WorldWideScience

Sample records for antiproton reactions

  1. Chemical reaction of protons with antiprotonic helium

    Science.gov (United States)

    Sakimoto, Kazuhiro

    2012-07-01

    Collisions of protons p with antiprotonic helium atoms p¯He+ (bound orbital states of an antiproton p¯ and a helium ion He+) are investigated from the viewpoint of chemical reaction. The p¯He+ atoms with high orbital angular momentum quantum numbers L>40 can be abundantly produced in the capture of p¯ by metastable helium atoms He(21,3S). Since such orbital states are considered to be practically stable despite having Auger decay channels (p¯He+→p¯He2++e), atomic and molecular collision processes involving p¯He+(L>40) are experimentally measurable. In this study, adiabatic electron energies in the Born-Oppenheimer approximation are calculated for the p+p¯He+ system. The p+p¯He+ dynamical calculations of p¯ exchange (→p¯p+He+) and dissociation (→p+p¯+He+) reactions on the ground-state adiabatic potential energy surface are carried out for various high orbital states of p¯He by using a classical trajectory Monte Carlo method. The reaction cross sections and the state distributions of antiprotonic hydrogen atoms (protonium) p¯p produced in the exchange reaction are presented. If the orbital shape of p¯He+ is near circular, the exchange reaction becomes inactive at low energies because the repulsive part of the interaction plays a critical role. In the p+p¯p system, however, the low-energy p¯ exchange reaction remains active for any type of the initial p¯p orbital motion.

  2. Relativistic hydrodynamics, heavy ion reactions and antiproton annihilation

    International Nuclear Information System (INIS)

    Strottman, D.

    1985-01-01

    The application of relativistic hydrodynamics to relativistic heavy ions and antiproton annihilation is summarized. Conditions for validity of hydrodynamics are presented. Theoretical results for inclusive particle spectra, pion production and flow analysis are given for medium energy heavy ions. The two-fluid model is introduced and results presented for reactions from 800 MeV per nucleon to 15 GeV on 15 GeV per nucleon. Temperatures and densities attained in antiproton annihilation are given. Finally, signals which might indicate the presence of a quark-gluon plasma are briefly surveyed

  3. Nuclear Excitations by Antiprotons and Antiprotonic Atoms

    CERN Multimedia

    2002-01-01

    The proposal aims at the investigation of nuclear excitations following the absorption and annihilation of stopped antiprotons in heavier nuclei and at the same time at the study of the properties of antiprotonic atoms. The experimental arrangement will consist of a scintillation counter telescope for the low momentum antiproton beam from LEAR, a beam degrader, a pion multiplicity counter, a monoisotopic target and Ge detectors for radiation and charged particles. The data are stored by an on-line computer.\\\\ \\\\ The Ge detectors register antiprotonic x-rays and nuclear @g-rays which are used to identify the residual nucleus and its excitation and spin state. Coincidences between the two detectors will indicate from which quantum state the antiprotons are absorbed and to which nuclear states the various reactions are leading. The measured pion multiplicity characterizes the annihilation process. Ge&hyphn. and Si-telescopes identify charged particles and determine their energies.\\\\ \\\\ The experiment will gi...

  4. Antiproton radiotherapy

    CERN Document Server

    Bassler, Niels; Beyer, Gerd; DeMarco, John J.; Doser, Michael; Hajdukovic, Dragan; Hartley, Oliver; Iwamoto, Keisuke S.; Jakel, Oliver; Knudsen, Helge V.; Kovacevic, Sandra; Møller, Søren Pape; Overgaard, Jens; Petersen, Jørgen B.à; Solberg, Timothy D.; Sørensen, Brita S.; Vranjes, Sanja; Wouters, Bradly G.; Holzscheiter, Michael H.

    2008-01-01

    Antiprotons are interesting as a possible future modality in radiation therapy for the following reasons: When fast antiprotons penetrate matter, protons and antiprotons have near identical stopping powers and exhibit equal radiobiology well before the Bragg-peak. But when the antiprotons come to rest at the Bragg-peak, they annihilate, releasing almost 2 GeV per antiproton–proton annihilation. Most of this energy is carried away by energetic pions, but the Bragg-peak of the antiprotons is still locally augmented with ∼20–30 MeV per antiproton. Apart from the gain in physical dose, an increased relative biological effect also has been observed, which can be explained by the fact that some of the secondary particles from the antiproton annihilation exhibit high-LET properties. Finally, the weakly interacting energetic pions, which are leaving the target volume, may provide a real time feedback on the exact location of the annihilation peak. We have performed dosimetry experiments and investigated the rad...

  5. Antiprotonic helium

    CERN Multimedia

    Eades, John

    2005-01-01

    An exotic atom in w hich an electron and an antiproton orbit a helium nucleus could reveal if there are any differences between matter and antimatter. The author describes this unusual mirror on the antiworld (5 pages)

  6. Antiproton Target

    CERN Multimedia

    1980-01-01

    Antiproton target used for the AA (antiproton accumulator). The first type of antiproton production target used from 1980 to 1982 comprised a rod of copper 3mm diameter and 120mm long embedded in a graphite cylinder that was itself pressed into a finned aluminium container. This assembly was air-cooled and it was used in conjunction with the Van der Meer magnetic horn. In 1983 Fermilab provided us with lithium lenses to replace the horn with a view to increasing the antiproton yield by about 30%. These lenses needed a much shorter target made of heavy metal - iridium was chosen for this purpose. The 50 mm iridium rod was housed in an extension to the original finned target container so that it could be brought very close to the entrance to the lithium lens. Picture 1 shows this target assembly and Picture 2 shows it mounted together with the lithium lens. These target containers had a short lifetime due to a combination of beam heating and radiation damage. This led to the design of the water-cooled target in...

  7. Antiproton Cancer Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels

    Antiprotons are interesting as a modality in radiation therapy for the following reasons: When fast antiprotons penetrate matter, they behave as protons. Well before the Bragg-peak, protons and antiprotons have near identical stopping powers exhibit equal radiobiology. But when the antiprotons co...

  8. Antiproton therapy

    CERN Document Server

    Knudsen, Helge V; Bassler, Niels; Alsner, Jan; Beyer, Gerd-Jürgen; DeMarco, John J; Doser, Michael; Hajdukovic, Dragan; Hartley, Oliver; Iwamoto, Keisuke S; Jäkel, Oliver; Kovacevic, Sandra; Møller, Søren Pape; Overgaard, Jens; Petersen, Jørgen B; Ratib, Osman; Solberg, Timothy D; Vranjes, Sanja; Wouters, Bradly G

    2008-01-01

    Radiotherapy is one of the most important means we have for the treatment of localised tumours. It is therefore essential to optimize the technique, and a lot of effort goes into this endeavour. Since the proposal by Wilson in 1946 [R.R. Wilson, Radiology use of fast protons, Radiology 47 (1946) 487.] that proton beams might be better than photon beams at inactivating cancer cells, hadron therapy has been developed in parallel with photon therapy and a substantial knowledge has been gained on the effects of pions, protons and heavy ions (mostly carbon ions). Here we discuss the recent measurements by the CERN ACE collaboration of the biological effects of antiprotons, and argue that these particles very likely are the optimal agents for radiotherapy.

  9. Antiproton-nucleus scattering

    International Nuclear Information System (INIS)

    Shastry, C.S.

    1988-01-01

    The operation of low energy antiproton ring at CERN has initiated antiproton-nucleus(antip - A) collision experiments. These give information on antiproton-nucleon(antiproton - N) interaction in the nuclei, structure of antiprotonic atoms, antiprotonic bound states in the nucleus, strange particle production etc. Considerable data on antiproton - A scattering cross sections at several incident energies for targets like 12 C, 16 O, 18 Ca etc. have become available. Both elastic and inelastic antiproton-A cross sections show diffractive oscillatory behaviour. As a result, it is possible to qualitatively understand antiproton-A cross sections by treating the target as a black sphere with diffused surface. Phenomenological optical potentials including those generated by the model independent Fourier-Bessel method show that the potential is highly absorptive; imaginary part dominates and has longer range than real part and the latter decreases with energy. Spin-orbit term is less important. Some of these can be understood in terms of meson exchange antiproton-N potentials. The large imaginary part is due to the availability of additional channels initiated by antiproton annihilation. Optical potentials show several ambiguities including the Igo ambiguity. More fundamental approaches to the potential based on antiproton-N t matrix and folding models have been attempted. A comparison of heavy ion scatering and antiproton-A scattering is made. It is shown that semi-classical WKB method is applicable for antiproton-A scattering. Some recent work on antiproton-p potentials, antiprotonic states and strange particle production is discussed. (author). 28 refs., 10 figs., 7 tables

  10. The antiproton decelerator: AD

    International Nuclear Information System (INIS)

    Baird, S.; Berlin, D.; Boillot, J.; Bosser, J.; Brouet, M.; Buttkus, J.; Caspers, F.; Chohan, V.; Dekkers, D.; Eriksson, T.; Garoby, R.; Giannini, R.; Grobner, O.; Gruber, J.; Hemery, J.Y.; Koziol, H.; Maccaferri, R.; Maury, S.; Metzger, C.; Metzmacher, K.; Moehl, D.; Mulder, H.; Paoluzzi, M.; Pedersen, F.; Riunaud, J.P.; Serre, C.; Simon, D.J.; Tranquille, G.; Tuyn, J.; Williams, B.

    1997-01-01

    In view of a possible future programme of physics with low-energy antiprotons, a simplified scheme for the provision of antiprotons at 100 MeV/c has been studied. It uses the present target area and the modified antiproton collector (AC) in its present location. In this report the modifications and the operation are discussed. (orig.)

  11. Antiprotons get biological

    CERN Multimedia

    2003-01-01

    After its final run in September, the first results of the Antiproton Cell Experiment (ACE) look very promising. It was the first experiment to take data on the biological effects of antiproton beams to evaluate the potential of antiprotons in radiation therapy.

  12. ASACUSA hits antiproton jackpot

    CERN Multimedia

    2001-01-01

    The Japanese-European ASACUSA collaboration, which takes its name from the oldest district of Tokyo, approaches the antimatter enigma in a different way from the other two AD experiments, by inserting antiprotons into ordinary atoms. Last month the collaboration succeeded in trapping about a million antiprotons. The ASACUSA antiproton trap (lower cylinder), surmounted by its liquid helium reservoir. Looking on are Ken Yoshiki-Franzen, Zhigang Wang, Takahito Tasaki, Suzanne Reed, John Eades, Masaki Hori, Yasunori Yamazaki, Naofumi Kuroda, Jun Sakaguchi, Berti Juhasz, Eberhard Widmann and Ryu Hayano. A key element of the ASACUSA apparatus is its decelerating Radiofrequency Quadrupole magnet, RFQD. After tests with protons in Aarhus, this was installed in ASACUSA's antiproton beam last October (Bulletin 41/2000, 9 October 2000). Constructed by Werner Pirkl's group in PS Division, the RFQD works by applying an electric field to the AD antiproton pulse the opposite direction to its motion. As the antiprotons slo...

  13. Antiproton Cancer Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels

    . The stopping power of high-energetic antiprotons in tissue, is similar to that of protons. Most energy is lost per unit distance as the particle comes to rest, but when the antiprotons stops, each one will annihilate on a nuclei, releasing 1.9 GeV of energy. Most of this energy is carried away by pions, gamma...... rays and neutrons, but a part of the annihilation energy is still deposited locally as recoiling nuclear fragments with limited range. These fragments will also increase the relative biological effect at the annihilation vertex. We have masured the biological effect of an antiproton beam for the first...... to handle antiprotons. This will enable us to do treatment planning with antiprotons, and thereby bring us closer to answer the question of the potential clinical benefit of antiprotons....

  14. The CERN antiproton collector

    International Nuclear Information System (INIS)

    Autin, B.

    1984-01-01

    The Antiproton Collector is a new ring of much larger acceptance than the present accumulator. It is designed to receive 10 8 antiprotons per PS cycle. In order to be compatible with the Antiproton Accumulator, the momentum spread and the emittances are reduced from 6% to 0.2% and from 200 π mm mrad to 25 π mm mrad respectively. In addition to the ring itself, the new target area and the modifications to the stochastic systems of the Antiproton Accumulator are described. (orig.)

  15. Lattices for antiproton rings

    International Nuclear Information System (INIS)

    Autin, B.

    1984-01-01

    After a description of the constraints imposed by the cooling of Antiprotons on the lattice of the rings, the reasons which motivate the shape and the structure of these machines are surveyed. Linear and non-linear beam optics properties are treated with a special amplification to the Antiproton Accumulator. (orig.)

  16. LEAR: antiproton extraction lines

    CERN Multimedia

    Photographic Service

    1992-01-01

    Antiprotons, decelerated in LEAR to a momentum of 100 MeV/c (kinetic energy of 5.3 MeV), were delivered to the experiments in an "Ultra-Slow Extraction", dispensing some 1E9 antiprotons over times counted in hours. Beam-splitters and a multitude of beam-lines allowed several users to be supplied simultaneously.

  17. Antiproton charge radius

    Science.gov (United States)

    Crivelli, P.; Cooke, D.; Heiss, M. W.

    2016-09-01

    The upcoming operation of the extra low energy antiprotons ring at CERN, the upgrade of the antiproton decelerator (AD), and the installation in the AD hall of an intense slow positron beam with an expected flux of 1 08 e+ /s will open the possibility for new experiments with antihydrogen (H ¯). Here we propose a scheme to measure the Lamb shift of H ¯. For four months of data taking, we anticipate an uncertainty of 100 ppm. This will provide a test of C P T and the first determination of the antiproton charge radius at the level of 10%.

  18. Antiprotonic-hydrogen atoms

    International Nuclear Information System (INIS)

    Batty, C.J.

    1989-07-01

    Experimental studies of antiprotonic-hydrogen atoms have recently made great progress following the commissioning of the low energy antiproton facility (LEAR) at CERN in 1983. At the same time our understanding of the atomic cascade has increased considerably through measurements of the X-ray spectra. The life history of the p-bar-p atom is considered in some detail, from the initial capture of the antiproton when stopping in hydrogen, through the atomic cascade with the emission of X-rays, to the final antiproton annihilation and production of mesons. The experiments carried out at LEAR are described and the results compared with atomic cascade calculations and predictions of strong interaction effects. (author)

  19. New Experiments with Antiprotons

    Science.gov (United States)

    Kaplan, D. M.

    2011-12-01

    Fermilab operates the world's most intense antiproton source. Recently proposed experiments can use those antiprotons either parasitically during Teva-tron Collider running or after the Tevatron Collider finishes in about 2011. For example, the annihilation of 8 GeV antiprotons might make the world's most intense source of tagged D0 mesons, and thus the best near-term opportunity to study charm mixing and search for new physics via its CP-violation signature. Other possible precision measurements include properties of the X(3872) and the charmonium system. An experiment using a Penning trap and an atom interferometer could make the world's first measurement of the gravitational force on antimatter. These and other potential measurements using antiprotons could yield a broad physics program at Fermilab in the post-Tevatron era.

  20. Antiprotons in the ISR

    International Nuclear Information System (INIS)

    Bryant, P.J.

    1983-01-01

    A brief account is given of the events leading up to antiprotons in the Intersecting Storage Rings (ISR) followed by a synopsis of the characteristics and parameters of the physics runs made to date. Experience gained with critical operations, such as transfer line steering, injection optimization, stacking and phase displacement acceleration is reviewed bearing in mind the extremely low beam intensities. Special reference is made to the various machine improvements, namely the vertical transverse stochastic cooling for proton beams of up to 12 A, the transverse and longitudinal stochastic cooling for the antiprotons, the new antiproton beam position monitoring system in the transfer lines and ring and the use of two high-luminosity insertions. At the end of June 1982, a scheme for reaching higher luminosities by making multiple transfers from the Antiproton Accumulator (AA) and using longitudinal stochastic cooling in the ISR was demonstrated. The absence of any measurable loss rate during long periods of stable beam conditions has been used to set a new lower limit of 1000 h on the antiproton lifetime at rest. Finally, preparations are in progress to collide 3.5 to 6.5 GeV/c antiprotons with a hydrogen gas jet target

  1. Antiproton production for Tevatron

    International Nuclear Information System (INIS)

    Azhgirey, I.L.; Mokhov, N.V.; Striganov, S.I.

    1991-03-01

    Needs to improve the Fermilab Pbar Source for the Tevatron Upgrade and discrepancies in predictions of the antiproton yields have forced us to develop the production model based on the modern data and to incorporate this model to the current version of MARS10 code. The inclusive scheme of this code with the use of statistical weights allows the production of antiprotons to be enhanced within the phase space region of interest, which is extremely effective for optimization of Pbar Source parameters and for developing of such an idea as a beam sweeping system. Antiproton production model included in the modified version of our Monte Carlo program MARS10M for the inclusive simulation of hadronic cascades, as for other particles throughout the program, is based on a factorization approach for hadron-nucleus differential cross-section. To describe antiproton inclusive spectra in pp-collisions a phenomenological model has been used modified in the low-Pt region. The antiproton production in pion-nucleon interactions is described in the frame of our simple phenomenological model based on the modern data. In describing of the of antiproton production cross-sections ratio in hadron-nucleus and hadron-nucleon collisions the ideas of soft hadronization of color strings and all the present experimental data have been used. Some comparisons of our model with experimental data are presented in the wide intervals of initial momenta, antiproton kinematical variables and nuclei. In all the cases the agreement is pretty good what gives us an assurance in the consequent studies carried out for the Fermilab Pbar Source. The results of such study are presented in this paper

  2. The Antiproton-Nucleon Annihilation Process (Antiproton Collaboration Experiment)

    Science.gov (United States)

    Barkas, W. H.; Birge, R. W.; Chupp, W. W.; Ekspong, A. G.; Goldhaber, G.; Goldhaber, S.; Heckman, H. H.; Perkins, D. H.; Sandweiss, J.; Segre, E.; Smith, F. M.; Stork, D. H.; Rossum, L. Van; Amaldi, E.; Baroni, G.; Castagnoli, C.; Franzinetti, C.; Manfredini, A.

    1956-09-10

    In the exposure to a 700-MeV/c negative particle beam, 35 antiproton stars have been found. Of these antiprotons, 21 annihilate in flight and three give large-angle scatters ({Theta} > 15 , T{sub P-} > 50 Mev), while 14 annihilate at rest. From the interactions in flight we obtain the total cross section for antiproton interaction.

  3. FERMILAB: More antiprotons

    International Nuclear Information System (INIS)

    Visnjic, Vladimir

    1993-01-01

    The excellent performance of the Fermilab antiproton complex during the recent Collider run and its future potential are the cumulative result of many improvements over the past few years, ranging from major projects like upgrading the stack-tail stochastic cooling system in the Accumulator to minor improvements like automating tuning procedures. The antiprotons are created when the 120 GeV proton beam from the Main Ring hits the target. A good target should have high yield of antiprotons, should not melt, and should not crack due to shock waves. The old copper target has been replaced by a new one made of nickel. The yield into the Debuncher is 2 x 10 -5 antiprotons/proton. While this is only marginally better than for copper, the nickel target has high melting point energy (1070 J/g) and a low rate of increase in pressure with deposited energy, making it the target of choice for the proton intensities expected in the Main Injector era (June, page 10). Of the broad spectrum of all kinds of secondaries, only a tiny fraction are 8 GeV antiprotons. The 8 GeV negative charge secondaries are bent through 3° by a new pulsed magnet. Instead of a 200-turn magnet with coils separated by epoxy as in the past, the new magnet has one turn carrying 45.5 kA of current. This single turn pulsed magnet uses radiation hard ceramic and is much more robust

  4. Interaction of antiprotons with nuclei

    Czech Academy of Sciences Publication Activity Database

    Hrtánková, Jaroslava; Mareš, Jiří

    2016-01-01

    Roč. 945, JAN (2016), s. 197-215 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : antiproton-nucleus interaction * antiproton annihilation * antiproton nuclear bound states Subject RIV: BE - Theoretical Physics Impact factor: 1.916, year: 2016

  5. Biological Effectiveness of Antiproton Annihilation

    DEFF Research Database (Denmark)

    Maggiore, C.; Agazaryan, N.; Bassler, N.

    2004-01-01

    from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The background, description, and status...

  6. The CERN antiproton programme

    International Nuclear Information System (INIS)

    Herr, H.

    1979-01-01

    A diagram and basic parameters of the ICE (Initial Cooling Experiment) storage ring constructed in CERN are examined. The experimental results of stochastic and electron cooling and the results of measuring of the antiproton lifetime are discussed. The main parameters of the antiproton storage are listed. Comparison between stochastic and electron cooling has shown that the latter is characterized by shorter cooling time independent of the particle number in a beam. Advantage of stochastic cooling lies in its possible usage at higher energies [ru

  7. Biological effectiveness of antiproton annihilation

    CERN Document Server

    Holzscheiter, Michael H.; Bassler, Niels; Beyer, Gerd; De Marco, John J.; Doser, Michael; Ichioka, Toshiyasu; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Møller, Søren Pape; Petersen, Jorgen; Smathers, James B.; Skarsgard, Lloyd D.; Solberg, Timothy D.; Uggerhøj, Ulrik I.; Withers, H.Rodney; Vranjes, Sanja; Wong, Michelle; Wouters, Bradly G.

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in “biological dose” in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current status of the experiment are given.

  8. Biological effectiveness of antiproton annihilation

    DEFF Research Database (Denmark)

    Holzscheiter, M.H.; Agazaryan, N.; Bassler, Niels

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct...... measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current...

  9. Coincidence studies with antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: mmcgovern06@qub.ac.u [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)

    2010-02-01

    We present a short overview of a new method for calculating fully differential cross sections that is able to describe any aspect of coincidence measurements involving heavy projectiles. The method is based upon impact parameter close coupling with pseudostates. Examples from antiproton impact ionization are shown.

  10. Antiprotons are another matter

    International Nuclear Information System (INIS)

    Hynes, M.V.

    1987-01-01

    Theories of gravity abound, whereas experiments in gravity are few in number. An important experiment in gravity that has not been performed is the measurement of the gravitational acceleration of antimatter. Although there have been attempts to infer these properties from those of normal matter, none of these theoretical arguments are compelling. Modern theories of gravity that attempt to unify gravity with the other forces of nature predict that in principle antimatter can fall differently than normal matter in the Earth's field. Some of these supergravity theories predict that antimatter will fall faster, and that normal matter will fall with a small Baryon-number dependance in the earth's field. All of these predictions violate the Weak Equivalence Principle, a cornerstone of General Relativity, but are consistent with CPT conservation. In our approved experiment at LEAR (PS-200) we will test the Weak Equivalence Principle for antimatter by measuring the gravitational acceleration of the antiproton. Through a series of deceleration stages, antiprotons from LEAR will be lowered in energy to ∼4 Kelvin at which energy the gravitational effect will be measureable. The measurement will employ the time-of-flight technique wherein the antiprotons are released vertically in a drift tube. The spectrum of time-of-flight measurements can be used to extract the gravitational acceleration experienced by the particles. The system will be calibrated using H - ions which simulates the electromagnetic behavior of the antiproton, yet is a baryon to ∼0.1%. To extract the gravitational acceleration of the antiproton relative to the H - ion with a statistical precision of 1% will require the release of ∼10 6 to 10 7 particles

  11. Testing Quantum Chromodynamics with Antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.

    2004-10-21

    The antiproton storage ring HESR to be constructed at GSI will open up a new range of perturbative and nonperturbative tests of QCD in exclusive and inclusive reactions. I discuss 21 tests of QCD using antiproton beams which can illuminate novel features of QCD. The proposed experiments include the formation of exotic hadrons, measurements of timelike generalized parton distributions, the production of charm at threshold, transversity measurements in Drell-Yan reactions, and searches for single-spin asymmetries. The interactions of antiprotons in nuclear targets will allow tests of exotic nuclear phenomena such as color transparency, hidden color, reduced nuclear amplitudes, and the non-universality of nuclear antishadowing. The central tool used in these lectures are light-front Fock state wavefunctions which encode the bound-state properties of hadrons in terms of their quark and gluon degrees of freedom at the amplitude level. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions. QCD becomes scale free and conformally symmetric in the analytic limit of zero quark mass and zero {beta} function. This ''conformal correspondence principle'' determines the form of the expansion polynomials for distribution amplitudes and the behavior of non-perturbative wavefunctions which control hard exclusive processes at leading twist. The conformal template also can be used to derive commensurate scale relations which connect observables in QCD without scale or scheme ambiguity. The AdS/CFT correspondence of large N{sub C} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time has important implications for hadron phenomenology in the conformal limit, including the nonperturbative derivation of counting rules for exclusive processes and

  12. Experiments on Antiprotons: Cross Sections of Complex Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Agnew, Jr., Lewis E.; Chamberlain, Owen; Keller, Donald V.; Mermod, Ronald; Rogers, Ernest H.; Steiner, Herbert M.; Wiegand, Clyde

    1957-07-22

    Experiments are described that have been designed to measure separately annihilation and reaction cross sections for antiprotons of approximately 450 MeV on oxygen, copper, silver, and lead. A new and more luminous spectrograph has been built for this experiment. The antiproton cross sections a r e compared with total proton cross sections, and are found to be larger by a factor varying from 1.74 for oxygen to 1.39 for silver. Calculations based on the optical model give a reasonable connection between these cross sections and the 6-p and 6-n cross sections. Finally, the information available on antiproton production cross sections is collected. There are indications that a free nucleon is several times as effective as a bound one for producing antiprotons.

  13. Antiproton Radiation Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael H.; Petersen, Jørgen B.B.

    2007-01-01

    the radiobiological properties using antiprotons at 50 and 125 MeV from the Antiproton Decelerator (AD) at CERN. Dosimetry experiments were carried out with ionization chambers, alanine pellets and radiochromic film. Radiobiological experiments were done with Chinese V79 WNRE hamster cells. Monte Carlo particle...... transport codes were investigated and compared with results obtained from the ionization chambers and alanine pellets. A track structure model have been applied on the calculated particle spectrum, and been used to predict the LET-dependent response of the alanine pellets. The particle transport program...... FLUKA produced data which were in excellent agreement with our ionization chamber measurements, and in good agreement with our alanine measurements. FLUKA is now being used to generate a wide range of depth dose data at several energies, including secondary particle–energy spectra, which will be used...

  14. On the antiproton discovery

    International Nuclear Information System (INIS)

    Piccioni, O.

