WorldWideScience

Sample records for antisense dna parameters

  1. Dual-Specificity Anti-HER-2/neu Antisense DNA Agents for Breast Cancer Therapy

    National Research Council Canada - National Science Library

    Stein, Stanley

    2001-01-01

    .... To achieve high avidity and specificity, we designed chimeric antisense molecules consisting of a short active DNA fused to a short "anchor" 2'-0-methyl RNA complementary to non-contiguous single...

  2. Specific RNP capture with antisense LNA/DNA mixmers.

    Science.gov (United States)

    Rogell, Birgit; Fischer, Bernd; Rettel, Mandy; Krijgsveld, Jeroen; Castello, Alfredo; Hentze, Matthias W

    2017-08-01

    RNA-binding proteins (RBPs) play essential roles in RNA biology, responding to cellular and environmental stimuli to regulate gene expression. Important advances have helped to determine the (near) complete repertoires of cellular RBPs. However, identification of RBPs associated with specific transcripts remains a challenge. Here, we describe "specific ribonucleoprotein (RNP) capture," a versatile method for the determination of the proteins bound to specific transcripts in vitro and in cellular systems. Specific RNP capture uses UV irradiation to covalently stabilize protein-RNA interactions taking place at "zero distance." Proteins bound to the target RNA are captured by hybridization with antisense locked nucleic acid (LNA)/DNA oligonucleotides covalently coupled to a magnetic resin. After stringent washing, interacting proteins are identified by quantitative mass spectrometry. Applied to in vitro extracts, specific RNP capture identifies the RBPs bound to a reporter mRNA containing the Sex-lethal (Sxl) binding motifs, revealing that the Sxl homolog sister of Sex lethal (Ssx) displays similar binding preferences. This method also revealed the repertoire of RBPs binding to 18S or 28S rRNAs in HeLa cells, including previously unknown rRNA-binding proteins. © 2017 Rogell et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. Efficacy and Safety Profile of Tricyclo-DNA Antisense Oligonucleotides in Duchenne Muscular Dystrophy Mouse Model

    Directory of Open Access Journals (Sweden)

    Karima Relizani

    2017-09-01

    Full Text Available Antisense oligonucleotides (AONs hold promise for therapeutic splice-switching correction in many genetic diseases. However, despite advances in AON chemistry and design, systemic use of AONs is limited due to poor tissue uptake and sufficient therapeutic efficacy is still difficult to achieve. A novel class of AONs made of tricyclo-DNA (tcDNA is considered very promising for the treatment of Duchenne muscular dystrophy (DMD, a neuromuscular disease typically caused by frameshifting deletions or nonsense mutations in the gene-encoding dystrophin and characterized by progressive muscle weakness, cardiomyopathy, and respiratory failure in addition to cognitive impairment. Herein, we report the efficacy and toxicology profile of a 13-mer tcDNA in mdx mice. We show that systemic delivery of 13-mer tcDNA allows restoration of dystrophin in skeletal muscles and to a lower extent in the brain, leading to muscle function improvement and correction of behavioral features linked to the emotional/cognitive deficiency. More importantly, tcDNA treatment was generally limited to minimal glomerular changes and few cell necroses in proximal tubules, with only slight variation in serum and urinary kidney toxicity biomarker levels. These results demonstrate an encouraging safety profile for tcDNA, albeit typical of phosphorothiate AONs, and confirm its therapeutic potential for the systemic treatment of DMD patients. Keywords: antisense oligonucleotides, Duchenne muscular dystrophy, preclinical, splice switching, tcDNA-AONs

  4. Human Immunodeficiency Virus-Type 1 LTR DNA contains an intrinsic gene producing antisense RNA and protein products

    Directory of Open Access Journals (Sweden)

    Hsiao Chiu-Bin

    2006-11-01

    Full Text Available Abstract Background While viruses have long been shown to capitalize on their limited genomic size by utilizing both strands of DNA or complementary DNA/RNA intermediates to code for viral proteins, it has been assumed that human retroviruses have all their major proteins translated only from the plus or sense strand of RNA, despite their requirement for a dsDNA proviral intermediate. Several studies, however, have suggested the presence of antisense transcription for both HIV-1 and HTLV-1. More recently an antisense transcript responsible for the HTLV-1 bZIP factor (HBZ protein has been described. In this study we investigated the possibility of an antisense gene contained within the human immunodeficiency virus type 1 (HIV-1 long terminal repeat (LTR. Results Inspection of published sequences revealed a potential transcription initiator element (INR situated downstream of, and in reverse orientation to, the usual HIV-1 promoter and transcription start site. This antisense initiator (HIVaINR suggested the possibility of an antisense gene responsible for RNA and protein production. We show that antisense transcripts are generated, in vitro and in vivo, originating from the TAR DNA of the HIV-1 LTR. To test the possibility that protein(s could be translated from this novel HIV-1 antisense RNA, recombinant HIV antisense gene-FLAG vectors were designed. Recombinant protein(s were produced and isolated utilizing carboxy-terminal FLAG epitope (DYKDDDDK sequences. In addition, affinity-purified antisera to an internal peptide derived from the HIV antisense protein (HAP sequences identified HAPs from HIV+ human peripheral blood lymphocytes. Conclusion HIV-1 contains an antisense gene in the U3-R regions of the LTR responsible for both an antisense RNA transcript and proteins. This antisense transcript has tremendous potential for intrinsic RNA regulation because of its overlap with the beginning of all HIV-1 sense RNA transcripts by 25 nucleotides. The

  5. Anti-sense expression of a metallopeptidase gene enhances nuclear entry of HBV-DNA

    International Nuclear Information System (INIS)

    Yeh, C.-T.; Lai, H.-Y.; Chu, S.-P.; Tseng, I-Chu

    2004-01-01

    Although several putative hepatitis B virus (HBV) receptors have been identified, none of them is capable of initiating HBV replication in a non-permissive human cell line. Using an Epstein-Barr virus-based extrachromosomal replication system, we have screened through a human liver cDNA library and successfully identified a clone capable of facilitating nuclear transport of HBV-DNA during the early phase of HBV infection. This clone contained a cDNA encoding a metallopeptidase-like protein in anti-sense orientation. Pretreatment of naive HepG2 cells with 1,10-phenanthroline, an inhibitor for liver metallopeptidases, led to nuclear entry of HBV-DNA after HBV infection. However, cccDNA was still undetectable in the nuclei, indicating other cellular factors required to complete the replication cycle were still missing. Our present data suggest that in the initial stage of HBV infection, liver metallopeptidase constitutes a barrier for effective nuclear entry of HBV genomic DNA. Attenuation of metallopeptidase activity may facilitate HBV infection

  6. Os DNA sintéticos anti-sentido Antisense Synthtetic DNA

    Directory of Open Access Journals (Sweden)

    Alfredo Cravador

    1998-07-01

    Full Text Available One old dream of the chemist in the field of the drug research is to create molecules capable of reaching their target with the precision of a missile. To accomplish it these molecules must have the propriety of distinguishing qualitative differences between healthy and diseased cells. A therapy based on this principle, able of eradicating specifically defective cells, or cells affected by a pathogen has an enormous advantage with the regard to the classical approach in which the cytotoxic drugs merely exploit quantitative biochemical and kinetic differences between abnormal and normal cells. We present in this article a review on the chemical synthesis of analogues of desoxyribonucleotides and on results obtained on the specific and irreversible inhibition of undesired genetic expression using the antisense principle.

  7. Influence of different chelators (HYNIC, MAG3 and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99m labeled to antisense DNA

    International Nuclear Information System (INIS)

    Zhang, Y.M.; Liu, N.; Zhu, Z.-H.; Rusckowski, M.; Hnatowich, D.J.

    2000-01-01

    We have shown recently that cell accumulation in culture of antisense DNA is strongly influenced by the presence of a 99m Tc-MAG 3 group for radiolabeling. We have now compared the in vitro and mouse in vivo behavior of 99m Tc when radiolabeled to one antisense phosphorothioate DNA by three different methods. The 18-mer antisense DNA against the RIα subunit of PKA was conjugated via a primary amine on the 5'-end with the NHS esters of HYNIC and MAG 3 and by the cyclic anhydride of DTPA. Surface plasmon resonance measurements revealed that the association rate constant for hybridization was unchanged for all three chelators as compared with that of the native DNA. Size exclusion HPLC showed rapid and quantitative protein binding for all three chelators upon incubation of labeled DNAs in 37 C serum and cell culture medium. However, in each case, radiolabeled and intact oligonucleotide was still detectable after 24 h. Cellular uptake was tested in an RIα mRNA-positive cancer cell line. The order of cellular accumulation of 99m Tc was DTPA>HYNIC(tricine)>MAG 3 , with the differences increasing with time between 4 and 24 h. The rate of 99m Tc egress from cells was found to be MAG 3 >HYNIC>DTPA, which may explain the order of cellular accumulation. The biodistribution in normal mice was heavily influenced by the labeling method and followed a pattern similar to that seen previously by us for peptides labeled with the same chelators. In conclusion, although these studies concerned only one antisense DNA in one cell line, the results suggest that the success of antisense imaging may depend, in part, on the method of radiolabeling. (orig.)

  8. An Approach to Detect and Study DNA Double-Strand Break Repair by Transcript RNA Using a Spliced-Antisense RNA Template.

    Science.gov (United States)

    Keskin, Havva; Storici, Francesca

    2018-01-01

    A double-strand break (DSB) is one of the most dangerous DNA lesion, and its repair is crucial for genome stability. Homologous recombination is considered the safest way to repair a DNA DSB and requires an identical or nearly identical DNA template, such as a sister chromatid or a homologous chromosome for accurate repair. Can transcript RNA serve as donor template for DSB repair? Here, we describe an approach that we developed to detect and study DNA repair by transcript RNA. Key features of the method are: (i) use of antisense (noncoding) RNA as template for DSB repair by RNA, (ii) use of intron splicing to distinguish the sequence of the RNA template from that of the DNA that generates the RNA template, and (iii) use of a trans and cis system to study how RNA repairs a DSB in homologous but distant DNA or in its own DNA, respectively. This chapter provides details on how to use a spliced-antisense RNA template to detect and study DSB repair by RNA in trans or cis in yeast cells. Our approach for detection of DSB repair by RNA in cells can be applied to cell types other than yeast, such as bacteria, mammalian cells, or other eukaryotic cells. © 2018 Elsevier Inc. All rights reserved.

  9. Logic gates and antisense DNA devices operating on a translator nucleic Acid scaffold.

    Science.gov (United States)

    Shlyahovsky, Bella; Li, Yang; Lioubashevski, Oleg; Elbaz, Johann; Willner, Itamar

    2009-07-28

    A series of logic gates, "AND", "OR", and "XOR", are designed using a DNA scaffold that includes four "footholds" on which the logic operations are activated. Two of the footholds represent input-recognition strands, and these are blocked by complementary nucleic acids, whereas the other two footholds are blocked by nucleic acids that include the horseradish peroxidase (HRP)-mimicking DNAzyme sequence. The logic gates are activated by either nucleic acid inputs that hybridize to the respective "footholds", or by low-molecular-weight inputs (adenosine monophosphate or cocaine) that yield the respective aptamer-substrate complexes. This results in the respective translocation of the blocking nucleic acids to the footholds carrying the HRP-mimicking DNAzyme sequence, and the concomitant release of the respective DNAzyme. The released product-strands then self-assemble into the hemin/G-quadruplex-HRP-mimicking DNAzyme that biocatalyzes the formation of a colored product and provides an output signal for the different logic gates. The principle of the logic operation is, then, implemented as a possible paradigm for future nanomedicine. The nucleic acid inputs that bind to the blocked footholds result in the translocation of the blocking nucleic acids to the respective footholds carrying the antithrombin aptamer. The released aptamer inhibits, then, the hydrolytic activity of thrombin. The system demonstrates the regulation of a biocatalytic reaction by a translator system activated on a DNA scaffold.

  10. Inhibition of B cell proliferation by antisense DNA to both alpha and beta forms of Fc epsilon R II.

    Science.gov (United States)

    Bhatti, L; Behle, K; Stevens, R H

    1992-10-01

    Epstein-Barr Virus (EBV) infection activates B lymphocyte proliferation through partially understood mechanisms, resulting in phenotypic changes, including the appearance of new antigens. One such antigen is Fc epsilon R II/CD-23 which may be relevant for B cell proliferation. We have used anti-sense oligonucleotides to study the importance of the two forms of this molecule for proliferation in the EBV-transformed, Fc epsilon R II +ve lymphoblastoid B cell line, RPMI 8866. Anti-sense oligodeoxynucleotides were generated to the two forms of Fc epsilon R II; Fc epsilon R IIa (alpha) and IIb (beta) which differ only in their intracytoplasmic domains. Addition of increasing concentrations of anti-sense oligonucleotides, ranging from 1 to 30 microM, significantly decreased cellular proliferation as measured by the incorporation of [3H]thymidine (inhibition range 8-88%). Optimum inhibition of cellular proliferation was apparent at 15 microM concentration of both anti-sense Fc epsilon R IIa and IIb (Fc epsilon R IIa, mean +/- SE = 75 +/- 7% inhibition, p less than 0.001; Fc epsilon R IIb, mean +/- SE = 71 +/- 7% inhibition, p less than 0.001). Anti-sense oligonucleotides complementary to the common part of Fc epsilon R II resulted in a similar inhibition of proliferation. Sense oligonucleotides did not induce significant inhibition. Preincubation of sense and anti-sense oligonucleotides resulted in an abrogation of proliferation inhibition. Moreover, none of these oligonucleotides had any effect on a Fc epsilon R II -ve cell line. Incubation with both anti-sense IIa and IIb resulted in additive, but not synergistic inhibition of proliferation. Addition of soluble Fc epsilon R II did not reverse inhibition of proliferation, suggesting that membrane-bound or intracellular rather than soluble Fc epsilon R II was important for the induced proliferation. Analysis of cell surface expression for Fc epsilon II indicated that while there was a pronounced effect on cell number

  11. Delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA as a cancer therapeutic: a proof-of-concept study

    Directory of Open Access Journals (Sweden)

    Lin KY

    2016-05-01

    Full Text Available Kun-Yuan Lin,1 Siao Muk Cheng,2 Shing-Ling Tsai,2 Ju-Ya Tsai,1 Chun-Hui Lin,1 Chun Hei Antonio Cheung1,2 1Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC; 2Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC Abstract: Survivin is a member of the inhibitor-of-apoptosis proteins family. It is overexpressed in many different cancer types but not in the differentiated normal tissue. In addition, overexpression of survivin promotes cancer cell survival and induces chemotherapeutic drug resistance, making it an attractive target for new anticancer interventions. Despite survivin being a promising molecular target for anticancer treatment, it is widely accepted that survivin is only a “semi-druggable” target. Therefore, it is important to develop a new strategy to target survivin for anticancer treatment. In this study, we constructed a novel survivin promoter-driven full-length antisense survivin (pSur/AS-Sur expression plasmid DNA. Promoter activity assay revealed that the activity of the survivin promoter of pSur/AS-Sur correlated with the endogenous expression of survivin at the transcriptional level in the transfected A549, MDA-MB-231, and PANC-1 cancer cells. Western blot analysis showed that liposomal delivery of pSur/AS-Sur successfully downregulated the expression of survivin in A549, MBA-MB-231, and PANC-1 cells in vitro. In addition, delivery of pSur/AS-Sur induced autophagy, caspase-dependent apoptosis, and caspase-independent apoptosis as indicated by the increased LC3B-II conversion, autophagosome formation, caspase-9/-3 and poly(ADP-ribose polymerase-1 cleavage, and apoptosis-inducing factor nuclear translocation in A549, MBA-MB-231, and PANC-1 cells. Importantly, liposomal delivery of pSur/AS-Sur was also capable of decreasing the proliferation of the survivin/MDR1 coexpressing multidrug-resistant KB-TAX50 cancer cells and

  12. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    Directory of Open Access Journals (Sweden)

    Christopher A Lavender

    2016-08-01

    Full Text Available Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment.

  13. Vitrification of neat semen alters sperm parameters and DNA integrity.

    Science.gov (United States)

    Khalili, Mohammad Ali; Adib, Maryam; Halvaei, Iman; Nabi, Ali

    2014-05-06

    Our aim was to evaluate the effect of neat semen vitrification on human sperm vital parameters and DNA integrity in men with normal and abnormal sperm parameters. Semen samples were 17 normozoospermic samples and 17 specimens with abnormal sperm parameters. Semen analysis was performed according to World Health Organization (WHO) criteria. Then, the smear was provided from each sample and fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Vitrification of neat semen was done by plunging cryoloops directly into liquid nitrogen and preserved for 7 days. The samples were warmed and re-evaluated for sperm parameters as well as DNA integrity. Besides, the correlation between sperm parameters and DNA fragmentation was assessed pre- and post vitrification. Cryopreserved spermatozoa showed significant decrease in sperm motility, viability and normal morphology after thawing in both normal and abnormal semen. Also, the rate of sperm DNA fragmentation was significantly higher after vitrification compared to fresh samples in normal (24.76 ± 5.03 and 16.41 ± 4.53, P = .002) and abnormal (34.29 ± 10.02 and 23.5 ± 8.31, P < .0001), respectively. There was negative correlation between sperm motility and sperm DNA integrity in both groups after vitrification. Vitrification of neat ejaculates has negative impact on sperm parameters as well as DNA integrity, particularly among abnormal semen subjects. It is, therefore, recommend to process semen samples and vitrify the sperm pellets.

  14. Antisense myb inhibition of purified erythroid progenitors in development and differentiation is linked to cycling activity and expression of DNA polymerase alpha

    International Nuclear Information System (INIS)

    Valtieri, M.; Venturelli, D.; Care, A.; Fossati, C.; Pelosi, E.; Labbaye, C.; Mattia, G.; Gewirtz, A.M.; Calabretta, B.; Peschle, C.

    1991-01-01

    These studies aimed to determine the expression and functional role of c-myb in erythroid progenitors with different cycling activities. In the first series of experiments the erythroid burst-forming unit (BFU-E) and colony-forming unit (CFU-E) populations from adult peripheral blood (PB), bone marrow (BM), and embryonic-fetal liver (FL) were treated with either c-myb antisense oligomers or 3H-thymidine (3H-TdR). A direct correlation was always observed between the inhibitory effect of anti-myb oligomers and the level of cycling activity. Thus, the inhibitory effect of antisense c-myb on the number of BFU-E colonies was 28.3% +/- 15.8% in PB, 53.4% +/- 9.3% in BM, and 68.2% +/- 24.5% in FL. Both adult and embryonic CFU-E were markedly inhibited. Using purified PB progenitors, we observed a similar pattern, although with slightly lower inhibitory effects. In the 3H-TdR suicide assay the killing index of BFU-E was 8.9% +/- 4.2% in PB, 29.4% +/- 6.5% in BM, and 40.1% +/- 9.6% in FL. The values for adult and embryonic CFU-E were 55.7% +/- 7.9% and 60.98% +/- 6.6%, respectively. We then investigated the kinetics of c-myb mRNA level during the erythroid differentiation of purified adult PB and FL BFU-E, as evaluated in liquid-phase culture by reverse transcription-polymerase chain reaction. Adult erythroid precursors showed a gradual increase of c-myb mRNA from day 4 through day 8 of culture and a sharp decrease at later times, whereas the expression of c-myb mRNA and protein in differentiation embryonic precursors peaked 2 days earlier. In both cases, c-myb mRNA level peaked at the CFU-E stage of differentiation. Finally, highly purified adult PB BFU-E were stimulated into cycling by a 3-day treatment with interleukin-3 in liquid phase: both the sensitivity to c-myb antisense oligomers and the 3H-TdR suicide index showed a gradual, strictly parallel increase

  15. Developmental transitions in Arabidopsis are regulated by antisense RNAs resulting from bidirectionally transcribed genes.

    Science.gov (United States)

    Krzyczmonik, Katarzyna; Wroblewska-Swiniarska, Agata; Swiezewski, Szymon

    2017-07-03

    Transcription terminators are DNA elements located at the 3' end of genes that ensure efficient cleavage of nascent RNA generating the 3' end of mRNA, as well as facilitating disengagement of elongating DNA-dependent RNA polymerase II. Surprisingly, terminators are also a potent source of antisense transcription. We have recently described an Arabidopsis antisense transcript originating from the 3' end of a master regulator of Arabidopsis thaliana seed dormancy DOG1. In this review, we discuss the broader implications of our discovery in light of recent developments in yeast and Arabidopsis. We show that, surprisingly, the key features of terminators that give rise to antisense transcription are preserved between Arabidopsis and yeast, suggesting a conserved mechanism. We also compare our discovery to known antisense-based regulatory mechanisms, highlighting the link between antisense-based gene expression regulation and major developmental transitions in plants.

  16. DNA Duplex Length and Salt Concentration Dependence of Enthalpy−Entropy Compensation Parameters for DNA Melting

    KAUST Repository

    Starikov, E. B.

    2009-08-20

    Systematical differential calorimetry experiments on DNA oligomers with different lengths and placed in water solutions with various added salt concentrations may, in principle, unravel important information about the structure and dynamics of the DNA and their water-counterion surrounding. With this in mind, to reinterpret the most recent results of calorimetric experiments on DNA oligomers of such a kind, the recent enthalpy-entropy compensation theory has been used. It is demonstrated that the application of the latter could enable direct estimation of thermodynamic parameters of the microphase transitions connected to the changes in DNA dynamical regimes versus the length of the biopolymers and the ionic strengths of their water solutions, and this calls for much more systematical experimental and theoretical studies in this field. © 2009 American Chemical Society.

  17. Antisense Treatments for Biothreat Agents

    National Research Council Canada - National Science Library

    Warfield, Kelly L; Panchal, Rekha G; Aman, M J; Bavari, Sina

    2006-01-01

    ... a variety of pathogens in cell culture studies and nonhuman primate models of infection. For these reasons, antisense technologies are being pursued as treatments against biothreat agents such as Ebola virus, dengue virus and Bacillus anthracis...

  18. Dyslipidemia, sense, antisense or nonsense?

    NARCIS (Netherlands)

    Visser, M.E.

    2011-01-01

    Maartje Visser onderzocht het remmen van de synthese van apoB met behulp van antisense - een nieuwe farmacologische techniek. Dit blijkt het slechte LDL-cholesterol op een effectieve manier te verlagen. Bij sommige proefpersonen resulteerde dit in leververvetting. Of dit op de lange termijn

  19. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    López-Barragán María J

    2011-11-01

    Full Text Available Abstract Background It has been shown that nearly a quarter of the initial predicted gene models in the Plasmodium falciparum genome contain errors. Although there have been efforts to obtain complete cDNA sequences to correct the errors, the coverage of cDNA sequences on the predicted genes is still incomplete, and many gene models for those expressed in sexual or mosquito stages have not been validated. Antisense transcripts have widely been reported in P. falciparum; however, the extent and pattern of antisense transcripts in different developmental stages remain largely unknown. Results We have sequenced seven bidirectional libraries from ring, early and late trophozoite, schizont, gametocyte II, gametocyte V, and ookinete, and four strand-specific libraries from late trophozoite, schizont, gametocyte II, and gametocyte V of the 3D7 parasites. Alignment of the cDNA sequences to the 3D7 reference genome revealed stage-specific antisense transcripts and novel intron-exon splicing junctions. Sequencing of strand-specific cDNA libraries suggested that more genes are expressed in one direction in gametocyte than in schizont. Alternatively spliced genes, antisense transcripts, and stage-specific expressed genes were also characterized. Conclusions It is necessary to continue to sequence cDNA from different developmental stages, particularly those of non-erythrocytic stages. The presence of antisense transcripts in some gametocyte and ookinete genes suggests that these antisense RNA may play an important role in gene expression regulation and parasite development. Future gene expression studies should make use of directional cDNA libraries. Antisense transcripts may partly explain the observed discrepancy between levels of mRNA and protein expression.

  20. Action of radiation and serotin on DNA and satellite DNA of thermodynamic parameters

    International Nuclear Information System (INIS)

    Sanaya, T.V.

    1987-01-01

    A study was made on the effect of X-rays on thermal denaturation of DNA and satellite DNA of cattle spleen against the background of 10 -3 M serotonin influence. The minimal dose at which the damage of satellite DNA is observed, is equal to 38 Gy; similar damage of DNA requires the double dose. Serotonin with 10 -3 M concentration doesn't change thermodynamic DNA characteristics, but its presence in the moment of irradiation even at 152 Gy dose reveals the clearly pronounced protection effect on satellite DNA damage

  1. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    Directory of Open Access Journals (Sweden)

    Settles Matthew L

    2009-05-01

    Full Text Available Abstract Background Natural antisense transcripts (NATs are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded or a different locus (trans-encoded. They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation. NATs give rise to sense-antisense transcript pairs and the number of these identified has escalated greatly with the availability of DNA sequencing resources and public databases. Traditionally, NATs were identified by the alignment of full-length cDNAs or expressed sequence tags to genome sequences, but an alternative method for large-scale detection of sense-antisense transcript pairs involves the use of microarrays. In this study we developed a novel protocol to assay sense- and antisense-strand transcription on the 55 K Affymetrix GeneChip Wheat Genome Array, which is a 3' in vitro transcription (3'IVT expression array. We selected five different tissue types for assay to enable maximum discovery, and used the 'Chinese Spring' wheat genotype because most of the wheat GeneChip probe sequences were based on its genomic sequence. This study is the first report of using a 3'IVT expression array to discover the expression of natural sense-antisense transcript pairs, and may be considered as proof-of-concept. Results By using alternative target preparation schemes, both the sense- and antisense-strand derived transcripts were labeled and hybridized to the Wheat GeneChip. Quality assurance verified that successful hybridization did occur in the antisense-strand assay. A stringent threshold for positive hybridization was applied, which resulted in the identification of 110 sense-antisense transcript pairs, as well as 80 potentially antisense-specific transcripts. Strand-specific RT-PCR validated the microarray observations, and showed that antisense transcription is likely to be tissue specific. For the annotated sense-antisense

  2. Transfection of mouse cytotoxic T lymphocyte with an antisense granzyme A vector reduces lytic activity.

    Science.gov (United States)

    Talento, A; Nguyen, M; Law, S; Wu, J K; Poe, M; Blake, J T; Patel, M; Wu, T J; Manyak, C L; Silberklang, M

    1992-12-15

    Murine CTL have seven serine proteases, known as granzymes, in their lytic granules. Despite considerable effort, convincing evidence that these enzymes play an obligatory role in the lytic process has not been presented. To investigate the function of one of these proteases, granzyme A (GA), we utilized an antisense expression vector to lower the level of the enzyme in the cells. An expression vector containing antisense cDNA for GA and the gene for hygromycin B resistance was constructed and electroporated into the murine CTL line, AR1. Transfectants were selected based on resistance to hygromycin B, and a number of stable lines were developed. One of the antisense lines had greatly reduced levels of GA mRNA, when compared to the parental cells or to control lines transfected with the vector lacking the antisense DNA. The message levels for two other CTL granule proteins, granzyme B and perforin, were unaffected by the antisense vector. The amount of GA, as measured by enzymatic activity, was 3- to 10-fold lower in the transfectant. Most significantly, this line also consistently showed 50 to 70% lower ability to lyse nucleated target cells and to degrade their DNA. Furthermore, it exhibited 90 to 95% lower lytic activity to anti-CD3-coated SRBC. Conjugate formation with target cells, however, was normal. These data provide strong evidence that GA plays an important role in the cytolytic cycle, and that the quantity of enzyme is a limiting factor in these cytolytic cells.

  3. DNA Duplex Length and Salt Concentration Dependence of Enthalpy−Entropy Compensation Parameters for DNA Melting

    KAUST Repository

    Starikov, E. B.; Nordén, Bengt

    2009-01-01

    of the DNA and their water-counterion surrounding. With this in mind, to reinterpret the most recent results of calorimetric experiments on DNA oligomers of such a kind, the recent enthalpy-entropy compensation theory has been used. It is demonstrated

  4. A Simple Three-Step Method for Design and Affinity Testing of New Antisense Peptides: An Example of Erythropoietin

    Directory of Open Access Journals (Sweden)

    Nikola Štambuk

    2014-05-01

    Full Text Available Antisense peptide technology is a valuable tool for deriving new biologically active molecules and performing peptide–receptor modulation. It is based on the fact that peptides specified by the complementary (antisense nucleotide sequences often bind to each other with a higher specificity and efficacy. We tested the validity of this concept on the example of human erythropoietin, a well-characterized and pharmacologically relevant hematopoietic growth factor. The purpose of the work was to present and test simple and efficient three-step procedure for the design of an antisense peptide targeting receptor-binding site of human erythropoietin. Firstly, we selected the carboxyl-terminal receptor binding region of the molecule (epitope as a template for the antisense peptide modeling; Secondly, we designed an antisense peptide using mRNA transcription of the epitope sequence in the 3'→5' direction and computational screening of potential paratope structures with BLAST; Thirdly, we evaluated sense–antisense (epitope–paratope peptide binding and affinity by means of fluorescence spectroscopy and microscale thermophoresis. Both methods showed similar Kd values of 850 and 816 µM, respectively. The advantages of the methods were: fast screening with a small quantity of the sample needed, and measurements done within the range of physicochemical parameters resembling physiological conditions. Antisense peptides targeting specific erythropoietin region(s could be used for the development of new immunochemical methods. Selected antisense peptides with optimal affinity are potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines.

  5. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress.

    Science.gov (United States)

    Servant, Géraldine; Pinson, Benoit; Tchalikian-Cosson, Aurélie; Coulpier, Fanny; Lemoine, Sophie; Pennetier, Carole; Bridier-Nahmias, Antoine; Todeschini, Anne Laure; Fayol, Hélène; Daignan-Fornier, Bertrand; Lesage, Pascale

    2012-07-01

    Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages.

  6. Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria ananassa)

    NARCIS (Netherlands)

    Lunkenbein, S.; Coiner, H.; Vos, de C.H.; Schaart, J.G.; Boone, M.J.; Krens, F.A.; Schwab, W.; Salentijn, E.M.J.

    2006-01-01

    An octaploid (Fragaria × ananassa cv. Calypso) genotype of strawberry was transformed with an antisense chalcone synthase (CHS) gene construct using a ripening related CHS cDNA from Fragaria × ananassa cv. Elsanta under the control of the constitutive CaMV 35S promoter via Agrobacterium tumefaciens.

  7. Study of design parameters affecting the motion of DNA for nanoinjection

    International Nuclear Information System (INIS)

    David, Regis A; Jensen, Brian D; Howell, Larry L; Black, Justin L; Burnett, Sandra H

    2012-01-01

    This paper reports the effects of various parameters on the attraction and repulsion of DNA to and from a silicon lance. An understanding of DNA motion is crucial for a new approach to insert DNA, or other foreign microscopic matter, into a living cell. The approach, called nanoinjection, uses electrical forces to attract and repel the desired substance to a micromachined lance designed to pierce the cell membranes. We have developed mathematical models to predict the trajectory of DNA. The mathematical model allows investigation of the attraction/repulsion process by varying specific parameters. We find that the ground electrode placement, lance orientation and lance penetration significantly affect attraction or repulsion efficiency, while the gap, lance direction, lance tip width, lance tip half-angle and lance tip height do not. (paper)

  8. Cellular delivery and antisense effects of peptide nucleic acid conjugated to polyethyleneimine via disulfide linkers

    DEFF Research Database (Denmark)

    Berthold, Peter R; Shiraishi, Takehiko; Nielsen, Peter E

    2010-01-01

    Peptide nucleic acid (PNA) is potentially an attractive antisense and antigene agent for which more efficient cellular delivery systems are still warranted. The cationic polymer polyethylenimine (PEI) is commonly used for cellular transfection of DNA and RNA complexes, but is not readily applicable...... moiety) and further reacted this with a cysteine PNA. The level of modification was determined spectrophotometrically with high accuracy, and the PNA transfection efficiency of the conjugates was evaluated in an antisense luciferase splice-correction assay using HeLa pLuc705 cells. We find that PEI...... is an efficient vector for PNA delivery yielding significantly higher (up to 10-fold) antisense activity than an analogous PNA-octaarginine conjugate, even in the presence of chloroquine, which only slightly enhances the PEI-PNA activity. The PEI-PEG conjugates are preferred due to lower acute cellular toxicity...

  9. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    tang, T. H.; Polacek, N.; Zywicki, M.

    2005-01-01

    By generating a specialized cDNA library from the archaeon Sulfolobus solfataricus, we have identified 57 novel small non-coding RNA (ncRNA) candidates and confirmed their expression by Northern blot analysis. The majority was found to belong to one of two classes, either antisense or antisense...... elements by inhibiting expression of the transposase mRNA. Surprisingly, the class of antisense RNAs also contained RNAs complementary to tRNAs or sRNAs (small-nucleolar-like RNAs). For the antisense-box ncRNAs, the majority could be assigned to the class of C/D sRNAs, which specify 2'-O-methylation sites...... on rRNAs or tRNAs. Five C/D sRNAs of this group are predicted to target methylation at six sites in 13 different tRNAs, thus pointing to the widespread role of these sRNA species in tRNA modification in Archaea. Another group of antisense-box RNAs, lacking typical C/D sRNA motifs, was predicted...

  10. Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco

    Science.gov (United States)

    Blee, K.; Choi, J. W.; O'Connell, A. P.; Jupe, S. C.; Schuch, W.; Lewis, N. G.; Bolwell, G. P.

    2001-01-01

    A number of plant species contain the class II of genes encoding the cytochrome P450, CYP73, the cognate protein of which cinnamic acid 4-hydroxylase, is the second enzyme of the phenylpropanoid pathway. In order to begin to determine possible functionality, tobacco has been transformed with a truncated French bean class II cinnamate hydroxylase (CYP73A15) in the sense and antisense orientations. Signals for C4H protein could be detected in vascular tissue from wild-type plants using heterologous probes. The transformed plants showed a normal phenotype, even though detectable C4H protein was much reduced in tissue prints. Young propagated transformants displayed a range of reduced C4H activities, as well as either reduced or no phloroglucinol-stainable lignin. However, all mature tobacco plants showed the accumulation of lignin, even though its deposition was apparently delayed. This was not due to induction of tyrosine ammonia-lyase activity, which was not detected, but instead it is presumed due to sufficient C4H residual activity. Analysis of the lignin content of the plants showed reductions of up to 30% with a slightly reduced syringyl to guaiacyl ratio as compared to wild type. This reduction level was favourable in comparison with some other targets in the lignification pathway that have been manipulated including that of class I cinnamate 4-hydroxylase. It is proposed that the class II cinnamate 4-hydroxylase might also function in lignification in a number of species including French bean and tobacco, based on these data.

  11. Suppression of cell division by pKi-67 antisense-RNA and recombinant protein.

    Science.gov (United States)

    Duchrow, M; Schmidt, M H; Zingler, M; Anemüller, S; Bruch, H P; Broll, R

    2001-01-01

    The human antigen defined by the monoclonal antibody Ki-67 (pKi-67) is a human nuclear protein strongly associated with cell proliferation and found in all tissues studied. It is widely used as a marker of proliferating cells, yet its function is unknown. To investigate its function we suppressed pKi-67 expression by antisense RNA and overexpressed a partial structure of pKi-67 in HeLa cells. A BrdU-incorporation assay showed a significant decrease in DNA synthesis after antisense inhibition. Cell cycle analysis indicated a higher proportion of cells in G1 phase and a lower proportion of cells in S phase while the number of G(2)/M phase cells remained constant. Overexpression of a recombinant protein encoding three of the repetitive elements from exon 13 of pKi-67 had a similar effect to that obtained by antisense inhibition. The similarity of the effect of expressing 'Ki-67 repeats' and pKi-67 antisense RNA could be explained by a negative effect on the folding of the endogenous protein in the endoplasmatic reticulum. Furthermore excessive self-association of pKi-67 via the repeat structure could inhibit its nuclear transport, preventing it from getting to its presumptive site of action. We conclude that the Ki-67 protein has an important role in the regulation of the cell cycle, which is mediated in part by its repetitive elements. Copyright 2001 S. Karger AG, Basel

  12. Scintigraphic imaging of oncogenes with antisense probes: does it make sense?

    International Nuclear Information System (INIS)

    Urbain, J.L.C.; Shore, S.K.; Vekemans, M.C.; Cosenza, S.C.; DeRiel, K.; Patel, G.V.; Charkes, N.D.; Malmud, L.S.; Reddy, E.P.

    1995-01-01

    The aim of this study was to demonstrate that cells which are expressing a particular mRNA transcript do preferentially and specifically retain the antisense probe targeting that mRNA. Using a mouse plasmacytoma cell line (MOPC315) which produces high levels of IgA heavy chain mRNA, a control mouse pre B cell line (7OZ/3B), a human mammary cell line (MCF7) which expresses the erbB2 or neu oncogene, MOPC315 cells as neu-negative controls, and antisense DNA oligonucleotides complementary to the 5' region of the mRNAs and the sense sequence, we have shown that there is a preferential, specific retention of the IgA and neu antisense sequence in MOPC315 and MCF7 cells, respectively. We have further demonstrated that this retention is time and concentration dependent with a maximum at 24 h. We conclude that cancer cells which express a particular oncogene are suitable targets for radiolabeled antisense deoxyoligonucleotides directed toward the oncogene transcript. (orig.)

  13. BC047440 antisense eukaryotic expression vectors inhibited HepG2 cell proliferation and suppressed xenograft tumorigenicity

    International Nuclear Information System (INIS)

    Lu, Zheng; Ping, Liang; JianBo, Zhou; XiaoBing, Huang; Yu, Wen; Zheng, Wang; Jing, Li

    2012-01-01

    The biological functions of the BC047440 gene highly expressed by hepatocellular carcinoma (HCC) are unknown. The objective of this study was to reconstruct antisense eukaryotic expression vectors of the gene for inhibiting HepG 2 cell proliferation and suppressing their xenograft tumorigenicity. The full-length BC047440 cDNA was cloned from human primary HCC by RT-PCR. BC047440 gene fragments were ligated with pMD18-T simple vectors and subsequent pcDNA3.1(+) plasmids to construct the recombinant antisense eukaryotic vector pcDNA3.1(+)BC047440AS. The endogenous BC047440 mRNA abundance in target gene-transfected, vector-transfected and naive HepG 2 cells was semiquantitatively analyzed by RT-PCR and cell proliferation was measured by the MTT assay. Cell cycle distribution and apoptosis were profiled by flow cytometry. The in vivo xenograft experiment was performed on nude mice to examine the effects of antisense vector on tumorigenicity. BC047440 cDNA fragments were reversely inserted into pcDNA3.1(+) plasmids. The antisense vector significantly reduced the endogenous BC047440 mRNA abundance by 41% in HepG 2 cells and inhibited their proliferation in vitro (P < 0.01). More cells were arrested by the antisense vector at the G 1 phase in an apoptosis-independent manner (P = 0.014). Additionally, transfection with pcDNA3.1(+) BC047440AS significantly reduced the xenograft tumorigenicity in nude mice. As a novel cell cycle regulator associated with HCC, the BC047440 gene was involved in cell proliferation in vitro and xenograft tumorigenicity in vivo through apoptosis-independent mechanisms

  14. Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acides antisense to the dopamine transporter

    International Nuclear Information System (INIS)

    Porat, S.; Gabbay, M.; Tauber, M.; Ratovitski, T.; Blinder, E.; Simantov, R.

    1996-01-01

    Human neuroblastoma NMB cells take up [ 3 H]dopamine in a selective manner indicating that dopamine transporters are responsible for this uptake. These cells were therefore used as a model to study dopamine neurotoxicity, and to elucidate the role of dopamine transporters in controlling cell death. Treatment with 0.05-0.4 mM dopamine changed cells' morphology within 4 h, accompanied by retraction of processes, shrinkage, apoptosis-like atrophy, accumulation of apoptotic particles, DNA fragmentation and cell death. Cycloheximide inhibited dopamine's effect, suggesting that induction of apoptosis by dopamine was dependent upon protein synthesis. Dopamine cytotoxicity, monitored morphologically by flow cytometric analysis, and by lactate dehydrogenase released, was blocked by cocaine but not by the noradrenaline and serotonin uptake blockers desimipramine and imipramine, respectively. Attempting to inhibit dopamine transport and toxicity in a drug-free and highly selective way, three 18-mer dopamine transporter antisense phosphorothioate oligonucleotides (numbers 1, 2 and 3) and a new plasmid vector expressing the entire rat dopamine transporter complementary DNA in the antisense orientation were prepared and tested. Antisense phosphorothioate oligonucleotide 3 inhibited [ 3 H]dopamine uptake in a time- and dose-dependent manner. Likewise, transient transfection of NMB cells with the plasmid expressing dopamine transporter complementary DNA in the antisense orientation partially blocked [ 3 H]dopamine uptake. Antisense phosphorothioate oligonucleotide 3 also decreased, dose-dependently, the toxic effect of dopamine and 6-hydroxydopamine. Western blot analysis with newly prepared anti-human dopamine transporter antibodies showed that antisense phosphorothioate oligonucleotide 3 decreased the transporter protein level. These studies contribute to better understand the mechanism of dopamine-induced apoptosis and neurotoxicity. (Copyright (c) 1996 Elsevier Science B

  15. Additional deleterious effects of alcohol consumption on sperm parameters and DNA integrity in diabetic mice.

    Science.gov (United States)

    Pourentezari, M; Talebi, A R; Mangoli, E; Anvari, M; Rahimipour, M

    2016-06-01

    The aim of this study was to survey the impact of alcohol consumption on sperm parameters and DNA integrity in experimentally induced diabetic mice. A total of 32 adult male mice were divided into four groups: mice of group 1 served as control fed on basal diet, group 2 received streptozotocin (STZ) (200 mg kg(-1) , single dose, intraperitoneal) and basal diet, group 3 received alcohol (10 mg kg(-1) , water soluble) and basal diet, and group 4 received STZ and alcohol for 35 days. The cauda epididymidis of each mouse was dissected and placed in 1 ml of pre-warm Ham's F10 culture medium for 30 min. The swim-out spermatozoa were analysed for count, motility, morphology and viability. Sperm chromatin quality was evaluated with aniline blue, toluidine blue, acridine orange and chromomycin A3 staining. The results showed that all sperm parameters had significant differences (P sperm chromatin was assessed with cytochemical tests. There were significant differences (P sperm parameters and chromatin quality. In addition, alcohol consumption in diabetic mice can intensify sperm chromatin/DNA damage. © 2015 Blackwell Verlag GmbH.

  16. Influence of routes and administration parameters on antibody response of pigs following DNA vaccination

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Kirstensen, Birte; Dannemann-Jensen, Tove

    2004-01-01

    Using the nucleoprotein of porcine reproductive and respiratory syndrome virus as model antigen, we optimised parameters for gene gun vaccination of pigs, including firing pressure and vaccination site. As criteria for optimisation, we characterised particle penetration and local tissue damage...... by histology. For selected combinations, vaccination efficiency in terms of antibody response was studied. Gene gun vaccination on ear alone was as efficient as a multi-site (ear, thorax, inguinal area, tongue mucosa) gene gun approach, and more efficient than combined intramuscular (i.m.)/intradermal (i.......d.) injection of plasmid DNA. This indicates, that the ear is an attractive site for gene gun vaccination of pigs....

  17. Antisense-mediated suppression of C-hordein biosynthesis in the barley grain results in correlated changes in the transcriptome, protein profile, and amino acid composition

    DEFF Research Database (Denmark)

    Hansen, Mette; Lange, Marianne; Friis, Carsten

    2007-01-01

    Antisense- or RNAi-mediated suppression of the biosynthesis of nutritionally inferior storage proteins is a promising strategy for improving the amino acid profile of seeds. However, the potential pleiotropic effects of this on interconnected pathways and the agronomic quality traits need...... to be addressed. In the current study, a transcriptomic analysis of an antisense C-hordein line of barley was performed, using a grain-specific cDNA array. The C-hordein antisense line is characterized by marked changes in storage protein and amino acid profiles, while the seed weight is within the normal range...... and no external morphological irregularities were observed. The results of the transcriptome analysis showed excellent correlation with data on changes in the relative proportions of storage proteins and amino acid composition. The antisense line had a lower C-hordein level and down-regulated transcript encoding...

  18. Antisense RNA: a genetic approach to cell resistance against Parvovirus; RNA antisentido: una aproximacion de resistencia genetica a Parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Martinez, J.C.

    1992-12-31

    The Minute Virus of Mice (MVMp), an autonomous Parvovirus that replicates cytolytically in the A9 mouse fibroblast cell line, was interfered by constitutive expression of an antisense RNA targeted against the major non-structural NS-1 protein. Permanently transfected A9 clones expressing NS-1 antisense, showed increased proliferative capacity upon virus infection, and likewise cultures infected at low multiplicity by MVMp reached confluence overcoming virus growth. Correspondingly, an inhibition in virus multiplication was demonstrated by a significant lower virus production and plaque forming ability in clones expressing antisense RNa. At the molecular level, several fold reduction in viral DNA, RNA and proteins was quantitated by respective analysis of Southern, RNase protection and bidimensional gels. Remarkably, the accumulation of all three viral messengers(R1,R2,R3) was decreased both in the cytoplasm and in the nucleus, suggesting that antisense-mediated inhibition is primarily exerted at the level of viral transcription or nuclear post-transcriptional events. Thus, this system illustrates the possibility to create an antisense-mediated protective stage to highly cytotoxic viruses in permissive cells, by down-modulation the expression of a transactivator of virus genes. (author)180 refs., 25 figs.

  19. Antisense RNA: a genetic approach to cell resistance against Parvovirus. RNA antisentido: una aproximacion de resistencia genetica a Parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Martinez, J.C.

    1992-01-01

    The Minute Virus of Mice (MVMp), an autonomous Parvovirus that replicates cytolytically in the A9 mouse fibroblast cell line, was interfered by constitutive expression of an antisense RNA targeted against the major non-structural NS-1 protein. Permanently transfected A9 clones expressing NS-1 antisense, showed increased proliferative capacity upon virus infection, and likewise cultures infected at low multiplicity by MVMp reached confluence overcoming virus growth. Correspondingly, an inhibition in virus multiplication was demonstrated by a significant lower virus production and plaque forming ability in clones expressing antisense RNa. At the molecular level, several fold reduction in viral DNA, RNA and proteins was quantitated by respective analysis of Southern, RNase protection and bidimensional gels. Remarkably, the accumulation of all three viral messengers(R1,R2,R3) was decreased both in the cytoplasm and in the nucleus, suggesting that antisense-mediated inhibition is primarily exerted at the level of viral transcription or nuclear post-transcriptional events. Thus, this system illustrates the possibility to create an antisense-mediated protective stage to highly cytotoxic viruses in permissive cells, by down-modulation the expression of a transactivator of virus genes. (author)180 refs., 25 figs.

  20. cgHeliParm : analysis of dsDNA helical parameters for coarse-grained MARTINI molecular dynamics simulations

    NARCIS (Netherlands)

    Faustino, Ignacio; Marrink, S. J.

    2017-01-01

    Summary: We introduce cgHeliParm, a python program that provides the conformational analysis of Martini-based coarse-grained double strand DNA molecules. The software calculates the helical parameters such as base, base pair and base pair step parameters. cgHeliParm can be used for the analysis of

  1. Antisense Phosphorodiamidate Morpholino Oligomers as Novel Antiviral Compounds

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2018-04-01

    Full Text Available Phosphorodiamidate morpholino oligomers (PMO are short single-stranded DNA analogs that are built upon a backbone of morpholine rings connected by phosphorodiamidate linkages. As uncharged nucleic acid analogs, PMO bind to complementary sequences of target mRNA by Watson–Crick base pairing to block protein translation through steric blockade. PMO interference of viral protein translation operates independently of RNase H. Meanwhile, PMO are resistant to a variety of enzymes present in biologic fluids, a characteristic that makes them highly suitable for in vivo applications. Notably, PMO-based therapy for Duchenne muscular dystrophy (DMD has been approved by the United States Food and Drug Administration which is now a hallmark for PMO-based antisense therapy. In this review, the development history of PMO, delivery methods for improving cellular uptake of neutrally charged PMO molecules, past studies of PMO antagonism against RNA and DNA viruses, PMO target selection, and remaining questions of PMO antiviral strategies are discussed in detail and new insights are provided.

  2. Sense-antisense (complementary) peptide interactions and the proteomic code; potential opportunities in biology and pharmaceutical science.

    Science.gov (United States)

    Miller, Andrew D

    2015-02-01

    A sense peptide can be defined as a peptide whose sequence is coded by the nucleotide sequence (read 5' → 3') of the sense (positive) strand of DNA. Conversely, an antisense (complementary) peptide is coded by the corresponding nucleotide sequence (read 5' → 3') of the antisense (negative) strand of DNA. Research has been accumulating steadily to suggest that sense peptides are capable of specific interactions with their corresponding antisense peptides. Unfortunately, although more and more examples of specific sense-antisense peptide interactions are emerging, the very idea of such interactions does not conform to standard biology dogma and so there remains a sizeable challenge to lift this concept from being perceived as a peripheral phenomenon if not worse, into becoming part of the scientific mainstream. Specific interactions have now been exploited for the inhibition of number of widely different protein-protein and protein-receptor interactions in vitro and in vivo. Further, antisense peptides have also been used to induce the production of antibodies targeted to specific receptors or else the production of anti-idiotypic antibodies targeted against auto-antibodies. Such illustrations of utility would seem to suggest that observed sense-antisense peptide interactions are not just the consequence of a sequence of coincidental 'lucky-hits'. Indeed, at the very least, one might conclude that sense-antisense peptide interactions represent a potentially new and different source of leads for drug discovery. But could there be more to come from studies in this area? Studies on the potential mechanism of sense-antisense peptide interactions suggest that interactions may be driven by amino acid residue interactions specified from the genetic code. If so, such specified amino acid residue interactions could form the basis for an even wider amino acid residue interaction code (proteomic code) that links gene sequences to actual protein structure and function, even

  3. DNA damage in lymphocytes induced by cardiac CT and comparison with physical exposure parameters

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Wataru; Tatsugami, Fuminari; Awai, Kazuo [Department of Diagnostic Radiology, Institute of Biomedical Health Sciences, Hiroshima University, Hiroshima (Japan); Ishida, Mari; Sakai, Chiemi [Institute of Biomedical and Health Sciences, Department of Cardiovascular Physiology and Medicine, Hiroshima University, Hiroshima (Japan); Tashiro, Satoshi [Hiroshima University, Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima (Japan); Ishida, Takafumi [Institute of Clinical Research West Medical Center, Hiroshima (Japan); Nakano, Yukiko [Hiroshima University Hospital, Department of Cardiovascular Medicine, Hiroshima (Japan)

    2017-04-15

    To investigate whether physical exposure parameters such as the dose index (CTDI), dose length product (DLP), and size-specific dose estimate (SSDE) are predictive of DNA damage. In vitro, we scanned a phantom containing blood samples from five volunteers at CTDI 50, 100, and 150 mGy. One sample was not scanned. We also scanned samples in three different-size phantoms at CTDI 100 mGy. In vivo, we enrolled 45 patients and obtained blood samples before and after cardiac CT. The γ-H2AX foci were counted. In vitro, in the control and at CTDI 50, 100, and 150 mGy, the number of γ-H2AX was 0.94 ± 0.24 (standard error, SE), 1.28 ± 0.30, 1.91 ± 0.47, and 2.16 ± 0.20. At SSDE 180, 156, and 135 mGy, it was 2.41 ± 0.20, 1.91 ± 0.47, and 1.42 ± 0.20 foci/cell. The γ-H2AX foci were positively correlated with the radiation dose and negatively correlated with the body size. In vivo, the γ-H2AX foci were significantly increased after CT (from 1.21 ± 0.19 to 1.92 ± 0.22 foci/cell) and correlated with CTDI, DLP, and SSDE. DNA damage was induced by cardiac CT. There was a correlation between the physical exposure parameters and γ-H2AX. (orig.)

  4. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    -signaling proteins in pollen tubes from the lilly Agapanthus umbellatus. For the uptake of DNA pollen tubes represent a unique system since the growing tip is surrounded by a loose matrix of hemicellulose and pectins, exposing the plasma membrane7 and the first uptake of ODNs by pollen tubes was reported as early as 1994. A breakthrough in the employment of antisense ODN inhibition as a powerful approach in plant biology was recently presented through our work on intact barley leaves. As was illustrated by confocal microscopy and fluorescently labeled ODNs, naked ODNs were taken up through the leaf petiole and efficiently imported into the plant cell and the nucleus. The work portrayed in that study demonstrate the applicability of antisense ODN inhibition in plant biology, e.g. as a rapid antecedent to time-consuming transgenic studies, and that it operates through RNase H degradation. We employed the antisense ODN strategy to demonstrate the importance of the SUSIBA2 transcription factor in regulation of starch synthesis, and to depict a possible mechanism for sugar signaling in plants and how it might confer endosperm-specific gene expression during seed development. We also described the employment of the antisense ODN strategy for studies on in vitro spike cultures of barley. Here we present further evidence as to the value of the antisense ODN approach in plant biology by following the effects on starch branching enzyme (SBE) accumulation in barley leaves after suppression of individual SBE genes. In agreement with transcript analyses of SBE expression in barley leaves, a zymogram assay (Fig. 1) revealed that sucrose treatment of barley leaves increased the number of SBE activity bands as compared to sorbitol treatment. In the presence of antisense SBEI or SBEIIA ODNs, zymograms of sucrose-treated leaves displayed only a subset of these activities with bands in the top portion of the zymogram gel missing or diminished. With antisense SBEIIB ODN, all activity bands in the top

  5. Identification of sequence motifs significantly associated with antisense activity

    Directory of Open Access Journals (Sweden)

    Peek Andrew S

    2007-06-01

    Full Text Available Abstract Background Predicting the suppression activity of antisense oligonucleotide sequences is the main goal of the rational design of nucleic acids. To create an effective predictive model, it is important to know what properties of an oligonucleotide sequence associate significantly with antisense activity. Also, for the model to be efficient we must know what properties do not associate significantly and can be omitted from the model. This paper will discuss the results of a randomization procedure to find motifs that associate significantly with either high or low antisense suppression activity, analysis of their properties, as well as the results of support vector machine modelling using these significant motifs as features. Results We discovered 155 motifs that associate significantly with high antisense suppression activity and 202 motifs that associate significantly with low suppression activity. The motifs range in length from 2 to 5 bases, contain several motifs that have been previously discovered as associating highly with antisense activity, and have thermodynamic properties consistent with previous work associating thermodynamic properties of sequences with their antisense activity. Statistical analysis revealed no correlation between a motif's position within an antisense sequence and that sequences antisense activity. Also, many significant motifs existed as subwords of other significant motifs. Support vector regression experiments indicated that the feature set of significant motifs increased correlation compared to all possible motifs as well as several subsets of the significant motifs. Conclusion The thermodynamic properties of the significantly associated motifs support existing data correlating the thermodynamic properties of the antisense oligonucleotide with antisense efficiency, reinforcing our hypothesis that antisense suppression is strongly associated with probe/target thermodynamics, as there are no enzymatic

  6. Parameters influencing the introduction of plasmid DNA into cells by the use of synthetic amphiphiles as a carrier system

    OpenAIRE

    van der Woude, Irene; Willy Visser, H.; ter Beest, Martin B.A.; Wagenaar, Anno; Ruiters, Marcel H.J.; Engberts, Jan B.F.N.; Hoekstra, Dick

    1995-01-01

    Parameters that affect cellular transfection as accomplished by introducing DNA via carriers composed of cationic synthetic amphiphiles, have been investigated with the aim to obtain insight into the mechanism of DNA translocation. Such insight may be exploited in optimizing carrier properties of synthetic amphiphiles for molecules other than nucleic acids. In the present work, the interaction of vesicles composed of the cationic amphiphile dioleyloxy-propyl-trimethylammonium chloride (DOTMA)...

  7. Technetium-99m labeled antisense oligonucleotide-noninvasive tumor imaging in mice

    International Nuclear Information System (INIS)

    Qin, G.M.; Zhang, Y.X.; An, R.; Gao, Z.R.; Cao, W.; Cao, G.X.; Hnatowich, D.J.

    2002-01-01

    Single-stranded RNA and DNA oligonucleotides may be useful as radiopharmaceuticals for antisense and other in vivo applications if convenient methods for stably attaching radionuclides such as 99m Tc can be developed. The c-myc oncogene works in cooperation with other oncogenes in a variety of malignant tumors. The concentration of c-myc messenger RNA increases rapidly 30 to 50 fold during DNA synthesis, thus making it a suitable target for following the progression of malignancy by noninvasive imaging with radiolabeled antisense oligonucleotide probes. Methods: 1 Oligonucleotide Conjugation: A solution of single stranded amine-derivatized DNA (100-1000μg) was prepared at a concentration of 2 mg/ml in 0.25M sodium bicarbonate, 1 M sodium chloride, 1mM EDTA, pH8.5. 2 Oligonucleotide Labeling: A fresh 50mg/ml solution of sodium tartrate was prepared in sterile 0.5 M ammonium The ability of the labeled DNA to hybridize to its complement was analyzed by Sep-Pak column chromatography before and after the addition of the complementary DNA. 3 Biodistribution and Tumor Imaging Studies: A colony of KM mice (15-20g) were inoculated with 1x10 6 Ehrlich carcinoma tumor cells in the right thigh, and the tumors were allowed to grow for 6-7 days to a size of 1.0-1.5 cm in diameter. Biodistribution studies were performed in 32 KM mice after 50 μCi per mouse of 99m Tc-labeled oncogene probes were injected intravenously. A total of 8 mice were injected intravenously in the tail vein with 1-2 mCi of 99m Tc-labeled sense or antisense probes, immobilized with ketamine hydrochloride and imaged periodically from 0.5hr to 24hr with a gamma camera. Results: Essentially complete conjugation was achieved by reverse-phase Sep-Pak C18 chromatography analysis. The labeled antisense DNA still remained the ability to hybridize with its complementary DNA. The highest accumulation of label was in the liver first, with the kidney and small bowel next. The injected activity localized in the lesion

  8. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    International Nuclear Information System (INIS)

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong; Hao, Hui; Gong, Biao; Yu, Xiyan; Wang, Xiufeng

    2010-01-01

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leaves and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.

  9. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong; Hao, Hui; Gong, Biao [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China); Yu, Xiyan, E-mail: yuxiyan@sdau.edu.cn [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China); Wang, Xiufeng, E-mail: xfwang@sdau.edu.cn [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China)

    2010-03-12

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leaves and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.

  10. Polymerase-endonuclease amplification reaction (PEAR for large-scale enzymatic production of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR, for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.

  11. Effects of acute and chronic administration of fenproporex on DNA damage parameters in young and adult rats.

    Science.gov (United States)

    Gonçalves, Cinara L; Rezin, Gislaine T; Ferreira, Gabriela K; Jeremias, Isabela C; Cardoso, Mariane R; Valvassori, Samira S; Munhoz, Bruna J P; Borges, Gabriela D; Bristot, Bruno N; Leffa, Daniela D; Andrade, Vanessa M; Quevedo, João; Streck, Emilio L

    2013-08-01

    Obesity is a chronic and multifactorial disease, whose prevalence is increasing in many countries. Pharmaceutical strategies for the treatment of obesity include drugs that regulate food intake, thermogenesis, fat absorption, and fat metabolism. Fenproporex is the second most commonly consumed amphetamine-based anorectic worldwide; this drug is rapidly converted in vivo into amphetamine, which is associated with neurotoxicity. In this context, the present study evaluated DNA damage parameters in the peripheral blood of young and adult rats submitted to an acute administration and chronic administration of fenproporex. In the acute administration, both young and adult rats received a single injection of fenproporex (6.25, 12.5 or 25 mg/kg i.p.) or vehicle. In the chronic administration, both young and adult rats received one daily injection of fenproporex (6.25, 12.5, or 25 mg/kg i.p.) or Tween for 14 days. 2 h after the last injection, the rats were killed by decapitation and their peripheral blood removed for evaluation of DNA damage parameters by alkaline comet assay. Our study showed that acute administration of fenproporex in young and adult rats presented higher levels of damage index and frequency in the DNA. However, chronic administration of fenproporex in young and adult rats did not alter the levels of DNA damage in both parameters of comet assay. The present findings showed that acute administration of fenproporex promoted damage in DNA, in both young and adult rats. Our results are consistent with other reports which showed that other amphetamine-derived drugs also caused DNA damage. We suggest that the activation of an efficient DNA repair mechanism may occur after chronic exposition to fenproporex. Our results are consistent with other reports that showed some amphetamine-derived drugs also caused DNA damage.

  12. Cell number and transfection volume dependent peptide nucleic acid antisense activity by cationic delivery methods

    DEFF Research Database (Denmark)

    Llovera Nadal, Laia; Berthold, Peter; Nielsen, Peter E

    2012-01-01

    have now quantitatively compared the cellular activity (in the pLuc705 HeLa cell splice correction system) of PNA antisense oligomers using lipoplex delivery of cholesterol- and bisphosphonate-PNA conjugates, polyplex delivery via a PNA-polyethyleneimine conjugate and CPP delivery via a PNA......Efficient intracellular delivery is essential for high activity of nucleic acids based therapeutics, including antisense agents. Several strategies have been developed and practically all rely on auxiliary transfection reagents such as cationic lipids, cationic polymers and cell penetrating...... peptides as complexing agents and carriers of the nucleic acids. However, uptake mechanisms remain rather poorly understood, and protocols always require optimization of transfection parameters. Considering that cationic transfection complexes bind to and thus may up-concentrate on the cell surface, we...

  13. Effect of caffeine on the parameters of the motive and gamma-irradiated DNA molecules

    International Nuclear Information System (INIS)

    Osipov, N.D.; Kondrat'eva, O.P.; Erisman, Eh.V.

    1979-01-01

    The binding of caffeine with DNA and its pole as a DNA molecule protector against radiational damage have been studied. It is shown that with the ratio of DNA and caffeine concentrations used no complex formation occurs. The irradiation of the DNA solution by 1 krad dose of γ-rays causes only a few single-strand breaks which leads to the decrease in the volume macromolecules without changing its thermodynamic ligidity. The presence of caffeine in the DNA solution before its irradiation decreases considerably the extent of radiational damage

  14. Impact of xanthohumol (a prenylated flavonoid from hops) on DNA stability and other health-related biochemical parameters

    DEFF Research Database (Denmark)

    Ferk, Franziska; Mišík, Miroslav; Nersesyan, Armen

    2016-01-01

    SCOPE: Xanthohumol (XN) is a hop flavonoid found in beers and refreshment drinks. Results of in vitro and animal studies indicate that it causes beneficial health effects due to DNA protective, anti-inflammatory, antioxidant, and phytoestrogenic properties. Aim of the present study was to find out...... if XN causes alterations of health-related parameters in humans. METHODS AND RESULTS: The effects of the flavonoid were investigated in a randomized crossover intervention trial (n = 22) in which the participants consumed a XN drink (12 mg XN/P/day). We monitored alterations of the DNA stability......'-deoxyguanosine and 8-oxo-guanosine in urine was reduced. The assumption that the flavonoid causes DNA protection was confirmed in a randomized follow-up study with pure XN (n = 10) with a parallel design. Other biochemical parameters reflecting the redox- and hormonal status and lipid- and glucose metabolism...

  15. Simultaneous Expression from Both the Sense and Antisense Strand of the Erythropoietin Receptor Gene Mitigates Acute Lung Injury

    Science.gov (United States)

    2017-09-01

    concept efficacy that increasing EpoR or RopE expression by cDNA delivery to lung cells in vitro enhances cytoprotection against hyperoxia-induced injury...oxidative damage, cell culture, rodent model, inhalation cDNA delivery, sense and antisense erythropoietin receptor transcripts 16. SECURITY...prevention of acute lung injury. 1-6 50% Subtask 1: Prepare plasmid cDNA of EpoR and RopE in nanoparticle formulation. 1 Completed 06.2017 Subtask 2

  16. Helix-coil transition of a four-way DNA junction observed by multiple fluorescence parameters.

    Science.gov (United States)

    Vámosi, György; Clegg, Robert M

    2008-10-16

    The thermal denaturation of immobile four-way DNA ("Holliday-") junctions with 17 base pair arms was studied via fluorescence spectroscopic measurements. Two arms of the molecule were labeled at the 5'-end with fluorescein and tetramethylrhodamine, respectively. Melting was monitored by the fluorescence intensity of the dyes, the fluorescence anisotropy of tetramethylrhodamine, and Forster resonance energy transfer (FRET) between fluorescein and rhodamine. To fit the thermal denaturation curves of the four-way junctions, two basic thermodynamic models were tested: (1) all-or-none transitions assuming a molecularity of one, two, or four and (2) a statistical "zipper" model. The all-or-none models correspond to reaction mechanisms assuming that the cooperative melting unit (that is, the structure changing from complete helix to complete coil) consists of (1) one arm, (2) two neighboring arms (which have one continuous strand common to the two arms), or (3) all four arms. In each case, the melting of the cooperative unit takes place in a single step. The tetramolecular reaction model (four-arm melting) yielded unrealistically low van't Hoff enthalpy and entropy values, whereas the monomolecular model (one-arm melting) resulted in a poor fit to the experimental data. The all-or-none bimolecular (two neighboring arm model) fit gave intermediate standard enthalpy change (Delta H) values between those expected for the melting of a duplex with a total length between the helix lengths of one and two arms (17 and 34 base pairs). Simulations according to the zipper model fit the experimental curves best when the length of the simulated duplex was assumed to be 34 base pairs, the length of a single strand. This suggests that the most important parameter determining the melting behavior of the molecule is the end-to-end distance of the strands (34 bases) rather than the length of the individual arms (17 base pairs) and that the equilibrium concentration of partially denatured

  17. Technetium-99m labeled antisense probes uptake in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Zhang, Y.X.; Qin, G.M.; An, R.; Cao, G.X.; Cao, W.; Gao, Z.R.

