at high dose, by the manner in which the dose is received. We have used the modeling analyses to predict the outcomes for two nuclear power plant accident scenarios, the first in which the population receives a chronic dose of 0.1 Gy (10 rad) over a 50-year period, the second in which an equivalent population receives an acute dose of 2 Gy. In both cases the analyses are projected over a period of five generations

  13. J. Genet. classic 9

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 88, No. 1, April 2009. 9. Page 2. J. Genet. classic. 10. Journal of Genetics, Vol. 88, No. 1, April 2009. Page 3. J. Genet. classic. Journal of Genetics, Vol. 88, No. 1, April 2009. 11. Page 4. J. Genet. classic. 12. Journal of Genetics, Vol. 88, No. 1, April 2009. Page 5. J. Genet. classic. Journal of Genetics ...

  14. The synthetic elements

    International Nuclear Information System (INIS)

    Hoffman, D.C.

    1990-05-01

    Prior to 1940, the heaviest element known was uranium, discovered in 1789. Since that time the elements 93 through 109 have been synthesized and identified and the elements 43, 61, 85, and 87 which were missing form the periodic tables of the 1930's have been discovered. The techniques and problems involved in these discoveries and the placement of the transuranium elements in the periodic table will be discussed. The production and positive identification of elements heavier than Md (Z=101), which have very short half-lives and can only be produced an atom-at-a-time, are very difficult and there have been controversies concerning their discovery. Some of the new methods which have been developed and used in these studies will be described. The prospects for production of still heavier elements will be considered

  15. The solar element

    DEFF Research Database (Denmark)

    Kragh, Helge

    2009-01-01

    of the nineteenth century. In the modest form of a yellow spectral line known as D3, 'helium' was sometimes supposed to exist in the Sun's atmosphere, an idea which is traditionally ascribed to J. Norman Lockyer. Did Lockyer discover helium as a solar element? How was the suggestion received by chemists, physicists...... and astronomers in the period until the spring of 1895, when William Ramsay serendipitously found the gas in uranium minerals? The hypothetical element helium was fairly well known, yet Ramsay's discovery owed little or nothing to Lockyer's solar element. Indeed, for a brief while it was thought that the two...... elements might be different. The complex story of how helium became established as both a solar and terrestrial element involves precise observations as well as airy speculations. It is a story that is unique among the discovery histories of the chemical elements....

  16. The Pulley Element

    Directory of Open Access Journals (Sweden)

    Štekbauer Hynek

    2016-12-01

    Full Text Available The pulley is used in a number of structures for the mechanical advantage it gives. This paper presents an approach for the calculation of a pulley-cable system using a special pulley element in the finite element method. The Lagrange Multiplier method and Penalty method are used to define the pulley element, as described in this paper. Both approaches are easy to implement in general FEM codes.

  17. The Pulley Element

    OpenAIRE

    Štekbauer Hynek

    2016-01-01

    The pulley is used in a number of structures for the mechanical advantage it gives. This paper presents an approach for the calculation of a pulley-cable system using a special pulley element in the finite element method. The Lagrange Multiplier method and Penalty method are used to define the pulley element, as described in this paper. Both approaches are easy to implement in general FEM codes.

  18. Elements in biological AMS

    International Nuclear Information System (INIS)

    Vogel, J.S.; McAninch, J.; Freeman, S.

    1996-08-01

    AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. 14 C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth's biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed

  19. Fuel element loading system

    International Nuclear Information System (INIS)

    Arya, S.P; s.

    1978-01-01

    A nuclear fuel element loading system is described which conveys a plurality of fuel rods to longitudinal passages in fuel elements. Conveyor means successively position the fuel rods above the longitudinal passages in axial alignment therewith and adapter means guide the fuel rods from the conveyor means into the longitudinal passages. The fuel elements are vibrated to cause the fuel rods to fall into the longitudinal passages through the adapter means

  20. Transposable elements as a molecular evolutionary force

    Science.gov (United States)

    Fedoroff, N. V.

    1999-01-01

    This essay addresses the paradoxes of the complex and highly redundant genomes. The central theses developed are that: (1) the distinctive feature of complex genomes is the existence of epigenetic mechanisms that permit extremely high levels of both tandem and dispersed redundancy; (2) the special contribution of transposable elements is to modularize the genome; and (3) the labilizing forces of recombination and transposition are just barely contained, giving a dynamic genetic system of ever increasing complexity that verges on the chaotic.