    1989-01-01

    The author of this article describes his own role in the discovery of the antiproton. Although Segre and Chamberlain received the Nobel Prize in 1959 for its discovery, the author claims that their experimental method was his idea which he communicated to them informally in December 1954. He describes how his application for citizenship (he was Italian), and other scientists' manipulation, prevented him from being at Berkeley to work on the experiment himself. (UK)

  15. Bubble chamber: antiproton annihilation

    CERN Multimedia

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  16. ALPHA freezes antiprotons

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Laboratories like CERN can routinely produce many different types of antiparticles. In 1995, the PS210 experiment formed the first antihydrogen atoms and a few years later, in 2002, ATRAP and ATHENA were already able to produce several thousand of them. However, no experiment in the world has succeeded in ‘trapping’ these anti-atoms in order to study them. This is the goal of the ALPHA experiment, which has recently managed to cool down the antiprotons to just a few Kelvin. This represents a major step towards trapping the anti-atom, thus opening a new avenue into the investigation of antimatter properties.   Members of the ALPHA collaboration working on the apparatus in the Antiproton Decelerator experimental hall at CERN. Just like the atom, the anti-atom is neutral. Unlike the atom, the anti-atom is made up of antiprotons (as opposed to protons in the atom) and positrons (as opposed to electrons). In order to thoroughly study the properties of the anti-atoms, scien...

  17. Extra Low ENergy Antiproton

    CERN Multimedia

    To produce dense antiproton beams at very low energies (110 keV), it has been proposed to install a small decelerator ring between the existing AD ring and the experimental area. Phase-space blowup during deceleration is compensated by electron cooling such that the final emittances are comparable to the 5MeV beam presently delivered by the AD. An immediate consequence is a significant increase in the number of trapped antiprotons at the experiments as outlined in the proposal CERN/SPSC-2009-026; SPCS-P-338. This report describes the machine parameters and layout of the proposal ELENA (Extra Low ENergy Antiproton)ring also gives an approximate estimate of cost and manpower needs. Since the initial estimate, published in 2007 (CERN-AB-2007-079), the ELENA design has evolved considerably. This is due to a new location in the AD hall to acommodate for the possibility of another experimental zone, as suggested by the SPCS, and also due to improvements in the ring optics and layout. The cost estimate that is prese...

  18. AA antiproton production target

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The first version of the antiproton production target was a tungsten rod, 11 cm long and 3 mm in diameter. The rod was embedded in graphite, pressure-seated into an outer casing of stainless steel. At the entrance to the target assembly was a scintillator screen, imprinted with circles every 5 mm in radius, which allowed to precisely aim the 26 GeV high-intensity proton beam from the PS onto the centre of the target rod. The scintillator screen was a 1 mm thick plate of Cr-doped alumina. See also 7903034 and 7905091.

  19. AA antiproton production target

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The first version of the antiproton production target was a tungsten rod, 11 cm long (actually a row of 11 rods, each 1 cm long) and 3 mm in diameter. The rod was embedded in graphite, pressure-seated into an outer casing made of stainless steel. The casing had fins for forced-air cooling. In this picture, the 26 GeV high-intensity beam from the PS enters from the right, where a scintillator screen, with circles every 5 mm in radius, permits precise aim at the target centre. See also 7903034 and 7905094.

  20. Antiproton complex at the FAIR project

    International Nuclear Information System (INIS)

    Dolinskii, A.; Knie, K.; Dimopoulou, C.; Gostishchev, V.; Litvinov, S.; Nolden, F.; Steck, M.

    2011-01-01

    This report summarizes a set of calculations for the antiproton production in a complex composed of target area, collector, separator, beam line and collector ring for the antiproton source of the future FAIR facility (Facility for Antiproton and Ion Research) at GSI, Darmstadt, Germany. The emphasis is on the optimization of the accumulation rate of antiprotons in order to maximize the luminosity of experiments with cooled antiproton beams in the High Energy Storage Ring (HESR). Results of simulations for each component of the antiproton production complex are presented in order to identify the present limitations of the antiproton production rate.

  1. Centrifugal Separation of Antiprotons and Electrons

    CERN Document Server

    Gabrielse, G; McConnell, R; Richerme, P; Wrubel, J; Kalra, R; Novitski, E; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Borbely, J S; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Mullers, A; Walz, J; Speck, A

    2010-01-01

    Centrifugal separation of antiprotons and electrons is observed, the first such demonstration with particles that cannot be laser cooled or optically imaged. The spatial separation takes place during the electron cooling of trapped antiprotons, the only method available to produce cryogenic antiprotons for precision tests of fundamental symmetries and for cold antihydrogen studies. The centrifugal separation suggests a new approach for isolating low energy antiprotons and for producing a controlled mixture of antiprotons and electrons.

  2. Nuclear stopping power of antiprotons

    Science.gov (United States)

    Nordlund, Kai; Sundholm, Dage; Pyykkö, Pekka; Zambrano, Daniel Martinez; Djurabekova, Flyura

    2017-10-01

    The slowing down of energetic ions in materials is determined by the nuclear and electronic stopping powers. Both of these have been studied extensively for ordinary-matter ions. For antiprotons, however, there are numerous studies of the electronic stopping power, but none of the nuclear stopping power. Here, we use quantum-chemical methods to calculate interparticle potentials between antiprotons and different atoms, and derive from these the nuclear stopping power of antiprotons in solids. The results show that the antiproton nuclear stopping powers are much stronger than those of protons, and can also be stronger than the electronic stopping power at the lowest energies. The interparticle potentials are also implemented in a molecular dynamics ion range calculation code, which allows us to simulate antiproton transmission through degrader foil materials. Foil transmission simulations carried out at experimentally relevant conditions show that the choice of antiproton-atom interaction model has a large effect on the predicted yield of antiprotons slowed down to low (a few keV) energies.

  3. A reservoir trap for antiprotons

    CERN Document Server

    Smorra, Christian; Franke, Kurt; Nagahama, Hiroki; Schneider, Georg; Higuchi, Takashi; Van Gorp, Simon; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Yamazaki, Yasunori; Ulmer, Stefan

    2015-01-01

    We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic particles.

  4. Proton-antiproton collider physics

    CERN Document Server

    Altarelli, Guido

    1989-01-01

    This volume reviews the physics studied at the CERN proton-antiproton collider during its first phase of operation, from the first physics run in 1981 to the last one at the end of 1985. The volume consists of a series of review articles written by physicists who are actively involved with the collider research program. The first article describes the proton-antiproton collider facility itself, including the antiproton source and its principle of operation based on stochastic cooling. The subsequent six articles deal with the various physics subjects studied at the collider. Each article descr

  5. The Antiproton Accumulator (AA)

    CERN Multimedia

    1980-01-01

    Section 06 - 08*) of the AA where the dispersion (and hence the horizontal beam size) is large. One can distinguish (left to right): A vacuum-tank, two bending magnets (BST06 and BST07 in blue) with a quadrupole (QDN07, in red) in between, another vacuum-tank, a wide quadrupole (QFW08) and a further tank . The tanks are covered with heating tape for bake-out. The tank left of BST06 contained the stack core pickup for stochastic cooling (see 7906193, 7906190, 8005051), the two other tanks served mainly as vacuum chambers in the region where the beam was large. Peter Zettwoch works on BST06. *) see: H. Koziol, Antiproton Accumulator Parameter List, PS/AA/Note 84-2 (1984)

  6. The discovery of the antiproton

    International Nuclear Information System (INIS)

    Chamberlain, Owen

    1989-01-01

    A number of groups of particle physicists competed to provide track evidence of the existence of Dirac's postulated antiproton in the mid-1950s. The work of the several teams is described briefly. The author describes the work of his own group on the Bevatron in more detail, and how they finally observed the antiproton. The article finishes with an assessment of the importance of this discovery. (UK)

  7. Measurement of interaction between antiprotons

    Science.gov (United States)

    The Star Collaboration; Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de La Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Klein, S.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, Z. M.; Li, Y.; Li, W.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, X. M.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Y.; Wang, Y.; Wang, F.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, H.; Xu, N.; Xu, Z.; Yang, Y.; Yang, C.; Yang, S.; Yang, Y.; Yang, Q.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, Z.; Zhang, J.; Zhang, S.; Zhang, X. P.; Zhang, J.; Zhang, Y.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.

    2015-11-01

    One of the primary goals of nuclear physics is to understand the force between nucleons, which is a necessary step for understanding the structure of nuclei and how nuclei interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large body of knowledge about the nuclear force that has since been acquired was derived from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have been discovered and their masses measured, little is known directly about the nuclear force between antinucleons. Here, we study antiproton pair correlations among data collected by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC), where gold ions are collided with a centre-of-mass energy of 200 gigaelectronvolts per nucleon pair. Antiprotons are abundantly produced in such collisions, thus making it feasible to study details of the antiproton-antiproton interaction. By applying a technique similar to Hanbury Brown and Twiss intensity interferometry, we show that the force between two antiprotons is attractive. In addition, we report two key parameters that characterize the corresponding strong interaction: the scattering length and the effective range of the interaction. Our measured parameters are consistent within errors with the corresponding values for proton-proton interactions. Our results provide direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, and so are fundamental to understanding the structure of more-complex antinuclei and their properties.

  8. Proton-antiproton workshop

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Coming just two months after Fermilab announced definitive discovery of the sixth ('top') quark, the 10th proton-antiproton workshop, held at Fermilab from 9-13 May, provided a useful overview of this important physics sector. With the sixth quark in place, the conference opened with an eye to the exotic, beginning with searches at the Tevatron for phenomena beyond the Standard Model. Experimenters from CDF and DO showed the latest lower bounds on masses for leptoquarks, new heavy gauge bosons, gluinos, squarks and other aspiring particles. Limits were raised, and new areas explored, but nothing new seemed to be stirring. Theorists, like expectant parents, showed their latest predictions for where particles would appear and how they would behave, but at the end, the Standard Model was still standing defiantly on its own two feet. The focus then turned to fifth ('bottom', b) and fourth ('charm') quark production, where, ironically, theory and experiment showed some disagreement. Both CDF and DO presented results for b quark production which agreed with each other but remained higher than theoretical predictions (perturbative quantum chromodynamics, QCD, using nextto- leading-order). On the charm front, the prompt production of psi-prime particles was shown to be anomalously high, many times higher than theoretical predictions. Latest results for the lifetimes of B particles (containing the bquark), quarkonia production and neutral B mixing were also presented. Closing the session, Jonathan Rosner of Chicago gave a theoretical overview of B physics at the Tevatron, and presented prospects for measuring the violation of CP (matter-antimatter) symmetry in the b sector. For the top quark, neither CDF's nor DO's results had much changed since their 2 March discovery announcement (April, page 1). Interesting discussions centred on the differences between the two experiments' methods of measuring the top mass. Clearly the

  9. In the steps of the antiproton

    CERN Multimedia

    Amsler, Claude

    2015-01-01

    Sixty years after the discovery of the antiproton at Berkeley, a look at some of the ways that studies with antiprotons at CERN have cast light on basic physics and, in particular, on fundamental symmetries.

  10. The Antiproton Accumulator (AA)

    CERN Multimedia

    1980-01-01

    A section of the AA where the dispersion (and hence the horizontal beam size) is large. One can distinguish (left to right): A large vacuum-tank, a quadrupole (QDN09*), a bending magnet (BST08), another vacuum-tank, a wide quadrupole (QFW08) and (in the background) a further bending magnet (BST08). The tanks are covered with heating tape for bake-out. The tank left of QDN09 contained the kickers for stochastic pre-cooling (see 790621, 8002234, 8002637X), the other one served mainly as vacuum chamber in the region where the beam was large. Peter Zettwoch works on QFW08. * see: H. Koziol, Antiproton Accumulator Parameter List, PS/AA/Note 84-2 (1984) See under 7911303, 7911597X, 8004261 and 8202324. For photos of the AA in different phases of completion (between 1979 and 1982) see: 7911303, 7911597X, 8004261, 8004608X, 8005563X, 8005565X, 8006716X, 8006722X, 8010939X, 8010941X, 8202324, 8202658X, 8203628X .

  11. Antiprotonic helium atomcules

    Directory of Open Access Journals (Sweden)

    Sauge Sébastien

    2012-10-01

    Full Text Available About 3% of antiprotons ( stopped in helium are long-lived with microsecond lifetimes, against picoseconds in all other materials. This unusual longevity has been ascribed to the trapping of on metastable bound states in He+ helium atom-molecules thus named atomcules. Apart from their unique dual structure investigated by laser spectroscopy – a near-circular quasi-classical Rydberg atom with l ~ n – 1 ~ 37 or a special diatomic molecule with a negatively charged nucleus in high rotational state with J = l – the chemical physics aspects of their interaction with other atoms or molecules constitute an interesting topic for molecular physics. While atomcules may resist to million collisions in helium, molecular contaminants such as H2 are likely to destroy them in a single one, down to very low temperatures. In the Born-Oppenheimer framework, we interpret the molecular interaction obtained by ab initio quantum chemical calculations in terms of classical reactive channels, with activation barriers accounting for the experiments carried out in He and H2. From classical trajectory Monte Carlo simulations, we show that the thermalization stage strongly quenches initial populations, thus reduced to a recovered 3 % trapping fraction. This work illustrates the pertinence of chemical physics concepts to the study of exotic processes involving antimatter. New insights into the physico-chemistry of cold interstellar radicals are anticipated.

  12. The relative biological effectiveness of antiprotons

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Alsner, Jan; Bassler, Niels

    2016-01-01

    of the relative biological effectiveness (RBE) of antiprotons near the end of range. We have performed the first-ever direct measurement of the RBE of antiprotons both at rest and in flight. Materials and methods: Experimental data were generated on the RBE of an antiproton beam entering a tissue-like target...

  13. Electrostatic ultra-low-energy antiproton recycling ring

    International Nuclear Information System (INIS)

    Siggel-King, M. R. F.; Papash, A.; Knudsen, H.; Holzscheiter, M.; Welsch, C. P.

    2011-01-01

    There is a strong need to push forward developments in the storage and control of ultra-low-energy antiproton beams to enable important scientific research. To this end, a small electrostatic ring, and associated electrostatic acceleration section, is being designed and developed by the QUASAR group. The ring will be placed on the MUSASHI beamline at the CERN-AD. It will serve as a prototype for the future ultra-low energy storage ring (USR), to be integrated at the facility for low-energy antiproton and ion research (FLAIR) and will enable various components of the USR to be tested and optimised. A reaction microscope will be integrated in the ring to enable partial ionisation cross section measurements to be made. This small recycler ring will be unique due to its combination of size, electrostatic nature and energy and type of circulating particles (ca 3–30 keV antiprotons). A short electrostatic accelerating section is also being developed, which will be placed between the beamline and the ring to accelerate the antiprotons from the trap extraction energy (typically 250 eV) to the final required (re-circulating) energy. The AD recycler project will be described, including ring design, accelerating injection section and the inclusion of a reaction microscope and the experiments it will enable.

  14. LEAR (Low Energy Antiproton Ring), general view.

    CERN Multimedia

    1990-01-01

    When the Antiproton Project was launched in the late 1970s, it was recognized that in addition to the primary purpose of high-energy proton-antiproton collisions in the SPS, there was interesting physics to be done with low-energy antiprotons. In 1982, LEAR was ready to receive antiprotons from the Antiproton Accumulator (AA), via the PS. A year later, delivery of antiprotons to the experiments began, at momenta as low as 100 MeV/c (kinetic energy 5.3 MeV), in an "Ultra-Slow Extraction" mode, dispensing some E9 antiprotons over times counted in hours. For such an achievement, stochastic and electron cooling had to be brought to high levels of perfection.

  15. Compact source origin of cosmic ray antiprotons

    International Nuclear Information System (INIS)

    Dermer, C.D.

    1989-02-01

    The flux of cosmic ray antiprotons with kinetic energies between /approximately/1 and 15 GeV is /approximately/5 times greater than the flux predicted on the basis of the leaky-box model. This excess is attributed to secondary antineutron production in compact sources. Because the antineutrons are not confined by the magnetic field of the compact source, they leave the interaction site, decay in interstellar space and account for the apparent excess cosmic ray antiproton flux. The escape and decay of neutrons produced in association with the antineutrons is a source of cosmic ray protons. Observations of the angular variation of the intensity and spectral shape of 100 MeV γ-rays produced by neutron-decay protons in the reaction p + p → π 0 → 2γ could reveal compact-source cosmic ray production sites. COS-B observations of spectral hardening near point sources, and future high-resolution observations of galactic point sources by Gamma-1 and the Egret telescope onboard the Gamma Ray Observatory may provide supporting evidence for this model. 12 refs., 2 figs

  16. Antiproton Stråleterapi

    DEFF Research Database (Denmark)

    Bassler, Niels

    omkringliggende normalvæv sammenlignet med konventionel strålebehandling eller IMRT. Højenergetiske antiprotoner opfører sig som protoner under nedbremsning i vævet. Når antiprotonen er fuldstændigt nedbremset indfanges den af en kerne og annihilerer med en nucleon herfra. Derved frigives hvilemasseenergien på 2...

  17. Treatment Plans for Antiproton Beams

    DEFF Research Database (Denmark)

    Holzscheiter, Michael; Bassler, Niels; Herrmann, Rochus

    from these measurements were used to benchmark the FLUKA Monte Carlo code, which then has been used for calculations of physical dose inside and outside of the primary antiproton beam. From clonogenic survival studies on the different cell lines mentioned above we have determined biological effective...

  18. Measurement of interaction between antiprotons

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Bielčík, J.; Bielčíková, Jana; Federič, Pavol; Chaloupka, P.; Rusňák, Jan; Rusňáková, O.; Šimko, Miroslav; Šumbera, Michal; Tlustý, David; Trzeciak, B. A.; Vértési, Robert

    2015-01-01

    Roč. 527, č. 7578 (2015), s. 345-348 ISSN 0028-0836 R&D Projects: GA ČR GA13-20841S Institutional support: RVO:61389005 Keywords : STAR collaboration * antiprotons * protons Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 38.138, year: 2015

  19. Antiproton collisions with molecular hydrogen

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2008-01-01

    Theoretical antiproton and proton cross sections for ionization and excitation of hydrogen molecules as well as energy spectra of the ionized electrons were calculated in the impact-energy range from 8  to  4000  keV. The cross sections were computed with the close-coupling formulation of the sem...

  20. Physics at CERN's Antiproton Decelerator

    CERN Document Server

    Hori, M

    2013-01-01

    The Antiproton Decelerator of CERN began operation in 1999 to serve experiments for studies of CPT invariance by precision laser and microwave spectroscopy of antihydrogen ($\\bar{\\rm H}$) and antiprotonic helium ($\\bar{p}{\\rm He}^+$). The first 12 years of operation saw cold $\\bar{\\rm H}$ synthesized by overlapping clouds of positrons ($e^+$) and antiprotons ($\\bar{p}$) confined in magnetic Penning traps. Cold $\\bar{\\rm H}$ was also produced in collisions between Rydberg positronium atoms and $\\bar{p}$. Ground-state $\\bar{\\rm H}$ was later trapped for up to $\\sim 1000$ s in a magnetic bottle trap, and microwave transitions excited between its hyperfine levels. In the $\\bar{p}{\\rm He}^+$ atom, UV transitions were measured to a precision of (2.3-5) $\\times$ $10^{-9}$ by sub-Doppler two-photon laser spectroscopy. From this the antiproton-to-electron mass ratio was determined as $M_{\\bar{p}}/m_e=$1836.1526736(23), which agrees with the p value. Microwave spectroscopy of $\\bar{p}{\\rm He}^+$ yielded a measurement o...

  1. Galactic diffusion and the antiproton signal of supersymmetric dark matter

    CERN Document Server

    Chardonnet, P; Salati, Pierre; Taillet, R

    1996-01-01

    The leaky box model is now ruled out by measurements of a cosmic ray gradient throughout the galactic disk. It needs to be replaced by a more refined treatment which takes into account the diffusion of cosmic rays in the magnetic fields of the Galaxy. We have estimated the flux of antiprotons on the Earth in the framework of a two-zone diffusion model. Those species are created by the spallation reactions of high-energy nuclei with the interstellar gas. Another potential source of antiprotons is the annihilation of supersymmetric particles in the dark halo that surrounds our Galaxy. In this letter, we investigate both processes. Special emphasis is given to the antiproton signature of supersymmetric dark matter. The corresponding signal exceeds the conventional spallation flux below 300 MeV, a domain that will be thoroughly explored by the Antimatter Spectrometer experiment. The propagation of the antiprotons produced in the remote regions of the halo back to the Earth plays a crucial role. Depending on the e...

  2. Comparison of electromagnetic and hadronic models generated using Geant 4 with antiproton dose measured in CERN.

    Science.gov (United States)

    Tavakoli, Mohammad Bagher; Reiazi, Reza; Mohammadi, Mohammad Mehdi; Jabbari, Keyvan

    2015-01-01

    After proposing the idea of antiproton cancer treatment in 1984 many experiments were launched to investigate different aspects of physical and radiobiological properties of antiproton, which came from its annihilation reactions. One of these experiments has been done at the European Organization for Nuclear Research known as CERN using the antiproton decelerator. The ultimate goal of this experiment was to assess the dosimetric and radiobiological properties of beams of antiprotons in order to estimate the suitability of antiprotons for radiotherapy. One difficulty on this way was the unavailability of antiproton beam in CERN for a long time, so the verification of Monte Carlo codes to simulate antiproton depth dose could be useful. Among available simulation codes, Geant4 provides acceptable flexibility and extensibility, which progressively lead to the development of novel Geant4 applications in research domains, especially modeling the biological effects of ionizing radiation at the sub-cellular scale. In this study, the depth dose corresponding to CERN antiproton beam energy by Geant4 recruiting all the standard physics lists currently available and benchmarked for other use cases were calculated. Overall, none of the standard physics lists was able to draw the antiproton percentage depth dose. Although, with some models our results were promising, the Bragg peak level remained as the point of concern for our study. It is concluded that the Bertini model with high precision neutron tracking (QGSP_BERT_HP) is the best to match the experimental data though it is also the slowest model to simulate events among the physics lists.

  3. ''Antiflow'' of antiprotons in heavy ion collisions

    International Nuclear Information System (INIS)

    Jahns, A.; Spieles, C.; Sorge, H.; Stoecker, H.; Greiner, W.

    1994-01-01

    In the framework of the relativistic quantum molecular dynamics approach we investigate antiproton (bar p) observables in Au+Au collisions at 10.7A GeV. The rapidity dependence of the in-plane directed transverse momentum p x (y) of bar p's shows the opposite sign of the nucleon flow, which has indeed recently been discovered at 10.7A GeV by the E877 group. The ''antiflow'' of bar p's is also predicted at 2A GeV and at 160A GeV and appears at all energies also for π's and K - 's. These predicted bar p anticorrelations are a direct proof of strong bar p annihilation in massive heavy ion reactions

  4. Comprehensive Study for an Optimized Redesign of the CERN's Antiproton Decelerator Target

    CERN Document Server

    AUTHOR|(CDS)2089345; Perillo-Marcone, Antonio; Muñoz-Cobo, Jose-Luis

    2018-04-16

    The Antiproton Decelerator Target (AD-Target) is a unique device responsible for the production of antiprotons at the European Organization for Nuclear Research (CERN). During operation, intense 26 GeV energy proton beams are impacted into its core, made of a 3 mm diameter rod of a high density material such as iridium, creating secondary particles -including antiprotons- from the nuclear reactions induced in its interior. This thesis delves into the characteristics of antiproton production and in particular in the mechanical response of the target core material, which is exposed to a rise of temperature of approximate 2000 degrees Celsius in less than 0.5 microseconds each time is impacted by the primary proton beam. A coupled numerical-experimental approach has been applied for this purpose. Specific computational tools, called hydrocodes, have been used for simulating the extreme dynamic response taking place in the target core and its containing graphite matrix, indicating their potential damage and frag...

  5. Radiation studies in the antiproton source

    International Nuclear Information System (INIS)

    Church, M.

    1990-01-01

    Experiment E760 has a lead glass (Pb-G) calorimeter situated in the antiproton source tunnel in the accumulator ring at location A50. This location is exposed to radiation from several sources during antiproton stacking operations. A series of radiation studies has been performed over the last two years to determine the sources of this radiation and as a result, some shielding has been installed in the antiproton source in order to protect the lead glass from radiation damage

  6. PS, septum magnet for ejection of antiprotons

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Antiprotons circulated in the PS in the sense opposite to that of the so far normal protons (or positive ions). A new ejection system with a new septum magnet was installed in straight section 58 for antiproton ejection, first towards the ISR and then to the principal customer, the SPS p-pbar Collider. Later on, when the PS delivered leptons for LEP, the antiproton ejection system was use for the ejection of electrons.

  7. The biological effectiveness of antiproton irradiation

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Bassler, Niels; Agazaryan, Nzhde

    2006-01-01

    ever measurements of the biological effectiveness of antiprotons. Materials and methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7 MeV antiprotons, 48 MeV protons, or 60Co c-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose...... has a higher relative biological effectiveness (RBE). Conclusion: We have produced the first measurements of the biological consequences of antiproton irradiation. These data substantiate theoretical predictions of the biological effects of antiproton annihilation within the Bragg peak, and suggest...

  8. Design study of an Antiproton Collector for the Antiproton Accumulator (ACOL)

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1983-01-01

    The Report gives a full description of an Antiproton Collector Ring which, placed around the existing Antiproton Accumulator at CERN, would enhance the antiproton flux available to both the SPS and LEAR by a factor of ten. The new ring and the focusing devices which precede it are designed to accept a much larger fraction of the antiproton production cone from the target. Each pulse of particles will be pre-cooled before being fed to the Antiproton Accumulator, where improved stochastic cooling systems will build up the stack. A full list of parameters is included. (orig.)

  9. A Good Statistics Study of Antiproton Interactions with Nuclei

    CERN Multimedia

    2002-01-01

    This experiment extends the study of inclusive pion production and the correlation between pions which result from hadron-nucleus collisions at intermediate and high energies to the antiproton-nucleus system. It is part of a long term systematic search for exotic nuclear phenomena. The correlation data will be used to extract, via pion interferometry, the size and coherence of the annihilation source in nuclei. In addition, the reaction @* + A @A p + A* will be studied to look for structure in the proton spectra which antiproton-nucleus bound states.\\\\ \\\\ The experimental system is based on a flexible, broad range, large acceptance (1~steradian) spectrometer which consists of an 80~cm diameter dipole magnet surrounded with detector arrays. These detectors provide momentum, energy loss, Cerenkov and time of flight information for up to ten ejectiles per event. Momentum resolution varies from 1\\% to 3\\%, depending on energy.