    2002-01-01

    In the arterial wall, smooth muscle cells (SMC) normally exist in a quiescent, differentiated state, representing the contractile phenotype. During the development of atherosclerosis SMC change towards the synthetic phenotype going along with proliferation, chemotactic response and increased monocyte binding. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. The atherosclerotic plaques contained 3-4 fold more c-myc mRNA than those in the normal aortic arteries, while increased Bax and Bak coupled with lack/paucity of Bcl-2 and Bcl-xL are associated with SMC apoptosis in advanced lesions. Methods: 1 Oligonucleotide Conjugation: A solution of single stranded amine-derivatized DNA (100-1000μg) was prepared at a concentration of 2 mg/ml in 0.25M sodium bicarbonate, 1 M sodium chloride, 1mM EDTA, pH8.5. Cell uptake studies: 99m Tc- MAG 3 -DNA radioactivity incorporation into porcine coronary smooth muscle cells in the log and plateau phases, respectively, was determined after different times of incubation at 37. The influence of extracellular 99m Tc- MAG 3 -DNA concentration on SMC uptake was also analyzed. [Results] Essentially complete conjugation was achieved by reverse-phase Sep-Pak C18 chromatography analysis. The MAG 3 -DNA was labeled with 99m Tc at room temperature and neutral pH, with a mean labeling efficiency of 80.11%(s.d=2.96%,n=4). The labeled antisense DNA still remained the ability to hybridize with its complementary DNA. After labeling, the stability of the DNA in saline or serum was retained as determined by reverse-phase Sep-Pak C18 chromatography analysis, except a shift at 30 min in serum incubation that suggesting a short time serum protein binding. 99m Tc-MAG 3 -c-myc uptake plateaued at 60 min and was directly proportional to the

  18. UV-induced influence of N-nitrosoamines on melting parameters of DNA in vitro

    International Nuclear Information System (INIS)

    Yamshanov, V.A.

    1979-01-01

    The results of studies have shown the UV-induced decrease of melting temperatures of the DNA of E. coli and chick erythrocytes under the influence of simple N-nitrosoamines (NDMA, NDEA, NDPA). Either UV or nitrosoamines separately failed to effect the DNA or their action was insignificant. It is suggested that this effect may be partly due to the action of UV on DNA

  19. UV-induced influence of N-nitrosoamines on melting parameters of DNA in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yamshanov, V A [Nauchno-Issledovatel' skij Inst. Onkologii, Leningrad (USSR)

    1979-07-01

    The results of studies have shown the UV-induced decrease of melting temperatures of the DNA of E. coli and chick erythrocytes under the influence of simple N-nitrosoamines (NDMA, NDEA, NDPA). Either UV or nitrosoamines separately failed to effect the DNA or their action was insignificant. It is suggested that this effect may be partly due to the action of UV on DNA.

  20. DNA-mediated gene transfer into human diploid fibroblasts derived from normal and ataxia-telangiectasia donors: parameters for DNA transfer and properties of DNA transformants

    International Nuclear Information System (INIS)

    Debenham, P.G.; Webb, M.B.T.; Masson, W.K.; Cox, R.

    1984-01-01

    An investigation was made of the feasibility of DNA-mediated gene transfer into human diploid fibroblasts derived from patients with the radiation sensitive syndrome ataxia-telangiectasia (A-T) and from a normal donor. Although they are markedly different in their growth characteristics, both normal and A-T strains give similar frequencies for DNA transfer in a model system using the recombinant plasmid pSV2-gpt. pSV2-gpt DNA transformants arise with a frequency between 10 -5 and 10 -4 per viable cell. Analysis of such transformants, although possible, is severely handicapped by the limited clonal life span of diploid human cells. Despite these problems it may be concluded that diploid human fibroblasts are competent recipients for DNA-mediated gene transfer and the putative repair deficiency of A-T does not markedly effect the efficiency of this process. (author)

  1. Antisense downregulation of mutant huntingtin in a cell model

    DEFF Research Database (Denmark)

    Hasholt, L.; Abell, K.; Norremolle, A.

    2003-01-01

    or by addition to the culture medium. Results Expression of the fusion protein containing the mutant huntingtin fragment resulted in diffuse green fluorescence in the cytoplasm and formation of aggregates in some of the NT2 cells and NT2-N neurons. We obtained antisense sequence-specific inhibition of expression...... of the fusion protein and/or suppression of the aggregate formation in both cell types. In the NT2 cells the antisense effect was dependent on the way of administration of the oligo. Conclusions The PS-antisense oligo is effective in downregulation of mutant huntingtin, and the reduction of aggregate formation...... is a sensitive biological marker. The findings suggest that antisense knockdown of huntingtin could be a useful strategy for treatment of HD, and could also be suitable for studies of the normal and pathological function of huntingtin in different cellular model systems....

  2. Peptide nucleic acid (PNA) antisense effects in Escherichia coli

    DEFF Research Database (Denmark)

    Good, L; Nielsen, P E

    1999-01-01

    Antisense peptide nucleic acid (PNA) can be used to control cell growth, gene expression and growth phenotypes in the bacteria Escherichia coli. PNAs targeted to the RNA components of the ribosome can inhibit translation and cell growth, and PNAs targeted to mRNA can limit gene expression with gene...... and sequence specificity. In an E. coli cell extract, efficient inhibition is observed when using PNA concentrations in the nanomolar range, whereas micromolar concentrations are required for inhibition in growing cells. A mutant strain of E. coli that is more permeable to antibiotics also is more susceptible...... to antisense PNAs than the wild type. This chapter details methods for testing the antisense activities of PNA in E. coli. As an example of the specific antisense inhibition possible, we show the effects of an anti-beta-galactosidase PNA in comparison to control PNAs. With improvements in cell uptake...

  3. Enhanced post wash retention of combed DNA molecules by varying multiple combing parameters.

    Science.gov (United States)

    Yadav, Hemendra; Sharma, Pulkit

    2017-11-01

    Recent advances in genomics have created a need for efficient techniques for deciphering information hidden in various genomes. Single molecule analysis is one such technique to understand molecular processes at single molecule level. Fiber- FISH performed with the help of DNA combing can help us in understanding genetic rearrangements and changes in genome at single DNA molecule level. For performing Fiber-FISH we need high retention of combed DNA molecules post wash as Fiber-FISH requires profuse washing. We optimized combing process involving combing solution, method of DNA mounting on glass slides and coating of glass slides to enhance post-wash retention of DNA molecules. It was found that average number of DNA molecules observed post-wash per field of view was maximum with our optimized combing solution. APTES coated glass slides showed lesser retention than PEI surface but fluorescent intensity was higher in case of APTES coated surface. Capillary method used to mount DNA on glass slides also showed lesser retention but straight DNA molecules were observed as compared to force flow method. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Precision polymers and 3D DNA nanostructures: emergent assemblies from new parameter space.

    Science.gov (United States)

    Serpell, Christopher J; Edwardson, Thomas G W; Chidchob, Pongphak; Carneiro, Karina M M; Sleiman, Hanadi F

    2014-11-05

    Polymer self-assembly and DNA nanotechnology have both proved to be powerful nanoscale techniques. To date, most attempts to merge the fields have been limited to placing linear DNA segments within a polydisperse block copolymer. Here we show that, by using hydrophobic polymers of a precisely predetermined length conjugated to DNA strands, and addressable 3D DNA prisms, we are able to effect the formation of unprecedented monodisperse quantized superstructures. The structure and properties of larger micelles-of-prisms were probed in depth, revealing their ability to participate in controlled release of their constituent nanostructures, and template light-harvesting energy transfer cascades, mediated through both the addressability of DNA and the controlled aggregation of the polymers.

  5. Early and late effects of Ibuprofen on mouse sperm parameters, chromatin condensation, and DNA integrity in mice.

    Science.gov (United States)

    Roodbari, Fatemeh; Abedi, Nahid; Talebi, Ali Reza

    2015-11-01

    There are few studies indicating the detrimental effects of ibuprofen on sperm fertility potential and DNA integrity. To determine the effects of Ibuprofen on sperm parameters, chromatin condensation and DNA integrity of mice. In this experimental study, 36 adult male mice with average weight 37 gr were divided into three groups, including control (group I, n=12), normal dosage of ibuprofen (group II, n=12) and high dosage (group III, n=12). Ibuprofen with different doses was dissolved in daily water of animals. After 35, 70 and 105 days, the cauda epididymis of mice were cut and incubated in Ham's F10 media. Sperm samples were analyzed for parameters (motility, morphology and count), DNA integrity (SCD test) and chromatin condensation (chromomycin A3 and Aniline blue staining). After 35 days, in addition to above mentioned sperm parameters, all of the treated mice showed statistically significant increase in spermatozoa with immature chromatin (Psperm DNA fragmentation assessed by SCD was increased in group II (66.5±0.7) and the percentage of immature spermatozoa (AB(+) and CMA3(+)) was higher in group III (77.5±0.7 and 49.5±6.3 respectively) than other groups. After 105 days, the AB(+) spermatozoa were increased in both normal dose and high dose groups. Ibuprofen may cause a significant reduction in sperm parameters and sperm chromatin/DNA integrity in mice. It should be noted that these deleterious effects are dose-dependent and can be seen in early and late stage of drug treatments.

  6. Early and late effects of Ibuprofen on mouse sperm parameters, chromatin condensation, and DNA integrity in mice

    Directory of Open Access Journals (Sweden)

    Fatemeh Roodbari

    2015-11-01

    Full Text Available Background: There are few studies indicating the detrimental effects of ibuprofen on sperm fertility potential and DNA integrity. Objective: To determine the effects of Ibuprofen on sperm parameters, chromatin condensation and DNA integrity of mice. Materials and Methods: In this experimental study, 36 adult male mice with average weight 37 gr were divided into three groups, including control (group I, n=12, normal dosage of ibuprofen (group II, n=12 and high dosage (group III, n=12. Ibuprofen with different doses was dissolved in daily water of animals. After 35, 70 and 105 days, the cauda epididymis of mice were cut and incubated in Ham’s F10 media. Sperm samples were analyzed for parameters (motility, morphology and count, DNA integrity (SCD test and chromatin condensation (chromomycin A3 and Aniline blue staining. Results: After 35 days, in addition to above mentioned sperm parameters, all of the treated mice showed statistically significant increase in spermatozoa with immature chromatin (P<0.05. However, after 70 days, the rate of sperm DNA fragmentation assessed by SCD was increased in group II (66.5±0.7 and the percentage of immature spermatozoa (AB+ and CMA3+ was higher in group III (77.5±0.7 and 49.5±6.3 respectively than other groups. After 105 days, the AB+ spermatozoa were increased in both normal dose and high dose groups. Conclusion: Ibuprofen may cause a significant reduction in sperm parameters and sperm chromatin/DNA integrity in mice. It should be noted that these deleterious effects are dose-dependent and can be seen in early and late stage of drug treatments.

  7. Advances in Antisense Oligonucleotide Development for Target Identification, Validation, and as Novel Therapeutics

    Directory of Open Access Journals (Sweden)

    Moizza Mansoor

    2008-01-01

    Full Text Available Antisense oligonucleotides (As-ODNs are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt, 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases.

  8. Influence of hesperidin and vitamin C on glycemic parameters, lipid profile, and DNA damage in rats treated with sucrose overload

    Directory of Open Access Journals (Sweden)

    SILVIA I.R. FRANKE

    2018-04-01

    Full Text Available ABSTRACT We evaluated the influence of hesperidin and vitamin C (VitC on glycemic parameters, lipid profile, and DNA damage in male Wistar rats treated with sucrose overload. Rats were divided into six experimental groups: I-water control; II-sucrose control; III-hesperidin control; IV-VitC control; V-co-treatment of sucrose plus hesperidin; VI-co-treatment of sucrose plus VitC. We measured the levels of triglycerides, total cholesterol, HDL-c, LDL-c, fasting glucose, and glycated hemoglobin (A1C. DNA damage was evaluated in blood and brain cells using the comet assay and the micronucleus test was used to evaluate chromosomal damages in the rat bone marrow. Co-treatment with VitC, but not with hesperidin, normalized the serum glucose. No effect of co-treatments was observed on A1C. The co-treatment with VitC or hesperidin did not influence the lipid profile (p>0.05. Rats co-treated with hesperidin had a significantly lower DNA damage level in blood (p0.05. Hesperidin and VitC showed different effects on sucrose and DNA damage levels. While VitC lowered the serum glucose, hesperidin reduced the DNA damage.

  9. Physicochemical and biological properties of self-assembled antisense/poly(amidoamine) dendrimer nanoparticles: the effect of dendrimer generation and charge ratio

    OpenAIRE

    Nomani, Alireza; Haririan, Ismaeil; Rahimnia, Ramin; Fouladdel, Shamileh; Gazori, Tarane; Dinarvand, Rassoul; Omidi, Yadollah; Azizi, Ebrahim

    2010-01-01

    To gain a deeper understanding of the physicochemical phenomenon of self-assembled nanoparticles of different generations and ratios of poly (amidoamine) dendrimer (PAMAM) dendrimer and a short-stranded DNA (antisense oligonucleotide), multiple methods were used to characterize these nanoparticles including photon correlation spectroscopy (PCS); zeta potential measurement; and atomic force microscopy (AFM). PCS and AFM results revealed that, in contrast to larger molecules of DNA, smaller mol...

  10. Investigation of the Relationship of Some Antihypertensive Drugs with Oxidant/Antioxidant Parameters and DNA Damage on Rat Uterus Tissue

    OpenAIRE

    Mustafa Talip Sener; Hamit Hakan Alp; Beyzagul Polat; Bunyamin Borekci; Yakup Kumtepe; Nesrin Gursan; Serkan Kumbasar; Suleyman Salman; Halis Suleyman

    2011-01-01

    Background In this study, we investigated the effects of treatment with chronic antihypertensive drugs (clonidine, methyldopa, amlodipine, ramipril and rilmenidine) on oxidant-antioxidant parameters and toxic effects on DNA in rat uterus tissue. In addition, uterus tissues were examined histopathologically. Materials and Methods A total of 36 albino Wistar rats were divided into the following six groups: 0.075 mg/kg clonidine group; 100 mg/kg methyldopa group; 2 mg/kg amlodipine group; 2.5 mg...

  11. Rapid blockade of telomerase activity and tumor cell growth by the DPL lipofection of ribbon antisense to hTR.

    Science.gov (United States)

    Bajpai, Arun K; Park, Jeong-Hoh; Moon, Ik-Jae; Kang, Hyungu; Lee, Yun-Han; Doh, Kyung-Oh; Suh, Seong-Il; Chang, Byeong-Churl; Park, Jong-Gu

    2005-09-29

    Ribbon antisense (RiAS) to the hTR RNA, a component of the telomerase complex, was employed to inhibit telomerase activity and cancer cell growth. The antisense molecule, hTR-RiAS, combined with enhanced cellular uptake was shown to effectively inhibit telomerase activity and cause rapid cell death in various cancer cell lines. When cancer cells were treated with hTR-RiAS, the level of hTR RNA was reduced by more than 90% accompanied with reduction in telomerase activity. When checked for cancer cell viability, cancer cell lines treated with hTR-RiAS using DNA+Peptide+Lipid complex showed 70-80% growth inhibition in 3 days. The reduced cell viability was due to apoptosis as the percentage of cells exhibiting the sub-G0 arrest and DNA fragmentation increased after antisense treatment. Further, when subcutaneous tumors of a colon cancer cell line (SW480) were treated intratumorally with hTR-RiAS, tumor growth was markedly suppressed with almost total ablation of hTR RNA in the tumor tissue. Cells in the tumor tissue were also found to undergo apoptosis after hTR-RiAS treatment. These results suggest that hTR-RiAS is an effective anticancer reagent, with a potential for broad efficacy to diverse malignant tumors.

  12. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri.

    Science.gov (United States)

    Van Pijkeren, Jan-Peter; Neoh, Kar Mun; Sirias, Denise; Findley, Anthony S; Britton, Robert A

    2012-01-01

    Single-stranded DNA (ssDNA) recombineering is a technology which is used to make subtle changes in the chromosome of several bacterial genera. Cells which express a single-stranded DNA binding protein (RecT or Bet) are transformed with an oligonucleotide which is incorporated via an annealing and replication-dependent mechanism. By in silico analysis we identified ssDNA binding protein homologs in the genus Lactobacillus and Lactococcus lactis. To assess whether we could further improve the recombineering efficiency in Lactobacillus reuteri ATCC PTA 6475 we expressed several RecT homologs in this strain. RecT derived from Enterococcus faecalis CRMEN 19 yielded comparable efficiencies compared with a native RecT protein, but none of the other proteins further increased the recombineering efficiency. We successfully improved recombineering efficiency 10-fold in L. lactis by increasing oligonucleotide concentration combined with the use of oligonucleotides containing phosphorothioate-linkages (PTOs). Surprisingly, neither increased oligonucleotide concentration nor PTO linkages enhanced recombineering in L. reuteri 6475. To emphasize the utility of this technology in improving probiotic features we modified six bases in a transcriptional regulatory element region of the pdu-operon of L. reuteri 6475, yielding a 3-fold increase in the production of the antimicrobial compound reuterin. Directed genetic modification of lactic acid bacteria through ssDNA recombineering will simplify strain improvement in a way that, when mutating a single base, is genetically indistinguishable from strains obtained through directed evolution.

  13. Calculation of the Electronic Parameters of an Al/DNA/p-Si Schottky Barrier Diode Influenced by Alpha Radiation

    Directory of Open Access Journals (Sweden)

    Hassan Maktuff Jaber Al-Ta'ii

    2015-02-01

    Full Text Available Many types of materials such as inorganic semiconductors have been employed as detectors for nuclear radiation, the importance of which has increased significantly due to recent nuclear catastrophes. Despite the many advantages of this type of materials, the ability to measure direct cellular or biological responses to radiation might improve detector sensitivity. In this context, semiconducting organic materials such as deoxyribonucleic acid or DNA have been studied in recent years. This was established by studying the varying electronic properties of DNA-metal or semiconductor junctions when exposed to radiation. In this work, we investigated the electronics of aluminium (Al/DNA/silicon (Si rectifying junctions using their current-voltage (I-V characteristics when exposed to alpha radiation. Diode parameters such as ideality factor, barrier height and series resistance were determined for different irradiation times. The observed results show significant changes with exposure time or total dosage received. An increased deviation from ideal diode conditions (7.2 to 18.0 was observed when they were bombarded with alpha particles for up to 40 min. Using the conventional technique, barrier height values were observed to generally increase after 2, 6, 10, 20 and 30 min of radiation. The same trend was seen in the values of the series resistance (0.5889–1.423 Ω for 2–8 min. These changes in the electronic properties of the DNA/Si junctions could therefore be utilized in the construction of sensitive alpha particle detectors.

  14. Preliminary studies on gene therapy with TGF β1 antisense gene/liposome complexes and adenovirus transfer vector in RPF rats

    International Nuclear Information System (INIS)

    Liu Chunjie; Wang Dewen; Zhang Zhaoshan; Gao Yabing; Xiong Chengqi; Long Jianyin; Wang Huixin; Peng Ruiyun; Cui Xuemei

    2001-01-01

    Objective: To observed the efficiency of gene therapy with TGF β1 antisense gene/liposome complexes and adenovirus transfer vector in RPF rats. Methods: TGFβ1 sense and antisense gene expression vectors and adenovirus transfer vector were introduced into rat bronchus by way of intratracheal instillation. Results: At day 1.5 after TGFβ1 sense and antisense gene transfer, PCR amplification using neo gene-specific primer from lung tissue DNA was all positive. After day 5.5, 67% (2/3) of lung tissue DNA was positive. RNA dot blot hybridization indicated that TGFβ1 mRNA content of lung tissue transfected with pMAMneo-antiTGFβ1 gene decreased. Detection of lung hydroxyproline (Hyp) content after day 35 of gene transfer showed that even in lung of rats received pMAMneo-AntiTGFβ1 lipid complexes it raised remarkably (P 9 pfu/ml were instilled into bronchus at 0.5 ml per rat. After day 2 day 6, the lung tissues of all six rats (three per each group )expressed the transfected luciferase gene by luminometer. Conclusion: Cationic lipid-mediated TGFβ1 antisense gene therapy was a simple and easy method. It can slow down the course of pathogenesis of lung fibrosis. Replication-deficient recombinant adenovirus-mediated gene therapy of lung diseases is a good and efficient method

  15. Antitumor effects of radioiodinated antisense oligonucleotide mediated by VIP receptor

    International Nuclear Information System (INIS)

    Ou Xiaohong; Tan Tianzhi; Li Yunchun; Kuang Anren

    2004-01-01

    Purpose: we had constructed a targeting delivery system based on intestinal peptide (VIP) for antisense oligonucleotide (ASON) transfer into VIP receptor-positive cells in previous study. The aims of present studies are to observe the antitumor effect of VIP-131I-ASON in HT29 human colon adenocarcinoma xenografts. Methods: A 15-met phosphorothioate ASON, which was complementary to the translation start region of the C-myc oncogene mRNA, was labeled with 131I and the labelled compound was linked to the VIP bound covalently 'to a polylysine chain so as to deliver oligonucleotide into tumor cells. Distribution experiments for evaluating the radiolabeled antisense complexe uptake in tumor tissue were performed in BALB/c nude mice bearing with HT29 tumor xenografts. Nude mice beating HT29 tumor xenografts were adminstered VIP-131I-ASON (3.7,7.4 MBq) or 131I-ASON (3.7 MBq), 131I labeled control sense and nosense DNA (3.7 MBq), or saline. Antitumor effects were assessed using endpoints of tumor growth delay. C-myc-encoded protein expression of tumor was measured by immunocytohistochemical staining. Results: Distribution experiment performed with athymic mice bearing human colon tumor xenografts revealed maximal accumulation of conjugated ASON in the tumor tissue 2 h after administration and significantly higher than that in nude mice injected unconjngated ASON [(5.89±1.03)%ID/g and(1.56±0.31)%ID/g, respectively; t=7.7954 P<0.001]. The radioratio of tumor to muscle was peaked 4h after administration. VIP-131I-ASON exhibited strong antitumor effects against HT29 xenografts, decreasing their growth rate 7-fold compare with that in saline-treated mice(tumor growth delay, 25.4±0.89 day). The antitumor effects of unconjugated 131I-ASON were much less profound than VIP-131I-ASON (tumor growth delay, 3.2±1.3 and 25.4±0.89 day, respectively; q=51.4126 P<0.01). Sense, nosense control ON with VIP carder caused no therapeutic effect. There was no progressive weight loss or

  16. Biomonitoring of Human Exposure to Prestige Oil: Effects on DNA and Endocrine Parameters

    Directory of Open Access Journals (Sweden)

    Beatriz Pérez-Cadahía

    2008-01-01

    Full Text Available Since 1960, about 400 tankers spilled more than 377765 tons of oil, with the Prestige accident (Galician coast, NW Spain, November 2002 the most recent. Taking into account the consistent large number of individuals exposed to oil that exists all over the world, it seems surprising the absence in the literature of studies focused on the chronic effects of this exposure on human health. In this work we evaluated the level of DNA damage by means of comet assay, and the potential endocrine alterations (prolactin and cortisol caused by Prestige oil exposure in a population of 180 individuals, classified in 3 groups according to the tasks performed, and 60 controls. Heavy metals in blood were determined as exposure biomarkers, obtaining significant increases of aluminum, nickel and lead in the exposed groups as compared to controls. Higher levels of genetic damage and endocrine alterations were also observed in the exposed population. DNA damage levels were influenced by age, sex, and the use of protective clothes, and prolactin concentrations by the last two factors. Surprisingly, the use of mask did not seem to protect individuals from genetic or endocrine alterations. Moreover, polymorphisms in genes encoding for the main enzymes involved in the metabolism of oil components were analyzed as susceptibility biomarkers. CYP1A1-3’UTR and EPHX1 codons 113 and 139 variant alleles were related to higher damage levels, while lower DNA damage was observed in GSTM1 and GSTT1 null individuals.

  17. Factor XI Antisense Oligonucleotide for Prevention of Venous Thrombosis

    NARCIS (Netherlands)

    Büller, Harry R.; Bethune, Claudette; Bhanot, Sanjay; Gailani, David; Monia, Brett P.; Raskob, Gary E.; Segers, Annelise; Verhamme, Peter; Weitz, Jeffrey I.; Weitz, Jeffrey; Prins, Martin; Beenen, Ludo; Otten, Hans-Martin; Roos, Yvo; Slagboom, Ton; Vandenbriele, Christophe; Vanassche, Thomas; Dani, Vidhi; Schulz, Dan; Shapiro, Cara; Kwoh, Katherine; Jung, Bill; Gawinek-Samelczak, Agata; Kaemmer, Christina; Angelov, S.; Stavrev, V.; Kinov, P.; Dessouki, E.; Abuzgaya, F.; Baurovskis, A.; Peredistijs, A.; Petronis, S.; Danilyak, V.; Driagin, V.; Kuropatkin, G.; Parfeev, S.; Safronov, A.; Ankin, M.; Korzh, M.; Olinichenko, G.; Polivoda, A.; Shevchenko, V.; Sulyma, V.

    2015-01-01

    Background Experimental data indicate that reducing factor XI levels attenuates thrombosis without causing bleeding, but the role of factor XI in the prevention of postoperative venous thrombosis in humans is unknown. FXI-ASO (ISIS 416858) is a second-generation antisense oligonucleotide that

  18. Alteration of rice growth and development via antisense expression ...

    African Journals Online (AJOL)

    user

    OsGA20ox2 in regulating plant growth and development, we used reverse genomic approach to ... pathways. Similarly, Carmen et al. (2007) suggested that. Carrizo citrange plants have produced antisense ... universal SP6 and T7 primers to conform their reality (Sangon, ..... Optimising the tissue culture conditions for.

  19. Lysine metabolism in antisense C-hordein barley grains

    DEFF Research Database (Denmark)

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A

    2015-01-01

    The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition, with ...

  20. Advancements of antisense oligonucleotides in treatment of breast cancer

    Institute of Scientific and Technical Information of China (English)

    YANGShuan-Ping; SONGSan-Tai; 等

    2003-01-01

    Breast cancer is one kind of multi-gene related malignancy.Overexpression of some oncogenes such as HER-2(c-erbB-2,Neu),bcl-2/bcl-xL,protein kinase A(PKA),and transferrin receptor gene(TfR gene),etc significantly affect the prognosis of breast cancer.It was shown that specific suppression of the overexpressed genes above resulted in the improvement of the therapy of breast cancer.Antisense interference.one of useful tools for inhibiting the overexpression of specific oncogenes,was involved in the therapy of breast cancer in recent years. Data indicated that antisense oligonucleotides(ON)could inhibit specially the expression of the target genes on mRNA or protein levels in most of cases;some ON candidates showed encouraging therapeutic effects in vitro and in vivo on breast cancer cell lines or xenografts.Furthermore,the combination use of the antisense ON and normal chemotherapeutic agents indicated synergistic antitumor effects,which was probably the best utilization of antisense ON in the treatment of breast cancer.

  1. Antisense mediated exon skipping therapy for duchenne muscular dystrophy (DMD)

    DEFF Research Database (Denmark)

    Brolin, Camilla; Shiraishi, Takehiko

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most...

  2. The zebrafish progranulin gene family and antisense transcripts

    Directory of Open Access Journals (Sweden)

    Baranowski David

    2005-11-01

    Full Text Available Abstract Background Progranulin is an epithelial tissue growth factor (also known as proepithelin, acrogranin and PC-cell-derived growth factor that has been implicated in development, wound healing and in the progression of many cancers. The single mammalian progranulin gene encodes a glycoprotein precursor consisting of seven and one half tandemly repeated non-identical copies of the cystine-rich granulin motif. A genome-wide duplication event hypothesized to have occurred at the base of the teleost radiation predicts that mammalian progranulin may be represented by two co-orthologues in zebrafish. Results The cDNAs encoding two zebrafish granulin precursors, progranulins-A and -B, were characterized and found to contain 10 and 9 copies of the granulin motif respectively. The cDNAs and genes encoding the two forms of granulin, progranulins-1 and -2, were also cloned and sequenced. Both latter peptides were found to be encoded by precursors with a simplified architecture consisting of one and one half copies of the granulin motif. A cDNA encoding a chimeric progranulin which likely arises through the mechanism of trans-splicing between grn1 and grn2 was also characterized. A non-coding RNA gene with antisense complementarity to both grn1 and grn2 was identified which may have functional implications with respect to gene dosage, as well as in restricting the formation of the chimeric form of progranulin. Chromosomal localization of the four progranulin (grn genes reveals syntenic conservation for grna only, suggesting that it is the true orthologue of mammalian grn. RT-PCR and whole-mount in situ hybridization analysis of zebrafish grns during development reveals that combined expression of grna and grnb, but not grn1 and grn2, recapitulate many of the expression patterns observed for the murine counterpart. This includes maternal deposition, widespread central nervous system distribution and specific localization within the epithelial

  3. Physicochemical and biological properties of self-assembled antisense/poly(amidoamine dendrimer nanoparticles: the effect of dendrimer generation and charge ratio

    Directory of Open Access Journals (Sweden)

    Alireza Nomani

    2010-05-01

    Full Text Available Alireza Nomani1,6, Ismaeil Haririan1,5, Ramin Rahimnia2,4, Shamileh Fouladdel2, Tarane Gazori1, Rassoul Dinarvand1, Yadollah Omidi3, Ebrahim Azizi2,41Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 2Molecular Research Lab, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 3Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; 4Department of Medical Biotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; 5Biomaterials Research Center (BRC Tehran, Iran; 6Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, IranAbstract: To gain a deeper understanding of the physicochemical phenomenon of self-assembled nanoparticles of different generations and ratios of poly (amidoamine dendrimer (PAMAM dendrimer and a short-stranded DNA (antisense oligonucleotide, multiple methods were used to characterize these nanoparticles including photon correlation spectroscopy (PCS; zeta potential measurement; and atomic force microscopy (AFM. PCS and AFM results revealed that, in contrast to larger molecules of DNA, smaller molecules produce more heterodisperse and large nanoparticles when they are condensed with a cationic dendrimer. AFM images also showed that such nanoparticles were spherical. The stability of the antisense content of the nanoparticles was investigated over different charge ratios using polyacrylamide gel electrophoresis. It was clear from such analyses that much more than charge neutrality point was required to obtain stable nanoparticles. For cell uptake, self-assembled nanoparticles were prepared with PAMAM G5 and 5’-FITC labeled antisense and the uptake experiment was carried out in T47D cell culture. This investigation also shows that the cytotoxicity of the nanoparticles was

  4. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    Science.gov (United States)

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  5. Physical and biological parameters affecting DNA double strand break misrejoining in mammalian cells

    International Nuclear Information System (INIS)

    Kuehne, M.; Rothkamm, K.; Loebrich, M.

    2002-01-01

    In an attempt to investigate the effect of radiation quality, dose and specific repair pathways on correct and erroneous rejoining of DNA double strand breaks (DSBs), an assay was applied that allows the identification and quantification of incorrectly rejoined DSB ends produced by ionising radiation. While substantial misrejoining occurs in mammalian cells after high acute irradiation doses, decreasing misrejoining frequencies were observed in dose fractionation experiments with X rays. In line with this finding, continuous irradiation with gamma rays at low dose rate leads to non detectable misrejoining. This indicates that the probability for a DSB to be misrejoined decreases drastically when DSBs are separated in time and space. The same dose fractionation approach was applied to determine DSB misrejoining after a particle exposure. In contrast to the results with X rays, there was no significant decrease in DSB misrejoining with increasing fractionation. This suggests that DSB misrejoining after a irradiation is not significantly affected by a separation of particle tracks. To identify the enzymatic pathways that are involved in DSB misrejoining, cell lines deficient in non-homologous end-joining (NHEJ) were examined. After high X ray doses, DSB misrejoining is considerable reduced in NHEJ mutants. Low dose rate experiments show elevated DSB misrejoining in NHEJ mutants compared with wild-type cells. The authors propose that NHEJ serves as an efficient pathway for rejoining correct break ends in situations of separated breaks but generates genomic rearrangements if DSBs are close in time and space. (author)

  6. Better estimation of protein-DNA interaction parameters improve prediction of functional sites

    Directory of Open Access Journals (Sweden)

    O'Flanagan Ruadhan A

    2008-12-01

    Full Text Available Abstract Background Characterizing transcription factor binding motifs is a common bioinformatics task. For transcription factors with variable binding sites, we need to get many suboptimal binding sites in our training dataset to get accurate estimates of free energy penalties for deviating from the consensus DNA sequence. One procedure to do that involves a modified SELEX (Systematic Evolution of Ligands by Exponential Enrichment method designed to produce many such sequences. Results We analyzed low stringency SELEX data for E. coli Catabolic Activator Protein (CAP, and we show here that appropriate quantitative analysis improves our ability to predict in vitro affinity. To obtain large number of sequences required for this analysis we used a SELEX SAGE protocol developed by Roulet et al. The sequences obtained from here were subjected to bioinformatic analysis. The resulting bioinformatic model characterizes the sequence specificity of the protein more accurately than those sequence specificities predicted from previous analysis just by using a few known binding sites available in the literature. The consequences of this increase in accuracy for prediction of in vivo binding sites (and especially functional ones in the E. coli genome are also discussed. We measured the dissociation constants of several putative CAP binding sites by EMSA (Electrophoretic Mobility Shift Assay and compared the affinities to the bioinformatics scores provided by methods like the weight matrix method and QPMEME (Quadratic Programming Method of Energy Matrix Estimation trained on known binding sites as well as on the new sites from SELEX SAGE data. We also checked predicted genome sites for conservation in the related species S. typhimurium. We found that bioinformatics scores based on SELEX SAGE data does better in terms of prediction of physical binding energies as well as in detecting functional sites. Conclusion We think that training binding site detection

  7. Bcl-2 antisense therapy in B-cell malignancies.

    Science.gov (United States)

    Chanan-Khan, Asher

    2005-07-01

    Bcl-2 is an apoptosis regulating protein, overexpression of which is associated with chemotherapy resistant disease, aggressive clinical course, and poor survival in patients with B-cell lymphoproliferative disorders. Overexpression of Bcl-2 protein results in an aberrant intrinsic apoptotic pathway that confers a protective effect on malignant cells against a death signal (e.g., chemotherapy or radiotherapy). Downregulation of this oncoprotein, thus, represents a possible new way to target clinically aggressive disease. Preclinical studies have shown that this oncoprotein can be effectively decreased by Bcl-2 antisense in malignant lymphoid cells and can reverse chemotherapy resistance, as well as enhance the anti-apoptotic potential of both chemotherapeutic and biologic agents. Ongoing clinical trials are exploring the role of Bcl-2 downregulation with oblimersen (Bcl-2 antisense) in patients with non-Hodgkin's lymphoma, chronic lymphocytic leukemia and multiple myeloma. Early results from these studies are promising and support the proof of the principle. As these studies are completed and mature data emerges, the role of Bcl-2 antisense therapy in the treatment of B-cell malignancies will become clearer.

  8. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    OpenAIRE

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription ...

  9. Effect of transfection and co-incubation of bovine sperm with exogenous DNA on sperm quality and functional parameters for its use in sperm-mediated gene transfer.

    Science.gov (United States)

    Arias, María Elena; Sánchez-Villalba, Esther; Delgado, Andrea; Felmer, Ricardo

    2017-02-01

    Sperm-mediated gene transfer (SMGT) is based on the capacity of sperm to bind exogenous DNA and transfer it into the oocyte during fertilization. In bovines, the progress of this technology has been slow due to the poor reproducibility and efficiency of the production of transgenic embryos. The aim of the present study was to evaluate the effects of different sperm transfection systems on the quality and functional parameters of sperm. Additionally, the ability of sperm to bind and incorporate exogenous DNA was assessed. These analyses were carried out by flow cytometry and confocal fluorescence microscopy, and motility parameters were also evaluated by computer-assisted sperm analysis (CASA). Transfection was carried out using complexes of plasmid DNA with Lipofectamine, SuperFect and TurboFect for 0.5, 1, 2 or 4 h. The results showed that all of the transfection treatments promoted sperm binding and incorporation of exogenous DNA, similar to sperm incorporation of DNA alone, without affecting the viability. Nevertheless, the treatments and incubation times significantly affected the motility parameters, although no effect on the integrity of DNA or the levels of reactive oxygen species (ROS) was observed. Additionally, we observed that transfection using SuperFect and TurboFect negatively affected the acrosome integrity, and TurboFect affected the mitochondrial membrane potential of sperm. In conclusion, we demonstrated binding and incorporation of exogenous DNA by sperm after transfection and confirmed the capacity of sperm to spontaneously incorporate exogenous DNA. These findings will allow the establishment of the most appropriate method [intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF)] of generating transgenic embryos via SMGT based on the fertilization capacity of transfected sperm.

  10. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures.

    Science.gov (United States)

    Semple, S C; Klimuk, S K; Harasym, T O; Dos Santos, N; Ansell, S M; Wong, K F; Maurer, N; Stark, H; Cullis, P R; Hope, M J; Scherrer, P

    2001-02-09

    Typical methods used for encapsulating antisense oligodeoxynucleotides (ODN) and plasmid DNA in lipid vesicles result in very low encapsulation efficiencies or employ cationic lipids that exhibit unfavorable pharmacokinetic and toxicity characteristics when administered intravenously. In this study, we describe and characterize a novel formulation process that utilizes an ionizable aminolipid (1,2-dioleoyl-3-dimethylammonium propane, DODAP) and an ethanol-containing buffer system for encapsulating large quantities (0.15--0.25 g ODN/g lipid) of polyanionic ODN in lipid vesicles. This process requires the presence of up to 40% ethanol (v/v) and initial formulation at acidic pH values where the DODAP is positively charged. In addition, the presence of a poly(ethylene glycol)-lipid was required during the formulation process to prevent aggregation. The 'stabilized antisense-lipid particles' (SALP) formed are stable on adjustment of the external pH to neutral pH values and the formulation process allows encapsulation efficiencies of up to 70%. ODN encapsulation was confirmed by nuclease protection assays and (31)P NMR measurements. Cryo-electron microscopy indicated that the final particles consisted of a mixed population of unilamellar and small multilamellar vesicles (80--140 nm diameter), the relative proportion of which was dependent on the initial ODN to lipid ratio. Finally, SALP exhibited significantly enhanced circulation lifetimes in mice relative to free antisense ODN, cationic lipid/ODN complexes and SALP prepared with quaternary aminolipids. Given the small particle sizes and improved encapsulation efficiency, ODN to lipid ratios, and circulation times of this formulation compared to others, we believe SALP represent a viable candidate for systemic applications involving nucleic acid therapeutics.

  11. Effective intracellular delivery of oligonucleotides in order to make sense of antisense

    NARCIS (Netherlands)

    Shi, FX; Hoekstra, D

    2004-01-01

    For more than two decades, antisense oligonucleotides (ODNs) have been used to modulate gene expression for the purpose of applications in cell biology and for development of novel sophisticated medical therapeutics. Conceptually, the antisense approach represents an elegant strategy, involving the

  12. TH-C-18A-09: Exam and Patient Parameters Affecting the DNA Damage Response Following CT Studies

    International Nuclear Information System (INIS)

    Elgart, S; Adibi, A; Bostani, M; Ruehm, S; Enzmann, D; McNitt-Gray, M; Iwamoto, K

    2014-01-01

    Purpose: To identify exam and patient parameters affecting the biological response to CT studies using in vivo and ex vivo blood samples. Methods: Blood samples were collected under IRB approval from 16 patients undergoing clinically-indicated CT exams. Blood was procured prior to, immediately after and 30minutes following irradiation. A sample of preexam blood was placed on the patient within the exam region for ex vivo analysis. Whole blood samples were fixed immediately following collection and stained for γH2AX to assess DNA damage response (DDR). Median fluorescence of treated samples was compared to non-irradiated control samples for each patient. Patients were characterized by observed biological kinetic response: (a) fast — phosphorylation increased by 2minutes and fell by 30minutes, (b) slow — phosphorylation continued to increase to 30minutes and (c) none — little change was observed or irradiated samples fell below controls. Total dose values were normalized to exam time for an averaged dose-rate in dose/sec for each exam. Relationships between patient biological responses and patient and exam parameters were investigated. Results: A clearer dose response at 30minutes is observed for young patients (<61yoa; R2>0.5) compared to old patients (>61yoa; R 2 <0.11). Fast responding patients were significantly younger than slow responding patients (p<0.05). Unlike in vivo samples, age did not significantly affect the patient response ex vivo. Additionally, fast responding patients received exams with significantly smaller dose-rate than slow responding patients (p<0.05). Conclusion: Age is a significant factor in the biological response suggesting that DDR may be more rapid in a younger population and slower as the population ages. Lack of an agerelated response ex vivo suggests a systemic response to radiation not present when irradiated outside the body. Dose-rate affects the biological response suggesting that patient response may be related to scan

  13. The influence of physicochemical parameters on the efficacy of non-viral DNA transfection complexes : A comparative study

    NARCIS (Netherlands)

    Kneuer, Carsten; Ehrhardt, Carsten; Bakowsky, Heike; Kumar, M. N. V. Ravi; Oberle, Volker; Lehr, Claus M.; Hoekstra, Dick; Bakowsky, Udo

    2006-01-01

    Various polycationic vehicles have been developed to facilitate the transfer of foreign DNA into mammalian cells. Structure-activity studies suggested that biophysical properties, such as size, charge, and morphology of the resulting DNA complexes determine transfection efficiency within one class

  14. Extensive polycistronism and antisense transcription in the mammalian Hox clusters.

    Directory of Open Access Journals (Sweden)

    Gaëll Mainguy

    Full Text Available The Hox clusters play a crucial role in body patterning during animal development. They encode both Hox transcription factor and micro-RNA genes that are activated in a precise temporal and spatial sequence that follows their chromosomal order. These remarkable collinear properties confer functional unit status for Hox clusters. We developed the TranscriptView platform to establish high resolution transcriptional profiling and report here that transcription in the Hox clusters is far more complex than previously described in both human and mouse. Unannotated transcripts can represent up to 60% of the total transcriptional output of a cluster. In particular, we identified 14 non-coding Transcriptional Units antisense to Hox genes, 10 of which (70% have a detectable mouse homolog. Most of these Transcriptional Units in both human and mouse present conserved sizeable sequences (>40 bp overlapping Hox transcripts, suggesting that these Hox antisense transcripts are functional. Hox clusters also display at least seven polycistronic clusters, i.e., different genes being co-transcribed on long isoforms (up to 30 kb. This work provides a reevaluated framework for understanding Hox gene function and dys-function. Such extensive transcriptions may provide a structural explanation for Hox clustering.

  15. Respirable antisense oligonucleotides: a new drug class for respiratory disease

    Directory of Open Access Journals (Sweden)

    Tanaka Makoto

    2000-12-01

    Full Text Available Abstract Respirable antisense oligonucleotides (RASONs, which attenuate specific disease-associated mRNAs, represent a new class of respiratory therapeutics with considerable potential. RASONs overcome previous obstacles that have impeded the development of antisense therapeutics targeting diseases in other organ systems. RASONs are delivered directly to the target tissue via inhalation; their uptake seems to be enhanced by cationic properties inherent in pulmonary surfactant, and, because of the markedly different target properties of mRNA and proteins, they can have very long durations of effect compared with traditional drugs targeting the protein of the same gene. RASONs contain chemical modifications that decrease their degradation by cellular nucleases. However, total insensitivity to nucleases is probably not an optimal design criterion for RASONs, because moderate nuclease sensitivity can prevent their systemic delivery, decreasing the potential for systemic toxicity. EPI-2010 is a 21-mer phosphorothioate RASON that attenuates bronchoconstriction, inflammation and surfactant depletion in preclinical models of human asthma, has a duration of effect of seven days, and seems to undergo minimal systemic delivery.

  16. REM sleep enhancement and behavioral cataplexy following orexin (hypocretin)-II receptor antisense perfusion in the pontine reticular formation.

    Science.gov (United States)

    Thakkar, M M; Ramesh, V; Cape, E G; Winston, S; Strecker, R E; McCarley, R W

    1999-01-01

    Orexin (hypocretin)-containing neurons of the hypothalamus project to brainstem sites that are involved in the neural control of REM sleep, including the locus coeruleus, the dorsal raphe nucleus, the cholinergic zone of the mesopontine tegmentum, and the pontine reticular formation (PRF). Orexin knockout mice exhibit narcolepsy/cataplexy, and a mutant and defective gene for the orexin type II receptor is present in dogs with an inherited form of narcolepsy/cataplexy. However, the physiological systems mediating these effects have not been described. We reasoned that, since the effector neurons for the majority of REM sleep signs, including muscle atonia, were located in the PRF, this region was likely implicated in the production of these orexin-related abnormalities. To test this possibility, we used microdialysis perfusion of orexin type II receptor antisense in the PRF of rats. Ten to 24 hours after antisense perfusion, REM sleep increased two- to three-fold during both the light period (quiescent phase) and the dark period (active phase), and infrared video showed episodes of behavioral cataplexy. Moreover, preliminary data indicated no REM-related effects following perfusion with nonsense DNA, or when perfusion sites were outside the PRF. More work is needed to provide precise localization of the most effective site of orexin-induced inhibition of REM sleep phenomena.

  17. Data in support of transcriptional regulation and function of Fas-antisense long noncoding RNA during human erythropoiesis

    Directory of Open Access Journals (Sweden)

    Olga Villamizar

    2016-06-01

    Full Text Available This paper describes data related to a research article titled, “Fas-antisense long noncoding RNA is differentially expressed during maturation of human erythrocytes and confers resistance to Fas-mediated cell death” [1]. Long noncoding RNAs (lncRNAs are increasingly appreciated for their capacity to regulate many steps of gene expression. While recent studies suggest that many lncRNAs are functional, the scope of their actions throughout human biology is largely undefined including human red blood cell development (erythropoiesis. Here we include expression data for 82 lncRNAs during early, intermediate and late stages of human erythropoiesis using a commercial qPCR Array. From these data, we identified lncRNA Fas-antisense 1 (Fas-AS1 or Saf described in the research article. Also included are 5′ untranslated sequences (UTR for lncRNA Saf with transcription factor target sequences identified. Quantitative RT-PCR data demonstrate relative levels of critical erythroid transcription factors, GATA-1 and KLF1, in K562 human erythroleukemia cells and maturing erythroblasts derived from human CD34+ cells. End point and quantitative RT-PCR data for cDNA prepared using random hexamers versus oligo(dT18 revealed that lncRNA Saf is not effectively polyadenylated. Finally, we include flow cytometry histograms demonstrating Fas levels on maturing erythroblasts derived from human CD34+ cells transduced using mock conditions or with lentivirus particles encoding for Saf.

  18. Effect of antisense c-raf-1 on tumorigenicity and radiation sensitivity of a human squamous carcinoma

    International Nuclear Information System (INIS)

    Kasid, U.; Pfeifer, A.; Brennan, T.; Beckett, M.; Weichselbaum, R.R.; Dritschilo, A.; Mark, G.E.

    1989-01-01

    Antisense RNA-mediated inhibition of gene expression was used to investigate the biological function of the c-raf-1 gene in a radiation-resistant human squamous carcinoma cell line, SQ-20B. S1 nuclease protection assays revealed that transfection of full-length raf complementary DNA in the antisense orientation (AS) leads to a specific reduction (greater than tenfold) of steady-state levels of the endogenous c-raf-1 sense (S) transcript in SQ-20B cells. In nude mice, the malignant potential of SQ-20B cells transfected with raf (S) was significantly increased relative to that of SQ-20B cells transfected with raf (AS). SQ-20B cells containing transfected raf (S) maintained a radiation-resistant phenotype as compared to those cells harboring the AS version, which appeared to have enhanced radiation sensitivity. These data indicate that the reduced expression of endogenous c-raf-1 is sufficient to modulate the tumorigenicity and the radiation-resistant phenotype of SQ-20B cells, thus implicating c-raf-1 in a pathway important to the genesis of this type of cancer

  19. Functional Analysis of Polyphenol Oxidases by Antisense/Sense Technology

    Directory of Open Access Journals (Sweden)

    Jutharat Attajarusit

    2007-07-01

    Full Text Available Polyphenol oxidases (PPOs catalyze the oxidation of phenolics to quinones, the secondary reactions of which lead to oxidative browning and postharvest losses of many fruits and vegetables. PPOs are ubiquitous in angiosperms, are inducible by both biotic and abiotic stresses, and have been implicated in several physiological processes including plant defense against pathogens and insects, the Mehler reaction, photoreduction of molecular oxygen by PSI, regulation of plastidic oxygen levels, aurone biosynthesis and the phenylpropanoid pathway. Here we review experiments in which the roles of PPO in disease and insect resistance as well as in the Mehler reaction were investigated using transgenic tomato (Lycopersicon esculentum plants with modified PPO expression levels (suppressed PPO and overexpressing PPO. These transgenic plants showed normal growth, development and reproduction under laboratory, growth chamber and greenhouse conditions. Antisense PPO expression dramatically increased susceptibility while PPO overexpression increased resistance of tomato plants to Pseudomonas syringae. Similarly, PPO-overexpressing transgenic plants showed an increase in resistance to various insects, including common cutworm (Spodoptera litura (F., cotton bollworm (Helicoverpa armigera (Hübner and beet army worm (Spodoptera exigua (Hübner, whereas larvae feeding on plants with suppressed PPO activity had higher larval growth rates and consumed more foliage. Similar increases in weight gain, foliage consumption, and survival were also observed with Colorado potato beetles (Leptinotarsa decemlineata (Say feeding on antisense PPO transgenic tomatoes. The putative defensive mechanisms conferred by PPO and its interaction with other defense proteins are discussed. In addition, transgenic plants with suppressed PPO exhibited more favorable water relations and decreased photoinhibition compared to nontransformed controls and transgenic plants

  20. The successes and future prospects of the linear antisense RNA amplification methodology.

    Science.gov (United States)

    Li, Jifen; Eberwine, James

    2018-05-01

    It has been over a quarter of a century since the introduction of the linear RNA amplification methodology known as antisense RNA (aRNA) amplification. Whereas most molecular biology techniques are rapidly replaced owing to the fast-moving nature of development in the field, the aRNA procedure has become a base that can be built upon through varied uses of the technology. The technique was originally developed to assess RNA populations from small amounts of starting material, including single cells, but over time its use has evolved to include the detection of various cellular entities such as proteins, RNA-binding-protein-associated cargoes, and genomic DNA. In this Perspective we detail the linear aRNA amplification procedure and its use in assessing various components of a cell's chemical phenotype. This procedure is particularly useful in efforts to multiplex the simultaneous detection of various cellular processes. These efforts are necessary to identify the quantitative chemical phenotype of cells that underlies cellular function.

  1. Fluorinated Nucleotide Modifications Modulate Allele Selectivity of SNP-Targeting Antisense Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Michael E. Østergaard

    2017-06-01

    Full Text Available Antisense oligonucleotides (ASOs have the potential to discriminate between subtle RNA mismatches such as SNPs. Certain mismatches, however, allow ASOs to bind at physiological conditions and result in RNA cleavage mediated by RNase H. We showed that replacing DNA nucleotides in the gap region of an ASO with other chemical modification can improve allele selectivity. Herein, we systematically substitute every position in the gap region of an ASO targeting huntingtin gene (HTT with fluorinated nucleotides. Potency is determined in cell culture against mutant HTT (mtHTT and wild-type HTT (wtHTT mRNA and RNase H cleavage intensities, and patterns are investigated. This study profiled five different fluorinated nucleotides and showed them to have predictable, site-specific effects on RNase H cleavage, and the cleavage patterns were rationalized from a published X-ray structure of human RNase H1. The results herein can be used as a guide for future projects where ASO discrimination of SNPs is important.

  2. Changes in Oleic Acid Content of Transgenic Soybeans by Antisense RNA Mediated Posttranscriptional Gene Silencing

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2014-01-01

    Full Text Available The Delta-12 oleate desaturase gene (FAD2-1, which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of seed oil. In this study, we inhibited the expression of endogenous Delta-12 oleate desaturase GmFad2-1b gene by using antisense RNA in soybean Williams 82. By employing the soybean cotyledonary-node method, a part of the cDNA of soybean GmFad2-1b 801 bp was cloned for the construction of a pCAMBIA3300 vector under the soybean seed promoter BCSP. Leaf painting, LibertyLink strip, PCR, Southern blot, qRT-PCR, and fatty acid analysis were used to detect the insertion and expression of GmFad2-1b in the transgenic soybean lines. The results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 51.71% and a reduction in palmitic acid (to <3% in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and the nontransgenic oil extracts.

  3. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation.

    Science.gov (United States)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-07-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA-RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners.

  4. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation

    International Nuclear Information System (INIS)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-01-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA–RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners

  5. Antisense pre-treatment increases gene therapy efficacy in dystrophic muscles.

    Science.gov (United States)

    Peccate, Cécile; Mollard, Amédée; Le Hir, Maëva; Julien, Laura; McClorey, Graham; Jarmin, Susan; Le Heron, Anita; Dickson, George; Benkhelifa-Ziyyat, Sofia; Piétri-Rouxel, France; Wood, Matthew J; Voit, Thomas; Lorain, Stéphanie

    2016-08-15

    In preclinical models for Duchenne muscular dystrophy, dystrophin restoration during adeno-associated virus (AAV)-U7-mediated exon-skipping therapy was shown to decrease drastically after six months in treated muscles. This decline in efficacy is strongly correlated with the loss of the therapeutic AAV genomes, probably due to alterations of the dystrophic myofiber membranes. To improve the membrane integrity of the dystrophic myofibers at the time of AAV-U7 injection, mdx muscles were pre-treated with a single dose of the peptide-phosphorodiamidate morpholino (PPMO) antisense oligonucleotides that induced temporary dystrophin expression at the sarcolemma. The PPMO pre-treatment allowed efficient maintenance of AAV genomes in mdx muscles and enhanced the AAV-U7 therapy effect with a ten-fold increase of the protein level after 6 months. PPMO pre-treatment was also beneficial to AAV-mediated gene therapy with transfer of micro-dystrophin cDNA into muscles. Therefore, avoiding vector genome loss after AAV injection by PPMO pre-treatment would allow efficient long-term restoration of dystrophin and the use of lower and thus safer vector doses for Duchenne patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The effects of strawberry tree water leaf extract, arbutin and hydroquinone on haematological parameters and levels of primary DNA damage in white blood cells of rats.

    Science.gov (United States)

    Jurica, Karlo; Brčić Karačonji, Irena; Kopjar, Nevenka; Shek-Vugrovečki, Ana; Cikač, Tihana; Benković, Vesna

    2018-04-06

    Strawberry tree (Arbutus unedo L., Ericaceae) leaves represent a potent source of biologically active compounds and have been used for a long to relieve symptoms of various health impairments and diseases. Two major compounds related to their beneficial activities in animals and humans are arbutin and hydroquinone. To establish potential benefit/risk ratio associated with daily oral administration of strawberry tree water leaf extract, arbutin and hydroquinone in doses expected to be non-toxic. We performed a 14-day and a 28-day study on male and female Lewis rats and evaluated main haematological parameters and the effects of treatments on the levels of primary DNA damage in white blood cells (WBC) using the alkaline comet assay. Our findings suggest no significant changes in the haematological parameters following prolonged exposure to strawberry tree water leaf extract, arbutin, and hydroquinone. However, hydroquinone causes increased, and extract as well as arbutin decreased WBC count in male rats compared to control after 14 days of treatment. DNA damage measured in WBC of rats treated with all compounds was below 10% of the DNA in the comet tail, which indicates low genotoxicity. The genotoxic potential of strawberry water leaf extract was within acceptable limits and reflected effects of a complex chemical composition upon DNA. We also observed slight gender- and exposure time- related differences in primary DNA damage in the leucocytes of control and treated rats. Future studies should investigate which doses of strawberry tree water leaf extract would be most promising for the potential use as a substitute for bearberry leaves for treatment of urinary infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Comparison of the kinetic parameters of the truncated catalytic subunit and holoenzyme of human DNA polymerase ε

    Science.gov (United States)

    Zahurancik, Walter J.; Baranovskiy, Andrey G.; Tahirov, Tahir H.; Suo, Zucai

    2015-01-01

    Numerous genetic studies have provided compelling evidence to establish DNA polymerase ε (Polε) as the primary DNA polymerase responsible for leading strand synthesis during eukaryotic nuclear genome replication. Polε is a heterotetramer consisting of a large catalytic subunit that contains the conserved polymerase core domain as well as a 3′ → 5′ exonuclease domain common to many replicative polymerases. In addition, Polε possesses three small subunits that lack a known catalytic activity but associate with components involved in a variety of DNA replication and maintenance processes. Previous enzymatic characterization of the Polε heterotetramer from budding yeast suggested that the small subunits slightly enhance DNA synthesis by Polε in vitro. However, similar studies of the human Polε heterote-tramer (hPolε) have been limited by the difficulty of obtaining hPolε in quantities suitable for thorough investigation of its catalytic activity. Utilization of a baculovirus expression system for overexpression and purification of hPolε from insect host cells has allowed for isolation of greater amounts of active hPolε, thus enabling a more detailed kinetic comparison between hPolε and an active N-terminal fragment of the hPolε catalytic subunit (p261N), which is readily overexpressed in Escherichia coli. Here, we report the first pre-steady-state studies of fully-assembled hPolε. We observe that the small subunits increase DNA binding by hPolε relative to p261N, but do not increase processivity during DNA synthesis on a single-stranded M13 template. Interestingly, the 3′ → 5′ exonuclease activity of hPolε is reduced relative to p261N on matched and mismatched DNA substrates, indicating that the presence of the small subunits may regulate the proofreading activity of hPolε and sway hPolε toward DNA synthesis rather than proofreading. PMID:25684708

  8. Increased cell survival by inhibition of BRCA1 using an antisense approach in an estrogen responsive ovarian carcinoma cell line

    International Nuclear Information System (INIS)

    Annab, Lois A; Hawkins, Rebecca E; Solomon, Greg; Barrett, J Carl; Afshari, Cynthia A

    2000-01-01

    We tested the hypothesis that BRCA1 may play a role in the regulation of ovarian tumor cell death as well as the inhibition of ovarian cell proliferation. Introduction of BRCA1 antisense retroviral constructs into BG-1 estrogen-dependent ovarian adenocarcinoma cells resulted in reduced BRCA1 expression. BRCA1 antisense pooled populations and derived subclones were able to proliferate in monolayer culture without estrogen, whereas control cells began to die after 10 days of estrogen deprivation. In addition, both populations and subclones of BRCA1 antisense infected cells demonstrated a growth advantage in monolayer culture in the presence of estrogen and were able to proliferate in monolayer culture without estrogen, while control cells did not. Furthermore, clonal studies demonstrated that reduced levels of BRCA1 protein correlated with growth in soft agar and greater tumor formation in nude mice in the absence of estrogen. These data suggest that reduction of BRCA1 protein in BG-1 ovarian adenocarcinoma cells may have an effect on cell survival during estrogen deprivation both in vitro and in vivo. Germline mutations in the breast and ovarian cancer susceptibility gene BRCA1, which is located on chromosome 17q21, are associated with a predisposition to the development of cancer in these organs [1,2]. No mutations in the BRCA1 gene have been detected in sporadic breast cancer cases, but mutations have been detected in sporadic cases of ovarian cancer [3,4]. Although there is debate regarding the level of cancer risk associated with mutations in BRCA1 and the significance of the lack of mutations in sporadic tumors, it is possible that alterations in the function of BRCA1 may occur by mechanisms other than mutation, leading to an underestimation of risk when it is calculated solely on the basis of mutational analysis. Such alterations cannot be identified until the function and regulation of BRCA1 are better understood. The BRCA1 gene encodes a 220-kDa nuclear

  9. Antisense imaging of epidermal growth factor-induced p21{sup WAF-1/CIP-1} gene expression in MDA-MB-468 human breast cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Judy; Chen, Paul; Mrkobrada, Marko [Leslie Dan Faculty of Pharmacy, University of Toronto, 19 Russell Street, M5S 2S2, Toronto, Ontario (Canada); Hu, Meiduo [Leslie Dan Faculty of Pharmacy, University of Toronto, 19 Russell Street, M5S 2S2, Toronto, Ontario (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario (Canada); Vallis, Katherine A. [Department of Radiation Oncology, Princess Margaret Hospital, University Health Network, 610 University Avenue, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Reilly, Raymond M. [Department of Medical Imaging, University of Toronto, Toronto, Ontario (Canada)

    2003-09-01

    Molecular imaging of the expression of key genes which determine the response to DNA damage following cancer treatment may predict the effectiveness of a particular treatment strategy. A prominent early response gene for DNA damage is the gene encoding p21{sup WAF-1/CIP-1}, a cyclin-dependent kinase inhibitor that regulates progression through the cell cycle. In this study, we explored the feasibility of imaging p21{sup WAF-1/CIP-1} gene expression at the mRNA level using an 18-mer phosphorothioated antisense oligodeoxynucleotide (ODN) labeled with {sup 111}In. The known induction of the p21{sup WAF-1/CIP-1} gene in MDA-MB-468 human breast cancer cells following exposure to epidermal growth factor (EGF) was used as an experimental tool. Treatment of MDA-MB-468 cells in vitro with EGF (20 nM) increased the ratio of p21{sup WAF-1/CIP-1} mRNA/{beta}-actin mRNA threefold within 2 h as measured by the reverse transcription polymerase chain reaction (RT-PCR). A concentration-dependent inhibition of EGF-induced p21{sup WAF-1/CIP-1} protein expression was achieved in MDA-MB-468 cells by treatment with antisense ODNs with up to a tenfold decrease observed at 1 {mu}M. There was a fourfold lower inhibition of p21{sup WAF-1/CIP-1} protein expression by control sense or random sequence ODNs. Intratumoral injections of EGF (15 {mu}g/day x 3 days) were employed to induce p21{sup WAF-1/CIP-1} gene expression in MDA-MB-468 xenografts implanted subcutaneously into athymic mice. RT-PCR of explanted tumors showed a threefold increased level of p21{sup WAF-1/CIP-1} mRNA compared with normal saline-treated tumors. Successful imaging of EGF-induced p21{sup WAF-1/CIP-1} gene expression in MDA-MB-468 xenografts was achieved at 48 h post injection of {sup 111}In-labeled antisense ODNs (3.7 MBq; 2 {mu}g). Tumors displaying basal levels of p21{sup WAF-1/CIP-1} gene expression in the absence of EGF treatment could not be visualized. Biodistribution studies showed a significantly higher tumor

  10. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P; Khan, Sohail R; Futcher, Bruce; Leatherwood, Janet K

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  11. Identification of antisense long noncoding RNAs that function as SINEUPs in human cells.

    Science.gov (United States)

    Schein, Aleks; Zucchelli, Silvia; Kauppinen, Sakari; Gustincich, Stefano; Carninci, Piero

    2016-09-20

    Mammalian genomes encode numerous natural antisense long noncoding RNAs (lncRNAs) that regulate gene expression. Recently, an antisense lncRNA to mouse Ubiquitin carboxyl-terminal hydrolase L1 (Uchl1) was reported to increase UCHL1 protein synthesis, representing a new functional class of lncRNAs, designated as SINEUPs, for SINE element-containing translation UP-regulators. Here, we show that an antisense lncRNA to the human protein phosphatase 1 regulatory subunit 12A (PPP1R12A), named as R12A-AS1, which overlaps with the 5' UTR and first coding exon of the PPP1R12A mRNA, functions as a SINEUP, increasing PPP1R12A protein translation in human cells. The SINEUP activity depends on the aforementioned sense-antisense interaction and a free right Alu monomer repeat element at the 3' end of R12A-AS1. In addition, we identify another human antisense lncRNA with SINEUP activity. Our results demonstrate for the first time that human natural antisense lncRNAs can up-regulate protein translation, suggesting that endogenous SINEUPs may be widespread and present in many mammalian species.

  12. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674

  13. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  14. Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice

    Directory of Open Access Journals (Sweden)

    Lu Tingting

    2012-12-01

    Full Text Available Abstract Background Cis-natural antisense transcripts (cis-NATs are RNAs transcribed from the antisense strand of a gene locus, and are complementary to the RNA transcribed from the sense strand. Common techniques including microarray approach and analysis of transcriptome databases are the major ways to globally identify cis-NATs in various eukaryotic organisms. Genome-wide in silico analysis has identified a large number of cis-NATs that may generate endogenous short interfering RNAs (nat-siRNAs, which participate in important biogenesis mechanisms for transcriptional and post-transcriptional regulation in rice. However, the transcriptomes are yet to be deeply sequenced to comprehensively investigate cis-NATs. Results We applied high-throughput strand-specific complementary DNA sequencing technology (ssRNA-seq to deeply sequence mRNA for assessing sense and antisense transcripts that were derived under salt, drought and cold stresses, and normal conditions, in the model plant rice (Oryza sativa. Combined with RAP-DB genome annotation (the Rice Annotation Project Database build-5 data set, 76,013 transcripts corresponding to 45,844 unique gene loci were assembled, in which 4873 gene loci were newly identified. Of 3819 putative rice cis-NATs, 2292 were detected as expressed and giving rise to small RNAs from their overlapping regions through integrated analysis of ssRNA-seq data and small RNA data. Among them, 503 cis-NATs seemed to be associated with specific conditions. The deep sequence data from isolated epidermal cells of rice seedlings further showed that 54.0% of cis-NATs were expressed simultaneously in a population of homogenous cells. Nearly 9.7% of rice transcripts were involved in one-to-one or many-to-many cis-NATs formation. Furthermore, only 17.4-34.7% of 223 many-to-many cis-NAT groups were all expressed and generated nat-siRNAs, indicating that only some cis-NAT groups may be involved in complex regulatory networks. Conclusions

  15. The merits of DNA content and cell kinetic parameters for the assessment of intrinsic cellular radiosensitivity to photon and high-LET neutron irradiation

    International Nuclear Information System (INIS)

    Theron, C.S.; Serafin, A.; Bohm, L.; Slabbert, J.P.