  10. The Fermilab proton-antiproton collider upgrades

    International Nuclear Information System (INIS)

    Marriner, J.P.

    1996-10-01

    The plans for increases in the Tevatron proton-antiproton collider luminosity in the near future (Run II) and the more distant future (TeV33) are described. While there are many important issues, the fundamental requirement is to produce more antiprotons and to use them more efficiently

  11. Antiproton radiation found effective in cancer research

    CERN Multimedia

    2003-01-01

    "An international collaboration of scientists has completed the first ever antiproton beam experiments designed to reveal the biological effectiveness of antiproton radiation in terminating cells used for cancer research...PBar Labs assembled the collaboration at CERN (European Organization for Nuclear Research in Geneva) to perform the measurements" (1 page).

  12. PANDA : Strong Interaction Studies with Antiprotons

    NARCIS (Netherlands)

    Peters, Klaus; Schmitt, Lars; Stockmanns, Tobias; Messchendorp, Johan

    2017-01-01

    The Antiproton Anihilation in Darmstadt (PANDA) collaboration at the Facility for Antiproton and Ion Research (FAIR) is a cooperation of more than 400 scientists from 19 countries. FAIR will be an accelerator facility leading the European research in nuclear and hadron physics in the coming decade.

  13. Laser-driven ultrafast antiproton beam

    Science.gov (United States)

    Li, Shun; Pei, Zhikun; Shen, Baifei; Xu, Jiancai; Zhang, Lingang; Zhang, Xiaomei; Xu, Tongjun; Yu, Yong; Bu, Zhigang

    2018-02-01

    Antiproton beam generation is investigated based on the ultra-intense femtosecond laser pulse by using two-dimensional particle-in-cell and Geant4 simulations. A high-flux proton beam with an energy of tens of GeV is generated in sequential radiation pressure and bubble regime and then shoots into a high-Z target for producing antiprotons. Both yield and energy of the antiproton beam increase almost linearly with the laser intensity. The generated antiproton beam has a short pulse duration of about 5 ps and its flux reaches 2 × 10 20 s - 1 at the laser intensity of 2.14 × 10 23 W / cm 2 . Compared to conventional methods, this new method based on the ultra-intense laser pulse is able to provide a compact, tunable, and ultrafast antiproton source, which is potentially useful for quark-gluon plasma study, all-optical antihydrogen generation, and so on.

  14. The proton-antiproton collider

    International Nuclear Information System (INIS)

    Evans, L.

    1988-01-01

    The subject of this lecture is the CERN Proton-Antiproton (panti p) Collider, in which John Adams was intimately involved at the design, development, and construction stages. Its history is traced from the original proposal in 1966, to the first panti p collisions in the Super Proton Synchrotron (SPS) in 1981, and to the present time with drastically improved performance. This project led to the discovery of the intermediate vector boson in 1983 and produced one of the most exciting and productive physics periods in CERN's history. (orig.)

  15. High-precision spectroscopy of antiprotonic helium

    CERN Document Server

    Widmann, E

    2001-01-01

    We present first results of laser and microwave spectroscopy experiments of antiprotonic helium performed at the new Antiproton Decelerator (AD) at CERN. Extending a series of previous measurements done at the Low Energy Antiproton Ring (LEAR) of CERN, several laser- induced transitions of the antiproton in the exotic three-body system He/sup 2+/-e/sup -/-p could be determined with a precision down to 1.3*10/sup -7/. This constitutes an improvement of a factor 3 over previous measurements, and allows to test accurate three-body calculations of this system that include QED corrections. The observed agreement on the same level can be used to infer CPT limits on the antiproton charge and mass. Furthermore, a first indication of a resonance signal of a two-laser microwave triple experiment to measure the hyperfine splitting of antiprotonic helium could been observed. Such a measurement has the potential to determine the antiproton magnetic moment to a higher precision that it is known today. (19 refs).

  16. Calculated LET-Spectrum of Antiprotons

    DEFF Research Database (Denmark)

    Bassler, Niels

    the resulting annihilation events occurring at the end of the antiproton particle tracks. It has so far been anticipated, that the radiobiology of antiproton beams is similar to that of protons in the entry region of the beam, but very different in the annihilation region, due to the expected high......-LET components resulting from the annihilation. Though, the calculations of dose-averaged LET in the entry region may suggest that the RBE of antiprotons in the plateau region could significantly differ from unity. Materials and Methods Monte Carlo simulations using FLUKA were performed for calculating...... of energy per nucleon. Results In the plateau region of the simulated antiproton beam we observe a dose-average LET of about 4 keV/µm which is very different from the expected 0.6 keV/µm of an equivalent primary proton beam. Even though the fluence of secondaries is a magnitude less than the fluence...

  17. Stochastic cooling and the accumulation of antiprotons

    CERN Document Server

    van der Meer, S

    1985-01-01

    The large project mentioned in the motivation of the 1985 Nobel award in physics includes, in addition to the experiments proper described by Carlo Rubbia, the complex machinery for colliding high-energy protons and antiprotons. Protons (ps) are accelerated to a momentum of 26 GeV/c in the Proton Synchrotron (PS) machine and are used to produce antiprotons (ps) in a copper target. The Antiproton Accumulator (AA) ring accepts a batch of these with momenta around 3.5 GeV/c every 2.4 seconds. After, typically, a day of accumulation, a large number of the accumulated ps ( approximately 10/sup 11/) are extracted from the AA. The author discusses stochastic cooling, a method used to accumulate the antiprotons. (23 refs).

  18. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  19. Antiproton chain of the FAIR storage rings

    International Nuclear Information System (INIS)

    Katayama, T; Kamerdzhiev, V; Lehrach, A; Maier, R; Prasuhn, D; Stassen, R; Stockhorst, H; Herfurth, F; Lestinsky, M; Litvinov, Yu A; Steck, M; Stöhlker, T

    2015-01-01

    In the Modularized Start Version of the Facility of Antiproton and Ion Research (FAIR) at Darmstadt Germany, the 3 GeV antiprotons are precooled in the collector ring and accumulated in the high energy storage ring (HESR). They are further accelerated to 14 GeV or decelerated to 1 GeV for the experiments with a high-density internal target. The powerful beam cooling devices, stochastic cooling and electron cooling will support the provision of a high-resolution antiproton beam. The other option of FAIR is to prepare the low energy, 300 keV antiproton beam connecting the existing storage rings ESR and CRYRING with HESR. Beam physics issues related with these concepts are described. (paper)

  20. Proton-Antiproton Pair Production in Two-Photon Collisions at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hakobyan, R.S.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2003-01-01

    The reaction e+e- -> e+e- proton antiproton is studied with the L3 detector at LEP. The analysis is based on data collected at e+e- center-of-mass energies from 183 GeV to 209 GeV, corresponding to an integrated luminosity of 667 pb-1. The gamma gamma -> proton antiproton differential cross section is measured in the range of the two-photon center-of-mass energy from 2.1 GeV to 4.5 GeV. The results are compared to the predictions of the three-quark and quark-diquark models.

  1. Heating 197Au nuclei with 8 GeV antiproton and π- beams

    International Nuclear Information System (INIS)

    Back, B.; Beaulieu, L.; Breuer, H.; Gushue, S.; Hsi, W.-C.; Korteling, R. G.; Kwiatkowski, K.; Laforest, R.; Lefort, T.; Martin, E.; Pienkowski, L.; Ramakrishnan, E.; Remsberg, L. P.; Viola, V. E.

    1999-01-01

    This contribution stresses results recently obtained from experiment E900 performed at the Brookhaven AGS accelerator with 8 GeV/c antiproton and negative pion beams using the Indiana Silicon Sphere detector array. An investigation of the reaction mechanism is presented, along with source characteristics deduced from a two-component fit to the spectra. An enhancement of deposition energy with the antiproton beam with respect to the pion beam is observed. The results are qualitatively consistent with predictions of an intranuclear cascade code

  2. Heating {sup 197}Au nuclei with 8 GeV antiproton and {pi}- beams.

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.; Beaulieu, L.; Breuer, H.; Gushue, S.; Hsi, W.-C.; Korteling, R. G.; Kwiatkowski, K.; Laforest, R.; Lefort, T.; Martin, E.; Pienkowski, L.; Ramakrishnan, E.; Remsberg, L. P.; Viola, V. E.

    1999-05-03

    This contribution stresses results recently obtained from experiment E900 performed at the Brookhaven AGS accelerator with 8 GeV/c antiproton and negative pion beams using the Indiana Silicon Sphere detector array. An investigation of the reaction mechanism is presented, along with source characteristics deduced from a two-component fit to the spectra. An enhancement of deposition energy with the antiproton beam with respect to the pion beam is observed. The results are qualitatively consistent with predictions of an intranuclear cascade code.

  3. The antiproton depth–dose curve in water

    CERN Document Server

    Bassler, N; Jäkel, O; Knudsen, H V; Kovacevic, S

    2008-01-01

    We have measured the depth–dose curve of 126 MeV antiprotons in a water phantom using ionization chambers. Since the antiproton beam provided by CERN has a pulsed structure and possibly carries a high-LET component from the antiproton annihilation, it is necessary to correct the acquired charge for ion recombination effects. The results are compared with Monte Carlo calculations and were found to be in good agreement. Based on this agreement we calculate the antiproton depth–dose curve for antiprotons and compare it with that for protons and find a doubling of the physical dose in the peak region for antiprotons.

  4. Review of the High Performance Antiproton Trap (HiPAT) experiment

    Science.gov (United States)

    Martin, James J.; Lewis, Raymond A.; Boise Pearson, J.; Sims, W. Herb; Chakrabarti, Suman; Fant, Gene; McDonald, Stan

    2003-10-01

    Many space propulsion concepts exist that use matter-antimatter reactions. Current antiproton production rates are enough to conduct proof-of-principle evaluation of these concepts. One enabling technology for such experiments is portable storage of low energy antiprotons, to transport antiprotons to experimental facilities. To address this need, HiPAT is being developed, with a design goal of containing 10^12 particles for up to 18 days. HiPAT is a Penning-Malmberg trap with a 4 Telsa superconductor, 20 kV electrodes, radio frequency (RF) network, and 10-13 Torr vacuum. "Normal" matter is being used to evaluate the system. An electron beam ionizes background gas in situ, and particle beams are captured dynamically. The experiment examines ion storage lifetimes, RF plasma diagnostics, charge exchange with background gases, and dynamic ion beam capture.

  5. Antiproton-nucleus potentials from global fits to antiprotonic X-rays and radiochemical data

    Czech Academy of Sciences Publication Activity Database

    Friedman, E.; Gal, A.; Mareš, Jiří

    2005-01-01

    Roč. 761, 3/4 (2005), s. 283-295 ISSN 0375-9474 R&D Projects: GA AV ČR IAA1048305 Institutional research plan: CEZ:AV0Z10480505 Keywords : antiproton-nuclear interaction * RMF calculations * antiproton X-rays Subject RIV: BE - Theoretical Physics Impact factor: 1.950, year: 2005

  6. Interpretation of enhancements in the antiproton-neutron from antiproton-Deuteron annihilations

    International Nuclear Information System (INIS)

    Martin, L.J.; Mason, G.C.; Opat, G.I.

    1980-01-01

    Data are presented from a low energy antiproton-Deuteron experiment that show an enhancement near 1930 MeV in the antiproton-neutron mass spectrum. This, and other enhancements observed at nearby masses, may be interpreted in terms of a double-scattering effect

  7. Antiproton Radiotherapy Peripheral Dose from Secondary Neutrons produced in the Annihilation of Antiprotons in the Target

    CERN Document Server

    Fahimian, Benjamin P; Keyes, Roy; Bassler, Niels; Iwamoto, Keisuke S; Zankl, Maria; Holzscheiter, Michael H

    2009-01-01

    The AD-4/ACE collaboration studies the biological effects of antiprotons with respect to a possible use of antiprotons in cancer therapy. In vitro experiments performed by the collaboration have shown an enhanced biological effectiveness for antiprotons relative to protons. One concern is the normal tissue dose resulting from secondary neutrons produced in the annihilation of antiprotons on the nucleons of the target atoms. Here we present the first organ specific Monte Carlo calculations of normal tissue equivalent neutron dose in antiproton therapy through the use of a segmented CT-based human phantom. The MCNPX Monte Carlo code was employed to quantify the peripheral dose for a cylindrical spread out Bragg peak representing a treatment volume of 1 cm diameter and 1 cm length in the frontal lobe of a segmented whole-body phantom of a 38 year old male. The secondary neutron organ dose was tallied as a function of energy and organ.

  8. Study of the low energy proton-antiproton annihilation interaction leading to: π+ π-, K+K- and e+e-. Study of the proton form factors in the time region

    International Nuclear Information System (INIS)

    Zekri, N.

    1988-01-01

    The results of the PS170 experiments are reported. The proton form factors from proton-antiproton → positron-electron reaction and the cross sections of the proton-antiproton → pion plus - pion minus annihilation reaction are investigated. The performances of the measuring instruments concerning electron selectivity, geometrical acceptance, efficiency, reliability in the measurement of momenta and particle discrimination accuracy. Particular attention was given to the Cherenkov detector parameters. The experimental results are analyzed and radiative corrections are carried out for the proton-antiproton → positron-electron reactions. The reaction angular distribution is measured. The obtained results are in good agreement with VDM calculations. The proton-antiproton → pion plus - pion minus cross section between, 160 and 260 MeV/c is calculated and compared to the antiproton annihilation cross section calculated on the basis of the quark annihilation exchange process [fr

  9. Antiprotons four times more effective than protons for cell irradiation

    CERN Multimedia

    2007-01-01

    "A pioneering experiment at CERN with potential future application in cancer therapy has produced its first results. Started in 2003, ACE (Antiproton Cell Experiment) is the first investigation of the biological effects of antiprotons." (1,5 page)

  10. Antiprotons four times more effective than protons for cell irradiation

    CERN Multimedia

    2006-01-01

    "A pioneering experiment at CERN with potential future application in cancer therapy has produced its first results. Started in 2003, ACE (Antiproton Cell Experiment) is the first investigation of the biological effects of antiprotons." (1,5 page)

  11. Antiproton Trapping for Advanced Space Propulsion Applications

    Science.gov (United States)

    Smith, Gerald A.

    1998-01-01

    The Summary of Research parallels the Statement of Work (Appendix I) submitted with the proposal, and funded effective Feb. 1, 1997 for one year. A proposal was submitted to CERN in October, 1996 to carry out an experiment on the synthesis and study of fundamental properties of atomic antihydrogen. Since confined atomic antihydrogen is potentially the most powerful and elegant source of propulsion energy known, its confinement and properties are of great interest to the space propulsion community. Appendix II includes an article published in the technical magazine Compressed Air, June 1997, which describes CERN antiproton facilities, and ATHENA. During the period of this grant, Prof. Michael Holzscheiter served as spokesman for ATHENA and, in collaboration with Prof. Gerald Smith, worked on the development of the antiproton confinement trap, which is an important part of the ATHENA experiment. Appendix III includes a progress report submitted to CERN on March 12, 1997 concerning development of the ATHENA detector. Section 4.1 reviews technical responsibilities within the ATHENA collaboration, including the Antiproton System, headed by Prof. Holzscheiter. The collaboration was advised (see Appendix IV) on June 13, 1997 that the CERN Research Board had approved ATHENA for operation at the new Antiproton Decelerator (AD), presently under construction. First antiproton beams are expected to be delivered to experiments in about one year. Progress toward assembly of the ATHENA detector and initial testing expected in 1999 has been excellent. Appendix V includes a copy of the minutes of the most recently documented collaboration meeting held at CERN of October 24, 1997, which provides more information on development of systems, including the antiproton trapping apparatus. On February 10, 1998 Prof. Smith gave a 3 hour lecture on the Physics of Antimatter, as part of the Physics for the Third Millennium Lecture Series held at MSFC. Included in Appendix VI are notes and

  12. The PANDA experiment: Antiproton physics at FAIR

    International Nuclear Information System (INIS)

    Montagna, P.

    2011-01-01

    The new Facility for Antiproton and Ion Research (FAIR), under construction at the GSI laboratory at Darmstadt, in a few years will make available, among different types of beams, even antiproton beams with unique features. Through a High Energy Storage Ring (HESR) for antiprotons, an antiproton beam will be available in a momentum range from 1.5 to 15 GeV/c, which will interact on a hydrogen target. The products of the interaction, including hadronic systems with strangeness and/or charm, will be detected with the PANDA magnetic spectrometer (antiProton ANnihilation at DArmstadt), and the spectroscopic analysis will allow a detailed investigation on a number of open problems of the hadronic physics, as the quark confinement, the existence of non-conventional meson states (so-called glueballs and hybrids), the structure of hadrons and of the strong interaction, with particular attention to charmonium spectroscopy. An overview of the scientific program of PANDA and the current status of the project will be presented.

  13. K-shell ionization by antiprotons

    International Nuclear Information System (INIS)

    Mehler, G.; Mueller, B.; Greiner, W.; Soff, G.

    1987-01-01

    We present first calculations for the impact parameter dependence of K-shell ionization rates in anti pCu and in anti pAg collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the anti-binding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross-sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross-sections for protons. (orig.)

  14. Collisions involving antiprotons and antihydrogen: an overview

    Science.gov (United States)

    Jonsell, S.

    2018-03-01

    I give an overview of experimental and theoretical results for antiproton and antihydrogen scattering with atoms and molecules (in particular H, He). At low energies (>1 keV) there are practically no experimental data available. Instead I compare the results from different theoretical calculations, of various degrees of sophistication. At energies up to a few tens of eV, I focus on simple approximations that give reasonably accurate results, as these allow quick estimates of collision rates without embarking on a research project. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  15. Antiproton radiotherapy: peripheral dose from secondary neutrons

    DEFF Research Database (Denmark)

    Fahimian, Benjamin P.; DeMarco, John J.; Keyes, Roy

    2009-01-01

    is the normal tissue dose resulting from secondary neutrons produced in the annihilation of antiprotons on the nucleons of the target atoms. Here we present the first organ specific Monte Carlo calculations of normal tissue equivalent neutron dose in antiproton therapy through the use of a segmented CT......-based human phantom. The MCNPX Monte Carlo code was employed to quantify the peripheral dose for a cylindrical spread out Bragg peak representing a treatment volume of 1 cm diameter and 1 cm length in the frontal lobe of a segmented whole-body phantom of a 38 year old male. The secondary neutron organ dose...

  16. The Antiproton and How It Was Discovered

    International Nuclear Information System (INIS)

    Eades, John

    2005-01-01

    The antiproton celebrates its 50th birthday this year. Although its existence had been suspected since the discovery of the positron in 1932, there was still doubt in some quarters that such a companion particle to the proton could exist. I will try to trace the scientific history of the antiproton from that time to the publication of the definitive paper by Chamberlain, Segre, Wiegand and Ypsilantis in November 1955, with a brief look at what happened next. The narrative will be supplemented with thoughts and opinions of some of the main actors, both at the time and in retrospect

  17. Antiproton distributions in Au+nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, D.; Debbe, R. [Brookhaven National Laboratory, Upton, New York (United States); Bennett, M.J.; Chikanian, A.; Kumar, B.S.; Nagle, J.L.; Pope, J.K. [Yale University, A.W. Wright Nuclear Structure Laboratory, New Haven, Connecticut (United States); Carroll, J.B.; Hallman, T.J. [University of California at Los Angeles, Los Angeles, California (United States); Chiba, J.; Tanaka, K.H. [National Laboratory for High Energy Physics (KEK), Tsukuba (Japan); Crawford, H.J.; Cronqvist, M.; Dardenne, Y.; Engelage, J.; Greiner, L.; Kuo, C. [University of California Space Sciences Laboratory, Berkeley, California (United States); Doke, T.; Kashiwagi, T.; Kikuchi, J. [Waseda University, Tokyo (Japan); Hayano, R.S. [University of Tokyo, Tokyo (Japan); Heckman, H.H.; Lindstrom, P.J. [Lawrence Berkeley Laboratory, Berkeley, California (United States); Mitchell, J.W. [Universities Space Sciences Research Association/Goddard Space Flight Center, Greenbelt, Maryland (United States); Nagamiya, S.; Stankus, P.; Zhan, W. [Nevis Laboratory, Columbia University, Irvington, New York (United States); Welsh, R.C. [Johns Hopkins University, Baltimore, Maryland (United States)

    1997-09-01

    Experiment E878 at the BNL-AGS has measured the invariant cross sections of antiprotons produced near p{sub t}=0 in interactions of 10.8 GeV/c Au beams with targets of Al, Cu, and Au. The data were measured for a wide range of centralities and rapidities using a focusing beamline spectrometer and a high-rate centrality detector. We compare our data with the predictions of simple models and sophisticated transport models to explore the physics of antiproton production and annihilation. {copyright} {ital 1997} {ital The American Physical Society}

  18. Study of the anti-hydrogen atom and ion formation in the collisions antiproton-positronium

    International Nuclear Information System (INIS)

    Comini, Pauline

    2014-01-01

    The future CERN experiment called GBAR intends to measure the gravitational acceleration of antimatter on Earth using cold (neV) anti-hydrogen atoms undergoing a free fall. The experiment scheme first needs to cool anti-hydrogen positive ions, obtained thanks to two consecutive reactions occurring when an antiproton beam collides with a dense positronium cloud.The present thesis studies these two reactions in order to optimise the production of the anti-ions. The total cross sections of both reactions have been computed in the framework of a perturbation theory model (Continuum Distorted Wave - Final State), in the range 0 to 30 keV antiproton kinetic energy; several excited states of positronium have been investigated. These cross sections have then been integrated to a simulation of the interaction zone where antiprotons collide with positronium; the aim is to find the optimal experimental parameters for GBAR. The results suggest that the 2P, 3D or, to a lower extend, 1S states of positronium should be used, respectively with 2, less than 1 or 6 keV antiprotons. The importance of using short pulses of antiprotons has been underlined; the positronium will have to be confined in a tube of 20 mm length and 1 mm diameter. In the prospect of exciting the 1S-3D two-photon transition in positronium at 410 nm, a pulsed laser system had already been designed. It consists in the frequency doubling of an 820 nm pulsed titanium-sapphire laser. The last part of the thesis has been dedicated to the realisation of this laser system, which delivers short pulses (9 ns) of 4 mJ energy at 820 nm. (author) [fr

  19. The ASACUSA experiment at CERN's AD antiproton decelerator catches antiprotons in helium, where the antiprotons replace electrons, giving exotics atoms.

    CERN Multimedia

    Loïez, P

    2000-01-01

    Photo 03: Laser beams are prepared for shooting at antiprotonic helium atoms. Left to right: Masaki Hori (Tokyo University) and John Eades (CERN). Photo 01: Dye laser triggered by "YAG" laser. Photo 02: Masaki Hori adjusting optical system of laser beams.

  20. An Antiproton Decelerator in the CERN PS Complex

    CERN Document Server

    Riunaud, J P; Baird, S A; Boillot, J; Bosser, Jacques; Brouet, M; Caspers, Friedhelm; Chanel, M; Chohan, V; Eriksson, T; Garoby, R; Giannini, R; Giovannozzi, Massimo; Gruber, J; Hémery, J Y; Koziol, Heribert; MacCaferri, R; Maury, S; Metzmacher, K D; Möhl, D; Mulder, H; Pedersen, F; Perriollat, F; Poncet, Alain; Riunaud, J P; Serre, C; Simon, Daniel Jean; Tranquille, G; Tuyn, Jan Willem Nicolaas; Williams, B; Williams, D J

    1996-01-01

    The present CERN PS low-energy antiproton complex involves 4 machines to collect, cool, decelerate and supply experiments with up to 1010 antiprotons per pulse and per hour of momenta ranging from 0.1 to 2 GeV/c. In view of a possible future physics programme requiring low energy antiprotons, mainly to carry out studies on antihydrogen, a simplified scheme providing at low cost antiprotons at 100 MeV/c has been studied. It requires only one machine, the present Antiproton Collector (AC) converted into a cooler and decelerator (Antiproton Decelerator, AD) and delivering beam to experiments in the hall of the present Antiproton Accumulator Complex (AAC) [1]. This paper describes the feasibility study of such a scheme [2].

  1. Recent progress of laser spectroscopy experiments on antiprotonic helium

    Science.gov (United States)

    Hori, Masaki

    2018-03-01

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) collaboration is currently carrying out laser spectroscopy experiments on antiprotonic helium ? atoms at CERN's Antiproton Decelerator facility. Two-photon spectroscopic techniques have been employed to reduce the Doppler width of the measured ? resonance lines, and determine the atomic transition frequencies to a fractional precision of 2.3-5 parts in 109. More recently, single-photon spectroscopy of buffer-gas cooled ? has reached a similar precision. By comparing the results with three-body quantum electrodynamics calculations, the antiproton-to-electron mass ratio was determined as ?, which agrees with the known proton-to-electron mass ratio with a precision of 8×10-10. The high-quality antiproton beam provided by the future Extra Low Energy Antiproton Ring (ELENA) facility should enable further improvements in the experimental precision. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  2. Antiprotons in the CERN intersecting storage rings

    International Nuclear Information System (INIS)

    Bryant, P.J.

    1984-01-01

    High-sensitivity electronics for TTl and ring 2 had been developed and installed, the original experimental stochastic cooling systems in the ISR were rebuilt and considerably improved, the split-field magnet (SFM) vacuum chamber was modified, some steering dipoles were designed, made and installed, and finally innumerable interlocks and computer programs were revised for antiproton operation. (orig./HSI)

  3. A naturally occurring trap for antiprotons

    International Nuclear Information System (INIS)

    Eades, J.; Morita, N.; Ito, T.M.