    1997-01-01

    Differences of the intrinsic cellular radiosensitivity between tumours make the selection of patients for specific radiation schedules very difficult. The reasons for these variations are still unclear, but are thought to be due to genomic and cellular characteristics. Radiosensitivities vary between cell cycle stages, with S-phase cells being most radioresistant and G2/M phase cells most radiosensitive. It is also well established that most tumour cells have an abnormal ploidy. DNA content and cellular proliferation kinetics therefore could influence the intrinsic radiosensitivity. This prompted us to assess the merits of these parameters as predictors of radiation response. (authors)

  16. Recent advances in antisense oligonucleotide therapy in genetic neuromuscular diseases

    Directory of Open Access Journals (Sweden)

    Ashok Verma

    2018-01-01

    Full Text Available Genetic neuromuscular diseases are caused by defective expression of nuclear or mitochondrial genes. Mutant genes may reduce expression of wild-type proteins, and strategies to activate expression of the wild-type proteins might provide therapeutic benefits. Also, a toxic mutant protein may cause cell death, and strategies that reduce mutant gene expression may provide therapeutic benefit. Synthetic antisense oligonucleotide (ASO can recognize cellular RNA and control gene expression. In recent years, advances in ASO chemistry, creation of designer ASO molecules to enhance their safety and target delivery, and scientific controlled clinical trials to ascertain their therapeutic safety and efficacy have led to an era of plausible application of ASO technology to treat currently incurable neuromuscular diseases. Over the past 1 year, for the first time, the United States Food and Drug Administration has approved two ASO therapies in genetic neuromuscular diseases. This overview summarizes the recent advances in ASO technology, evolution and use of synthetic ASOs as a therapeutic platform, and the mechanism of ASO action by exon-skipping in Duchenne muscular dystrophy and exon-inclusion in spinal muscular atrophy, with comments on their advantages and limitations.

  17. Disruption of erythrocyte antioxidant defense system, hematological parameters, induction of pro-inflammatory cytokines and DNA damage in liver of co-exposed rats to aluminium and acrylamide.

    Science.gov (United States)

    Ghorbel, Imen; Maktouf, Sameh; Kallel, Choumous; Ellouze Chaabouni, Semia; Boudawara, Tahia; Zeghal, Najiba

    2015-07-05

    The individual toxic effects of aluminium and acrylamide are well known but there are no data on their combined effects. The present study was undertaken to determine (i) hematological parameters during individual and combined chronic exposure to aluminium and acrylamide (ii) correlation of oxidative stress in erythrocytes with pro-inflammatory cytokines expression, DNA damage and histopathological changes in the liver. Rats were exposed to aluminium (50 mg/kg body weight) in drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination for 3 weeks. Exposure rats to AlCl3 or/and ACR provoked an increase in MDA, AOPP, H2O2 and a decrease in GSH and NPSH levels in erythrocytes. Activities of catalase, glutathione peroxidase and superoxide dismutase were decreased in all treated rats. Our results showed that all treatments induced an increase in WBC, erythrocyte osmotic fragility and a decrease in RBC, Hb and Ht. While MCV, MCH, MCHC remained unchanged. Hepatic pro-inflammatory cytokines expression including tumor necrosis factor-α, interleukin-6, interleukin-1β was increased suggesting leucocytes infiltration in the liver. A random DNA degradation was observed on agarose gel only in the liver of co-exposed rats to AlCl3 and ACR treatment. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in erythrocytes, pro-inflammatory cytokines and DNA damage in liver. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. MIB-1, AgNOR AND DNA DISTRIBUTION PARAMETERS AND THEIR PROGNOSTIC VALUE IN NEUROENDOCRINE TUMOURS OF THE LUNG

    Directory of Open Access Journals (Sweden)

    Uta Jütting

    2011-05-01

    Full Text Available One of the most important questions in clinical routine is to find out patients with good or worse prognosis to apply an optimal therapy scheme for each patient. In this study 58 patients with different neuroendocrine tumours of the lung were investigated. Histological sections were prepared with different stainings (MIB-1, AgNOR, Feulgen. By means of high resolution image cytometry stereological parameters were derived which are indicators for proliferation, ploidy and kinetics of the tumours. Cox regression analysis was calculated to test the significance of the parameters with regard to prognosis. The best parameter was MIB-1 which can easily be applied as a clinical standard staining and measurement.

  19. A small molecule for a big transformation: Topical application of a 20-nucleotide-long antisense fragment of the DIAP-2 gene inhibits the development of Drosophila melanogaster female imagos

    Directory of Open Access Journals (Sweden)

    Nyadar Palmah M.

    2018-01-01

    Full Text Available Several genes have been identified to play important roles associated with sex selection in Drosophila melanogaster. An essential part is attributed to the sex-lethal gene that depends on the expression of the X:A (number of chromosomes to autosomes ratio signal controlling both sex selection and dosage compensation processes in D. melanogaster. Interestingly, for sex selection in D. melanogaster there are no documented data addressing the role of the inhibitor of apoptosis (IAP genes and their signaling influence on this biological process. In this study, we found that topical application of a 20-nucleotide-long antisense DNA fragment (oligoDIAP-2 from the death-associated inhibitor of apoptosis (DIAP-2 gene interferes with D. melanogaster development and significantly decreases the number of female imagos and their biomass. We show that the applied antisense oligoDIAP-2 fragment downregulates the target DIAP-2 gene whose normal concentration is necessary for the development of female D. melanogaster. These data correspond to the results on downregulation of the target host IAP-Z gene of Lymantria dispar L. female imagos after topical treatment with an 18-nucleotide-long antisense DNA fragment from the L. dispar multicapsid nuclear polyhedrosis virus IAP-3 gene at the larval stage. The observed novel phenomenon linking the downregulation of insect IAP genes and the low rate of female imago development could have practical application, especially in insect pest control and molecular pathology.

  20. Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production

    Directory of Open Access Journals (Sweden)

    Junji Tominaga4

    2012-04-01

    Full Text Available Aptamers are ssDNA or RNA that binds to wide variety of target molecules with high affinity and specificity producedby systematic evolution of ligands by exponential enrichment (SELEX. Compared to RNA aptamer, DNA aptamer is muchmore stable, favourable to be used in many applications. The most critical step in DNA SELEX experiment is the conversion ofdsDNA to ssDNA. The purpose of this study was to develop an economic and efficient approach of generating ssDNA byusing asymmetric PCR. Our results showed that primer ratio (sense primer:antisense primer of 20:1 and sense primer amountof 10 to 100 pmol, up to 20 PCR cycles using 20 ng of initial template, in combination with polyacrylamide gel electrophoresis,were the optimal conditions for generating good quality and quantity of ssDNA. The generation of ssDNA via this approachcan greatly enhance the success rate of DNA aptamer generation.

  1. A dystrophic Duchenne mouse model for testing human antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Marcel Veltrop

    Full Text Available Duchenne muscular dystrophy (DMD is a severe muscle-wasting disease generally caused by reading frame disrupting mutations in the DMD gene resulting in loss of functional dystrophin protein. The reading frame can be restored by antisense oligonucleotide (AON-mediated exon skipping, allowing production of internally deleted, but partially functional dystrophin proteins as found in the less severe Becker muscular dystrophy. Due to genetic variation between species, mouse models with mutations in the murine genes are of limited use to test and further optimize human specific AONs in vivo. To address this we have generated the del52hDMD/mdx mouse. This model carries both murine and human DMD genes. However, mouse dystrophin expression is abolished due to a stop mutation in exon 23, while the expression of human dystrophin is abolished due to a deletion of exon 52. The del52hDMD/mdx model, like mdx, shows signs of muscle dystrophy on a histological level and phenotypically mild functional impairment. Local administration of human specific vivo morpholinos induces exon skipping and dystrophin restoration in these mice. Depending on the number of mismatches, occasional skipping of the murine Dmd gene, albeit at low levels, could be observed. Unlike previous models, the del52hDMD/mdx model enables the in vivo analysis of human specific AONs targeting exon 51 or exon 53 on RNA and protein level and muscle quality and function. Therefore, it will be a valuable tool for optimizing human specific AONs and genome editing approaches for DMD.

  2. Profiled support vector machines for antisense oligonucleotide efficacy prediction

    Directory of Open Access Journals (Sweden)

    Martín-Guerrero José D

    2004-09-01

    Full Text Available Abstract Background This paper presents the use of Support Vector Machines (SVMs for prediction and analysis of antisense oligonucleotide (AO efficacy. The collected database comprises 315 AO molecules including 68 features each, inducing a problem well-suited to SVMs. The task of feature selection is crucial given the presence of noisy or redundant features, and the well-known problem of the curse of dimensionality. We propose a two-stage strategy to develop an optimal model: (1 feature selection using correlation analysis, mutual information, and SVM-based recursive feature elimination (SVM-RFE, and (2 AO prediction using standard and profiled SVM formulations. A profiled SVM gives different weights to different parts of the training data to focus the training on the most important regions. Results In the first stage, the SVM-RFE technique was most efficient and robust in the presence of low number of samples and high input space dimension. This method yielded an optimal subset of 14 representative features, which were all related to energy and sequence motifs. The second stage evaluated the performance of the predictors (overall correlation coefficient between observed and predicted efficacy, r; mean error, ME; and root-mean-square-error, RMSE using 8-fold and minus-one-RNA cross-validation methods. The profiled SVM produced the best results (r = 0.44, ME = 0.022, and RMSE= 0.278 and predicted high (>75% inhibition of gene expression and low efficacy (http://aosvm.cgb.ki.se/. Conclusions The SVM approach is well suited to the AO prediction problem, and yields a prediction accuracy superior to previous methods. The profiled SVM was found to perform better than the standard SVM, suggesting that it could lead to improvements in other prediction problems as well.

  3. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn's disease.

    Science.gov (United States)

    Monteleone, Giovanni; Neurath, Markus F; Ardizzone, Sandro; Di Sabatino, Antonio; Fantini, Massimo C; Castiglione, Fabiana; Scribano, Maria L; Armuzzi, Alessandro; Caprioli, Flavio; Sturniolo, Giacomo C; Rogai, Francesca; Vecchi, Maurizio; Atreya, Raja; Bossa, Fabrizio; Onali, Sara; Fichera, Maria; Corazza, Gino R; Biancone, Livia; Savarino, Vincenzo; Pica, Roberta; Orlando, Ambrogio; Pallone, Francesco

    2015-03-19

    Crohn's disease-related inflammation is characterized by reduced activity of the immunosuppressive cytokine transforming growth factor β1 (TGF-β1) due to high levels of SMAD7, an inhibitor of TGF-β1 signaling. Preclinical studies and a phase 1 study have shown that an oral SMAD7 antisense oligonucleotide, mongersen, targets ileal and colonic SMAD7. In a double-blind, placebo-controlled, phase 2 trial, we evaluated the efficacy of mongersen for the treatment of persons with active Crohn's disease. Patients were randomly assigned to receive 10, 40, or 160 mg of mongersen or placebo per day for 2 weeks. The primary outcomes were clinical remission at day 15, defined as a Crohn's Disease Activity Index (CDAI) score of less than 150, with maintenance of remission for at least 2 weeks, and the safety of mongersen treatment. A secondary outcome was clinical response (defined as a reduction of 100 points or more in the CDAI score) at day 28. The proportions of patients who reached the primary end point were 55% and 65% for the 40-mg and 160-mg mongersen groups, respectively, as compared with 10% for the placebo group (P<0.001). There was no significant difference in the percentage of participants reaching clinical remission between the 10-mg group (12%) and the placebo group. The rate of clinical response was significantly greater among patients receiving 10 mg (37%), 40 mg (58%), or 160 mg (72%) of mongersen than among those receiving placebo (17%) (P=0.04, P<0.001, and P<0.001, respectively). Most adverse events were related to complications and symptoms of Crohn's disease. We found that study participants with Crohn's disease who received mongersen had significantly higher rates of remission and clinical response than those who received placebo. (Funded by Giuliani; EudraCT number, 2011-002640-27.).

  4. Antiviral effects of herpes simplex virus specific anti-sense nucleic acids.

    Science.gov (United States)

    Cantin, E M; Podsakoff, G; Willey, D E; Openshaw, H

    1992-01-01

    We have targeted mRNA sequences encompassing the translation initiation codon of the essential herpes simplex virus type 1 (HSV-1) IE3 gene with three kinds of anti-sense molecule. Addition of a 15mer oligodeoxyribonucleoside methylphosphonate to tissue culture cells resulted in suppression of viral replication. HSV-1 replication was also inhibited in cultured cells containing anti-sense vectors expressing transcripts complementary to the IE3 mRNA. We have also constructed a ribozyme which upon base pairing with the target IE3 mRNA induces cleavage at the predicted GUC site. A major obstacle to anti-sense studies in animals is drug delivery of preformed antisense molecules to ganglionic neurons, the site of HSV latency and reactivation. We speculate as to how this may be accomplished through carrier compounds which are taken up by nerve terminals and transported by retrograde axoplasmic flow. By the same route, HSV itself may be used as an anti-sense vector.

  5. Translational inhibition of CTX M extended spectrum β-lactamase in clinical strains of Escherichia coli by synthetic antisense oligonucleotides partially restores sensitivity to cefotaxime.

    Directory of Open Access Journals (Sweden)

    John Benedict Readman

    2016-03-01

    Full Text Available Synthetic antisense oligomers are DNA mimics that can specifically inhibit gene expression at the translational level by ribosomal steric hindrance. They bind to their mRNA targets by Watson Crick base pairing and are resistant to degradation by both nucleases and proteases. A 25 mer phosphorodiamidate morpholino oligomer (PMO and a 13 mer polyamide (peptide nucleic acid (PNA were designed to target mRNA (positions -4 to +21, and –17 to –5 respectively close to the translational initiation site of the extended spectrum β lactamase resistance genes of CTX M group 1. These antisense oligonucleotides were found to inhibit β lactamase activity by up to 96% in a cell free translation transcription coupled system using an expression vector carrying a blaCTX-M-15 gene cloned from a clinical isolate. Despite evidence for up regulation of CTX-M gene expression, they were both found to significantly restore sensitivity to cefotaxime in E. coli AS19, an atypical cell wall permeable mutant, in a dose dependant manner (0 - 40 nM. The PMO and PNA were covalently bound to the cell penetrating peptide (KFF3K and both significantly (P<0.05 increased sensitivity to cefotaxime in a dose dependent manner (0 - 40 nM in field isolates harbouring CTX-M group 1 β-lactamases. Antisense oligonucleotides targeted to the translational initiation site and Shine Dalgarno region of blaCTX-M-15 inhibited gene expression, and when conjugated to a cell penetrating delivery vehicle, partially restored antibiotic sensitivity to both field and clinical isolates.

  6. Investigation of the Relationship of Some Antihypertensive Drugs with Oxidant/Antioxidant Parameters and DNA Damage on Rat Uterus Tissue

    Directory of Open Access Journals (Sweden)

    Mustafa Talip Sener

    2011-01-01

    Full Text Available Background: In this study, we investigated the effects of treatment with chronic antihypertensivedrugs (clonidine, methyldopa, amlodipine, ramipril and rilmenidine on oxidant-antioxidantparameters and toxic effects on DNA in rat uterus tissue. In addition, uterus tissues were examinedhistopathologically.Materials and Methods: A total of 36 albino Wistar rats were divided into the following six groups:0.075 mg/kg clonidine group; 100 mg/kg methyldopa group; 2 mg/kg amlodipine group; 2.5 mg/kgramipril group; 0.5 mg/kg rilmenidine group; and the healthy group. Rats underwent chronic drugadministration for 30 days and at the end, biochemical and histopathological examinations wereperformed. All data were subjected to one-way ANOVA test.Results: We divided these drugs into the following three groups according to their effects on ratuteri: (I mild negative effects (clonidine, (II moderate negative effects (rilmenidine, methyldopaand (III drugs which had severe negative effects (amlodipine, ramipril.Conclusion: These data may help with selection of antihypertensive drugs, in order to determinewhich drugs have the lowest toxicity in pregnant and non-pregnant (pre-pregnancy women.

  7. Bcl-2 antisense therapy in B-cell malignant proliferative disorders.

    Science.gov (United States)

    Chanan-Khan, Asher; Czuczman, Myron S

    2004-08-01

    Overexpression of Bcl-2 oncogene has been clinically associated with an aggressive clinical course, chemotherapy and radiotherapy resistance, and poor survival in patients with malignant B-cell disorders. Patients with relapsed or refractory chronic lymphocytic leukemia, multiple myeloma, or non-Hodgkin's lymphoma have limited therapeutic options. Preclinical and early clinical data have shown that Bcl-2 oncoprotein can be decreased by Bcl-2 antisense therapy. Also, downregulation of Bcl-2 protein can result in reversal of chemotherapy resistance and improved antitumor activity of biologic agents. Various clinical trials are evaluating the role of targeting Bcl-2 as a mechanism to enhance the antitumor potential of chemotherapy and immunotherapy. Early results from these clinical studies are encouraging and confirm the proof of principle for antisense therapy. As current data mature, these trials will hopefully validate preliminary results and establish Bcl-2 antisense as an important addition to the current armamentarium used in the treatment of patients with B-cell neoplasms.

  8. Functional comparison of antisense proteins of HTLV-1 and HTLV-2 in viral pathogenesis

    Directory of Open Access Journals (Sweden)

    Benoit eBarbeau

    2013-08-01

    Full Text Available The production of antisense transcripts from the 3’ long terminal repeat (LTR in human T-lymphotropic retroviruses has now been clearly demonstrated. After the identification of the antisense strand-encoded HTLV-1 bZIP (HBZ factor, we reported that HBZ could interact with CREB transcription factors and consequently turn off the important activating potential of the viral Tax protein on HTLV-1 5’ LTR promoter activity. We have recently accumulated new results demonstrating that antisense transcripts also exist in HTLV-2, -3 and -4. Furthermore, our data have confirmed the existence of encoded proteins from these antisense transcripts (termed antisense proteins of HTLVs or APHs. APHs are also involved in the down-regulation of Tax-dependent viral transcription. In this review, we will focus on the different molecular mechanisms used by HBZ and APH-2 to control viral expression. While HBZ interacts with CREB through its basic zipper domain, APH-2 binds to this cellular factor through a five amino acid motif localized in its carboxyl terminus. Moreover, unlike APH-2, HBZ possesses an N-terminal activation domain that also contributes to the inhibition of the viral transcription by interacting with the KIX domain of p300/CBP. On the other hand, HBZ was found to induce T-cell proliferation while APH-2 was unable to promote such proliferation. Interestingly, HTLV-2 has not been causally linked to human T-cell leukemia, while HTLV-1 is responsible for the development of the Adult T-cell Leukemia/Lymphoma (ATLL. We will further discuss the possible role played by antisense proteins in the establishment of pathologies induced by viral infection.

  9. Zinc fixation preserves flow cytometry scatter and fluorescence parameters and allows simultaneous analysis of DNA content and synthesis, and intracellular and surface epitopes

    DEFF Research Database (Denmark)

    Jensen, Uffe Birk; Owens, David; Pedersen, Søren

    2010-01-01

    Zinc salt-based fixation (ZBF) has proved advantageous in histochemical analyses conducted on intact tissues but has not been exploited in flow cytometry procedures that focus on quantitative analysis of individual cells. Here, we show that ZBF performs equally well to paraformaldehyde in the pre......Zinc salt-based fixation (ZBF) has proved advantageous in histochemical analyses conducted on intact tissues but has not been exploited in flow cytometry procedures that focus on quantitative analysis of individual cells. Here, we show that ZBF performs equally well to paraformaldehyde...... allowing subsequent quantitative PCR analysis or labeling for incorporation of the thymidine analog EdU following surface and intracellular epitope staining. Finally, ZBF treatment allows for long-term storage of labeled cells with little change in these parameters. Thus, we present a protocol for zinc...... salt fixation of cells that allows for the simultaneous analysis of DNA and intracellular and cell surface proteins by flow cytometry....

  10. Role of natural antisense transcripts pertaining to tumor suppressor genes in human carcinomas

    International Nuclear Information System (INIS)

    Pelicci, G.; Pierotti, M.

    2009-01-01

    Overlapping transcripts in opposite orientations can potentially form perfect sense-antisense duplex RNA. Recently, several studies have revealed the extent of natural antisense transcripts (NATs) and their role in important biological phenomena also in higher organisms. In order to test the hypothesis that the function of NATs in man might represent an essential element in the regulation of gene expression, especially at transcriptional level, in this study we planned to look for, systematically examine, and characterize NATs belonging in the human genome to the tumour suppressor class of genes, so to identify physiological (and potentially pathological) modulators in this gene class

  11. Relationship of leptin administration with production of reactive oxygen species, sperm DNA fragmentation, sperm parameters and hormone profile in the adult rat.

    Science.gov (United States)

    Abbasihormozi, Shima; Shahverdi, Abdolhossein; Kouhkan, Azam; Cheraghi, Javad; Akhlaghi, Ali Asghar; Kheimeh, Abolfazl

    2013-06-01

    Leptin, an adipose tissue-derived hormone, plays an important role in energy homeostasis and metabolism, and in the neuroendocrine and reproductive systems. The function of leptin in male reproduction is unclear; however, it is known to affect sex hormones, sperm motility and its parameters. Leptin induces mitochondrial superoxide production in aortic endothelia and may increase oxidative stress and abnormal sperm production in leptin-treated rats. This study aims to evaluate whether exogenous leptin affects sperm parameters, hormone profiles, and the production of reactive oxygen species (ROS) in adult rats. A total of 65 Sprague-Dawley rats were divided into three treated groups and a control group. Treated rats received daily intraperitoneal injections of 5, 10 and 30 μg/kg of leptin administered for a duration of 7, 15, and 42 days. Control rats were given 0.1 mL of 0.9 % normal saline for the same period. One day after final drug administration, we evaluated serum specimens for follicle-stimulating hormone (FSH), leutinizing hormone (LH), free testosterone (FT), and total testosterone (TT) levels. Samples from the rat epididymis were also evaluated for sperm parameters and motility characteristics by a Computer-Aided Semen Analysis (CASA) system. Samples were treated with 2',7'-dichlorofluorescein-diacetate (DCFH-DA) and analyzed using flow cytometry and TUNEL to determine the impact of leptin administration on sperm DNA fragmentation. According to CASA, significant differences in all sperm parameters in leptin-treated rats and their age-matched controls were detected, except for TM, ALH and BCF. Serum FSH and LH levels were significantly higher in rats that received 10 and 30 μg/kg of leptin compared to those treated with 5 μg/kg of leptin in the same group and control rats (P control group (P hormone profile modulation.

  12. The Impact of the Geometrical Structure of the DNA on Parameters of the Track-Event Theory for Radiation Induced Cell Kill.

    Directory of Open Access Journals (Sweden)

    Uwe Schneider

    εgeo and ε are 0.10 and 0.71. For the linker-DNA εgeo and ε for randomly distributed hits are 0.010 and 0.073, and for hits on rays 0.0058 and 0.041, respectively. The calculated ε fits the experimentally obtained ε = 0.64±0.32 best for hits on the tetranucleosome when they are close to each other both, for high and low energy electrons.The parameter εgeo of the track event model was obtained by pure geometrical considerations of the chromatin structure and is 0.095 ± 0.022. It can be used as a fixed parameter in the track-event theory.

  13. Antisense to the glucocorticoid receptor in hippocampal dentate gyrus reduces immobility in forced swim test

    NARCIS (Netherlands)

    Korte, S.M.; de Kloet, E.R.; Buwalda, B; Bouman, S.D.; Bohus, B

    1996-01-01

    Immobility time of rats in the forced swim test was reduced after bilateral infusion of an 18-mer antisense phosphorothioate oligodeoxynucleotide targeted to the glucocorticoid receptor mRNA into the dentate gyrus of the hippocampus. Vehicle-, sense- and scrambled sequence-treated animals spent

  14. Mismatched single stranded antisense oligonucleotides can induce efficient dystrophin splice switching

    Directory of Open Access Journals (Sweden)

    Kole Ryszard

    2011-10-01

    Full Text Available Abstract Background Antisense oligomer induced exon skipping aims to reduce the severity of Duchenne muscular dystrophy by redirecting splicing during pre-RNA processing such that the causative mutation is by-passed and a shorter but partially functional Becker muscular dystrophy-like dystrophin isoform is produced. Normal exons are generally targeted to restore the dystrophin reading frame however, an appreciable subset of dystrophin mutations are intra-exonic and therefore have the potential to compromise oligomer efficiency, necessitating personalised oligomer design for some patients. Although antisense oligomers are easily personalised, it remains unclear whether all patient polymorphisms within antisense oligomer target sequences will require the costly process of producing and validating patient specific compounds. Methods Here we report preclinical testing of a panel of splice switching antisense oligomers, designed to excise exon 25 from the dystrophin transcript, in normal and dystrophic patient cells. These patient cells harbour a single base insertion in exon 25 that lies within the target sequence of an oligomer shown to be effective at removing exon 25. Results It was anticipated that such a mutation would compromise oligomer binding and efficiency. However, we show that, despite the mismatch an oligomer, designed and optimised to excise exon 25 from the normal dystrophin mRNA, removes the mutated exon 25 more efficiently than the mutation-specific oligomer. Conclusion This raises the possibility that mismatched AOs could still be therapeutically applicable in some cases, negating the necessity to produce patient-specific compounds.

  15. Potent Antibacterial Antisense Peptide-Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ghosal, Anubrata; Nielsen, Peter E

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections in hospital settings, especially with immune compromised patients, and the increasing prevalence of multidrug resistant strains urges search for new drugs with novel mechanisms of action. In this study we introduce...... significantly reduced bacterial survival. These results open the possibility of development of antisense antibacterials for treatment of Pseudomonas infections....

  16. Tumor delivery of antisense oligomer using trastuzumab within a streptavidin nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Yale University, Yale PET Center, Department of Diagnostic Radiology, New Haven, CT (United States); Liu, Xinrong; Chen, Ling; Cheng, Dengfeng; Rusckowski, Mary [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Hnatowich, Donald J. [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Umass Medical School, Department of Radiology, Worcester, MA (United States)

    2009-12-15

    Trastuzumab (Herceptin trademark) is often internalized following binding to Her2+ tumor cells. The objective of this study was to investigate whether trastuzumab can be used as a specific carrier to deliver antisense oligomers into Her2+ tumor cells both in vitro and in vivo. A biotinylated MORF oligomer antisense to RhoC mRNA and its biotinylated sense control were labeled with either lissamine for fluorescence detection or {sup 99m}Tc for radioactivity detection and were linked to biotinylated trastuzumab via streptavidin. The nanoparticles were studied in SUM190 (RhoC+, Her2+) study and SUM149 (RhoC+, Her2-) control cells in culture and as xenografts in mice. As evidence of unimpaired Her2+ binding of trastuzumab within the nanoparticle, accumulations were clearly higher in SUM190 compared to SUM149 cells and, by whole-body imaging, targeting of SUM190 tumor was similar to that expected for a radiolabeled trastuzumab. As evidence of internalization, fluorescence microscopy images of cells grown in culture and obtained from xenografts showed uniform cytoplasm distribution of the lissamine-MORF. An invasion assay showed decreased RhoC expression in SUM190 cells when incubated with the antisense MORF nanoparticles at only 100 nM. Both in cell culture and in animals, the nanoparticle with trastuzumab as specific carrier greatly improved tumor delivery of the antisense oligomer against RhoC mRNA into tumor cells overexpressing Her2 and may be of general utility. (orig.)

  17. Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene

    DEFF Research Database (Denmark)

    Le Gall, G.; Metzdorff, Stine Broeng; Pedersen, Jan W.

    2005-01-01

    A metabolite profiling study has been carried out on Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija and a series of transgenic lines of the ecotype transformed with a CHS (chalcone synthase) antisense construct. Compound identifications by LC/MS and H-1 NMR are discussed. The glucosinolate...

  18. G3139, a Bcl-2 antisense oligodeoxynucleotide, induces clinical responses in VAD refractory myeloma

    NARCIS (Netherlands)

    van de Donk, N. W. C. J.; de Weerdt, O.; Veth, G.; Eurelings, M.; van Stralen, E.; Frankel, S. R.; Hagenbeek, A.; Bloem, A. C.; Lokhorst, H. M.

    2004-01-01

    Expression of Bcl-2 in multiple myeloma is associated with resistance to chemotherapeutic drugs. Conversely, suppression of Bcl-2 enhanced the chemosensitivity of myeloma cells in vitro. G3139 is an antisense oligodeoxynucleotide targeted to the first six codons of the Bcl-2 mRNA open reading frame.

  19. Antisense silencing of the creA gene in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Bautista, L. F.; Aleksenko, Alexei Y.; Hentzer, Morten

    2000-01-01

    Antisense expression of a portion of the gene encoding the major carbon catabolite repressor CREA in Aspergillus nidulans resulted in a substantial increase in the levels of glucose-repressible enzymes, both endogenous and heterologous, in the presence of glucose. The derepression effect was appr...

  20. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-03-03

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression.

  1. LNA-antisense rivals siRNA for gene silencing

    DEFF Research Database (Denmark)

    Jepsen, Jan Stenvang; Wengel, Jesper; Stenvang, Jan

    2004-01-01

    Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing unprecedented binding affinity toward complementary DNA and RNA while obeying the Watson-Crick base-pairing rules. For efficient gene silencing in vitro and in vivo, fully modified or chimeric LNA oligonucleotides have been a...

  2. Chemosensitization of Human Renal Cell Cancer Using Antisense Oligonucleotides Targeting the Antiapoptotic Gene Clusterin

    Directory of Open Access Journals (Sweden)

    Tobias Zellweger

    2001-01-01

    Full Text Available BACKGROUND: Renal cell cancer (RCC is a chemoresistant disease with no active chemotherapeutic agent achieving objective response rates higher than 15%. Clusterin is a cell survival gene that increases in human renal tubular epithelial cells after various states of injury and disease. Downregulation of clusterin, using antisense oligonucleotides (ASO, has recently been shown to increase chemosensitivity in several prostate cancer models. The objectives in this study were to evaluate clusterin expression levels in human RCC and normal kidney tissue, and to test whether clusterin ASO could also enhance chemosensitivity in human RCC Caki-2 cells both in vitro and in vivo. METHODS: Immunohistochemical staining was used to characterize clusterin expression in 67 RCC and normal kidney tissues obtained from radical nephrectomy specimens. Northern blot analysis was used to assess changes in clusterin mRNA expression after ASO and paclitaxel treatment. The effects of combined clusterin ASO and paclitaxel treatment on Caki-2 cell growth was examined using an MTT assay. Athymic mice bearing Caki-2 tumors were treated with clusterin ASO alone, clusterin ASO plus paclitaxel, and mismatch control oligonucleotides plus paclitaxel, over a period of 28 days with measurement of tumor volumes once weekly over 8 weeks. RESULTS: Immunohistochemistry of normal and malignant kidney tissue sections of 67 patients demonstrated positive clusterin staining for almost all RCC (98% and an overexpression, compared to normal tissue, in a majority of RCC (69%. Clusterin ASO, but not mismatch control oligonucleotides, decreased clusterin mRNA expression in Caki-2 cells in a dosedependent and sequence-specific manner. Pretreatment of Caki-2 cells with clusterin ASO significantly enhanced chemosensitivity to paclitaxel in vitro. Characteristic apoptotic DNA laddering was observed after combined treatment with ASO plus paclitaxel, but not with either agent alone. In vivo

  3. Isolation and antisense suppression of flavonoid 3', 5'-hydroxylase modifies flower pigments and colour in cyclamen

    Directory of Open Access Journals (Sweden)

    Patel Deepa

    2010-06-01

    Full Text Available Abstract Background Cyclamen is a popular and economically significant pot plant crop in several countries. Molecular breeding technologies provide opportunities to metabolically engineer the well-characterized flavonoid biosynthetic pathway for altered anthocyanin profile and hence the colour of the flower. Previously we reported on a genetic transformation system for cyclamen. Our aim in this study was to change pigment profiles and flower colours in cyclamen through the suppression of flavonoid 3', 5'-hydroxylase, an enzyme in the flavonoid pathway that plays a determining role in the colour of anthocyanin pigments. Results A full-length cDNA putatively identified as a F3'5'H (CpF3'5'H was isolated from cyclamen flower tissue. Amino acid and phylogeny analyses indicated the CpF3'5'H encodes a F3'5'H enzyme. Two cultivars of minicyclamen were transformed via Agrobacterium tumefaciens with an antisense CpF3'5'H construct. Flowers of the transgenic lines showed modified colour and this correlated positively with the loss of endogenous F3'5'H transcript. Changes in observed colour were confirmed by colorimeter measurements, with an overall loss in intensity of colour (C in the transgenic lines and a shift in hue from purple to red/pink in one cultivar. HPLC analysis showed that delphinidin-derived pigment levels were reduced in transgenic lines relative to control lines while the percentage of cyanidin-derived pigments increased. Total anthocyanin concentration was reduced up to 80% in some transgenic lines and a smaller increase in flavonol concentration was recorded. Differences were also seen in the ratio of flavonol types that accumulated. Conclusion To our knowledge this is the first report of genetic modification of the anthocyanin pathway in the commercially important species cyclamen. The effects of suppressing a key enzyme, F3'5'H, were wide ranging, extending from anthocyanins to other branches of the flavonoid pathway. The results

  4. Inhibition of enterovirus 71 infection by antisense octaguanidinium dendrimer-conjugated morpholino oligomers.

    Science.gov (United States)

    Tan, Chee Wah; Chan, Yoke Fun; Quah, Yi Wan; Poh, Chit Laa

    2014-07-01

    Enterovirus 71 (EV-71) infections are generally manifested as mild hand, foot and mouth disease, but have been reported to cause severe neurological complications with high mortality rates. Treatment options remain limited due to the lack of antivirals. Octaguanidinium-conjugated morpholino oligomers (vivo-MOs) are single-stranded DNA-like antisense agents that can readily penetrate cells and reduce gene expression by steric blocking of complementary RNA sequences. In this study, inhibitory effects of three vivo-MOs that are complementary to the EV-71 internal ribosome entry site (IRES) and the RNA-dependent RNA polymerase (RdRP) were tested in RD cells. Vivo-MO-1 and vivo-MO-2 targeting the EV-71 IRES showed significant viral plaque reductions of 2.5 and 3.5 log10PFU/ml, respectively. Both vivo-MOs reduced viral RNA copies and viral capsid expression in RD cells in a dose-dependent manner. In contrast, vivo-MO-3 targeting the EV-71 RdRP exhibited less antiviral activity. Both vivo-MO-1 and 2 remained active when administered either 4h before or within 6h after EV-71 infection. Vivo-MO-2 exhibited antiviral activities against poliovirus (PV) and coxsackievirus A16 but vivo-MO-1 showed no antiviral activities against PV. Both the IRES-targeting vivo-MO-1 and vivo-MO-2 inhibit EV-71 RNA translation. Resistant mutants arose after serial passages in the presence of vivo-MO-1, but none were isolated against vivo-MO-2. A single T to C substitution at nucleotide position 533 was sufficient to confer resistance to vivo-MO-1. Our findings suggest that IRES-targeting vivo-MOs are good antiviral candidates for treating early EV-71 infection, and vivo-MO-2 is a more favorable candidate with broader antiviral spectrum against enteroviruses and are refractory to antiviral resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A molecular biological study on the identification of the molecular species of DNA polymerases for repairing radiation-damaged DNA and the factors modifying the mutation rate

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Koichi; Inoue, Shuji [National Inst. of Health and Nutrition, Tokyo (Japan)

    1997-02-01

    Aiming at prevention and treatment of radiation damages, the authors have been investigating DNA damages by X-ray and its repairing mechanism, however, the molecular species of DNA polymerase which mediate the repairing could not been identified by biochemical methods using various inhibitors because of their low specificity. Therefore, in this study, anti-sense oligonucleotides for DNA polymerase {alpha}, {delta} and {epsilon} were obtained by chemical synthesis and transduced into human fibroblast cell, NB1RGB by three methods; endocytotic method, electroporation method and lipofection method. For the first method, the addition of those peptides into the cell culture at 5 {mu}M inhibited the polymerase activity by up to 30% and it was economically difficult to use at higher concentrations than it. For the electroporation method, different conditions were tested in the respects of initial potential, time constant and buffer, but the uptake of thimidine was scarcely decreased in the surviving cells, suggesting that the surviving rate would be short in the cells electroporated with those anti-sense peptides. For the lipofection method, among several cationic lipids tested, lipofectamine significantly enlarged the decrease of thymidine uptake by anti-sense {delta}, however it was considered that its application to DNA repairing is difficult because lipofectamine is strongly cytotoxic. Therefore, construction of a vector which allows to express anti-sense RNA in those cells is undertaken. (M.N.)

  6. A molecular biological study on the identification of the molecular species of DNA polymerases for repairing radiation-damaged DNA and the factors modifying the mutation rate

    International Nuclear Information System (INIS)

    Yamada, Koichi; Inoue, Shuji

    1997-01-01

    Aiming at prevention and treatment of radiation damages, the authors have been investigating DNA damages by X-ray and its repairing mechanism, however, the molecular species of DNA polymerase which mediate the repairing could not been identified by biochemical methods using various inhibitors because of their low specificity. Therefore, in this study, anti-sense oligonucleotides for DNA polymerase α, δ and ε were obtained by chemical synthesis and transduced into human fibroblast cell, NB1RGB by three methods; endocytotic method, electroporation method and lipofection method. For the first method, the addition of those peptides into the cell culture at 5 μM inhibited the polymerase activity by up to 30% and it was economically difficult to use at higher concentrations than it. For the electroporation method, different conditions were tested in the respects of initial potential, time constant and buffer, but the uptake of thimidine was scarcely decreased in the surviving cells, suggesting that the surviving rate would be short in the cells electroporated with those anti-sense peptides. For the lipofection method, among several cationic lipids tested, lipofectamine significantly enlarged the decrease of thymidine uptake by anti-sense δ, however it was considered that its application to DNA repairing is difficult because lipofectamine is strongly cytotoxic. Therefore, construction of a vector which allows to express anti-sense RNA in those cells is undertaken. (M.N.)

  7. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts

    Directory of Open Access Journals (Sweden)

    Herington Adrian C

    2007-08-01

    Full Text Available Abstract Background Ghrelin is a multifunctional peptide hormone expressed in a range of normal tissues and pathologies. It has been reported that the human ghrelin gene consists of five exons which span 5 kb of genomic DNA on chromosome 3 and includes a 20 bp non-coding first exon (20 bp exon 0. The availability of bioinformatic tools enabling comparative analysis and the finalisation of the human genome prompted us to re-examine the genomic structure of the ghrelin locus. Results We have demonstrated the presence of an additional novel exon (exon -1 and 5' extensions to exon 0 and 1 using comparative in silico analysis and have demonstrated their existence experimentally using RT-PCR and 5' RACE. A revised exon-intron structure demonstrates that the human ghrelin gene spans 7.2 kb and consists of six rather than five exons. Several ghrelin gene-derived splice forms were detected in a range of human tissues and cell lines. We have demonstrated ghrelin gene-derived mRNA transcripts that do not code for ghrelin, but instead may encode the C-terminal region of full-length preproghrelin (C-ghrelin, which contains the coding region for obestatin and a transcript encoding obestatin-only. Splice variants that differed in their 5' untranslated regions were also found, suggesting a role of these regions in the post-transcriptional regulation of preproghrelin translation. Finally, several natural antisense transcripts, termed ghrelinOS (ghrelin opposite strand transcripts, were demonstrated via orientation-specific RT-PCR, 5' RACE and in silico analysis of ESTs and cloned amplicons. Conclusion The sense and antisense alternative transcripts demonstrated in this study may function as non-coding regulatory RNA, or code for novel protein isoforms. This is the first demonstration of putative obestatin and C-ghrelin specific transcripts and these findings suggest that these ghrelin gene-derived peptides may also be produced independently of preproghrelin

  8. Preparation and quality test of superparamagnetic iron oxide labeled antisense oligodeoxynucleotide probe: a preliminary study.

    Science.gov (United States)

    Wen, Ming; Li, Bibo; Ouyang, Yu; Luo, Yi; Li, Shaolin

    2009-06-01

    Molecular imaging of tumor antisense gene techniques have been applied to the study of magnetic resonance (MR) gene imaging associated with malignant tumors. In this study, we designed, synthesized, and tested a novel molecular probe, in which the antisense oligodeoxynucleotide (ASODN) was labeled with superparamagnetic iron oxide (SPIO), and its efficiency was examined by in vitro MR imaging after SK-Br-3 mammary carcinoma cell lines (oncocytes) transfection. The SPIO-labeled ASODN probe was prepared through SPIO conjugated to ASODN using a chemical cross linking method. Its morphology and size were detected by atomic force microscope, size distribution were detected by laser granulometer, the conjugating rate and biological activity were determined by high performance liquid chromatography, and the stability was determined by polyacrylamide gel electrophoresis. After that, the probes were transfected into the SK-Br-3 oncocytes, cellular iron uptake was analyzed qualitatively at light and electron microscopy and was quantified at atomic absorption spectrometry, and the signal change of the transfected cells was observed and measured using MR imaging. The morphology of the SPIO-labeled ASODN probe was mostly spherical with well-distributed scattering, and the diameters were between 25 and 40 nm (95%) by atomic force microscope and laser granulometer, the conjugating rate of the probe was 99%. Moreover, this probe kept its activity under physiological conditions and could conjugate with antisense oligodeoxynucleotide. In addition, light microscopy revealed an intracellular uptake of iron oxides in the cytosol and electron microscopic studies revealed a lysosomal deposition of iron oxides in the transfected SK-Br-3 oncocytes by antisense probes, some of them gathered stacks, and the iron content of the group of transfected SK-Br-3 oncocytes by antisense probe is significantly higher (18.37 +/- 0.42 pg) than other contrast groups, the MR imaging showed that

  9. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-01-01

    We have explored the merits of a novel delivery strategy for the antisense oligomers based on cell penetrating peptide (CPP) conjugated to a carrier PNA with sequence complementary to part of the antisense oligomer. The effect of these carrier CPP-PNAs was evaluated by using antisense PNA targeting......-PNA (cPNA1(7)-(D-Arg)8) and hexamer carrier decanoyl-CPP-PNA (Deca-cPNA1(6)-(D-Arg)8), respectively, without showing significant additional cellular toxicity. Most interestingly, the activity reached the same level obtained by enhancement with endosomolytic chloroquine (CQ) treatment, suggesting...... that the carrier might facilitate endosomal escape. Furthermore, 50% downregulation of luciferase expression at 60 nM siRNA was obtained using this carrier CPP-PNA delivery strategy (with CQ co-treatment) for a single stranded antisense RNA targeting normal luciferase mRNA. These results indicated that CPP...

  10. Nucleobase-modified antisense oligonucleotides containing 5-(phenyltriazol)-2′-deoxyuridine nucleotides induce exon-skipping

    DEFF Research Database (Denmark)

    Le, Bao T.; Hornum, Mick; Sharma, Pawan K.

    2017-01-01

    Chemically-modified antisense oligonucleotide-mediated exon-skipping has been validated as a therapeutic strategy for tackling several disease pathologies, particularly duchenne muscular dystrophy. To date, only sugar-modified and internucleotide linkage-modified oligonucleotide chemistries have...

  11. A Simple Three-Step Method for Design and Affinity Testing of New Antisense Peptides: An Example of Erythropoietin

    OpenAIRE

    Štambuk, Nikola; Manojlović, Zoran; Turčić, Petra; Martinić, Roko; Konjevoda, Paško; Weitner, Tin; Wardega, Piotr; Gabričević, Mario

    2014-01-01

    Antisense peptide technology is a valuable tool for deriving new biologically active molecules and performing peptide–receptor modulation. It is based on the fact that peptides specified by the complementary (antisense) nucleotide sequences often bind to each other with a higher specificity and efficacy. We tested the validity of this concept on the example of human erythropoietin, a well-characterized and pharmacologically relevant hematopoietic growth factor. The purpose of the work was to ...

  12. Conserved alternative and antisense transcripts at the programmed cell death 2 locus

    Czech Academy of Sciences Publication Activity Database

    Mihola, Ondřej; Forejt, Jiří; Trachtulec, Zdeněk

    2007-01-01

    Roč. 8, - (2007), s. 20 ISSN 1471-2164 R&D Projects: GA ČR(CZ) GA204/01/0997; GA ČR GA301/05/0738; GA AV ČR IAA5052406; GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : Pdcd2 * antisense * alternative transcript * imprinting Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.180, year: 2007

  13. Antisense expression of a gene encoding a calcium-binding protein ...

    Indian Academy of Sciences (India)

    PRAKASH

    using the transgenic approach. The transformation of ... methods using EhCaBP or AtCaM3 gene-specific primers in ... acetone) was added, mixed and incubated for 15–18 h in the dark at .... as expected from the design of the AtCaM3 antisense construct .... Thus, there seems to be a positive qualitative correlation between ...

  14. Photodynamic antisense regulation of mRNA having a point mutation with psoralen-conjugated oligonucleotide.

    Science.gov (United States)

    Higuchi, Maiko; Yamayoshi, Asako; Kobori, Akio; Murakami, Akira

    2008-01-01

    Nucleic acid-based drugs, such as antisense oligonucleotide, ribozyme, and small interfering RNA, are specific compounds that inhibit gene expression at the post-transcriptional level. To develop more effective nucleic acid-based drugs, we focused on photo-reactive antisense oligonucleotides. We have optimized the structure of psoralen-conjugated oligonucleotide to improve their sequence selectivity and photo-crosslinking efficiency. Previously, we reported that photo reactive oligonucleotides containing 2'-O-psoralenyl-methoxyethyl adenosine (2'-Ps-eom) showed drastic photo-reactivity with a strictly sequence specific manner in vitro. In this report, we evaluated the binding ability toward intracellular target mRNA. The 2'-Ps-eom selectively photo-cross-linked to the target mRNA extracted from cells. The 2'-Ps-eom also cross-linked to target mRNA in cells. Furthermore, 2'-Ps-eom did not cross-link to mRNA having a mismatch base. These results suggest that 2'-Ps-eom is a powerful antisense molecule to inhibit the expression of mRNA having a point mutation.

  15. Modulation of lipoprotein metabolism by antisense technology: preclinical drug discovery methodology.

    Science.gov (United States)

    Crooke, Rosanne M; Graham, Mark J

    2013-01-01

    Antisense oligonucleotides (ASOs) are a new class of specific therapeutic agents that alter the intermediary metabolism of mRNA, resulting in the suppression of disease-associated gene products. ASOs exert their pharmacological effects after hybridizing, via Watson-Crick base pairing, to a specific target RNA. If appropriately designed, this event results in the recruitment of RNase H, the degradation of targeted mRNA or pre-mRNA, and subsequent inhibition of the synthesis of a specific protein. A key advantage of the technology is the ability to selectively inhibit targets that cannot be modulated by traditional therapeutics such as structural proteins, transcription factors, and, of topical interest, lipoproteins. In this chapter, we will first provide an overview of antisense technology, then more specifically describe the status of lipoprotein-related genes that have been studied using the antisense platform, and finally, outline the general methodology required to design and evaluate the in vitro and in vivo efficacy of those drugs.

  16. Review on investigations of antisense oligonucleotides with the use of mass spectrometry.

    Science.gov (United States)

    Studzińska, Sylwia

    2018-01-01

    Antisense oligonucleotides have been investigated as potential drugs for years. They inhibit target gene or protein expression. The present review summarizes their modifications, modes of action, and applications of liquid chromatography coupled with mass spectrometry for qualitative and quantitative analysis of these compounds. The most recent reports on a given topic were given prominence, while some early studies were reviewed in order to provide a theoretical background. The present review covers the issues of using ion-exchange chromatography, ion-pair reversed-phase high performance liquid chromatography and hydrophilic interaction chromatography for the separation of antisense oligonucleotides. The application of mass spectrometry was described with regard to the ionization type used for the determination of these potential therapeutics. Moreover, the current approaches and applications of mass spectrometry for quantitative analysis of antisense oligonucleotides and their metabolites as well as their impurities during in vitro and in vivo studies were discussed. Finally, certain conclusions and perspectives on the determination of therapeutic oligonucleotides in various samples were briefly described. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cocaine alters Homer1 natural antisense transcript in the nucleus accumbens.

    Science.gov (United States)

    Sartor, Gregory C; Powell, Samuel K; Velmeshev, Dmitry; Lin, David Y; Magistri, Marco; Wiedner, Hannah J; Malvezzi, Andrea M; Andrade, Nadja S; Faghihi, Mohammad A; Wahlestedt, Claes

    2017-12-01

    Natural antisense transcripts (NATs) are an abundant class of long noncoding RNAs that have recently been shown to be key regulators of chromatin dynamics and gene expression in nervous system development and neurological disorders. However, it is currently unclear if NAT-based mechanisms also play a role in drug-induced neuroadaptations. Aberrant regulation of gene expression is one critical factor underlying the long-lasting behavioral abnormalities that characterize substance use disorder, and it is possible that some drug-induced transcriptional responses are mediated, in part, by perturbations in NAT activity. To test this hypothesis, we used an automated algorithm that mines the NCBI AceView transcriptomics database to identify NAT overlapping genes linked to addiction. We found that 22% of the genes examined contain NATs and that expression of Homer1 natural antisense transcript (Homer1-AS) was altered in the nucleus accumbens (NAc) of mice 2h and 10days following repeated cocaine administration. In in vitro studies, depletion of Homer1-AS lead to an increase in the corresponding sense gene expression, indicating a potential regulatory mechanisms of Homer1 expression by its corresponding antisense transcript. Future in vivo studies are needed to definitely determine a role for Homer1-AS in cocaine-induced behavioral and molecular adaptations. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    Science.gov (United States)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  19. Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5.

    Science.gov (United States)

    Bahal, Raman; McNeer, Nicole Ali; Ly, Danith H; Saltzman, W Mark; Glazer, Peter M

    2013-01-01

    The development of a new class of peptide nucleic acids (PNAs), i.e., gamma PNAs (γPNAs), creates the need for a general and effective method for its delivery into cells for regulating gene expression in mammalian cells. Here we report the antisense activity of a recently developed hydrophilic and biocompatible diethylene glycol (miniPEG)-based gamma peptide nucleic acid called MPγPNAs via its delivery by poly(lactide-co-glycolide) (PLGA)-based nanoparticle system. We show that MPγPNA oligomers designed to bind to the selective region of chemokine receptor 5 (CC R5) transcript, induce potent and sequence-specific antisense effects as compared with regular PNA oligomers. In addition, PLGA nanoparticle delivery of MPγPNAs is not toxic to the cells. The findings reported in this study provide a combination of γPNA technology and PLGA-based nanoparticle delivery method for regulating gene expression in live cells via the antisense mechanism.

  20. Presymptomatic Treatment with Acetylcholinesterase Antisense Oligonucleotides Prolongs Survival in ALS (G93A-SOD1 Mice

    Directory of Open Access Journals (Sweden)

    Gotkine Marc

    2013-01-01

    Full Text Available Objective. Previous research suggests that acetylcholinesterase (AChE may be involved in ALS pathogenesis. AChE enzyme inhibitors can upregulate AChE transcription which in certain contexts can have deleterious (noncatalytic effects, making them theoretically harmful in ALS, whilst AChE antisense-oligonucleotides (mEN101, which downregulate AChE may be beneficial. Our aim was to investigate whether downregulation of AChE using mEN101 is beneficial in an ALS mouse model. Methods. ALS (G93A-SOD1 mice received saline, mEN101, inverse-EN101, or neostigmine. Treatments were administered from 5 weeks. Disease-onset and survival were recorded. Additional mice were sacrificed for pathological analysis at 15 weeks of age. In a follow-up experiment treatment was started at the symptomatic stage at a higher dose. Results. mEN101 given at the presymptomatic (but not symptomatic stage prolonged survival and attenuated motor-neuron loss in ALS mice. In contrast, neostigmine exacerbated the clinical parameters. Conclusions. These results suggest that AChE may be involved in ALS pathogenesis. The accelerated disease course with neostigmine suggests that any beneficial effects of mEN101 occur through a non-catalytic rather than cholinergic mechanism.

  1. Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Lonardi Stefano

    2008-01-01

    Full Text Available Abstract Background In spite of large intergenic spaces in plant and animal genomes, 7% to 30% of genes in the genomes encode overlapping cis-natural antisense transcripts (cis-NATs. The widespread occurrence of cis-NATs suggests an evolutionary advantage for this type of genomic arrangement. Experimental evidence for the regulation of two cis-NAT gene pairs by natural antisense transcripts-generated small interfering RNAs (nat-siRNAs via the RNA interference (RNAi pathway has been reported in Arabidopsis. However, the extent of siRNA-mediated regulation of cis-NAT genes is still unclear in any genome. Results The hallmarks of RNAi regulation of NATs are 1 inverse regulation of two genes in a cis-NAT pair by environmental and developmental cues and 2 generation of siRNAs by cis-NAT genes. We examined Arabidopsis transcript profiling data from public microarray databases to identify cis-NAT pairs whose sense and antisense transcripts show opposite expression changes. A subset of the cis-NAT genes displayed negatively correlated expression profiles as well as inverse differential expression changes under at least one of the examined developmental stages or treatment conditions. By searching the Arabidopsis Small RNA Project (ASRP and Massively Parallel Signature Sequencing (MPSS small RNA databases as well as our stress-treated small RNA dataset, we found small RNAs that matched at least one gene in 646 pairs out of 1008 (64% protein-coding cis-NAT pairs, which suggests that siRNAs may regulate the expression of many cis-NAT genes. 209 putative siRNAs have the potential to target more than one gene and half of these small RNAs could target multiple members of a gene family. Furthermore, the majority of the putative siRNAs within the overlapping regions tend to target only one transcript of a given NAT pair, which is consistent with our previous finding on salt- and bacteria-induced nat-siRNAs. In addition, we found that genes encoding plastid- or

  2. Synthesis, Improved Antisense Activity and Structural Rationale for the Divergent RNA Affinities of 3;#8242;-Fluoro Hexitol Nucleic Acid (FHNA and Ara-FHNA) Modified Oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Egli, Martin; Pallan, Pradeep S.; Allerson, Charles R.; Prakash, Thazha P.; Berdeja, Andres; Yu, Jinghua; Lee, Sam; Watt, Andrew; Gaus, Hans; Bhat, Balkrishen; Swayze, Eric E.; Seth, Punit P. (Isis Pharm.); (Vanderbilt)

    2012-03-16

    The synthesis, biophysical, structural, and biological properties of both isomers of 3'-fluoro hexitol nucleic acid (FHNA and Ara-FHNA) modified oligonucleotides are reported. Synthesis of the FHNA and Ara-FHNA thymine phosphoramidites was efficiently accomplished starting from known sugar precursors. Optimal RNA affinities were observed with a 3'-fluorine atom and nucleobase in a trans-diaxial orientation. The Ara-FHNA analog with an equatorial fluorine was found to be destabilizing. However, the magnitude of destabilization was sequence-dependent. Thus, the loss of stability is sharply reduced when Ara-FHNA residues were inserted at pyrimidine-purine (Py-Pu) steps compared to placement within a stretch of pyrimidines (Py-Py). Crystal structures of A-type DNA duplexes modified with either monomer provide a rationalization for the opposing stability effects and point to a steric origin of the destabilization caused by the Ara-FHNA analog. The sequence dependent effect can be explained by the formation of an internucleotide C-F {hor_ellipsis} H-C pseudo hydrogen bond between F3' of Ara-FHNA and C8-H of the nucleobase from the 3'-adjacent adenosine that is absent at Py-Py steps. In animal experiments, FHNA-modified antisense oligonucleotides formulated in saline showed a potent downregulation of gene expression in liver tissue without producing hepatotoxicity. Our data establish FHNA as a useful modification for antisense therapeutics and also confirm the stabilizing influence of F(Py) {hor_ellipsis} H-C(Pu) pseudo hydrogen bonds in nucleic acid structures.

  3. Defining global gene expression changes of the hypothalamic-pituitary-gonadal axis in female sGnRH-antisense transgenic common carp (Cyprinus carpio.

    Directory of Open Access Journals (Sweden)

    Jing Xu

    Full Text Available BACKGROUND: The hypothalamic-pituitary-gonadal (HPG axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus, 16 and 12 (pituitary, 119 and 93 (ovary, respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. CONCLUSIONS/SIGNIFICANCE: This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the

  4. Defining Global Gene Expression Changes of the Hypothalamic-Pituitary-Gonadal Axis in Female sGnRH-Antisense Transgenic Common Carp (Cyprinus carpio)

    Science.gov (United States)

    Xu, Jing; Huang, Wei; Zhong, Chengrong; Luo, Daji; Li, Shuangfei; Zhu, Zuoyan; Hu, Wei

    2011-01-01

    Background The hypothalamic-pituitary-gonadal (HPG) axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH) expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. Methodology/Principal Findings In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio) with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH) and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus), 16 and 12 (pituitary), 119 and 93 (ovary), respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. Conclusions/Significance This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the reproductive system of

  5. Effect of injection of antisense oligodeoxynucleotides of GAD isozymes into rat ventromedial hypothalamus on food intake and locomotor activity.

    Science.gov (United States)

    Bannai, M; Ichikawa, M; Nishihara, M; Takahashi, M

    1998-02-16

    In the ventromedial hypothalamus (VMH), gamma-aminobutyric acid (GABA) plays a role in regulating feeding and running behaviors. The GABA synthetic enzyme, glutamic acid decarboxylase (GAD), consists of two isozymes, GAD65 and GAD67. In the present study, the phosphorothioated antisense oligodeoxynucleotides (ODNs) of each GAD isozyme were injected bilaterally into the VMH of male rats, and food intake, body weight and locomotor activity were monitored. ODNs were incorporated in the water-absorbent polymer (WAP, 0.2 nmol/microliter) so that ODNs were retained at the injection site. Each antisense ODN of GAD65 or GAD67 tended to reduce food intake on day 1 (day of injection=day 0) though not significantly. An injection combining both antisense ODNs significantly decreased food intake only on day 1, but body weight remained significantly lower than the control for 5 days. This suppression of body weight gain could be attributed to a significant increase in locomotor activity between days 3 and 5. Individual treatment with either ODNs did not change locomotor activity. The increase in daily locomotor activity in the group receiving the combined antisense ODNs occurred mainly during the light phase. Neither vehicle (WAP) nor control ODN affected food intake, body weight and locomotor activity. Histological studies indicated that antisense ODN distributed within 800 micron from the edge of the area where WAP was located 24 h after the injection gradually disappeared within days, but still remained within 300 micron m distance even 7 days after the injection. Antisense ODN was effectively incorporated by all the cell types examined, i.e., neurons, astrocytes and microglias. Further, HPLC analysis revealed that antisense ODNs of GAD isozymes, either alone or combined, decreased the content of GABA by 50% in VMH 24 h after the injection. These results indicate that suppression of GABA synthesis by either of the GAD isozymes is synergistically involved in suppressing food

  6. Antisense PMO found in dystrophic dog model was effective in cells from exon 7-deleted DMD patient.

    Directory of Open Access Journals (Sweden)

    Takashi Saito

    Full Text Available BACKGROUND: Antisense oligonucleotide-induced exon skipping is a promising approach for treatment of Duchenne muscular dystrophy (DMD. We have systemically administered an antisense phosphorodiamidate morpholino oligomer (PMO targeting dystrophin exons 6 and 8 to a dog with canine X-linked muscular dystrophy in Japan (CXMD(J lacking exon 7 and achieved recovery of dystrophin in skeletal muscle. To date, however, antisense chemical compounds used in DMD animal models have not been directly applied to a DMD patient having the same type of exon deletion. We recently identified a DMD patient with an exon 7 deletion and tried direct translation of the antisense PMO used in dog models to the DMD patient's cells. METHODOLOGY/PRINCIPAL FINDINGS: We converted fibroblasts of CXMD(J and the DMD patient to myotubes by FACS-aided MyoD transduction. Antisense PMOs targeting identical regions of dog and human dystrophin exons 6 and 8 were designed. These antisense PMOs were mixed and administered as a cocktail to either dog or human cells in vitro. In the CXMD(J and human DMD cells, we observed a similar efficacy of skipping of exons 6 and 8 and a similar extent of dystrophin protein recovery. The accompanying skipping of exon 9, which did not alter the reading frame, was different between cells of these two species. CONCLUSION/SIGNIFICANCE: Antisense PMOs, the effectiveness of which has been demonstrated in a dog model, achieved multi-exon skipping of dystrophin gene on the FACS-aided MyoD-transduced fibroblasts from an exon 7-deleted DMD patient, suggesting the feasibility of systemic multi-exon skipping in humans.

  7. Encapsulation of c-myc antisense oligodeoxynucleotides in lipid particles improves antitumoral efficacy in vivo in a human melanoma line.

    Science.gov (United States)

    Leonetti, C; Biroccio, A; Benassi, B; Stringaro, A; Stoppacciaro, A; Semple, S C; Zupi, G

    2001-06-01

    Phosphorothioate c-myc antisense oligodeoxynucleotides [S]ODNs (free INX-6295) were encapsulated in a new liposome formulation and the antitumor activity was compared to the unencapsulated antisense in a human melanoma xenograft. The systemic administration of INX-6295 encapsulated in stabilized antisense lipid particles (SALP INX-6295) improved plasma AUC (area under the plasma concentration-time curve) and initial half-life of free INX-6295, resulting in a significant enhancement in tumor accumulation and improvement in tumor distribution of antisense oligodeoxynucleotides. Animals treated with SALP INX-6295 exhibited a prolonged reduction of c-myc expression, reduced tumor growth and increased mice survival. When administered in combination with cisplatin (DDP), SALP INX-6295 produced a complete tumor regression in approximately 30% of treated mice, which persisted for at least 60 days following the first cycle of treatment. Finally, the median survival of mice treated with DDP/SALP INX-6295 increased by 105% compared to 84% for animals treated with the combination DDP/free INX-6295. These data indicate that the biological activity and the therapeutic efficacy of c-myc antisense therapy may be improved when these agents are administered in lipid-based delivery systems.

  8. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  9. Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury

    DEFF Research Database (Denmark)

    Moreno, Pedro M.D.; Ferreira, Ana R.; Salvador, Daniela

    2018-01-01

    )-modified AON gapmers in combination with a fibrin hydrogel bridging material to induce gene silencing in situ at a SCI lesion site. LNA gapmers were effectively developed against two promising gene targets aiming at enhancing axonal regeneration—RhoA and GSK3β. The fibrin-matrix-assisted AON delivery system......After spinal cord injury (SCI), nerve regeneration is severely hampered due to the establishment of a highly inhibitory microenvironment at the injury site, through the contribution of multiple factors. The potential of antisense oligonucleotides (AONs) to modify gene expression at different levels...

  10. Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5

    OpenAIRE

    Bahal, Raman; McNeer, Nicole Ali; Ly, Danith H.; Saltzman, W. Mark; Glazer, Peter M.

    2013-01-01

    The development of a new class of peptide nucleic acids (PNAs), i.e., gamma PNAs (γPNAs), creates the need for a general and effective method for its delivery into cells for regulating gene expression in mammalian cells. Here we report the antisense activity of a recently developed hydrophilic and biocompatible diethylene glycol (miniPEG)-based gamma peptide nucleic acid called MPγPNAs via its delivery by poly(lactide-co-glycolide) (PLGA)-based nanoparticle system. We show that MPγPNA oligome...

  11. Expression of antisense small RNAs in response to stress in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Gómez Lozano, María; Marvig, Rasmus Lykke; Tulstrup, Monica Vera-Lise

    2014-01-01

    Background: RNA sequencing technologies reveal that bacteria express RNA molecules other than mRNA, rRNA or tRNA. During the last years genome-wide bacterial transcriptomes have been shown to comprise intergenic RNA, antisense RNA, and untranslated regions, all capable of performing diverse...... that the extent of overlap between the studies is very limited. Conclusions: RNA-seq experiments are revealing hundreds of novel transcripts in all bacterial genomes investigated. The comparison between independent studies that used RNA-seq to detect novel asRNAs in P. aeruginosa shows that the overlap between...

  12. Identification of DNA polymerase molecules repairing DNA irradiated damage and molecular biological study on modified factors of mutation rate

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Koichi; Inoue, Shuji [National Inst. of Healthand Nutrition, Tokyo (Japan)

    1999-02-01

    DNA repairing polymerase has not been identified in human culture cells because the specificities of enzyme inhibitors used in previous studies were not so high. In this study, anti-sense oligonucleotides were transfected into human fibroblast cells by electroporation and several clones selected by geneticin treatment were found to express the RNA of the incorporated DNA. However, the expression was not significant and its reproducibility was poor. Then, a study on repairing mechanism was made using XP30 RO and XP 115 LO cells which are variant cells of xeroderma pigmentosum, a human hereditary disease aiming to identify the DNA polymerase related to the disease. There were abnormalities in DNA polymerase subunit {delta} or {epsilon} which consists DNA replication complex. Thus, it was suggested that the DNA replication of these mutant cells might terminate at the site containing such abnormality. (M.N.)

  13. Calcium ions effectively enhance the effect of antisense peptide nucleic acids conjugated to cationic tat and oligoarginine peptides

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Pankratova, Stanislava; Nielsen, Peter E

    2005-01-01

    Cell-penetrating peptides have been widely used to improve cellular delivery of a variety of proteins and antisense agents. However, recent studies indicate that such cationic peptides are predominantly entering cells via an endosomal pathway. We now show that the nuclear antisense effect in He......La cells of a variety of peptide nucleic acid (PNA) peptide conjugates is significantly enhanced by addition of 6 mM Ca(2+) (as well as by the lysosomotrophic agent chloroquine). In particular, the antisense activities of Tat(48-60) and heptaarginine-conjugated PNAs were increased 44-fold and 8.5-fold......, respectively. Evidence is presented that the mechanism involves endosomal release. The present results show that Ca(2+) can be used as an effective enhancer for in vitro cellular delivery of cationic peptide-conjugated PNA oligomers, and also emphasize the significance of the endosomal escape route...