    1993-05-01

    The phenomenon of delayed annihilation of antiprotons in helium is the first instance of a naturally occurring trap for antimatter in ordinary matter. Recent studies of this effect at CERN are summarized, and plans are described for laser excitation experiments to test its interpretation in terms of metastable exotic helium atom formation. (author)

  4. Conceptual Design of an Antiproton Generation and Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Peggs, Stephen

    2006-10-24

    The Antiproton Generation and Storage Facility (AGSF) creates copious quantities of antiprotons, for bottling and transportation to remote cancer therapy centers. The first step in the generation and storage process is to accelerate an intense proton beam down the Main Linac for injection into the Main Ring, which is a Rapid Cycling Synchrotron that accelerates the protons to high energy. The beam is then extracted from the ring into a transfer line and into a Proton Target. Immediately downstream of the target is an Antiproton Collector that captures some of the antiprotons and focuses them into a beam that is transported sequentially into two antiproton rings. The Precooler ring rapidly manipulates antiproton bunches from short and broad (in momentum) to long and thin. It then performs some preliminary beam cooling, in the fraction of a second before the next proton bunch is extracted from the Main Ring. Pre-cooled antiprotons are passed on to the Accumulator ring before the next antiprotons arrive from the target. The Accumulator ring cools the antiprotons, compressing them into a dense state that is convenient for mass storage over many hours. Occasionally the Accumulator ring decelerates a large number of antiprotons, injecting them into a Deceleration Linac that passes them into a waiting Penning trap.

  5. Conceptual Design of an Antiproton Generation and Storage Facility

    International Nuclear Information System (INIS)

    Peggs, Stephen

    2006-01-01

    The Antiproton Generation and Storage Facility (AGSF) creates copious quantities of antiprotons, for bottling and transportation to remote cancer therapy centers. The first step in the generation and storage process is to accelerate an intense proton beam down the Main Linac for injection into the Main Ring, which is a Rapid Cycling Synchrotron that accelerates the protons to high energy. The beam is then extracted from the ring into a transfer line and into a Proton Target. Immediately downstream of the target is an Antiproton Collector that captures some of the antiprotons and focuses them into a beam that is transported sequentially into two antiproton rings. The Precooler ring rapidly manipulates antiproton bunches from short and broad (in momentum) to long and thin. It then performs some preliminary beam cooling, in the fraction of a second before the next proton bunch is extracted from the Main Ring. Pre-cooled antiprotons are passed on to the Accumulator ring before the next antiprotons arrive from the target. The Accumulator ring cools the antiprotons, compressing them into a dense state that is convenient for mass storage over many hours. Occasionally the Accumulator ring decelerates a large number of antiprotons, injecting them into a Deceleration Linac that passes them into a waiting Penning trap

  6. Proton - antiproton annihilations to φφ mesons: results from JETSET at LEAR

    Science.gov (United States)

    Bertolotto, L.; Buzzo, A.; Debevec, P. T.; Drijard, D.; Easo, S.; Eisenstein, R. A.; Evangelista, C.; Eyrich, W.; Fearnley, T.; Ferro-Luzzi, M.; Franz, J.; Geyer, R.; Hamann, N.; Harris, Ph.; Hertzog, D. W.; Hughes, S. A.; Johansson, T.; Jones, R.; Kilian, K.; Kirsebom, K.; Klett, A.; Korsmo, H.; Lo Vetere, M.; Marinelli, M.; Moossburger, M.; Mouëllic, B.; Oelert, W.; Ohlsson, S.; Palano, A.; Passaggio, S.; Perreau, J. M.; Pia, M. G.; Pozzo, A.; Price, M.; Reimer, P. E.; Ritter, J.; Robutti, E.; Röhrich, K.; Rook, M.; Rössle, E.; Santroni, A.; Schmitt, H.; Steinkamp, O.; Stinzing, F.; Stugu, B.; Tscheulin, M.; Urban, H. J.; Wirth, H.; Zipse, H.; Jetset Collaboration

    1993-06-01

    The πp → φφ reaction has been studied in an internal target experiment at LEAR using antiprotons at various laboratory momenta spanning the region between 1 and 2 GeV/c (cms energies between 2.08 and 2.43 GeV). Cross sections have been measured at a total of 16 different energy settings over the above range. Preliminary cross sections are reported.

  7. Proton-antiproton annihilations to [phi][phi]mesons: results from JETSET at LEAR

    Energy Technology Data Exchange (ETDEWEB)

    Bertolotto, L.; Buzzo, A.; Devevec, P.T.; Drijard, D.; Easo, S.; Eisenstein, R.A.; Evangelista, C.; Eyrich, W.; Fearnley, T.; Ferro-Luzzi, M.; Franz, J.; Geyer, R.; Hamann, N.; Harris, P.; Hertzog, D.W.; Hughes, S.A.; Johansson, T.; Jones, R.; Kilian, K.; Kirsebom, K.; Klett, A.; Korsmo, H.; Lo Vetere, M.; Marinelli, M.; Moossburger, M.; Mouellic, B.; Oelert, W.; Ohlsson, S.; Palano, A.; Passaggio, S.; Perreau, J.M.; Pia, M.G.; Pozzo, A.; Price, M.; Reimer, P.E.; Ritter, J.; Robutti, E.; Roehrich, K.; Rook, M.; Roessle, E.; Santroni, A.; Schmitt, H.; Steinkamp, O.; Stinzing, F.; Stugu, B.; Tscheulin, M.; Urban, H.J.; Wirth, H.; Zipse, H. (Istituto Nazionale di Fisica Nucleare, Genoa (Italy) Genoa Univ. (Italy) Univ. of Illinois, Urbana-Champaign (United States) European Organization for Nuclear Research (CERN), Geneva (Switzerland) Istituto Nazionale di Fisica Nucleare, Bari (Italy) Bari Univ. (Italy) Physikalisches Institut, Erlangen Univ. (Germany) Fakultaet fuer Physik, Univ. Freib; JETSET Collaboration

    1993-06-07

    The [pi]p[yields][phi][phi] reaction has been studied in an internal target experiment at LEAR using antiprotons at various laboratory momenta spanning the region between 1 and 2 GeV/c (cms energies between 2.08 and 2.43 GeV). Cross sections have been measured at a total of 16 different energy settings over the above range. Preliminary cross sections are reported. (orig.)

  8. Proton-antiproton annihilations to φφmesons: results from JETSET at LEAR

    International Nuclear Information System (INIS)

    Bertolotto, L.; Buzzo, A.; Devevec, P.T.; Drijard, D.; Easo, S.; Eisenstein, R.A.; Evangelista, C.; Eyrich, W.; Fearnley, T.; Ferro-Luzzi, M.; Franz, J.; Geyer, R.; Hamann, N.; Harris, P.; Hertzog, D.W.; Hughes, S.A.; Johansson, T.; Jones, R.; Kilian, K.; Kirsebom, K.; Klett, A.; Korsmo, H.; Lo Vetere, M.; Marinelli, M.; Moossburger, M.; Mouellic, B.; Oelert, W.; Ohlsson, S.; Palano, A.; Passaggio, S.; Perreau, J.M.; Pia, M.G.; Pozzo, A.; Price, M.; Reimer, P.E.; Ritter, J.; Robutti, E.; Roehrich, K.; Rook, M.; Roessle, E.; Santroni, A.; Schmitt, H.; Steinkamp, O.; Stinzing, F.; Stugu, B.; Tscheulin, M.; Urban, H.J.; Wirth, H.; Zipse, H.

    1993-01-01

    The πp→φφ reaction has been studied in an internal target experiment at LEAR using antiprotons at various laboratory momenta spanning the region between 1 and 2 GeV/c (cms energies between 2.08 and 2.43 GeV). Cross sections have been measured at a total of 16 different energy settings over the above range. Preliminary cross sections are reported. (orig.)

  9. Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio

    CERN Document Server

    Hori, Masaki; Barna, Daniel; Andreas Dax,; Hayano, Ryugo; Friedreich, Susanne; Juhász, Bertalan; Pask, Thomas; Widmann, Eberhard; Horváth, Dezső; Venturelli, Luca; Zurlo, Nicola; 10.1038/nature10260

    2013-01-01

    Physical laws are believed to be invariant under the combined transformations of charge, parity and time reversal (CPT symmetry). This implies that an antimatter particle has exactly the same mass and absolute value of charge as its particle counterpart. Metastable antiprotonic helium ($\\bar{p}He^+$) is a three-body atom2 consisting of a normal helium nucleus, an electron in its ground state and an antiproton ($\\bar{p}$) occupying a Rydberg state with high principal and angular momentum quantum numbers, respectively n and l, such that n ≈ l + 1 ≈ 38. These atoms are amenable to precision laser spectroscopy, the results of which can in principle be used to determine the antiproton-to-electron mass ratio and to constrain the equality between the antiproton and proton charges and masses. Here we report two-photon spectroscopy of antiprotonic helium, in which $\\bar{p}^{3}He^{+}$ and $\\bar{p}^{4}He^{+}$ isotopes are irradiated by two counter-propagating laser beams. This excites nonlinear, two-phot...

  10. CERN accelerator school: Antiprotons for colliding beam facilities

    International Nuclear Information System (INIS)

    Bryant, P.; Newman, S.

    1984-01-01

    This is a specialized course which addresses a wide spectrum of theoretical and technological problems confronting the designer of an antiproton facility for high-energy-physics research. A broad and profound basis is provided by the lecturers' substantial experience gained over many years with CERN's unique equipment. Topics include beam optics, special lattices for antiproton accumulation and storage rings, antiproton production, stochastic cooling, acceleration and storage, r.f. noise, r.f. beam manipulations, beam-beam interaction, beam stability due to ion accumulation, and diagnostics. The SPS (Super Proton Synchrotron) panti p collider, LEAR (the Low Energy Antiproton Ring at CERN), antiprotons in the ISR (Intersecting Storage Rings), the new antiproton collector (ACOL) and gas jet targets are also discussed. A table is included listing the parameters of all CERN's accelerators and storage rings. See hints under the relevant topics. (orig./HSI)

  11. Beam position pickup for antiprotons to the ISR

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    The Antiproton Project, launched for proton-antiproton collisions in the SPS (SPS collider), had a side-line for p-pbar collisions in the ISR. A new transfer line, TT6, was constructed to transport antiprotons from the 26 GeV PS to the injection line TT1 of ISR ring 2. Antiprotons were a scarce commodity. For setting up the lines, beam diagnostic devices in the antiproton path had to work reliably and precisely with just a few low-intensity pilot pules: single bunches of about 2x10**9 antiprotons every few hours. Electrostatic pickup electrodes were used to measure beam position. They could be mounted for measurement in the horizontal plane, as in this picture, or at 90 deg, for the vertical plane.

  12. Antiproton rate estimates for the 1996 E866 experiment

    International Nuclear Information System (INIS)

    Shea, J.Y.; Garcia-Solis, E.J.; Stanskas, P.J.

    1996-01-01

    There has always been a strong interest to study antiprotons produced in relativistic heavy ion collisions. A specific point has been a puzzle for years in that both ARC and RQMD predict the correct antiproton yield for Au+Au collisions at the AGS, but with two entirely different physical explanations. The RQMD is able to describe available data by relying on the enhanced production of antiprotons, followed by the annihilation of a large fraction of the produced antiprotons. Conversely, ARC describes the data by producing less antiprotons initially, but the annihilation of the antiprotons is open-quotes screenedclose quotes in the high density environment of the collision on account of collisions with mesons. It is then particularly interesting to studying the shadowing effect in the Au-Au collisions at the AGS to shine a light in the theoretical debate in heavy-ion collisions

  13. Collisions of antiprotons with hydrogen molecular ions

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2009-01-01

    Time-dependent close-coupling calculations of the ionization and excitation cross section for antiproton collisions with molecular hydrogen ions are performed in an impact energy range from 0.5 keV to 10 MeV. The Born-Oppenheimer and Franck-Condon approximations as well as the impact parameter...... method are applied in order to describe the target molecule and the collision process. It is shown that three perpendicular orientations of the molecular axis with respect to the trajectory are sufficient to accurately reproduce the ionization cross section calculated by Sakimoto [Phys. Rev. A 71, 062704...... (2005)] reducing the numerical effort drastically. The independent-event model is employed to approximate the cross section for double ionization and H+ production in antiproton collisions with H2....

  14. Reliability of the Fermilab Antiproton Source

    International Nuclear Information System (INIS)

    Harms, E. Jr.

    1993-05-01

    This paper reports on the reliability of the Fermilab Antiproton source since it began operation in 1985. Reliability of the complex as a whole as well as subsystem performance is summarized. Also discussed is the trending done to determine causes of significant machine downtime and actions taken to reduce the incidence of failure. Finally, results of a study to detect previously unidentified reliability limitations are presented

  15. Potential kaon and antiproton beams at BNL

    International Nuclear Information System (INIS)

    Lazarus, D.M.

    1991-01-01

    The AGS at Brookhaven is the worlds most prolific producer of kaons and low energy antiprotons during operations. With the imminent operation of the AGS Booster which will increase intensities by an anticipated factor of six in the next few years, it will become possible to have purified beams of particles containing strange quarks and anti-quarks with intensities comparable to the pion beams which have so successfully dominated precision hadron spectroscopy in the past. 10 refs., 3 figs

  16. Magnetic horn of the Antiproton Accumulator (AA)

    CERN Multimedia

    Photographic Service

    1988-01-01

    In the 1960s, the invention of this "current sheet lens" has helped to greatly improve the flux of neutrino beams. It was used again at the AA, collecting antiprotons from the production target at angles too large to fit into the acceptance of the AA. It was machined from aluminium to a thickness of 1.4 mm and pulsed at 400 kA for 15 microseconds (half-sine).

  17. An analytical simulation of the ion-antiproton instabilities in the CERN Antiproton Accumulator

    International Nuclear Information System (INIS)

    Dainelli, A.; Pusterla, M.

    1988-01-01

    A direct map method with a Mathieu approach to tune modulation is proposed and used to simulate nonlinear effects on particle motion that are generated by a beam-beam-like interaction of antiprotons with ions of the residual gas in the CERN Antiproton Accumulator. Two different Gaussian ion distributions are used, and the effects of the simulated beam-beam force on the particle motion is studied in phase space, with a particular attention to high-order nonlinear resonances. (author) 16 refs., 4 figs

  18. Antiproton-Proton Glory Scattering

    CERN Multimedia

    2002-01-01

    This experiment measures @*p and K|-p backwards scattering between 8 and 16 GeV/c in the Omega spectrometer using the S1 beam, with sensitivities of several events per nanobarn. The mechanism responsible for backward scattering in channels not mediated by particle exchange is not understood, and could be almost energy-independent glory scattering, especially since relatively high cross sections of 190~(@*p) and 120~(K|-p)nb have been measured earlier at 5~GeV/c. @p|-p backwards scattering is measured for monitoring purposes. The trigger requires a forward particle of momentum close to the beam momentum. Absence of light in the two forward Cerenkov counters indicates that the particle is a proton. Combinations of an incident @p|- and an outgoing K|+, or an incident K|- or @* and an outgoing @p|+, cover the following byproducts: @*p~@A~@p|+@p|- which is an (allowed) baryon exchange reaction, and the exotic exchange reactions @p|-p~@A~K|+Y K|-p~@A~@p|+Y|-, where Y|- may be the @S|- or the Y*|-(1385).

  19. Serach for polarization effects in the antiproton production process

    CERN Multimedia

    It is proposed to study polarization effects in the production of antiprotons at the PS test beam line T11 at 3.5 GeV/c momentum. A polarization in the production process has never been studied but if existing it would allow for a rather simple and cheap way to generate a polarized antiproton beam with the existing facilities at CERN.

  20. Antiproton-nucleus experiments at LEAR and KAON

    International Nuclear Information System (INIS)

    Yavin, A.I.

    1989-12-01

    Antimatter and matter-antimatter systems are briefly discussed. Results of the antiproton-nucleus scattering experiments at LEAR are described, with the emphasis on unfinished experiments and on proposed experiments yet untouched. A few remarks on antiproton and antideuteron experiments at KAON are then presented

  1. An Update on the Depth-Dose Curve of Antiprotons

    DEFF Research Database (Denmark)

    Taasti, Vicki Trier; Holzscheiter, Michael H.; Knudsen, Helge

    Purpose: The CERN AD-4/ACE project aims to measure the relative biological effectiveness of antiprotons. We have revisited previously published data for the antiproton depth-dose curve [1], where the relative dose deposition normalized to a point in the plateau region was plotted. In this revisio...

  2. Low-energy antiprotons physics and the FLAIR facility

    International Nuclear Information System (INIS)

    Widmann, E

    2015-01-01

    FLAIR, the Facility for low-energy antiproton and ion research has been proposed in 2004 as an extension of the planned FAIR facility at Darmstadt, Germany. FLAIR was not included into the modularized start version of FAIR, but the recent installation of the CRYRING storage ring at GSI Darmstadt has opened new perspectives for physics with low-energy antiprotons at FAIR. (paper)

  3. Antiproton impact ionization of atomic hydrogen and helium

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 INN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: mmcgovern06@qub.ac.u [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)

    2009-11-01

    We shall present results for antiproton ionization of H and He ranging from fully differential cross sections to total ionization. The calculations have been made in a coupled pseudostate impact parameter approximation. It will be shown that the interaction between the antiproton and the target nucleus is very important at low energies.

  4. Measurement of strong interaction parameters in antiprotonic hydrogen and deuterium

    CERN Document Server

    Augsburger, M A; Borchert, G L; Chatellard, D; Egger, J P; El-Khoury, P; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Siems, T; Simons, L M

    1999-01-01

    In the PS207 experiment at CERN, X-rays from antiprotonic hydrogen and deuterium have been measured at low pressure. The strong interaction shift and the broadening of the K/sub alpha / transition in antiprotonic hydrogen were $9 determined. Evidence was found for the individual hyperfine components of the protonium ground state. (7 refs).

  5. Detailed analysis of observed antiprotons in cosmic rays

    Directory of Open Access Journals (Sweden)

    P Davoudifar

    2009-12-01

    Full Text Available In the present work, the origin of antiprotons observed in cosmic rays (above the atmosphere is analyzed in details. We have considered the origin of the primaries, (which their interactions with the interstellar medium is one of the most important sources of antiprotons is a supernova type II then used a diffusion model for their propagation. We have used the latest parameterization for antiproton production cross section in pp collisions (instead of well known parameterization introduced by Tan et al. as well as our calculated residence time for primaries. The resulted intensity shows the secondary antiprotons produced in pp collisions in the galaxy, have a high population as one can not consider an excess for extragalactic antiprotons. Also there is a high degree of uncertainty in different parameters.

  6. Intensity-Frontier Antiproton Physics with The Antiproton Annihilation Spectrometer (TAPAS) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, Giorgio; /Fermilab; Asner, David M.; /PNL, Richland; Baldini, Wander; /INFN, Ferrara; Bartoszek, Larry; Broemmelsiek, Daniel R.; Brown, Charles N.; /Fermilab; Chakravorty, Alak; /St. Xavier U., Chicago; Colas, Paul; /Saclay; Derwent, Paul; /Fermilab; Drutskoy, Alexey; /Moscow, ITEP; Fortner, Michael; /Northern Illinois U. /Saclay /Indian Inst. Tech., Hyderabad

    2011-11-01

    The Fermilab Antiproton Source is the world's most intense source of antimatter. With the Tevatron program now behind us, this unique facility can help make the case for Fermilab's continued accelerator operations. The Antiproton Source can be used for unique, dedicated antimatter studies, including medium-energy {bar p}-annihilation experiments. We propose to assemble a powerful, yet cost-effective, solenoidal magnetic spectrometer for antiproton-annihilation events, and to use it at the Fermilab Antiproton Accumulator to measure the charm production cross section, study rare hyperon decays, search for hyperon CP asymmetry, precisely measure the properties of several charmonium and nearby states, and make the first measurements of the Drell-Yan continuum in medium-energy antiproton annihilation. Should the charm production cross section be as large as some have proposed, we will also be able to measure D{sup 0}-{bar D}{sup 0} mixing with high precision and discover (or sensitively limit) charm CP violation. The observation of charm or hyperon CP violation would be evidence for physics beyond the Standard Model, with possible implications for the origin of the baryon asymmetry of the universe - the question of what happened to all the antimatter that must have been produced in the Big Bang. The experiment will be carried out by an international collaboration and will require some four years of running time. As possibly the sole hadron experiment in progress at Fermilab during that time, it will play an important role in maintaining a broad particle physics program at Fermilab and in the U.S. It will thus help us to continue attracting creative and capable young people into science and technology, and introducing them to the important technologies of accelerators, detectors, and data acquisition and analysis - key roles in society that accelerator-based particle physics has historically played.

  7. Dynamics of Anti-Proton -- Protons and Anti-Proton -- Nucleus Reactions

    CERN Document Server

    Galoyan, A; Uzhinsky, V

    2016-01-01

    A short review of simulation results of anti-proton-proton and anti-proton-nucleus interactions within the framework of Geant4 FTF (Fritiof) model is presented. The model uses the main assumptions of the Quark-Gluon-String Model or Dual Parton Model. The model assumes production and fragmentation of quark-anti-quark and diquark-anti-diquark strings in the mentioned interactions. Key ingredients of the model are cross sections of string creation processes and an usage of the LUND string fragmentation algorithm. They allow one to satisfactory describe a large set of experimental data, especially, a strange particle production, Lambda hyperons and K mesons.

  8. Fermilab Antiproton source, Recycler ring and Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Nagaitsev, Sergei [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-03-22

    The antiproton source for a proton-antiproton collider at Fermilab was proposed in 1976 [1]. The proposal argued that the requisite luminosity (~1029 cm-2sec-1) could be achieved with a facility that would produce and cool approximately 1011 antiprotons per day. Funding for the Tevatron I project (to construct the Antiproton source) was initiated in 1981 and the Tevatron ring itself was completed, as a fixed target accelerator, in the summer of 1983 and the Antiproton Source was completed in 1985. At the end of its operations in 2011, the Fermilab antiproton production complex consisted of a sophisticated target system, three 8-GeV storage rings (namely the Debuncher, Accumulator and Recycler), 25 independent multi-GHz stochastic cooling systems, the world’s only relativistic electron cooling system and a team of technical experts equal to none. Sustained accumulation of antiprotons was possible at the rate of greater than 2.5×1011 per hour. Record-size stacks of antiprotons in excess of 3×1012 were accumulated in the Accumulator ring and 6×1012 in the Recycler. In some special cases, the antiprotons were stored in rings for more than 50 days. Note, that over the years, some 1016 antiprotons were produced and accumulated at Fermilab, which is about 17 nanograms and more than 90% of the world’s total man-made quantity of nuclear antimatter. The accelerator complex at Fermilab supported a broad physics program including the Tevatron Collider Run II [2], neutrino experiments using 8 GeV and 120 GeV proton beams, as well as a test beam facility and other fixed target experiments using 120 GeV primary proton beams. The following sections provide a brief description of Fermilab accelerators as they operated at the end of the Collider Run II (2011).

  9. LEAP [Low-Energy Antiproton]: A balloon-borne search for low-energy cosmic-ray antiprotons

    International Nuclear Information System (INIS)

    Moats, A.R.M.

    1989-01-01

    The LEAP (Low-Energy Antiproton) experiment is a search for cosmic-ray antiprotons in the 120 MeV to 1.2 GeV kinetic energy range. The motivation for this project was the result announced by Buffington et. al. (1981) that indicated an anomalously high antiproton flux below 300 MeV; this result has compelled theorists to propose sources of primary antiprotons above the small secondary antiproton flux produced by high energy cosmic-ray collisions with nuclei in the interstellar medium. LEAP consisted of the NMSU magnetic spectrometer, a time-of-flight system designed at Goddard Space Flight Center, two scintillation detectors, and a Cherenkov counter designed and built at the University of Arizona. Analysis of flight data performed by the high-energy astrophysics group at Goddard Space Flight Center revealed no antiproton candidates found in the 120 MeV to 360 MeV range; 3 possible antiproton candidate events were found in the 500 MeV to 1.2 GeV range in an analysis done here at the University of Arizona. However, since it will be necessary to sharpen the calibration on all of the LEAP systems in order to positively identify these events as antiprotons, only an upper limit has been determined at present. Thus, combining the analyses performed at the University of Arizona and Goddard Space Flight Center, 90% confidence upper limits of 3.5 x 10 -5 in the 120 MeV to 360 MeV range and 2.3 x 10 -4 in the 500 MeV to 1.2 GeV range for the antiproton/proton ratio is indicated by the LEAP results. LEAP disagrees sharply with the results of the Buffington group, indicating a low antiproton flux at these energies

  10. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  11. Development of a monoenergetic ultraslow antiproton beam source for high-precision investigation

    Directory of Open Access Journals (Sweden)

    N. Kuroda

    2012-02-01

    Full Text Available The ASACUSA collaboration developed an ultraslow antiproton beam source, monoenergetic ultraslow antiproton source for high-precision investigation (MUSASHI, consisting of an electromagnetic trap with a liquid He free superconducting solenoid and a low energy antiproton beam transport line. The MUSASHI was capable of trapping and cooling more than 1×10^{7} antiprotons and extracting them as an ultraslow antiproton beam with energy of 150–250 eV.

  12. CERN Antiproton Decelerator Beam Instrumentation for the ELENA era

    CERN Document Server

    Ludwig, M; Gasior, M; Søby, L; Tranquille, G; Fernandes, M

    2014-01-01

    CERN is currently constructing an Extra Low ENergy Antiproton ring (ELENA), which will allow the further deceleration of antiprotons from the currently exploited Antiproton Decelerator (AD). In order to meet the challenges of ELENA the beam instrumentation systems of the CERN AD are being consolidated and upgraded. An updated controls architecture with a more flexible timing system needs to be adopted and obsolete systems must be replaced. This paper presents the status and plans for improved performance and measurement availability of the AD beam instrumentation with a decreased risk of failure.

  13. An experimental lower limit on the antiproton lifetime

    Directory of Open Access Journals (Sweden)

    S.N. Ganguli

    1978-03-01

    Full Text Available A search for the possible decay of the antiproton has been carried out in a hydrogen bubble chamber exposed to a 0.76 GeV/c antiproton beam. As a result 161 odd-prong events with a net charge of −1 in the final state were observed. After subtracting the two types of background discussed in the paper we are left with a signal of 5 ± 16 events. From this a lower limit of 1.2 X 10−4s has been obtained for the antiproton lifetime with 95% confidence level.

  14. Measurement of antiproton production in $p$–He collisions at LHCb to constrain the secondary cosmic antiproton flux

    CERN Document Server

    Graziani, Giacomo

    2018-01-01

    The flux of cosmic ray antiprotons is a powerful tool for indirect detection of dark matter. The sensitivity is limited by the uncertainty on the predicted antiproton flux from scattering of primary rays on the interstellar medium. This is, in turn, limited by the knowledge of production cross-sections, notably in p–He scattering. Thanks to its internal gas target, the LHCb experiment performed the first measurement of antiproton production from collisions of LHC proton beams on He nuclei at rest. The results and prospects are presented.

  15. Prospects for antiproton physics, my perspective

    International Nuclear Information System (INIS)

    Oelert, Walter

    2012-01-01

    These closing remarks are not supposed to be a summary talk, for this please have a look to the individual contributions to be published in the proceedings, but rather some considerations on future prospects for antiproton physics. However, first I would like to appreciate the organizers idea for giving me the opportunity to thank them for a well balanced, exciting and interesting conference LEAP-2011 in this marvelous city of Vancouver. I am sure we all loved to be here and enjoyed the hospitality and the bond of friendship we could experience during these days. We appreciate the patience and help of all the local organizers where I especially would like to mention Jana Thomson for her endless and helpful assignment. Thank you all—the participants, the speakers, the conference chair, the sponsors—for making this conference a success and we are looking forward to the next occasion in this series of meetings which will be celebrated in Uppsala.

  16. Calculated LET Spectrum from Antiproton Beams Stopping in Water

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael

    2009-01-01

    Antiprotons have been proposed as a potential modality for radiotherapy because the annihilation at the end of range leads to roughly a doubling of physical dose in the Bragg peak region. So far it has been anticipated that the radiobiology of antiproton beams is similar to that of protons...... in the entry region of the beam, but very different in the annihilation region, due to the expected high-LET components resulting from the annihilation. On closer inspection we find that calculations of dose averaged LET in the entry region may suggest that the RBE of antiprotons in the plateau region could...... antiproton beam we observe a dose-averaged unrestricted LET of about 4 keV/μm, which is very different from the expected 0.6 keV/μm of an equivalent primary proton beam. Even though the fluence of secondaries is a magnitude less than the fluence of primary particles, the increased stopping power...

  17. Antiproton cell experiment: antimatter is a better killer

    CERN Multimedia

    2006-01-01

    "European Organization for Nuclear Research is reporting that results from a three year study of antiprotons for neoplasm irrdiation showed a better cellular killer with a smaller lethal dose." (1,5 page)

  18. Multilepton production in neutrino interactions and proton-antiproton collisions

    International Nuclear Information System (INIS)

    Valenzuela, G.N.

    1985-01-01

    In part I, we consider the class of events containing 2 or 3 leptons in (anti-neutrino deep inelastic scattering and in proton-antiproton collisions. Understanding the characteristics and rate of production of this type of event has often proven to be a theoretical challenge. We show that a cluster model involving associated-charm production not only accounts for certain dimuon events, but also affords better agreement with experiment regarding trimuons produced in neutrino interactions. We also investigate correlations between D-meson and dimuon production in p anti p collisions in the context of a cluster model which includes the possibility of finding b anti b pairs in jets. Part II consists of a study of radiation zeros in the reaction p anti p → l anti nuγX. It has been proposed that the radiation zero phenomenon could be observed in processes involving the radiative decay of the W-boson. These processes might allow the measurement of the W anomalous magnetic moment. We calculate the effect on this measurement of the decay width and the non-zero transverse momentum of the W. We find that although the radiation zero is filled in to some extent, it might still be possible to estimate the magnetic moment of the W in future experiments

  19. Centrality dependence of antiproton production in Au+Au collisions

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, D.; Bennett, M.J.; Carroll, J.B.; Chiba, J.; Chikanian, A.; Crawford, H.; Cronqvist, M.; Dardenne, Y.; Debbe, R.; Doke, T.; Engelage, J.; Greiner, L.; Hallman, T.J.; Hayano, R.S.; Heckman, H.H.; Kashiwagi, T.; Kikuchi, J.; Kumar, S.; Kuo, C.; Lindstrom, P.J.; Mitchell, J.W.; Nagamiya, S.; Nagle, J.L.; Pope, J.K.; Stankus, P.; Tanaka, K.H.; Welsh, R.C.; Zhan, W. [Brookhaven National Laboratory, Upton, New York (United States)]|[A.W. Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut (United States)]|[University of California at Los Angeles, Los Angeles California (United States)]|[National Laboratory for High Energy Physics (KEK), Tsukuba (Japan)]|[University of California Space Sciences Laboratory, Berkeley California (United States)]|[Waseda University, Tokyo (Japan)]|[University of Tokyo, Tokyo (Japan)]|[Lawrence Berkeley Laboratory, Berkeley California (United States)]|[Universities Space Sciences Research Association/Goddard Space Flight Center, Greenbelt, Maryland (United States)]|[Nevis Laboratory, Columbia University, Irvington, New York (United States)]|[Johns Hopkins University, Baltimore, Maryland (United States); (E878 Collaboration)

    1995-11-13

    We have measured the yields of antiprotons in Au+Au interactions in the rapidity range 1.2{lt}{ital y}{lt}2.8 as a function of centrality using a beam line spectrometer. The shapes of the invariant multiplicity distributions at {ital p}{sub {ital t}}=0 are used to explore the dynamics of antiproton production and annihilation. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.

  20. New results on strong-interaction effects in antiprotonic hydrogen

    CERN Document Server

    Gotta, D; Augsburger, M A; Borchert, G L; Castelli, C M; Chatellard, D; El-Khoury, P; Egger, J P; Gorke, H; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the low-energy antiproton ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using charge-coupled devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (33 refs).

  1. New results on strong-interaction effects in antiprotonic hydrogen

    International Nuclear Information System (INIS)

    Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O. W. B.; Siems, Th.; Simons, L. M.

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction

  2. Medium-Energy Antiproton Physics with the Antiproton Annihilation Spectrometer (TApAS*) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bartoszek, Larry [Bartoszek Engineering, Aurora, IL (United States); Piacentino, Giovanni M. [Univ. of Cassino (Italy); Phillips, Thomas J. [Duke Univ., Durham, NC (United States); Apollinari, Giorgio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Broemmelsiek, Daniel R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Brown, Charles N. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Christian, David C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Derwent, Paul; Gollwitzer, Keith [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hahn, Alan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Papadimitriou, Vaia [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stancari, Michelle [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stefanski, Ray [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Volk, James T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Werkema, Steven [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wester, Willam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); White, Herman B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yeh, G. P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Baldini, Wander [Istituto Nazionale di Fisica Nucleare (INFN), Ferrara (Italy); Jackson, Gerald P. [Hbar Technologies, Chicago, IL (United States); Lau, Kwong [Univ. of Houston, TX (United States); Kaplan, Daniel M. [Illinois Inst. of Technology, Chicago, IL (United States); Torun, Yagmur [Illinois Inst. of Technology, Chicago, IL (United States); White, Christopher G. [Illinois Inst. of Technology, Chicago, IL (United States). et al.

    2008-01-01

    We propose to assemble a cost-effective, yet powerful, solenoidal magnetic spectrometer for antiproton-annihilation events and use it at the Fermilab Antiproton Accumulator to measure the charm production cross section, study rare hyperon decays, search for hyperon CP asymmetry, and precisely measure the properties of several charmonium and nearby states. Should the charm production cross section be as large as some have proposed, we will also be able to measure D{sup 0}-{bar D}{sup 0} mixing with high precision and discover (or sensitively limit) charm CP violation. The experiment will be carried out by an international collaboration, with installation occurring during the accelerator downtime following the completion of the Tevatron run, and with funding largely from university research grants. The experiment will require some four years of running time. As possibly the sole hadron experiment in progress at Fermilab during that time, it will play an important role in maintaining a broad particle-physics program at Fermilab and in the U.S.

  3. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants.

    Science.gov (United States)

    Hayano, Ryugo S

    2010-01-01

    Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN's antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants

  4. The Floor's the Limit (Antiproton energies to hit new low)

    CERN Document Server

    2000-01-01

    Celebrating the success of the RFQ in Aarhus. Left to right: Alessanda Lombardi (CERN), Iouri Bylinskii (CERN), Alex Csete (Aarhus), Ulrik Uggerhøj (Aarhus), Ryu Hayano (Tokyo, spokesman ASACUSA), Helge Knudsen (Aarhus), Werner Pirkl (CERN), Ryan Thompson (Aarhus), Søren P. Møller (Aarhus). Although in particle physics we are accustomed to strive for higher and higher energies, this is not always the most interesting thing to do with antiprotons. Indeed, as recent issues of the Bulletin have suggested, the signpost on the road to a closer look at the antiproton points towards ever-lower energies. The CERN Antiproton Decelerator decelerates antipro-tons emerging from a target placed in the path of a 26 GeV/c proton beam from 90 % of to about 10 % of the speed of light. However, even this is far too fast for many of the most interesting experiments on antiprotons planned by Danish and Japanese members of the ASACUSA collaboration. Tokyo University has therefore financed the con...

  5. Atomic Spectroscopy and Collisions Using Slow Antiprotons \\\\ ASACUSA Collaboration

    CERN Multimedia

    Matsuda, Y; Lodi-rizzini, E; Kuroda, N; Schettino, G; Hori, M; Pirkl, W; Mascagna, V; Malbrunot, C L S; Yamazaki, Y; Eades, J; Simon, M; Massiczek, O; Sauerzopf, C; Nagata, Y; Knudsen, H; Uggerhoj, U I; Mc cullough, R W; Toekesi, K M; Venturelli, L; Widmann, E; Zmeskal, J; Kanai, Y; Kristiansen, H; Todoroki, K; Bartel, M A; Moller, S P; Charlton, M; Leali, M; Diermaier, M; Kolbinger, B

    2002-01-01

    ASACUSA (\\underline{A}tomic \\underline{S}pectroscopy \\underline{A}nd \\underline{C}ollisions \\underline{U}sing \\underline{S}low \\underline{A}ntiprotons) is a collaboration between a number of Japanese and European research institutions, with the goal of studying bound and continuum states of antiprotons with simple atoms.\\\\ Three phases of experimentation are planned for ASACUSA. In the first phase, we use the direct $\\overline{p}$ beam from AD at 5.3 MeV and concentrate on the laser and microwave spectroscopy of the metastable antiprotonic helium atom, $\\overline{p}$He$^+$, consisting of an electron and antiproton bound by the Coulomb force to the helium nucleus. Samples of these are readily created by bringing AD antiproton beam bunches to rest in helium gas. With the help of techniques developed at LEAR for resonating high precision laser beams with antiproton transitions in these atoms, ASACUSA achieved several of these first-phase objectives during a few short months of AD operation in 2000. Six atomic tr...

  6. Antiproton tagging and vertex fitting in a Timepix3 detector

    CERN Document Server

    Aghion, S.; The AEGIS collaboration; Antonello, M.; Belov, A.; Bonomi, G.; Brusah, R. S.; Caccia, M.; Camper, A.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Evans, C.; Fanì, M.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Hackstock, P.; Haider, S.; Hinterberger, A.; Holmestad, H.; Kellerbauer, A.; Khalidova, O.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Marton, J.; Matveev, V.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Prelz, F.; Prevedelli, M.; Rienaecker, B.; Robert, J.; Røhne, O. M.; Rotondi, A.; Sandaker, H.; Santoro, R.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.

    2018-01-01

    Studies of antimatter are important for understanding our universe at a fundamental level. There are still unsolved problems, such as the matter-antimatter asymmetry in the universe. The AEgIS experiment at CERN aims at measuring the gravitational fall of antihydrogen in order to determine the gravitational force on antimatter. The proposed method will make use of a position-sensitive detector to measure the annihilation point of antihydrogen. Such a detector must be able to tag the antiproton, measure its time of arrival and reconstruct its annihilation point with high precision in the vertical direction. This work explores a new method for tagging antiprotons and reconstructing their annihilation point. Antiprotons from the Antiproton Decelerator at CERN was used to obtain data on direct annihilations on the surface of a silicon pixel sensor with Timepix3 readout. These data were used to develop and verify a detector response model for annihilation of antiprotons in this detector. Using this model and the a...

  7. Calculated LET spectrum from antiproton beams stopping in water

    CERN Document Server

    Bassler, Niels

    2009-01-01

    Antiprotons have been proposed as a potential modality for radiotherapy because the annihilation at the end of range leads to roughly a doubling of physical dose in the Bragg peak region. So far it has been anticipated that the radiobiology of antiproton beams is similar to that of protons in the entry region of the beam, but very different in the annihilation region, due to the expected high-LET components resulting from the annihilation. On closer inspection we find that calculations of dose averaged LET in the entry region may suggest that the RBE of antiprotons in the plateau region could significantly differ from unity, which seems to warrant closer inspection of the radiobiology in this region. Materials and Methods. Monte Carlo simulations using FLUKA were performed for calculating the entire particle spectrum of a beam of 126 MeV antiprotons hitting a water phantom. Results and Discussion. In the plateau region of the simulated antiproton beam we observe a dose-averaged unrestrict...

  8. A low-energy antiproton detector prototype for AFIS

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Lingxin; Greenwald, Daniel; Hahn, Alexander; Hauptmann, Philipp; Konorov, Igor; Losekamm, Martin; Paul, Stephan; Poeschl, Thomas; Renker, Dieter [Technische Universitaet Muenchen (Germany)

    2014-07-01

    Antiprotons are produced in interactions of primary cosmic rays with earth's exosphere, where a fraction of them will be confined in the geomagnetic field in the inner van Allen Belt. The antiproton-to-proton flux ratio predicted by theory is in good agreement with recent results from the South Atlantic Anomaly (SAA) published by the PAMELA collaboration. We have designed the AFIS (Antiproton Flux in Space) project in order to extend the measurable range of antiprotons towards the low-energy region. In scope of this project a small antiproton detector consisting of scintillating fibers and silicon photomultipliers is being developed as payload for a CubeSat traversing the SAA in Low Earth Orbit. For the proof of concept we have built a prototype called ''CubeZero'' which completed its first test using pion and proton beams at PSI, Switzerland. Our primary goal was to investigate on the performance of tracking and Bragg peak identification in hardware and software. Analysis of detector performance based on data taken during this beam test is presented in this talk.

  9. Large amounts of antiproton production by heavy ion collision

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    To produce large amounts of antiprotons, on the order of several grams/year, use of machines to produce nuclear collisions are studied. These can be of either proton-proton, proton-nucleus and nucleus-nucleus in nature. To achieve high luminosity colliding beams, on the order of 10/sup 41/ m/cm/sup 2/, a self-colliding machine is required, rather than a conventional circular colliding type. The self-colliding machine can produce additional antiprotons through successive collisions of secondary particles, such as spectator nucleons. A key problem is how to collect the produced antiprotons without capture by beam nuclei in the collision zone. Production costs for anti-matter are projected for various energy source options and technology levels. Dedicated facilities using heavy ion collisions could produce antiproton at substantially less than 1 million $/milligram. With co-production of other valuable products, e.g., nuclear fuel for power reactors, antiproton costs could be reduced to even lower values.

  10. Experimental and computational study of the injection of antiprotons into a positron plasma for antihydrogen production

    DEFF Research Database (Denmark)

    Amole, C.; Ashkezari, M.D.; Baquero-Ruiz, M.

    2013-01-01

    are commonly produced by mixing antiprotons and positrons stored in a nested Penning-Malmberg trap, which was achieved in ALPHA by an autoresonant excitation of the antiprotons, injecting them into the positron plasma. In this work, a hybrid numerical model is developed to simulate antiproton and positron...

  11. Metastable states in antiprotonic helium atoms an island stability in a sea of continuum

    CERN Document Server

    Korobov, V I

    2002-01-01

    In this contribution we consider a phenomenon of metastable states in antiprotonic helium atoms, precise spectroscopy of these states and a present-day study of the electromagnetic properties of antiprotons. Calculation of nonrelativistic energies, relativistic and QED corrections as well as the fine and hyperfine structure and the magnetic moment of an antiproton are the main parts of this study. Refs. 22 (nevyjel)

  12. Energy and energy width measurement in the FNAL antiproton accumulator

    International Nuclear Information System (INIS)

    Church, M.; Hsueh, S.; Rapidis, P.; Werkema, S.

    1991-10-01

    The Fermilab Antiproton Accumulator has recently been used to produce Charmonium resonances (charm quark, anti-charm quark bound states) in proton-antiproton annihilations using an internal H 2 gas jet target. A measurement of the resonance mass and width may be obtained from a precise knowledge of the antiproton beam energy and energy spread. The beam energy is measured to an accuracy of 1 part in 10 4 in the range 6.3 Gev to 4.1 Gev by measuring the orbit length and revolution frequency of the beam. The beam momentum spread is measured to an accuracy of 10% by measuring the beam frequency spread and the parameter η = (P beam /F rev )·(dF rev /dP beam ). These two measurement techniques are described in this report

  13. Energy and energy width measurement in the FNAL antiproton accumulator

    Energy Technology Data Exchange (ETDEWEB)

    Church, M.; Hsueh, S.; Rapidis, P.; Werkema, S.

    1991-10-01

    The Fermilab Antiproton Accumulator has recently been used to produce Charmonium resonances (charm quark, anti-charm quark bound states) in proton-antiproton annihilations using an internal H{sub 2} gas jet target. A measurement of the resonance mass and width may be obtained from a precise knowledge of the antiproton beam energy and energy spread. The beam energy is measured to an accuracy of 1 part in 10{sup 4} in the range 6.3 Gev to 4.1 Gev by measuring the orbit length and revolution frequency of the beam. The beam momentum spread is measured to an accuracy of 10% by measuring the beam frequency spread and the parameter {eta} = (P{sub beam}/F{sub rev}){center_dot}(dF{sub rev}/dP{sub beam}). These two measurement techniques are described in this report.

  14. Improved Study of the Antiprotonic Helium Hyperfine Structure

    CERN Document Server

    Pask, T.; Dax, A.; Hayano, R.S.; Hori, M.; Horvath, D.; Juhasz, B.; Malbrunot, C.; Marton, J.; Ono, N.; Suzuki, K.; Zmeskal, J.; Widmann, E.

    2008-01-01

    We report the initial results from a systematic study of the hyperfine (HF) structure of antiprotonic helium (n,l) = (37,~35) carried out at the Antiproton Decelerator (AD) at CERN. We performed a laser-microwave-laser resonance spectroscopy using a continuous wave (cw) pulse-amplified laser system and microwave cavity to measure the HF transition frequencies. Improvements in the spectral linewidth and stability of our laser system have increased the precision of these measurements by a factor of five and reduced the line width by a factor of three compared to our previous results. A comparison of the experimentally measured transition frequencies with three body QED calculations can be used to determine the antiproton spin magnetic moment, leading towards a test of CPT invariance.

  15. Formation of charmonium states in antiproton-proton annihilation

    International Nuclear Information System (INIS)

    Cester, R.

    1984-01-01

    Experiment R704 at the CERN ISR studies charmonium states formed directly in antiproton-proton annihilations. A high luminosity and good centre of mass energy definition are obtained by intersecting a low-energy antiproton beam circulating in ring II at the ISR, with a molecular H 2 jet target. During two test runs, for an integrated luminosity of 265 nb -1 , we have observed formation of psi and chi 2 . Taking the known psi mass as reference, we have checked that the nominal ISR momentum is correct and reproducible to 2.0 MeV/c

  16. Antiprotons from spallation of cosmic rays on ISM

    CERN Document Server

    Donato, F

    2002-01-01

    We provide the first evaluation of the secondary interstellar cosmic antiproton flux that is fully consistent with cosmic ray nuclei in the framework of a two-zone diffusion model. We also study and conservatively quantify all possible sources of uncertainty that may affect that antiproton flux. Uncertainties related to propagation are shown to range between 10% and 25%, depending on which part of the spectrum is considered, while the ones related to nuclear physics stand around 22-25 % over all the energy spectrum.

  17. Transverse instability of the antiproton beam in the Recycler Ring

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Bhat, C.M.; Burov, A.; Crisp, J.; Eddy, N.; Hu, M.; Shemyakin, A.; /Fermilab

    2011-03-01

    The brightness of the antiproton beam in Fermilab's 8 GeV Recycler ring is limited by a transverse instability. This instability has occurred during the extraction process to the Tevatron for large stacks of antiprotons even with dampers in operation. This paper describes observed features of the instability, introduces the threshold phase density to characterize the beam stability, and finds the results to be in agreement with a resistive wall instability model. Effective exclusion of the longitudinal tails from Landau damping by decreasing the depth of the RF potential well is observed to lower the threshold density by up to a factor of two.

  18. Low energy antiprotons from supernova exploding in dense clouds

    Science.gov (United States)

    Stephens, S. A.; Mauger, B. G.

    1984-01-01

    The antiproton spectrum resulting from a supernova, which exploded inside a dense cloud, is calculated by taking into account all energy loss processes including adiabatic deceleration during the expansion phase. The influence of various energy loss processes on the evolution of the spectrum as the supernova expands is investigated. It is shown that if about 25 percent of the cosmic ray nucleons are from such sources, the observed low energy antiprotons can be explained, provided the effect of solar modulation is not very large. The possibility of obtaining enhanced low energy spectrum by this process is also examined.

  19. Decay of Hot Nuclei at Low Spins Produced by Antiproton-Annihilation in Heavy Nuclei

    CERN Multimedia

    2002-01-01

    % PS208 \\\\ \\\\ The objective of the experiment is to study (i) the thermal excitation energy distribution of antiproton-induced reactions in heavy nuclei and (ii) the decay properties of hot nuclei at low spins via evaporation, multifragmentation and fission as a function of excitation energy. The experimental set-up consists of 4-$\\pi$ detectors: the Berlin Neutron Ball~(BNB) which is a spherical shell of gadolinium-loaded scintillator liquid with an inner and outer diameter of 40 and 160~cm, respectively. This detector counts the number of evaporated neutrons in each reaction. Inside BNB there is a 4-$\\pi$ silicon ball~(BSIB) with a diameter of 20~cm consisting of 162 detectors which measure energy and multiplicity of all emitted charged nuclear particles. The particles are identified via time of flight, energy and pulse shape correlations.

  20. Beam Diagnostics for Measurements of Antiproton Annihilation Cross Sections at Ultra-low Energy

    Directory of Open Access Journals (Sweden)

    Todoroki K.

    2014-03-01

    Full Text Available The ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons collaboration of CERN is currently attempting to measure the antiproton-nucleus in-flight annihilation cross sections on thin target foils of C, Pd, and Pt at 130 keV of kinetic energy. The low-energy antiprotons were supplied by the Antiproton Decelerator (AD and a radio-frequency quadrupole decelerator. For this measurement, a beam profile monitor based on secondary electron emission was developed. Data from this monitor was used to ensure that antiprotons were precisely tuned to the position of an 80-mm-diameter experimental target, by measuring the spatial profile of 200-ns-long beam pulses containing 105 − 106 antiprotons with an active area of 40 mm × 40 mm and a spatial resolution of 4 mm. By using this monitor, we succeeded in finely tuning antiproton beams on the target, and observed some annihilation events originating from the target.

  1. Search for Resonances in the Photoproduction of Proton-Antiproton Pairs

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, Burnham [Florida State Univ., Tallahassee, FL (United States)

    2006-01-01

    Results are reported on the reaction γp → p$\\bar{p}$p with beam energy in the range 4.8-5.5 GeV. The data were collected at the Thomas Jefferson National Accelerator Facility in CLAS experiment E01-017(G6C). The focus of this study is an understanding of the mechanisms of photoproduction of proton-antiproton pairs, and to search for intermediate resonances, both narrow and broad, which decay to p$\\bar{p}$. The total measured cross section in the photon energy range 4.8-5.5 GeV is σ = 33 ± 2 nb. Measurement of the cross section as a function of energy is provided. An upper limit on the production of a narrow resonance state previously observed with a mass of 2.02 GeV/c2 is placed at 0.35 nb. No intermediate resonance states were observed. Meson exchange production appears to dominate the production of the proton-antiproton pairs.

  2. Cosmic ray propagation in a diffusion model: a new estimation of the diffusion parameters and of the secondary antiprotons flux

    International Nuclear Information System (INIS)

    Maurin, D.

    2001-02-01

    Dark matter is present at numerous scale of the universe (galaxy, cluster of galaxies, universe in the whole). This matter plays an important role in cosmology and can not be totally explained by conventional physic. From a particle physic point of view, there exists an extension of the standard model - supersymmetry - which predicts under certain conditions the existence of new stable and massive particles, the latter interacting weakly with ordinary matter. Apart from direct detection in accelerators, various indirect astrophysical detection are possible. This thesis focuses on one particular signature: disintegration of these particles could give antiprotons which should be measurable in cosmic rays. The present study evaluates the background corresponding to this signal i. e. antiprotons produced in the interactions between these cosmic rays and interstellar matter. In particular, uncertainties of this background being correlated to the uncertainties of the diffusion parameter, major part of this thesis is devoted to nuclei propagation. The first third of the thesis introduces propagation of cosmic rays in our galaxy, emphasizing the nuclear reaction responsibles of the nuclei fragmentation. In the second third, different models are reviewed, and in particular links between the leaky box model and the diffusion model are recalled (re-acceleration and convection are also discussed). This leads to a qualitative discussion about information that one can infer from propagation of these nuclei. In the last third, we finally present detailed solutions of the bidimensional diffusion model, along with constrains obtained on the propagation parameters. The latter is applied on the antiprotons background signal and it concludes the work done in this thesis. The propagation code for nuclei and antiprotons used here has proven its ability in data analysis. It would probably be of interest for the analysis of the cosmic ray data which will be taken by the AMS experiment on

  3. Hyperfine Structure Measurements of Antiprotonic $^3$He using Microwave Spectroscopy

    CERN Document Server

    Friedreich, Susanne

    The goal of this project was to measure the hyperfine structure of $\\overline{\\text{p}}^3$He$^+$ using the technique of laser-microwave-laser spectroscopy. Antiprotonic helium ($\\overline{\\text{p}}$He$^+$) is a neutral exotic atom, consisting of a helium nucleus, an electron and an antiproton. The interactions of the angular momenta of its constituents cause a hyperfine splitting ({HFS}) within the energy states of this new atom. The 3\\% of formed antiprotonic helium atoms which remain in a metastable, radiative decay-dominated state have a lifetime of about 1-3~$\\mu$s. This time window is used to do spectroscopic studies. The hyperfine structure of $\\overline{\\text{p}}^4$He$^+$ was already extensively investigated before. From these measurements the spin magnetic moment of the antiproton can be determined. A comparison of the result to the proton magnetic moment provides a test of {CPT} invariance. Due to its higher complexity the new exotic three-body system of $\\overline{\\text{p}}^3$He$^+$ is a cross-check...