  14. Correlating gene expression to physiological parameters and environmental conditons during cold acclimation of Pinus sylvestris, identification of molecular markers using cDNA microarrays

    NARCIS (Netherlands)

    Joosen, R.V.L.; Lammers, M.; Balk, P.A.; Bronnum, P.; Konings, M.C.J.M.; Perks, M.; Stattin, E.; Wordragen, van M.F.; Geest, van der A.H.M.

    2006-01-01

    Scots pine (Pinus sylvestris L.) seedlings were grown under different conditions (three field locations, two seasons and two climate room regimes), and then analyzed for freezing tolerance of shoots and roots and for transcript abundance in apical buds based on a cDNA microarray containing about

  15. Quantitative Antisense Screening and Optimization for Exon 51 Skipping in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Echigoya, Yusuke; Lim, Kenji Rowel Q; Trieu, Nhu; Bao, Bo; Miskew Nichols, Bailey; Vila, Maria Candida; Novak, James S; Hara, Yuko; Lee, Joshua; Touznik, Aleksander; Mamchaoui, Kamel; Aoki, Yoshitsugu; Takeda, Shin'ichi; Nagaraju, Kanneboyina; Mouly, Vincent; Maruyama, Rika; Duddy, William; Yokota, Toshifumi

    2017-11-01

    Duchenne muscular dystrophy (DMD), the most common lethal genetic disorder, is caused by mutations in the dystrophin (DMD) gene. Exon skipping is a therapeutic approach that uses antisense oligonucleotides (AOs) to modulate splicing and restore the reading frame, leading to truncated, yet functional protein expression. In 2016, the US Food and Drug Administration (FDA) conditionally approved the first phosphorodiamidate morpholino oligomer (morpholino)-based AO drug, eteplirsen, developed for DMD exon 51 skipping. Eteplirsen remains controversial with insufficient evidence of its therapeutic effect in patients. We recently developed an in silico tool to design antisense morpholino sequences for exon skipping. Here, we designed morpholino AOs targeting DMD exon 51 using the in silico tool and quantitatively evaluated the effects in immortalized DMD muscle cells in vitro. To our surprise, most of the newly designed morpholinos induced exon 51 skipping more efficiently compared with the eteplirsen sequence. The efficacy of exon 51 skipping and rescue of dystrophin protein expression were increased by up to more than 12-fold and 7-fold, respectively, compared with the eteplirsen sequence. Significant in vivo efficacy of the most effective morpholino, determined in vitro, was confirmed in mice carrying the human DMD gene. These findings underscore the importance of AO sequence optimization for exon skipping. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  16. Chemical modifications of antisense morpholino oligomers enhance their efficacy against Ebola virus infection.

    Science.gov (United States)

    Swenson, Dana L; Warfield, Kelly L; Warren, Travis K; Lovejoy, Candace; Hassinger, Jed N; Ruthel, Gordon; Blouch, Robert E; Moulton, Hong M; Weller, Dwight D; Iversen, Patrick L; Bavari, Sina

    2009-05-01

    Phosphorodiamidate morpholino oligomers (PMOs) are uncharged nucleic acid-like molecules designed to inactivate the expression of specific genes via the antisense-based steric hindrance of mRNA translation. PMOs have been successful at knocking out viral gene expression and replication in the case of acute viral infections in animal models and have been well tolerated in human clinical trials. We propose that antisense PMOs represent a promising class of therapeutic agents that may be useful for combating filoviral infections. We have previously shown that mice treated with a PMO whose sequence is complementary to a region spanning the start codon of VP24 mRNA were protected against lethal Ebola virus challenge. In the present study, we report on the abilities of two additional VP24-specific PMOs to reduce the cell-free translation of a VP24 reporter, to inhibit the in vitro replication of Ebola virus, and to protect mice against lethal challenge when the PMOs are delivered prior to infection. Additionally, structure-activity relationship evaluations were conducted to assess the enhancement of antiviral efficacy associated with PMO chemical modifications that included conjugation with peptides of various lengths and compositions, positioning of conjugated peptides to either the 5' or the 3' terminus, and the conferring of charge modifications by the addition of piperazine moieties. Conjugation with arginine-rich peptides greatly enhanced the antiviral efficacy of VP24-specific PMOs in infected cells and mice during lethal Ebola virus challenge.

  17. Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis-like lung disease in mice.

    Science.gov (United States)

    Crosby, Jeff R; Zhao, Chenguang; Jiang, Chong; Bai, Dong; Katz, Melanie; Greenlee, Sarah; Kawabe, Hiroshi; McCaleb, Michael; Rotin, Daniela; Guo, Shuling; Monia, Brett P

    2017-11-01

    Epithelial sodium channel (ENaC, Scnn1) hyperactivity in the lung leads to airway surface dehydration and mucus accumulation in cystic fibrosis (CF) patients and in mice with CF-like lung disease. We identified several potent ENaC specific antisense oligonucleotides (ASOs) and tested them by inhalation in mouse models of CF-like lung disease. The inhaled ASOs distributed into lung airway epithelial cells and decreased ENaC expression by inducing RNase H1-dependent degradation of the targeted Scnn1a mRNA. Aerosol delivered ENaC ASO down-regulated mucus marker expression and ameliorated goblet cell metaplasia, inflammation, and airway hyper-responsiveness. Lack of systemic activity of ASOs delivered via the aerosol route ensures the safety of this approach. Our results demonstrate that antisense inhibition of ENaC in airway epithelial cells could be an effective and safe approach for the prevention and reversal of lung symptoms in CF and potentially other inflammatory diseases of the lung. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  18. Search for antisense copies of beta-globin mRNA in anemic mouse spleen

    Directory of Open Access Journals (Sweden)

    Taylor John M

    2001-03-01

    Full Text Available Abstract Background Previous studies by Volloch and coworkers have reported that during the expression of high levels of β-globin mRNA in the spleen of anemic mice, they could also detect small but significant levels of an antisense (AS globin RNA species, which they postulated might have somehow arisen by RNA-directed RNA synthesis. For two reasons we undertook to confirm and possibly extend these studies. First, previous studies in our lab have focussed on what is an unequivocal example of host RNA-directed RNA polymerase activity on the RNA genome of human hepatitis delta virus. Second, if AS globin species do exist they could in turn form double-stranded RNA species which might induce post-transcriptional gene silencing, a phenomenon somehow provoked in eukaryotic cells by AS RNA sequences. Results We reexamined critical aspects of the previous globin studies. We used intraperitoneal injections of phenylhydrazine to induce anemia in mice, as demonstrated by the appearance and ultimate disappearance of splenomegaly. While a 30-fold increase in globin mRNA was detected in the spleen, the relative amount of putative AS RNA could be no more than 0.004%. Conclusions Contrary to earlier reports, induction of a major increase in globin transcripts in the mouse spleen was not associated with a detectable level of antisense RNA to globin mRNA.

  19. Calibration and LOD/LOQ estimation of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs expressed in E. coli using a four-parameter logistic model.

    Science.gov (United States)

    Lee, K R; Dipaolo, B; Ji, X

    2000-06-01

    Calibration is the process of fitting a model based on reference data points (x, y), then using the model to estimate an unknown x based on a new measured response, y. In DNA assay, x is the concentration, and y is the measured signal volume. A four-parameter logistic model was used frequently for calibration of immunoassay when the response is optical density for enzyme-linked immunosorbent assay (ELISA) or adjusted radioactivity count for radioimmunoassay (RIA). Here, it is shown that the same model or a linearized version of the curve are equally useful for the calibration of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs and calculation of performance measures of the assay.

  20. Study on biodistribution and imaging of radioiodinated antisense oligonucleotides in nude mice bearing human lymphoma

    International Nuclear Information System (INIS)

    Wang, R.F.; Shen, J.; Zhang, C.L.; Liu, M.; Guo, F.Q.

    2005-01-01

    The incidence of sporadic lymphoma has risen due to an increase in immunosuppressed patients, particularly those with human immunodeficiency virus (HIV) infection. Sometimes suspect lymphoma has an undetectable location and we can not get the pathological specimen. Management of lymphoma is also difficult because the persistence of a significant number of residual tumor cells after intensive treatment. These relative failures can be attributed to make us choose this study for opening a new diagnostic and therapeutic field of lymphoma from molecular level. Immunoglobulin (Ig) heavy chain framework region (FR) of V1 family have been verified to be a major determinant of malignant phenotype of V1 family B-cell lymphoma. Most of targets for tumor antisense therapy study are protooncogenes, such as c-myc, bc1-2, which are broad -spectrum tumor imaging agents. The aim of this study was to investigate the possibility of using radioiodine labeled FR antisense oligonucleotides (ASONs) as an imaging agent or antisense therapeutic radiopharmaceutical in lymphoma. A 18-mer partial phosphorothioate oligonucleotide sequence was synthesized and grafted in 5 ' with a tyramine group which was further labeled with 125 I or 131 I using the chloramine T method. Normal CD-1 mice were injected via a tail vein with 148 kBq of 125 I-FR-ASON (2∼3 μ g). Animals were sacrificed at 1, 2, 4 and 24 h and tissue samples were studied. Liposome-mediated 3.33 MBq of 131 I-FR-ASON (7 ∼ 9μ g) was injected intratumorally into tumor-bearing BALB/c mice (6 weeks after inoculation of 10 7 Namalwa cells) meanwhile liposome-mediated 131 I labeled sense oligonucleotides served as controls. Biodistribution was monitored by sequential scintigraphy and organ radioactivity measurement 24 h after injection. The percentage of the injected dose per gram (%ID/g) of tumor and tumor/ non-tumor tissue ratios (T/NT) were calculated for each group of mice and the difference between two groups was assessed. The 5

  1. Nanomolar Cellular Antisense Activity of Peptide Nucleic Acid (PNA) Cholic Acid ("Umbrella") and Cholesterol Conjugates Delivered by Cationic Lipids

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-01-01

    of cholesterol and cholic acid ("umbrella") derivatives of splice correction antisense PNA oligomers. While the conjugates alone were practically inactive up to 1 µM, their activity was dramatically improved when delivered by a cationic lipid transfection agent (LipofectAMINE2000). In particular, PNAs...

  2. Comparison of three techniques for generation of tolerogenic dendritic cells: siRNA, oligonucleotide antisense, and antibody blocking.

    Science.gov (United States)

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Moazzeni, Mohammad; Soheili, Zahra Soheila; Samiee, Shahram

    2010-12-01

    In recent years, a new view of dendritic cells (DCs) as a main regulator of immunity to induce and maintain tolerance has been established. In vitro manipulation of their development and maturation is a topic of DC therapeutic application, which utilizes their inherent tolerogenicity. In this field, the therapeutic potential of antisense, siRNA, and blocking antibody are an interesting goal. In the present study, the efficiency of these three methods--siRNA, antisense, and blocking antibody--against CD40 molecule and its function in DCs and BCL1 cell line are compared. DCs were separated from mouse spleen and then cultured in vitro using Lipofectamine 2000 to deliver both silencers; the efficacy of transfection was estimated by flow cytometry. mRNA expression and protein synthesis were assessed by real time-PCR and flow cytometry, respectively. By Annexin V and propidium iodine staining, we could evaluate the viability of transfected cells. Knocking down the CD40 gene into separate groups of DCs by siRNA, antisense, and blocking antibody treated DCs can cause an increase in IL-4, decrease in IL-12, IFN-γ production, and allostimulation activity. Our results indicated that, in comparison to antisense and blocking antibody, siRNAs appear to be quantitatively more efficient in CD40 downregulation and their differences are significant.

  3. Subnanomolar antisense activity of phosphonate-peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Hamzavi, Ramin; Nielsen, Peter E

    2008-01-01

    oligomer. This modification of the PNA does not interfere with the nucleic acid target binding affinity based on thermal stability of the PNA/RNA duplexes. When delivered to cultured HeLa pLuc705 cells by Lipofectamine, the PNAs showed dose-dependent nuclear antisense activity in the nanomolar range...

  4. Effect of chronic treatment with three varieties of Lepidium meyenii (Maca) on reproductive parameters and DNA quantification in adult male rats.

    Science.gov (United States)

    Gasco, M; Aguilar, J; Gonzales, G F

    2007-08-01

    The aim of this study was to evaluate the chronic effect of different varieties of Lepidium meyenii (Red Maca, Yellow Maca and Black Maca). Male rats were treated by gavage with aqueous extract of each variety of maca equivalent to 1 g hypocotyl kg(-1) body weight (BW) for 84 days. At the end of the treatment, daily sperm production (DSP), epididymal sperm count (ESC) and sperm count in vas deferens (SCVD) were assessed. In addition, testis DNA quantification was also determined. Any toxic effect was assessed in liver and spleen by histological studies. The results indicate that Yellow Maca and Black Maca improved ESC and that three varieties of maca increased the SCVD without affecting DSP. Moreover, testis DNA levels were not affected by treatment with any of the three varieties of maca. Histological picture of the liver in animals treated with the three varieties of maca was similar to that observed in controls. In conclusion, Yellow and Black Maca increased epididymal sperm count after 84 days of treatment without affecting DSP. Maca seems to act as a modulator of sperm count at the reproductive tract level.

  5. A calculation of the physical parameters responsible for the enhancement of radiation damage due to the incorporation of Br/I atoms into the DNA

    International Nuclear Information System (INIS)

    Charlton, D.E.

    1992-01-01

    It is well known that when analogs of thymidine containing iodine or bromine are incorporated into the DNA of irradiated cells there is a decrease of the D 0 . Three mechanisms for this effect have been discussed: (a) photoactivation of the Br/I atom and the production of Auger electrons, (b) creation of highly reactive uracil radicals by the interaction of hydrated electrons with BrUdR/IUdR, leading to SSB, and (c) interference with repair or the fixation of the damage by the presence of the Br/I atoms. Experiments to investigate photoactivation of the Br/I atoms will include all three, so that knowledge of the relative size of each contribution is useful. The first process is reasonably well understood and here the second process is examined. It is assumed that the incorporated analogs only produce radicals if they are present in a region of DNA containing energy depositions. An SSB produced by this radical can combine with a nearby SSB produced by electron damage to give a DSB, thus increasing the yield of DSB compared to the yield without the analog present. The increased yields at various levels of Br/I incorporation are compared to experiment for different models of radical action

  6. Central and peripheral administration of antisense oligonucleotide targeting amyloid-β protein precursor improves learning and memory and reduces neuroinflammatory cytokines in Tg2576 (AβPPswe) mice.

    Science.gov (United States)

    Farr, Susan A; Erickson, Michelle A; Niehoff, Michael L; Banks, William A; Morley, John E

    2014-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease. Currently, there are no therapies to stop or reverse the symptoms of AD. We have developed an antisense oligonucleotide (OL-1) against the amyloid-β protein precursor (AβPP) that can decrease AβPP expression and amyloid-β protein (Aβ) production. This antisense rapidly crosses the blood-brain barrier, reverses learning and memory impairments, reduces oxidative stress, and restores brain-to-blood efflux of Aβ in SAMP8 mice. Here, we examined the effects of this AβPP antisense in the Tg2576 mouse model of AD. We administered the OL-1 antisense into the lateral ventricle 3 times at 2week intervals. Seventy-two hours after the third injection, we tested learning and memory in T-maze foot shock avoidance. In the second study, we injected the mice with OL-1 antisense 3 times at 2-week intervals via the tail vein. Seventy-two hours later, we tested learning and memory T-maze, novel object recognition, and elevated plus maze. At the end of behavioral testing, brain tissue was collected. OL-1 antisense administered centrally improved acquisition and retention of T-maze foot shock avoidance. OL-1 antisense administered via tail vein improved learning and memory in both T-maze foot shock avoidance and novel object-place recognition. In the elevated plus maze, the mice which received OL-1 antisense spent less time in the open arms and had fewer entries into the open arms indicating reduced disinhibitation. Biochemical analyses reveal significant reduction of AβPP signal and a reduction of measures of neuroinflammation. The current findings support the therapeutic potential of OL-1 AβPP antisense.

  7. Peripheral administration of antisense oligonucleotides targeting the amyloid-β protein precursor reverses AβPP and LRP-1 overexpression in the aged SAMP8 mouse brain.

    Science.gov (United States)

    Erickson, Michelle A; Niehoff, Michael L; Farr, Susan A; Morley, John E; Dillman, Lucy A; Lynch, Kristin M; Banks, William A

    2012-01-01

    The senescence accelerated mouse-prone 8 (SAMP8) mouse model of Alzheimer's disease has a natural mutation leading to age-related increases in the amyloid-β protein precursor (AβPP) and amyloid-β (Aβ) in the brain, memory impairment, and deficits in Aβ removal from the brain. Previous studies show that centrally administered antisense oligonucleotide directed against AβPP can decrease AβPP expression and Aβ production in the brains of aged SAMP8 mice, and improve memory. The same antisense crosses the blood-brain barrier and reverses memory deficits when injected intravenously. Here, we give 6 μg of AβPP or control antisense 3 times over 2 week intervals to 12 month old SAMP8 mice. Object recognition test was done 48 hours later, followed by removal of whole brains for immunoblot analysis of AβPP, low-density lipoprotein-related protein-1 (LRP-1), p-glycoprotein (Pgp), receptor for advanced glycation endproducts (RAGE), or ELISA of soluble Aβ(40). Our results show that AβPP antisense completely reverses a 30% age-associated increase in AβPP signal (p < 0.05 versus untreated 4 month old SAMP8). Soluble Aβ(40) increased with age, but was not reversed by antisense. LRP-1 large and small subunits increased significantly with age (147.7%, p < 0.01 and 123.7%, p < 0.05 respectively), and AβPP antisense completely reversed these increases (p < 0.05). Pgp and RAGE were not significantly altered with age or antisense. Antisense also caused improvements in memory (p < 0.001). Together, these data support the therapeutic potential of AβPP antisense and show a unique association between AβPP and LRP-1 expression in the SAMP8 mouse.

  8. [Subchronic toxicity test of genetically modified rice with double antisense starch-branching enzyme gene].

    Science.gov (United States)

    Li, Min; Piao, Jianhua; Yang, Xiaoguang

    2010-07-01

    To observe the sub-chronic toxic effects of the genetically modified rice with double antisense SBE gene. Based on gender and weight, weanling Wistar rats were randomly sorted into five groups: non-genetically modified rice group (group A), genetically modified rice group (group B), half genetically modified rice group (group C), quarter genetically modified rice group (group D) and AIN-93G normal diet group (group E). Indicators were the followings: body weight, food consumption, blood routine, blood biochemical test, organ weight, bone density and pathological examination of organs. At the middle of the experiment, the percentage of monocyte of female group B was less than that of group E (P 0.05), and no notable abnormity in the pathological examination of main organs (P > 0.05). There were no enough evidence to confirm the sub-chronic toxicity of genetically modified rice on rats.

  9. Antisense Oligonucleotides Internally Labeled with Peptides Show Improved Target Recognition and Stability to Enzymatic Degradation

    DEFF Research Database (Denmark)

    Taskova, Maria; Madsen, Charlotte S.; Jensen, Knud J.

    2017-01-01

    Specific target binding and stability in diverse biological media is of crucial importance for applications of synthetic oligonucleotides as diagnostic and therapeutic tools. So far, these issues have been addressed by chemical modification of oligonucleotides and by conjugation with a peptide, m...... and makes internally labeled POCs an exciting object of study, i.e., showing high target specificity and simultaneous stability in biological media.......Specific target binding and stability in diverse biological media is of crucial importance for applications of synthetic oligonucleotides as diagnostic and therapeutic tools. So far, these issues have been addressed by chemical modification of oligonucleotides and by conjugation with a peptide......, most often at the terminal position of the oligonucleotide. Herein, we for the first time systematically investigate the influence of internally attached short peptides on the properties of antisense oligonucleotides. We report the synthesis and internal double labeling of 21-mer oligonucleotides...

  10. Dose-Dependent Lowering of Mutant Huntingtin Using Antisense Oligonucleotides in Huntington Disease Patients.

    Science.gov (United States)

    van Roon-Mom, Willeke M C; Roos, Raymund A C; de Bot, Susanne T

    2018-04-01

    On December 11 of 2017, Ionis Pharmaceuticals published a press release announcing dose-dependent reductions of mutant huntingtin protein in their HTTRx Phase 1/2a study in Huntington disease (HD) patients. The results from this Ionis trial have gained much attention from the patient community and the oligonucleotide therapeutics field, since it is the first trial targeting the cause of HD, namely the mutant huntingtin protein, using antisense oligonucleotides (ASOs). The press release also states that the primary endpoints of the study (safety and tolerability) were met, but does not contain data. This news follows the approval of another therapeutic ASO nusinersen (trade name Spinraza) for a neurological disease, spinal muscular atrophy, by the U.S. Food and Drug Administration and European Medicines Agency, in 2016 and 2017, respectively. Combined, this offers hope for the development of the HTTRx therapy for HD patients.

  11. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    van Ommen Gert-Jan B

    2007-07-01

    Full Text Available Abstract Background Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD. Using antisense oligonucleotides (AONs targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mutations, we now focus on single and multiple exon duplications. These mutations are in principle ideal targets for this approach since the specific skipping of duplicated exons would generate original, full-length transcripts. Methods Cultured muscle cells from DMD patients carrying duplications were transfected with AONs targeting the duplicated exons, and the dystrophin RNA and protein were analyzed. Results For two brothers with an exon 44 duplication, skipping was, even at suboptimal transfection conditions, so efficient that both exons 44 were skipped, thus generating, once more, an out-of-frame transcript. In such cases, one may resort to multi-exon skipping to restore the reading frame, as is shown here by inducing skipping of exon 43 and both exons 44. By contrast, in cells from a patient with an exon 45 duplication we were able to induce single exon 45 skipping, which allowed restoration of wild type dystrophin. The correction of a larger duplication (involving exons 52 to 62, by combinations of AONs targeting the outer exons, appeared problematic due to inefficient skipping and mistargeting of original instead of duplicated exons. Conclusion The correction of DMD duplications by exon skipping depends on the specific exons targeted. Its options vary from the ideal one, restoring for the first time the true, wild type dystrophin, to requiring more 'classical' skipping strategies, while the correction of multi-exon deletions may need the design of tailored approaches.

  12. Biodegradable polymer nanocarriers for therapeutic antisense microRNA delivery in living animals

    Science.gov (United States)

    Paulmurugan, Ramasamy; Sekar, Narayana M.; Sekar, Thillai V.

    2012-03-01

    MicroRNAs are endogenous regulators of gene expression, deregulated in several cellular diseases including cancer. Altering the cellular microenvironment by modulating the microRNAs functions can regulate different genes involved in major cellular processes, and this approach is now being investigated as a promising new generation of molecularly targeted anti-cancer therapies. AntagomiRs (Antisense-miRNAs) are a novel class of chemically modified stable oligonucleotides used for blocking the functions of endogenous microRNAs, which are overexpressed. A key challenge in achieving effective microRNAbased therapeutics lies in the development of an efficient delivery system capable of specifically delivering antisense oligonucleotides and target cancer cells in living animals. We are now developing an effective delivery system designed to selectively deliver antagomiR- 21 and antagomiR-10b to triple negative breast cancer cells, and to revert tumor cell metastasis and invasiveness. The FDA-approved biodegradable PLGA-nanoparticles were selected as a carrier for antagomiRs delivery. Chemically modified antagomiRs (antagomiR-21 and antagomiR-10b) were co-encapsulated in PEGylated-PLGA-nanoparticles by using the double-emulsification (W/O/W) solvent evaporation method, and the resulting average particle size of 150-200nm was used for different in vitro and in vivo experiments. The antagomiR encapsulated PLGA-nanoparticles were evaluated for their in vitro antagomiRs delivery, intracellular release profile, and antagomiRs functional effects, by measuring the endogenous cellular targets, and the cell growth and metastasis. The xenografts of tumor cells in living mice were used for evaluating the anti-metastatic and anti-invasive properties of cells. The results showed that the use of PLGA for antagomiR delivery is not only efficient in crossing cell membrane, but can also maintain functional intracellular antagomiRs level for a extended period of time and achieve

  13. Rescue of peripheral vestibular function in Usher syndrome mice using a splice-switching antisense oligonucleotide.

    Science.gov (United States)

    Vijayakumar, Sarath; Depreux, Frederic F; Jodelka, Francine M; Lentz, Jennifer J; Rigo, Frank; Jones, Timothy A; Hastings, Michelle L

    2017-09-15

    Usher syndrome type 1C (USH1C/harmonin) is associated with profound retinal, auditory and vestibular dysfunction. We have previously reported on an antisense oligonucleotide (ASO-29) that dramatically improves auditory function and balance behavior in mice homozygous for the harmonin mutation Ush1c c.216G > A following a single systemic administration. The findings were suggestive of improved vestibular function; however, no direct vestibular assessment was made. Here, we measured vestibular sensory evoked potentials (VsEPs) to directly assess vestibular function in Usher mice. We report that VsEPs are absent or abnormal in Usher mice, indicating profound loss of vestibular function. Strikingly, Usher mice receiving ASO-29 treatment have normal or elevated vestibular response thresholds when treated during a critical period between postnatal day 1 and 5, respectively. In contrast, treatment of mice with ASO-29 treatment at P15 was minimally effective at rescuing vestibular function. Interestingly, ASO-29 treatment at P1, P5 or P15 resulted in sufficient vestibular recovery to support normal balance behaviors, suggesting a therapeutic benefit to balance with ASO-29 treatment at P15 despite the profound vestibular functional deficits that persist with treatment at this later time. These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain

    Science.gov (United States)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.

  15. Improved cellular uptake of antisense Peptide nucleic acids by conjugation to a cell-penetrating Peptide and a lipid domain

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    based on a splicing correction of a mutated luciferase gene in HeLa pLuc705 cells by targeting antisense oligonucleotides to a cryptic splice site. Further improvement in the delivery of CatLip-PNA conjugates is achieved by using auxiliary agents/treatments (e.g., chloroquine, calcium ions......Unaided cellular uptake of RNA interference agents such as antisense oligonucleotides and siRNA is extremely poor, and in vivo bioavailability is also limited. Thus, effective delivery strategies for such potential drugs are in high demand. Recently, a novel approach using a class of short cationic....... We have found, however, that this low -bioavailability can be significantly improved by chemical conjugation to a lipid domain ("Lip," such as a fatty acid), thereby creating "CatLip"-conjugates. The cellular uptake of these conjugates is conveniently evaluated using a sensitive cellular assay system...

  16. Biomarkers of genotoxicity of air pollution (the AULIS project): bulky DNA adducts in subjects with moderate to low exposures to airborne polycyclic aromatic hydrocarbons and their relationship to environmental tobacco smoke and other parameters

    DEFF Research Database (Denmark)

    Georgiadis, P.; Topinka, J.; Stoikidou, M.

    2001-01-01

    The levels of bulky DNA adducts were measured by (32)P-post-labelling in lymphocytes of 194 non-smoking students living in the city of Athens and the region of Halkida, Greece, once in the winter and again in the following summer. Personal exposures to particulate-bound polycyclic aromatic hydroc...... with an enhancement of adduct levels and the effect was strengthened when only individuals unexposed to ETS were taken into consideration. No significant effects were observed for other dietary parameters or factors reflecting exposure to air pollution....... surroundings with a minimal burden of urban air pollution. The remaining Halkida subjects had intermediate levels, while Athens subjects showed the lowest levels. This trend, which was observed over both monitoring seasons, consistently paralleled the variation in three markers of exposure to environmental......) positive correlations were observed between DNA adducts and (i) measured personal exposures to chrysene or benzo[a]pyrene, (ii) time of declared ETS exposure and (iii) chrysene/benzo[g,h,i] perylene ratios. These correlations suggest that, for a group suffering minimal exposure to urban air pollution...

  17. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans.

    Science.gov (United States)

    Graham, Mark J; Lee, Richard G; Bell, Thomas A; Fu, Wuxia; Mullick, Adam E; Alexander, Veronica J; Singleton, Walter; Viney, Nick; Geary, Richard; Su, John; Baker, Brenda F; Burkey, Jennifer; Crooke, Stanley T; Crooke, Rosanne M

    2013-05-24

    Elevated plasma triglyceride levels have been recognized as a risk factor for the development of coronary heart disease. Apolipoprotein C-III (apoC-III) represents both an independent risk factor and a key regulatory factor of plasma triglyceride concentrations. Furthermore, elevated apoC-III levels have been associated with metabolic syndrome and type 2 diabetes mellitus. To date, no selective apoC-III therapeutic agent has been evaluated in the clinic. To test the hypothesis that selective inhibition of apoC-III with antisense drugs in preclinical models and in healthy volunteers would reduce plasma apoC-III and triglyceride levels. Rodent- and human-specific second-generation antisense oligonucleotides were identified and evaluated in preclinical models, including rats, mice, human apoC-III transgenic mice, and nonhuman primates. We demonstrated the selective reduction of both apoC-III and triglyceride in all preclinical pharmacological evaluations. We also showed that inhibition of apoC-III was well tolerated and not associated with increased liver triglyceride deposition or hepatotoxicity. A double-blind, placebo-controlled, phase I clinical study was performed in healthy subjects. Administration of the human apoC-III antisense drug resulted in dose-dependent reductions in plasma apoC-III, concomitant lowering of triglyceride levels, and produced no clinically meaningful signals in the safety evaluations. Antisense inhibition of apoC-III in preclinical models and in a phase I clinical trial with healthy subjects produced potent, selective reductions in plasma apoC-III and triglyceride, 2 known risk factors for cardiovascular disease. This compelling pharmacological profile supports further clinical investigations in hypertriglyceridemic subjects.

  18. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors.

    Science.gov (United States)

    Lobos-González, Lorena; Silva, Verónica; Araya, Mariela; Restovic, Franko; Echenique, Javiera; Oliveira-Cruz, Luciana; Fitzpatrick, Christopher; Briones, Macarena; Villegas, Jaime; Villota, Claudio; Vidaurre, Soledad; Borgna, Vincenzo; Socias, Miguel; Valenzuela, Sebastián; Lopez, Constanza; Socias, Teresa; Varas, Manuel; Díaz, Jorge; Burzio, Luis O; Burzio, Verónica A

    2016-09-06

    We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats. Knockdown of ASncmtRNAs with specific antisense oligonucleotides (ASO) reduces murine melanoma B16F10 cell proliferation and induces apoptosis in vitro through downregulation of pro-survival and metastasis markers, particularly survivin. For in vivo studies, subcutaneous B16F10 melanoma tumors in C57BL/6 mice were treated systemically with specific and control antisense oligonucleotides (ASO). For metastasis studies, tumors were resected, followed by systemic administration of ASOs and the presence of metastatic nodules in lungs and liver was assessed. Treatment with specific ASO inhibited tumor growth and metastasis after primary tumor resection. In a metastasis-only assay, mice inoculated intravenously with cells and treated with the same ASO displayed reduced number and size of melanoma nodules in the lungs, compared to controls. Our results suggest that ASncmtRNAs could be potent targets for melanoma therapy. To our knowledge, the ASncmtRNAs are the first potential non-nuclear targets for melanoma therapy.

  19. The endogenous retroviral insertion in the human complement C4 gene modulates the expression of homologous genes by antisense inhibition.

    Science.gov (United States)

    Schneider, P M; Witzel-Schlömp, K; Rittner, C; Zhang, L

    2001-02-01

    Intron 9 contains the complete endogenous retrovirus HERV-K(C4) as a 6.4-kb insertion in 60% of human C4 genes. The retroviral insertion is in reverse orientation to the C4 coding sequence. Therefore, expression of C4 could lead to the transcription of an antisense RNA, which might protect against exogenous retroviral infections. To test this hypothesis, open reading frames from the HERV sequence were subcloned in sense orientiation into a vector allowing expression of a beta-galactosidase fusion protein. Mouse L cells which had been stably transfected with either the human C4A or C4B gene both carrying the HERV insertion (LC4 cells), and L(Tk-) cells without the C4 gene were transiently transfected either with a retroviral construct or with the wild-type vector. Expression was monitored using an enzymatic assay. We demonstrated that (1) HERV-K(C4) antisense mRNA transcripts are present in cells constitutively expressing C4, (2) expression of retroviral-like constructs is significantly downregulated in cells expressing C4, and (3) this downregulation is further modulated in a dose-dependent fashion following interferon-gamma stimulation of C4 expression. These results support the hypothesis of a genomic antisense strategy mediated by the HERV-K(C4) insertion as a possible defense mechanism against exogenous retroviral infections.

  20. The Dynamics of Compound, Transcript, and Protein Effects After Treatment With 2OMePS Antisense Oligonucleotides in mdx Mice

    Directory of Open Access Journals (Sweden)

    Ingrid E C Verhaart

    2014-01-01

    Full Text Available Antisense-mediated exon skipping is currently in clinical development for Duchenne muscular dystrophy (DMD to amend the consequences of the underlying genetic defect and restore dystrophin expression. Due to turnover of compound, transcript, and protein, chronic treatment with effector molecules (antisense oligonucleotides will be required. To investigate the dynamics and persistence of antisense 2′-O-methyl phosphorothioate oligonucleotides, exon skipping, and dystrophin expression after dosing was concluded, mdx mice were treated subcutaneously for 8 weeks with 100 mg/kg oligonucleotides twice weekly. Thereafter, mice were sacrificed at different time points after the final injection (36 hours–24 weeks. Oligonucleotide half-life was longer in heart (~65 days compared with that in skeletal muscle, liver, and kidney (~35 days. Exon skipping half-lives varied between 33 and 53 days, whereas dystrophin protein showed a long half-life (>100 days. Oligonucleotide and exon-skipping levels peaked in the first week and declined thereafter. By contrast, dystrophin expression peaked after 3–8 weeks and then slowly declined, remaining detectable after 24 weeks. Concordance between levels of oligonucleotides, exon skipping, and proteins was observed, except in heart, wherein high oligonucleotide levels but low exon skipping and dystrophin expression were seen. Overall, these results enhance our understanding of the pharmacokinetics and pharmacodynamics of 2′-O-methyl phosphorothioate oligos used for the treatment of DMD.

  1. Prosecutor: parameter-free inference of gene function for prokaryotes using DNA microarray data, genomic context and multiple gene annotation sources

    Directory of Open Access Journals (Sweden)

    van Hijum Sacha AFT

    2008-10-01

    Full Text Available Abstract Background Despite a plethora of functional genomic efforts, the function of many genes in sequenced genomes remains unknown. The increasing amount of microarray data for many species allows employing the guilt-by-association principle to predict function on a large scale: genes exhibiting similar expression patterns are more likely to participate in shared biological processes. Results We developed Prosecutor, an application that enables researchers to rapidly infer gene function based on available gene expression data and functional annotations. Our parameter-free functional prediction method uses a sensitive algorithm to achieve a high association rate of linking genes with unknown function to annotated genes. Furthermore, Prosecutor utilizes additional biological information such as genomic context and known regulatory mechanisms that are specific for prokaryotes. We analyzed publicly available transcriptome data sets and used literature sources to validate putative functions suggested by Prosecutor. We supply the complete results of our analysis for 11 prokaryotic organisms on a dedicated website. Conclusion The Prosecutor software and supplementary datasets available at http://www.prosecutor.nl allow researchers working on any of the analyzed organisms to quickly identify the putative functions of their genes of interest. A de novo analysis allows new organisms to be studied.

  2. Analysis of antisense expression by whole genome tiling microarrays and siRNAs suggests mis-annotation of Arabidopsis orphan protein-coding genes.

    Directory of Open Access Journals (Sweden)

    Casey R Richardson

    2010-05-01

    Full Text Available MicroRNAs (miRNAs and trans-acting small-interfering RNAs (tasi-RNAs are small (20-22 nt long RNAs (smRNAs generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery.We explored rice (Oryza sativa sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis 'orphan' hypothetical genes are non-coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the "ancient" (deeply conserved class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for "new" rapidly-evolving MIRNA genes.Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non-coding RNAs in plants and potentially other

  3. Antisense inhibition of hyaluronan synthase-2 in human osteosarcoma cells inhibits hyaluronan retention and tumorigenicity

    International Nuclear Information System (INIS)

    Nishida, Yoshihiro; Knudson, Warren; Knudson, Cheryl B.; Ishiguro, Naoki

    2005-01-01

    Osteosarcoma is a common malignant bone tumor associated with childhood and adolescence. The results of numerous studies have suggested that hyaluronan plays an important role in regulating the aggressive behavior of various types of cancer cells. However, no studies have addressed hyaluronan with respect to osteosarcomas. In this investigation, the mRNA expression copy number of three mammalian hyaluronan synthases (HAS) was determined using competitive RT-PCR in the osteoblastic osteosarcoma cell line, MG-63. MG-63 are highly malignant osteosarcoma cells with an abundant hyaluronan-rich matrix. The results demonstrated that HAS-2 is the predominant HAS in MG-63. Accumulation of intracellular hyaluronan increased in association with the proliferative phase of these cells. The selective inhibition of HAS-2 mRNA in MG-63 cells by antisense phosphorothioate oligonucleotides resulted in reduced hyaluronan accumulation by these cells. As expected, the reduction in hyaluronan disrupted the assembly of cell-associated matrices. However, of most interest, coincident with the reduction in hyaluronan, there was a substantial decrease in cell proliferation, a decrease in cell motility and a decrease in cell invasiveness. These data suggest that hyaluronan synthesized by HAS-2 in MG-63 plays a crucial role in osteosarcoma cell proliferation, motility, and invasion

  4. Antisense oligonucleotides targeting translation inhibitory elements in 5' UTRs can selectively increase protein levels.

    Science.gov (United States)

    Liang, Xue-Hai; Sun, Hong; Shen, Wen; Wang, Shiyu; Yao, Joyee; Migawa, Michael T; Bui, Huynh-Hoa; Damle, Sagar S; Riney, Stan; Graham, Mark J; Crooke, Rosanne M; Crooke, Stanley T

    2017-09-19

    A variety of diseases are caused by deficiencies in amounts or activity of key proteins. An approach that increases the amount of a specific protein might be of therapeutic benefit. We reasoned that translation could be specifically enhanced using trans-acting agents that counter the function of negative regulatory elements present in the 5' UTRs of some mRNAs. We recently showed that translation can be enhanced by antisense oligonucleotides (ASOs) that target upstream open reading frames. Here we report the amount of a protein can also be selectively increased using ASOs designed to hybridize to other translation inhibitory elements in 5' UTRs. Levels of human RNASEH1, LDLR, and ACP1 and of mouse ACP1 and ARF1 were increased up to 2.7-fold in different cell types and species upon treatment with chemically modified ASOs targeting 5' UTR inhibitory regions in the mRNAs encoding these proteins. The activities of ASOs in enhancing translation were sequence and position dependent and required helicase activity. The ASOs appear to improve the recruitment of translation initiation factors to the target mRNA. Importantly, ASOs targeting ACP1 mRNA significantly increased the level of ACP1 protein in mice, suggesting that this approach has therapeutic and research potentials. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Tuning growth cycles of Brassica crops via natural antisense transcripts of BrFLC.

    Science.gov (United States)

    Li, Xiaorong; Zhang, Shaofeng; Bai, Jinjuan; He, Yuke

    2016-03-01

    Several oilseed and vegetable crops of Brassica are biennials that require a prolonged winter cold for flowering, a process called vernalization. FLOWERING LOCUS C (FLC) is a central repressor of flowering. Here, we report that the overexpression of natural antisense transcripts (NATs) of Brassica rapa FLC (BrFLC) greatly shortens plant growth cycles. In rapid-, medium- and slow-cycling crop types, there are four copies of the BrFLC genes, which show extensive variation in sequences and expression levels. In Bre, a biennial crop type that requires vernalization, five NATs derived from the BrFLC2 locus are rapidly induced under cold conditions, while all four BrFLC genes are gradually down-regulated. The transgenic Bre lines overexpressing a long NAT of BrFLC2 do not require vernalization, resulting in a gradient of shortened growth cycles. Among them, a subset of lines both flower and set seeds as early as Yellow sarson, an annual crop type in which all four BrFLC genes have non-sense mutations and are nonfunctional in flowering repression. Our results demonstrate that the growth cycles of biennial crops of Brassica can be altered by changing the expression levels of BrFLC2 NATs. Thus, BrFLC2 NATs and their transgenic lines are useful for the genetic manipulation of crop growth cycles. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames.

    Science.gov (United States)

    Liang, Xue-Hai; Shen, Wen; Crooke, Stanley T

    2017-01-01

    A number of diseases are caused by low levels of key proteins; therefore, increasing the amount of specific proteins in human bodies is of therapeutic interest. Protein expression is downregulated by some structural or sequence elements present in the 5' UTR of mRNAs, such as upstream open reading frames (uORF). Translation initiation from uORF(s) reduces translation from the downstream primary ORF encoding the main protein product in the same mRNA, leading to a less efficient protein expression. Therefore, it is possible to use antisense oligonucleotides (ASOs) to specifically inhibit translation of the uORF by base-pairing with the uAUG region of the mRNA, redirecting translation machinery to initiate from the primary AUG site. Here we review the recent findings that translation of specific mRNAs can be enhanced using ASOs targeting uORF regions. Appropriately designed and optimized ASOs are highly specific, and they act in a sequence- and position-dependent manner, with very minor off-target effects. Protein levels can be increased using this approach in different types of human and mouse cells, and, importantly, also in mice. Since uORFs are present in around half of human mRNAs, the uORF-targeting ASOs may thus have valuable potential as research tools and as therapeutics to increase the levels of proteins for a variety of genes.

  7. Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice

    Directory of Open Access Journals (Sweden)

    Dominic Jauvin

    2017-06-01

    Full Text Available Myotonic dystrophy type 1 (DM1, a dominant hereditary muscular dystrophy, is caused by an abnormal expansion of a (CTGn trinucleotide repeat in the 3′ UTR of the human dystrophia myotonica protein kinase (DMPK gene. As a consequence, mutant transcripts containing expanded CUG repeats are retained in nuclear foci and alter the function of splicing regulatory factors members of the MBNL and CELF families, resulting in alternative splicing misregulation of specific transcripts in affected DM1 tissues. In the present study, we treated DMSXL mice systemically with a 2′-4′-constrained, ethyl-modified (ISIS 486178 antisense oligonucleotide (ASO targeted to the 3′ UTR of the DMPK gene, which led to a 70% reduction in CUGexp RNA abundance and foci in different skeletal muscles and a 30% reduction in the heart. Furthermore, treatment with ISIS 486178 ASO improved body weight, muscle strength, and muscle histology, whereas no overt toxicity was detected. This is evidence that the reduction of CUGexp RNA improves muscle strength in DM1, suggesting that muscle weakness in DM1 patients may be improved following elimination of toxic RNAs.

  8. Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels.

    Science.gov (United States)

    Gschwentner, M; Nagl, U O; Wöll, E; Schmarda, A; Ritter, M; Paulmichl, M

    1995-08-01

    Cell volume regulation is an essential feature of most cells. After swelling in hypotonic media, the simultaneous activation of potassium and chloride channels is believed to be the initial, time-determining step in cell volume regulation. The activation of both pathways is functionally linked and enables the cells to lose ions and water, subsequently leading to cell shrinkage and readjustment of the initial volume. NIH 3T3 fibroblasts efficiently regulate their volume after swelling and bear chloride channels that are activated by decreasing extracellular osmolarity. The chloride current elicited in these cells after swelling is reminiscent of the current found in oocytes expressing an outwardly rectifying chloride current termed ICln. Introduction of antisense oligodeoxynucleotides complementary to the first 30 nucleotides of the coding region of the ICln channel into NIH 3T3 fibroblasts suppresses the activation of the swelling-induced chloride current. The experiments directly demonstrate an unambiguous link between a volume-activated chloride current and a cloned protein involved in chloride transport.

  9. Molecular imaging of atherosclerotic plaques with technetium-99m-labelled antisense oligonucleotides

    International Nuclear Information System (INIS)

    Qin Guangming; Zhang Yongxue; Cao Wei; An Rui; Gao Zairong; Xu Wendai; Zhang Kaijun; Li Guiling; Li Shuren

    2005-01-01

    The purpose of this study was to visualise experimental atherosclerotic lesions using radiolabelled antisense oligonucleotides (ASONs). Atherosclerosis was induced in New Zealand White rabbits fed 1% cholesterol for approximately 60 days. In vivo and ex vivo imaging was performed in atherosclerotic rabbits and normal control rabbits after i.v. injection of 92.5±18.5 MBq 99m Tc-labelled ASON or 99m Tc-labelled sense oligonucleotides. Immediately after the in vivo imaging, the animals were sacrificed and ex vivo imaging of the aortic specimens was performed. Biodistribution of radiolabelled c-mycASON was evaluated in vivo in atherosclerotic rabbits. Planar imaging revealed accumulation of 99m Tc-labelled c-mycASON in atherosclerotic lesions along the artery wall. Ex vivo imaging further demonstrated that the area of activity accumulation matched the area of atherosclerotic lesions. In contrast, no atherosclerotic lesions were found in the vessel wall and no positive imaging results were obtained in animals of the control group. This molecular imaging approach has potential for non-invasive imaging of atherosclerotic plaques at an early stage. (orig.)

  10. Development of Multiexon Skipping Antisense Oligonucleotide Therapy for Duchenne Muscular Dystrophy

    Science.gov (United States)

    Yokota, Toshifumi; Wood, Matthew J. A.

    2013-01-01

    Duchenne muscular dystrophy (DMD) is an incurable, X-linked progressive muscle degenerative disorder that results from the absence of dystrophin protein and leads to premature death in affected individuals due to respiratory and/or cardiac failure typically by age of 30. Very recently the exciting prospect of an effective oligonucleotide therapy has emerged which restores dystrophin protein expression to affected tissues in DMD patients with highly promising data from a series of clinical trials. This therapeutic approach is highly mutation specific and thus is personalised. Therefore DMD has emerged as a model genetic disorder for understanding and overcoming of the challenges of developing personalised genetic medicines. One of the greatest weaknesses of the current oligonucleotide approach is that it is a mutation-specific therapy. To address this limitation, we have recently demonstrated that exons 45–55 skipping therapy has the potential to treat clusters of mutations that cause DMD, which could significantly reduce the number of compounds that would need to be developed in order to successfully treat all DMD patients. Here we discuss and review the latest preclinical work in this area as well as a variety of accompanying issues, including efficacy and potential toxicity of antisense oligonucleotides, prior to human clinical trials. PMID:23984357

  11. PlantNATsDB: a comprehensive database of plant natural antisense transcripts.

    Science.gov (United States)

    Chen, Dijun; Yuan, Chunhui; Zhang, Jian; Zhang, Zhao; Bai, Lin; Meng, Yijun; Chen, Ling-Ling; Chen, Ming

    2012-01-01

    Natural antisense transcripts (NATs), as one type of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and pathological processes. Although their important biological functions have been reported widely, a comprehensive database is lacking up to now. Consequently, we constructed a plant NAT database (PlantNATsDB) involving approximately 2 million NAT pairs in 69 plant species. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. PlantNATsDB provides various user-friendly web interfaces to facilitate the presentation of NATs and an integrated, graphical network browser to display the complex networks formed by different NATs. Moreover, a 'Gene Set Analysis' module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs. The PlantNATsDB is freely available at http://bis.zju.edu.cn/pnatdb/.

  12. Glycogen Reduction in Myotubes of Late-Onset Pompe Disease Patients Using Antisense Technology.

    Science.gov (United States)

    Goina, Elisa; Peruzzo, Paolo; Bembi, Bruno; Dardis, Andrea; Buratti, Emanuele

    2017-09-06

    Glycogen storage disease type II (GSDII) is a lysosomal disorder caused by the deficient activity of acid alpha-glucosidase (GAA) enzyme, leading to the accumulation of glycogen within the lysosomes. The disease has been classified in infantile and late-onset forms. Most late-onset patients share a splicing mutation c.-32-13T > G in intron 1 of the GAA gene that prevents efficient recognition of exon 2 by the spliceosome. In this study, we have mapped the splicing silencers of GAA exon 2 and developed antisense morpholino oligonucleotides (AMOs) to inhibit those regions and rescue normal splicing in the presence of the c.-32-13T > G mutation. Using a minigene approach and patient fibroblasts, we successfully increased inclusion of exon 2 in the mRNA and GAA enzyme production by targeting a specific silencer with a combination of AMOs. Most importantly, the use of these AMOs in patient myotubes results in a decreased accumulation of glycogen. To our knowledge, this is the only therapeutic approach resulting in a decrease of glycogen accumulation in patient tissues beside enzyme replacement therapy (ERT) and TFEB overexpression. As a result, it may represent a highly novel and promising therapeutic line for GSDII. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Multilevel Regulation of Bacterial Gene Expression with the Combined STAR and Antisense RNA System.

    Science.gov (United States)

    Lee, Young Je; Kim, Soo-Jung; Moon, Tae Seok

    2018-03-16

    Synthetic small RNA regulators have emerged as a versatile tool to predictably control bacterial gene expression. Owing to their simple design principles, small size, and highly orthogonal behavior, these engineered genetic parts have been incorporated into genetic circuits. However, efforts to achieve more sophisticated cellular functions using RNA regulators have been hindered by our limited ability to integrate different RNA regulators into complex circuits. Here, we present a combined RNA regulatory system in Escherichia coli that uses small transcription activating RNA (STAR) and antisense RNA (asRNA) to activate or deactivate target gene expression in a programmable manner. Specifically, we demonstrated that the activated target output by the STAR system can be deactivated by expressing two different types of asRNAs: one binds to and sequesters the STAR regulator, affecting the transcription process, while the other binds to the target mRNA, affecting the translation process. We improved deactivation efficiencies (up to 96%) by optimizing each type of asRNA and then integrating the two optimized asRNAs into a single circuit. Furthermore, we demonstrated that the combined STAR and asRNA system can control gene expression in a reversible way and can regulate expression of a gene in the genome. Lastly, we constructed and simultaneously tested two A AND NOT B logic gates in the same cell to show sophisticated multigene regulation by the combined system. Our approach establishes a methodology for integrating multiple RNA regulators to rationally control multiple genes.

  14. A long natural-antisense RNA is accumulated in the conidia of Aspergillus oryzae.

    Science.gov (United States)

    Tsujii, Masaru; Okuda, Satoshi; Ishi, Kazutomo; Madokoro, Kana; Takeuchi, Michio; Yamagata, Youhei

    2016-01-01

    Analysis of expressed sequence tag libraries from various culture conditions revealed the existence of conidia-specific transcripts assembled to putative conidiation-specific reductase gene (csrA) in Aspergillus oryzae. However, the all transcripts were transcribed with opposite direction to the gene csrA. The sequence analysis of the transcript revealed that the RNA overlapped mRNA of csrA with 3'-end, and did not code protein longer than 60 amino acid residues. We designated the transcript Conidia Specific Long Natural-antisense RNA (CSLNR). The real-time PCR analysis demonstrated that the CSLNR is conidia-specific transcript, which cannot be transcribed in the absence of brlA, and the amount of CSLNR was much more than that of the transcript from csrA in conidia. Furthermore, the csrA deletion, also lacking coding region of CSLNR in A. oryzae reduced the number of conidia. Overexpression of CsrA demonstrated the inhibition of growth and conidiation, while CSLNR did not affect conidiation.

  15. Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice.

    Science.gov (United States)

    Jauvin, Dominic; Chrétien, Jessina; Pandey, Sanjay K; Martineau, Laurie; Revillod, Lucille; Bassez, Guillaume; Lachon, Aline; MacLeod, A Robert; Gourdon, Geneviève; Wheeler, Thurman M; Thornton, Charles A; Bennett, C Frank; Puymirat, Jack

    2017-06-16

    Myotonic dystrophy type 1 (DM1), a dominant hereditary muscular dystrophy, is caused by an abnormal expansion of a (CTG) n trinucleotide repeat in the 3' UTR of the human dystrophia myotonica protein kinase (DMPK) gene. As a consequence, mutant transcripts containing expanded CUG repeats are retained in nuclear foci and alter the function of splicing regulatory factors members of the MBNL and CELF families, resulting in alternative splicing misregulation of specific transcripts in affected DM1 tissues. In the present study, we treated DMSXL mice systemically with a 2'-4'-constrained, ethyl-modified (ISIS 486178) antisense oligonucleotide (ASO) targeted to the 3' UTR of the DMPK gene, which led to a 70% reduction in CUG exp RNA abundance and foci in different skeletal muscles and a 30% reduction in the heart. Furthermore, treatment with ISIS 486178 ASO improved body weight, muscle strength, and muscle histology, whereas no overt toxicity was detected. This is evidence that the reduction of CUG exp RNA improves muscle strength in DM1, suggesting that muscle weakness in DM1 patients may be improved following elimination of toxic RNAs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Antisense Oligonucleotide-mediated Exon Skipping as a Systemic Therapeutic Approach for Recessive Dystrophic Epidermolysis Bullosa.

    Science.gov (United States)

    Bremer, Jeroen; Bornert, Olivier; Nyström, Alexander; Gostynski, Antoni; Jonkman, Marcel F; Aartsma-Rus, Annemieke; van den Akker, Peter C; Pasmooij, Anna Mg

    2016-10-18

    The "generalized severe" form of recessive dystrophic epidermolysis bullosa (RDEB-gen sev) is caused by bi-allelic null mutations in COL7A1, encoding type VII collagen. The absence of type VII collagen leads to blistering of the skin and mucous membranes upon the slightest trauma. Because most patients carry exonic point mutations or small insertions/deletions, most exons of COL7A1 are in-frame, and low levels of type VII collagen already drastically improve the disease phenotype, this gene seems a perfect candidate for antisense oligonucleotide (AON)-mediated exon skipping. In this study, we examined the feasibility of AON-mediated exon skipping in vitro in primary cultured keratinocytes and fibroblasts, and systemically in vivo using a human skin-graft mouse model. We show that treatment with AONs designed against exon 105 leads to in-frame exon 105 skipping at the RNA level and restores type VII collagen protein production in vitro. Moreover, we demonstrate that systemic delivery in vivo induces de novo expression of type VII collagen in skin grafts generated from patient cells. Our data demonstrate strong proof-of-concept for AON-mediated exon skipping as a systemic therapeutic strategy for RDEB.

  17. Global DNA hypermethylation-associated cancer chemotherapy resistance and its reversion with the demethylating agent hydralazine

    Directory of Open Access Journals (Sweden)

    Benitez-Bribiesca Luis

    2006-08-01

    Full Text Available Abstract Background The development of resistance to cytotoxic chemotherapy continues to be a major obstacle for successful anticancer therapy. It has been shown that cells exposed to toxic concentrations of commonly used cancer chemotherapy agents develop DNA hypermetylation. Hence, demethylating agents could play a role in overcoming drug resistance. Methods MCF-7 cells were rendered adriamycin-resistant by weekly treatment with adriamycin. Wild-type and the resulting MCF-7/Adr cells were analyzed for global DNA methylation. DNA methyltransferase activity and DNA methyltransferase (dnmt gene expression were also determined. MCF-7/Adr cells were then subjected to antisense targeting of dnmt1, -3a, and -b genes and to treatment with the DNA methylation inhibitor hydralazine to investigate whether DNA demethylation restores sensitivity to adriamycin. Results MCF-7/Adr cells exhibited the multi-drug resistant phenotype as demonstrated by adriamycin resistance, mdr1 gene over-expression, decreased intracellular accumulation of adriamycin, and cross-resistance to paclitaxel. The mdr phenotype was accompanied by global DNA hypermetylation, over-expression of dnmt genes, and increased DNA methyltransferase activity as compared with wild-type MCF-7 cells. DNA demethylation through antisense targeting of dnmts or hydralazine restored adriamycin sensitivity of MCF-7/Adr cells to a greater extent than verapamil, a known inhibitor of mdr protein, suggesting that DNA demethylation interferes with the epigenetic reprogramming that participates in the drug-resistant phenotype. Conclusion We provide evidence that DNA hypermethylation is at least partly responsible for development of the multidrug-resistant phenotype in the MCF-7/Adr model and that hydralazine, a known DNA demethylating agent, can revert the resistant phenotype.

  18. NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3β resulting in the stabilization of MYCN in human neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Yusuke Suenaga

    2014-01-01

    Full Text Available The rearrangement of pre-existing genes has long been thought of as the major mode of new gene generation. Recently, de novo gene birth from non-genic DNA was found to be an alternative mechanism to generate novel protein-coding genes. However, its functional role in human disease remains largely unknown. Here we show that NCYM, a cis-antisense gene of the MYCN oncogene, initially thought to be a large non-coding RNA, encodes a de novo evolved protein regulating the pathogenesis of human cancers, particularly neuroblastoma. The NCYM gene is evolutionally conserved only in the taxonomic group containing humans and chimpanzees. In primary human neuroblastomas, NCYM is 100% co-amplified and co-expressed with MYCN, and NCYM mRNA expression is associated with poor clinical outcome. MYCN directly transactivates both NCYM and MYCN mRNA, whereas NCYM stabilizes MYCN protein by inhibiting the activity of GSK3β, a kinase that promotes MYCN degradation. In contrast to MYCN transgenic mice, neuroblastomas in MYCN/NCYM double transgenic mice were frequently accompanied by distant metastases, behavior reminiscent of human neuroblastomas with MYCN amplification. The NCYM protein also interacts with GSK3β, thereby stabilizing the MYCN protein in the tumors of the MYCN/NCYM double transgenic mice. Thus, these results suggest that GSK3β inhibition by NCYM stabilizes the MYCN protein both in vitro and in vivo. Furthermore, the survival of MYCN transgenic mice bearing neuroblastoma was improved by treatment with NVP-BEZ235, a dual PI3K/mTOR inhibitor shown to destabilize MYCN via GSK3β activation. In contrast, tumors caused in MYCN/NCYM double transgenic mice showed chemo-resistance to the drug. Collectively, our results show that NCYM is the first de novo evolved protein known to act as an oncopromoting factor in human cancer, and suggest that de novo evolved proteins may functionally characterize human disease.

  19. Overexpression of a natural chloroplast-encoded antisense RNA in tobacco destabilizes 5S rRNA and retards plant growth

    Directory of Open Access Journals (Sweden)

    Stern David B

    2010-09-01

    Full Text Available Abstract Background The roles of non-coding RNAs in regulating gene expression have been extensively studied in both prokaryotes and eukaryotes, however few reports exist as to their roles in organellar gene regulation. Evidence for accumulation of natural antisense RNAs (asRNAs in chloroplasts comes from the expressed sequence tag database and cDNA libraries, while functional data have been largely obtained from artificial asRNAs. In this study, we used Nicotiana tabacum to investigate the effect on sense strand transcripts of overexpressing a natural chloroplast asRNA, AS5, which is complementary to the region which encodes the 5S rRNA and tRNAArg. Results AS5-overexpressing (AS5ox plants obtained by chloroplast transformation exhibited slower growth and slightly pale green leaves. Analysis of AS5 transcripts revealed four distinct species in wild-type (WT and AS5ox plants, and additional AS5ox-specific products. Of the corresponding sense strand transcripts, tRNAArg overaccumulated several-fold in transgenic plants whereas 5S rRNA was unaffected. However, run-on transcription showed that the 5S-trnR region was transcribed four-fold more in the AS5ox plants compared to WT, indicating that overexpression of AS5 was associated with decreased stability of 5S rRNA. In addition, polysome analysis of the transformants showed less 5S rRNA and rbcL mRNA associated with ribosomes. Conclusions Our results suggest that AS5 can modulate 5S rRNA levels, giving it the potential to affect Chloroplast translation and plant growth. More globally, overexpression of asRNAs via chloroplast transformation may be a useful strategy for defining their functions.

  20. Elucidation of the Biotransformation Pathways of a Galnac3-conjugated Antisense Oligonucleotide in Rats and Monkeys

    Directory of Open Access Journals (Sweden)

    Colby S Shemesh

    2016-01-01

    Full Text Available Triantennary N-acetyl galactosamine (GalNAc3 is a high-affinity ligand for hepatocyte-specific asialoglycoprotein receptors. Conjugation with GalNAc3 via a trishexylamino (THA-C6 cluster significantly enhances antisense oligonucleotide (ASO potency. Herein, the biotransformation, disposition, and elimination of the THA cluster of ION-681257, a GalNAc3-conjugated ASO currently in clinical development, are investigated in rats and monkey. Rats were administered a single subcutaneous dose of 3H-radiolabeled (3H placed in THA or nonradiolabeled ION-681257. Mass balance included radiometric profiling and metabolite fractionation with characterization by mass spectrometry. GalNAc3-conjugated ASOs were extensively distributed into liver. The THA-C6 triantenerrary GalNAc3 conjugate at the 5′-end of the ASO was rapidly metabolized and excreted with 25.67 ± 1.635% and 71.66 ± 4.17% of radioactivity recovered in urine and feces within 48 hours postdose. Unchanged drug, short-mer ASOs, and linker metabolites were detected in urine. Collectively, 14 novel linker associated metabolites were discovered including oxidation at each branching arm, initially by monooxidation at the β-position followed by dioxidation at the α-arm, and lastly, tri and tetra oxidations on the two remaining β-arms. Metabolites in bile and feces were identical to urine except for oxidized linear and cyclic linker metabolites. Enzymatic reaction phenotyping confirmed involvement of N-acetyl-β-glucosaminidase, deoxyribonuclease II, alkaline phosphatase, and alcohol + aldehyde dehydrogenases on the complex metabolism pathway for THA supplementing in vivo findings. Lastly, excreta from monkeys treated with ION-681257 revealed the identical series as observed in rat. In summary, our findings provide an improved understanding of GalNAc3-conjugated-ASO metabolism pathways which facilitate similar development programs.

  1. Structure Activity Relationships of α-L-LNA Modified Phosphorothioate Gapmer Antisense Oligonucleotides in Animals

    Directory of Open Access Journals (Sweden)

    Punit P Seth

    2012-01-01

    Full Text Available We report the structure activity relationships of short 14-mer phosphorothioate gapmer antisense oligonucleotides (ASOs modified with α-L-locked nucleic acid (LNA and related modifications targeting phosphatase and tensin homologue (PTEN messenger RNA in mice. α-L-LNA represents the α-anomer of enantio-LNA and modified oligonucleotides show LNA like binding affinity for complementary RNA. In contrast to sequence matched LNA gapmer ASOs which showed elevations in plasma alanine aminotransferase (ALT levels indicative of hepatotoxicity, gapmer ASOs modified with α-L-LNA and related analogs in the flanks showed potent downregulation of PTEN messenger RNA in liver tissue without producing elevations in plasma ALT levels. However, the α-L-LNA ASO showed a moderate dose-dependent increase in liver and spleen weights suggesting a higher propensity for immune stimulation. Interestingly, replacing α-L-LNA nucleotides in the 3′- and 5′-flanks with R-5′-Me-α-L-LNA but not R-6′-Me- or 3′-Me-α-L-LNA nucleotides, reversed the drug induced increase in organ weights. Examination of structural models of dinucleotide units suggested that the 5′-Me group increases steric bulk in close proximity to the phosphorothioate backbone or produces subtle changes in the backbone conformation which could interfere with recognition of the ASO by putative immune receptors. Our data suggests that introducing steric bulk at the 5′-position of the sugar-phosphate backbone could be a general strategy to mitigate the immunostimulatory profile of oligonucleotide drugs. In a clinical setting, proinflammatory effects manifest themselves as injection site reactions and flu-like symptoms. Thus, a mitigation of these effects could increase patient comfort and compliance when treated with ASOs.

  2. Regulation of human heme oxygenase in endothelial cells by using sense and antisense retroviral constructs.

    Science.gov (United States)

    Quan, S; Yang, L; Abraham, N G; Kappas, A

    2001-10-09

    Our objective was to determine whether overexpression and underexpression of human heme oxygenase (HHO)-1 could be controlled on a long-term basis by introduction of the HO-1 gene in sense (S) and antisense (AS) orientation with an appropriate vector into endothelial cells. Retroviral vector (LXSN) containing viral long terminal repeat promoter-driven human HO-1 S (LSN-HHO-1) and LXSN vectors containing HHO-1 promoter (HOP)-controlled HHO-1 S and AS (LSN-HOP-HHO-1 and LSN-HOP-HHO-1-AS) sequences were constructed and used to transfect rat lung microvessel endothelial cells (RLMV cells) and human dermal microvessel endothelial cells (HMEC-1 cells). RLMV cells transduced with HHO-1 S expressed human HO-1 mRNA and HO-1 protein associated with elevation in total HO activity compared with nontransduced cells. Vector-mediated expression of HHO-1 S or AS under control of HOP resulted in effective production of HO-1 or blocked induction of endogenous human HO-1 in HMEC-1 cells, respectively. Overexpression of HO-1 AS was associated with a long-term decrease (45%) of endogenous HO-1 protein and an increase (167%) in unmetabolized exogenous heme in HMEC-1 cells. Carbon monoxide (CO) production in HO-1 S- or AS-transduced HMEC-1 cells after heme treatment was increased (159%) or decreased (50%), respectively, compared with nontransduced cells. HO-2 protein levels did not change. These findings demonstrate that HHO-1 S and AS retroviral constructs are functional in enhancing and reducing HO activity, respectively, and thus can be used to regulate cellular heme levels, the activity of heme-dependent enzymes, and the rate of heme catabolism to CO and bilirubin.

  3. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Science.gov (United States)

    Yu, Xing Xian; Watts, Lynnetta M; Manchem, Vara Prasad; Chakravarty, Kaushik; Monia, Brett P; McCaleb, Michael L; Bhanot, Sanjay

    2013-01-01

    Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  4. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Xing Xian Yu

    Full Text Available Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4 in peripheral tissues. Treatment of diet-induce obese (DIO mice with FGFR4 antisense oligonucleotides (ASO specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  5. Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft

    Directory of Open Access Journals (Sweden)

    Baldi Alfonso

    2011-07-01

    Full Text Available Abstract Background Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139 as well as the efficacy of combination chemotherapy in human melanoma xenografts. Methods Melanoma-bearing nude mice were treated i.v. with G3139 and/or cisplatin (DDP followed by the application of trains of electric pulses to tumors. Western blot, immunohistochemistry and real-time PCR were performed to analyze protein and mRNA expression. The effect of electroporation on muscles was determined by histology, while tumor apoptosis and the proliferation index were analyzed by immunohistochemistry. Antisense oligodeoxynucleotides tumor accumulation was measured by FACS and confocal microscopy. Results The G3139/Electroporation combined therapy produced a significant inhibition of tumor growth (TWI, more than 50% accompanied by a marked tumor re-growth delay (TRD, about 20 days. The efficacy of this treatment was due to the higher G3139 uptake in tumor cells which led to a marked down-regulation of bcl-2 protein expression. Moreover, the G3139/EP combination treatment resulted in an enhanced apoptotic index and a decreased proliferation rate of tumors. Finally, an increased tumor response was observed after treatment with the triple combination G3139/DDP/EP, showing a TWI of about 75% and TRD of 30 days. Conclusions These results demonstrate that electroporation is an effective strategy to improve the delivery of antisense oligodeoxynucleotides within tumor cells in vivo and it may be instrumental in optimizing the response of melanoma to chemotherapy. The high response rate observed in this study suggest to apply this strategy for the treatment of melanoma patients.

  6. Modulation of splicing of the preceding intron by antisense oligonucleotide complementary to intra-exon sequence deleted in dystrophin Kobe

    Energy Technology Data Exchange (ETDEWEB)

    Takeshima, Y.; Matuso, M.; Sakamoto, H.; Nishio, H. [Kobe Univ. School of Medicine and Science (Japan)

    1994-09-01

    Molecular analysis of dystrophin Kobe showed that exon 19 of the dystrophin gene bearing a 52 bp deletion was skipped during splicing, although the known consensus sequences at the 5{prime} and 3{prime} splice site of exon 19 were maintained. These data suggest that the deleted sequence of exon 19 may function as a cis-acting factor for exact splicing for the upstream intron. To investigate this potential role, an in vitro splicing system using dystrophin precursors was established. A two-exon precursor containing exon 18, truncated intron 18, and exon 19 was accurately spliced. However, splicing of intron 18 was dramatically inhibited when wild exon 19 was replaced with mutated exon 19. Even though the length of exon 19 was restored to normal by replacing the deleted sequence with other sequence, splicing of intron 18 was not fully reactivated. Characteristically, splicing of intron 18 was inactivated more markedly when the replaced sequence contained less polypurine stretches. These data suggested that modification of the exon sequence would result in a splicing abnormality. Antisense 31 mer 2`-O-methyl ribonucleotide was targeted against 5{prime} end of deleted region of exon 19 to modulate splicing of the mRNA precursor. Splicing of intron 18 was inhibited in a dose- and time-dependent manner. This is the first in vitro evidence to show splicing of dystrophin pre-mRNA can be managed by antisense oligonucleotides. These experiments represent an approach in which antisense oligonucleotides are used to restore the function of a defective dystrophin gene in Duchenne muscular dystrophy by inducing skipping of certain exons during splicing.

  7. Extensive phylogenetic analysis of a soil bacterial community illustrates extreme taxon evenness and the effects of amplicon length, degree of coverage, and DNA fractionation on classification and ecological parameters.

    Science.gov (United States)

    Morales, Sergio E; Cosart, Theodore F; Johnson, Jesse V; Holben, William E

    2009-02-01

    To thoroughly investigate the bacterial community diversity present in a single composite sample from an agricultural soil and to examine potential biases resulting from data acquisition and analytical approaches, we examined the effects of percent G+C DNA fractionation, sequence length, and degree of coverage of bacterial diversity on several commonly used ecological parameters (species estimation, diversity indices, and evenness). We also examined variation in phylogenetic placement based on multiple commonly used approaches (ARB alignments and multiple RDP tools). The results demonstrate that this soil bacterial community is highly diverse, with 1,714 operational taxonomic units demonstrated and 3,555 estimated (based on the Chao1 richness estimation) at 97% sequence similarity using the 16S rRNA gene. The results also demonstrate a fundamental lack of dominance (i.e., a high degree of evenness), with 82% of phylotypes being encountered three times or less. The data also indicate that generally accepted cutoff values for phylum-level taxonomic classification might not be as applicable or as general as previously assumed and that such values likely vary between prokaryotic phyla or groups.

  8. Endogenous Msx1 antisense transcript: In vivo and in vitro evidences, structure, and potential involvement in skeleton development in mammals

    OpenAIRE

    Blin-Wakkach, C.; Lezot, F.; Ghoul-Mazgar, S.; Hotton, D.; Monteiro, S.; Teillaud, C.; Pibouin, L.; Orestes-Cardoso, S.; Papagerakis, P.; Macdougall, M.; Robert, B.; Berdal, A.

    2001-01-01

    Msx1 is a key factor for the development of tooth and craniofacial skeleton and has been proposed to play a pivotal role in terminal cell differentiation. In this paper, we demonstrated the presence of an endogenous Msx1 antisense RNA (Msx1-AS RNA) in mice, rats, and humans. In situ analysis revealed that this RNA is expressed only in differentiated dental and bone cells with an inverse correlation with Msx1 protein. These in vivo data and overexpression of Msx1 sense and AS RNA in an odontob...

  9. The mycobacterial DNA-binding protein 1 (MDP1 from Mycobacterium bovis BCG influences various growth characteristics

    Directory of Open Access Journals (Sweden)

    Maurischat Sven

    2008-06-01

    Full Text Available Abstract Background Pathogenic mycobacteria such as M. tuberculosis, M. bovis or M. leprae are characterised by their extremely slow growth rate which plays an important role in mycobacterial virulence and eradication of the bacteria. Various limiting factors influence the generation time of mycobacteria, and the mycobacterial DNA-binding protein 1 (MDP1 has also been implicated in growth regulation. Our strategy to investigate the role of MDP1 in mycobacterial growth consisted in the generation and characterisation of a M. bovis BCG derivative expressing a MDP1-antisense gene. Results The expression rate of the MDP1 protein in the recombinant M. bovis BCG containing the MDP1-antisense plasmid was reduced by about 50% compared to the reference strain M. bovis BCG containing the empty vector. In comparison to this reference strain, the recombinant M. bovis BCG grew faster in broth culture and reached higher cell masses in stationary phase. Likewise its intracellular growth in mouse and human macrophages was ameliorated. Bacterial clumping in broth culture was reduced by the antisense plasmid. The antisense plasmid increased the susceptibility of the bacteria towards Ampicillin. 2-D protein gels of bacteria maintained under oxygen-poor conditions demonstrated a reduction in the number and the intensity of many protein spots in the antisense strain compared to the reference strain. Conclusion The MDP1 protein has a major impact on various growth characteristics of M. bovis BCG. It plays an important role in virulence-related traits such as aggregate formation and intracellular multiplication. Its impact on the protein expression in a low-oxygen atmosphere indicates a role in the adaptation to the hypoxic conditions present in the granuloma.

  10. Combination of vascular endothelial growth factor antisense oligonucleotide therapy and radiotherapy increases the curative effects against maxillofacial VX2 tumors in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Linfeng, E-mail: zhenglinfeng04@yahoo.com.cn [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Li Yujie, E-mail: yujieli01@yahoo.com.cn [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Wang Han, E-mail: bingowh@hotmail.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Zhao Jinglong, E-mail: jinglongz@yahoo.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Wang Xifu, E-mail: wangxiechen001@163.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Hu Yunsheng, E-mail: springmorninghu@163.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China); Zhang Guixiang, E-mail: guixiangzhang@sina.com [Department of Radiology, Shanghai First People' s Hospital, Medical College, Shanghai Jiaotong University, Hanning Road, 100, 200080 Shanghai (China)

    2011-05-15

    Purpose: To study the effects of combination of vascular endothelial growth factor (VEGF) antisense oligonucleotide therapy and radiotherapy on maxillofacial VX2 tumors in rabbits. Methods: We used 24 New Zealand white rabbits as a model to induce maxillofacial VX2 tumor. The rabbits were randomly divided into the following 4 groups: radiotherapy group (group A), treated with 16 Gy of radiotherapy; VEGF antisense oligonucleotide treatment group (group B), treated with an injection of 150 {mu}g of VEGF antisense oligonucleotide into the local tumor; VEGF antisense oligonucleotide combined with radiotherapy group (group C), treated with an injection of 150 {mu}g of VEGF antisense oligonucleotide into the local tumor immediately after 16 Gy of radiotherapy; and control group (group D), treated with an injection of 300 {mu}l 5% aqueous glucose solution into the local tumor. On days 3 and 14 after treatment, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was performed to calculate maximal enhancement ratio (MER), slope of enhancement (SLE), and tumor volume change. Rabbits were killed on day 14 to obtain samples for pathological examination and immunohistochemical staining for VEGF. Results: In group C, tumor volume was significantly reduced on day 14 after treatment, and the difference was statistically different as compared to that before treatment, on day 3 after treatment and other groups (P < 0.01). Values of both MER and SLE after treatment were significantly lower than the values before treatment (P < 0.05). Pathological specimen revealed tumor cell edema, bleeding, necrosis, vascular wall thickening and occlusion, and decreased VEGF expression. The immunohistochemical score (IHS) of group C was significantly different from groups A and D respectively (P < 0.05). Conclusion: Injecting the tumor with VEGF antisense oligonucleotide immediately after radiotherapy can enhance the curative effect on rabbit maxillofacial VX2 tumor, and DCE-MRI can serve

  11. Decreased cell survival and DNA repair capacity after UVC irradiation in association with down-regulation of GRP78/BiP in human RSa cells

    International Nuclear Information System (INIS)

    Zhai Ling; Kita, Kazuko; Wano, Chieko; Wu Yuping; Sugaya, Shigeru; Suzuki, Nobuo

    2005-01-01

    In contrast to extensive studies on the roles of molecular chaperones, such as heat shock proteins, there are only a few reports about the roles of GRP78/BiP, an endoplasmic reticulum (ER) stress-induced molecular chaperone, in mammalian cell responses to DNA-damaging stresses. To investigate whether GRP78/BiP is involved in resistance to a DNA-damaging agent, UVC (principally 254 nm in wavelength), we established human cells with down-regulation of GRP78/BiP by transfection of human RSa cells with antisense cDNA for GRP78/BiP. We found that the transfected cells showed higher sensitivity to UVC-induced cell death than control cells transfected with the vector alone. In the antisense-cDNA transfected cells, the removal capacities of the two major types of UVC-damaged DNA (thymine dimers and (6-4) photoproducts) in vivo and DNA synthesis activity of whole cell extracts to repair UVC-irradiated plasmids in vitro were remarkably decreased compared with those in the control cells. Furthermore, the antisense-cDNA transfected cells also showed slightly higher sensitivity to cisplatin-induced cell death than the control cells. Cisplatin-induced DNA damage is primarily repaired by nucleotide excision repair, like UVC-induced DNA damage. The present results suggest that GRP78/BiP plays a protective role against UVC-induced cell death possibly via nucleotide excision repair, at least in the human RSa cells tested

  12. Unravelling the Secrets of Mycobacterial Cidality through the Lens of Antisense.

    Directory of Open Access Journals (Sweden)

    Parvinder Kaur

    Full Text Available One of the major impediments in anti-tubercular drug discovery is the lack of a robust grammar that governs the in-vitro to the in-vivo translation of efficacy. Mycobacterium tuberculosis (Mtb is capable of growing both extracellular as well as intracellular; encountering various hostile conditions like acidic milieu, free radicals, starvation, oxygen deprivation, and immune effector mechanisms. Unique survival strategies of Mtb have prompted researchers to develop in-vitro equivalents to simulate in-vivo physiologies and exploited to find efficacious inhibitors against various phenotypes. Conventionally, the inhibitors are screened on Mtb under the conditions that are unrelated to the in-vivo disease environments. The present study was aimed to (1. Investigate cidality of Mtb targets using a non-chemical inhibitor antisense-RNA (AS-RNA under in-vivo simulated in-vitro conditions.(2. Confirm the cidality of the targets under in-vivo in experimental tuberculosis. (3. Correlate in-vitro vs. in-vivo cidality data to identify the in-vitro condition that best predicts in-vivo cidality potential of the targets. Using cidality as a metric for efficacy, and AS-RNA as a target-specific inhibitor, we delineated the cidality potential of five target genes under six different physiological conditions (replicating, hypoxia, low pH, nutrient starvation, nitrogen depletion, and nitric oxide.In-vitro cidality confirmed in experimental tuberculosis in BALB/c mice using the AS-RNA allowed us to identify cidal targets in the rank order of rpoB>aroK>ppk>rpoC>ilvB. RpoB was used as the cidality control. In-vitro and in-vivo studies feature aroK (encoding shikimate kinase as an in-vivo mycobactericidal target suitable for anti-TB drug discovery. In-vitro to in-vivo cidality correlations suggested the low pH (R = 0.9856 in-vitro model as best predictor of in-vivo cidality; however, similar correlation studies in pathologically relevant (Kramnik mice are warranted. In

  13. Growth inhibition of human pancreatic cancer cells by lipofection mediated IGF-1R antisense oligodeoxynucletides in combination with ionizing radiation

    International Nuclear Information System (INIS)

    Pan Yaozhen; Sun Chengyi; Wang Yuzhi

    2004-01-01

    Objective: To study the growth inhibition of human pancreatic cancer cells (PC-3) by lipofection-mediated and ionizing radiation improving transfection of IGF-1R antisense oligodeoxynucletides (ASON) in vitro. Methods: Colonigenicity of PC-3 cells in vitro after 60 Co γ-radiation was observed for ascertaining their radiosensitivity and optimal radiation dose was selected according to the radiation sensitivity. PC-3 cells were transfected by two ways: 1) by lipofection-mediated IGF-1R ASON combined with ionizing radiation. 2) by lipo-ASON alone without ionizing radiation. Cell growth was assessed by MTT method. The expression of IGF-1R at mRNA level was examined by RT-PCR. Flow cytometry was used to demonstrate apoptotic changes in lipo-ASON-treated cells. Results: The inhibitory efficiency of lipo-ASON combined with ionizing radiation was higher than that without ionizing radiation (P < 0.05). The apoptotic efficiency and the decreased level of IGF-1R at mRNA were significantly improved (P < 0.05). Conclusion: Lipofection-mediated and ionizing radiation-promoted transfection of IGF-1R antisense oligodeoxynucletides (ASON) significantly decreases IGF-1R at mRNA level and induces apoptosis of human pancreatic cancer cells in vitro

  14. Antisense-MDM2 Sensitizes LNCaP Prostate Cancer Cells to Androgen Deprivation, Radiation, and the Combination In Vivo

    International Nuclear Information System (INIS)

    Stoyanova, Radka; Hachem, Paul; Hensley, Harvey; Khor, L.-Y.; Mu Zhaomei; Hammond, M. Elizabeth H.; Agrawal, Sudhir; Pollack, Alan

    2007-01-01

    Purpose: To test the effects of antisense (AS)-MDM2 alone and with androgen deprivation (AD), radiotherapy (RT), and AD + RT on wild-type LNCaP cells in an orthotopic in vivo model. Methods: Androgen-sensitive LNCaP cells were grown in the prostates of nude mice. Magnetic resonance imaging-based tumor volume and serum prostate-specific antigen (PSA) measurements were used to assess effects on tumor response. Tumor response was measured by biochemical and tumor volume failure definitions and doubling time estimates from fitted PSA and tumor volume growth curves. Expression of MDM2, p53, p21, and Ki-67 was quantified using immunohistochemical staining and image analysis of formalin-fixed tissue, analogous to methods used clinically. Results: Antisense-MDM2 significantly inhibited the growth of LNCaP tumors over the mismatch controls. The most significant increase in tumor growth delay and tumor doubling time was from AS-MDM2 + AD + RT, although the effect of AS-MDM2 + AD was substantial. Expression of MDM2 was significantly reduced by AS-MDM2 in the setting of RT. Conclusions: This is the first in vivo investigation of the effects of AS-MDM2 in an orthotopic model and the first to demonstrate incremental sensitization when added to AD and AD + RT. The results with AD underscore the potential to affect micrometastatic disease, which is probably responsible for treatment failure in 30-40% of men with high-risk disease

  15. Quantitative Analysis of Survivin Protein Expression and Its Therapeutic Depletion by an Antisense Oligonucleotide in Human Lung Tumors

    Directory of Open Access Journals (Sweden)

    Anna L Olsen

    2012-01-01

    Full Text Available RNA-directed antisense and interference therapeutics are a promising treatment option for cancer. The demonstration of depletion of target proteins within human tumors in vivo using validated methodology will be a key to the application of this technology. Here, we present a flow cytometric-based approach to quantitatively determine protein levels in solid tumor material derived by fiber optic brushing (FOB of non-small cell lung cancer (NSCLC patients. Focusing upon the survivin protein, and its depletion by an antisense oligonucleotide (ASO (LY2181308, we show that we can robustly identify a subpopulation of survivin positive tumor cells in FOB samples, and, moreover, detect survivin depletion in tumor samples from a patient treated with LY2181308. Survivin depletion appears to be a result of treatment with this ASO, because a tumor treated with conventional cytotoxic chemotherapy did not exhibit a decreased percentage of survivin positive cells. Our approach is likely to be broadly applicable to, and useful for, the quantification of protein levels in tumor samples obtained as part of clinical trials and studies, facilitating the proof-of-principle testing of novel targeted therapies.

  16. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice

    Science.gov (United States)

    Zinker, Bradley A.; Rondinone, Cristina M.; Trevillyan, James M.; Gum, Rebecca J.; Clampit, Jill E.; Waring, Jeffrey F.; Xie, Nancy; Wilcox, Denise; Jacobson, Peer; Frost, Leigh; Kroeger, Paul E.; Reilly, Regina M.; Koterski, Sandra; Opgenorth, Terry J.; Ulrich, Roger G.; Crosby, Seth; Butler, Madeline; Murray, Susan F.; McKay, Robert A.; Bhanot, Sanjay; Monia, Brett P.; Jirousek, Michael R.

    2002-01-01

    The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA1C. Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50α, were increased and PI3-kinase p85α expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes. PMID:12169659

  17. Long-term Exon Skipping Studies With 2′-O-Methyl Phosphorothioate Antisense Oligonucleotides in Dystrophic Mouse Models

    Directory of Open Access Journals (Sweden)

    Christa L Tanganyika-de Winter

    2012-01-01

    Full Text Available Antisense-mediated exon skipping for Duchenne muscular dystrophy (DMD is currently tested in phase 3 clinical trials. The aim of this approach is to modulate splicing by skipping a specific exon to reframe disrupted dystrophin transcripts, allowing the synthesis of a partly functional dystrophin protein. Studies in animal models allow detailed analysis of the pharmacokinetic and pharmacodynamic profile of antisense oligonucleotides (AONs. Here, we tested the safety and efficacy of subcutaneously administered 2′-O-methyl phosphorothioate AON at 200 mg/kg/week for up to 6 months in mouse models with varying levels of disease severity: mdx mice (mild phenotype and mdx mice with one utrophin allele (mdx/utrn+/−; more severe phenotype. Long-term treatment was well tolerated and exon skipping and dystrophin restoration confirmed for all animals. Notably, in the more severely affected mdx/utrn+/− mice the therapeutic effect was larger: creatine kinase (CK levels were more decreased and rotarod running time was more increased. This suggests that the mdx/utrn+/− model may be a more suitable model to test potential therapies than the regular mdx mouse. Our results also indicate that long-term subcutaneous treatment in dystrophic mouse models with these AONs is safe and beneficial.

  18. In depth analysis of the Sox4 gene locus that consists of sense and natural antisense transcripts

    Science.gov (United States)

    Ling, King-Hwa; Brautigan, Peter J.; Moore, Sarah; Fraser, Rachel; Leong, Melody Pui-Yee; Leong, Jia-Wen; Zainal Abidin, Shahidee; Lee, Han-Chung; Cheah, Pike-See; Raison, Joy M.; Babic, Milena; Lee, Young Kyung; Daish, Tasman; Mattiske, Deidre M.; Mann, Jeffrey R.; Adelson, David L.; Thomas, Paul Q.; Hahn, Christopher N.; Scott, Hamish S.

    2016-01-01

    SRY (Sex Determining Region Y)-Box 4 or Sox4 is an important regulator of the pan-neuronal gene expression during post-mitotic cell differentiation within the mammalian brain. Sox4 gene locus has been previously characterized with multiple sense and overlapping natural antisense transcripts [1], [2]. Here we provide accompanying data on various analyses performed and described in Ling et al. [2]. The data include a detail description of various features found at Sox4 gene locus, additional experimental data derived from RNA-Fluorescence in situ Hybridization (RNA-FISH), Western blotting, strand-specific reverse-transcription quantitative polymerase chain reaction (RT-qPCR), gain-of-function and in situ hybridization (ISH) experiments. All the additional data provided here support the existence of an endogenous small interfering- or PIWI interacting-like small RNA known as Sox4_sir3, which origin was found within the overlapping region consisting of a sense and a natural antisense transcript known as Sox4ot1. PMID:26958646

  19. Intravenous administration of stabilized antisense lipid particles (SALP) leads to activation and expansion of liver natural killer cells.

    Science.gov (United States)

    Bramson, J L; Bodner, C A; Johnson, J; Semple, S; Hope, M J

    2000-06-01

    Stabilized antisense lipid particles (SALP) have been developed for the systemic delivery of oligonucleotides. The impact of intravenous SALP administration was measured with respect to activation of natural killer (NK) and NK1.1+ T (NKT) cells in the livers of immunocompetent mice. Treatment with a SALP containing a highly mitogenic oligonucleotide (INX-6295) generated an increase in NK cytolytic activity and cell number within the liver but did not appear to affect the number of hepatic NKT cells or their cytolytic activity. The same results were observed after intravenous administration of the mitogenic oligonucleotide alone. Interestingly, treatment with a SALP containing a weakly mitogenic oligonucleotide (INX-6300) also activated the liver NK cells, whereas the oligonucleotide alone was unable to elicit these effects. The NK stimulatory activity of a SALP containing INX-6300 required both lipid and oligonucleotide components. These results demonstrate that in addition to modifying the pharmacokinetics and biodistribution of intravenously administered oligonucleotides, SALP possess immunostimulatory activity independent of oligonucleotide mitogenicity, which can serve as an adjuvant to antisense therapies for cancer.

  20. In depth analysis of the Sox4 gene locus that consists of sense and natural antisense transcripts

    Directory of Open Access Journals (Sweden)

    King-Hwa Ling

    2016-06-01

    Full Text Available SRY (Sex Determining Region Y-Box 4 or Sox4 is an important regulator of the pan-neuronal gene expression during post-mitotic cell differentiation within the mammalian brain. Sox4 gene locus has been previously characterized with multiple sense and overlapping natural antisense transcripts [1,2]. Here we provide accompanying data on various analyses performed and described in Ling et al. [2]. The data include a detail description of various features found at Sox4 gene locus, additional experimental data derived from RNA-Fluorescence in situ Hybridization (RNA-FISH, Western blotting, strand-specific reverse-transcription quantitative polymerase chain reaction (RT-qPCR, gain-of-function and in situ hybridization (ISH experiments. All the additional data provided here support the existence of an endogenous small interfering- or PIWI interacting-like small RNA known as Sox4_sir3, which origin was found within the overlapping region consisting of a sense and a natural antisense transcript known as Sox4ot1.

  1. Regulation of Peripheral Myelination through Transcriptional Buffering of Egr2 by an Antisense Long Non-coding RNA

    Directory of Open Access Journals (Sweden)

    Margot Martinez-Moreno

    2017-08-01

    Full Text Available Precise regulation of Egr2 transcription is fundamentally important to the control of peripheral myelination. Here, we describe a long non-coding RNA antisense to the promoter of Egr2 (Egr2-AS-RNA. During peripheral nerve injury, the expression of Egr2-AS-RNA is increased and correlates with decreased Egr2 transcript and protein levels. Ectopic expression of Egr2-AS-RNA in dorsal root ganglion (DRG cultures inhibits the expression of Egr2 mRNA and induces demyelination. In vivo inhibition of Egr2-AS-RNA using oligonucleotide GapMers released from a biodegradable hydrogel following sciatic nerve injury reverts the EGR2-mediated gene expression profile and significantly delays demyelination. Egr2-AS-RNA gradually recruits H3K27ME3, AGO1, AGO2, and EZH2 on the Egr2 promoter following sciatic nerve injury. Furthermore, expression of Egr2-AS-RNA is regulated through ERK1/2 signaling to YY1, while loss of Ser184 of YY1 regulates binding to Egr2-AS-RNA. In conclusion, we describe functional exploration of an antisense long non-coding RNA in peripheral nervous system (PNS biology.

  2. Asymmetric localization of natural antisense RNA of neuropeptide sensorin in Aplysia sensory neurons during aging and activity

    Directory of Open Access Journals (Sweden)

    Beena eKadakkuzha

    2014-04-01

    Full Text Available Despite the advances in our understanding of transcriptome, regulation and function of its noncoding components continue to be poorly understood. Here we searched for natural antisense transcript for sensorin (NAT-SRN, a neuropeptide expressed in the presynaptic sensory neurons of gill-withdrawal reflex of the marine snail Aplysia californica. Sensorin (SRN has a key role in learning and long-term memory storage in Aplysia. We have identified NAT-SRN in the central nervous system (CNS and have confirmed its expression by northern blotting and fluorescent RNA in situ hybridization. Quantitative analysis of NAT-SRN in micro dissected cell bodies and processes of sensory neurons suggest that NAT-SRN is present in the distal neuronal processes along with sense transcripts. Importantly, aging is associated with reduced levels of NAT-SRN in sensory neuron processes. Furthermore, we find that forskolin, an activator of CREB signaling, differentially alters the distribution of SRN and NAT-SRN. These studies reveal novel insights into physiological regulation of natural antisense RNAs.

  3. Asymmetric localization of natural antisense RNA of neuropeptide sensorin in Aplysia sensory neurons during aging and activity.

    Science.gov (United States)

    Kadakkuzha, Beena M; Liu, Xin-An; Narvaez, Maria; Kaye, Alexandra; Akhmedov, Komolitdin; Puthanveettil, Sathyanarayanan V

    2014-01-01

    Despite the advances in our understanding of transcriptome, regulation and function of its non-coding components continue to be poorly understood. Here we searched for natural antisense transcript for sensorin (NAT-SRN), a neuropeptide expressed in the presynaptic sensory neurons of gill-withdrawal reflex of the marine snail Aplysia californica. Sensorin (SRN) has a key role in learning and long-term memory storage in Aplysia. We have now identified NAT-SRN in the central nervous system (CNS) and have confirmed its expression by northern blotting and fluorescent RNA in situ hybridization. Quantitative analysis of NAT-SRN in micro-dissected cell bodies and processes of sensory neurons suggest that NAT-SRN is present in the distal neuronal processes along with sense transcripts. Importantly, aging is associated with reduction in levels of NAT-SRN in sensory neuron processes. Furthermore, we find that forskolin, an activator of CREB signaling, differentially alters the distribution of SRN and NAT-SRN. These studies reveal novel insights into physiological regulation of natural antisense RNAs.

  4. Antisense RNA Controls LRP1 Sense Transcript Expression through Interaction with a Chromatin-Associated Protein, HMGB2

    Directory of Open Access Journals (Sweden)

    Yasunari Yamanaka

    2015-05-01

    Full Text Available Long non-coding RNAs (lncRNAs, including natural antisense transcripts (NATs, are expressed more extensively than previously anticipated and have widespread roles in regulating gene expression. Nevertheless, the molecular mechanisms of action of the majority of NATs remain largely unknown. Here, we identify a NAT of low-density lipoprotein receptor-related protein 1 (Lrp1, referred to as Lrp1-AS, that negatively regulates Lrp1 expression. We show that Lrp1-AS directly binds to high-mobility group box 2 (Hmgb2 and inhibits the activity of Hmgb2 to enhance Srebp1a-dependent transcription of Lrp1. Short oligonucleotides targeting Lrp1-AS inhibit the interaction of antisense transcript and Hmgb2 protein and increase Lrp1 expression by enhancing Hmgb2 activity. Quantitative RT-PCR analysis of brain tissue samples from Alzheimer’s disease patients and aged-matched controls revealed upregulation of LRP1-AS and downregulation of LRP1. Our data suggest a regulatory mechanism whereby a NAT interacts with a ubiquitous chromatin-associated protein to modulate its activity in a locus-specific fashion.

  5. Modeling DNA

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Deoxyribonucleic acid (DNA) is life's most amazing molecule. It carries the genetic instructions that almost every organism needs to develop and reproduce. In the human genome alone, there are some three billion DNA base pairs. The most difficult part of teaching DNA structure, however, may be getting students to visualize something as small as a…

  6. Plant 7SL RNA and tRNA(Tyr) genes with inserted antisense sequences are efficiently expressed in an in vitro transcription system from Nicotiana tabacum cells

    Czech Academy of Sciences Publication Activity Database

    Yukawa, Y.; Matoušek, Jaroslav; Grimm, M.; Vrba, Lukáš; Steger, G.; Sugiura, M.; Beier, H.

    2002-01-01

    Roč. 50, - (2002), s. 713-723 ISSN 0167-4412 R&D Projects: GA ČR GA521/99/1591; GA MŠk ME 463 Keywords : antisense RNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.529, year: 2002

  7. Thiolated carboxymethyl dextran as a nanocarrier for colon delivery of hSET1 antisense: In vitro stability and efficiency study

    International Nuclear Information System (INIS)

    Kiani, Melika; Mirzazadeh Tekie, Farnaz Sadat; Dinarvand, Meshkat; Soleimani, Masoud; Dinarvand, Rassoul; Atyabi, Fatemeh

    2016-01-01

    Gene therapy is an optimistic approach in cancer treatment. However, for efficient delivery of gene materials, designing an appropriate vector is necessary. Polyelectrolyte complexes (PECs) of chitosan and dextran could be considered a proper nanoparticulate carrier for sensitive biomaterials. In this study, PECs of chitosan and thiolated dextran were used as either an injectable or oral gene delivery system. hSET1 antisense was loaded into the PECs to suppress proliferation of colon cancer cell line. The prepared nanoparticles have ~ 115 nm diameter size and positive zeta potential with high mucoadhesion properties. They are able to protect antisense from degradation in serum and biorelevant fluids (FaSSIF and FaSSGF). Furthermore, prepared nanoparticles demonstrated superior cellular penetration and inhibitory effect on SW480 colon cancer cell proliferation. All nanoparticles significantly down regulated hSET1 in comparison with naked antisense. It can be concluded that thiolated PECs have potential use for injectable or oral delivery of nucleic acids such as antisense. - Highlights: • Formation of stable nanoparticle with dextran and chitosan derivatives for oral and intravenous gene delivery. • Satifactory cellular uptake of nanoparticles and approximately complete suppression of hSET1 expression in SW480 cell lines • Prolonged stability of nanoparticles against biorelevent media with desirable release rate.

  8. Thiolated carboxymethyl dextran as a nanocarrier for colon delivery of hSET1 antisense: In vitro stability and efficiency study

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Melika, E-mail: Melika.kiani@gmail.com [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Mirzazadeh Tekie, Farnaz Sadat, E-mail: mirzazadehf@yahoo.com [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Dinarvand, Meshkat, E-mail: mdinarvand@hotmail.com [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Soleimani, Masoud, E-mail: soleim_m@modares.ac.ir [Stem Cell Technology Research Centre, P.O. Box 14155-3174, Tehran (Iran, Islamic Republic of); Department of Hematology, School of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran (Iran, Islamic Republic of); Dinarvand, Rassoul, E-mail: dinarvand@tums.ac.ir [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Atyabi, Fatemeh, E-mail: atyabifa@tums.ac.ir [Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran (Iran, Islamic Republic of); Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-05-01

    Gene therapy is an optimistic approach in cancer treatment. However, for efficient delivery of gene materials, designing an appropriate vector is necessary. Polyelectrolyte complexes (PECs) of chitosan and dextran could be considered a proper nanoparticulate carrier for sensitive biomaterials. In this study, PECs of chitosan and thiolated dextran were used as either an injectable or oral gene delivery system. hSET1 antisense was loaded into the PECs to suppress proliferation of colon cancer cell line. The prepared nanoparticles have ~ 115 nm diameter size and positive zeta potential with high mucoadhesion properties. They are able to protect antisense from degradation in serum and biorelevant fluids (FaSSIF and FaSSGF). Furthermore, prepared nanoparticles demonstrated superior cellular penetration and inhibitory effect on SW480 colon cancer cell proliferation. All nanoparticles significantly down regulated hSET1 in comparison with naked antisense. It can be concluded that thiolated PECs have potential use for injectable or oral delivery of nucleic acids such as antisense. - Highlights: • Formation of stable nanoparticle with dextran and chitosan derivatives for oral and intravenous gene delivery. • Satifactory cellular uptake of nanoparticles and approximately complete suppression of hSET1 expression in SW480 cell lines • Prolonged stability of nanoparticles against biorelevent media with desirable release rate.

  9. Inhibiting the growth of methicillin-resistant Staphylococcus aureus in vitro with antisense peptide nucleic acid conjugates targeting the ftsZ gene

    Directory of Open Access Journals (Sweden)

    Shumei Liang

    2015-01-01

    Conclusion: Our results demonstrate that the potent effects of PNAs on bacterial growth and cell viability were mediated by the down-regulation or even knock-out of ftsZ gene expression. This highlights the utility of ftsZ as a promising target for the development of new antisense antibacterial agents to treat MRSA infections.

  10. Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro.

    Science.gov (United States)

    Goh, Shan; Loeffler, Anette; Lloyd, David H; Nair, Sean P; Good, Liam

    2015-11-11

    Antibiotic resistance genes can be targeted by antisense agents, which can reduce their expression and thus restore cellular susceptibility to existing antibiotics. Antisense inhibitors can be gene and pathogen specific, or designed to inhibit a group of bacteria having conserved sequences within resistance genes. Here, we aimed to develop antisense peptide nucleic acids (PNAs) that could be used to effectively restore susceptibility to β-lactams in methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP). Antisense PNAs specific for conserved regions of the mobilisable gene mecA, and the growth essential gene, ftsZ, were designed. Clinical MRSA and MRSP strains of high oxacillin resistance were treated with PNAs and assayed for reduction in colony forming units on oxacillin plates, reduction in target gene mRNA levels, and cell size. Anti-mecA PNA at 7.5 and 2.5 μM reduced mecA mRNA in MRSA and MRSP (p resistance in staphylococci. Further studies are warranted as clinical treatment alternatives are needed.

  11. Feasibility of SPECT-CT imaging to study the pharmacokinetics of antisense oligonucleotides in a mouse model of Duchenne muscular dystrophy

    NARCIS (Netherlands)

    Steeg, E. van de; Läppchen, T.; Aguilera, B.; Jansen, H.T.; Muilwijk, D.; Vermue, R.; Hoorn, J.W. van der; Donato, K.; Rossin, R.; Visser, P.C. de; Vlaming, M.L.H.

    2017-01-01

    Antisense oligonucleotides (AONs) are promising candidates for treatment of Duchenne muscular dystrophy (DMD), a severe and progressive disease resulting in premature death. However, more knowledge on the pharmacokinetics of new AON drug candidates is desired for effective application in the clinic.

  12. Parameter Estimation

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian

    2011-01-01

    of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set......In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....

  13. SINEUPs are modular antisense long-non coding RNAs that increase synthesis of target proteins in cells

    Directory of Open Access Journals (Sweden)

    Silvia eZucchelli

    2015-05-01

    Full Text Available Despite recent efforts in discovering novel long non-coding RNAs (lncRNAs and unveiling their functions in a wide range of biological processes their applications as biotechnological or therapeutic tools are still at their infancy. We have recently shown that AS Uchl1, a natural lncRNA antisense to the Parkinson’s disease-associated gene Ubiquitin carboxyl-terminal esterase L1 (Uchl1, is able to increase UchL1 protein synthesis at post-transcriptional level. Its activity requires two RNA elements: an embedded inverted SINEB2 sequence to increase translation and the overlapping region to target its sense mRNA. This functional organization is shared with several mouse lncRNAs antisense to protein coding genes. The potential use of AS Uchl1-derived lncRNAs as enhancers of target mRNA translation remains unexplored. Here we define AS Uchl1 as the representative member of a new functional class of natural and synthetic antisense lncRNAs that activate translation. We named this class of RNAs SINEUPs for their requirement of the inverted SINEB2 sequence to UP-regulate translation in a gene-specific manner. The overlapping region is indicated as the Binding Doman (BD while the embedded inverted SINEB2 element is the Effector Domain (ED. By swapping BD, synthetic SINEUPs are designed targeting mRNAs of interest. SINEUPs function in an array of cell lines and can be efficiently directed towards N-terminally tagged proteins. Their biological activity is retained in a miniaturized version within the range of small RNAs length. Its modular structure was exploited to successfully design synthetic SINEUPs targeting endogenous Parkinson’s disease-associated DJ-1 and proved to be active in different neuronal cell lines.In summary, SINEUPs represent the first scalable tool to increase synthesis of proteins of interest. We propose SINEUPs as reagents for molecular biology experiments, in protein manufacturing as well as in therapy of haploinsufficiencies.

  14. DNA Camouflage

    Science.gov (United States)

    2016-01-08

    1 DNA Camouflage Supplementary Information Bijan Zakeri1,2*, Timothy K. Lu1,2*, Peter A. Carr2,3* 1Department of Electrical Engineering and...ll.mit.edu). Distribution A: Public Release   2 Supplementary Figure 1 DNA camouflage with the 2-state device. (a) In the presence of Cre, DSD-2[α...10 1 + Cre 1 500 1,000 length (bp) chromatogram alignment template − Cre   4 Supplementary Figure 3 DNA camouflage with a switchable

  15. The antisense expression of AhPEPC1 increases seed oil production in peanuts (Arachis hypogaea L.)

    Energy Technology Data Exchange (ETDEWEB)

    Pan, L.; Zhang, J.; Chi, X.; Chen, N.; Chen, M.; Wang, M.; Wang, T.; Yang, Z.; Zhang, Z.; Wan, Y.; Yu, S.; Liu, F.

    2016-07-01

    Although phosphoenolpyruvate carboxylases (PEPCs) are reported to be involved in fatty acid accumulation, nitrogen assimilation, and salt and drought stresses, knowledge regarding PEPC gene functions is still limited, particularly in peanuts (Arachis hypogaea L.). In this study, the antisense expression of the peanut PEPC isoform 1 (AhPEPC1) gene increased the lipid content by 5.7%–10.3%. This indicated that AhPEPC1 might be related to plant lipid accumulation. The transgenic plants underwent more root elongation than the wild-type under salinity stress. Additionally, the specific down regulation of the AhPEPC1 gene improved the salt tolerance in peanuts. This is the first report on the role of PEPC in lipid accumulation and salt tolerance in peanuts.

  16. Effects of Antisense Oligonucleotides against C-Reactive Protein on the Development of Atherosclerosis in WHHL Rabbits

    Directory of Open Access Journals (Sweden)

    Qi Yu

    2014-01-01

    Full Text Available Increased plasma levels of C-reactive protein (CRP are closely associated with cardiovascular diseases, but whether CRP is directly involved in the pathogenesis of atherosclerosis is still under debate. Many controversial and contradictory results using transgenic mice and rabbits have been published but it is also unclear whether CRP lowering can be used for the treatment of atherosclerosis. In the current study, we examined the effects of the rabbit CRP antisense oligonucleotides (ASO on the development of atherosclerosis in WHHL rabbits. CRP ASO treatment led to a significant reduction of plasma CRP levels; however, both aortic and coronary atherosclerotic lesions were not significantly changed compared to those of control WHHL rabbits. These results suggest that inhibition of plasma CRP does not affect the development of atherosclerosis in WHHL rabbits.

  17. Down-regulation of Survivin by Antisense Oligonucleotides Increases Apoptosis, Inhibits Cytokinesis and Anchorage-Independent Growth

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2000-05-01

    Full Text Available Survivin, a member of the inhibitor of apoptosis protein (IAP family, is detected in most common human cancers but not in adjacent normal cells. Previous studies suggest that survivin associates with the mitotic spindle and directly inhibits caspase activity. To further investigate the function of survivin, we used a survivin antisense (AS oligonucleotide to downregulate survivin expression in normal and cancer cells. We found that inhibition of survivin expression increased apoptosis and polyploidy while decreasing colony formation in soft agar. Immunohistochemistry showed that cells without survivin can initiate the cleavage furrow and contractile ring, but cannot complete cytokinesis, thus resulting in multinucleated cells. These findings indicate that survivin plays important roles in a late stage of cytokinesis, as well as in apoptosis.

  18. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Shiraishi, Takehiko; Zachar, Vladimir

    2008-01-01

    Conjugation to cationic cell penetrating peptides (such as Tat, Penetratin, or oligo arginines) efficiently improves the cellular uptake of large hydrophilic molecules such as oligonucleotides and peptide nucleic acids, but the cellular uptake is predominantly via an unproductive endosomal pathway...... for future in vivo applications. We find that simply conjugating a lipid domain (fatty acid) to the cationic peptide (a CatLip conjugate) increases the biological effect of the corresponding PNA (CatLip) conjugates in a luciferase cellular antisense assay up to 2 orders of magnitude. The effect increases...... with increasing length of the fatty acid (C8-C16) but in parallel also results in increased cellular toxicity, with decanoic acid being optimal. Furthermore, the relative enhancement is significantly higher for Tat peptide compared to oligoarginine. Confocal microscopy and chloroquine enhancement indicates...

  19. Formulation and drug-content assay of microencapsulated antisense oligonucleotide to NF-κB using ATR-FTIR

    International Nuclear Information System (INIS)

    Siwale, Rodney; Meadows, Fred; Mody, Vicky V; Shah, Samit

    2013-01-01

    Antisense oligonucleotide to NF-κB sequence: 5′-GGA AAC ACA TCC TCC ATG-3′, was microencapsulated in an albumin matrix by the method of spray drying TM . Spectral analysis was performed on varying drug loading formulations of both drugs by mid-IR attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An out of plane O–H bending vibration at 948 cm −1 , unique to both the native and microencapsulated drugs was identified. The calculated peak areas corresponded to the drug loadings in the microsphere formulations. A standard curve could then be used to determine the drug content of an unknown microsphere formulation. Accuracy and precision were determined to be comparable to other analytical techniques such as HPLC. (paper)

  20. Dynamics of DNA conformations and DNA-protein interaction

    DEFF Research Database (Denmark)

    Metzler, R.; Ambjörnsson, T.; Lomholt, Michael Andersen

    2005-01-01

    Optical tweezers, atomic force microscopes, patch clamping, or fluorescence techniques make it possible to study both the equilibrium conformations and dynamics of single DNA molecules as well as their interaction with binding proteins. In this paper we address the dynamics of local DNA...... denaturation (bubble breathing), deriving its dynamic response to external physical parameters and the DNA sequence in terms of the bubble relaxation time spectrum and the autocorrelation function of bubble breathing. The interaction with binding proteins that selectively bind to the DNA single strand exposed...... in a denaturation bubble are shown to involve an interesting competition of time scales, varying between kinetic blocking of protein binding up to full binding protein-induced denaturation of the DNA. We will also address the potential to use DNA physics for the design of nanosensors. Finally, we report recent...

  1. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells

    Directory of Open Access Journals (Sweden)

    Talaei F

    2011-09-01

    Full Text Available Fatemeh Talaei1, Ebrahim Azizi2, Rassoul Dinarvand3, Fatemeh Atyabi31Novel Drug Delivery Systems Lab, 2Molecular Research Lab, Department of Pharmacology and Toxicology, 3Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan and NAP-C (N-acetyl penicillamine-chitosan in anticancer drug delivery targeting epidermal growth factor receptor (EGFR. Doxorubicin (DOX and antisense oligonucleotide (ASOND-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo

  2. HTLV Deregulation of the NF-κB Pathway: An Update on Tax and Antisense Proteins Role.

    Science.gov (United States)

    Fochi, Stefania; Mutascio, Simona; Bertazzoni, Umberto; Zipeto, Donato; Romanelli, Maria G

    2018-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4 + /CD25 + T-cell malignancy and of a severe neurodegenerative disease, HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The chronic activation or deregulation of the canonical and non-canonical nuclear factor kappa B (NF-κB) pathways play a crucial role in tumorigenesis. The HTLV-1 Tax-1 oncoprotein is a potent activator of the NF-κB transcription factors and the NF-κB response is required for promoting the development of HTLV-1 transformed cell lines. The homologous retrovirus HTLV-2, which also expresses a Tax-2 transforming protein, is not associated with ATL. In this review, we provide an updated synopsis of the role of Tax-1 in the deregulation of the NF-κB pathway, highlighting the differences with the homologous Tax-2. Special emphasis is directed toward the understanding of the molecular mechanisms involved in NF-κB activation resulting from Tax interaction with host factors affecting several cellular processes, such as cell cycle, apoptosis, senescence, cell proliferation, autophagy, and post-translational modifications. We also discuss the current knowledge on the role of the antisense viral protein HBZ in down-regulating the NF-κB activation induced by Tax, and its implication in cellular senescence. In addition, we review the recent studies on the mechanism of HBZ-mediated inhibition of NF-κB activity as compared to that exerted by the HTLV-2 antisense protein, APH-2. Finally, we discuss recent advances aimed at understanding the role exerted in the development of ATL by the perturbation of NF-κB pathway by viral regulatory proteins.

  3. HTLV Deregulation of the NF-κB Pathway: An Update on Tax and Antisense Proteins Role

    Science.gov (United States)

    Fochi, Stefania; Mutascio, Simona; Bertazzoni, Umberto; Zipeto, Donato; Romanelli, Maria G.

    2018-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4+/CD25+ T-cell malignancy and of a severe neurodegenerative disease, HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The chronic activation or deregulation of the canonical and non-canonical nuclear factor kappa B (NF-κB) pathways play a crucial role in tumorigenesis. The HTLV-1 Tax-1 oncoprotein is a potent activator of the NF-κB transcription factors and the NF-κB response is required for promoting the development of HTLV-1 transformed cell lines. The homologous retrovirus HTLV-2, which also expresses a Tax-2 transforming protein, is not associated with ATL. In this review, we provide an updated synopsis of the role of Tax-1 in the deregulation of the NF-κB pathway, highlighting the differences with the homologous Tax-2. Special emphasis is directed toward the understanding of the molecular mechanisms involved in NF-κB activation resulting from Tax interaction with host factors affecting several cellular processes, such as cell cycle, apoptosis, senescence, cell proliferation, autophagy, and post-translational modifications. We also discuss the current knowledge on the role of the antisense viral protein HBZ in down-regulating the NF-κB activation induced by Tax, and its implication in cellular senescence. In addition, we review the recent studies on the mechanism of HBZ-mediated inhibition of NF-κB activity as compared to that exerted by the HTLV-2 antisense protein, APH-2. Finally, we discuss recent advances aimed at understanding the role exerted in the development of ATL by the perturbation of NF-κB pathway by viral regulatory proteins. PMID:29515558

  4. DNA glue

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Astakhova, Irina V.; Malakhov, Andrei D.

    2008-01-01

    Significant alterations in thermal stability of parallel DNA triplexes and antiparallel duplexes were observed upon changing the attachment of ethynylpyrenes from para to ortho in the structure of phenylmethylglycerol inserted as a bulge into DNA (TINA). Insertions of two ortho-TINAs as a pseudo...

  5. Hyperstretching DNA

    NARCIS (Netherlands)

    Schakenraad, Koen; Biebricher, Andreas S.; Sebregts, Maarten; Ten Bensel, Brian; Peterman, Erwin J.G.; Wuite, Gijs J L; Heller, Iddo; Storm, Cornelis; Van Der Schoot, Paul

    2017-01-01

    The three-dimensional structure of DNA is highly susceptible to changes by mechanical and biochemical cues in vivo and in vitro. In particular, large increases in base pair spacing compared to regular B-DNA are effected by mechanical (over)stretching and by intercalation of compounds that are widely

  6. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.

    1992-01-01

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  7. DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Castelino, J

    1993-12-31

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with {sup 32}P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism`s genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens 10 figs, 2 tabs

  8. Inventory parameters

    CERN Document Server

    Sharma, Sanjay

    2017-01-01

    This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.

  9. Direct current hopping conductance along DNA chain

    Institute of Scientific and Technical Information of China (English)

    Ma Song-Shan; Xu Hui; Liu Xiao-Liang; Li Ming-Jun

    2007-01-01

    This paper proposes a model of direct current(DC) electron hopping transport in DNA,in which DNA is considered as a binary one-dimensional disordered system.To quantitatively study the DC conductivity in DNA,it numerically calculates the DC conductivity of DNA chains with difierent parameter values.The result shows that the DC conductivity of DNA chain increases with the increase of temperature.And the conductivity of DNA chain is depended on the probability P.which represents the degree of compositional disorder in a DNA sequence to some extent.For P<0.5,the conductivity of DNA chain decreases with the increase of P,while for P≥0.5,the conductivity increases with the increase of p.The DC conductivity in DNA chain also varies with the change of the electric field,it presents non-Ohm's law conductivity characteristics.

  10. Structural studies of the 5'-phenazinium-tethered matched and G-A-mismatched DNA duplexes by NMR spectroscopy.

    Science.gov (United States)

    Maltseva, T; Sandström, A; Ivanova, I M; Sergeyev, D S; Zarytova, V F; Chattopadhyaya, J

    1993-05-01

    The mechanism through which modified oligo-DNA analogues act as antisense repressors at the transcriptional and translational level of gene expression is based on the information content in the nucleotide sequence which is determined by the specific base pairing. The efficiency of such action is largely determined by the stability of the duplex formed between the oligonucleotide reagent and the target sequence and also by the mismatched base pairing, such as G-A, that occurs during replication or recombination. We herein report that the phenazinium (Pzn)-tethered matched duplex p(d(TGTTTGGC)):(Pzn)-p(d(CCAAACA)) (III) (Tm = 50 degrees C) has a much larger stability than the parent matched duplex p(d(TGTTTGGC)):p(d(CCAAACA)) (I) (Tm = 30 degrees C). On the other hand, the Pzn-tethered G-A-mismatched duplex p(d(TGTTTGGC)):(Pzn)-p(d(ACAAACA)) (IV) (Tm = 34 degrees C) is only slightly more stable than its parent mismatched duplex p(d(TGTTTGGC)):p(d(ACAAACA)) (Tm = 25 degrees C). A detailed 500 MHz NMR study and constrained MD refinements of NMR-derived structures have been undertaken for the DNA duplexes (I), (II), (III) and (IV) in order to understand the structural basis of stabilization of Pzn-tethered matched DNA duplex (delta Tm = 20 degrees C) compared to mismatched duplex (delta Tm = 9 degrees C). Assignment of the 1H-NMR (500 MHz) spectra of the duplexes has been carried out by 2D NOESY, HOHAHA and DQF-COSY experiments. The torsion angles have been extracted from the J-coupling constants obtained by simulation of most of the DQF-COSY cross-peaks using program SMART. The solution structure of the duplexes were assessed by an iterative hybride relaxation matrix method (MORASS) combined with NOESY distances and torsion angles restrained molecular dynamics (MD) using program Amber 4.0. The standard Amber 4.0 force-field parameters were used for the oligonucleotide in conjunction with the new parameters for Pzn residue which was obtained by full geometry

  11. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  12. DNA data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Raw DNA chromatogram data produced by the ABI 373, 377, 3130 and 3730 automated sequencing machines in ABI format. These are from fish (primarily Sebastes spp.,...

  13. DNA nanotechnology

    Science.gov (United States)

    Seeman, Nadrian C.; Sleiman, Hanadi F.

    2018-01-01

    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  14. Single and repeated moderate consumption of native or dealcoholized red wine show different effects on antioxidant parameters in blood and DNA strand breaks in peripheral leukocytes in healthy volunteers: a randomized controlled trial [ISRCTN68505294

    Directory of Open Access Journals (Sweden)

    Spengler Ulrich

    2005-11-01

    Full Text Available Abstract Background Red wine (RW is rich in antioxidant polyphenols that might protect from oxidative stress related diseases, such as cardiovascular disease and cancer. Antioxidant effects after single ingestion of RW or dealcoholized RW (DRW have been observed in several studies, but results after regular consumption are contradictory. Thus, we examined if single or repeated consumption of moderate amounts of RW or DRW exert antioxidant activity in vivo. Methods Total phenolic content and concentration of other antioxidants in plasma/serum, total antioxidant capacity (TEAC in plasma as well as DNA strand breaks in peripheral leukocytes were measured in healthy non-smokers A before, 90 and 360 min after ingestion of one glass of RW, DRW or water; B before and after consumption of one glass of RW or DRW daily for 6 weeks. DNA strand breaks (SB were determined by single cell gel electrophoresis (Comet Assay in untreated cells and after induction of oxidative stress ex vivo with H2O2 (300 μM, 20 min. Results Both RW and DRW transiently increased total phenolic content in plasma after single consumption, but only RW lead to a sustained increase if consumed regularly. Plasma antioxidant capacity was not affected by single or regular consumption of RW or DRW. Effects of RW and DRW on DNA SB were conflicting. DNA strand breaks in untreated cells increased after a single dose of RW and DRW, whereas H2O2 induced SB were reduced after DRW. In contrast, regular RW consumption reduced SB in untreated cells but did not affect H2O2 induced SB. Conclusion The results suggest that consumption of both RW and DRW leads to an accumulation of phenolic compounds in plasma without increasing plasma antioxidant capacity. Red wine and DRW seem to affect the occurrence of DNA strand breaks, but this cannot be referred to antioxidant effects.

  15. Light-Triggered Release of DNA from Plasmon-Resonant Nanoparticles

    Science.gov (United States)

    Huschka, Ryan

    Plasmon-resonant nanoparticle complexes show promising potential for lighttriggered, controllable delivery of deoxyribonucleic acids (DNA) for research and therapeutic purposes. For example, the approach of RNA interference (RNAi) . using antisense DNA or RNA oligonucleotides to silence activity of a specific pathogenic gene transcript and reduce expression of the encoded protein . is very useful in dissecting genetic function and holds promise as a molecular therapeutic. Herein, we investigate the mechanism and probe the in vitro therapeutic potential of DNA light-triggered release from plasmonic nanoparticles. First, we investigate the mechanism of light-triggered release by dehybridizing double-stranded (dsDNA) via laser illumination from two types of nanoparticle substrates: gold (Au) nanoshells and Au nanorods. Both light-triggered and thermally induced releases are distinctly observable from nanoshell-based complexes. Surprisingly, no analogous measurable light-triggered release was observable from nanorod-based complexes below the DNA melting temperature. These results suggest that a nonthermal mechanism may play a role in light-triggered DNA release. Second, we demonstrate the in vitro light-triggered release of molecules noncovalently attached within dsDNA bound to the Au nanoshell surface. DAPI (4',6- diamidino-2-phenylindole), a bright blue fluorescent molecule that binds reversibly to double-stranded DNA, was chosen to visualize this intracellular light-induced release process. Illumination through the cell membrane of the nanoshell-dsDNA-DAPI complexes dehybridizes the DNA and releases the DAPI molecules within living cells. The DAPI molecules diffuse to the nucleus and associate with the cell's endogenous DNA. This work could have future applications towards drug delivery of molecules that associate with dsDNA. Finally, we demonstrate an engineered Au nanoshell (AuNS)-based therapeutic oligonucleotide delivery vehicle, designed to release its cargo on

  16. DNA expressions - A formal notation for DNA

    NARCIS (Netherlands)

    Vliet, Rudy van

    2015-01-01

    We describe a formal notation for DNA molecules that may contain nicks and gaps. The resulting DNA expressions denote formal DNA molecules. Different DNA expressions may denote the same molecule. Such DNA expressions are called equivalent. We examine which DNA expressions are minimal, which

  17. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jane; Hall, William W. [Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 (Ireland); Ratner, Lee [Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America (United States); Sheehy, Noreen [Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 (Ireland)

    2016-07-15

    The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells. - Highlights: • This study demonstrates for the first time interactions between NF90/110 and the HTLV antisense proteins HBZ and APH-2. • We show that NF90/110 significantly enhance LTR activation by the HTLV Tax protein, an effect that is abolished by HBZ but enhanced by APH-2. • The study shows that even though the HTLV antisense proteins activate survivin expression they antagonize the ability of NF90/110 to do so. • Overall we found that NF90/110 positively regulate HTLV infection and as such might represent a therapeutic target in infected cells.

  18. Retroviral gene transfer of an antisense construct against membrane type 1 matrix metalloproteinase reduces the invasiveness of rheumatoid arthritis synovial fibroblasts.

    Science.gov (United States)

    Rutkauskaite, Edita; Volkmer, Dagmar; Shigeyama, Yukio; Schedel, Jörg; Pap, Geza; Müller-Ladner, Ulf; Meinecke, Ingmar; Alexander, Dorothea; Gay, Renate E; Drynda, Susanne; Neumann, Wolfram; Michel, Beat A; Aicher, Wilhelm K; Gay, Steffen; Pap, Thomas

    2005-07-01

    Membrane type 1 matrix metalloproteinase (MT1-MMP) is expressed prominently in rheumatoid arthritis synovial fibroblasts (RASFs), but the specific contribution of MT1-MMP to fibroblast-mediated destruction of articular cartilage is incompletely understood. This study used gene transfer of an antisense expression construct to assess the effects of MT1-MMP inhibition on the invasiveness of RASFs. Retroviral gene transfer of a pLXIN vector-based antisense RNA expression construct (MT1-MMPalphaS) to MT1-MMP was used to stably transduce RASFs. Levels of MT1-MMP RNA and protein were determined by quantitative polymerase chain reaction, Western blotting, and immunocytochemistry in MT1-MMPalphaS-transduced RASFs as well as in control cells, with monitoring for 60 days. The effects of MT1-MMPalphaS on the invasiveness of RASFs were analyzed in the SCID mouse co-implantation model of RA. MT1-MMPalphaS-transduced RASFs produced high levels of antisense RNA that exceeded endogenous levels of MT1-MMP messenger RNA by 15-fold and resulted in a down-regulation of MT1-MMP at the protein level. Inhibition of MT1-MMP production was maintained for 60 days and significantly reduced the invasiveness of RASFs in the SCID mouse model. Whereas prominent invasion into cartilage by non-transduced and mock-transduced RASFs was observed (mean invasion scores 3.0 and 3.1, respectively), MT1-MMPalphaS-transduced cells showed only moderate invasiveness (mean invasion score 1.8; P < 0.05). The data demonstrate that an antisense RNA expression construct against MT1-MMP can be generated and expressed in RASFs for at least 60 days. Inhibition of MT1-MMP significantly reduces the cartilage degradation by RASFs.

  19. Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity

    DEFF Research Database (Denmark)

    Yarani, Reza; Shiraishi, Takehiko; Nielsen, Peter E.

    2018-01-01

    Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginin...... indicate that efficient photodynamic endosomal escape is strongly dependent on the quantum yield for photochemical singlet oxygen formation, photostability as well as the lipophilicity of the chromophore....

  20. The cellular uptake of antisense oligonucleotid of E6 mRNA into cervical cancer cells by DOPE-modified hydroxyapatite nanoparticles

    OpenAIRE

    Negin Saffarzadeh; Seyed Mehdi Kalantar; Ali Jebali; Seyed Hossein Hekmatimoghaddam; Mohammad Hassan Sheikhha; Ehsan Farashahi

    2014-01-01

    Objective(s): Although several chemical and physical methods for gene delivery have been introduced, their cytotoxicity, non-specific immune responses and the lack of biodegradability remain the main issues. In this study, hydroxyapatite nanoparticles (NPs) and 1,2-dioleoyl-sn-glycero-3-phosphoethanol​amine (DOPE)-modified hydroxyapatite NPs was coated with antisense oligonucleotide of E6 mRNA, and their uptakes into the cervical cancer cell line were evaluated. Materials and Methods: Calcium...

  1. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles

    International Nuclear Information System (INIS)

    Murphy, Jane; Hall, William W.; Ratner, Lee; Sheehy, Noreen

    2016-01-01

    The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells. - Highlights: • This study demonstrates for the first time interactions between NF90/110 and the HTLV antisense proteins HBZ and APH-2. • We show that NF90/110 significantly enhance LTR activation by the HTLV Tax protein, an effect that is abolished by HBZ but enhanced by APH-2. • The study shows that even though the HTLV antisense proteins activate survivin expression they antagonize the ability of NF90/110 to do so. • Overall we found that NF90/110 positively regulate HTLV infection and as such might represent a therapeutic target in infected cells.

  2. Diversity of antisense and other non-coding RNAs in Archaea revealed by comparative small RNA sequencing in four Pyrobaculum species

    Directory of Open Access Journals (Sweden)

    David L Bernick

    2012-07-01

    Full Text Available A great diversity of small, non-coding RNA molecules with roles in gene regulation and RNA processing have been intensely studied in eukaryotic and bacterial model organisms, yet our knowledge of possible parallel roles for small RNAs in archaea is limited. We employed RNA-seq to identify novel small RNA across multiple species of the hyperthermophilic genus Pyrobaculum, known for unusual RNA gene characteristics. By comparing transcriptional data collected in parallel among four species, we were able to identify conserved RNA genes fitting into known and novel families. Among our findings, we highlight three novel cis-antisense small RNAs encoded opposite to key regulatory (ferric uptake regulator, metabolic (triose-phosphate isomerase, and core transcriptional apparatus genes (transcription factor B. We also found a large increase in the number of conserved C/D box small RNA genes over what had been previously recognized; many of these genes are encoded antisense to protein coding genes. The conserved opposition to orthologous genes across the Pyrobaculum genus suggests similarities to other cis-antisense regulatory systems. Furthermore, the genus-specific nature of these small RNAs indicates they are relatively recent, stable adaptations.

  3. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control.

    Science.gov (United States)

    Celton, Jean-Marc; Gaillard, Sylvain; Bruneau, Maryline; Pelletier, Sandra; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Navarro, Lionel; Laurens, François; Renou, Jean-Pierre

    2014-07-01

    Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  4. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  5. DNA rendering of polyhedral meshes at the nanoscale

    Science.gov (United States)

    Benson, Erik; Mohammed, Abdulmelik; Gardell, Johan; Masich, Sergej; Czeizler, Eugen; Orponen, Pekka; Högberg, Björn

    2015-07-01

    It was suggested more than thirty years ago that Watson-Crick base pairing might be used for the rational design of nanometre-scale structures from nucleic acids. Since then, and especially since the introduction of the origami technique, DNA nanotechnology has enabled increasingly more complex structures. But although general approaches for creating DNA origami polygonal meshes and design software are available, there are still important constraints arising from DNA geometry and sense/antisense pairing, necessitating some manual adjustment during the design process. Here we present a general method of folding arbitrary polygonal digital meshes in DNA that readily produces structures that would be very difficult to realize using previous approaches. The design process is highly automated, using a routeing algorithm based on graph theory and a relaxation simulation that traces scaffold strands through the target structures. Moreover, unlike conventional origami designs built from close-packed helices, our structures have a more open conformation with one helix per edge and are therefore stable under the ionic conditions usually used in biological assays.

  6. Evaluation of 2’-Deoxy-2’-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Silvana M G Jirka

    2015-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs that induce skipping of specific exons during pre-mRNA splicing. Different chemical modifications have been developed to improve AON properties. The 2’-deoxy-2’-fluoro (2F RNA modification is attractive for exon skipping due to its ability to recruit ILF2/3 proteins to the 2F/pre-mRNA duplex, which resulted in enhanced exon skipping in spinal muscular atrophy models. In this study, we examined the effect of two different 2’-substituted AONs (2’-F phosphorothioate (2FPS and 2’-O-Me phosphorothioate (2OMePS on exon skipping in DMD cell and animal models. In human cell cultures, 2FPS AONs showed higher exon skipping levels than their isosequential 2OMePS counterparts. Interestingly, in the mdx mouse model, 2FPS was less efficient than 2OMePS and suggested safety issues as evidenced by increased spleen size and weight loss. Our results do not support a clinical application for 2FPS AON.

  7. Specific regulation of point-mutated K-ras-immortalized cell proliferation by a photodynamic antisense strategy.

    Science.gov (United States)

    Higuchi, Maiko; Yamayoshi, Asako; Kato, Kiyoko; Kobori, Akio; Wake, Norio; Murakami, Akira

    2010-02-01

    It has been reported that point mutations in genes are responsible for various cancers, and the selective regulation of gene expression is an important factor in developing new types of anticancer drugs. To develop effective drugs for the regulation of point-mutated genes, we focused on photoreactive antisense oligonucleotides. Previously, we reported that photoreactive oligonucleotides containing 2'-O-psoralenylmethoxyethyl adenosine (2'-Ps-eom) showed drastic photoreactivity in a strictly sequence-specific manner. Here, we demonstrated the specific gene regulatory effects of 2'-Ps-eom on [(12)Val]K-ras mutant (GGT --> GTT). Photo-cross-linking between target mRNAs and 2'-Ps-eom was sequence-specific, and the effect was UVA irradiation-dependent. Furthermore, 2'-Ps-eom was able to inhibit K-ras-immortalized cell proliferation (K12V) but not Vco cells that have the wild-type K-ras gene. These results suggest that the 2'-Ps-eom will be a powerful nucleic acid drug to inhibit the expression of disease-causing point mutation genes, and has great therapeutic potential in the treatment of cancer.