  4. Physics Performance Report for PANDA : Strong Interaction Studies with Antiprotons

    NARCIS (Netherlands)

    Erni, W.; Keshelashvili, I.; Krusche, B.; Steinacher, M.; Heng, Y.; Liu, Z.; Liu, H.; Shen, X.; Wang, O.; Xu, H.; Becker, J.; Feldbauer, F.; Heinsius, F. -H.; Held, T.; Koch, H.; Kopf, B.; Pelizaeus, M.; Schroeder, T.; Steinke, M.; Wiedner, U.; Zhong, J.; Bianconi, A.; Bragadireanu, M.; Pantea, D.; Tudorache, A.; Tudorache, V.; De Napoli, M.; Giacoppo, F.; Raciti, G.; Rapisarda, E.; Sfienti, C.; Bialkowski, E.; Budzanowski, A.; Czech, B.; Kistryn, M.; Kliczewski, S.; Kozela, A.; Kulessa, P.; Pysz, K.; Schaefer, W.; Siudak, R.; Szczurek, A.; Czy. zycki, W.; Domagala, M.; Hawryluk, M.; Lisowski, E.; Lisowski, F.; Wojnar, L.; Gil, D.; Hawranek, P.; Kamys, B.; Kistryn, St.; Korcyl, K.; Krzemien, W.; Magiera, A.; Moskal, P.; Rudy, Z.; Salabura, P.; Smyrski, J.; Wronska, A.; Al-Turany, M.; Augustin, I.; Deppe, H.; Flemming, H.; Gerl, J.; Goetzen, K.; Hohler, R.; Lehmann, D.; Lewandowski, B.; Luehning, J.; Maas, F.; Mishra, D.; Orth, H.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C. J.; Schmitt, L.; Schwarz, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Brinkmann, K. -T.; Freiesleben, H.; Jaekel, R.; Kliemt, R.; Wuerschig, T.; Zaunick, H. -G.; Abazov, V. M.; Alexeev, G.; Arefiev, A.; Astakhov, V. I.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Yu. I.; Dodokhov, V. Kh.; Efremov, A. A.; Fedunov, A. G.; Feshchenko, A. A.; Galoyan, A. S.; Grigoryan, S.; Karmokov, A.; Koshurnikov, E. K.; Kudaev, V. Ch.; Lobanov, V. I.; Lobanov, Yu. Yu.; Makarov, A. F.; Malinina, L. V.; Malyshev, V. L.; Mustafaev, G. A.; Olshevski, A.; . Pasyuk, M. A.; Perevalova, E. A.; Piskun, A. A.; Pocheptsov, T. A.; Pontecorvo, G.; Rodionov, V. K.; Rogov, Yu. N.; Salmin, R. A.; Samartsev, A. G.; Sapozhnikov, M. G.; Shabratova, A.; Shabratova, G. S.; Skachkova, A. N.; Skachkov, N. B.; Strokovsky, E. A.; Suleimanov, M. K.; Teshev, R. Sh.; Tokmenin, V. V.; Uzhinsky, V. V.; Vodopianov, A. S.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Foehl, K.; Glazier, D.; Watts, D.; Woods, P.; Eyrich, W.; Lehmann, A.; Teufel, A.; Dobbs, S.; Metreveli, Z.; Seth, K.; Tann, B.; Tomaradze, A.; Bettoni, D.; Carassiti, V.; Cecchi, A.; Dalpiaz, P.; Fioravanti, E.; Garzia, I.; Negrini, M.; Savri`e, M.; Stancari, G.; Dulach, B.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Pace, E.; Bersani, A.; Macri, M.; Marinelli, M.; Parodi, R. F.; Brodski, I.; Doering, W.; Drexler, P.; Dueren, M.; Gagyi-Palffy, Z.; Hayrapetyan, A.; Kotulla, M.; Kuehn, W.; Lange, S.; Liu, M.; Metag, V.; Nanova, M.; Novotny, R.; Salz, C.; Schneider, J.; Schoenmeier, P.; Schubert, R.; Spataro, S.; Stenzel, H.; Strackbein, C.; Thiel, M.; Thoering, U.; Yang, S.; Clarkson, T.; Cowie, E.; Downie, E.; Hill, G.; Hoek, M.; Ireland, D.; Kaiser, R.; Keri, T.; Lehmann, I.; Livingston, K.; Lumsden, S.; MacGregor, D.; McKinnon, B.; Murray, M.; Protopopescu, D.; Rosner, G.; Seitz, B.; Yang, G.; Babai, M.; Biegun, A. K.; Bubak, A.; Guliyev, E.; Suyam Jothi, Vanniarajan; Kavatsyuk, M.; Loehner, H.; Messchendorp, J.; Smit, H.; van der Weele, J. C.; Garcia, F.; Riska, D. -O.; Buescher, M.; Dosdall, R.; Dzhygadlo, R.; Gillitzer, A.; Grunwald, D.; Jha, V.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Maier, R.; Mertens, M.; Ohm, H.; Prasuhn, D.; Randriamalala, T.; Ritman, J.; Roeder, M.; Stockmanns, T.; Wintz, P.; Wuestner, P.; Kisiel, J.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Fissum, S.; Hansen, K.; Isaksson, L.; Lundin, M.; Schroeder, B.; Achenbach, P.; Mora Espi, M. C.; Pochodzalla, J.; Sanchez, S.; Sanchez-Lorente, A.; Dormenev, V. I.; Fedorov, A. A.; Korzhik, M. V.; Missevitch, O. V.; Balanutsa, V.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Boukharov, A.; Malyshev, O.; Marishev, I.; Semenov, A.; Hoeppner, C.; Ketzer, B.; Konorov, I.; Mann, A.; Neubert, S.; Paul, S.; Weitzel, Q.; Khoukaz, A.; Rausmann, T.; Taeschner, A.; Wessels, J.; Varma, R.; Baldin, E.; Kotov, K.; Peleganchuk, S.; Tikhonov, Yu.; Boucher, J.; Hennino, T.; Kunne, R.; Ong, S.; Pouthas, J.; Ramstein, B.; Rosier, P.; Sudol, M.; Van de Wiele, J.; Zerguerras, T.; Dmowski, K.; Korzeniewski, R.; Przemyslaw, D.; Slowinski, B.; Boca, G.; Braghieri, A.; Costanza, S.; Fontana, A.; Genova, P.; Lavezzi, L.; Montagna, P.; Rotondi, A.; Belikov, N. I.; Davidenko, A. M.; Derevschikov, A. A.; Goncharenko, Y. M.; Grishin, V. N.; Kachanov, V. A.; Konstantinov, D. A.; Kormilitsin, V. A.; Kravtsov, V. I.; Matulenko, Y. A.; Melnik, Y. M.; Meschanin, A. P.; Minaev, N. G.; Mochalov, V. V.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Ryazantsev, A. V.; Semenov, P. A.; Soloviev, L. F.; Uzunian, A. V.; Vasiliev, A. N.; Yakutin, A. E.; Baeck, T.; Cederwall, B.; Bargholtz, C.; Geren, L.; Tegner, P. E.; Belostotski, S.; Gavrilov, G.; Itzotov, A.; Kisselev, A.; Kravchenko, P.; Manaenkov, S.; Miklukho, O.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V.; Zhadanov, A.; Fava, L.; Panzieri, D.; Alberto, D.; Amoroso, A.; Botta, E.; Bressani, T.; Bufalino, S.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Ferrero, L.; Grasso, A.; Greco, M.; Kugathasan, T.; Maggiora, M.; Marcello, S.; Serbanut, G.; Sosio, S.; Bertini, R.; Calvo, D.; Coli, S.; De Remigis, P.; Feliciello, A.; Filippi, A.; Giraudo, G.; Mazza, G.; Rivetti, A.; Szymanska, K.; Tosello, F.; Wheadon, R.; Morra, O.; Agnello, M.; Iazzi, F.; Szymanska, K.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Clement, H.; Ekstroem, C.; Calen, H.; Grape, S.; Hoeistad, B.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Thome, E.; Zlomanczuk, J.; Diaz, J.; Ortiz, A.; Borsuk, S.; Chlopik, A.; Guzik, Z.; Kopec, J.; Kozlowski, T.; Melnychuk, D.; Plominski, M.; Szewinski, J.; Traczyk, K.; Zwieglinski, B.; Buehler, P.; Gruber, A.; Kienle, P.; Marton, J.; Widmann, E.; Zmeskal, J.; Lutz, M. F. M.; Pire, B.; Scholten, O.; Timmermans, R.

    To study fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei, the universal PANDA detector will be built. Gluonic excitations, the physics of strange and charm quarks and nucleon structure studies will be performed with unprecedented accuracy

  5. Annihilation of antiprotons stopped in liquid hydrogen and deuterium

    International Nuclear Information System (INIS)

    Dalkarov, O.D.; Kerbikov, B.O.; Markushin, V.E.

    1976-01-01

    Detailed analysis is given of stopping antiproton annihilation in liquid hydrogen and deuterium. Connection between capture schedule and properties of bound states in nucleon-antinucleon system is established. The theoretical predictions are compared with experimental data which appeared in 1971-75

  6. Relative Biological Effectiveness and Peripheral Damage of Antiproton Annihilation

    CERN Multimedia

    Kavanagh, J N; Kaiser, F; Tegami, S; Schettino, G; Kovacevic, S; Hajdukovic, D; Knudsen, H; Currell, F J; Toelli, H T; Doser, M; Holzscheiter, M; Herrmann, R; Timson, D J; Alsner, J; Landua, R; Comor, J; Moller, S P; Beyer, G

    2002-01-01

    The use of ions to deliver radiation to a body for therapeutic purposes has the potential to be significant improvement over the use of low linear energy transfer (LET) radiation because of the improved energy deposition profile and the enhanced biological effects of ions relative to photons. Proton therapy centers exist and are being used to treat patients. In addition, the initial use of heavy ions such as carbon is promising to the point that new treatment facilities are planned. Just as with protons or heavy ions, antiprotons can be used to deliver radiation to the body in a controlled way; however antiprotons will exhibit additional energy deposition due to annihilation of the antiprotons within the body. The slowing down of antiprotons in matter is similar to that of protons except at the very end of the range beyond the Bragg peak. Gray and Kalogeropoulos estimated the additional energy deposited by heavy nuclear fragments within a few millimeters of the annihilation vertex to be approximately 30 MeV (...

  7. Spallation reactions studied with 4-detector arrays

    Indian Academy of Sciences (India)

    Recently there has been a renewed interest in the study of spallation reactions in basic nuclear physics as well as in potential applications. Spallation reactions induced by light projectiles (protons, antiprotons, pions, etc.) in the GeV range allow the formation of hot nuclei which do not suffer the collective excitations ...

  8. Constraints on particle dark matter from cosmic-ray antiprotons

    International Nuclear Information System (INIS)

    Fornengo, N.; Vittino, A.; Maccione, L.

    2014-01-01

    Cosmic-ray antiprotons represent an important channel for dark matter indirect-detection studies. Current measurements of the antiproton flux at the top of the atmosphere and theoretical determinations of the secondary antiproton production in the Galaxy are in good agreement, with no manifest deviation which could point to an exotic contribution in this channel. Therefore, antiprotons can be used as a powerful tool for constraining particle dark matter properties. By using the spectrum of PAMELA data from 50 MV to 180 GV in rigidity, we derive bounds on the dark matter annihilation cross section (or decay rate, for decaying dark matter) for the whole spectrum of dark matter annihilation (decay) channels and under different hypotheses of cosmic-rays transport in the Galaxy and in the heliosphere. For typical models of galactic propagation, the constraints are strong, setting a lower bound on the dark matter mass of a ''thermal'' relic at about 40–80 GeV for hadronic annihilation channels. These bounds are enhanced to about 150 GeV on the dark matter mass, when large cosmic-rays confinement volumes in the Galaxy are considered, and are reduced to 3–4 GeV for annihilation to light quarks (no bound for heavy-quark production) when the confinement volume is small. Bounds for dark matter lighter than few tens of GeV are due to the low energy part of the PAMELA spectrum, an energy region where solar modulation is relevant: to this aim, we have implemented a detailed solution of the transport equation in the heliosphere, which allowed us not only to extend bounds to light dark matter, but also to determine the uncertainty on the constraints arising from solar modulation modelling. Finally, we estimate the impact of soon-to-come AMS-02 data on the antiproton constraints

  9. Antiproton-deuteron annihilation into. lambda. +anything below 1 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Mandelkern, M.A.; Price, L.R.; Schultz, J.; Smith, D.W.

    1983-01-01

    We present data on ..lambda.. production from two experiments in which the ANL 12-foot and the BNL 30-inch deuterium-filled bubble chambers were exposed to antiproton beams from 550 to 900 MeV/c. Some features of the data are compared to calculations of double scattering using K-bar and Lambda-bar as the exchange particles. The ..lambda.. final states in our experiments exhibit behavior which suggests that a double-scattering mechanism with a K-bar exchanged between the two nucleons is the most likely candidate for the ..lambda.. production mechanism. The data are compared with two other experiments in which ..lambda.. events are produced above the p-bard..-->..Lambda-bar..lambda..N threshold. A test of isospin invariance in these reactions is also reported.

  10. Antiproton beam profile measurements using Gas Electron Multipliers

    CERN Document Server

    Duarte Pinto, Serge; Spanggaard, Jens; Tranquille, Gerard

    2011-01-01

    The new beam profile measurement for the Antiproton Decelerator (AD) at CERN is based on a single Gas Electron Multiplier (GEM) with a 2D readout structure. This detector is very light, ~0.4% X_0, as required by the low energy of the antiprotons, 5.3 MeV. This overcomes the problems previously encountered with multi-wire proportional chambers (MWPC) for the same purpose, where beam interactions with the detector severely affect the obtained profiles. A prototype was installed and successfully tested in late 2010, with another five detectors now installed in the ASACUSA and AEgIS beam lines. We will provide a detailed description of the detector and discuss the results obtained. The success of these detectors in the AD makes GEM-based detectors likely candidates for upgrade of the beam profile monitors in all experimental areas at CERN. The various types of MWPC currently in use are aging and becoming increasingly difficult to maintain.

  11. GEM-based beam profile monitors for the antiproton decelerator

    CERN Document Server

    Duarte Pinto, S.; Ropelewski, L.; Spanggaard, J.; Tranquille, G.

    2012-01-01

    The new beam profile measurement for the Antiproton Decelerator (AD) at CERN is based on a single Gas Electron Multiplier (GEM) with a 2D readout structure. This detector is very light, ~0.4% X0, as required by the low energy of the antiprotons, 5.3 MeV. This overcomes the problems previously encountered with multi-wire proportional chambers (MWPC) for the same purpose, where beam interactions with the detector severely affect the obtained profiles. A prototype was installed and successfully tested in late 2010, with another five detectors now installed in the ASACUSA and AEGIS beam lines. We will provide a detailed description of the detector and discuss the results obtained. The success of these detectors in the AD makes GEM-based detectors likely candidates for upgrade of the beam profile monitors in all experimental areas at CERN. The various types of MWPC currently in use are aging and becoming increasingly difficult to maintain.

  12. Dark matter for excess of AMS-02 positrons and antiprotons

    Directory of Open Access Journals (Sweden)

    Chuan-Hung Chen

    2015-07-01

    Full Text Available We propose a dark matter explanation to simultaneously account for the excess of antiproton-to-proton and positron power spectra observed in the AMS-02 experiment while having the right dark matter relic abundance and satisfying the current direct search bounds. We extend the Higgs triplet model with a hidden gauge symmetry of SU(2X that is broken to Z3 by a quadruplet scalar field, rendering the associated gauge bosons stable weakly-interacting massive particle dark matter candidates. By coupling the complex Higgs triplet and the SU(2X quadruplet, the dark matter candidates can annihilate into triplet Higgs bosons each of which in turn decays into lepton or gauge boson final states. Such a mechanism gives rise to correct excess of positrons and antiprotons with an appropriate choice of the triplet vacuum expectation value. Besides, the model provides a link between neutrino mass and dark matter phenomenology.

  13. Precocious scaling in antiproton-proton scattering at low energies

    International Nuclear Information System (INIS)

    Ion, D.B.; Petrascu, C.; Topor Pop, V.; Popa, V.

    1993-08-01

    The scaling of the diffraction peak in antiproton-proton scattering has been investigated from nera threshold up to 3 GeV/c laboratory momenta. It was shown that the scaling of the differential cross sections are evidentiated with a surprising accuracy not only at high energies, but also at very low ones (e.g. p LAB = 0.1 - 0.5 GeV/c), beyond the resonance and exotic resonance regions. This precocious scaling strongly suggests that the s-channel helicity conservation (SCHC) can be a peculiar property that should be tested in antiproton-proton interaction not only at high energies but also at low energy even below p LAB = 1 GeV/c. (author). 36 refs, 9 figs

  14. Commissioning of Fermilab's Electron Cooling System for 8-GeV Antiprotons

    CERN Document Server

    Nagaitsev, Sergei; Burov, Alexey; Carlson, Kermit; Gai, Wei; Gattuso, Consolato; Hu, Martin; Kazakevich, Grigory; Kramper, Brian J; Kroc, Thomas K; Leibfritz, Jerry; Prost, Lionel; Pruss, Stanley M; Saewert, Greg W; Schmidt, Chuck; Seletsky, Sergey; Shemyakin, Alexander V; Sutherland, Mary; Tupikov, Vitali; Warner, Arden

    2005-01-01

    A 4.3-MeV electron cooling system has been installed at Fermilab in the Recycler antiproton storage ring and is being currently commissioned. The cooling system is designed to assist accumulation of 8.9-GeV/c antiprotons for the Tevatron collider operations. This paper will report on the progress of the electron beam commissioning effort as well as on detailed plans of demonstrating the cooling of antiprotons.

  15. The Antiproton Accumulator and Collector and the discovery of the W & Z intermediate vector bosons

    CERN Document Server

    Chohan, Vinod

    2016-01-01

    The following sections are included: Preface ; Brief outline of the overall scheme for antiprotons of the SPS as a collider ; Antiproton production and accumulation ; The AA and AC storage rings ; Stochastic cooling and stacking ; Post-acceleration of antiprotons and beams for SPS Collider ; Proton test beams for the AA and AC from the PS ; The W and Z discoveries and the Nobel Prize ; Accumulator performance ; Acknowledgements and conclusions ; References

  16. Bubble detector measurements of a mixed radiation field from antiproton annihilation

    DEFF Research Database (Denmark)

    Bassler, Niels; Knudsen, Helge; Møller, Søren Pape

    2006-01-01

    In the light of recent progress in the study of the biological potential of antiproton tumour treatment it is important to be able to characterize the neutron intensity arising from antiproton annihilation using simple, compact and reliable detectors. The intensity of fast neutrons from antiproton...... annihilation on polystyrene has been measured with bubble detectors and a multiplicity has been derived as well as an estimated neutron equivalent dose. Additionally the sensitivity of bubble detectors towards protons was measured....

  17. Antiprotons from dark matter annihilation in the Galaxy. Astrophysical uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Evoli, Carmelo [Chinese Academy of Sciences, Beijing (China). National Astronomical Observatories; Cholis, Ilias; Ullio, Piero [SISSA, Sezione di Trieste (Italy); INFN, Sezione di Trieste (Italy); Grasso, Dario [INFN, Sezione di Pisa (Italy); Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-08-15

    The latest years have seen steady progresses in WIMP dark matter (DM) searches, with hints of possible signals suggested by both direct and indirect detection experiments. Antiprotons can play a key role validating those interpretations since they are copiously produced by WIMP annihilations in the Galactic halo, and the secondary antiproton background produced by Cosmic Ray (CR) interactions is predicted with fair accuracy and matches the observed spectrum very well. Using the publicly available numerical DRAGON code, we reconsider antiprotons as a tool to constrain DM models discussing its power and limitations. We provide updated constraints on a wide class of annihilating DM models by comparing our predictions against the most up-to-date anti p measurements, taking also into account the latest spectral information on the p, He and other CR nuclei fluxes. Doing that, we probe carefully the uncertainties associated to both secondary and DM originated antiprotons, by using a variety of distinctively different assumptions for the propagation of CRs and for the DM distribution in the Galaxy. We find that the impact of the astrophysical uncertainties on constraining the DM properties can be much stronger, up to a factor of {proportional_to}50, than the one due to uncertainties on the DM distribution ({proportional_to}2-6). Remarkably, even reducing the uncertainties on the propagation parameters derived by local observables, non-local effects can still change DM model constraints even by 50%. Nevertheless, current anti p data place tight constraints on DM models, excluding some of those suggested in connection with indirect and direct searches. Finally we discuss the power of upcoming CR spectral data from the AMS-02 observatory to drastically reduce the uncertainties discussed in this paper and estimate the expected sensitivity of this instrument to some sets of DM models. (orig.)

  18. Selected Papers on Low-Energy Antiprotons and Possible Applications

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert [Fermilab

    1998-09-19

    The only realistic means by which to create a facility at Fermilab to produce large amounts of low energy antiprotons is to use resources which already exist. There is simply too little money and manpower at this point in time to generate new accelerators on a time scale before the turn of the century. Therefore, innovation is required to modify existing equipment to provide the services required by experimenters.

  19. Prospects for testing Lorentz and CPT symmetry with antiprotons.

    Science.gov (United States)

    Vargas, Arnaldo J

    2018-03-28

    A brief overview of the prospects of testing Lorentz and CPT symmetry with antimatter experiments is presented. The models discussed are applicable to atomic spectroscopy experiments, Penning-trap experiments and gravitational tests. Comments about the sensitivity of the most recent antimatter experiments to the models reviewed here are included.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Author(s).

  20. The Production and Study of Antiprotons and Cold Antihydrogen

    Science.gov (United States)

    2010-11-10

    to sustain this unique antimatter research study of antiprotons and antihydrogen, the annihilation of which produce the maximum energy per unit mass...The practical goal is to develop the unusual techniques required to produce and store atoms made entirely of antimatter , given that the slightest...matter and antimatter atoms to extremely high precision – promising to be the highest precision test of the fundamental CPT theorem with leptons and

  1. X-rays from anti-protonic hydrogen and deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Gorringe, T.P.; Davies, J.D.; Lowe, J.; Nelson, J.M.; Playfer, S.M.; Pyle, G.J.; Squier, G.T.A.; Baker, C.A.; Batty, C.J.; Clark, S.A.; Kilvington, A.I.; Moir, J.; Sakamoto, S.; Welsh, R.E.; Winter, R.G.; Lingeman, E.W.A.

    1985-11-07

    Antiprotons from the LEAR facility at CERN were stopped in targets of gaseous H/sub 2/ or D/sub 2/. Yields of L X-rays were measured. K-series from anti p-p atoms were observed. The measured shift and width for the 1s level are ..delta..Esub(1s)=-0.73+-0.15 keV and GAMMAsub(1s)=0.85+-0.39 keV. (orig.).

  2. Cooling effect on hot antiproton plasma using buffer gas cloud. Simbuca - setup and simulations

    CERN Document Server

    Roshkovski, Dejan

    2014-01-01

    In this work I investigated the sympathetic cooling effect of antipro- tons with a plasma of charged anions in a Penning trap. From the AD (antiproton decelerator) antiprotons are decelerated to 5.5MeV. To get them further decelerated we trap the antiprotons inside the penning trap where we cool them down even further using a buffer gas which consists of charged plasma anions which helps us cool the antiprotons. For this work I used the open source simulations program Simbuca

  3. Simulation of an antiprotons beam applied to the radiotherapy

    International Nuclear Information System (INIS)

    Prata, Leonardo de Almeida

    2006-07-01

    Results for the interaction of a antiproton beam with constituent nuclei of the organic matter are presented. This method regards of the application of an computational algorithm to determine quantitatively the differential cross sections for the scattered particles, starting from the interaction of these antiprotons with the nuclei, what will allow in the future to draw the isodose curve for antiproton therapy, once these beams are expected to be used in cancer treatment soon. The calculation will be done through the application of the concepts of the method of intranuclear cascade, providing yield and differential cross sections of the scattered particles, present in the software MCMC. Th algorithm was developed based on Monte Carlo's method, already taking into account a validate code. The following physical quantities are presented: the yield of secondary particles, their spectral and angular distributions for these interactions. For the energy range taken into account the more important emitted particles are protons, neutrons and pions. Results shown that emitted secondary particles can modify the isodose curves, because they present high yield and energy for transverse directions. (author)

  4. Capture, Electron-Cooling and Compression of Antiprotons in a Large Penning-Trap for Physics Experiments with an Ultra-Low Energy Extracted Antiproton Beam

    CERN Multimedia

    2002-01-01

    % PS200 \\\\ \\\\The availability of ultra-low energy antiprotons is a crucial ingredient for the execution of the gravity measurements PS200. We have developed a method to provide such low energy antiprotons based on a large Penning trap (the PS200 catching trap). This system can accept a fast-extracted pulse from LEAR, reduce the energy of the antiprotons in the pulse from 5.9~MeV to several tens of kilovolts using a degrading foil, and then capture the antiprotons in a large Penning trap. These antiprotons are cooled by electrons previously admitted to the trap and are collected in a small region at the center of the trap. We have demonstrated our capability to capture up to 1~million antiprotons from LEAR in a single shot, electron cool these antiprotons, and transfer up to 95\\% of them into the inner, harmonic region. A storage time in excess of 1 hour was observed. These results have been obtained with the cryogenic trap vacuum coupled to a room temperature vacuum at about l0$ ^- ^{1} ^0 $ Torr, which is an...