  8. Targeting TGF-β Signaling by Antisense Oligonucleotide-mediated Knockdown of TGF-β Type I Receptor

    Directory of Open Access Journals (Sweden)

    Dwi U Kemaladewi

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is caused by lack of functional dystrophin and results in progressive myofiber damage and degeneration. In addition, impaired muscle regeneration and fibrosis contribute to the progressive pathology of DMD. Importantly, transforming growth factor-β (TGF-β is implicated in DMD pathology and is known to stimulate fibrosis and inhibit muscle regeneration. In this study, we present a new strategy to target TGF-β signaling cascades by specifically inhibiting the expression of TGF-β type I receptor TGFBR1 (ALK5. Antisense oligonucleotides (AONs were designed to specifically induce exon skipping of mouse ALK5 transcripts. AON-induced exon skipping of ALK5 resulted in specific downregulation of full-length receptor transcripts in vitro in different cell types, repression of TGF-β activity, and enhanced C2C12 myoblast differentiation. To determine the effect of these AONs in dystrophic muscles, we performed intramuscular injections of ALK5 AONs in mdx mice, which resulted in a decrease in expression of fibrosis-related genes and upregulation of Myog expression compared to control AON-injected muscles. In summary, our study presents a novel method to target TGF-β signaling cascades with potential beneficial effects for DMD.

  9. Antisense Oligonucleotide (AON-based Therapy for Leber Congenital Amaurosis Caused by a Frequent Mutation in CEP290

    Directory of Open Access Journals (Sweden)

    Rob WJ Collin

    2012-01-01

    Full Text Available Leber congenital amaurosis (LCA is the most severe form of inherited retinal degeneration, with an onset in the first year of life. The most frequent mutation that causes LCA, present in at least 10% of individuals with LCA from North-American and Northern-European descent, is an intronic mutation in CEP290 that results in the inclusion of an aberrant exon in the CEP290 mRNA. Here, we describe a genetic therapy approach that is based on antisense oligonucleotides (AONs, small RNA molecules that are able to redirect normal splicing of aberrantly processed pre-mRNA. Immortalized lymphoblastoid cells of individuals with LCA homozygously carrying the intronic CEP290 mutation were transfected with several AONs that target the aberrant exon that is incorporated in the mutant CEP290 mRNA. Subsequent RNA isolation and reverse transcription-PCR analysis revealed that a number of AONs were capable of almost fully redirecting normal CEP290 splicing, in a dose-dependent manner. Other AONs however, displayed no effect on CEP290 splicing at all, indicating that the rescue of aberrant CEP290 splicing shows a high degree of sequence specificity. Together, our data show that AON-based therapy is a promising therapeutic approach for CEP290-associated LCA that warrants future research in animal models to develop a cure for this blinding disease.

  10. Preclinical Studies on Intestinal Administration of Antisense Oligonucleotides as a Model for Oral Delivery for Treatment of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Maaike van Putten

    2014-01-01

    Full Text Available Antisense oligonucleotides (AONs used to reframe dystrophin mRNA transcripts for Duchenne muscular dystrophy (DMD patients are tested in clinical trials. Here, AONs are administered subcutaneously and intravenously, while the less invasive oral route would be preferred. Oral delivery of encapsulated AONs supplemented with a permeation enhancer, sodium caprate, has been successfully used to target tumor necrosis factor (TNF-α expression in liver. To test the feasibility of orally delivered AONs for DMD, we applied 2′-O-methyl phosphorothioate AONs (with or without sodium caprate supplementation directly to the intestine of mdx mice and compared pharmacokinetics and -dynamics with intravenous, intraperitoneal, and subcutaneous delivery. Intestinally infused AONs were taken up, but resulted in lower plasma levels compared to other delivery routes, although bioavailability could be largely improved by supplementation of sodium caprate. After intestinal infusion, AON levels in all tissues were lower than for other administration routes, as were the ratios of target versus nontarget organ levels, except for diaphragm and heart where comparable levels and ratios were observed. For each administration route, low levels of exon skipping in triceps was observed 3 hours post-AON administration. These data suggest that oral administration of naked 2′-O-methyl phosphorothioate AONs may be feasible, but only when high AON concentrations are used in combination with sodium caprate.

  11. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering.

    Science.gov (United States)

    Henriques, Rossana; Wang, Huan; Liu, Jun; Boix, Marc; Huang, Li-Fang; Chua, Nam-Hai

    2017-11-01

    Circadian rhythms of gene expression are generated by the combinatorial action of transcriptional and translational feedback loops as well as chromatin remodelling events. Recently, long noncoding RNAs (lncRNAs) that are natural antisense transcripts (NATs) to transcripts encoding central oscillator components were proposed as modulators of core clock function in mammals (Per) and fungi (frq/qrf). Although oscillating lncRNAs exist in plants, their functional characterization is at an initial stage. By screening an Arabidopsis thaliana lncRNA custom-made array we identified CDF5 LONG NONCODING RNA (FLORE), a circadian-regulated lncRNA that is a NAT of CDF5. Quantitative real-time RT-PCR confirmed the circadian regulation of FLORE, whereas GUS-staining and flowering time evaluation were used to determine its biological function. FLORE and CDF5 antiphasic expression reflects mutual inhibition in a similar way to frq/qrf. Moreover, whereas the CDF5 protein delays flowering by directly repressing FT transcription, FLORE promotes it by repressing several CDFs (CDF1, CDF3, CDF5) and increasing FT transcript levels, indicating both cis and trans function. We propose that the CDF5/FLORE NAT pair constitutes an additional circadian regulatory module with conserved (mutual inhibition) and unique (function in trans) features, able to fine-tune its own circadian oscillation, and consequently, adjust the onset of flowering to favourable environmental conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Histopathological Defects in Intestine in Severe Spinal Muscular Atrophy Mice Are Improved by Systemic Antisense Oligonucleotide Treatment.

    Directory of Open Access Journals (Sweden)

    Palittiya Sintusek

    Full Text Available Gastrointestinal (GI defects, including gastroesophageal reflux, constipation and delayed gastric emptying, are common in patients with spinal muscular atrophy (SMA. Similar GI dysmotility has been identified in mouse models with survival of motor neuron (SMN protein deficiency. We previously described vascular defects in skeletal muscle and spinal cord of SMA mice and we hypothesized that similar defects could be involved in the GI pathology observed in these mice. We therefore investigated the gross anatomical structure, enteric vasculature and neurons in the small intestine in a severe mouse model of SMA. We also assessed the therapeutic response of GI histopathology to systemic administration of morpholino antisense oligonucleotide (AON designed to increase SMN protein expression. Significant anatomical and histopathological abnormalities, with striking reduction of vascular density, overabundance of enteric neurons and increased macrophage infiltration, were detected in the small intestine in SMA mice. After systemic AON treatment in neonatal mice, all the abnormalities observed were significantly restored to near-normal levels. We conclude that the observed GI histopathological phenotypes and functional defects observed in these SMA mice are strongly linked to SMN deficiency which can be rescued by systemic administration of AON. This study on the histopathological changes in the gastrointestinal system in severe SMA mice provides further indication of the complex role that SMN plays in multiple tissues and suggests that at least in SMA mice restoration of SMN production in peripheral tissues is essential for optimal outcome.

  13. Antisense oligonucleotide therapy rescues disruptions in organization of exploratory movements associated with Usher syndrome type 1C in mice.

    Science.gov (United States)

    Donaldson, Tia N; Jennings, Kelsey T; Cherep, Lucia A; McNeela, Adam M; Depreux, Frederic F; Jodelka, Francine M; Hastings, Michelle L; Wallace, Douglas G

    2018-02-15

    Usher syndrome, Type 1C (USH1C) is an autosomal recessive inherited disorder in which a mutation in the gene encoding harmonin is associated with multi-sensory deficits (i.e., auditory, vestibular, and visual). USH1C (Usher) mice, engineered with a human USH1C mutation, exhibit these multi-sensory deficits by circling behavior and lack of response to sound. Administration of an antisense oligonucleotide (ASO) therapeutic that corrects expression of the mutated USH1C gene, has been shown to increase harmonin levels, reduce circling behavior, and improve vestibular and auditory function. The current study evaluates the organization of exploratory movements to assess spatial organization in Usher mice and determine the efficacy of ASO therapy in attenuating any such deficits. Usher and heterozygous mice received the therapeutic ASO, ASO-29, or a control, non-specific ASO treatment at postnatal day five. Organization of exploratory movements was assessed under dark and light conditions at two and six-months of age. Disruptions in exploratory movement organization observed in control-treated Usher mice were consistent with impaired use of self-movement and environmental cues. In general, ASO-29 treatment rescued organization of exploratory movements at two and six-month testing points. These observations are consistent with ASO-29 rescuing processing of multiple sources of information and demonstrate the potential of ASO therapies to ameliorate topographical disorientation associated with other genetic disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Optimization of Peptide Nucleic Acid Antisense Oligonucleotides for Local and Systemic Dystrophin Splice Correction in the mdx Mouse

    Science.gov (United States)

    Yin, HaiFang; Betts, Corinne; Saleh, Amer F; Ivanova, Gabriela D; Lee, Hyunil; Seow, Yiqi; Kim, Dalsoo; Gait, Michael J; Wood, Matthew JA

    2010-01-01

    Antisense oligonucleotides (AOs) have the capacity to alter the processing of pre-mRNA transcripts in order to correct the function of aberrant disease-related genes. Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle degenerative disease that arises from mutations in the DMD gene leading to an absence of dystrophin protein. AOs have been shown to restore the expression of functional dystrophin via splice correction by intramuscular and systemic delivery in animal models of DMD and in DMD patients via intramuscular administration. Major challenges in developing this splice correction therapy are to optimize AO chemistry and to develop more effective systemic AO delivery. Peptide nucleic acid (PNA) AOs are an alternative AO chemistry with favorable in vivo biochemical properties and splice correcting abilities. Here, we show long-term splice correction of the DMD gene in mdx mice following intramuscular PNA delivery and effective splice correction in aged mdx mice. Further, we report detailed optimization of systemic PNA delivery dose regimens and PNA AO lengths to yield splice correction, with 25-mer PNA AOs providing the greatest splice correcting efficacy, restoring dystrophin protein in multiple peripheral muscle groups. PNA AOs therefore provide an attractive candidate AO chemistry for DMD exon skipping therapy. PMID:20068555

  15. Histopathological Defects in Intestine in Severe Spinal Muscular Atrophy Mice Are Improved by Systemic Antisense Oligonucleotide Treatment

    Science.gov (United States)

    Sintusek, Palittiya; Catapano, Francesco; Angkathunkayul, Napat; Marrosu, Elena; Parson, Simon H.; Morgan, Jennifer E.; Muntoni, Francesco; Zhou, Haiyan

    2016-01-01

    Gastrointestinal (GI) defects, including gastroesophageal reflux, constipation and delayed gastric emptying, are common in patients with spinal muscular atrophy (SMA). Similar GI dysmotility has been identified in mouse models with survival of motor neuron (SMN) protein deficiency. We previously described vascular defects in skeletal muscle and spinal cord of SMA mice and we hypothesized that similar defects could be involved in the GI pathology observed in these mice. We therefore investigated the gross anatomical structure, enteric vasculature and neurons in the small intestine in a severe mouse model of SMA. We also assessed the therapeutic response of GI histopathology to systemic administration of morpholino antisense oligonucleotide (AON) designed to increase SMN protein expression. Significant anatomical and histopathological abnormalities, with striking reduction of vascular density, overabundance of enteric neurons and increased macrophage infiltration, were detected in the small intestine in SMA mice. After systemic AON treatment in neonatal mice, all the abnormalities observed were significantly restored to near-normal levels. We conclude that the observed GI histopathological phenotypes and functional defects observed in these SMA mice are strongly linked to SMN deficiency which can be rescued by systemic administration of AON. This study on the histopathological changes in the gastrointestinal system in severe SMA mice provides further indication of the complex role that SMN plays in multiple tissues and suggests that at least in SMA mice restoration of SMN production in peripheral tissues is essential for optimal outcome. PMID:27163330

  16. Rescue of Outer Hair Cells with Antisense Oligonucleotides in Usher Mice Is Dependent on Age of Treatment.

    Science.gov (United States)

    Ponnath, Abhilash; Depreux, Frederic F; Jodelka, Francine M; Rigo, Frank; Farris, Hamilton E; Hastings, Michelle L; Lentz, Jennifer J

    2018-02-01

    The absence of functional outer hair cells is a component of several forms of hereditary hearing impairment, including Usher syndrome, the most common cause of concurrent hearing and vision loss. Antisense oligonucleotide (ASO) treatment of mice with the human Usher mutation, Ush1c c.216G>A, corrects gene expression and significantly improves hearing, as measured by auditory-evoked brainstem responses (ABRs), as well as inner and outer hair cell (IHC and OHC) bundle morphology. However, it is not clear whether the improvement in hearing achieved by ASO treatment involves the functional rescue of outer hair cells. Here, we show that Ush1c c.216AA mice lack OHC function as evidenced by the absence of distortion product otoacoustic emissions (DPOAEs) in response to low-, mid-, and high-frequency tone pairs. This OHC deficit is rescued by treatment with an ASO that corrects expression of Ush1c c.216G>A. Interestingly, although rescue of inner hairs cells, as measured by ABR, is achieved by ASO treatment as late as 7 days after birth, rescue of outer hair cells, measured by DPOAE, requires treatment before post-natal day 5. These results suggest that ASO-mediated rescue of both IHC and OHC function is age dependent and that the treatment window is different for the different cell types. The timing of treatment for congenital hearing disorders is of critical importance for the development of drugs such ASO-29 for hearing rescue.

  17. PLGA-PEG-PLGA microspheres as a delivery vehicle for antisense oligonucleotides to CTGF: Implications on post-surgical peritoneal adhesion prevention

    Science.gov (United States)

    Azeke, John Imuetinyan-Jesu, Jr.

    Abdominal adhesions are the aberrant result of peritoneal wound healing commonly associated with surgery and inflammation. A subject of a large number of studies since the first half of the last century, peritoneal adhesion prevention has, for the most part, evaded the scientific community and continues to cost Americans an estimated $2-4 billion annually. It is known that transforming growth factor-beta (TGF-beta) plays a key role in the wound healing cascade; however, suppression of this multifunctional growth factor's activity may have more harmful consequences than can be tolerated. As a result, much attention has fallen on connective tissue growth factor (CTGF), a downstream mediator of TGF-beta's fibrotic action. It has been demonstrated in several in vitro models, that the suppression of CTGF hinders fibroblast proliferation, a necessary condition for fibrosis. Furthermore, antisense oligonucleotides (antisense oligos, AO) to CTGF have been shown to knock down CTGF mRNA levels by specifically hindering the translation of CTGF protein. Antisense technologies have met with a great deal of excitement as a viable means of preventing diseases such as adhesions by hindering protein translation at the mRNA level. However, the great challenge associated with the use of these drugs lies in the short circulation time when administered "naked". Viral delivery systems, although excellent platforms in metabolic studies, are not ideal for diagnostic use because of the inherent danger associated with viral vectors. Microparticles made of biodegradable polymers have therefore presented themselves as a viable means of delivering these drugs to target cells over extended periods. Herein, we present two in vivo studies confirming the up-regulation of TGF-beta protein and CTGF mRNA following injury to the uterine tissues of female rats. We were able to selectively knockdown post-operative CTGF protein levels following surgery, however, our observations led us to conclude that

  18. Non-Watson–Crick interactions between PNA and DNA inhibit the ATPase activity of bacteriophage T4 Dda helicase

    Science.gov (United States)

    Tackett, Alan J.; Corey, David R.; Raney, Kevin D.

    2002-01-01

    Peptide nucleic acid (PNA) is a DNA mimic in which the nucleobases are linked by an N-(2-aminoethyl) glycine backbone. Here we report that PNA can interact with single-stranded DNA (ssDNA) in a non-sequence-specific fashion. We observed that a 15mer PNA inhibited the ssDNA-stimulated ATPase activity of a bacteriophage T4 helicase, Dda. Surprisingly, when a fluorescein-labeled 15mer PNA was used in binding studies no interaction was observed between PNA and Dda. However, fluorescence polarization did reveal non-sequence-specific interactions between PNA and ssDNA. Thus, the inhibition of ATPase activity of Dda appears to result from depletion of the available ssDNA due to non-Watson–Crick binding of PNA to ssDNA. Inhibition of the ssDNA-stimulated ATPase activity was observed for several PNAs of varying length and sequence. To study the basis for this phenomenon, we examined self-aggregation by PNAs. The 15mer PNA readily self-aggregates to the point of precipitation. Since PNAs are hydrophobic, they aggregate more than DNA or RNA, making the study of this phenomenon essential for understanding the properties of PNA. Non-sequence-specific interactions between PNA and ssDNA were observed at moderate concentrations of PNA, suggesting that such interactions should be considered for antisense and antigene applications. PMID:11842106

  19. Bomb parameters

    International Nuclear Information System (INIS)

    Kerr, George D.; Young, Rebert W.; Cullings, Harry M.; Christry, Robert F.

    2005-01-01

    The reconstruction of neutron and gamma-ray doses at Hiroshima and Nagasaki begins with a determination of the parameters describing the explosion. The calculations of the air transported radiation fields and survivor doses from the Hiroshima and Nagasaki bombs require knowledge of a variety of parameters related to the explosions. These various parameters include the heading of the bomber when the bomb was released, the epicenters of the explosions, the bomb yields, and the tilt of the bombs at time of explosion. The epicenter of a bomb is the explosion point in air that is specified in terms of a burst height and a hypocenter (or the point on the ground directly below the epicenter of the explosion). The current reassessment refines the energy yield and burst height for the Hiroshima bomb, as well as the locations of the Hiroshima and Nagasaki hypocenters on the modern city maps used in the analysis of the activation data for neutrons and TLD data for gamma rays. (J.P.N.)

  20. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    Conde, J; Baptista, P V; De la Fuente, J M

    2010-01-01

    The use of gold nanoparticles (AuNPs) has been gaining momentum as vectors for gene silencing strategies, combining the AuNPs' ease of functionalization with DNA and/or siRNA, high loading capacity and fast uptake by target cells. Here, we used AuNP functionalized with thiolated oligonucleotides to specifically inhibit transcription in vitro, demonstrating the synergetic effect between AuNPs and a specific antisense sequence that blocks the T7 promoter region. Also, AuNPs efficiently protect the antisense oligonucleotide against nuclease degradation, which can thus retain its inhibitory potential. In addition, we demonstrate that AuNPs functionalized with a thiolated oligonucleotide complementary to the ribosome binding site and the start codon, effectively shut down in vitro translation. Together, these two approaches can provide for a simple yet robust experimental set up to test for efficient gene silencing of AuNP-DNA conjugates. What is more, these results show that appropriate functionalization of AuNPs can be used as a dual targeting approach to an enhanced control of gene expression-inhibition of both transcription and translation.

  1. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J; Baptista, P V [Centro de Investigacao em Genetica Molecular Humana (CIGMH), Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); De la Fuente, J M, E-mail: pmvb@fct.unl.pt [Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)

    2010-12-17

    The use of gold nanoparticles (AuNPs) has been gaining momentum as vectors for gene silencing strategies, combining the AuNPs' ease of functionalization with DNA and/or siRNA, high loading capacity and fast uptake by target cells. Here, we used AuNP functionalized with thiolated oligonucleotides to specifically inhibit transcription in vitro, demonstrating the synergetic effect between AuNPs and a specific antisense sequence that blocks the T7 promoter region. Also, AuNPs efficiently protect the antisense oligonucleotide against nuclease degradation, which can thus retain its inhibitory potential. In addition, we demonstrate that AuNPs functionalized with a thiolated oligonucleotide complementary to the ribosome binding site and the start codon, effectively shut down in vitro translation. Together, these two approaches can provide for a simple yet robust experimental set up to test for efficient gene silencing of AuNP-DNA conjugates. What is more, these results show that appropriate functionalization of AuNPs can be used as a dual targeting approach to an enhanced control of gene expression-inhibition of both transcription and translation.

  2. DNA Vaccines

    Indian Academy of Sciences (India)

    diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL .... tein vaccines require expensive virus/protein purification tech- niques as ... sphere continue to remain major health hazards in developing nations. ... significance since it can be produced at a very low cost and can be stored ...

  3. DNA Investigations.

    Science.gov (United States)

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  4. Inhibition of iridovirus protein synthesis and virus replication by antisense morpholino oligonucleotides targeted to the major capsid protein, the 18 kDa immediate-early protein, and a viral homolog of RNA polymerase II

    International Nuclear Information System (INIS)

    Sample, Robert; Bryan, Locke; Long, Scott; Majji, Sai; Hoskins, Glenn; Sinning, Allan; Olivier, Jake; Chinchar, V. Gregory

    2007-01-01

    Frog virus 3 (FV3) is a large DNA virus that encodes ∼ 100 proteins. Although the general features of FV3 replication are known, the specific roles that most viral proteins play in the virus life cycle have not yet been elucidated. To address the question of viral gene function, antisense morpholino oligonucleotides (asMOs) were used to transiently knock-down expression of specific viral genes and thus infer their role in virus replication. We designed asMOs directed against the major capsid protein (MCP), an 18 kDa immediate-early protein (18K) that was thought to be a viral regulatory protein, and the viral homologue of the largest subunit of RNA polymerase II (vPol-IIα). All three asMOs successfully inhibited translation of the targeted protein, and two of the three asMOs resulted in marked phenotypic changes. Knock-down of the MCP resulted in a marked reduction in viral titer without a corresponding drop in the synthesis of other late viral proteins. Transmission electron microscopy (TEM) showed that in cells treated with the anti-MCP MO assembly sites were devoid of viral particles and contained numerous aberrant structures. In contrast, inhibition of 18K synthesis did not block virion formation, suggesting that the 18K protein was not essential for replication of FV3 in fathead minnow (FHM) cells. Finally, consistent with the view that late viral gene expression is catalyzed by a virus-encoded or virus-modified Pol-II-like protein, knock-down of vPol-IIα triggered a global decline in late gene expression and virus yields without affecting the synthesis of early viral genes. Collectively, these results demonstrate the utility of using asMOs to elucidate the function of FV3 proteins

  5. hREV3 is essential for error-prone translesion synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA lesions in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li Ziqiang; Zhang Hong; McManus, Terrence P.; McCormick, J. Justin; Lawrence, Christopher W.; Maher, Veronica M

    2002-12-29

    In S. cerevisiae, the REV3 gene, encoding the catalytic subunit of polymerase zeta, is involved in translesion synthesis and required for the production of mutations induced by ultraviolet radiation (UV) photoproducts and other DNA fork-blocking lesions, and for the majority of spontaneous mutations. To determine whether hREV3, the human homolog of yeast REV3, is similarly involved in error-prone translesion synthesis past UV photoproducts and other lesions that block DNA replication, an hREV3 antisense construct under the control of the TetP promoter was transfected into an infinite life span human fibroblast cell strain that expresses a high level of tTAk, the activator of that promoter. Three transfectant strains expressing high levels of hREV3 antisense RNA were identified and compared with their parental cell strain for sensitivity to the cytotoxic and mutagenic effects of UV. The three hREV3 antisense-expressing cell strains were not more sensitive than the parental strain to the cytotoxic effect of UV, but the frequency of mutants induced by UV in their HPRT gene was significantly reduced, i.e. to 14% that of the parent. Two of these hREV3 antisense-expressing cell strains were compared with the parental strain for sensitivity to ({+-})-7{beta},8{alpha}-dihydroxy-9{alpha},10{alpha}-epoxy-7,8,9,10-tetrahydro= benzo[a]pyrene (BPDE). They were not more sensitive than the parent strain to the cytotoxic effect of BPDE, but the frequency of mutants induced was significantly reduced, i.e. in one strain, to 17% that of the parent, and in the other, to 24%. DNA sequencing showed that the kinds of mutations induced by BPDE in the parental and the derivative strains did not differ and were similar to those found previously with finite life span human fibroblasts. The data strongly support the hypothesis that hRev3 plays a critical role in the induction of mutations by UV or BPDE. Because the level of hRev3 protein in human fibroblasts is below the level of antibody

  6. hREV3 is essential for error-prone translesion synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA lesions in human fibroblasts

    International Nuclear Information System (INIS)

    Li Ziqiang; Zhang Hong; McManus, Terrence P.; McCormick, J. Justin; Lawrence, Christopher W.; Maher, Veronica M.

    2002-01-01

    In S. cerevisiae, the REV3 gene, encoding the catalytic subunit of polymerase zeta, is involved in translesion synthesis and required for the production of mutations induced by ultraviolet radiation (UV) photoproducts and other DNA fork-blocking lesions, and for the majority of spontaneous mutations. To determine whether hREV3, the human homolog of yeast REV3, is similarly involved in error-prone translesion synthesis past UV photoproducts and other lesions that block DNA replication, an hREV3 antisense construct under the control of the TetP promoter was transfected into an infinite life span human fibroblast cell strain that expresses a high level of tTAk, the activator of that promoter. Three transfectant strains expressing high levels of hREV3 antisense RNA were identified and compared with their parental cell strain for sensitivity to the cytotoxic and mutagenic effects of UV. The three hREV3 antisense-expressing cell strains were not more sensitive than the parental strain to the cytotoxic effect of UV, but the frequency of mutants induced by UV in their HPRT gene was significantly reduced, i.e. to 14% that of the parent. Two of these hREV3 antisense-expressing cell strains were compared with the parental strain for sensitivity to (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE). They were not more sensitive than the parent strain to the cytotoxic effect of BPDE, but the frequency of mutants induced was significantly reduced, i.e. in one strain, to 17% that of the parent, and in the other, to 24%. DNA sequencing showed that the kinds of mutations induced by BPDE in the parental and the derivative strains did not differ and were similar to those found previously with finite life span human fibroblasts. The data strongly support the hypothesis that hRev3 plays a critical role in the induction of mutations by UV or BPDE. Because the level of hRev3 protein in human fibroblasts is below the level of antibody detection, it was not

  7. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study.

    Science.gov (United States)

    Suresh, Gorle; Priyakumar, U Deva

    2015-09-01

    Modified nucleic acids have found profound applications in nucleic acid based technologies such as antisense and antiviral therapies. Previous studies on chemically modified nucleic acids have suggested that modifications incorporated in furanose sugar especially at 2'-position attribute special properties to nucleic acids when compared to other modifications. 2'-O-methyl modification to deoxyribose sugars of DNA-RNA hybrids is one such modification that increases nucleic acid stability and has become an attractive class of compounds for potential antisense applications. It has been reported that modification of DNA strands with 2'-O-methyl group reverses the thermodynamic stability of DNA-RNA hybrid duplexes. Molecular dynamics simulations have been performed on two hybrid duplexes (DR and RD) which differ from each other and 2'-O-methyl modified counterparts to investigate the effect of 2'-O-methyl modification on their duplex stability. The results obtained suggest that the modification drives the conformations of both the hybrid duplexes towards A-RNA like conformation. The modified hybrid duplexes exhibit significantly contrasting dynamics and hydration patterns compared to respective parent duplexes. In line with the experimental results, the relative binding free energies suggest that the introduced modifications stabilize the less stable DR hybrid, but destabilize the more stable RD duplex. Binding free energy calculations suggest that the increased hydrophobicity is primarily responsible for the reversal of thermodynamic stability of hybrid duplexes. Free energy component analysis further provides insights into the stability of modified duplexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    Science.gov (United States)

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.

  9. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells.

    Science.gov (United States)

    Talaei, Fatemeh; Azizi, Ebrahim; Dinarvand, Rassoul; Atyabi, Fatemeh

    2011-01-01

    Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan) and NAP-C (N-acetyl penicillamine-chitosan) in anticancer drug delivery targeting epidermal growth factor receptor (EGFR). Doxorubicin (DOX) and antisense oligonucleotide (ASOND)-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D) were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo.

  10. Durable field resistance to wheat yellow mosaic virus in transgenic wheat containing the antisense virus polymerase gene.

    Science.gov (United States)

    Chen, Ming; Sun, Liying; Wu, Hongya; Chen, Jiong; Ma, Youzhi; Zhang, Xiaoxiang; Du, Lipu; Cheng, Shunhe; Zhang, Boqiao; Ye, Xingguo; Pang, Junlan; Zhang, Xinmei; Li, Liancheng; Andika, Ida B; Chen, Jianping; Xu, Huijun

    2014-05-01

    Wheat yellow mosaic virus (WYMV) has spread rapidly and causes serious yield losses in the major wheat-growing areas in China. Because it is vectored by the fungus-like organism Polymyxa graminis that survives for long periods in soil, it is difficult to eliminate by conventional crop management or fungicides. There is also only limited resistance in commercial cultivars. In this research, fourteen independent transgenic events were obtained by co-transformation with the antisense NIb8 gene (the NIb replicase of WYMV) and a selectable gene bar. Four original transgenic lines (N12, N13, N14 and N15) and an offspring line (N12-1) showed high and durable resistance to WYMV in the field. Four resistant lines were shown to have segregated and only contain NIb8 (without bar) by PCR and herbicide resistance testing in the later generations. Line N12-1 showed broad-spectrum resistance to WYMV isolates from different sites in China. After growing in the infested soil, WYMV could not be detected by tissue printing and Western blot assays of transgenic wheat. The grain yield of transgenic wheat was about 10% greater than the wild-type susceptible control. Northern blot and small RNA deep sequencing analyses showed that there was no accumulation of small interfering RNAs targeting the NIb8 gene in transgenic wheat plants, suggesting that transgene RNA silencing, a common mechanism of virus-derived disease resistance, is not involved in the process of WYMV resistance. This durable and broad-spectrum resistance to WYMV in transgenic wheat will be useful for alleviating the damage caused by WYMV. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Dynamics of co-transcriptional pre-mRNA folding influences the induction of dystrophin exon skipping by antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Keng Boon Wee

    Full Text Available Antisense oligonucleotides (AONs mediated exon skipping offers potential therapy for Duchenne muscular dystrophy. However, the identification of effective AON target sites remains unsatisfactory for lack of a precise method to predict their binding accessibility. This study demonstrates the importance of co-transcriptional pre-mRNA folding in determining the accessibility of AON target sites for AON induction of selective exon skipping in DMD. Because transcription and splicing occur in tandem, AONs must bind to their target sites before splicing factors. Furthermore, co-transcriptional pre-mRNA folding forms transient secondary structures, which redistributes accessible binding sites. In our analysis, to approximate transcription elongation, a "window of analysis" that included the entire targeted exon was shifted one nucleotide at a time along the pre-mRNA. Possible co-transcriptional secondary structures were predicted using the sequence in each step of transcriptional analysis. A nucleotide was considered "engaged" if it formed a complementary base pairing in all predicted secondary structures of a particular step. Correlation of frequency and localisation of engaged nucleotides in AON target sites accounted for the performance (efficacy and efficiency of 94% of 176 previously reported AONs. Four novel insights are inferred: (1 the lowest frequencies of engaged nucleotides are associated with the most efficient AONs; (2 engaged nucleotides at 3' or 5' ends of the target site attenuate AON performance more than at other sites; (3 the performance of longer AONs is less attenuated by engaged nucleotides at 3' or 5' ends of the target site compared to shorter AONs; (4 engaged nucleotides at 3' end of a short target site attenuates AON efficiency more than at 5' end.

  12. EFFECT OF STENT ABSORBED c-myc ANTISENSE OLIGODEOXYNUCLEOTIDE ON SMOOTH MUSCLE CELLS APOPTOSIS IN RABBIT CAROTID ARTERY

    Institute of Scientific and Technical Information of China (English)

    张新霞; 崔长琮; 李江; 崔翰斌; 徐仓宝; 朱参战

    2002-01-01

    Objective To investigate the effect of gelatin coated Platinium-Iridium stent absorbed c-myc antisense oligodeoxynucleotide (ASODN) on smooth muscle cells apoptosis in a normal rabbit carotid arteries. Methods Gelatin coated Platinium-Iridium stents were implanted in the right carotid arteries of 32 rabbits under vision. Animals were randomly divided into control group and treated group receiving c-myc ASODN (n=16, respectively). On 7, 14, 30 and 90 days following the stenting procedure ,morphometry for caculation of neointimal area and mean neointimal thickness were performed.The expression of c-myc protein was detected by immunohistochemical method. Apoptotic smooth muscle cells was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL). Results At 7 and 14 days after stenting,there were no detectable apoptotic cells in both groups. The apoptotic cells occurred in the neointima 30 and 90 days after stenting, and the number of apoptotic cells at 30 days were less [4.50±1.29 vs 25.75±1.89 (number/0.1mm2)] than that at 90 days [13.50±1.91 vs 41.50±6.46 (number/0.1mm2)]. Meanwhile c-myc ASODN induced more apoptotic cells than the control group(P<0.0001). c-myc protein expression was weak positive or negative in treated group and positive in control group.Conclusion c-myc ASODN can induce smooth muscle cells apoptosis after stenting in normal rabbit carotid arteries,and it can be used to prevent in-stent restenosis.

  13. Distribution of C-myc Antisense Oligonucleotides in Rabbits after Local Delivery by Implanted Gelatin Coated Piatinium -iridium Stent

    Institute of Scientific and Technical Information of China (English)

    张新霞; 庞志功; 崔长琮; 许香广; 胡雪松; 方卫华

    2003-01-01

    Objectives To assess the feasibility, efficiency and tissue distribution of localdelivered c - myc antisense oligonucleotides (ASODN)by implanted gelatin coated Platinium- Iridium (Pt-Ir) stent. Methods Gelatin coated Pt- Ir stentwhich absorbed carboxyfluorescein - 5 - succimidylester (FAM) labeled c -myc ASODN were implantedin the right carotid arteries of 6 rabbits under vision.Blood samples were collected at the indicated times.The target artery、 left carotid artery、 heart、 liver andkidney obtained at 45 minutes、 2 hours and 6hours. The concentration of c - myc ASODN in plasmaand tissues were determined by Thin Layer Fluorome-try. Tissue distribution of c- myc ASODN were as-sessed by fluorescence microscopy. Results At 45min, 2 h, 6 h, the concentration of FAM labeled c -myc ASODN in target artery was 244.39, 194.44,126.94(μg/g tissues) respectively, and the deliveryefficiency were 44.4% 、 35.4% and 23.1% respec-tively. At the same indicated time point, the plasmaconcentration was 8.41, 5. 83, 14.75 (μg/ml) respec-tively. Therefore c -myc ASODN concentrations in thetarget vessel were 29、 33 and 9 -fold higher than thatin the plasma. There was circumferential distribution oflabeled c -myc in the area of highest fluorescein co-inciding with the site of medial dissecting from stent-ing, and the label was most intense in target vesselmedia harvested at 45 min time point and then dis-persed to adventitia. Conclusions Gelatin coated Pt- Ir stent mediated local delivery of c - myc ASODN isfeasible and efficient. The localization of ASODN ismainly in target vessel wall.

  14. Antisense oligonucleotides and all-trans retinoic acid have a synergistic anti-tumor effect on oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Xu, Qin; Zhang, Zhiyuan; Zhang, Ping; Chen, Wantao

    2008-01-01

    Antisense oligonucleotides against hTR (As-ODN-hTR) have shown promising results as treatment strategies for various human malignancies. All-trans retinoic acid (ATRA) is a signalling molecule with important roles in differentiation and apoptosis. Biological responses to ATRA are currently used therapeutically in various human cancers. The aim of this study was to evaluate the anti-tumor effects of As-ODN-hTR combined with ATRA in vivo. In situ human oral squamous cell carcinoma (OSCC) models were established by subcutaneous injection of Tca8113 cells. Mice were treated with sense oligonucleotides against hTR(S-ODN-hTR) alone, As-ODN-hTR alone, ATRA alone, As-ODN-hTR plus ATRA, or S-ODN-hTR plus ATRA. Tumor size and weight were assessed in the mice. Telomerase activity was detected by a TRAP assay, apoptotic cells were evaluated with a Tunel assay, the expression of apoptosis-related proteins (Bcl-2 and Bax) was evaluated by immunohistochemistry and ultrastructural morphological changes in the tumor specimen were examined. Both As-ODN-hTR and ATRA can significantly inhibit tumor growth in this OSCC xenograft solid-tumor model, and the combination of the two agents had a synergistic anti-tumorogenic effect. We also demonstrated that this anti-tumor effect correlated with inhibition of telomerase activity. Furthermore, significant increases in the number of apoptotic cells, typical apoptotic morphology and a downregulation of the anti-apoptotic protein, bcl-2 were observed in the treated tissues. The combination of As-ODN-hTR and ATRA has a synergistic anti-tumor effect. This anti-tumor effect can be mainly attributed to apoptosis induced by a decrease in telomerase activity. Bcl-2 plays an important role in this process. Therefore, combining As-ODN-hTR and ATRA may be an approach for the treatment of human oral squamous cell carcinoma

  15. Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Blake A Jacobson

    Full Text Available BACKGROUND: Aberrant cap-dependent translation is implicated in tumorigenesis in multiple tumor types including mesothelioma. In this study, disabling the eIF4F complex by targeting eIF4E with eIF4E-specific antisense oligonucleotide (4EASO is assessed as a therapy for mesothelioma. METHODS: Mesothelioma cells were transfected with 4EASO, designed to target eIF4E mRNA, or mismatch-ASO control. Cell survival was measured in mesothelioma treated with 4EASO alone or combined with either gemcitabine or pemetrexed. Levels of eIF4E, ODC, Bcl-2 and β-actin were assessed following treatment. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation following treatment. RESULTS: eIF4E level and the formation of eIF4F cap-complex decreased in response to 4EASO, but not mismatch control ASO, resulting in cleavage of PARP indicating apoptosis. 4EASO treatment resulted in dose dependent decrease in eIF4E levels, which corresponded to cytotoxicity of mesothelioma cells. 4EASO resulted in decreased levels of eIF4E in non-malignant LP9 cells, but this did not correspond to increased cytotoxicity. Proteins thought to be regulated by cap-dependent translation, Bcl-2 and ODC, were decreased upon treatment with 4EASO. Combination therapy of 4EASO with pemetrexed or gemcitabine further reduced cell number. CONCLUSION: 4EASO is a novel drug that causes apoptosis and selectively reduces eIF4E levels, eIF4F complex formation, and proliferation of mesothelioma cells. eIF4E knockdown results in decreased expression of anti-apoptotic and pro-growth proteins and enhances chemosensitivity.

  16. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  17. Optical Characterization of Oligonucleotide DNA Influenced by Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Seyedeh Maryam Banihashemian

    2013-09-01

    Full Text Available UV-VIS spectroscopic analysis of oligonucleotide DNA exposed to different magnetic fields was performed in order to investigate the relationship between DNA extinction coefficients and optical parameters according to magnetic-field strength. The results with the oligonucleotides adenine-thymine 100 mer (AT-100 DNA and cytosine-guanine 100 mer (CG-100 DNA indicate that the magnetic field influences DNA molar extinction coefficients and refractive indexes. The imaginary parts of the refractive index and molar extinction coefficients of the AT-100 and CG-100 DNA decreased after exposure to a magnetic field of 750 mT due to cleavage of the DNA oligonucleotides into smaller segments.

  18. Single DNA denaturation and bubble dynamics

    International Nuclear Information System (INIS)

    Metzler, Ralf; Ambjoernsson, Tobias; Hanke, Andreas; Fogedby, Hans C

    2009-01-01

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation bubbles and selectively single-stranded DNA binding proteins.

  19. Physiological parameters

    International Nuclear Information System (INIS)

    Natera, E.S.

    1998-01-01

    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  20. Fast and secure retrieval of DNA sequences

    NARCIS (Netherlands)

    2014-01-01

    Sequence models are retrieved from a sequences index. The sequence models model DNA or RNA sequences stored in a database, and each comprises a finite memory tree source model and parameters for the finite memory tree source model. One or more DNA or RNA sequences stored in the database are

  1. Hacking DNA copy number for circuit engineering.

    Science.gov (United States)

    Wu, Feilun; You, Lingchong

    2017-07-27

    DNA copy number represents an essential parameter in the dynamics of synthetic gene circuits but typically is not explicitly considered. A new study demonstrates how dynamic control of DNA copy number can serve as an effective strategy to program robust oscillations in gene expression circuits.

  2. Regulation of an antisense RNA with the transition of neonatal to IIb myosin heavy chain during postnatal development and hypothyroidism in rat skeletal muscle.

    Science.gov (United States)

    Pandorf, Clay E; Jiang, Weihua; Qin, Anqi X; Bodell, Paul W; Baldwin, Kenneth M; Haddad, Fadia

    2012-04-01

    Postnatal development of fast skeletal muscle is characterized by a transition in expression of myosin heavy chain (MHC) isoforms, from primarily neonatal MHC at birth to primarily IIb MHC in adults, in a tightly coordinated manner. These isoforms are encoded by distinct genes, which are separated by ∼17 kb on rat chromosome 10. The neonatal-to-IIb MHC transition is inhibited by a hypothyroid state. We examined RNA products [mRNA, pre-mRNA, and natural antisense transcript (NAT)] of developmental and adult-expressed MHC genes (embryonic, neonatal, I, IIa, IIx, and IIb) at 2, 10, 20, and 40 days after birth in normal and thyroid-deficient rat neonates treated with propylthiouracil. We found that a long noncoding antisense-oriented RNA transcript, termed bII NAT, is transcribed from a site within the IIb-Neo intergenic region and across most of the IIb MHC gene. NATs have previously been shown to mediate transcriptional repression of sense-oriented counterparts. The bII NAT is transcriptionally regulated during postnatal development and in response to hypothyroidism. Evidence for a regulatory mechanism is suggested by an inverse relationship between IIb MHC and bII NAT in normal and hypothyroid-treated muscle. Neonatal MHC transcription is coordinately expressed with bII NAT. A comparative phylogenetic analysis also suggests that bII NAT-mediated regulation has been a conserved trait of placental mammals for most of the eutherian evolutionary history. The evidence in support of the regulatory model implicates long noncoding antisense RNA as a mechanism to coordinate the transition between neonatal and IIb MHC during postnatal development.

  3. The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function

    Directory of Open Access Journals (Sweden)

    Wahlestedt Claes

    2007-03-01

    Full Text Available Abstract Background Mutations in the PTEN induced putative kinase 1 (PINK1 are implicated in early-onset Parkinson's disease. PINK1 is expressed abundantly in mitochondria rich tissues, such as skeletal muscle, where it plays a critical role determining mitochondrial structural integrity in Drosophila. Results Herein we characterize a novel splice variant of PINK1 (svPINK1 that is homologous to the C-terminus regulatory domain of the protein kinase. Naturally occurring non-coding antisense provides sophisticated mechanisms for diversifying genomes and we describe a human specific non-coding antisense expressed at the PINK1 locus (naPINK1. We further demonstrate that PINK1 varies in vivo when human skeletal muscle mitochondrial content is enhanced, supporting the idea that PINK1 has a physiological role in mitochondrion. The observation of concordant regulation of svPINK1 and naPINK1 during in vivo mitochondrial biogenesis was confirmed using RNAi, where selective targeting of naPINK1 results in loss of the PINK1 splice variant in neuronal cell lines. Conclusion Our data presents the first direct observation that a mammalian non-coding antisense molecule can positively influence the abundance of a cis-transcribed mRNA under physiological abundance conditions. While our analysis implies a possible human specific and dsRNA-mediated mechanism for stabilizing the expression of svPINK1, it also points to a broader genomic strategy for regulating a human disease locus and increases the complexity through which alterations in the regulation of the PINK1 locus could occur.

  4. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    Science.gov (United States)

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. DNA repair

    International Nuclear Information System (INIS)

    Van Zeeland, A.A.

    1984-01-01

    In this chapter a series of DNA repair pathways are discussed which are available to the cell to cope with the problem of DNA damaged by chemical or physical agents. In the case of microorganisms our knowledge about the precise mechanism of each DNA repair pathway and the regulation of it has been improved considerably when mutants deficient in these repair mechanisms became available. In the case of mammalian cells in culture, until recently there were very little repair deficient mutants available, because in almost all mammalian cells in culture at least the diploid number of chromosomes is present. Therefore the frequency of repair deficient mutants in such populations is very low. Nevertheless because replica plating techniques are improving some mutants from Chinese hamsters ovary cells and L5178Y mouse lymphoma cells are now available. In the case of human cells, cultures obtained from patients with certain genetic diseases are available. A number of cells appear to be sensitive to some chemical or physical mutagens. These include cells from patients suffering from xeroderma pigmentosum, Ataxia telangiectasia, Fanconi's anemia, Cockayne's syndrome. However, only in the case of xeroderma pigmentosum cells, has the sensitivity to ultraviolet light been clearly correlated with a deficiency in excision repair of pyrimidine dimers. Furthermore the work with strains obtained from biopsies from man is difficult because these cells generally have low cloning efficiencies and also have a limited lifespan in vitro. It is therefore very important that more repair deficient mutants will become available from established cell lines from human or animal origin

  6. Nanomechanical molecular devices made of DNA origami.

    Science.gov (United States)

    Kuzuya, Akinori; Ohya, Yuichi

    2014-06-17

    different cell lines, open their shell, and bind to their target. An intelligent DNA origami "sheath" can mimic the function of suppressors in a transcription regulation system to control the expression of a loaded gene. DNA origami "rolls" are created to construct precisely arranged plasmonic devices with metal nanoparticles. All of their functions are derived from their nanomechanical movement, which is programmable by designing the DNA sequence or by using the significant repository of technical achievements in nucleic acid chemistry. Finally, some studies on detailed structural parameters of DNA origami or their mechanical properties in nanoscale are discussed, which may be useful and inspiring for readers who intend to design new nanomechanical DNA origami devices.

  7. Fragmentation of DNA affects the accuracy of the DNA quantitation by the commonly used methods

    Directory of Open Access Journals (Sweden)

    Sedlackova Tatiana

    2013-02-01

    Full Text Available Abstract Background Specific applications and modern technologies, like non-invasive prenatal testing, non-invasive cancer diagnostic and next generation sequencing, are currently in the focus of researchers worldwide. These have common characteristics in use of highly fragmented DNA molecules for analysis. Hence, for the performance of molecular methods, DNA concentration is a crucial parameter; we compared the influence of different levels of DNA fragmentation on the accuracy of DNA concentration measurements. Results In our comparison, the performance of the currently most commonly used methods for DNA concentration measurement (spectrophotometric, fluorometric and qPCR based were tested on artificially fragmented DNA samples. In our comparison, unfragmented and three specifically fragmented DNA samples were used. According to our results, the level of fragmentation did not influence the accuracy of spectrophotometric measurements of DNA concentration, while other methods, fluorometric as well as qPCR-based, were significantly influenced and a decrease in measured concentration was observed with more intensive DNA fragmentation. Conclusions Our study has confirmed that the level of fragmentation of DNA has significant impact on accuracy of DNA concentration measurement with two of three mostly used methods (PicoGreen and qPCR. Only spectrophotometric measurement was not influenced by the level of fragmentation, but sensitivity of this method was lowest among the three tested. Therefore if it is possible the DNA quantification should be performed with use of equally fragmented control DNA.

  8. The experimental study of VEGF antisense oligodeoxynucleotides with lipiodol in arterial embolization of liver cancer in rats

    International Nuclear Information System (INIS)

    Wu Hanping; Feng Gansheng; Li Xin; Liang Huimin; Zheng Chuansheng

    2003-01-01

    Objective: To study the inhibitory effects of VEGF antisense oligodeoxynucleotides (asODN) on cultured Walker-256 cells' VEGF expression, and to observe the anti-tumor effects of intraarterial infusion of asODN mixed with lipiodol on rat liver cancer. Methods: VEGF asODN and sense ODN were added to the media of non-serum cultured Walker-256 cells, and the VEGF concentrations of the supernatants were detected by using ELISA 48 hours later. Cells of endothelial cell line ECV-304 were cultured in the supernatants. The growth of ECV-304 cells was observed by MTT method. 30 rats with Walker-256 carcinoma cells implanted into left liver lobe were randomly divided into 3 groups. 0.2 ml ultra-fluid lipiodol (UFLP group, n=10), 3OD asODN mixed with 0.2 ml ultra-fluid lipiodol (UFLP + asODN group, n=10), and 0.2 ml normal saline (control group, n=10) were infused into the hepatic artery. The volumes of tumors were measured by using MRI before and 7 days after the treatment. VEGF mRNA in cancerous and peri-cancerous tissues was detected by RT-PCR. The microvessel density (MVD) and VEGF expression were observed by immunohistochemistry. Results: asODN could inhibit Walker-256 cells' VEGF expression. The tumor growth rate was lower in UFLP + asODN group than that in UFLP and control groups [(140.1±33.8)%, (177.9±64.9)%, and (403.9± 69.4)%, respectively, F=60.02, P 0.05). The MVD in UFLP + asODN group (53.1±18.4) was significantly less than that of control group (73.2±20.4) and UFLP group (80.3±18.5) (F=5.44, P<0.05). Conclusion: VEGF asODN could inhibit VEGF expression of Walker-256 cells. It may be an antiangiogenesis therapy drug in malignant tumor. VEGF asODN mixed with UFLP in embolizing liver cancer could decrease liver cancer growth, VEGF expression, and microvessel density better than UFLP alone

  9. Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene

    Directory of Open Access Journals (Sweden)

    Herington Adrian C

    2008-10-01

    Full Text Available Abstract Background The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS, which spans the promoter and untranslated regions of the ghrelin gene (GHRL. Here we further characterise GHRLOS. Results We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2. Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis, as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. Conclusion GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA genes, including 5' capping, polyadenylation, extensive splicing and short open reading

  10. A locked nucleic acid antisense oligonucleotide (LNA silences PCSK9 and enhances LDLR expression in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Nidhi Gupta

    2010-05-01

    Full Text Available The proprotein convertase subtilisin/kexin type 9 (PCSK9 is an important factor in the etiology of familial hypercholesterolemia (FH and is also an attractive therapeutic target to reduce low density lipoprotein (LDL cholesterol. PCSK9 accelerates the degradation of hepatic low density lipoprotein receptor (LDLR and low levels of hepatic PCSK9 activity are associated with reduced levels of circulating LDL-cholesterol.The present study presents the first evidence for the efficacy of a locked nucleic acid (LNA antisense oligonucleotide (LNA ASO that targets both human and mouse PCSK9. We employed human hepatocytes derived cell lines HepG2 and HuH7 and a pancreatic mouse beta-TC3 cell line known to express high endogenous levels of PCSK9. LNA ASO efficiently reduced the mRNA and protein levels of PCSK9 with a concomitant increase in LDLR protein levels after transfection in these cells. In vivo efficacy of LNA ASO was further investigated in mice by tail vein intravenous administration of LNA ASO in saline solution. The level of PCSK9 mRNA was reduced by approximately 60%, an effect lasting more than 16 days. Hepatic LDLR protein levels were significantly up-regulated by 2.5-3 folds for at least 8 days and approximately 2 fold for 16 days. Finally, measurement of liver alanine aminotransferase (ALT levels revealed that long term LNA ASO treatment (7 weeks does not cause hepatotoxicity.LNA-mediated PCSK9 mRNA inhibition displayed potent reduction of PCSK9 in cell lines and mouse liver. Our data clearly revealed the efficacy and safety of LNA ASO in reducing PCSK9 levels, an approach that is now ready for testing in primates. The major significance and take home message of this work is the development of a novel and promising approach for human therapeutic intervention of the PCSK9 pathway and hence for reducing some of the cardiovascular risk factors associated with the metabolic syndrome.

  11. Improving the Delivery of SOD1 Antisense Oligonucleotides to Motor Neurons Using Calcium Phosphate-Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Liyu Chen

    2017-08-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a fatal neurodegenerative disease affecting the upper and lower motor neurons in the motor cortex and spinal cord. Abnormal accumulation of mutant superoxide dismutase I (SOD1 in motor neurons is a pathological hallmark of some forms of the disease. We have shown that the orderly progression of the disease may be explained by misfolded SOD1 cell-to-cell propagation, which is reliant upon its active endogenous synthesis. Reducing the levels of SOD1 is therefore a promising therapeutic approach. Antisense oligonucleotides (ASOs can efficiently silence proteins with gain-of-function mutations. However, naked ASOs have a short circulation half-life and are unable to cross the blood brain barrier (BBB warranting the use of a drug carrier for effective delivery. In this study, calcium phosphate lipid coated nanoparticles (CaP-lipid NPs were developed for delivery of SOD1 ASO to motor neurons. The most promising nanoparticle formulation (Ca/P ratio of 100:1, had a uniform spherical core–shell morphology with an average size of 30 nm, and surface charge (ζ-potential of −4.86 mV. The encapsulation efficiency of ASO was 48% and stability studies found the particle to be stable over a period of 20 days. In vitro experiments demonstrated that the negatively charged ASO-loaded CaP-lipid NPs could effectively deliver SOD1-targeted ASO into a mouse motor neuron-like cell line (NSC-34 through endocytosis and significantly down-regulated SOD1 expression in HEK293 cells. The CaP-lipid NPs exhibited a pH-dependant dissociation, suggesting that that the acidification of lysosomes is the likely mechanism responsible for facilitating intracellular ASO release. To demonstrate tissue specific delivery and localization of these NPs we performed in vivo microinjections into zebrafish. Successful delivery of these NPs was confirmed for the zebrafish brain, the blood stream, and the spinal cord. These results suggest that Ca

  12. Effect of bcl-2 antisense oligodexynucleotides on chemotherapy efficacy of Vp-16 on human small cell lung cancer cell line NCI-H69

    International Nuclear Information System (INIS)

    He Wenqian; Liu Zhonghua

    2007-01-01

    Objective: To study the effect of bcl-2 antisense oligodexynucleotides on chemotherapy efficacy of Vp-16 on human small cell lung cancer cell line NCI-H69. Methods: Cultured NCI-H69 cells were derided into 4 groups: bcl-2 antisense oligodexynucleotides (ASODN) added, sense oligodexynucleotides (SODN) added, nonsense oligodexynucleotides (NSODN) added and control (no nucleotides added), the oligodexynucleotides were transfected into the cultured cells with oligofectamine. The cellular expression of Bcl-2 protein 72h later was examined with Western-Blot. The four different groups of cultured tumor cells were treated with etopside(Vp-16) at different concentrations (0, 0.25, 0.5, 1.0, 2.0 and 4.0 μg/ml) for 48hr then the cell survival fraction was assessed with MTY test. Results: The apoptotic rate of cells in the ASODN group was significantly higher than that of the control group, also, the survival fraction of cells in ASODN group was significantly lower than that of the control group. The Bcl-2 protein expression in ASODN group was significantly lower than that in the control group, but no inhibition was observed in SODN and NSODN groups. Conclusion: The bcl-2 ASODN could enhance the sensitivity to chemotherapy with Vp-16 in small cell lung cancer cell line NCI-H69 by effectively blocking bcl-2 gene expression. (authors)

  13. Poly(ester amine Composed of Polyethylenimine and Pluronic Enhance Delivery of Antisense Oligonucleotides In Vitro and in Dystrophic mdx Mice

    Directory of Open Access Journals (Sweden)

    Mingxing Wang

    2016-01-01

    Full Text Available A series of poly(esteramines (PEAs constructed from low molecular weight polyethyleneimine (LPEI and Pluronic were evaluated for the delivery of antisense oligonuclotides (AOs, 2′-O-methyl phosphorothioate RNA (2′-OMePS and phosphorodiamidate morpholino oligomer (PMO in cell culture and dystrophic mdx mice. Improved exon-skipping efficiency of both 2′-OMePS and PMO was observed in the C2C12E50 cell line with all PEA polymers compared with PEI 25k or LF-2k. The degree of efficiency was found in the order of PEA 01, PEA 04 > PEA 05 > others. The in vivo study in mdx mice demonstrated enhanced exon-skipping of 2′-OMePS with the order of PEA 06 > PEA 04, PEA 07 > PEA 03 > PEA 01 > others, and much higher than PEI 25k formulated 2′-OMePS. Exon-skipping efficiency of PMO in formulation with the PEAs were significantly enhanced in the order of PEA 02 > PEA 10 > PEA 01, PEA 03 > PEA 05, PEA 07, PEA 08 > others, with PEA 02 reaching fourfold of Endo-porter formulated PMO. PEAs improve PMO delivery more effectively than 2′-OMePS delivery in vivo, and the systemic delivery evaluation further highlight the efficiency of PEA for PMO delivery in all skeletal muscle. The results suggest that the flexibility of PEA polymers could be explored for delivery of different AO chemistries, especially for antisense therapy.

  14. Loss of tumorigenic potential by human lung tumor cells in the presence of antisense RNA specific to the ectopically synthesized alpha subunit of human chorionic gonadotropin.

    Science.gov (United States)

    Rivera, R T; Pasion, S G; Wong, D T; Fei, Y B; Biswas, D K

    1989-06-01

    A clonal strain of human lung tumor cells in culture (ChaGo), derived from a bronchogenic carcinoma, synthesizes and secretes large amounts of alpha (alpha) and a comparatively lower level of beta (beta) subunit of the glycoprotein hormone, human chorionic gonadotropin (HCG). ChaGo cells lost their characteristic anchorage-independent growth phenotype in the presence of anti-alpha-HCG antibody. The effect of the antibody was partially reversed by addition of alpha-HCG to the culture medium. ChaGo cells were transfected with an expression vector (pRSV-anti-alpha-HCG), that directs synthesis of RNA complementary to alpha-HCG mRNA. The transfectants produced alpha-HCG antisense RNA which was associated with the reduced level of alpha-HCG. Transfectants also displayed several altered phenotypic properties, including altered morphology, less mitosis, reduced growth rate, loss of anchorage-independent growth, and loss of tumorigenicity in nude mice. Treatment of transfectants with 8,bromo-cAMP resulted in increased accumulation of alpha-HCG mRNA, no change in the level of alpha-HCG antisense RNA, release of the inhibition of [3H]thymidine incorporation, and restoration of anchorage-independent growth phenotype. The overexpression of c-myc, observed in ChaGo cells, was unaffected by the reduced level of alpha-HCG. These results suggest that ectopic synthesis of the alpha subunit of HCG plays a functional role in the transformation of these human lung cells.

  15. Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy.

    Science.gov (United States)

    Vidaurre, Soledad; Fitzpatrick, Christopher; Burzio, Verónica A; Briones, Macarena; Villota, Claudio; Villegas, Jaime; Echenique, Javiera; Oliveira-Cruz, Luciana; Araya, Mariela; Borgna, Vincenzo; Socías, Teresa; Lopez, Constanza; Avila, Rodolfo; Burzio, Luis O

    2014-09-26

    Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3'-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Down-regulation of the Antisense Mitochondrial Non-coding RNAs (ncRNAs) Is a Unique Vulnerability of Cancer Cells and a Potential Target for Cancer Therapy*

    Science.gov (United States)

    Vidaurre, Soledad; Fitzpatrick, Christopher; Burzio, Verónica A.; Briones, Macarena; Villota, Claudio; Villegas, Jaime; Echenique, Javiera; Oliveira-Cruz, Luciana; Araya, Mariela; Borgna, Vincenzo; Socías, Teresa; Lopez, Constanza; Avila, Rodolfo; Burzio, Luis O.

    2014-01-01

    Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3′-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy. PMID:25100722

  17. Changes of Tc-99m sestamibi uptake in P-glycoprotein expressing leukaemia cells treated in vivo with antisense oligodeoxynucleotide complementary to mdr1 mRNA

    International Nuclear Information System (INIS)

    Kinuya, S.; Yokoyama, K; Fukuoka, M.; Michigishi, T.; Tonami, N.; Shiba, K.; Mori, H.; Watanabe, N.; Shuke, N.

    2006-01-01

    We examined the feasibility of Tc-99m sestamibi to monitor changes of mRNA expression of MDRl/P-glycoprotein (Pgp) following antisense oligodeoxynucleotide (AS-ODN) treatment in vivo. Three days after the intraperitoneal inoculation of murine leukaemia P388/R cells expressing MDR1/P-gp in CDFI mice, 15-mer phosphorothioate ASODN to the initiation codon of mouse mdr1 mRNA was administered intraperitoneally at 10 mg/kg daily for 3 or 4 days. Cells collected from ascites were suspended in medium for Tc-99m sestamibi uptake studies. To know the duration of antisense effects, cells were harvested 2 days later after the 3-day treatment. AS-ODN treatment increased Tc-99m sestamibi uptake. Effects of 3-day treatment and 4-day treatment were the same. Treatment effects were not detected when uptake was observed 2 days after 3-day treatment. Based on the results it was concluded that in vivo treatment with AS-ODN specific to the coding portion of mdr1 mRNA increased Tc-99m sestamibi uptake in leukaemia cells possessing MDR function. (author)

  18. The cellular uptake of antisense oligonucleotid of E6 mRNA into cervical cancer cells by DOPE-modified hydroxyapatite nanoparticles

    Directory of Open Access Journals (Sweden)

    Negin Saffarzadeh

    2014-10-01

    Full Text Available Objective(s: Although several chemical and physical methods for gene delivery have been introduced, their cytotoxicity, non-specific immune responses and the lack of biodegradability remain the main issues. In this study, hydroxyapatite nanoparticles (NPs and 1,2-dioleoyl-sn-glycero-3-phosphoethanol​amine (DOPE-modified hydroxyapatite NPs was coated with antisense oligonucleotide of E6 mRNA, and their uptakes into the cervical cancer cell line were evaluated. Materials and Methods: Calcium nitrate and diammonium phosphate were used for the synthesis of the hydroxyapatite nanoparticle. Thus, they were coated with polyethylene glycol (PEG, DOPE and antisense oligonucleotide of E6 mRNA using a cross-linker. Then, hydroxyapatite NPs and DOPE-modified hydroxyapatite NPs were incubated 48 hours with cervical cancer cells and their uptakes were evaluated by fluorescent microscopy. Results: The hydroxyapatite NPs had different shapes and some agglomeration with average size of 100 nm. The results showed DOPE-modified hydroxyapatite NPs had higher uptake than hydroxyapatite NPs (P

  19. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat

    Science.gov (United States)

    Meiri, Noam; Ghelardini, Carla; Tesco, Giuseppina; Galeotti, Nicoletta; Dahl, Dennis; Tomsic, Daniel; Cavallaro, Sebastiano; Quattrone, Alessandro; Capaccioli, Sergio; Bartolini, Alessandro; Alkon, Daniel L.

    1997-01-01

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic “knockouts”. PMID:9114006

  20. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat.

    Science.gov (United States)

    Meiri, N; Ghelardini, C; Tesco, G; Galeotti, N; Dahl, D; Tomsic, D; Cavallaro, S; Quattrone, A; Capaccioli, S; Bartolini, A; Alkon, D L

    1997-04-29

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic "knockouts".

  1. Divergently overlapping cis-encoded antisense RNA regulating toxin-antitoxin systems from E. coli: hok/sok, ldr/rdl, symE/symR.

    Science.gov (United States)

    Kawano, Mitsuoki

    2012-12-01

    Toxin-antitoxin (TA) systems are categorized into three classes based on the type of antitoxin. In type I TA systems, the antitoxin is a small antisense RNA that inhibits translation of small toxic proteins by binding to the corresponding mRNAs. Those type I TA systems were originally identified as plasmid stabilization modules rendering a post-segregational killing (PSK) effect on the host cells. The type I TA loci also exist on the Escherichia coli chromosome but their biological functions are less clear. Genetic organization and regulatory elements of hok/sok and ldr/rdl families are very similar and the toxins are predicted to contain a transmembrane domain, but otherwise share no detectable sequence similarity. This review will give an overview of the type I TA modules of E. coli K-12, especially hok/sok, ldr/rdl and SOS-inducible symE/symR systems, which are regulated by divergently overlapping cis-encoded antisense RNAs.

  2. Identification of a novel antisense long non-coding RNA PLA2G16-AS that regulates the expression of PLA2G16 in pigs.

    Science.gov (United States)

    Liu, Pengliang; Jin, Long; Zhao, Lirui; Long, Keren; Song, Yang; Tang, Qianzi; Ma, Jideng; Wang, Xun; Tang, Guoqing; Jiang, Yanzhi; Zhu, Li; Li, Xuewei; Li, Mingzhou

    2018-05-31

    Natural antisense transcripts (NATs) are widely present in mammalian genomes and act as pivotal regulator molecules to control gene expression. However, studies on the NATs of pigs are relatively rare. Here, we identified a novel antisense transcript, designated PLA2G16-AS, transcribed from the phospholipase A2 group XVI locus (PLA2G16) in the porcine genome, which is a well-known regulatory molecule of fat deposition. PLA2G16-AS and PLA2G16 were dominantly expressed in porcine adipose tissue, and were differentially expressed between Tibetan pigs and Rongchang pigs. In addition, PLA2G16-AS has a weak sequence conservation among different vertebrates. PLA2G16-AS was also shown to form an RNA-RNA duplex with PLA2G16, and to regulate PLA2G16 expression at the mRNA level. Moreover, the overexpression of PLA2G16-AS increased the stability of PLA2G16 mRNA in porcine cells. We envision that our findings of a NAT for a regulatory gene associated with lipolysis might further our understanding of the molecular regulation of fat deposition. Copyright © 2017. Published by Elsevier B.V.

  3. NATpipe: an integrative pipeline for systematical discovery of natural antisense transcripts (NATs) and phase-distributed nat-siRNAs from de novo assembled transcriptomes

    Science.gov (United States)

    Yu, Dongliang; Meng, Yijun; Zuo, Ziwei; Xue, Jie; Wang, Huizhong

    2016-01-01

    Nat-siRNAs (small interfering RNAs originated from natural antisense transcripts) are a class of functional small RNA (sRNA) species discovered in both plants and animals. These siRNAs are highly enriched within the annealed regions of the NAT (natural antisense transcript) pairs. To date, great research efforts have been taken for systematical identification of the NATs in various organisms. However, developing a freely available and easy-to-use program for NAT prediction is strongly demanded by researchers. Here, we proposed an integrative pipeline named NATpipe for systematical discovery of NATs from de novo assembled transcriptomes. By utilizing sRNA sequencing data, the pipeline also allowed users to search for phase-distributed nat-siRNAs within the perfectly annealed regions of the NAT pairs. Additionally, more reliable nat-siRNA loci could be identified based on degradome sequencing data. A case study on the non-model plant Dendrobium officinale was performed to illustrate the utility of NATpipe. Finally, we hope that NATpipe would be a useful tool for NAT prediction, nat-siRNA discovery, and related functional studies. NATpipe is available at www.bioinfolab.cn/NATpipe/NATpipe.zip. PMID:26858106

  4. A non-covalent peptide-based carrier for in vivo delivery of DNA mimics.

    Science.gov (United States)

    Morris, May C; Gros, Edwige; Aldrian-Herrada, Gudrun; Choob, Michael; Archdeacon, John; Heitz, Frederic; Divita, Gilles

    2007-01-01

    The dramatic acceleration in identification of new nucleic-acid-based therapeutic molecules has provided new perspectives in pharmaceutical research. However, their development is limited by their poor cellular uptake and inefficient trafficking. Here we describe a short amphipathic peptide, Pep-3, that combines a tryptophan/phenylalanine domain with a lysine/arginine-rich hydrophilic motif. Pep-3 forms stable nano-size complexes with peptide-nucleic acid analogues and promotes their efficient delivery into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. We demonstrate that Pep-3-mediated delivery of antisense-cyclin B1-charged-PNA blocks tumour growth in vivo upon intratumoral and intravenous injection. Moreover, we show that PEGylation of Pep-3 significantly improves complex stability in vivo and consequently the efficiency of antisense cyclin B1 administered intravenously. Given the biological characteristics of these vectors, we believe that peptide-based delivery technologies hold a true promise for therapeutic applications of DNA mimics.

  5. Single DNA denaturation and bubble dynamics

    DEFF Research Database (Denmark)

    Metzler, Ralf; Ambjörnsson, Tobias; Hanke, Andreas

    2009-01-01

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration......, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments...... for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation...

  6. Antisense gene silencing

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Nielsen, Jørgen E

    2013-01-01

    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied...

  7. ATPase activity measurement of DNA replicative helicase from Bacillus stearothermophilus by malachite green method.

    Science.gov (United States)

    Yang, Mu; Wang, Ganggang

    2016-09-15

    The DnaB helicase from Bacillus stearothermophilus (DnaBBst) was a model protein for studying the bacterial DNA replication. In this work, a non-radioactive method for measuring ATPase activity of DnaBBst helicase was described. The working parameters and conditions were optimized. Furthermore, this method was applied to investigate effects of DnaG primase, ssDNA and helicase loader protein (DnaI) on ATPase activity of DnaBBst. Our results showed this method was sensitive and efficient. Moreover, it is suitable for the investigation of functional interaction between DnaB and related factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. DNA Repair Systems

    Indian Academy of Sciences (India)

    DNA molecule which makes it ideal for storage and propagation of genetic information. ... of these errors are broadly referred to as DNA repair. DNA can ... changes occur in the human genome per day. ..... nails, frequent physical and mental.

  9. Synthesis of DNA

    Science.gov (United States)

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  10. Anti-sense expression of putrescine N-methyltransferase confirms defensive role of nicotine in Nicotiana sylvestris against Manduca sexta

    NARCIS (Netherlands)

    Voelckel, C.; Krugel, T.; Gase, K.; Heidrich, N.; Van Dam, N.M.; Winz, R.; Baldwin, I.T.

    2001-01-01

    Several lines of evidence support the defensive function of nicotine production in the Nicotiana genus against a range of herbivores, but the evidence is largely correlative. To suppress nicotine production in planta and to test its defensive function, we expressed DNA of putrescine N-methyl

  11. Attenuation of alpha2A-adrenergic receptor expression in neonatal rat brain by RNA interference or antisense oligonucleotide reduced anxiety in adulthood.

    Science.gov (United States)

    Shishkina, G T; Kalinina, T S; Dygalo, N N

    2004-01-01

    Brain alpha2-adrenergic receptors (alpha2-ARs) have been implicated in the regulation of anxiety, which is associated with stress. Environmental treatments during neonatal development could modulate the level of brain alpha2-AR expression and alter anxiety in adults, suggesting possible involvement of these receptors in early-life programming of anxiety state. The present study was undertaken to determine whether the reduction of the expression of A subtype of these receptors most abundant in the neonatal brain affects anxiety-related behavior in adulthood. We attenuated the expression of alpha2A-ARs during neonatal life by two different sequence specific approaches, antisense technology and RNA interference. Treatment of rats with the antisense oligodeoxynucleotide or short interfering RNA (siRNA) against alpha2A-ARs on the days 2-4 of their life, produced a marked acute decrease in the levels of both alpha2A-AR mRNA and [3H]RX821002 binding sites in the brainstem into which drugs were injected. The decrease of alpha2A-AR expression in the neonatal brainstem influenced the development of this receptor system in the brain regions as evidenced by the increased number of [3H]RX821002 binding sites in the hypothalamus of adult animals with both neonatal alpha2A-AR knockdown treatments; also in the frontal cortex of antisense-treated, and in the hippocampus of siRNA-treated adult rats. These adult animals also demonstrated a decreased anxiety in the elevated plus-maze as evidenced by an increased number of the open arm entries, greater proportion of time spent in the open arms, and more than a two-fold increase in the number of exploratory head dips. The results provide the first evidence that the reduction in the brain expression of a gene encoding for alpha2A-AR during neonatal life led to the long-term neurochemical and behavioral alterations. The data suggests that alterations in the expression of the receptor-specific gene during critical periods of brain

  12. Anti-Urokinase Receptor Antisense Oligonucleotide (uPAR-aODN) to Prevent and Cure Long-Term Space Exploration-Related Retinal Pathological Angiogenesis

    Science.gov (United States)

    Lazzarano, Stefano; Lulli, Matteo; Fibbi, Gabriella; Margheri, Francesca; Papucci, Laura; Serrati, Simona; Witort, Ewa; Chilla, Anastasia; Lapucci, Andrea; Donnini, Martino; Quaglierini, Paolo; Romiti, Alice; Specogna, Rebecca; Del Rosso, Mario; Capaccioli, Sergio

    2008-06-01

    Angiogenesis underlies a variety of physiological processes and its possible deregulation during long term space exploration needs to be investigated. Angiogenesis is a multistep process of new blood capillary formation, where degradation of the extracellular matrix (ECM) by proteolytic enzymes, including uPA (urokinase plasminogen activator) and opening the way to migration of endothelial cells (EC), is critical. Plasminogen activation system regulates angiogenesis by both uPA-driven ECM degradation and uPA receptor (uPAR). Microgravity and low dose irradiations promote tissue neoangiogeenesis and neovascularization is often common occurence in ophthalmologic pathologies. We have designed and patented the uPAR antisense oligonucleotide (aODN) and evaluated its antiangiogenetic activity by EC cellular migration and capillary morphogenesis assays. The uPAR aODN treatment caused a 75% inhibition of human microvascular EC migration and a complete inhibition of capillary morphogenesis, suggesting its therapeutic application to prevent neoangiogenesis-related ophthalmologic pathologies during space exploration.

  13. Latency of Epstein-Barr virus is stabilized by antisense-mediated control of the viral immediate-early gene BZLF-1.

    Science.gov (United States)

    Prang, N; Wolf, H; Schwarzmann, F

    1999-12-01

    The ability of the Epstein-Barr virus (EBV) to avoid lytic replication and to establish a latent infection in B-lymphocytes is fundamental for its lifelong persistence and the pathogenesis of various EBV-associated diseases. The viral immediate-early gene BZLF-1 plays a key role for the induction of lytic replication and its activity is strictly regulated on different levels of gene expression. Recently, it was demonstrated that BZLF-1 is also controlled by a posttranscriptional mechanism. Transient synthesis of a mutated competitor RNA saturated this mechanism and caused both expression of the BZLF-1 protein and the induction of lytic viral replication. Using short overlapping fragments of the competitor, it is shown that this control acts on the unspliced primary transcript. RT-PCR demonstrated unspliced BZLF-1 RNA in latently infected B-lymphocytes in the absence of BZLF-1 protein. Due to the complementarity of the gene BZLF-1 and the latency-associated gene EBNA-1 on the opposite strand of the genome, we propose an antisense-mediated mechanism. RNase protection assays demonstrated transcripts in antisense orientation to the BZLF-1 transcript during latency, which comprise a comparable constellation to other herpesviruses. A combined RNAse protection/RT-PCR assay detected the double-stranded hybrid RNA, consisting of the unspliced BZLF-1 transcript and a noncoding intron of the EBNA-1 gene. Binding of BZLF-1 transcripts is suggested to be an important backup control mechanism in addition to transcriptional regulation, stabilizing latency and preventing inappropriate lytic viral replication in vivo. Copyright 1999 Wiley-Liss, Inc.

  14. Egr-1 antisense oligodeoxynucleotide administration into the olfactory bulb impairs olfactory learning in the greater short-nosed fruit bat Cynopterus sphinx.

    Science.gov (United States)

    Ganesh, Ambigapathy; Bogdanowicz, Wieslaw; Balamurugan, Krishnaswamy; Ragu Varman, Durairaj; Rajan, Koilmani Emmanuvel

    2012-08-30

    Postsynaptic densities (PSDs) contain proteins that regulate synaptic transmission. We examined two important examples of these, calcium/calmodulin-dependent protein kinase II (CaMKII) and PSD-95, in regard to the functional role of early growth response gene-1 (egr-1) in regulation of olfactory learning in the greater short-nosed fruit bat Cynopterus sphinx (family Pteropodidae). To test whether activation of egr-1 in the olfactory bulb (OB) is required for olfactory memory of these bats, bilaterally canulated individuals were infused with antisense (AS) or non-sense (NS)-oligodeoxynucleotides (ODN) of egr-1, or with phosphate buffer saline (PBS), 2h before the olfactory training. Our results showed that behavioral training significantly up-regulates immediate early gene (IEG) EGR-1 and key synaptic proteins Synaptotagmin-1(SYT-1), CaMKII and PSD-95, and phosphorylation of CaMKII in the OB at the protein level per se. Subsequently, we observed that egr-1 antisense-ODN infusion in the OB impaired olfactory memory and down regulates the expression of CaMKII and PSD-95, and the phosphorylation of CaMKII but not SYT-1. In contrast, NS-ODN or PBS had no effect on the expression of the PSDs CaMKII or PSD-95, or on the phosphorylation of CaMKII. When the egr-1 NS-ODN was infused in the OB after training for the novel odor there was no effect on olfactory memory. These findings suggest that egr-1 control the activation of CaMKII and PSD-95 during the process of olfactory memory formation. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Use of versican variant V3 and versican antisense expression to engineer cultured human skin containing increased content of insoluble elastin.

    Science.gov (United States)

    Merrilees, Mervyn J; Falk, Ben A; Zuo, Ning; Dickinson, Michelle E; May, Barnaby C H; Wight, Thomas N

    2017-01-01

    Skin substitutes for repair of dermal wounds are deficient in functional elastic fibres. We report that the content of insoluble elastin in the dermis of cultured human skin can be increased though the use of two approaches that enhance elastogenesis by dermal fibroblasts, forced expression of versican variant V3, which lacks glycosaminoglycan (GAG) chains, and forced expression of versican antisense to decrease levels of versican variant V1 with GAG chains. Human dermal fibroblasts transduced with V3 or anti-versican were cultured under standard conditions over a period of 4 weeks to produce dermal sheets, with growth enhanced though multiple seedings for the first 3 weeks. Human keratinocytes, cultured in supplemented media, were added to the 4-week dermal sheets and the skin layer cultured for a further week. At 5 weeks, keratinocytes were multilayered and differentiated, with desmosome junctions thoughout and keratin deposits in the upper squamous layers. The dermal layer was composed of layered fibroblasts surrounded by extracellular matrix of collagen bundles and, in control cultures, small scattered elastin deposits. Forced expression of V3 and versican antisense slowed growth, decreased versican V1 expression, increased tropoelastin expression and/or the deposition of large aggregates of insoluble elastin in the dermal layer, and increased tissue stiffness, as measured by nano-indentation. Skin sheets were also cultured on Endoform Dermal Template™, the biodegradable wound dressing made from the lamina propria of sheep foregut. Skin structure and the enhanced deposition of elastin by forced expression of V3 and anti-versican were preserved on this supportive substrate. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Construction of a novel chimera consisting of a chelator-containing Tat peptide conjugated to a morpholino antisense oligomer for technetium-99m labeling and accelerating cellular kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yumin [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States)]. E-mail: yumin.zhang@mpi.com; Tung, C.-H. [Center for Molecular Imaging Research, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 (United States); He Jiang [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Liu Ning [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Yanachkov, Ivan [GlSynthesis, Worcester, MA 01605 (United States); Liu Guozheng [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Rusckowski, Mary [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Vanderheyden, Jean-Luc [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States)

    2006-02-15

    The attempt to target the limited copies of messenger RNA (mRNA) in vivo with radiolabeled nucleobase oligomers as antisense probes is challenging. Selecting an antisense molecule with superior properties, enhancing the cellular kinetics, and improving the radiolabeling chemistry would be the reasonable approach to accomplish this goal. The present study reports a method to construct a chimera of phosphorodiamidate morpholino nucleobase oligomer (MORF) covalently conjugated to a peptide containing a cell membrane transduction Tat peptide and an N{sub 2}S{sub 2} chelator for technetium-99m ({sup 99m}Tc) radiolabeling (N{sub 2}S{sub 2}-Tat-MORF). The radiolabeling properties and cellular kinetics of {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF were measured. As hypothesized, the preparation of {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF could be achieved by an instant one-step method with labeling efficiency greater than 95%, and the {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF showed distinct properties in cell culture from those of a control, the same MORF sequence without Tat but with mercaptoacetyltriglycine (MAG{sub 3}) as chelator for {sup 99m}Tc ({sup 99m}Tc-MAG{sub 3}-MORF). {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF achieved maximum accumulation of about 35% within 2 h, while {sup 99m}Tc-MAG{sub 3}-MORF showed lower and steadily increasing accumulations but of less than 1% in 24 h. These preliminary results demonstrated that the proposed chimera has properties for easy labeling, and {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF prepared by this method possesses enhanced cellular kinetics and merits further investigation for in vivo mRNA targeting.

  17. Expression of c-Fos and c-Jun in the cornea, lens, and retina after ultraviolet irradiation of the rat eye and effect of topical antisense oligodeoxynucleotides

    International Nuclear Information System (INIS)

    Gillardon, F.; Zimmermann, M.

    1995-01-01

    Aims - Immunohistochemical techniques were used to investigate c-Fos and c-Jun proto-oncogene expression in the cornea, lens, and retina after ultraviolet irradiation of the rat eye. Methods -Eyes of anaesthetised rats were exposed to 1.5 J/cm 2 of ultraviolet radiation (280-380 nm). Animals were perfused 1, 6, or 24 hours after irradiation and tissue sections were incubated with specific antiserum to c-Fos and c-Jun, respectively. Non-irradiated contralateral eyes displayed no c-Fos and c-Jun immunoreactivity. One and 6 hours after ultraviolet exposure numerous c-Fos and c-Jun immunopositive nuclei were observed mainly in the epithelial cell layers of the cornea and the lens epithelium. Scattered labelled nuclei were detectable in the retinal ganglion cell layer and the inner nuclear layer. Twenty four hours after irradiation c-Fos and c-Jun protein expression returned to near control levels. Histological signs of ultraviolet damage (for example, chromatin condensation, nuclear fragmentation) were first recognisable in the corneal epithelium 6 hours after irradiation and became more apparent at later times. The rapid and sustained activation of c-Fos and c-Jun expression in the eye after single ultraviolet exposure may represent the molecular mechanism underlying ultraviolet induced photodamage and initiation of cell death. Furthermore, topical application of a c-fos antisense oligode-oxynucleotide to the ultraviolet exposed rat eye inhibited the increase in c-Fos expression in the cornea, suggesting therapeutic activity of antisense drugs in corneal malignant and infectious diseases. (author)

  18. The Breast Cancer DNA Interactome

    Science.gov (United States)

    2014-12-01

    an antisense orientation compared with the IGF1R gene, and it is expressed exclusively from the paternal allele, with the maternal allele being...orientation compared with the IGF1R gene, and it is expressed exclusively from the paternal allele, with the maternal allele being silenced...progression and metastasis is not yet fully understood. Our major goal has been to characterize physical interactions among selected breast cancer gene loci

  19. Transcribed DNA is preferentially located in the perichromatin region of mammalian cell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Niedojadlo, Janusz [Centre of Electron Microscopy, University of Lausanne, Bugnon 27, CH-1005 Lausanne (Switzerland); Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, PL-87-100 Torun (Poland); Perret-Vivancos, Cecile [Centre of Electron Microscopy, University of Lausanne, Bugnon 27, CH-1005 Lausanne (Switzerland); Kalland, Karl-Henning [Centre for Research in Virology, The Gade Institute, University of Bergen, Jonas Liesv. 91, N-5009 Bergen (Norway); Cmarko, Dusan [Centre of Electron Microscopy, University of Lausanne, Bugnon 27, CH-1005 Lausanne (Switzerland); Charles University in Prague, First Faculty of Medicine, Institute of Cellular Biology and Pathology, and Department of Cell Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Albertov 4, CZ-12801 Prague (Czech Republic); Cremer, Thomas [Department of Biology II, LMU Biozentrum, Grosshaderner Strasse 2, D-82152 Planegg-Martinsried (Germany); Center for Integrated Protein Science Munich (CIPSM), LMU Munich, Munich (Germany); Driel, Roel van, E-mail: r.vandriel@uva.nl [Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090GE Amsterdam (Netherlands); Fakan, Stanislav, E-mail: sfakan@lrz.uni-muenchen.de [Centre of Electron Microscopy, University of Lausanne, Bugnon 27, CH-1005 Lausanne (Switzerland); Department of Biology II, LMU Biozentrum, Grosshaderner Strasse 2, D-82152 Planegg-Martinsried (Germany); Center for Integrated Protein Science Munich (CIPSM), LMU Munich, Munich (Germany)

    2011-02-15

    The precise localization of transcribed DNA and resulting RNA is an important aspect of the functional architecture of the nucleus. To this end we have developed a novel in situ hybridization approach in combination with immunoelectron microscopy, using sense and anti-sense RNA probes that are derived from total cellular or cytoplasmic poly(A+) RNA. This new technology is much more gentle than classical in situ hybridization using DNA probes and shows excellent preservation of nuclear structure. Carried out on ultrathin sections of fixed and resin-embedded COS-7 cells, it revealed at high resolution the localization of the genes that code for the cellular mRNAs. Quantitative analysis shows that most transcribed DNA is concentrated in the perichromatin region, i.e. the interface between subchromosomal compact chromatin domains and the interchromatin space essentially devoid of DNA. The RNA that is produced is found mainly in the perichromatin region and the interchromatin space. These results imply that in the mammalian nucleus the chromatin fiber is folded so that active genes are predominantly present in the perichromatin region, which is the most prominent site of transcription.

  20. Mitochondrial DNA levels in Huntington disease leukocytes and dermal fibroblasts.

    Science.gov (United States)

    Jędrak, Paulina; Krygier, Magdalena; Tońska, Katarzyna; Drozd, Małgorzata; Kaliszewska, Magdalena; Bartnik, Ewa; Sołtan, Witold; Sitek, Emilia J; Stanisławska-Sachadyn, Anna; Limon, Janusz; Sławek, Jarosław; Węgrzyn, Grzegorz; Barańska, Sylwia

    2017-08-01

    Huntington disease (HD) is an inherited neurodegenerative disorder caused by mutations in the huntingtin gene. Involvement of mitochondrial dysfunctions in, and especially influence of the level of mitochondrial DNA (mtDNA) on, development of this disease is unclear. Here, samples of blood from 84 HD patients and 79 controls, and dermal fibroblasts from 10 HD patients and 9 controls were analysed for mtDNA levels. Although the type of mitochondrial haplogroup had no influence on the mtDNA level, and there was no correlation between mtDNA level in leukocytes in HD patients and various parameters of HD severity, some considerable differences between HD patients and controls were identified. The average mtDNA/nDNA relative copy number was significantly higher in leukocytes, but lower in fibroblasts, of symptomatic HD patients relative to the control group. Moreover, HD women displayed higher mtDNA levels in leukocytes than HD men. Because this is the largest population analysed to date, these results might contribute to explanation of discrepancies between previously published studies concerning levels of mtDNA in cells of HD patients. We suggest that the size of the investigated population and type of cells from which DNA is isolated could significantly affect results of mtDNA copy number estimation in HD. Hence, these parameters should be taken into consideration in studies on mtDNA in HD, and perhaps also in other diseases where mitochondrial dysfunction occurs.

  1. Inter-DNA Attraction Mediated by Divalent Counterions

    International Nuclear Information System (INIS)

    Qiu Xiangyun; Andresen, Kurt; Kwok, Lisa W.; Lamb, Jessica S.; Park, Hye Yoon; Pollack, Lois

    2007-01-01

    Can nonspecifically bound divalent counterions induce attraction between DNA strands? Here, we present experimental evidence demonstrating attraction between short DNA strands mediated by Mg 2+ ions. Solution small angle x-ray scattering data collected as a function of DNA concentration enable model independent extraction of the second virial coefficient. As the [Mg 2+ ] increases, this coefficient turns from positive to negative reflecting the transition from repulsive to attractive inter-DNA interaction. This surprising observation is corroborated by independent light scattering experiments. The dependence of the observed attraction on experimental parameters including DNA length provides valuable clues to its origin

  2. Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair.

    Science.gov (United States)

    Scassa, María E; Marazita, Mariela C; Ceruti, Julieta M; Carcagno, Abel L; Sirkin, Pablo F; González-Cid, Marcela; Pignataro, Omar P; Cánepa, Eduardo T

    2007-05-01

    Genome integrity and cell proliferation and survival are regulated by an intricate network of pathways that includes cell cycle checkpoints, DNA repair and recombination, and programmed cell death. It makes sense that there should be a coordinated regulation of these different processes, but the components of such mechanisms remain unknown. In this report, we demonstrate that p19INK4d expression enhances cell survival under genotoxic conditions. By using p19INK4d-overexpressing clones, we demonstrated that p19INK4d expression correlates with the cellular resistance to UV treatment with increased DNA repair activity against UV-induced lesions. On the contrary, cells transfected with p19INK4d antisense cDNA show reduced ability to repair DNA damage and increased sensitivity to genotoxic insult when compared with their p19INK4d-overexpressing counterparts. Consistent with these findings, our studies also show that p19INK4d-overexpressing cells present not only a minor accumulation of UV-induced chromosomal aberrations but a lower frequency of spontaneous chromosome abnormalities than p19INK4d-antisense cells. Lastly, we suggest that p19INK4d effects are dissociated from its role as CDK4/6 inhibitor. The results presented herein support a crucial role for p19INK4d in regulating genomic stability and overall cell viability under conditions of genotoxic stress. We propose that p19INK4d would belong to a protein network that would integrate DNA repair, apoptotic and checkpoint mechanisms in order to maintain the genomic integrity.

  3. General method of preparation of uniformly 13C, 15N-labeled DNA fragments for NMR analysis of DNA structures

    International Nuclear Information System (INIS)

    Rene, Brigitte; Masliah, Gregoire; Zargarian, Loussine; Mauffret, Olivier; Fermandjian, Serge

    2006-01-01

    Summary 13 C, 15 N labeling of biomolecules allows easier assignments of NMR resonances and provides a larger number of NMR parameters, which greatly improves the quality of DNA structures. However, there is no general DNA-labeling procedure, like those employed for proteins and RNAs. Here, we describe a general and widely applicable approach designed for preparation of isotopically labeled DNA fragments that can be used for NMR studies. The procedure is based on the PCR amplification of oligonucleotides in the presence of labeled deoxynucleotides triphosphates. It allows great flexibility thanks to insertion of a short DNA sequence (linker) between two repeats of DNA sequence to study. Size and sequence of the linker are designed as to create restriction sites at the junctions with DNA of interest. DNA duplex with desired sequence and size is released upon enzymatic digestion of the PCR product. The suitability of the procedure is validated through the preparation of two biological relevant DNA fragments

  4. Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

    Science.gov (United States)

    Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2012-01-01

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201

  5. DNA/SNLA commonality program

    International Nuclear Information System (INIS)

    Keller, D.V.; Watts, A.J.; Rice, D.A.; Powe, J.; Beezhold, W.

    1980-01-01

    The purpose of the Commonality program, initiated by DNA in 1978, was to evaluate e-beam material testing procedures and techniques by comparing material stress and spall data from various US and UK e-beam facilities and experimenters. As part of this joint DNA/SNL/UK Commonality effort, Sandia and Ktech used four different electron-beam machines to investigate various aspects of e-beam energy deposition in three materials. The deposition duration and the deposition profiles were varied, and the resulting stresses were measured. The materials studied were: (1) a low-Z material (A1), (2) a high-Z material (Ta), and (3) a typical porous material, a cermet. Aluminium and tantalum were irradiated using the DNA Blackjack 3 accelerator (60 ns pulse width), the DNA Blackjack 3' accelerator (30 ns pulse width), and the SNLA REHYD accelerator (100 ns pulse width). Propagating stresses were measured using x-cut quartz gauges, carbon gauges, and laser interferometry techniques. Data to determine the influence of deposition duration were obtained over a wide range of energy loadings. The cermet material was studied using the SNLA REHYD and HERMES II accelerators. The e-beam from REHYD generated propagating stresses which were monitored with quartz gauges as a function of sample thickness and energy loadings. The HERMES II accelerator was used to uniformly heat the cermet to determine the Grueneisen parameter and identify the incipient spall condition. Results of these experiments are presented

  6. DNA preservation in silk.

    Science.gov (United States)

    Liu, Yawen; Zheng, Zhaozhu; Gong, He; Liu, Meng; Guo, Shaozhe; Li, Gang; Wang, Xiaoqin; Kaplan, David L

    2017-06-27

    The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.

  7. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  8. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  9. DNA Open states and DNA hydratation

    International Nuclear Information System (INIS)

    Lema-Larre, B. de; Martin-Landrove, M

    1995-01-01

    It is a very well-known fact that an protonic exchange exists among natural DNA filaments and synthetic polynucleotides with the solvent (1--2). The existence of DNA open states, that is to say states for which the interior of the DNA molecule is exposed to the external environment, it has been demonstrated by means of proton-deuterium exchange (3). This work has carried out experiments measuring the dispersion of the traverse relaxation rate (4), as a pulsation rate function in a Carr-Purcell-Meiboom-Gill (CPMG) pulses sequence rate, to determine changes in the moist layer of the DNA molecule. The experiments were carried out under different experimental conditions in order to vary the probability that open states occurs, such as temperature or the exposure to electromagnetic fields. Some theoretical models were supposed to adjust the experimental results including those related to DNA non linear dynamic [es

  10. Immunoassay of DNA damage

    International Nuclear Information System (INIS)

    Gasparro, F.P.; Santella, R.M.

    1988-01-01

    The direct photomodification of DNA by ultraviolet light or the photo-induced addition of exogenous compounds to DNA components results in alterations of DNA structure ranging from subtle to profound. There are two consequences of these conformational changes. First, cells in which the DNA has been damaged are capable of executing repair steps. Second, the DNA which is usually of very low immunogenicity now becomes highly antigenic. This latter property has allowed the production of a series of monoclonal antibodies that recognize photo-induced DNA damage. Monoclonal antibodies have been generated that recognize the 4',5'-monoadduct and the crosslink of 8-methoxypsoralen in DNA. In addition, another antibody has been prepared which recognizes the furan-side monoadduct of 6,4,4'-trimethylangelicin in DNA. These monoclonal antibodies have been characterized as to sensitivity and specificity using non-competitive and competitive enzyme-linked-immunosorbent assays (ELISA). (author)

  11. Immunoassay of DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Gasparro, F P; Santella, R M

    1988-09-01

    The direct photomodification of DNA by ultraviolet light or the photo-induced addition of exogenous compounds to DNA components results in alterations of DNA structure ranging from subtle to profound. There are two consequences of these conformational changes. First, cells in which the DNA has been damaged are capable of executing repair steps. Second, the DNA which is usually of very low immunogenicity now becomes highly antigenic. This latter property has allowed the production of a series of monoclonal antibodies that recognize photo-induced DNA damage. Monoclonal antibodies have been generated that recognize the 4',5'-monoadduct and the crosslink of 8-methoxypsoralen in DNA. In addition, another antibody has been prepared which recognizes the furan-side monoadduct of 6,4,4'-trimethylangelicin in DNA. These monoclonal antibodies have been characterized as to sensitivity and specificity using non-competitive and competitive enzyme-linked-immunosorbent assays (ELISA).

  12. DNA computing models

    CERN Document Server

    Ignatova, Zoya; Zimmermann, Karl-Heinz

    2008-01-01

    In this excellent text, the reader is given a comprehensive introduction to the field of DNA computing. The book emphasizes computational methods to tackle central problems of DNA computing, such as controlling living cells, building patterns, and generating nanomachines.

  13. DNA tagged microparticles

    Science.gov (United States)

    Farquar, George Roy; Leif, Roald N; Wheeler, Elizabeth

    2015-05-05

    A simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the simulant.

  14. Modeling DNA Replication.

    Science.gov (United States)

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  15. Context dependent DNA evolutionary models

    DEFF Research Database (Denmark)

    Jensen, Jens Ledet

    This paper is about stochastic models for the evolution of DNA. For a set of aligned DNA sequences, connected in a phylogenetic tree, the models should be able to explain - in probabilistic terms - the differences seen in the sequences. From the estimates of the parameters in the model one can...... start to make biologically interpretations and conclusions concerning the evolutionary forces at work. In parallel with the increase in computing power, models have become more complex. Starting with Markov processes on a space with 4 states, and extended to Markov processes with 64 states, we are today...... studying models on spaces with 4n (or 64n) number of states with n well above one hundred, say. For such models it is no longer possible to calculate the transition probability analytically, and often Markov chain Monte Carlo is used in connection with likelihood analysis. This is also the approach taken...

  16. Vliv hipokampální aplikace Nr1/Nr2 antisense oligodeoxynukleotidů na expresi proteinů postsynaptické denzity a na prepulzní inhibici

    Czech Academy of Sciences Publication Activity Database

    Vrajová, M.; Klaschka, Jan; Tejkalová, H.; Bubeníková-Valešová, V.

    2011-01-01

    Roč. 15, Suppl. 2 (2011), s. 11-14 ISSN 1211-7579 R&D Projects: GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z10300504 Keywords : NMDA receptor * PSD proteins * antisense oligodeoxynucleotides for NMDA-NR1/NR2 subunits * prepulse inhibition Subject RIV: FL - Psychiatry, Sexuology http://www.tigis.cz/images/stories/psychiatrie/2011/s2/03_vrajova_cns_2-11.pdf

  17. The antisense RNA As1_flv4 in the Cyanobacterium Synechocystis sp. PCC 6803 prevents premature expression of the flv4-2 operon upon shift in inorganic carbon supply.

    Science.gov (United States)

    Eisenhut, Marion; Georg, Jens; Klähn, Stephan; Sakurai, Isamu; Mustila, Henna; Zhang, Pengpeng; Hess, Wolfgang R; Aro, Eva-Mari

    2012-09-28

    The functional relevance of natural cis-antisense transcripts is mostly unknown. Here we have characterized the association of three antisense RNAs and one intergenically encoded noncoding RNA with an operon that plays a crucial role in photoprotection of photosystem II under low carbon conditions in the cyanobacterium Synechocystis sp. PCC 6803. Cyanobacteria show strong gene expression dynamics in response to a shift of cells from high carbon to low levels of inorganic carbon (C(i)), but the regulatory mechanisms are poorly understood. Among the most up-regulated genes in Synechocystis are flv4, sll0218, and flv2, which are organized in the flv4-2 operon. The flavodiiron proteins encoded by this operon open up an alternative electron transfer route, likely starting from the Q(B) site in photosystem II, under photooxidative stress conditions. Our expression analysis of cells shifted from high carbon to low carbon demonstrated an inversely correlated transcript accumulation of the flv4-2 operon mRNA and one antisense RNA to flv4, designated as As1_flv4. Overexpression of As1_flv4 led to a decrease in flv4-2 mRNA. The promoter activity of as1_flv4 was transiently stimulated by C(i) limitation and negatively regulated by the AbrB-like transcription regulator Sll0822, whereas the flv4-2 operon was positively regulated by the transcription factor NdhR. The results indicate that the tightly regulated antisense RNA As1_flv4 establishes a transient threshold for flv4-2 expression in the early phase after a change in C(i) conditions. Thus, it prevents unfavorable synthesis of the proteins from the flv4-2 operon.

  18. The Antisense RNA As1_flv4 in the Cyanobacterium Synechocystis sp. PCC 6803 Prevents Premature Expression of the flv4-2 Operon upon Shift in Inorganic Carbon Supply*

    Science.gov (United States)

    Eisenhut, Marion; Georg, Jens; Klähn, Stephan; Sakurai, Isamu; Mustila, Henna; Zhang, Pengpeng; Hess, Wolfgang R.; Aro, Eva-Mari

    2012-01-01

    The functional relevance of natural cis-antisense transcripts is mostly unknown. Here we have characterized the association of three antisense RNAs and one intergenically encoded noncoding RNA with an operon that plays a crucial role in photoprotection of photosystem II under low carbon conditions in the cyanobacterium Synechocystis sp. PCC 6803. Cyanobacteria show strong gene expression dynamics in response to a shift of cells from high carbon to low levels of inorganic carbon (Ci), but the regulatory mechanisms are poorly understood. Among the most up-regulated genes in Synechocystis are flv4, sll0218, and flv2, which are organized in the flv4-2 operon. The flavodiiron proteins encoded by this operon open up an alternative electron transfer route, likely starting from the QB site in photosystem II, under photooxidative stress conditions. Our expression analysis of cells shifted from high carbon to low carbon demonstrated an inversely correlated transcript accumulation of the flv4-2 operon mRNA and one antisense RNA to flv4, designated as As1_flv4. Overexpression of As1_flv4 led to a decrease in flv4-2 mRNA. The promoter activity of as1_flv4 was transiently stimulated by Ci limitation and negatively regulated by the AbrB-like transcription regulator Sll0822, whereas the flv4-2 operon was positively regulated by the transcription factor NdhR. The results indicate that the tightly regulated antisense RNA As1_flv4 establishes a transient threshold for flv4-2 expression in the early phase after a change in Ci conditions. Thus, it prevents unfavorable synthesis of the proteins from the flv4-2 operon. PMID:22854963

  19. DNA: Structure and function

    DEFF Research Database (Denmark)

    Sinden, Richard R.; E. Pearson, Christopher; N. Potaman, Vladimir

    1998-01-01

    This chapter discusses the structure and function of DNA. DNA occupies a critical role in cells, because it is the source of all intrinsic genetic information. Chemically, DNA is a very stable molecule, a characteristic important for a macromolecule that may have to persist in an intact form...

  20. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  1. DNA Source Selection for Downstream Applications Based on DNA Quality Indicators Analysis

    Science.gov (United States)

    Lucena-Aguilar, Gema; Sánchez-López, Ana María; Barberán-Aceituno, Cristina; Carrillo-Ávila, José Antonio; López-Guerrero, José Antonio

    2016-01-01

    High-quality human DNA samples and associated information of individuals are necessary for biomedical research. Biobanks act as a support infrastructure for the scientific community by providing a large number of high-quality biological samples for specific downstream applications. For this purpose, biobank methods for sample preparation must ensure the usefulness and long-term functionality of the products obtained. Quality indicators are the tool to measure these parameters, the purity and integrity determination being those specifically used for DNA. This study analyzes the quality indicators in DNA samples derived from 118 frozen human tissues in optimal cutting temperature (OCT) reactive, 68 formalin-fixed paraffin-embedded (FFPE) tissues, 119 frozen blood samples, and 26 saliva samples. The results obtained for DNA quality are discussed in association with the usefulness for downstream applications and availability of the DNA source in the target study. In brief, if any material is valid, blood is the most approachable option of prospective collection of samples providing high-quality DNA. However, if diseased tissue is a requisite or samples are available, the recommended source of DNA would be frozen tissue. These conclusions will determine the best source of DNA, according to the planned downstream application. Furthermore our results support the conclusion that a complete procedure of DNA quantification and qualification is necessary to guarantee the appropriate management of the samples, avoiding low confidence results, high costs, and a waste of samples. PMID:27158753

  2. Interaction of nogalamycin and analogs with DNA and other biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, W C [Univ. of Minnesota, Minneapolis; Pschigoda, L M; Schpok, S L.F.; Moscowitz, A.; McGovren, J P; Neta, P; Merritt, M V; Li, L H

    1981-01-01

    The interaction with calf thymus DNA of the anthracycline antibiotics, nogalamycin and its analogs, was studied by electronic absorption, circular dichroism (CD), thermal denaturation, solvent partition and pulse radiolysis techniques. The Scatchard, thermal denaturation (..delta..T/sub m/), difference circular dichroism (..delta..CD) and solvent partition binding parameters gave the same order of relative binding on a given lot of DNA, but some parameters were DNA-lot-dependent. In general, molecules containing the sugar moiety nogalose at C-7 or those having the natural or dis stereochemistry of nogalamycin at C-7 bound more strongly to DNA than did the molecules lacking nogalose or those with the opposite configuration at C-7 (con stereochemistry). This stereochemical-binding correlation differs from that found for adriamycin which has the con stereochemistry, but which binds strongly to DNA. Scatchard binding parameters could not be obtained from the pulse radiolysis or solvent partition techniques because of solubility difficulties.

  3. Effects of CD49d-targeted antisense-oligonucleotide on α4 integrin expression and function of acute lymphoblastic leukemia cells: Results of in vitro and in vivo studies.

    Directory of Open Access Journals (Sweden)

    Yann Duchartre

    Full Text Available We recently demonstrated the effectiveness of blocking CD49d with anti-functional antibodies or small molecule inhibitors as a rational targeted approach to the treatment of acute leukemia in combination with chemotherapy. Antisense oligonucleotide promises to be no less specific than antibodies and inhibitors, but more interesting for pharmacokinetics and pharmacodynamics. We addressed this using the published CD49d antisense drug ATL1102. In vitro, we incubated/nucleofected the ALL cell line Kasumi-2 with ATL1102. In vivo, immunodeficient hosts were engrafted with primary ALL cells and treated with ATL1102. Changes in expression of CD49d mRNA and CD49d protein, and of cooperating gene products, including ß1 integrin and CXCR4, as well as survival in the mouse experiments were quantified. We observed dose-dependent down-regulation of CD49d mRNA and protein levels and its partner integrin ß1 cell surface protein level and, up-regulation of CXCR4 surface expression. The suppression was more pronounced after nucleofection than after incubation, where down-regulation was significant only at the higher doses. In vivo effects of ATL1102 were not sufficient to translate into "clinical" benefit in the leukemia model. In summary, antisense oligonucleotides are successful tools for specifically modulating gene expression but sufficient delivery to down-regulate CD49d in vivo may be difficult to achieve.

  4. An antisense oligodeoxynucleotide targeted against the type IIβ regulatory subunit mRNA of protein kinase inhibits cAMP-induced differentiation in HL-60 leukemia cells without affecting phorbol ester effects

    International Nuclear Information System (INIS)

    Tortora, G.; Clair, T.; Cho-Chung, Y.S.

    1990-01-01

    The type II β regulatory subunit of cAMP-dependent protein kinase (RII β ) has been hypothesized to play an important role in the growth inhibition and differentiation induced by site-selective cAMP analogs in human cancer cells, but direct proof of this function has been lacking. To address this tissue, HL-60 human promyelocytic leukemia cells were exposed to RII β antisense synthetic oligodeoxynucleotide, and the effects on cAMP-induced growth regulation were examined. Exposure of these cells to RII β antisense oligodeoxynucleotide resulted in a decrease in cAMP analog-induced growth inhibition and differentiation without apparent effect on differentiation induced by phorbol esters. This loss in cAMP growth regulatory function correlated with a decrease in basal and induced levels of RII β protein. Exposure to RII β sense, RI α and RII α antisense, or irrelevant oligodeoxynucleotides had no such effect. These results show that the RII β regulatory subunit of protein kinase plays a critical role in the cAMP-induced growth regulation of HL-60 leukemia cells

  5. Booster parameter list

    International Nuclear Information System (INIS)

    Parsa, Z.

    1986-10-01

    The AGS Booster is designed to be an intermediate synchrotron injector for the AGS, capable of accelerating protons from 200 MeV to 1.5 GeV. The parameters listed include beam and operational parameters and lattice parameters, as well as parameters pertaining to the accelerator's magnets, vacuum system, radio frequency acceleration system, and the tunnel. 60 refs., 41 figs

  6. Lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)

  7. Efficiency of cellular delivery of antisense peptide nucleic acid by electroporation depends on charge and electroporation geometry

    DEFF Research Database (Denmark)

    Joergensen, Mette; Agerholm-Larsen, Birgit; Nielsen, Peter E

    2011-01-01

    Electroporation is potentially a very powerful technique for both in vitro cellular and in vivo drug delivery, particularly relating to oligonucleotides and their analogs for genetic therapy. Using a sensitive and quantitative HeLa cell luciferase RNA interference mRNA splice correction assay...... with a functional luciferase readout, we demonstrate that parameters such as peptide nucleic acid (PNA) charge and the method of electroporation have dramatic influence on the efficiency of productive delivery. In a suspended cell electroporation system (cuvettes), a positively charged PNA (+8) was most efficiently...... transferred, whereas charge neutral PNA was more effective in a microtiter plate electrotransfer system for monolayer cells. Surprisingly, a negatively charged (-23) PNA did not show appreciable activity in either system. Findings from the functional assay were corroborated by pulse parameter variations...

  8. Fast phylogenetic DNA barcoding

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Boomsma, Wouter Krogh; Willerslev, Eske

    2008-01-01

    We present a heuristic approach to the DNA assignment problem based on phylogenetic inferences using constrained neighbour joining and non-parametric bootstrapping. We show that this method performs as well as the more computationally intensive full Bayesian approach in an analysis of 500 insect...... DNA sequences obtained from GenBank. We also analyse a previously published dataset of environmental DNA sequences from soil from New Zealand and Siberia, and use these data to illustrate the fact that statistical approaches to the DNA assignment problem allow for more appropriate criteria...... for determining the taxonomic level at which a particular DNA sequence can be assigned....

  9. Radiation and DNA

    Energy Technology Data Exchange (ETDEWEB)

    Riabchenko, N I

    1979-01-01

    Consideration is given to the effects of ionizing radiation on the structure of DNA. Physical and chemical methods of determining radiation damage to the primary (polynucleotide chain and nitrogenous base) and secondary (helical) structure of DNA are discussed, and the effects of ionizing radiation on deoxyribonucleoprotein complexes are considered. The radiolysis of DNA in vitro and in bacterial and mammalian cells is examined and cellular mechanisms for the repair of radiation-damaged DNA are considered, taking into account single-strand and double-strand breaks, gamma-radiation damage and deoxyribonucleoprotein-membrane complex damage. Postradiation DNA degradation in bacteria and lymphatic cells is also discussed.

  10. DNA-Mediated Electrochemistry

    Science.gov (United States)

    Gorodetsky, Alon A.; Buzzeo, Marisa C.

    2009-01-01

    The base pair stack of DNA has been demonstrated as a medium for long range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry. PMID:18980370

  11. Sub-ensemble monitoring of DNA strand displacement using multiparameter single-molecule FRET

    OpenAIRE

    Baltierra Jasso, Laura; Morten, Michael; Magennis, Steven William

    2018-01-01

    Non-enzymatic DNA strand displacement is an important mechanism in dynamic DNA nanotechnology. Here we show that the large parameter space that is accessible by single-molecule FRET is ideal for the simultaneous monitoring of multiple reactants and products of DNA strand exchange reactions. We monitored the strand displacement from double-stranded DNA (dsDNA) by single-stranded DNA (ssDNA) at 37 °C; the data were modelled as a second-order reaction approaching equilibrium, with a rate constan...

  12. Energy required to pinch a DNA plectoneme

    Science.gov (United States)

    Barde, Céline; Destainville, Nicolas; Manghi, Manoel

    2018-03-01

    DNA supercoiling plays an important role from a biological point of view. One of its consequences at the supramolecular level is the formation of DNA superhelices named plectonemes. Normally separated by a distance on the order of 10 nm, the two opposite double strands of a DNA plectoneme must be brought closer if a protein or protein complex implicated in genetic regulation is to be bound simultaneously to both strands, as if the plectoneme was locally pinched. We propose an analytic calculation of the energetic barrier, of elastic nature, required to bring closer the two loci situated on the opposed double strands. We examine how this energy barrier scales with the DNA supercoiling. For physically relevant values of elastic parameters and of supercoiling density, we show that the energy barrier is in the kBT range under physiological conditions, thus demonstrating that the limiting step to loci encounter is more likely the preceding plectoneme slithering bringing the two loci side by side.

  13. Radiation effects on DNA methylation in mice

    International Nuclear Information System (INIS)

    Komura, J.; Kurishita, A.; Miyamura, Y.; Ono, T.; Tawa, R.; Sakurai, H.

    1992-01-01

    Effects of ionizing radiation on DNA methylation in liver, brain and spleen were examined by high performance liquid chromatography (HPLC). The total methylated cytosine level in the genome was reduced within 8 hours after 3.8 Gy of irradiation in liver of adult mice. But no appreciable effect was observed in brain and spleen. When mice were irradiated at newborn, liver DNA revealed no change in methylated cytosine level. Even though slight effects of radiation were detected in he methylation of the c-myc and c-fos genes, they were only temporary and no long-term effects were observed. These data suggest that the effect of radiation on DNA methylation in vivo is not prevailing a DNA damage, but rather influenced much through biological parameters. (author)

  14. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    Science.gov (United States)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  15. Hydrodynamic caracterization and molecular weight stimation of ultrasonically sheared DNA

    International Nuclear Information System (INIS)

    Garces, F.; Casal, J.I.; Garcia, A.

    1981-01-01

    The sedimentation coefficients and intrinsec viscosities of ultrasonically sheared calf thymus DNA have been determined. The molecular weight stimation according to this parameters have been compared with the ones obtained from the electrophoretic migration rates based on the calibration proposed using the known molecular weight restriction fragments of lambds-DNA. (author) [es

  16. DNA fragmentation in spermatozoa

    DEFF Research Database (Denmark)

    Rex, A S; Aagaard, J.; Fedder, J

    2017-01-01

    Sperm DNA Fragmentation has been extensively studied for more than a decade. In the 1940s the uniqueness of the spermatozoa protein complex which stabilizes the DNA was discovered. In the fifties and sixties, the association between unstable chromatin structure and subfertility was investigated....... In the seventies, the impact of induced DNA damage was investigated. In the 1980s the concept of sperm DNA fragmentation as related to infertility was introduced as well as the first DNA fragmentation test: the Sperm Chromatin Structure Assay (SCSA). The terminal deoxynucleotidyl transferase nick end labelling...... (TUNEL) test followed by others was introduced in the nineties. The association between DNA fragmentation in spermatozoa and pregnancy loss has been extensively investigated spurring the need for a therapeutic tool for these patients. This gave rise to an increased interest in the aetiology of DNA damage...

  17. Biophysics of DNA

    CERN Document Server

    Vologodskii, Alexander

    2015-01-01

    Surveying the last sixty years of research, this book describes the physical properties of DNA in the context of its biological functioning. It is designed to enable both students and researchers of molecular biology, biochemistry and physics to better understand the biophysics of DNA, addressing key questions and facilitating further research. The chapters integrate theoretical and experimental approaches, emphasising throughout the importance of a quantitative knowledge of physical properties in building and analysing models of DNA functioning. For example, the book shows how the relationship between DNA mechanical properties and the sequence specificity of DNA-protein binding can be analyzed quantitatively by using our current knowledge of the physical and structural properties of DNA. Theoretical models and experimental methods in the field are critically considered to enable the reader to engage effectively with the current scientific literature on the physical properties of DNA.

  18. Simple Simulations of DNA Condensation

    Energy Technology Data Exchange (ETDEWEB)

    STEVENS,MARK J.

    2000-07-12

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.

  19. Antisense Oligonucleotides Promote Exon Inclusion and Correct the Common c.-32-13T>G GAA Splicing Variant in Pompe Disease

    Directory of Open Access Journals (Sweden)

    Erik van der Wal

    2017-06-01

    Full Text Available The most common variant causing Pompe disease is c.-32-13T>G (IVS1 in the acid α-glucosidase (GAA gene, which weakens the splice acceptor of GAA exon 2 and induces partial and complete exon 2 skipping. It also allows a low level of leaky wild-type splicing, leading to a childhood/adult phenotype. We hypothesized that cis-acting splicing motifs may exist that could be blocked using antisense oligonucleotides (AONs to promote exon inclusion. To test this, a screen was performed in patient-derived primary fibroblasts using a tiling array of U7 small nuclear RNA (snRNA-based AONs. This resulted in the identification of a splicing regulatory element in GAA intron 1. We designed phosphorodiamidate morpholino oligomer-based AONs to this element, and these promoted exon 2 inclusion and enhanced GAA enzyme activity to levels above the disease threshold. These results indicate that the common IVS1 GAA splicing variant in Pompe disease is subject to negative regulation, and inhibition of a splicing regulatory element using AONs is able to restore canonical GAA splicing and endogenous GAA enzyme activity.

  20. In vivo knockdown of antisense non-coding mitochondrial RNAs by a lentiviral-encoded shRNA inhibits melanoma tumor growth and lung colonization.

    Science.gov (United States)

    Varas-Godoy, Manuel; Lladser, Alvaro; Farfan, Nicole; Villota, Claudio; Villegas, Jaime; Tapia, Julio C; Burzio, Luis O; Burzio, Veronica A; Valenzuela, Pablo D T

    2018-01-01

    The family of non-coding mitochondrial RNAs (ncmtRNA) is differentially expressed according to proliferative status. Normal proliferating cells express sense (SncmtRNA) and antisense ncmtRNAs (ASncmtRNAs), whereas tumor cells express SncmtRNA and downregulate ASncmtRNAs. Knockdown of ASncmtRNAs with oligonucleotides induces apoptotic cell death of tumor cells, leaving normal cells unaffected, suggesting a potential application for developing a novel cancer therapy. In this study, we knocked down the ASncmtRNAs in melanoma cell lines with a lentiviral-encoded shRNA approach. Transduction with lentiviral constructs targeted to the ASncmtRNAs induced apoptosis in murine B16F10 and human A375 melanoma cells in vitro and significantly retarded B16F10 primary tumor growth in vivo. Moreover, the treatment drastically reduced the number of lung metastatic foci in a tail vein injection assay, compared to controls. These results provide additional proof of concept to the knockdown of ncmtRNAs for cancer therapy and validate lentiviral-shRNA vectors for gene therapy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Thermo-Responsive Complexes of c-Myc Antisense Oligonucleotide with Block Copolymer of Poly(OEGMA) and Quaternized Poly(4-Vinylpyridine).

    Science.gov (United States)

    Topuzogullari, Murat; Elalmis, Yeliz Basaran; Isoglu, Sevil Dincer

    2017-04-01

    Solution behavior of thermo-responsive polymers and their complexes with biological macromolecules may be affected by environmental conditions, such as the concentration of macromolecular components, pH, ion concentration, etc. Therefore, a thermo-responsive polymer and its complexes should be characterized in detail to observe their responses against possible environments under physiological conditions before biological applications. To briefly indicate this important issue, thermo-responsive block copolymer of quaternized poly(4-vinylpyridine) and poly(oligoethyleneglycol methyl ether methacrylate) as a potential nonviral vector has been synthesized. Polyelectrolyte complexes of this copolymer with the antisense oligonucleotide of c-Myc oncogene are also thermo-responsive but, have lower LCST (lower critical solution temperature) values compared to individual copolymer. LCST values of complexes decrease with molar ratio of macromolecular components and presence of salt. Dilution of solutions also affects solution behavior of complexes and causes a significant decrease in size and an increase in LCST, which indicates possible effects of severe dilutions in the blood stream. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Antisense targeting of TGF-β1 augments BMP-induced upregulation of osteopontin, type I collagen and Cbfa1 in human Saos-2 cells

    International Nuclear Information System (INIS)

    Shen, Zhong-Jian; Kook Kim, Sang; Youn Jun, Do; Park, Wan; Ho Kim, Young; Malter, James S.; Jo Moon, Byung

    2007-01-01

    Despite commonalities in signal transduction in osteoblasts from different species, the role of TGF-β1 on bone formation remains elusive. In particular, the role of autocrine TGF-β1 on human osteoblasts is largely unknown. Here we show the effect of TGF-β1 knock-down on the proliferation and differentiation of osteoblasts induced by BMP2. Treatment with antisense TGF-β1 moderately increased the rate of cell proliferation, which was completely reversed by the exogenous addition of TGF-β1. Notably, TGF-β1 blockade significantly enhanced BMP2-induced upregulation of mRNAs encoding osteopontin, type I collagen and Cbfa1, which was suppressed by exogenous TGF-β1. Moreover, TGF-β1 knock-down increased BMP2-induced phosphorylation of Smad1/5 as well as their nuclear import, which paralleled a reduction of inhibitory Smad6. These data suggest autocrine TGF-β1 antagonizes BMP signaling through modulation of inducible Smad6 and the activity of BMP specific Smad1/5

  3. Scientific and Regulatory Policy Committee Points-to-consider Paper*: Drug-induced Vascular Injury Associated with Nonsmall Molecule Therapeutics in Preclinical Development: Part 2. Antisense Oligonucleotides.

    Science.gov (United States)

    Engelhardt, Jeffery A; Fant, Pierluigi; Guionaud, Silvia; Henry, Scott P; Leach, Michael W; Louden, Calvert; Scicchitano, Marshall S; Weaver, James L; Zabka, Tanja S; Frazier, Kendall S

    2015-10-01

    Drug-induced vascular injury (DIVI) is a recurrent challenge in the development of novel pharmaceutical agents. In recent years, DIVI has been occasionally observed in nonhuman primates given RNA-targeting therapeutics such as antisense oligonucleotide therapies (ASOs) during chronic toxicity studies. While DIVI in laboratory animal species has been well characterized for vasoactive small molecules, and immune-mediated responses against large molecule biotherapeutics have been well described, there is little published information regarding DIVI induced by ASOs to date. Preclinical DIVI findings in monkeys have caused considerable delays in development of promising new ASO therapies, because of the uncertainty about whether DIVI in preclinical studies is predictive of effects in humans, and the lack of robust biomarkers of DIVI. This review of DIVI discusses clinical and microscopic features of vasculitis in monkeys, their pathogenic mechanisms, and points to consider for the toxicologist and pathologist when confronted with ASO-related DIVI. Relevant examples of regulatory feedback are included to provide insight into risk assessment of ASO therapies. © 2015 by The Author(s).

  4. GPR39 splice variants versus antisense gene LYPD1: expression and regulation in gastrointestinal tract, endocrine pancreas, liver, and white adipose tissue

    DEFF Research Database (Denmark)

    Egerod, Kristoffer L; Holst, Birgitte; Petersen, Pia S

    2007-01-01

    nervous system as characterized with both quantitative RT-PCR and in situ hybridization analysis. A functional analysis of the GPR39 promoter region identified sites for the hepatocyte nuclear factors 1alpha and 4alpha (HNF-1alpha and -4alpha) and specificity protein 1 (SP1) transcription factors as being......G protein-coupled receptor 39 (GPR39) is a constitutively active, orphan member of the ghrelin receptor family that is activated by zinc ions. GPR39 is here described to be expressed in a full-length, biologically active seven-transmembrane form, GPR39-1a, as well as in a truncated splice variant...... five-transmembrane form, GPR39-1b. The 3' exon of the GPR39 gene overlaps with an antisense gene called LYPD1 (Ly-6/PLAUR domain containing 1). Quantitative RT-PCR analysis demonstrated that GPR39-1a is expressed selectively throughout the gastrointestinal tract, including the liver and pancreas...

  5. Knockdown of long non-coding RNA MAP3K20 antisense RNA 1 inhibits gastric cancer growth through epigenetically regulating miR-375.

    Science.gov (United States)

    Quan, Yongsheng; Zhang, Yan; Lin, Wei; Shen, Zhaohua; Wu, Shuai; Zhu, Changxin; Wang, Xiaoyan

    2018-03-04

    Emerging evidence has demonstrated that long noncoding RNAs (lncRNAs) play a critical role in tumorigenesis of gastric cancer. LncRNA MAP3K20 antisense RNA 1 (MLK7-AS1) has been identified as one of gastric cancer-specific lncRNAs. However, its precise role in gastric cancer remains unknown. In this study, we found that lncRNA MLK7-AS1 was significantly increased in gastric cancer tissues compared with in adjacent tissues. Gastric cancer patients with high MLK7-AS1 expression had a shorter survival and poorer prognosis. By loss-function assay, we demonstrated that knockdown of MLK7-AS1 inhibited cell proliferation and induced apoptosis in HGC27and MKN-45 cells. Furthermore, we identified miR-375 as a target of MLK7-AS1. MLK7-AS1 interacted with Dnmt1 and recruited it to miR-375 promotor, hyper-methylating miR-375 promotor and repressing miR-375 expression. Taken together, our findings demonstrate that knockdown of MLK7-AS1 by siRNA inhibits gastric cancer growth by epigenetically regulating miR-375. Thus, MLK7-AS1 may be a useful prognostic marker and therapeutic target for gastric cancer patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Assisted delivery of antisense therapeutics in animal models of heritable neurodegenerative and neuromuscular disorders: a systematic review and meta-analysis.

    Science.gov (United States)

    van der Bent, M Leontien; Paulino da Silva Filho, Omar; van Luijk, Judith; Brock, Roland; Wansink, Derick G

    2018-03-08

    Antisense oligonucleotide (AON)-based therapies hold promise for a range of neurodegenerative and neuromuscular diseases and have shown benefit in animal models and patients. Success in the clinic is nevertheless still limited, due to unfavourable biodistribution and poor cellular uptake of AONs. Extensive research is currently being conducted into the formulation of AONs to improve delivery, but thus far there is no consensus on which of those strategies will be the most effective. This systematic review was designed to answer in an unbiased manner which delivery strategies most strongly enhance the efficacy of AONs in animal models of heritable neurodegenerative and neuromuscular diseases. In total, 95 primary studies met the predefined inclusion criteria. Study characteristics and data on biodistribution and toxicity were extracted and reporting quality and risk of bias were assessed. Twenty studies were eligible for meta-analysis. We found that even though the use of delivery systems provides an advantage over naked AONs, it is not yet possible to select the most promising strategies. Importantly, standardisation of experimental procedures is warranted in order to reach conclusions about the most efficient delivery strategies. Our best practice guidelines for future experiments serve as a step in that direction.

  7. Quantitative Proteomics Analysis Reveals Novel Insights into Mechanisms of Action of Long Noncoding RNA Hox Transcript Antisense Intergenic RNA (HOTAIR) in HeLa Cells*

    Science.gov (United States)

    Zheng, Peng; Xiong, Qian; Wu, Ying; Chen, Ying; Chen, Zhuo; Fleming, Joy; Gao, Ding; Bi, Lijun; Ge, Feng

    2015-01-01

    Long noncoding RNAs (lncRNAs), which have emerged in recent years as a new and crucial layer of gene regulators, regulate various biological processes such as carcinogenesis and metastasis. HOTAIR (Hox transcript antisense intergenic RNA), a lncRNA overexpressed in most human cancers, has been shown to be an oncogenic lncRNA. Here, we explored the role of HOTAIR in HeLa cells and searched for proteins regulated by HOTAIR. To understand the mechanism of action of HOTAIR from a systems perspective, we employed a quantitative proteomic strategy to systematically identify potential targets of HOTAIR. The expression of 170 proteins was significantly dys-regulated after inhibition of HOTAIR, implying that they could be potential targets of HOTAIR. Analysis of this data at the systems level revealed major changes in proteins involved in diverse cellular components, including the cytoskeleton and the respiratory chain. Further functional studies on vimentin (VIM), a key protein involved in the cytoskeleton, revealed that HOTAIR exerts its effects on migration and invasion of HeLa cells, at least in part, through the regulation of VIM expression. Inhibition of HOTAIR leads to mitochondrial dysfunction and ultrastructural alterations, suggesting a novel role of HOTAIR in maintaining mitochondrial function in cancer cells. Our results provide novel insights into the mechanisms underlying the function of HOTAIR in cancer cells. We expect that the methods used in this study will become an integral part of functional studies of lncRNAs. PMID:25762744

  8. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells.

    Science.gov (United States)

    Küçüktürkmen, Berrin; Devrim, Burcu; Saka, Ongun M; Yilmaz, Şükran; Arsoy, Taibe; Bozkir, Asuman

    2017-01-01

    Combination therapy using anticancer drugs and nucleic acid is a more promising strategy to overcome multidrug resistance in cancer and to enhance apoptosis. In this study, lipid-polymer hybrid nanoparticles (LPNs), which contain both pemetrexed and miR-21 antisense oligonucleotide (anti-miR-21), have been developed for treatment of glioblastoma, the most aggressive type of brain tumor. Prepared LPNs have been well characterized by particle size distribution and zeta potential measurements, determination of encapsulation efficiency, and in vitro release experiments. Morphology of LPNs was determined by transmission electron microscopy. LPNs had a hydrodynamic size below 100 nm and exhibited sustained release of pemetrexed up to 10 h. Encapsulation of pemetrexed in LPNs increased cellular uptake from 6% to 78%. Results of confocal microscopy analysis have shown that co-delivery of anti-miR-21 significantly improved accumulation of LPNs in the nucleus of U87MG cells. Nevertheless, more effective cytotoxicity results could not be obtained due to low concentration of anti-miR-21, loaded in LPNs. We expect that the effective drug delivery systems can be obtained with higher concentration of anti-miR-21 for the treatment of glioblastoma.

  9. Antisense Proline-Arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death

    Science.gov (United States)

    Wen, Xinmei; Tan, Wenzhi; Westergard, Thomas; Krishnamurthy, Karthik; ShamamandriMarkandaiah, Shashirekha; Shi, Yingxiao; Lin, Shaoyu; Shneider, Neil A.; Monaghan, John; Pandey, Udai B.; Pasinelli, Piera; Ichida, Justin K.; Trotti, Davide

    2015-01-01

    SUMMARY Expanded GGGGCC nucleotide repeats within the C9ORF72 gene are the most common genetic mutation associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Sense and antisense transcripts of these expansions are translated to form five dipeptide repeat proteins (DRPs). We employed primary cortical and motor neuron cultures, live-cell imaging, and transgenic fly models and found that the arginine-rich dipeptides, in particular Proline-Arginine (PR), are potently neurotoxic. Factors that anticipated their neurotoxicity included aggregation in nucleoli, decreased number of processing bodies, and stress granules formation, implying global translational dysregulation as path accountable for toxicity. Nuclear PR aggregates were also found in human-induced motor neurons and postmortem spinal cord tissues from C9ORF72 ALS and ALS/FTD patients. Intronic G4C2 transcripts, but not loss of C9ORF72 protein, are also toxic to motor and cortical neurons. Interestingly, G4C2 transcript-mediated neurotoxicity synergizes with that of PR aggregates, suggesting convergence of mechanisms. PMID:25521377

  10. A regulatory effect of INMAP on centromere proteins: antisense INMAP induces CENP-B variation and centromeric halo.

    Directory of Open Access Journals (Sweden)

    Tan Tan

    Full Text Available CENP-B is a highly conserved protein that facilitates the assembly of specific centromere structures both in interphase nuclei and on mitotic chromosomes. INMAP is a conserved protein that localizes at nucleus in interphase cells and at mitotic apparatus in mitotic cells. Our previous results showed that INMAP over-expression leads to spindle defects, mitotic arrest and formation of polycentrosomal and multinuclear cells, indicating that INMAP may modulate the function of (a key protein(s in mitotic apparatus. In this study, we demonstrate that INMAP interacts with CENP-B and promotes cleavage of the N-terminal DNA binding domain from CENP-B. The cleaved CENP-B cannot associate with centromeres and thus lose its centromere-related functions. Consistent with these results, CENP-B in INMAP knockdown cells becomes more diffused around kinetochores. Although INMAP knockdown cells do not exhibit gross defects in mitotic spindle formation, these cells go through mitosis, especially prophase and metaphase, with different relative timing, indicating subtle abnormality. These results identify INMAP as a model regulator of CENP-B and support the notion that INMAP regulates mitosis through modulating CENP-B-mediated centromere organization.

  11. Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes

    Science.gov (United States)

    Masuyama, Kotoka; Shojo, Hideki; Nakanishi, Hiroaki; Inokuchi, Shota; Adachi, Noboru

    2017-01-01

    Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted “bidirectional analysis,” which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples. PMID:28052096

  12. Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes.

    Directory of Open Access Journals (Sweden)

    Kotoka Masuyama

    Full Text Available Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted "bidirectional analysis," which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples.

  13. Predicting Variation of DNA Shape Preferences in Protein-DNA Interaction in Cancer Cells with a New Biophysical Model.

    Science.gov (United States)

    Batmanov, Kirill; Wang, Junbai

    2017-09-18

    DNA shape readout is an important mechanism of transcription factor target site recognition, in addition to the sequence readout. Several machine learning-based models of transcription factor-DNA interactions, considering DNA shape features, have been developed in recent years. Here, we present a new biophysical model of protein-DNA interactions by integrating the DNA shape properties. It is based on the neighbor dinucleotide dependency model BayesPI2, where new parameters are restricted to a subspace spanned by the dinucleotide form of DNA shape features. This allows a biophysical interpretation of the new parameters as a position-dependent preference towards specific DNA shape features. Using the new model, we explore the variation of DNA shape preferences in several transcription factors across various cancer cell lines and cellular conditions. The results reveal that there are DNA shape variations at FOXA1 (Forkhead Box Protein A1) binding sites in steroid-treated MCF7 cells. The new biophysical model is useful for elucidating the finer details of transcription factor-DNA interaction, as well as for predicting cancer mutation effects in the future.