  5. Simulation of an antiprotons beam applied to the radiotherapy; Simulacao de um feixe de antiprotons aplicado a radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Leonardo de Almeida

    2006-07-15

    Results for the interaction of a antiproton beam with constituent nuclei of the organic matter are presented. This method regards of the application of an computational algorithm to determine quantitatively the differential cross sections for the scattered particles, starting from the interaction of these antiprotons with the nuclei, what will allow in the future to draw the isodose curve for antiproton therapy, once these beams are expected to be used in cancer treatment soon. The calculation will be done through the application of the concepts of the method of intranuclear cascade, providing yield and differential cross sections of the scattered particles, present in the software MCMC. Th algorithm was developed based on Monte Carlo's method, already taking into account a validate code. The following physical quantities are presented: the yield of secondary particles, their spectral and angular distributions for these interactions. For the energy range taken into account the more important emitted particles are protons, neutrons and pions. Results shown that emitted secondary particles can modify the isodose curves, because they present high yield and energy for transverse directions. (author)

  6. LEAP: A balloon-borne search for low-energy cosmic ray antiprotons

    Science.gov (United States)

    Moats, Anne Rosalie Myers

    The LEAP (Low Energy Antiproton) experiment is a search for cosmic ray antiprotons in the 120 MeV to 1.2 GeV kinetic energy range. The motivation for this project was the result announced by Buffington et al. (1981) that indicated an anomalously high antiproton flux below 300 MeV; this result has compelled theorists to propose sources of primary antiprotons above the small secondary antiproton flux produced by high energy cosmic ray collisions with nuclei in the interstellar medium. LEAP consisted of the NMSU magnet spectrometer, a time-of-flight system designed at NASA-Goddard, two scintillation detectors, and a Cherenkov counter. Analysis of flight data performed by the high energy astrophysics group at Goddard Space Flight Center revealed no antiproton candidates found in the 120 MeV to 360 MeV range; 3 possible antiproton candidate events were found in the 500 MeV to 1.2 GeV range in an analysis done here at the University of Arizona. However, since it will be necessary to sharpen the calibration on all of the LEAP systems in order to positively identify these events as antiprotons, only an upper limit has been determined at present. Thus, combining the analyses performed at the University of Arizona and NASA-Goddard, 90 percent confidence upper limits of 3.5 x 10-5 in the 120 MeV to 360 MeV range and 2.3 x 10-4 in the 500 MeV to 1.2 GeV range for the antiproton/proton ratio is indicated by the LEAP results. LEAP disagrees sharply with the results of the Buffington group, indicating a low antiproton flux at these energies. Thus, a purely secondary antiproton flux may be adequate at low energies.

  7. Phenomenological study of exclusive binary light particle production from antiproton-proton annihilation at FAIR/PANDA

    Science.gov (United States)

    Ying, Wang

    2016-08-01

    Exclusive binary annihilation reactions induced by antiprotons of momentum from 1.5 to 15 GeV/c can be extensively investigated at FAIR/PANDA [1]. We are especially interested in the channel of charged pion pairs. Whereas this very probable channel constitutes the major background for other processes of interest in the PANDA experiment, it carries unique physical information on the quark content of proton, allowing to test different models (quark counting rules, statistical models,..). To study the binary reactions of light meson formation, we are developing an effective Lagrangian model based on Feynman diagrams which takes into account the virtuality of the exchanged particles. Regge factors [2] and form factors are introduced with parameters which may be adjusted on the existing data. We present preliminary results of our formalism for different reactions of light meson production leading to reliable predictions of cross sections, energy and angular dependencies in the PANDA kinematical range.

  8. Comparison of Optimized Single and Multifield Irradiation Plans of Antiproton, Proton and Carbon Ion Beams

    DEFF Research Database (Denmark)

    Bassler, Niels; Kantemiris, Ioannis; Karaiskos, Pantelis

    2010-01-01

    Antiprotons have been suggested as a possibly superior modality for radiotherapy, due to the energy released when antiprotons annihilate, which enhances the Bragg peak and introduces a high-LET component to the dose. However, concerns are expressed about the inferior lateral dose distribution...

  9. Production of ultra slow antiprotons, its application to atomic collisions and atomic spectroscopy-ASACUSA project

    CERN Document Server

    Yamazaki, Y

    1999-01-01

    The atomic spectroscopy and collisions using slow antiprotons (ASACUSA) project aims at studying collision dynamics with slow antiprotons and high precision spectroscopy of antiprotonic atoms. To realize these purposes, the $9 production of high quality ultra slow antiproton beams is essential, which is achieved by the combination of antiproton decelerator (AD) from 3 GeV to 5 MeV, a radio frequency quadrupole (RFQ) decelerator from 5 MeV to 50 keV, and $9 finally an electromagnetic trap from 50 keV to 10 eV. From the atomic physics point of view, an antiproton is an extremely heavy electron and/or a negatively charged proton, i.e., the antiproton is a unique tool to shed light on $9 collision dynamics from the other side of the world. In addition to this fundamentally important feature, the antiproton has also a big practical advantage, i.e., it annihilates with the target nuclei emitting several energetic $9 pions, which provides high detection efficiency with very good time resolution. Many-body effects wh...

  10. Jagiellonian University Drift Chamber Calibration and Track Reconstruction in the P349 Antiproton Polarization Experiment

    CERN Document Server

    Alfs, D; Moskal, P; Zieliński, M; Grzonka, D; Hauenstein, F; Kilian, K; Lersch, D; Ritman, J; Sefzick, T; Oelert, W; Diermaier, M; Widmann, E; Zmeskal, J; Wolke, M; Nadel-Turonski, P; Carmignotto, M; Horn, T; Mkrtchyan, H; Asaturyan, A; Mkrtchyan, A; Tadevosyan, V; Zhamkochyan, S; Malbrunot-Ettenauer, S; Eyrich, W; Zink, A

    2017-01-01

    The goal of the P349 experiment is to test whether the antiproton production process can be itself a source of antiproton polarization. In this article, we present the motivation and details of the performed measurement. We report on the status of the analysis focusing mainly on calibration of the drift chambers and 3d track reconstruction.

  11. Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations

    CERN Document Server

    Sótér, A.; Kobayashi, T.; Barna, D.; Horváth, D.; Hori, M.

    2014-01-01

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) experiment at the Antiproton Decelerator (AD) facility of CERN constructed segmented scintillators to detect and track the charged pions which emerge from antiproton annihilations in a future superconducting radiofrequency Paul trap for antiprotons. A system of 541 cast and extruded scintillator bars were arranged in 11 detector modules which provided a spatial resolution of 17 mm. Green wavelength-shifting fibers were embedded in the scintillators, and read out by silicon photomultipliers which had a sensitive area of 1 x 1 mm^2. The photoelectron yields of various scintillator configurations were measured using a negative pion beam of momentum p ~ 1 GeV/c. Various fibers and silicon photomultipliers, fiber end terminations, and couplings between the fibers and scintillators were compared. The detectors were also tested using the antiproton beam of the AD. Nonlinear effects due to the saturation of the silicon photomultiplier were seen a...

  12. Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

    CERN Document Server

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Kurchaninov, L; Jonsell, S; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-01-01

    Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antipr...

  13. Design of a High Luminosity 100 TeV Proton Antiproton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Oliveros Tuativa, Sandra Jimena [Univ. of Mississippi, Oxford, MS (United States)

    2017-04-01

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10$^{\\,34}$ cm$^{-2}$ s$^{-1}$ luminosity 100 TeV proton-antiproton collider is explored with 7$\\times$ the energy of the LHC. The dipoles are 4.5\\,T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in $p\\bar{p}$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $\\beta^{*}$ for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  14. Design of a High Luminosity 100 TeV Proton-Antiproton Collider

    Science.gov (United States)

    Oliveros Tautiva, Sandra Jimena

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10 34 cm-2 s-1 luminosity 100 TeV proton-antiproton collider is explored with 7x the energy of the LHC. The dipoles are 4.5 T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in pp than pp collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller beta* for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  15. Proton-Proton and Proton-Antiproton Colliders

    CERN Document Server

    Scandale, Walter

    2014-01-01

    In the last five decades, proton–proton and proton–antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion–ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  16. Antiprotons production of propagating cosmic rays under distributed reacceleration

    International Nuclear Information System (INIS)

    Simon, M.; Heinbach, U.; Koch, C.

    1987-01-01

    The available measurements on the cosmic ray anti p/p-ratio show an excess of antiprotons above predictions derived in the framework of the standard picture of cosmic ray origin and propagation. We calculated the anti p production from collisions of cosmic rays with the interstellar gas under the condition of distributed reacceleration. It could be shown that the calculated anti p/p-ratio is enhanced compared to that derived from the 'leaky box' model but it remains difficult to bring it into agreement with the data by reasonable astrophysical assumptions. (orig.)

  17. The antiproton depth–dose curve measured with alanine detectors

    CERN Document Server

    Bassler, Niels; Palmans, Hugo; Holzscheiter, Michael H; Kovacevic, Sandra

    2008-01-01

    n this paper we report on the measurement of the antiproton depth–dose curve, with alanine detectors. The results are compared with simulations using the particle energy spectrum calculated by FLUKA, and using the track structure model of Hansen and Olsen for conversion of calculated dose into response. A good agreement is observed between the measured and calculated relative effectiveness although an underestimation of the measured values beyond the Bragg-peak remains unexplained. The model prediction of response of alanine towards heavy charged particles encourages future use of the alanine detectors for dosimetry of mixed radiation fields.

  18. The Antiproton Depth Dose Curve Measured with Alanine Detectors

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, Johnny Witterseh; Palmans, Hugo

    2008-01-01

    In this paper we report on the measurement of the antiproton depth dose curve, with alanine detectors. The results are compared with simulations using the particle energy spectrum calculated by FLUKA, and using the track structure model of Hansen et Olsen for conversion of calculated dose...... into response. A good agreement was observed between the measured and calculated relative effectiveness although a slight underestimation of the calculated values in the Bragg peak remains unexplained. The model prediction of response of alanine towards heavy charged particles encourages future use...... of the alanine detectors for dosimetry of mixed radiation fields....

  19. Antiproton annihilation at rest in nitrogen and deuterium gas

    International Nuclear Information System (INIS)

    Riedlberger, J.; Amsler, C.; Doser, M.; Straumann, U.; Truol, P.; Bailey, D.; Barlag, S.; Gastaldi, U.; Landua, R.; Sabev, C.; Duch, K.D.; Heel, M.; Kalinowsky, H.; Kayser, F.; Klempt, E.; May, B.; Schreiber, O.; Weidenauer, P.; Ziegler, M.; Dahme, W.; Feld-Dahme, F.; Schaefer, U.

    1989-01-01

    Results on antiproton absorption at rest in gaseous nitrogen and deuterium are presented from an analysis of approximately 10 6 events each taken with a magnetic spectrometer. Inclusive features such as pion and proton multiplicities and spectra are presented. Data relating to absorption modes requiring more than one nucleon, such as the Λ yield, the Λ spectrum, and the exclusive deuterium channels bar pd→π - p, ΛK + π - are discussed. The fully reconstructable channels bar pd→π + π - π - p,π + π + π - π - π - p also show a high-energy proton tail unaccounted for by single nucleon rescattering mechanisms

  20. Top Production at the Tevatron: The Antiproton Awakens

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Kenneth [Nebraska U.

    2017-07-01

    A long time ago, at a laboratory far, far away, the Fermilab Tevatron collided protons and antiprotons at $\\sqrt{s} = 1.96$ TeV. The CDF and D0 experiments each recorded datasets of about 10 fb$^{-1}$. As such experiments may never be repeated, these are unique datasets that allow for unique measurements. This presentation describes recent results from the two experiments on top-quark production rates, spin orientations, and production asymmetries, which are all probes of the $p\\bar{p}$ initial state.

  1. High resolution X-ray spectroscopy in light antiprotonic atoms

    CERN Document Server

    Borchert, G L; Augsburger, M A; Castelli, C M; Chatellard, D; Egger, J P; El-Khoury, P; Elble, M; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    2000-01-01

    At the LEAR facility, CERN, antiprotonic L alpha transitions in light elements have been investigated with a focussing crystal spectrometer. The high resolution of the experiment allowed for the first time to resolve in pH/pH the 2/sup 3/P/sub 0/ state from the close-lying states 2/sup 3/P/sub 2/, 2/sup 1/P/sub 1/, and 2/sup 3/P /sub 1/. In pD the corresponding transitions were found to be more than an order of magnitude broader. To a large extent the results for pH support the meson exchange model. (15 refs).

  2. Review of the High Performance Antiproton Trap (HiPAT) Experiment at the Marshall Space Flight Center

    Science.gov (United States)

    Pearson, J. B.; Sims, Herb; Martin, James; Chakrabarti, Suman; Lewis, Raymond; Fant, Wallace

    2003-01-01

    The significant energy density of matter-antimatter annihilation is attractive to the designers of future space propulsion systems, with the potential to offer a highly compact source of power. Many propulsion concepts exist that could take advantage of matter-antimatter reactions, and current antiproton production rates are sufficient to support basic proof-of-principle evaluation of technology associated with antimatter- derived propulsion. One enabling technology for such experiments is portable storage of low energy antiprotons, allowing antiprotons to be trapped, stored, and transported for use at an experimental facility. To address this need, the Marshall Space Flight Center's Propulsion Research Center is developing a storage system referred to as the High Performance Antiproton Trap (HiPAT) with a design goal of containing 10(exp 12) particles for up to 18 days. The HiPAT makes use of an electromagnetic system (Penning- Malmberg design) consisting of a 4 Telsa superconductor, high voltage electrode structure, radio frequency (RF) network, and ultra high vacuum system. To evaluate the system normal matter sources (both electron guns and ion sources) are used to generate charged particles. The electron beams ionize gas within the trapping region producing ions in situ, whereas the ion sources produce the particles external to the trapping region and required dynamic capture. A wide range of experiments has been performed examining factors such as ion storage lifetimes, effect of RF energy on storage lifetime, and ability to routinely perform dynamic ion capture. Current efforts have been focused on improving the FW rotating wall system to permit longer storage times and non-destructive diagnostics of stored ions. Typical particle detection is performed by extracting trapped ions from HiPAT and destructively colliding them with a micro-channel plate detector (providing number and energy information). This improved RF system has been used to detect various

  3. High precision spectroscopy of pionic and antiprotonic atoms

    International Nuclear Information System (INIS)

    El-Khoury, P.

    1998-04-01

    The study of exotic atoms, in which an orbiting electron of a normal atom is replaced by a negatively charged particle (π - , μ - , p, Κ - , Σ - ,...) may provide information on the orbiting particle and the atomic nucleus, as well as on their interaction. In this work, we were interested in pionic atoms (π -14 N) on the one hand in order to determine the pion mass with high accuracy (4 ppm), and on the other hand in antiprotonic atoms (pp-bar) in order to study the strong nucleon-antinucleon interaction at threshold. In this respect, a high-resolution crystal spectrometer was coupled to a cyclotron trap which provides a high stop density for particles in gas targets at low pressure. Using curved crystals, an extended X-ray source could be imaged onto the detector. Charge-Coupled Devices were used as position sensitive detectors in order to measure the Bragg angle of the transition to a high precision. The use of gas targets resolved the ambiguity owing to the number of K electrons for the value of the pion mass, and, for the first time, strong interaction shift and broadening of the 2p level in antiprotonic hydrogen were measured directly. (author)

  4. The International Facility for Antiproton and Ion Research FAIR

    International Nuclear Information System (INIS)

    Gutbrod, H. H.

    2008-01-01

    The proposed project FAIR (Facility for Antiproton and Ion Research) is an international accelerator facility of the next generation and will be built as a new company FAIR GmbH next to the site of GSI. About 15 countries have expressed their intention to become shareholders. FAIR builds on the experience and technological developments already made at the existing GSI facility, and at the FAIR partner institutes world wide and incorporates new technological concepts. At its heart is a double ring facility with a circumference of 1100 meters. A system of cooler-storage rings for effective beam cooling at high energies and various experimental halls will be connected to the facility. The existing GSI accelerators - together with the planned proton-linac - serve as injector for the new facility. The double-ring synchrotron will provide ion beams of unprecedented intensities as well as of considerably increased energy. Thereby intense beams of secondary beams - unstable nuclei or antiprotons - can be produced. The system of storage-cooler rings allows the quality of these secondary beams - their energy spread and emittance - to be drastically improved. Moreover, in connection with the double ring synchrotron, an efficient parallel operation of up to four scientific programs can be realized at a time. The project is based on many technological innovations, the most important of which are five beam properties: Highest Beam Intensities, Brilliant Beam Quality, Higher Beam Energies, Highest Beam Power, Parallel Operation

  5. Efficient accumulation of antiprotons and positrons, production of slow mono-energetic beams, and their applications

    CERN Document Server

    Yamazaki, Yasunori

    2004-01-01

    Recent progress of ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) project, particularly the antiproton trapping and slow antiproton production, is discussed. An RFQD (Radio Frequency Quadrupole Decelerator) installed in the ASACUSA beam line has an excellent deceleration efficiency of 25% providing 10-130keV antiprotons, which improves the final accumulation efficiency at least one and half orders of magnitude. The decelerated antiprotons are then injected in a large volume multiring trap, stored, and electron-cooled. About 1 million antiprotons are successfully accumulated per one AD shot and 10-500eV antiprotons are extracted as a mono-energetic beam. A UHV compatible positron accumulation is newly developed combining electron plasma and an ion cloud, which yields an accumulation rate as high as 400e **+s/mCi, two and a half orders of magnitude higher than other UHV compatible schemes. A new scheme to synthesize a spin-polarized antihydrogen beam is also discussed, which will play a vit...

  6. Effects of impurity molecules on the lifetime of antiprotonic helium atoms

    CERN Document Server

    Juhász, B; Hayano, R S; Hori, Masaki; Horváth, D; Ishikawa, T; Torii, H A; Widmann, E; Yamaguchi, H; Yamazaki, T

    2004-01-01

    Quenching of metastable antiprotonic helium atoms in collisions with hydrogen and deuterium molecules has been studied using laser spectroscopy at CERN's antiproton decelerator. The temperature dependence of the quenching cross sections of the antiprotonic states (n, l) = (37, 34), (38, 35) and (38, 37) has been investigated and a deviation from the Arrhenius law was found at low temperatures. In case of the state (38, 37) with deuterium, detailed measurements revealed that the quenching cross section levels off at low temperatures indicating a strong quantum tunneling effect. (14 refs).

  7. Two photon laser spectroscopy of antiprotonic helium atoms at CERN’s AD

    CERN Document Server

    Hori, M

    2014-01-01

    The ASACUSA collaboration of CERN has carried out two-photon laser spectroscopy of antiprotonic helium atoms using counter-propagating ultraviolet laser beams. This excited some non-linear transitions of the antiproton at the wavelengths λ = 139.8–197.0 nm, in a way that reduced the thermal Doppler broadening of the observed resonances. The resulting narrow spectral lines allowed the measurement of three transition frequencies with fractional precisions of 2.3–5 parts in 109. By comparing these values with three-body QED calculations, the antiproton-to-electron mass ratio was derived as 1836.1526736(23). We briefly review these results.

  8. Neutron fluence in antiproton radiotherapy, measurements and simulations

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael H.; Petersen, Jørgen B.B.

    2010-01-01

    A significant part of the secondary particle spectrum from antiproton annihilation consists of fast neutrons, which may contribute to a significant dose background found outside the primary beam. Using a polystyrene phantom as a moderator, we have performed absolute measurements of the thermalized...... part of the fast neutron spectrum using Lithium-6 and -7 Fluoride TLD pairs. The experimental results are found to be in good agreement with simulations using the Monte Carlo particle transport code FLUKA. The thermal neutron kerma resulting from the measured thermal neutron fluence is insignificant...... compared to the contribution from fast neutrons. The results are found to be similar to values calculated for pion treatment, however exact modeling under more realistic treatment scenarios is still required to quantitatively compare these treatment modalities....

  9. FPGA-Based Instrumentation for the Fermilab Antiproton Source

    CERN Document Server

    Ashmanskas, Bill; Kiper, Terry; Peterson, David

    2005-01-01

    We have designed and built low-cost, low-power, ethernet-based circuit boards to apply DSP techniques to several instrumentation upgrades in the Fermilab Antiproton Source. Commodity integrated circuits such as direct digital synthesizers, D/A and A/D converters, and quadrature demodulators enable digital manipulation of RF waveforms. A low cost FPGA implements a variety of signal processing algorithms in a manner that is easily adapted to new applications. An embedded microcontroller provides FPGA configuration, control of data acquisition, and command-line interface. A small commercial daughter board provides an ethernet-based TCP/IP interface between the microcontroller and the Fermilab accelerator control network. The board is packaged as a standard NIM module. Applications include Low Level RF control for the Debuncher, readout of transfer-line Beam Position Monitors, and narrow-band spectral analysis of diagnostic signals from Schottky pickups.

  10. Proton-Antiproton Annihilation into Neutral Strange Mesons

    Science.gov (United States)

    Ritter, J.; Bertolotto, L.; Buzzo, A.; Debevec, P.; Drijard, D.; Easo, S.; Eisenstein, R. A.; Evangelista, C.; Eyrich, W.; Fearnley, T.; Ferro-Luzzi, M.; Fischer, H.; Franz, J.; Geyer, R.; Hamann, N. H.; Harris, P. G.; Hertzog, D. W.; Hughes, S. A.; Johansson, A.; Johansson, T.; Jones, R. T.; Kilian, K.; Kirsebom, K.; Klett, A.; Korsmo, H.; Lo Vetere, M.; Macri, M.; Marinelli, M.; Moosburger, M.; Mouëllic, B.; Oelert, W.; Ohlsson, S.; Palano, A.; Passaggio, S.; Perreau, J.-M.; Pia, M. G.; Pomp, S.; Price, M.; Reimer, P. E.; Ritter, J.; Robutti, E.; Röhrich, K.; Rook, M.; Sefzick, T.; Rössle, E.; Santroni, A.; Schmitt, H.; Steinkamp, O.; Stinzing, F.; Stugu, B.; Tayloe, R.; Tscheulin, M.; Urban, H. J.; Wirth, H.; Zipse, H.; Jetset (Ps202) Collaboration:

    1997-06-01

    In a search for gluonic hadrons, the formation channels p¯p → K sK s, p¯p → ηη, p¯p → π 0η and p¯p → π 0π 0 were studied in the mass range from 2.1 to 2.4 GeV using the Jetset (PS202) detector and an internal molecular hydrogen cluster jet target installed in the Low Energy Antiproton Ring (LEAR) at CERN. Cross sections for p¯p → K sK s have been obtained and limits are set on the non-observation of the ξ(2230). Conversely, we find evidence for a narrow signal in a preliminary analysis of our p¯p → ηη data consistent with a narrow ξ(2230).

  11. Proton-antiproton annihilation into neutral strange mesons

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, J. [Illinois Univ., Urbana (United States). Loomis Lab.; Bertolotto, L.; Buzzo, A.; Debevec, P.; Drijard, D.; Easo, S.; Eisenstein, R.A.; Evangelista, C.; Eyrich, W.; Fearnley, T.; Ferro-Luzzi, M.; Fischer, H.; Franz, J.; Geyer, R.; Hamann, N.H.; Harris, P.G.; Hertzog, D.W.; Hughes, S.A.; Johansson, A.; Johansson, T.; Jones, R.T.; Kilian, K.; Kirsebom, K.; Klett, A.; Korsmo, H.; Lo Vetere, M.; Macri, M.; Marinelli, M.; Moosburger, M.; Mouellic, B.; Oelert, W.; Ohlsson, S.; Palano, A.; Passaggio, S.; Perreau, J.-M.; Pia, M.G.; Pomp, S.; Price, M.; Reimer, P.E.; Robutti, E.; Roehrich, K.; Rook, M.; Sefzick, T.; Roessle, E.; Santroni, A.; Schmitt, H.; Steinkamp, O.; Stinzing, F.; Stugu, B.; Tayloe, R.; Tscheulin, M.; Urban, H.J.; Wirth, H.; Zipse, H.; JETSET Collaboration

    1997-06-01

    In a search for gluonic hadrons, the formation channels pp{yields}K{sub S}K{sub S}, pp{yields}{eta}{eta}, pp{yields}{pi}{sup 0}{eta} and pp{yields}{pi}{sup 0}{pi}{sup 0} were studied in the mass range from 2.1 to 2.4 GeV using the Jetset (PS202) detector and an internal molecular hydrogen cluster jet target installed in the Low Energy Antiproton Ring (LEAR) at CERN. Cross sections for pp{yields}K{sub S}K{sub S} have been obtained and limits are set on the non-observation of the {xi}(2230). Conversely, we find evidence for a narrow signal in a preliminary analysis of our pp{yields}{eta}{eta} d ata consistent with a narrow {xi}(2230). (orig.).

  12. Proton-antiproton annihilation into neutral strange mesons

    International Nuclear Information System (INIS)

    Ritter, J.; Bertolotto, L.; Buzzo, A.; Debevec, P.; Drijard, D.; Easo, S.; Eisenstein, R.A.; Evangelista, C.; Eyrich, W.; Fearnley, T.; Ferro-Luzzi, M.; Fischer, H.; Franz, J.; Geyer, R.; Hamann, N.H.; Harris, P.G.; Hertzog, D.W.; Hughes, S.A.; Johansson, A.; Johansson, T.; Jones, R.T.; Kilian, K.; Kirsebom, K.; Klett, A.; Korsmo, H.; Lo Vetere, M.; Macri, M.; Marinelli, M.; Moosburger, M.; Mouellic, B.; Oelert, W.; Ohlsson, S.; Palano, A.; Passaggio, S.; Perreau, J.-M.; Pia, M.G.; Pomp, S.; Price, M.; Reimer, P.E.; Robutti, E.; Roehrich, K.; Rook, M.; Sefzick, T.; Roessle, E.; Santroni, A.; Schmitt, H.; Steinkamp, O.; Stinzing, F.; Stugu, B.; Tayloe, R.; Tscheulin, M.; Urban, H.J.; Wirth, H.; Zipse, H.

    1997-01-01

    In a search for gluonic hadrons, the formation channels pp→K S K S , pp→ηη, pp→π 0 η and pp→π 0 π 0 were studied in the mass range from 2.1 to 2.4 GeV using the Jetset (PS202) detector and an internal molecular hydrogen cluster jet target installed in the Low Energy Antiproton Ring (LEAR) at CERN. Cross sections for pp→K S K S have been obtained and limits are set on the non-observation of the ξ(2230). Conversely, we find evidence for a narrow signal in a preliminary analysis of our pp→ηη d ata consistent with a narrow ξ(2230). (orig.)

  13. Survey and alignment of the Fermilab recycler antiproton storage ring

    International Nuclear Information System (INIS)

    Arics, Babatunde O.O.

    1999-01-01

    In June of 1999 Fermilab commissioned a newly constructed antiproton storage ring, the 'Recycler Ring', in the Main Injector tunnel directly above the Main Injector beamline. The Recycler Ring is a fixed 8 GeV kinetic energy storage ring and is constructed of strontium ferrite permanent magnets. The 3319.4-meter-circumference Recycler Ring consists of 344 gradient magnets and 100 quadrupoles all of which are permanent magnets. This paper discusses the methods employed to survey and align these permanent magnets within the Recycler Ring with the specified accuracy. The Laser Tracker was the major instrument used for the final magnet alignment. The magnets were aligned along the Recycler Ring with a relative accuracy of ±0.25 mm. (author)

  14. Pulsed septum magnet for the Fermilab antiproton source

    International Nuclear Information System (INIS)

    Satti, J.A.; Holmes, S.D.