  14. Beyond DNA repair: DNA-PK function in cancer

    OpenAIRE

    Goodwin, Jonathan F.; Knudsen, Karen E.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, furthe...

  15. Comparison of DNA strand-break simulated with different DNA models

    International Nuclear Information System (INIS)

    Xie, Wenzhang; Li, Junli; Qiu, Rui; Yan, Congchong; Zeng, Zhi; Li, Chunyan

    2013-01-01

    Full text of the publication follows. In Monte Carlo simulation of DNA damage, the geometric model of DNA is of great importance. To study the influence of DNA model on the simulation of DNA damage, three DNA models were created in this paper. They were a volume model and two atomic models with different parameters. Direct DNA strand-break induced by low-energy electrons were simulated respectively with the three models. The results show that most of the energy depositions in the DNA segments do not lead to strand-breaks. The simple single strand-break (SSB) tends to be the predominant damage type, and the contribution of complex double strand-break (DSB) to the total DSB cannot be neglected. Among the yields of all the three DNA target models applied here, the yields of the volume model are the highest, the yields of the atomic model with double van der Waals radii (r) take the second place, whereas the yields of the atomic model with single r come last. On average, the ratios of SSB yields are approximately equivalent to the corresponding ratios of the models' volume. However, there seems to be no clear relationship between the DSB yields and the models' volume. (authors)

  16. Assessment of DNA quality in processed tuna muscle tissues

    Directory of Open Access Journals (Sweden)

    Zora Piskatá

    2016-06-01

    Full Text Available Authentication of tuna fish products is necessary to assure consumers of accurate labelling of food products. The quality of species specific DNA crucially affects the efficiency of amplification during the subsequent PCR. The problem in DNA detection in canned products lies in the possibility of the fragmentation of DNA during the processing technologies and the use of ingredients (oil, salt, spice, that may inhibit the PCR reaction. In this study three DNA extraction methods were compared: DNeasy Blood and Tissue Kit, DNeasy mericon Food Kit and Chemagic DNA tissue 10 Kit. The quantity and quality of DNA were evaluated by measuring DNA concentration and ratios A260/A280. Several parameters were estimated: the effect of whole and mechanically treated muscle, sterilization procedure used in canned process (high temperature in combination with high pressure and addition of raw materials. The highest DNA concentrations were observed in non-processed muscle that is not influenced by the sterilization process. Canned whole muscle demonstrated lower DNA yield, and furthermore, the mechanical treatment (canned ground resulted in lower values of DNA concentration that was registered by using all three types of DNA extraction kits. DNeasy mericon Food Kit produced DNA of higher concentration in non-processed sample, Chemagic DNA tissue 10 Kit delivered higher DNA yields than kits DNeasy Blood and Tissue Kit and DNeasy mericon Food Kit in canned samples, although the purity was lower, but still within the range 1.7 - 2.0. DNA was considered to be satisfactorily pure in all three types of samples and using all three types of DNA isolation. In case of the samples enriched of ingredients and treated with sterilization process as whole or ground muscle Chemagic DNA tissue 10 Kit produced in all samples (whole and ground muscle the highest values of DNA concentration, but almost all values of A260/A280 were lower than 1.7. Therefore DNeasy mericon Food Kit

  17. Hysteresis in pressure-driven DNA denaturation.

    Directory of Open Access Journals (Sweden)

    Enrique Hernández-Lemus

    Full Text Available In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue.

  18. DNA topology and transcription

    Science.gov (United States)

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions. PMID:24755522

  19. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  20. Disorder parameter of confinement

    International Nuclear Information System (INIS)

    Nakamura, N.; Ejiri, S.; Matsubara, Y.; Suzuki, T.

    1996-01-01

    The disorder parameter of confinement-deconfinement phase transition based on the monopole action determined previously in SU(2) QCD are investigated. We construct an operator which corresponds to the order parameter defined in the abelian Higgs model. The operator shows proper behaviors as the disorder parameter in the numerical simulations of finite temperature QCD. (orig.)

  1. DNA-based machines.

    Science.gov (United States)

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  2. DNA repair and cancer

    International Nuclear Information System (INIS)

    Rathore, Shakuntla; Joshi, Pankaj Kumar; Gaur, Sudha

    2012-01-01

    DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecule that encode it's genome. In human cells, both normal metabolic activities and environmental factors such as UV light and radiation can cause DNA damage, resulting in as many one million individual molecular lesions per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions include potentially harmful mutation in cell's genome which affect the survival of it's daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. Inherited mutation that affect DNA repair genes are strongly associated with high cancer risks in humans. Hereditary non polyposis colorectal cancer (HNPCC) is strongly associated with specific mutation in the DNA mismatch repair pathway. BRCA1, BRCA2 two famous mutation conferring a hugely increased risk of breast cancer on carrier, are both associated with a large number of DNA repair pathway, especially NHEJ and homologous recombination. Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side effect is that other non-cancerous but rapidly dividing cells such as stem cells in the bone marrow are also affected. Modern cancer treatment attempt to localize the DNA damage to cells and tissue only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body). (author)

  3. Studies of interaction between two alkaloids and double helix DNA

    International Nuclear Information System (INIS)

    Sun, Yantao; Peng, Tingting; Zhao, Lei; Jiang, Dayu; Cui, Yuncheng

    2014-01-01

    This article presents the study on the interaction of two alkaloids (matrine and evodiamine) and hs-DNA by absorption, fluorescence, circular dichroism (CD), DNA melting and viscosity experiments. The spectroscopic studies suggested that two alkaloids can bind to DNA through an intercalative mode. The viscosity measurement and thermal denaturation also indicated that two alkaloids can intercalate to DNA. The binding constants (K A ) and the number of binding sites (n) were determined. At the same time, some significant thermodynamic parameters of the binding of the alkaloids to DNA were obtained. Competitive binding studies revealed that alkaloids had an effect on ethidium bromide (EB) bound DNA. In addition, it was also proved that the fluorescence quenching was influenced by ionic strength. - Highlights: • Interaction between two alkaloids and DNA is studied by spectral methods. • The binding constant and the binding sites between two alkaloids and DNA are obtained. • There are a classical intercalative mode between alkaloids and DNA. • The binding of matrine with DNA is weaker than that of evodiamine. • It is important for us to understand the alkaloids–DNA interactions at a molecular level

  4. A novel constraint for thermodynamically designing DNA sequences.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    Full Text Available Biotechnological and biomolecular advances have introduced novel uses for DNA such as DNA computing, storage, and encryption. For these applications, DNA sequence design requires maximal desired (and minimal undesired hybridizations, which are the product of a single new DNA strand from 2 single DNA strands. Here, we propose a novel constraint to design DNA sequences based on thermodynamic properties. Existing constraints for DNA design are based on the Hamming distance, a constraint that does not address the thermodynamic properties of the DNA sequence. Using a unique, improved genetic algorithm, we designed DNA sequence sets which satisfy different distance constraints and employ a free energy gap based on a minimum free energy (MFE to gauge DNA sequences based on set thermodynamic properties. When compared to the best constraints of the Hamming distance, our method yielded better thermodynamic qualities. We then used our improved genetic algorithm to obtain lower-bound DNA sequence sets. Here, we discuss the effects of novel constraint parameters on the free energy gap.

  5. Nonisotopic DNA probe techniques

    National Research Council Canada - National Science Library

    Kricka, Larry J

    1992-01-01

    The objective of this book is to bring together descriptions of the principal nonisotopic methods for DNA hybridization assays, together with experimental details of the methods, including labelling...

  6. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  7. Forensic DNA testing.

    Science.gov (United States)

    Butler, John M

    2011-12-01

    Forensic DNA testing has a number of applications, including parentage testing, identifying human remains from natural or man-made disasters or terrorist attacks, and solving crimes. This article provides background information followed by an overview of the process of forensic DNA testing, including sample collection, DNA extraction, PCR amplification, short tandem repeat (STR) allele separation and sizing, typing and profile interpretation, statistical analysis, and quality assurance. The article concludes with discussions of possible problems with the data and other forensic DNA testing techniques.

  8. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo

    Directory of Open Access Journals (Sweden)

    Hu Jim

    2006-02-01

    gene expression in culture systems and certain organs in vivo, barriers to nucleic acid transfer in airway epithelial cells seen with large DNA molecules may also affect the efficiency of in vivo uptake of small nucleic acid molecules.

  9. Structure of DNA toroids and electrostatic attraction of DNA duplexes

    International Nuclear Information System (INIS)

    Cherstvy, A G

    2005-01-01

    DNA-DNA electrostatic attraction is considered as the driving force for the formation of DNA toroids in the presence of DNA condensing cations. This attraction comes from the DNA helical charge distribution and favours hexagonal toroidal cross-sections. The latter is in agreement with recent cryo-electron microscopy studies on DNA condensed with cobalt hexammine. We treat the DNA-DNA interactions within the modern theory of electrostatic interaction between helical macromolecules. The size and thickness of the toroids is calculated within a simple model; other models of stability of DNA toroids are discussed and compared

  10. Application of a genetic algorithm in the conformational analysis of methylene-acetal-linked thymine dimers in DNA: Comparison with distance geometry calculations

    International Nuclear Information System (INIS)

    Beckers, Mischa L.M.; Buydens, Lutgarde M.C.; Pikkemaat, Jeroen A.; Altona, Cornelis

    1997-01-01

    The three-dimensional spatial structure of a methylene-acetal-linked thymine dimer present in a 10 base-pair (bp) sense-antisense DNA duplex was studied with a genetic algorithm designed to interpret NOE distance restraints. Trial solutions were represented by torsion angles. This means that bond angles for the dimer trial structures are kept fixed during the genetic algorithm optimization. Bond angle values were extracted from a 10 bp sense-antisense duplex model that was subjected to energy minimization by means of a modified AMBER force field. A set of 63 proton-proton distance restraints defining the methylene-acetal-linked thymine dimer was available. The genetic algorithm minimizes the difference between distances in the trial structures and distance restraints. A large conformational search space could be covered in the genetic algorithm optimization by allowing a wide range of torsion angles. The genetic algorithm optimization in all cases led to one family of structures. This family of the methylene-acetal-linked thymine dimer in the duplex differs from the family that was suggested from distance geometry calculations. It is demonstrated that the bond angle geometry around the methylene-acetal linkage plays an important role in the optimization

  11. Inhibition of protease activity by antisense RNA improves recombinant protein production in Nicotiana tabacum cv. Bright Yellow 2 (BY-2) suspension cells.

    Science.gov (United States)

    Mandal, Manoj K; Fischer, Rainer; Schillberg, Stefan; Schiermeyer, Andreas

    2014-08-01

    Recombinant proteins produced in plant suspension cultures are often degraded by endogenous plant proteases when secreted into the medium, resulting in low yields. To generate protease-deficient tobacco BY-2 cell lines and to retrieve the sequence information, we cloned four different protease cDNAs from tobacco BY-2 cells (NtAP, NtCP, NtMMP1, and NtSP), which represent the major catalytic classes. The simultaneous expression of antisense RNAs against these endogenous proteases led to the establishment of cell lines with reduced levels of endogenous protease expression and activity at late stages of the cultivation cycle. One of the cell lines showing reduced proteolytic activity in the culture medium was selected for the expression of the recombinant full-length IgG1(κ) antibody 2F5, recognizing the gp41 surface protein of HIV-1. This cell line showed significantly reduced degradation of the 2F5 heavy chain, resulting in four-fold higher accumulation of the intact antibody heavy chain when compared to transformed wild type cells expressing the same antibody. N-terminal sequencing data revealed that the antibody has two cleavage sites within the CDR-H3 and one site at the end of the H4-framework region. These cleavage sites are found to be vulnerable to serine proteases. The data provide a basis for further improvement of plant cells for the production of recombinant proteins in plant cell suspension cultures. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cis-Natural Antisense Transcripts Are Mainly Co-expressed with Their Sense Transcripts and Primarily Related to Energy Metabolic Pathways during Muscle Development.

    Science.gov (United States)

    Zhao, Yunxia; Hou, Ye; Zhao, Changzhi; Liu, Fei; Luan, Yu; Jing, Lu; Li, Xinyun; Zhu, Mengjin; Zhao, Shuhong

    2016-01-01

    Cis-natural antisense transcripts (cis-NATs) are a new class of RNAs identified in various species. However, the biological functions of cis-NATs are largely unknown. In this study, we investigated the transcriptional characteristics and functions of cis-NATs in the muscle tissue of lean Landrace and indigenous fatty Lantang pigs. In total, 3,306 cis-NATs of 2,469 annotated genes were identified in the muscle tissue of pigs. More than 1,300 cis-NATs correlated with their sense genes at the transcriptional level, and approximately 80% of them were co-expressed in the two breeds. Furthermore, over 1,200 differentially expressed cis-NATs were identified during muscle development. Function annotation showed that the cis-NATs participated in muscle development mainly by co-expressing with genes involved in energy metabolic pathways, including citrate cycle (TCA cycle), glycolysis or gluconeogenesis, mitochondrial activation and so on. Moreover, these cis-NATs and their sense genes abruptly increased at the transition from the late fetal stages to the early postnatal stages and then decreased along with muscle development. In conclusion, the cis-NATs in the muscle tissue of pigs were identified and determined to be mainly co-expressed with their sense genes. The co-expressed cis-NATs and their sense gene were primarily related to energy metabolic pathways during muscle development in pigs. Our results offered novel evidence on the roles of cis-NATs during the muscle development of pigs.

  13. Targeted nanoparticle delivery of therapeutic antisense microRNAs presensitizes glioblastoma cells to lower effective doses of temozolomide in vitro and in a mouse model.

    Science.gov (United States)

    Malhotra, Meenakshi; Sekar, Thillai Veerapazham; Ananta, Jeyarama S; Devulapally, Rammohan; Afjei, Rayhaneh; Babikir, Husam A; Paulmurugan, Ramasamy; Massoud, Tarik F

    2018-04-20

    Temozolomide (TMZ) chemotherapy for glioblastoma (GBM) is generally well tolerated at standard doses but it can cause side effects. GBMs overexpress microRNA-21 and microRNA-10b, two known oncomiRs that promote cancer development, progression and resistance to drug treatment. We hypothesized that systemic injection of antisense microRNAs (antagomiR-21 and antagomiR-10b) encapsulated in cRGD-tagged PEG-PLGA nanoparticles would result in high cellular delivery of intact functional antagomiRs, with consequent efficient therapeutic response and increased sensitivity of GBM cells to lower doses of TMZ. We synthesized both targeted and non-targeted nanoparticles, and characterized them for size, surface charge and encapsulation efficiency of antagomiRs. When using targeted nanoparticles in U87MG and Ln229 GBM cells, we showed higher uptake-associated improvement in sensitivity of these cells to lower concentrations of TMZ in medium. Co-inhibition of microRNA-21 and microRNA-10b reduced the number of viable cells and increased cell cycle arrest at G2/M phase upon TMZ treatment. We found a significant increase in expression of key target genes for microRNA-21 and microRNA-10b upon using targeted versus non-targeted nanoparticles. There was also significant reduction in tumor volume when using TMZ after pre-treatment with loaded nanoparticles in human GBM cell xenografts in mice. In vivo targeted nanoparticles plus different doses of TMZ showed a significant therapeutic response even at the lowest dose of TMZ, indicating that preloading cells with antagomiR-21 and antagomiR-10b increases cellular chemosensitivity towards lower TMZ doses. Future clinical applications of this combination therapy may result in improved GBM response by using lower doses of TMZ and reducing nonspecific treatment side effects.

  14. In vitro and in vivo inhibition of proangiogenic retinal phenotype by an antisense oligonucleotide downregulating uPAR expression.

    Science.gov (United States)

    Lulli, Matteo; Cammalleri, Maurizio; Granucci, Irene; Witort, Ewa; Bono, Silvia; Di Gesualdo, Federico; Lupia, Antonella; Loffredo, Rosa; Casini, Giovanni; Dal Monte, Massimo; Capaccioli, Sergio

    2017-08-26

    Neoangiogenesis is the main pathogenic event involved in a variety of retinal diseases. It has been recently demonstrated that inhibiting the urokinase-type plasminogen activator receptor (uPAR) results in reduced angiogenesis in a mouse model of oxygen-induced retinopathy (OIR), establishing uPAR as a therapeutic target in proliferative retinopathies. Here, we evaluated in cultured human retinal endothelial cells (HRECs) and in OIR mice the potential of a specific antisense oligodeoxyribonucleotide (ASO) in blocking the synthesis of uPAR and in providing antiangiogenic effects. uPAR expression in HRECs was inhibited by lipofection with the phosphorotioated 5'-CGGCGGGTGACCCATGTG-3' ASO-uPAR, complementary to the initial translation site of uPAR mRNA. Inhibition of uPAR expression via ASO-uPAR was evaluated in HRECs by analyzing VEGF-induced tube formation and migration. In addition, the well-established and reproducible murine OIR model was used to induce retinal neovascularization in vivo. OIR mice were injected intraperitoneally with ASO-uPAR and retinopathy was evaluated considering the extent of the avascular area in the central retina and neovascular tuft formation. The ASO-uPAR specifically decreased uPAR mRNA and protein levels in HRECs and mitigated VEGF-induced tube formation and cell migration. Noteworthy, in OIR mice ASO-uPAR administration reduced both the avascular area and the formation of neovascular tufts. In conclusion, although the extrapolation of these experimental findings to the clinic is not straightforward, ASO-uPAR may be considered a potential therapeutic tool for treatment of proliferative retinal diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Overexpression of D-Xylose Reductase (xyl1 Gene and Antisense Inhibition of D-Xylulokinase (xyiH Gene Increase Xylitol Production in Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Yuanyuan Hong

    2014-01-01

    Full Text Available T. reesei is an efficient cellulase producer and biomass degrader. To improve xylitol production in Trichoderma reesei strains by genetic engineering, two approaches were used in this study. First, the presumptive D-xylulokinase gene in T. reesei (xyiH, which has high homology to known fungi D-xylulokinase genes, was silenced by transformation of T. reesei QM9414 strain with an antisense construct to create strain S6-2-2. The expression of the xyiH gene in the transformed strain S6-2-2 decreased at the mRNA level, and D-xylulokinase activity decreased after 48 h of incubation. This led to an increase in xylitol production from undetectable levels in wild-type T. reesei QM9414 to 8.6 mM in S6-2-2. The T. reesei Δxdh is a xylose dehydrogenase knockout strain with increased xylitol production compared to the wild-type T. reesei QM9414 (22.8 mM versus undetectable. The copy number of the xylose reductase gene (xyl1 in T. reesei Δxdh strain was increased by genetic engineering to create a new strain Δ9-5-1. The Δ9-5-1 strain showed a higher xyl1 expression and a higher yield of xylose reductase, and xylitol production was increased from 22.8 mM to 24.8 mM. Two novel strains S6-2-2 and Δ9-5-1 are capable of producing higher yields of xylitol. T. reesei has great potential in the industrial production of xylitol.

  16. Overexpression of D-Xylose Reductase (xyl1) Gene and Antisense Inhibition of D-Xylulokinase (xyiH) Gene Increase Xylitol Production in Trichoderma reesei

    Science.gov (United States)

    Hong, Yuanyuan; Dashtban, Mehdi; Kepka, Greg; Chen, Sanfeng; Qin, Wensheng

    2014-01-01

    T. reesei is an efficient cellulase producer and biomass degrader. To improve xylitol production in Trichoderma reesei strains by genetic engineering, two approaches were used in this study. First, the presumptive D-xylulokinase gene in T. reesei (xyiH), which has high homology to known fungi D-xylulokinase genes, was silenced by transformation of T. reesei QM9414 strain with an antisense construct to create strain S6-2-2. The expression of the xyiH gene in the transformed strain S6-2-2 decreased at the mRNA level, and D-xylulokinase activity decreased after 48 h of incubation. This led to an increase in xylitol production from undetectable levels in wild-type T. reesei QM9414 to 8.6 mM in S6-2-2. The T. reesei Δxdh is a xylose dehydrogenase knockout strain with increased xylitol production compared to the wild-type T. reesei QM9414 (22.8 mM versus undetectable). The copy number of the xylose reductase gene (xyl1) in T. reesei Δxdh strain was increased by genetic engineering to create a new strain Δ9-5-1. The Δ9-5-1 strain showed a higher xyl1 expression and a higher yield of xylose reductase, and xylitol production was increased from 22.8 mM to 24.8 mM. Two novel strains S6-2-2 and Δ9-5-1 are capable of producing higher yields of xylitol. T. reesei has great potential in the industrial production of xylitol. PMID:25013760

  17. Antisense Oligonucleotide-based Splice Correction for USH2A-associated Retinal Degeneration Caused by a Frequent Deep-intronic Mutation

    Directory of Open Access Journals (Sweden)

    Radulfus WN Slijkerman

    2016-01-01

    Full Text Available Usher syndrome (USH is the most common cause of combined deaf-blindness in man. The hearing loss can be partly compensated by providing patients with hearing aids or cochlear implants, but the loss of vision is currently untreatable. In general, mutations in the USH2A gene are the most frequent cause of USH explaining up to 50% of all patients worldwide. The first deep-intronic mutation in the USH2A gene (c.7595-2144A>G was reported in 2012, leading to the insertion of a pseudoexon (PE40 into the mature USH2A transcript. When translated, this PE40-containing transcript is predicted to result in a truncated non-functional USH2A protein. In this study, we explored the potential of antisense oligonucleotides (AONs to prevent aberrant splicing of USH2A pre-mRNA as a consequence of the c.7595-2144A>G mutation. Engineered 2'-O-methylphosphorothioate AONs targeting the PE40 splice acceptor site and/or exonic splice enhancer regions displayed significant splice correction potential in both patient derived fibroblasts and a minigene splice assay for USH2A c.7595-2144A>G, whereas a non-binding sense oligonucleotide had no effect on splicing. Altogether, AON-based splice correction could be a promising approach for the development of a future treatment for USH2A-associated retinitis pigmentosa caused by the deep-intronic c.7595-2144A>G mutation.

  18. Antisense locked nucleic acids targeting agrA inhibit quorum sensing and pathogenesis of community-associated methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Da, F; Yao, L; Su, Z; Hou, Z; Li, Z; Xue, X; Meng, J; Luo, X

    2017-01-01

    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is commonly associated with nonnosocomial skin and soft tissue infections due to its virulence, which is mainly controlled by the accessory gene regulator (agr) quorum sensing (QS) system. In this study (KFF) 3 K peptide-conjugated locked nucleic acids (PLNAs) targeting agrA mRNA were developed to inhibit agr activity and arrest the pathogenicity of CA-MRSA. Two PLNAs were designed, and synthesized, after predicting the secondary structure of agrA mRNA. The influence on bacterial growth was tested using a growth curve assay. RT-qPCR, haemolysis assay, lactate dehydrogenase release assay and chemotaxis assay were used to evaluate the effects of the PLNAs on inhibiting agr QS. A mouse skin infection model was employed to test the protective effect of the PLNAs in vivo. None of the PLNAs were found to be bacteriostatic or bactericidal in vitro. However, one PLNA, PLNA34, showed strong ability to suppress expression of agrA and the effector molecule RNAIII in USA300 LAC strain. Furthermore, PLNA34 inhibited the expression of virulence genes that are upregulated by agr, including hla, psmα, psmβ and pvl. The haemolytic activity of the supernatants from PLNA34-treated bacteria was also dramatically reduced, as well as the capacity to lyse and recruit neutrophils. Moreover, PLNA34 showed high levels of protection in the CA-MRSA mouse skin infection model. The anti-agrA PLNA34 can effectively inhibit the agr QS and suppress CA-MRSA pathogenicity. agrA is a promising target for the development of antisense oligonucleotides to block agr QS. Journal of Applied Microbiology © 2016 The Society for Applied Microbiology.

  19. Extended DNA Tile Actuators

    DEFF Research Database (Denmark)

    Kristiansen, Martin; Kryger, Mille; Zhang, Zhao

    2012-01-01

    A dynamic linear DNA tile actuator is expanded to three new structures of higher complexity. The original DNA actuator was constructed from a central roller strand which hybridizes with two piston strands by forming two half-crossover junctions. A linear expansion of the actuator is obtained...

  20. Dna fingerprinting - review paper

    OpenAIRE

    Blundell, Renald

    2006-01-01

    Before the Polymerase Chain Reaction (PCR) was established, DNA fingerprinting technology has relied for years on Restriction Fragment Length Polymorphism (RFLP) and Variable Number of Tandom Repeats (VNTR) analysis, a very efficient technique but quite laborious and not suitable for high throughput mapping. Since its, development, PCR has provided a new and powerful tool for DNA fingerprinting.

  1. DNA Repair Systems

    Indian Academy of Sciences (India)

    Thanks to the pioneering research work of Lindahl, Sancar, Modrich and their colleagues, we now have an holistic awareness of how DNA damage occurs and how the damage is rectified in bacteria as well as in higher organisms including human beings. A comprehensive understanding of DNA repair has proven crucial ...

  2. DNA repair genes

    International Nuclear Information System (INIS)

    Morimyo, Mitsuoki

    1995-01-01

    Fission yeast S. pombe is assumed to be a good model for cloning of human DNA repair genes, because human gene is normally expressed in S. pombe and has a very similar protein sequence to yeast protein. We have tried to elucidate the DNA repair mechanisms of S. pombe as a model system for those of mammals. (J.P.N.)

  3. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2018-05-15

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  4. Characterization of muntjac DNA

    International Nuclear Information System (INIS)

    Davis, R.C.

    1981-01-01

    Sister chromatid exchange (SCE) in muntjac chromosomes is generally proportional to the chromosomal DNA content, but the SCE frequency is reduced in the heterochromatic neck region of the X chromosome. The physical properties of muntjac DNA and the kinetics of repair of UV damage in muntjac heterochromatin and euchromatin were examined and compared with the distribution of sister chromatid exchange

  5. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  6. Characterization of muntjac DNA

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.C.

    1981-05-27

    Sister chromatid exchange (SCE) in muntjac chromosomes is generally proportional to the chromosomal DNA content, but the SCE frequency is reduced in the heterochromatic neck region of the X chromosome. The physical properties of muntjac DNA and the kinetics of repair of UV damage in muntjac heterochromatin and euchromatin were examined and compared with the distribution of sister chromatid exchange.

  7. Whose DNA is this?

    DEFF Research Database (Denmark)

    Taroni, Franco; Biedermann, Alex; Vuille, Joëlle

    2013-01-01

    This communication seeks to draw the attention of researchers and practitioners dealing with forensic DNA profiling analyses to the following question: is a scientist's report, offering support to a hypothesis according to which a particular individual is the source of DNA detected during...... evoked during the international conference "The hidden side of DNA profiles. Artifacts, errors and uncertain evidence" held in Rome (April 27th to 28th, 2012). Indeed, despite the fact that this conference brought together some of the world's leading forensic DNA specialists, it appeared clearly...... talk considerably different languages. It thus is fundamental to address this issue of communication about results of forensic DNA analyses, and open a dialogue with practicing non-scientists at large who need to make meaningful use of scientific results to approach and help solve judicial cases...

  8. DNA repair protocols

    DEFF Research Database (Denmark)

    Bjergbæk, Lotte

    In its 3rd edition, this Methods in Molecular Biology(TM) book covers the eukaryotic response to genomic insult including advanced protocols and standard techniques in the field of DNA repair. Offers expert guidance for DNA repair, recombination, and replication. Current knowledge of the mechanisms...... that regulate DNA repair has grown significantly over the past years with technology advances such as RNA interference, advanced proteomics and microscopy as well as high throughput screens. The third edition of DNA Repair Protocols covers various aspects of the eukaryotic response to genomic insult including...... recent advanced protocols as well as standard techniques used in the field of DNA repair. Both mammalian and non-mammalian model organisms are covered in the book, and many of the techniques can be applied with only minor modifications to other systems than the one described. Written in the highly...

  9. Racemic DNA crystallography.

    Science.gov (United States)

    Mandal, Pradeep K; Collie, Gavin W; Kauffmann, Brice; Huc, Ivan

    2014-12-22

    Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of L- and D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propensity of racemic DNA mixtures to form racemic crystals. We describe racemic crystal structures of various DNA sequences and folded conformations, including duplexes, quadruplexes, and a four-way junction, showing that the advantages of racemic crystallography should extend to DNA. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    International Nuclear Information System (INIS)

    Sugaya, Shigeru; Nakanishi, Hiroshi; Tanzawa, Hideki; Sugita, Katsuo; Kita, Kazuko; Suzuki, Nobuo

    2005-01-01

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested

  11. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugaya, Shigeru [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Nakanishi, Hiroshi [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Tanzawa, Hideki [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Sugita, Katsuo [Department of Clinical Medicine, Faculty of Education, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan); Kita, Kazuko [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Suzuki, Nobuo [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan)]. E-mail: nobuo@faculty.chiba-u.jp

    2005-10-15

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested.

  12. Correlation of MFOLD-predicted DNA secondary structures with separation patterns obtained by capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis.

    Science.gov (United States)

    Glavac, Damjan; Potocnik, Uros; Podpecnik, Darja; Zizek, Teofil; Smerkolj, Sava; Ravnik-Glavac, Metka

    2002-04-01

    We have studied 57 different mutations within three beta-globin gene promoter fragments with sizes 52 bp, 77 bp, and 193 bp by fluorescent capillary electrophoresis CE-SSCP analysis. For each mutation and wild type, energetically most-favorable predicted secondary structures were calculated for sense and antisense strands using the MFOLD DNA-folding algorithm in order to investigate if any correlation exists between predicted DNA structures and actual CE migration time shifts. The overall CE-SSCP detection rate was 100% for all mutations in three studied DNA fragments. For shorter 52 bp and 77 bp DNA fragments we obtained a positive correlation between the migration time shifts and difference in free energy values of predicted secondary structures at all temperatures. For longer 193 bp beta-globin gene fragments with 46 mutations MFOLD predicted different secondary structures for 89% of mutated strands at 25 degrees C and 40 degrees C. However, the magnitude of the mobility shifts did not necessarily correlate with their secondary structures and free energy values except for the sense strand at 40 degrees C where this correlation was statistically significant (r = 0.312, p = 0.033). Results of this study provided more direct insight into the mechanism of CE-SSCP and showed that MFOLD prediction could be helpful in making decisions about the running temperatures and in prediction of CE-SSCP data patterns, especially for shorter (50-100 bp) DNA fragments. Copyright 2002 Wiley-Liss, Inc.

  13. Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

    OpenAIRE

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and...

  14. Structure and expression of two nuclear receptor genes in marsupials: insights into the evolution of the antisense overlap between the α-thyroid hormone receptor and Rev-erbα

    Directory of Open Access Journals (Sweden)

    Brown M Scott

    2010-12-01

    Full Text Available Abstract Background Alternative processing of α-thyroid hormone receptor (TRα, NR1A1 mRNAs gives rise to two functionally antagonistic nuclear receptors: TRα1, the α-type receptor, and TRα2, a non-hormone binding variant that is found only in mammals. TRα2 shares an unusual antisense coding overlap with mRNA for Rev-erbα (NR1D1, another nuclear receptor protein. In this study we examine the structure and expression of these genes in the gray short-tailed opossum, Monodelphis domestica, in comparison with that of eutherian mammals and three other marsupial species, Didelphis virginiana, Potorous tridactylus and Macropus eugenii, in order to understand the evolution and regulatory role of this antisense overlap. Results The sequence, expression and genomic organization of mRNAs encoding TRα1 and Rev-erbα are very similar in the opossum and eutherian mammals. However, the sequence corresponding to the TRα2 coding region appears truncated by almost 100 amino acids. While expression of TRα1 and Rev-erbα was readily detected in all tissues of M. domestica ages 0 days to 18 weeks, TRα2 mRNA was not detected in any tissue or stage examined. These results contrast with the widespread and abundant expression of TRα2 in rodents and other eutherian mammals. To examine requirements for alternative splicing of TRα mRNAs, a series of chimeric minigenes was constructed. Results show that the opossum TRα2-specific 5' splice site sequence is fully competent for splicing but the sequence homologous to the TRα2 3' splice site is not, even though the marsupial sequences are remarkably similar to core splice site elements in rat. Conclusions Our results strongly suggest that the variant nuclear receptor isoform, TRα2, is not expressed in marsupials and that the antisense overlap between TRα and Rev-erbα thus is unique to eutherian mammals. Further investigation of the TRα and Rev-erbα genes in marsupial and eutherian species promises to yield

  15. Structure and expression of two nuclear receptor genes in marsupials: insights into the evolution of the antisense overlap between the α-thyroid hormone receptor and Rev-erbα

    Science.gov (United States)

    2010-01-01

    Background Alternative processing of α-thyroid hormone receptor (TRα, NR1A1) mRNAs gives rise to two functionally antagonistic nuclear receptors: TRα1, the α-type receptor, and TRα2, a non-hormone binding variant that is found only in mammals. TRα2 shares an unusual antisense coding overlap with mRNA for Rev-erbα (NR1D1), another nuclear receptor protein. In this study we examine the structure and expression of these genes in the gray short-tailed opossum, Monodelphis domestica, in comparison with that of eutherian mammals and three other marsupial species, Didelphis virginiana, Potorous tridactylus and Macropus eugenii, in order to understand the evolution and regulatory role of this antisense overlap. Results The sequence, expression and genomic organization of mRNAs encoding TRα1 and Rev-erbα are very similar in the opossum and eutherian mammals. However, the sequence corresponding to the TRα2 coding region appears truncated by almost 100 amino acids. While expression of TRα1 and Rev-erbα was readily detected in all tissues of M. domestica ages 0 days to 18 weeks, TRα2 mRNA was not detected in any tissue or stage examined. These results contrast with the widespread and abundant expression of TRα2 in rodents and other eutherian mammals. To examine requirements for alternative splicing of TRα mRNAs, a series of chimeric minigenes was constructed. Results show that the opossum TRα2-specific 5' splice site sequence is fully competent for splicing but the sequence homologous to the TRα2 3' splice site is not, even though the marsupial sequences are remarkably similar to core splice site elements in rat. Conclusions Our results strongly suggest that the variant nuclear receptor isoform, TRα2, is not expressed in marsupials and that the antisense overlap between TRα and Rev-erbα thus is unique to eutherian mammals. Further investigation of the TRα and Rev-erbα genes in marsupial and eutherian species promises to yield additional insight into the

  16. Nanostructures via DNA scaffold metallization

    OpenAIRE

    Ning, C.; Zinchenko, A.; Baigl, D.; Pyshkina, O.; Sergeyev, V.; Endo, Kazunaka; Yoshikawa, K.

    2005-01-01

    The critical role of polymers in process of noble metals nanostructures formation is well known, however, the use of DNA chain template in this process is yet largely unknown. In this study we demonstrate different ways of silver deposition on DNA template and report the influence of silver nanostructures formation on DNA conformational state. Metallization of DNA chain proceeds by two different scenarios depending on DNA conformation. If DNA chain is unfolded (elongated) chain, silver reduct...

  17. DNA damage and polyploidization.

    Science.gov (United States)

    Chow, Jeremy; Poon, Randy Y C

    2010-01-01

    A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.

  18. Quantitive DNA Fiber Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  19. Fluorescence correlation spectroscopy analysis for accurate determination of proportion of doubly labeled DNA in fluorescent DNA pool for quantitative biochemical assays.

    Science.gov (United States)

    Hou, Sen; Sun, Lili; Wieczorek, Stefan A; Kalwarczyk, Tomasz; Kaminski, Tomasz S; Holyst, Robert

    2014-01-15

    Fluorescent double-stranded DNA (dsDNA) molecules labeled at both ends are commonly produced by annealing of complementary single-stranded DNA (ssDNA) molecules, labeled with fluorescent dyes at the same (3' or 5') end. Because the labeling efficiency of ssDNA is smaller than 100%, the resulting dsDNA have two, one or are without a dye. Existing methods are insufficient to measure the percentage of the doubly-labeled dsDNA component in the fluorescent DNA sample and it is even difficult to distinguish the doubly-labeled DNA component from the singly-labeled component. Accurate measurement of the percentage of such doubly labeled dsDNA component is a critical prerequisite for quantitative biochemical measurements, which has puzzled scientists for decades. We established a fluorescence correlation spectroscopy (FCS) system to measure the percentage of doubly labeled dsDNA (PDL) in the total fluorescent dsDNA pool. The method is based on comparative analysis of the given sample and a reference dsDNA sample prepared by adding certain amount of unlabeled ssDNA into the original ssDNA solution. From FCS autocorrelation functions, we obtain the number of fluorescent dsDNA molecules in the focal volume of the confocal microscope and PDL. We also calculate the labeling efficiency of ssDNA. The method requires minimal amount of material. The samples have the concentration of DNA in the nano-molar/L range and the volume of tens of microliters. We verify our method by using restriction enzyme Hind III to cleave the fluorescent dsDNA. The kinetics of the reaction depends strongly on PDL, a critical parameter for quantitative biochemical measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Regulating DNA Self-assembly by DNA-Surface Interactions.

    Science.gov (United States)

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cosmological Parameters 2000

    OpenAIRE

    Primack, Joel R.

    2000-01-01

    The cosmological parameters that I emphasize are the age of the universe $t_0$, the Hubble parameter $H_0 \\equiv 100 h$ km s$^{-1}$ Mpc$^{-1}$, the average matter density $\\Omega_m$, the baryonic matter density $\\Omega_b$, the neutrino density $\\Omega_\

  2. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    Science.gov (United States)

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  3. Fiscal 2000 pioneering research report on the basic technology for novel DNA drug creation using anti-gene engineering; 2000 nendo anti gene kogaku ni yoru shinki DNA drug soshutsu kiban gijutsu chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research is conducted concerning the possibility of anti-gene engineering basic to the application of DNA (deoxyribonucleic acid) drugs capable of serving as functional DNAs to the control of the expression of industrially useful substance producing genes or of anomalous genes and concerning the possibility of novel industry creation on the strength of the said engineering. The specific research items are described below. Technical seeds are investigated relating to the tissue- and cell-specific drug delivery system for the expression of the molecular device function of the DNA drug. Concerning molecular target technologies such as the anti-sense method, possibilities are studied of utilizing the currently available technical seeds for the eventual creation of novel industries. Concerning novel designing methods utilizing genome information such as SNPs (single nucleotide polymorphisms), investigations are conducted to determine if they would help novel technology development and novel material development. The domestic state is surveyed in relation to DNA drugs, and possibilities are investigated of novel substance production and novel medicine creation with the aid of anti-gene engineering. (NEDO)

  4. "Artifactual" arsenate DNA

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2012-01-01

    The recent claim by Wolfe-Simon et al. that the Halomonas bacterial strain GFAJ-1 when grown in arsenate-containing medium with limiting phosphate is able to substitute phosphate with arsenate in biomolecules including nucleic acids and in particular DNA(1) arose much skepticism, primarily due...... to the very limited chemical stability of arsenate esters (see ref. 2 and references therein). A major part of the criticisms was concerned with the insufficient (bio)chemical evidence in the Wolfe-Simon study for the actual chemical incorporation of arsenate in DNA (and/or RNA). Redfield et al. now present...... evidence that the identification of arsenate DNA was artifactual....

  5. Molecular Dynamics Simulation of High Density DNA Arrays

    Directory of Open Access Journals (Sweden)

    Rudolf Podgornik

    2018-01-01

    Full Text Available Densely packed DNA arrays exhibit hexagonal and orthorhombic local packings, as well as a weakly first order transition between them. While we have some understanding of the interactions between DNA molecules in aqueous ionic solutions, the structural details of its ordered phases and the mechanism governing the respective phase transitions between them remains less well understood. Since at high DNA densities, i.e., small interaxial spacings, one can neither neglect the atomic details of the interacting macromolecular surfaces nor the atomic details of the intervening ionic solution, the atomistic resolution is a sine qua non to properly describe and analyze the interactions between DNA molecules. In fact, in order to properly understand the details of the observed osmotic equation of state, one needs to implement multiple levels of organization, spanning the range from the molecular order of DNA itself, the possible ordering of counterions, and then all the way to the induced molecular ordering of the aqueous solvent, all coupled together by electrostatic, steric, thermal and direct hydrogen-bonding interactions. Multiscale simulations therefore appear as singularly suited to connect the microscopic details of this system with its macroscopic thermodynamic behavior. We review the details of the simulation of dense atomistically resolved DNA arrays with different packing symmetries and the ensuing osmotic equation of state obtained by enclosing a DNA array in a monovalent salt and multivalent (spermidine counterions within a solvent permeable membrane, mimicking the behavior of DNA arrays subjected to external osmotic stress. By varying the DNA density, the local packing symmetry, and the counterion type, we are able to analyze the osmotic equation of state together with the full structural characterization of the DNA subphase, the counterion distribution and the solvent structural order in terms of its different order parameters and

  6. The effect of volume exclusion on the formation of DNA minicircle networks: implications to kinetoplast DNA

    International Nuclear Information System (INIS)

    Diao, Y; Hinson, K; Sun, Y; Arsuaga, J

    2015-01-01

    Kinetoplast DNA (kDNA) is the mitochondrial of DNA of disease causing organisms such as Trypanosoma Brucei (T. Brucei) and Trypanosoma Cruzi (T. Cruzi). In most organisms, KDNA is made of thousands of small circular DNA molecules that are highly condensed and topologically linked forming a gigantic planar network. In our previous work we have developed mathematical and computational models to test the confinement hypothesis, that is that the formation of kDNA minicircle networks is a product of the high DNA condensation achieved in the mitochondrion of these organisms. In these studies we studied three parameters that characterize the growth of the network topology upon confinement: the critical percolation density, the mean saturation density and the mean valence (i.e. the number of mini circles topologically linked to any chosen minicircle). Experimental results on insect-infecting organisms showed that the mean valence is equal to three, forming a structure similar to those found in medieval chain-mails. These same studies hypothesized that this value of the mean valence was driven by the DNA excluded volume. Here we extend our previous work on kDNA by characterizing the effects of DNA excluded volume on the three descriptive parameters. Using computer simulations of polymer swelling we found that (1) in agreement with previous studies the linking probability of two minicircles does not decrease linearly with the distance between the two minicircles, (2) the mean valence grows linearly with the density of minicircles and decreases with the thickness of the excluded volume, (3) the critical percolation and mean saturation densities grow linearly with the thickness of the excluded volume. Our results therefore suggest that the swelling of the DNA molecule, due to electrostatic interactions, has relatively mild implications on the overall topology of the network. Our results also validate our topological descriptors since they appear to reflect the changes in the

  7. The effect of volume exclusion on the formation of DNA minicircle networks: implications to kinetoplast DNA

    Science.gov (United States)

    Diao, Y.; Hinson, K.; Sun, Y.; Arsuaga, J.

    2015-10-01

    Kinetoplast DNA (kDNA) is the mitochondrial of DNA of disease causing organisms such as Trypanosoma Brucei (T. Brucei) and Trypanosoma Cruzi (T. Cruzi). In most organisms, KDNA is made of thousands of small circular DNA molecules that are highly condensed and topologically linked forming a gigantic planar network. In our previous work we have developed mathematical and computational models to test the confinement hypothesis, that is that the formation of kDNA minicircle networks is a product of the high DNA condensation achieved in the mitochondrion of these organisms. In these studies we studied three parameters that characterize the growth of the network topology upon confinement: the critical percolation density, the mean saturation density and the mean valence (i.e. the number of mini circles topologically linked to any chosen minicircle). Experimental results on insect-infecting organisms showed that the mean valence is equal to three, forming a structure similar to those found in medieval chain-mails. These same studies hypothesized that this value of the mean valence was driven by the DNA excluded volume. Here we extend our previous work on kDNA by characterizing the effects of DNA excluded volume on the three descriptive parameters. Using computer simulations of polymer swelling we found that (1) in agreement with previous studies the linking probability of two minicircles does not decrease linearly with the distance between the two minicircles, (2) the mean valence grows linearly with the density of minicircles and decreases with the thickness of the excluded volume, (3) the critical percolation and mean saturation densities grow linearly with the thickness of the excluded volume. Our results therefore suggest that the swelling of the DNA molecule, due to electrostatic interactions, has relatively mild implications on the overall topology of the network. Our results also validate our topological descriptors since they appear to reflect the changes in the

  8. RBE comparison between rapid electrons of 20 MeV and 45 MeV with survival rate, DNA synthesis, DNA reparation and nucleoid sedimentation

    International Nuclear Information System (INIS)

    Alth, G.; Weniger, P.; Turtzer, K.; Klein, W.; Kocsis, F.; Krankenhaus der Stadt Wien-Lainz; Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Biologie)

    1982-01-01

    In order to find out possible differences of the biologic efficacy of rapid electrons of different energies, the authors examined the influence of rapid electrons of 20 MeV and 45 MeV upon the survival rate of Hela cells S3, their cell growth, DNA synthesis, DNA reparation, and sedimentation of nucleoids. The results show a difference only for the nucleoid sedimentation, i.e. there are more fractured DNA cords after 45 MeV irradiation. No significant differences could be demonstrated for the parameters of the survival curve, DNA synthesis and DNA reparation. Four double tests were carried out corresponding to the indicated types of examination. (orig.) [de

  9. DNA from keratinous tissue

    DEFF Research Database (Denmark)

    Bengtsson, Camilla F.; Olsen, Maja E.; Brandt, Luise Ørsted

    2011-01-01

    Keratinous tissues such as nail, hair, horn, scales and feather have been used as a source of DNA for over 20 years. Particular benefits of such tissues include the ease with which they can be sampled, the relative stability of DNA in such tissues once sampled, and, in the context of ancient...... genetic analyses, the fact that sampling generally causes minimal visual damage to valuable specimens. Even when freshly sampled, however, the DNA quantity and quality in the fully keratinized parts of such tissues is extremely poor in comparison to other tissues such as blood and muscle – although little...... systematic research has been undertaken to characterize how such degradation may relate to sample source. In this review paper we present the current understanding of the quality and limitations of DNA in two key keratinous tissues, nail and hair. The findings indicate that although some fragments of nuclear...

  10. DNA fusion gene vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Bassi, Maria Rosaria; Thomsen, Allan Randrup

    2010-01-01

    DNA vaccines are versatile and safe, but limited immunogenicity has prevented their use in the clinical setting. Experimentally, immunogenicity may be enhanced by the use of new delivery technologies, by coadministration of cytokines and pathogen-associated molecular patterns, or by fusion...... of antigens into molecular domains that enhance antigen presentation. More specifically, the immunogenicity of DNA vaccines may benefit from increased protein synthesis, increased T-cell help and MHC class I presentation, and the addition of a range of specific cytokines and pathogen-associated molecular...... with viral-vectored vaccines, various synergistic components may need to be incorporated into DNA vaccines. From the perspective of the future clinical use of DNA vaccines, it has been suggested that antigen presentation should be improved and cytokine coadministration attempted. However, even...

  11. DNA Sampling Hook

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The DNA Sampling Hook is a significant improvement on a method of obtaining a tissue sample from a live fish in situ from an aquatic environment. A tissue sample...

  12. Retroviral DNA Integration

    Science.gov (United States)

    2016-01-01

    The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3′-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications. PMID:27198982

  13. DNA damage and carcinogenesis

    International Nuclear Information System (INIS)

    Stelow, R.B.

    1980-01-01

    Although cancer may arise as a result of many different types of molecular changes, there is little reason to doubt that changes to DNA are one of the more important ones in cancer initiation. Although DNA repair mechanisms seem able to eliminate a very large fraction of deleterious changes to DNA, we not only have little insight into the molecular mechanisms involved in such repair, but have a negligible amount of information to permit us to estimate the shape of dose response relations at low doses. The case of skin cancer is a special one, in that the average population is exposed to sufficient solar uv so that the effects of small increments in uv dose may be estimated. An approximate 85% reduction in DNA repair increases skin cancer incidence 10 4 fold

  14. DNA-Origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Gothelf, Kurt Vesterager

    2010-01-01

    DNA-nanostrukturer giver nye muligheder for studier af individuelle molekyler. Ved at udnytte DNAs unikke selvsamlende egenskaber kan man designe systemer, hvorpå der kan studeres kemiske reaktioner, fluoroforer og biiomolekyler på enkeltmolekyle-niveau....

  15. DNA Microarray Technology

    Science.gov (United States)

    Skip to main content DNA Microarray Technology Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features Funding Divisions Funding ...

  16. DNA sequencing conference, 2

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, R.M. [Georgetown Univ., Kennedy Inst. of Ethics, Washington, DC (United States); Venter, J.C. [National Inst. of Neurological Disorders and Strokes, Bethesda, MD (United States); Gilbert, W. [Harvard Univ., Cambridge, MA (United States); Mulligan, J. [Stanford Univ., CA (United States); Mansfield, B.K. [Oak Ridge National Lab., TN (United States)

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  17. Close encounters with DNA

    Science.gov (United States)

    Maffeo, C.; Yoo, J.; Comer, J.; Wells, D. B.; Luan, B.; Aksimentiev, A.

    2014-01-01

    Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena and we review the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field. PMID:25238560

  18. Gomphid DNA sequence data

    Data.gov (United States)

    U.S. Environmental Protection Agency — DNA sequence data for several genetic loci. This dataset is not publicly accessible because: It's already publicly available on GenBank. It can be accessed through...

  19. HPV DNA test

    Science.gov (United States)

    ... test; Cancer of cervix - HPV DNA test References Hacker NF. Cervical dysplasia and cancer. In: Hacker NF, Gambone JC, Hobel CJ, eds. Hacker and Moore's Essentials of Obstetrics and Gynecology . 6th ...

  20. Close encounters with DNA.

    Science.gov (United States)

    Maffeo, C; Yoo, J; Comer, J; Wells, D B; Luan, B; Aksimentiev, A

    2014-10-15

    Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena. We also discuss the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field.

  1. FBI's DNA analysis program

    Science.gov (United States)

    Brown, John R.

    1994-03-01

    Forensic DNA profiling technology is a significant law enforcement tool due to its superior discriminating power. Applying the principles of population genetics to the DNA profile obtained in violent crime investigations results in low frequency of occurrence estimates for the DNA profile. These estimates often range from a frequency of occurrence of 1 in 50 unrelated individuals to 1 in a million unrelated individuals or even smaller. It is this power to discriminate among individuals in the population that has propelled forensic DNA technology to the forefront of forensic testing in violent crime cases. Not only is the technology extremely powerful in including or excluding a criminal suspect as the perpetrator, but it also gives rise to the potential of identifying criminal suspects in cases where the investigators of unknown suspect cases have exhausted all other available leads.

  2. Making DNA Fingerprints.

    Science.gov (United States)

    Nunley, Kathie F.

    1996-01-01

    Presents an activity to simulate electrophoresis using everyday items. Uses adding machine paper to construct a set of DNA fingerprints that can be used to solve crime cases designed by students in any biology class. (JRH)

  3. Radiation damage in DNA

    International Nuclear Information System (INIS)

    Lafleur, V.

    1978-01-01

    A number of experiments are described with the purpose to obtain a better insight in the chemical nature and the biological significance of radiation-induced damage in DNA, with some emphasis on the significance of alkali-labile sites. It is shown that not only reactions of OH radicals but also of H radicals introduce breaks and other inactivating damage in single-standed phiX174 DNA. It is found that phosphate buffer is very suitable for the study of the reactions of H radicals with DNA, as the H 2 PO 4 - ions convert the hydrated electrons into H radicals. The hydrated electron, which does react with DNA, does not cause a detectable inactivation. (Auth.)

  4. DNA to DNA transcription might exist in eukaryotic cells

    OpenAIRE

    Li, Gao-De

    2016-01-01

    Till now, in biological sciences, the term, transcription, mainly refers to DNA to RNA transcription. But our recently published experimental findings obtained from Plasmodium falciparum strongly suggest the existence of DNA to DNA transcription in the genome of eukaryotic cells, which could shed some light on the functions of certain noncoding DNA in the human and other eukaryotic genomes.

  5. Magnetic S-parameter

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We propose a direct test of the existence of gauge duals for nonsupersymmetric asymptotically free gauge theories developing an infrared fixed point by computing the S-parameter in the electric and dual magnetic description. In particular we show that at the lower bound of the conformal window...... the magnetic S-parameter, i.e. the one determined via the dual magnetic gauge theory, assumes a simple expression in terms of the elementary magnetic degrees of freedom. The results further support our recent conjecture of the existence of a universal lower bound on the S parameter and indicates...

  6. Patterning nanocrystals using DNA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Shara Carol [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices

  7. Detecting deletions, insertions, and single nucleotide substitutions in cloned β-globin genes and new polymorphic nucleotide substitutions in β-globin genes in a Japanese population using ribonuclease cleavage at mismatches in RNA: DNA duplexes

    International Nuclear Information System (INIS)

    Hiyama, Keiko; Kodaira, Mieko; Satoh, Chiyoko.

    1990-08-01

    The applicability of ribonuclease (RNase) cleavage at mismatches in RNA:DNA duplexes (the RNase cleavage method) for determining nucleotide variant rates was examined in a Japanese population. DNA segments of various lengths obtained from four different regions of one normal and three thalassemic cloned human β-globin genes were inserted into transcription vectors. Sense and antisense RNA probes uniformly labeled with 32 P were prepared. When RNA probes of 771 nucleotides (nt) or less were hybridized with cloned DNAs and the resulting duplexes were treated with a mixture of RNases A and T1, the length of products agreed with theoretical values. Twelve possible mismatches were examined. Since both sense and antisense probes were used, uncleavable mismatches such as G:T and G:G which were made from one combination of RNA and DNA strands could be converted to the cleavable C:A and C:C mismatches, respectively, by using the opposite combination. Deletions and insertions of one (G), four(TTCT), five (ATTTT), and 10 (ATTTTATTTT) nt were easily detected. A polymorphic substitution of T to C at position 666 of the second intervening sequence (IVS2-666) of the β-globin gene was detected using genomic DNAs from cell lines established from the peripheral B lymphocytes of 59 unrelated Japanese from Hiroshima or those amplified by polymerase chain reaction (PCR). The frequency of the gene with C at the IVS2-666 (allele C) was 0.48 and that of the gene with T (allene T) was 0.52. Two new polymorphic substitutions of C to A and A to T were detected at nucleotide positions 1789 and 1945 from the capping site, respectively, using genomic DNAs amplified by PCR. We conclude that it would be feasible to use the RNase cleavage method combined with PCR for large-scale screening of variation in chromosomal DNA. (J.P.N.)

  8. Das DNA-Puzzle

    Science.gov (United States)

    Kirchner, Stefan

    Im Jahre 1953 wurde von James Watson und Francis Crick erstmalig der strukturelle Aufbau der sogenannten DNA (Desoxyribonukleinsäure) beschrieben, welche das Erbgut jedes Lebewesens enthält. Der wesentliche Teil des Erbguts wird dabei durch eine sehr lange Folge der vier Basen Adenin (A), Cytosin (C), Guanin (G) und Thymin (T) codiert. Seit einigen Jahren ist es möglich, die Folge der vier Basen zu einer gegebenen DNA zu bestimmen. Biologen bezeichnen diesen Vorgang als Sequenzierung.

  9. PDA: Pooled DNA analyzer

    Directory of Open Access Journals (Sweden)

    Lin Chin-Yu

    2006-04-01

    Full Text Available Abstract Background Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer, to analyze pooled DNA data. Results We develop the software, PDA, for the analysis of pooled-DNA data. PDA is originally implemented with the MATLAB® language, but it can also be executed on a Windows system without installing the MATLAB®. PDA provides estimates of the coefficient of preferential amplification and allele frequency. PDA considers an extended single-point association test, which can compare allele frequencies between two DNA pools constructed under different experimental conditions. Moreover, PDA also provides novel chromosome-wide multipoint association tests based on p-value combinations and a sliding-window concept. This new multipoint testing procedure overcomes a computational bottleneck of conventional haplotype-oriented multipoint methods in DNA pooling analyses and can handle data sets having a large pool size and/or large numbers of polymorphic markers. All of the PDA functions are illustrated in the four bona fide examples. Conclusion PDA is simple to operate and does not require that users have a strong statistical background. The software is available at http://www.ibms.sinica.edu.tw/%7Ecsjfann/first%20flow/pda.htm.

  10. Racemic DNA Crystallography

    OpenAIRE

    Mandal , Pradeep K.; Collie , Gavin W.; Kauffmann , Brice; Huc , Ivan

    2014-01-01

    International audience; Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of Land D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propens...

  11. Celebrating DNA's Repair Crew.

    Science.gov (United States)

    Kunkel, Thomas A

    2015-12-03

    This year, the Nobel Prize in Chemistry has been awarded to Tomas Lindahl, Aziz Sancar, and Paul Modrich for their seminal studies of the mechanisms by which cells from bacteria to man repair DNA damage that is generated by normal cellular metabolism and stress from the environment. These studies beautifully illustrate the remarkable power of DNA repair to influence life from evolution through disease susceptibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Bifurcations and chaos of DNA solitonic dynamics

    International Nuclear Information System (INIS)

    Gonzalez, J.A.; Martin-Landrove, M.; Carbo, J.R.; Chacon, M.

    1994-09-01

    We investigated the nonlinear DNA torsional equations proposed by Yakushevich in the presence of damping and external torques. Analytical expressions for some solutions are obtained in the case of the isolated chain. Special attention is paid to the stability of the solutions and the range of soliton interaction in the general case. The bifurcation analysis is performed and prediction of chaos is obtained for some set of parameters. Some biological implications are suggested. (author). 11 refs, 13 figs

  13. Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Yu-Li Lo

    Full Text Available Multidrug resistance (MDR is a major impediment to chemotherapy. In the present study, we designed antisense oligonucleotides (ASOs against MDR1, MDR-associated protein (MRP1, MRP2, and/or BCL-2/BCL-xL to reverse MDR transporters and induce apoptosis, respectively. The cationic liposomes (100 nm composed of N-[1-(2,3-dioleyloxypropyl]-n,n,n-trimethylammonium chloride and dioleoyl phosphotidylethanolamine core surrounded by a polyethylene glycol (PEG shell were prepared to carry ASOs and/or epirubicin, an antineoplastic agent. We aimed to simultaneously suppress efflux pumps, provoke apoptosis, and enhance the chemosensitivity of human colon adenocarcinoma Caco-2 cells to epirubicin. We evaluated encapsulation efficiency, particle size, cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of these formulations. We found that PEGylated liposomal ASOs significantly reduced Caco-2 cell viability and thus intensified epirubicin-mediated apoptosis. These formulations also decreased the MDR1 promoter activity levels and enhanced the intracellular retention of epirubicin in Caco-2 cells. Epirubicin and ASOs in PEGylated liposomes remarkably decreased mRNA expression levels of human MDR1, MRP1, MRP2, and BCL-2. The combined treatments all significantly increased the mRNA expressions of p53 and BAX, and activity levels of caspase-3, -8, and -9. The formulation of epirubicin and ASOs targeting both pump resistance of MDR1, MRP1, and MRP2 and nonpump resistance of BCL-2/BCL-xL demonstrated more superior effect to all the other formulations used in this study. Our results provide a novel insight into the mechanisms by which PEGylated liposomal ASOs against both resistance types act as activators to epirubicin-induced apoptosis through suppressing MDR1, MRP1, and MRP2, as well as triggering intrinsic mitochondrial and extrinsic death receptor pathways. The complicated regulation of MDR highlights the necessity

  14. Antisense-mediated isoform switching of steroid receptor coactivator-1 in the central nucleus of the amygdala of the mouse brain

    Directory of Open Access Journals (Sweden)

    Zalachoras Ioannis

    2013-01-01

    Full Text Available Abstract Background Antisense oligonucleotide (AON-mediated exon skipping is a powerful tool to manipulate gene expression. In the present study we investigated the potential of exon skipping by local injection in the central nucleus of the amygdala (CeA of the mouse brain. As proof of principle we targeted the splicing of steroid receptor coactivator-1 (SRC-1, a protein involved in nuclear receptor function. This nuclear receptor coregulator exists in two splice variants (SRC-1a and SRC-1e which display differential distribution and opposing activities in the brain, and whose mRNAs differ in a single SRC-1e specific exon. Methods For proof of principle of feasibility, we used immunofluorescent stainings to study uptake by different cell types, translocation to the nucleus and potential immunostimulatory effects at different time points after a local injection in the CeA of the mouse brain of a control AON targeting human dystrophin with no targets in the murine brain. To evaluate efficacy we designed an AON targeting the SRC-1e-specific exon and with qPCR analysis we measured the expression ratio of the two splice variants. Results We found that AONs were taken up by corticotropin releasing hormone expressing neurons and other cells in the CeA, and translocated into the cell nucleus. Immune responses after AON injection were comparable to those after sterile saline injection. A successful shift of the naturally occurring SRC-1a:SRC-1e expression ratio in favor of SRC-1a was observed, without changes in total SRC-1 expression. Conclusions We provide a proof of concept for local neuropharmacological use of exon skipping by manipulating the expression ratio of the two splice variants of SRC-1, which may be used to study nuclear receptor function in specific brain circuits. We established that exon skipping after local injection in the brain is a versatile and useful tool for the manipulation of splice variants for numerous genes that are relevant

  15. Beneficial metabolic effects of CB1R anti-sense oligonucleotide treatment in diet-induced obese AKR/J mice.

    Directory of Open Access Journals (Sweden)

    Yuting Tang

    Full Text Available An increasing amount of evidence supports pleiotropic metabolic roles of the cannibinoid-1 receptor (CB1R in peripheral tissues such as adipose, liver, skeletal muscle and pancreas. To further understand the metabolic consequences of specific blockade of CB1R function in peripheral tissues, we performed a 10-week-study with an anti-sense oligonucleotide directed against the CB1R in diet-induced obese (DIO AKR/J mice. DIO AKR/J mice were treated with CB1R ASO Isis-414930 (6.25, 12.5 and 25 mg/kg/week or control ASO Isis-141923 (25 mg/kg/week via intraperitoneal injection for 10 weeks. At the end of the treatment, CB1R mRNA from the 25 mg/kg/week CB1R ASO group in the epididymal fat and kidney was decreased by 81% and 63%, respectively. Body weight gain was decreased in a dose-dependent fashion, significantly different in the 25 mg/kg/week CB1R ASO group (46.1±1.0 g vs veh, 51.2±0.9 g, p<0.05. Body fat mass was reduced in parallel with attenuated body weight gain. CB1R ASO treatment led to decreased fed glucose level (at week 8, 25 mg/kg/week group, 145±4 mg/dL vs veh, 195±10 mg/dL, p<0.05. Moreover, CB1R ASO treatment dose-dependently improved glucose excursion during an oral glucose tolerance test, whereas control ASO exerted no effect. Liver steatosis was also decreased upon CB1R ASO treatment. At the end of the study, plasma insulin and leptin levels were significantly reduced by 25 mg/kg/week CB1R ASO treatment. SREBP1 mRNA expression was decreased in both epididymal fat and liver. G6PC and fatty acid translocase/CD36 mRNA levels were also reduced in the liver. In summary, CB1R ASO treatment in DIO AKR/J mice led to improved insulin sensitivity and glucose homeostasis. The beneficial effects of CB1R ASO treatment strongly support the notion that selective inhibition of the peripheral CB1R, without blockade of central CB1R, may serve as an effective approach for treating type II diabetes, obesity and the metabolic syndrome.

  16. Introduction to DNA methods

    International Nuclear Information System (INIS)

    Delincee, H.

    1991-01-01

    The purpose of this session is to discuss the various possibilities for detecting modifications in DNA after irradiation and whether these changes can be utilized as an indicator for the irradiation treatment of foods. The requirement to be fulfilled is that the method be able to distinguish irradiated food without the presence of a control sample, thus the measured response after irradiation must be large enough to supersede background levels from other treatments. Much work has been performed on the effects of radiation on DNA, particularly due to its importance in radiation biology. The main lesions of DNA as a result of irradiation are base damage, damage of the sugar moiety, single strand and double strand breaks. Crosslinking between bases also occurs, e.g. production of thymine dimers, or between DNA and protein. A valuable review on how to utilize these DNA changes for detection purposes has already appeared. Tables 1, 2 and 3 list the proposed methods of detecting changes in irradiated DNA, some identified products as examples for a possible irradiation indicator, in the case of immunoassay the substance used as antigen, and some selected literature references. In this short review, it is not intended to provide a complete literature survey

  17. Variations in brain DNA

    Directory of Open Access Journals (Sweden)

    Jesus eAvila

    2014-11-01

    Full Text Available It is assumed that DNA sequences are conserved in the diverse cell types present in a multicellular organism like the human being. Thus, in order to compare the sequences in the genome of DNA from different individuals, nucleic acid is commonly isolated from a single tissue. In this regard, blood cells are widely used for this purpose because of their availability. Thus blood DNA has been used to study genetic familiar diseases that affect other tissues and organs, such as the liver, heart, and brain. While this approach is valid for the identification of familial diseases in which mutations are present in parental germinal cells and, therefore, in all the cells of a given organism, it is not suitable to identify sporadic diseases in which mutations might occur in specific somatic cells. This review addresses somatic DNA variations in different tissues or cells (mainly in the brain of single individuals and discusses whether the dogma of DNA invariance between cell types is indeed correct. We will also discuss how single nucleotide somatic variations arise, focusing on the presence of specific DNA mutations in the brain.

  18. SATELLITE CONSTELLATION DESIGN PARAMETER

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. SATELLITE CONSTELLATION DESIGN PARAMETER. 1. ORBIT CHARACTERISTICS. ORBITAL HEIGHT >= 20,000 KM. LONGER VISIBILITY; ORBITAL PERIOD. PERTURBATIONS(MINIMUM). SOLAR RADIATION PRESSURE (IMPACTS ECCENTRICITY); LUNI ...

  19. Genetic screening of spinal muscular atrophy using a real-time modified COP-PCR technique with dried blood-spot DNA.

    Science.