    1985-06-01

    A 2 meter curved pulsed septum magnet for use in the Fermilab Antiproton Source is described. The magnet produces a peak field of 6 kGauss at a current of 20,000 Amperes within a 0.4 msec long pulse. The field uniformity obtained is ΔB/B<0.2% out to 3.8 cm from the copper septum. Power enters the magnet from the center resulting in very simple ends and the magnet incorporates at 0.5 cm steel guard which reduces the field to <1.4 Gauss in the zero-field region. The total septum thickness is 1.3 cm. The vacuum enclosure doubles as the stacking fixture for the magnet laminations allowing easy assembly of a magnet with a 50 m radius of curvature

  15. Relative Biological Effect of Antiprotons

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael

    purpose/objective The AD-4/ACE collaboration has recently performed experiments to directly measure the RBE of antiprotons. Antiprotons have very similar stopping power compared to protons, but when they come to rest, antiprotons will annihilate on a target nucleus and thereby release almost 2 Ge......V of energy. About 30 MeV of this energy is deposited in the vicinity of the Bragg-peak, thereby significantly enhancing it. It is furthermore expected that this additional energy is deposited by radiation which carries a high-LET component. This will have a significant influence on the radiobiological...... nuclear research facility CERN. A beam of 126 MeV antiprotons, corresponding to about 12 cm range in water, was spread out to a SOBP with a width of 1 cm. Dosimetry experiments were carried out with ionization chambers, alanine pellets and radiochromic film, and the results were used for benchmarking...

  16. Slowing down of 100 keV antiprotons in Al foils

    Science.gov (United States)

    Nordlund, K.

    2018-03-01

    Using energy degrading foils to slow down antiprotons is of interest for producing antihydrogen atoms. I consider here the slowing down of 100 keV antiprotons, that will be produced in the ELENA storage ring under construction at CERN, to energies below 10 keV. At these low energies, they are suitable for efficient antihydrogen production. I simulate the antihydrogen motion and slowing down in Al foils using a recently developed molecular dynamics approach. The results show that the optimal Al foil thickness for slowing down the antiprotons to below 5 keV is 910 nm, and to below 10 keV is 840 nm. Also the lateral spreading of the transmitted antiprotons is reported and the uncertainties discussed.

  17. Extra Low Energy Antiproton ring ELENA : from the conception to the implementation phase

    CERN Document Server

    Bartmann, W; Breuker, H; Butin, F; Carli, C; Eriksson, T; Maury, S; Pasinelli, S; Tranquille, G; Oelert, W

    2014-01-01

    The Extra Low Energy Antiproton ring (ELENA) is a CERN project aiming at constructing a small 30 m circumference synchrotron to further decelerate antiprotons from the Antiproton Decelerator AD from 5.3 MeV to 100 keV. Controlled deceleration in a synchrotron equipped with an electron cooler to reduce emittances in all three planes will allow the existing AD experiments to increase substantially their antiproton capture efficiencies and render new experiments possible. The ELENA design is now well advanced and the project is moving to the implementation phase. Component design and construction are taking place at present for installation foreseen during the second half of 2015 and beginning of 2016 followed by ring commissioning until the end of 2016. New electrostatic transfer lines to the experiments will be installed and commissioned during the first half of 2017 followed by the first physics operation with ELENA. Basic limitations like Intra Beam Scattering limiting the emittances obtained under electron ...

  18. High-precision spectroscopy of antiprotonic helium-first results from the AD of CERN

    CERN Document Server

    Widmann, E

    2001-01-01

    New results of the laser and microwave spectroscopy of antiprotonic helium "atomcules" obtained in the first year of operation of the Antiproton Decelerator (AD) facility of CERN are presented. They include the discovery of three new resonant transitions and the determination of the zero-density wavelength of six transitions with an accuracy of 130 ppb in the best case. Auger rates of those states were also determined, and two of them were found to be several orders of magnitude larger than expected from a simple estimate based on the multipolarity Delta l, i.e., the jump in angular momentum required for the antiproton to reach the next lower-lying state of ionized pHe /sup ++/. Furthermore, a first signal of a two-laser microwave triple resonance to measure the hyperfine splitting in antiprotonic helium was observed. (39 refs).

  19. On the Utility of Antiprotons as Drivers for Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, L J; Orth, C D; Tabak, M

    2003-10-20

    By contrast to the large mass, complexity and recirculating power of conventional drivers for inertial confinement fusion (ICF), antiproton annihilation offers a specific energy of 90MJ/{micro}g and thus a unique form of energy packaging and delivery. In principle, antiproton drivers could provide a profound reduction in system mass for advanced space propulsion by ICF. We examine the physics underlying the use of antiprotons ({bar p}) to drive various classes of high-yield ICF targets by the methods of volumetric ignition, hotspot ignition and fast ignition. The useable fraction of annihilation deposition energy is determined for both {bar p}-driven ablative compression and {bar p}-driven fast ignition, in association with 0-D and 1-D target burn models. Thereby, we deduce scaling laws for the number of injected antiprotons required per capsule, together with timing and focal spot requirements. The kinetic energy of the injected antiproton beam required to penetrate to the desired annihilation point is always small relative to the deposited annihilation energy. We show that heavy metal seeding of the fuel and/or ablator is required to optimize local deposition of annihilation energy and determine that a minimum of {approx}3x10{sup 15} injected antiprotons will be required to achieve high yield (several hundred megajoules) in any target configuration. Target gains - i.e., fusion yields divided by the available p - {bar p} annihilation energy from the injected antiprotons (1.88GeV/{bar p}) - range from {approx}3 for volumetric ignition targets to {approx}600 for fast ignition targets. Antiproton-driven ICF is a speculative concept, and the handling of antiprotons and their required injection precision - temporally and spatially - will present significant technical challenges. The storage and manipulation of low-energy antiprotons, particularly in the form of antihydrogen, is a science in its infancy and a large scale-up of antiproton production over present supply

  20. Coherent Photoproduction of proton anti-proton pair on deiterium with CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Ghandilyan, Yeranuhi Ghandilyan [Yerevan Physics Inst. (YerPhI) (Armenia); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-01-04

    In this project coherent production of proton anti-proton pairs on deuterium with a high energy bremsstrahlung photon beam is studied. The main objective is to study claims of several groups on existence of two meson states, masses ~2.02 GeV and ~2.2 GeV. Coherent production on deuterium has an advantage compared to the production on hydrogen. It will eliminate ambiguities in the production mechanism, since only t-channel production of (p$\\bar{p}$) is allowed.

    Data from the CLAS detector at Jefferson Lab (TJNAF) has been analyzed. The experiment run in 2004-2005 with tagged bremsstrahlung photon beam of up to 5.5 GeV and a 40 cm long liquid deuterium target. During the experiment the CLAS torus magnet polarity was set to bend negatively charged particles outwards from the beam line. During the run the main trigger was tagger hodoscopes in relevant energy region in coincidence with three prong event in CLAS. The reactions γd→p$\\bar{p}$-d, γd→π+π-d, and γd→K+K-d in fully exclusive final states has been analyzed, and the cross sections have been extracted.

  1. Primary populations of metastable antiprotonic $^{4}He$ and $^{3}He$ atoms

    CERN Document Server

    Hori, Masaki; Hayano, R S; Ishikawa, T; Sakuguchi, J; Tasaki, T; Widmann, E; Yamaguchi, H; Torii, H A; Juhász, B; Horváth, D; Yamazaki, T

    2002-01-01

    Initial population distributions of metastable antiprotonic **4He and **3He atoms over principal and angular momentum quantum numbers were investigated using laser spectroscopy. The total fractions of antiprotons captured into the metastable states of the atoms were deduced. Cascade calculations were performed using the measure populations to reproduce the delayed annihilation time spectrum. Results showed agreement between the simulated and measured spectra. (Edited abstract) 30 Refs.

  2. Measurement of the antiproton-nucleus annihilation cross-section at low energy

    Science.gov (United States)

    Aghai-Khozani, H.; Bianconi, A.; Corradini, M.; Hayano, R.; Hori, M.; Leali, M.; Lodi Rizzini, E.; Mascagna, V.; Murakami, Y.; Prest, M.; Vallazza, E.; Venturelli, L.; Yamada, H.

    2018-02-01

    Systematic measurements of the annihilation cross sections of low energy antinucleons were performed at CERN in the 80's and 90's. However the antiproton data on medium-heavy and heavy nuclear targets are scarce. The ASACUSA Collaboration at CERN has measured the antiproton annihilation cross section on carbon at 5.3 MeV: the value is (1.73 ± 0.25) barn. The result is compared with the antineutron experimental data and with the theoretical previsions.

  3. Study of X-Ray and $\\gamma$-Ray Spectra from Antiprotonic Atoms at the Slowly Extracted Antiproton Beam of LEAR

    CERN Multimedia

    2002-01-01

    This experiment will study the X-ray spectra of antiprotonic atoms and the $\\gamma$ spectra of residual nuclei after the antiproton absorption. We intend to begin with measurements on selected isotopically pure targets. Strong interaction effects, the antiproton absorption and the atomic cascade are analysed through the measurement of energies, lineshapes, relative and absolute intensities of all observable lines. The experiments are continued to determine st in resolved fine structure levels and in different isotopes of the same element. Coincidence techniques may be applied. All components of the experimental set-up are already existing from previous experiments and we could begin the measurements with any slowly extracted beam of low energy at LEAR.

  4. Properties of W + jet events in proton-antiproton collisions at 1.8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, Robert Brian [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1993-11-22

    W boson + QCD Jet events, produced in 1.8 TeV proton-antiproton collisions and measured by the Collider Detector at Fermilab (CDF), were used to measure the center-of-mass production angle of the W + jet system, and were also used to place limits on the production of excited quark states. The center-of-mass production angular distribution agrees well with leading order and next-to-leading order QCD predictions. Excited quark states were searched for in the reaction q + g → q* → q + W. Upper limits on the q* cross section, as a function of the q* mass, are shown. Comparison with a theoretical prediction for q* production excludes excited quark states with a mass in the range 150--530 GeV/c2, at 95% confidence.

  5. Antiproton-proton total elastic cross sections in the t and u regions (0.69-2.43 GeV/c)

    International Nuclear Information System (INIS)

    Coupland, M.; Eisenhandler, E.; Gibson, W.R.; Kalmus, P.I.P.; Astbury, A.

    1977-01-01

    Antiproton-proton total elastic cross sections at 21 incident momenta in the range 0.69 to 2.43 GeV/c have been deduced by combining anti pp elastic differential cross sections over a c.m. angular range -0.95 1 approximately 2.155 and M 2 approximately 2.345 GeV/c 2 , having widths of GAMMA 1 and GAMMA 2 approximately 0.135 GeV/c 2 . Corresponding structures in other anti pp reaction channels are discussed. (Auth.)

  6. P-986 Letter of Intent: Medium-Energy Antiproton Physics at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M. [Carleton Univ., Ottawa, ON (Canada); Phillips, Thomas J. [Duke Univ., Durham, NC (United States); Apollinari, Giorgio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Broemmelsiek, Daniel R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Brown, Charles N. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Christian, David C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Derwent, Paul [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, Keith [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hahn, Alan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Papadimitriou, Vaia [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stefanski, Ray [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Werkema, Steven [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); White, Herman B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Baldini, Wander [Istituto Nazionale di Fisica Nucleare (INFN), Ferrara (Italy); Stancari, Giulio [Istituto Nazionale di Fisica Nucleare (INFN), Ferrara (Italy); Stancari, Michelle [Istituto Nazionale di Fisica Nucleare (INFN), Ferrara (Italy); Jackson, Gerald P. [Hbar Technologies, Chicago, IL (United States); Kaplan, Daniel M. [Illinois Inst. of Technology, Chicago, IL (United States); Torun, Yagmur [Illinois Inst. of Technology, Chicago, IL (United States); White, Christopher G. [Illinois Inst. of Technology, Chicago, IL (United States); Park, HyangKyu [HyungPook National Univ., DaeGu (Korea, Republic of); Pedlar, Todd K. [Luther College, Decorah, IA (United States); Gustafson, H. Richard [Univ. of Michigan, Ann Arbor, MI (United States); Rosen, Jerome [Northwestern Univ., Evanston, IL (United States); Wayne, Mitchell [Univ. of Notre Dame, IN (United States); Chakravorty, Alak [St. Xavier Univ., Chicago, IL (United States); Dukes, E. Craig [Univ. of Virginia, Charlottesville, VA (United States)

    2009-02-05

    Fermilab has long had the world's most intense antiproton source. Despite this, the opportunities for medium-energy antiproton physics at Fermilab have been limited in the past and - with the antiproton source now exclusively dedicated to serving the needs of the Tevatron Collider - are currently nonexistent. The anticipated shutdown of the Tevatron in 2010 presents the opportunity for a world-leading medium-energy antiproton program. We summarize the current status of the Fermilab antiproton facility and review some physics topics for which the experiment we propose could make the world's best measurements. Among these, the ones with the clearest potential for high impact and visibility are in the area of charm mixing and CP violation. Continued running of the Antiproton Source following the shutdown of the Tevatron is thus one of the simplest ways that Fermilab can restore a degree of breadth to its future research program. The impact on the rest of the program will be minor. We request a small amount of effort over the coming months in order to assess these issues in more detail.

  7. Cosmic ray propagation in a diffusion model: a new estimation of the diffusion parameters and of the secondary antiprotons flux; Propagation des rayons cosmiques dans un modele de diffusion: une nouvelle estimation des parametres de diffusion et du flux d'antiprotons secondaires

    Energy Technology Data Exchange (ETDEWEB)

    Maurin, D

    2001-02-01

    Dark matter is present at numerous scale of the universe (galaxy, cluster of galaxies, universe in the whole). This matter plays an important role in cosmology and can not be totally explained by conventional physic. From a particle physic point of view, there exists an extension of the standard model - supersymmetry - which predicts under certain conditions the existence of new stable and massive particles, the latter interacting weakly with ordinary matter. Apart from direct detection in accelerators, various indirect astrophysical detection are possible. This thesis focuses on one particular signature: disintegration of these particles could give antiprotons which should be measurable in cosmic rays. The present study evaluates the background corresponding to this signal i. e. antiprotons produced in the interactions between these cosmic rays and interstellar matter. In particular, uncertainties of this background being correlated to the uncertainties of the diffusion parameter, major part of this thesis is devoted to nuclei propagation. The first third of the thesis introduces propagation of cosmic rays in our galaxy, emphasizing the nuclear reaction responsibles of the nuclei fragmentation. In the second third, different models are reviewed, and in particular links between the leaky box model and the diffusion model are recalled (re-acceleration and convection are also discussed). This leads to a qualitative discussion about information that one can infer from propagation of these nuclei. In the last third, we finally present detailed solutions of the bidimensional diffusion model, along with constrains obtained on the propagation parameters. The latter is applied on the antiprotons background signal and it concludes the work done in this thesis. The propagation code for nuclei and antiprotons used here has proven its ability in data analysis. It would probably be of interest for the analysis of the cosmic ray data which will be taken by the AMS experiment on

  8. On the chemical reaction of matter with antimatter.

    Science.gov (United States)

    Lodi Rizzini, Evandro; Venturelli, Luca; Zurlo, Nicola

    2007-06-04

    A chemical reaction between the building block antiatomic nucleus, the antiproton (p or H- in chemical notation), and the hydrogen molecular ion (H2+) has been observed by the ATHENA collaboration at CERN. The charged pair interact via the long-range Coulomb force in the environment of a Penning trap which is purpose-built to observe antiproton interactions. The net result of the very low energy collision of the pair is the creation of an antiproton-proton bound state, known as protonium (Pn), together with the liberation of a hydrogen atom. The Pn is formed in a highly excited, metastable, state with a lifetime against annihilation of around 1 micros. Effects are observed related to the temperature of the H2+ prior to the interaction, and this is discussed herein.

  9. The magnetic moments of the proton and the antiproton

    CERN Document Server

    Ulmer, S.; Blaum, K.; Braeuninger, S.; Franke, K.; Kracke, H.; Leiteritz, C.; Matsuda, Y.; Nagahama, H.; Ospelkaus, C.; Rodegheri, C.C.; Quint, W.; Schneider, G.; Smorra, C.; Van Gorp, S.; Walz, J.; Yamazaki, Y.

    2014-01-01

    Recent exciting progress in the preparation and manipulation of the motional quantum states of a single trapped proton enabled the first direct detection of the particle's spin state. Based on this success the proton magnetic moment $\\mu_p$ was measured with ppm precision in a Penning trap with a superimposed magnetic field inhomogeneity. An improvement by an additional factor of 1000 in precision is possible by application of the so-called double Penning trap technique. In a recent paper we reported the first demonstration of this method with a single trapped proton, which is a major step towards the first direct high-precision measurement of $\\mu_p$. The techniques required for the proton can be directly applied to measure the antiproton magnetic moment $\\mu_{\\bar{p}}$. An improvement in precision of $\\mu_{\\bar{p}}$ by more than three orders of magnitude becomes possible, which will provide one of the most sensitive tests of CPT invariance. To achieve this research goal we are currently setting up the Baryo...

  10. Constraining pre big-bang-nucleosynthesis expansion using cosmic antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Schelke, M. [Istituto Nazionale di Fisica Nucleare, Torino (Italy); Catena, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Fornengo, N. [Torino Univ. (Italy). Dipt. di Fisica Teorica]|[Istituto Nazionale di Fisica Nucleare, Torino (Italy); Masiero, A. [Pavoa Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Padova (Italy); Pietroni, M. [Istituto Nazionale di Fisica Nucleare, Padova (Italy)

    2006-06-15

    A host of dark energy models and non-standard cosmologies predict an enhanced Hubble rate in the early Universe: perfectly viable models, which satisfy Big Bang Nucleosynthesis (BBN), cosmic microwave background and general relativity tests, may nevertheless lead to enhancements of the Hubble rate up to many orders of magnitude. In this paper we show that strong bounds on the pre-BBN evolution of the Universe may be derived, under the assumption that dark matter is a thermal relic, by combining the dark matter relic density bound with constraints coming from the production of cosmic-ray antiprotons by dark matter annihilation in the Galaxy. The limits we derive can be sizable and apply to the Hubble rate around the temperature of dark matter decoupling. For dark matter masses lighter than 100 GeV, the bound on the Hubble-rate enhancement ranges from a factor of a few to a factor of 30, depending on the actual cosmological model, while for a mass of 500 GeV the bound falls in the range 50-500. Uncertainties in the derivation of the bounds and situations where the bounds become looser are discussed. We finally discuss how these limits apply to some specific realizations of non-standard cosmologies: a scalar-tensor gravity model, kination models and a Randall-Sundrum D-brane model. (Orig.)

  11. Cooling of ions and antiprotons with magnetized electrons

    CERN Document Server

    Mollers, B; Walter, M; Zwicknagel, G; Carli, Christian; Nersisyan, H

    2004-01-01

    Electron cooling is a well-established method to improve the phase space quality of ion beams in storage rings. More recently antiprotons have been cooled in traps, first by electrons and then by positrons in order to produce antihydrogen atoms as simplest form of antimatter for CPT-tests. During these cooling processes the light particles are guided by strong external magnetic fields which imposes a challenge to the theoretical description. Within the binary collision model we treat the Coulomb interaction as second-order perturbation to the helix motion of the light particles and also by numerical simulations. In the complementary dielectric theory we calculate the polarization of the light particles by solving the nonlinear Vlasov-Poisson equation as well as linear response. It turns out that the linearization becomes dubious at low ion velocities. In the presence of a strong magnetic field the numerically expensive solution of the Vlasov-Poisson equation is the method of choice, alternatively one may empl...

  12. Direct detection of antiprotons with the Timepix3 in a new electrostatic selection beamline

    Energy Technology Data Exchange (ETDEWEB)

    Pacifico, N., E-mail: nicola.pacifico@cern.ch [Institute of Physics and Technology, University of Bergen, Allgaten 55, 5007 Bergen (Norway); Aghion, S. [Politecnico of Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); INFN Milano, via Celoria 16, 20133 Milano (Italy); Alozy, J. [Physics Department, CERN, 1211 Geneva 23 (Switzerland); Amsler, C.; Ariga, A.; Ariga, T. [Laboratory for High Energy Physics, Albert Einstein Center for Fundamental Physics, University of Bern, 3012 Bern (Switzerland); Bonomi, G. [Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia (Italy); INFN Pavia, via Bassi 6, 27100 Pavia (Italy); Bräunig, P. [Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg (Germany); Bremer, J. [Physics Department, CERN, 1211 Geneva 23 (Switzerland); Brusa, R.S. [Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento (Italy); TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento (Italy); Cabaret, L. [Laboratory Aimé Cotton, University of Paris-Sud, ENS Cachan, CNRS, University Paris-Saclay, 91405 Orsay Cedex (France); Caccia, M. [INFN Milano, via Celoria 16, 20133 Milano (Italy); Department of Science, University of Insubria, Via Valleggio 11, 22100 Como (Italy); Campbell, M. [Physics Department, CERN, 1211 Geneva 23 (Switzerland); Caravita, R. [Department of Physics, University of Genova, via Dodecaneso 33, 16146 Genova (Italy); INFN Genova, via Dodecaneso 33, 16146 Genova (Italy); Castelli, F. [INFN Milano, via Celoria 16, 20133 Milano (Italy); Department of Physics, University of Milano, via Celoria 16, 20133 Milano (Italy); Cerchiari, G. [Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg (Germany); Chlouba, K. [Czech Technical University, Prague, Brehov 7, 11519 Prague 1 (Czech Republic); and others

    2016-09-21

    We present here the first results obtained employing the Timepix3 for the detection and tagging of annihilations of low energy antiprotons. The Timepix3 is a recently developed hybrid pixel detector with advanced Time-of-Arrival and Time-over-Threshold capabilities and has the potential of allowing precise kinetic energy measurements of low energy charged particles from their time of flight. The tagging of the characteristic antiproton annihilation signature, already studied by our group, is enabled by the high spatial and energy resolution of this detector. In this study we have used a new, dedicated, energy selection beamline (GRACE). The line is symbiotic to the AEgIS experiment at the CERN Antiproton Decelerator and is dedicated to detector tests and possibly antiproton physics experiments. We show how the high resolution of the Timepix3 on the Time-of-Arrival and Time-over-Threshold information allows for a precise 3D reconstruction of the annihilation prongs. The presented results point at the potential use of the Timepix3 in antimatter-research experiments where a precise and unambiguous tagging of antiproton annihilations is required.

  13. Modeling of the Near-Earth Low-Energy Antiproton Fluxes

    Directory of Open Access Journals (Sweden)

    U. B. Jayanthi

    2011-01-01

    Full Text Available The local interstellar antiproton spectrum is simulated taking into account antineutron decay, (He,p interaction, secondary and tertiary antiproton production, and the solar modulation in the “force field” approximation. Inclusive invariant cross-sections were obtained through a Monte Carlo procedure using the Multistage Dynamical Model code simulating various processes of the particle production. The results of the simulations provided flux values of 4⋅10−3 to 10−2 and 10−2 to 1.7⋅10−2 antiprotons/(2 s sr GeV at energies of 0.2 and 1 GeV, respectively, for the solar maximum and minimum epochs. Simulated flux of the trapped antiprotons in the inner magnetosphere due to galactic cosmic ray (GCR interactions with the atmospheric constituents exceeds the galactic antiproton flux up to several orders. These simulation results considering the assumptions with the attendant limitations are in comprehensive agreement with the experimental data including the PAMELA ones.

  14. Evidence for the Stochastic Acceleration of Secondary Antiprotons by Supernova Remnants

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias [Johns Hopkins U.; Hooper, Dan [Chicago U., KICP; Linden, Tim [Ohio State U.

    2017-01-16

    The antiproton-to-proton ratio in the cosmic-ray spectrum is a sensitive probe of new physics. Using recent measurements of the cosmic-ray antiproton and proton fluxes in the energy range of 1-1000 GeV, we study the contribution to the $\\bar{p}/p$ ratio from secondary antiprotons that are produced and subsequently accelerated within individual supernova remnants. We consider several well-motivated models for cosmic-ray propagation in the interstellar medium and marginalize our results over the uncertainties related to the antiproton production cross section and the time-, charge-, and energy-dependent effects of solar modulation. We find that the increase in the $\\bar{p}/p$ ratio observed at rigidities above $\\sim$ 100 GV cannot be accounted for within the context of conventional cosmic-ray propagation models, but is consistent with scenarios in which cosmic-ray antiprotons are produced and subsequently accelerated by shocks within a given supernova remnant. In light of this, the acceleration of secondary cosmic rays in supernova remnants is predicted to substantially contribute to the cosmic-ray positron spectrum, accounting for a significant fraction of the observed positron excess.

  15. Upper limit to antiproton flux in cosmic radiation above 100 GeV using muon charge ratio

    Science.gov (United States)

    Stephens, S. A.

    1983-01-01

    Upper limits to the fraction of antiprotons in cosmic radiation have been estimated from the observed charge ratio of muons at sea-level. Using these values, it is shown that constraints can be set on the extragalactic hypothesis of the observed antiprotons in the framework of energy-dependent confinement of cosmic rays in the galaxy.

  16. Depth-Dose and LET Distributions of Antiproton Beams in Various Target Materials

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Olsen, Sune; Petersen, Jørgen B.B.

    Purpose  Radiotherapy with antiprotons is still being investigated as a possible new beam modality. Antiprotons behave much like protons until they come to rest, where they will annihilate with a target nucleus, thereby releasing additional energy. This can potentially lead to a favourable  depth......-dose distributions and an increased biological effect in the target region from the production of secondary nuclear fragments with increased LET. Earlier it has been speculated how the target material will affect the depth-dose curve of antiprotons and secondary particle production. Intuitively, the presence...... of elements with higher Z, may lead to heavier fragments, which in turn may increase the LET and be beneficial in radiotherapy context. Also, it was speculated whether the addition of elements with high thermal neutron cross section to the target material may or may not boost the locally deposited energy from...

  17. Design for antiproton collection and beam transport in the Fermilab Tevatron I project

    Energy Technology Data Exchange (ETDEWEB)

    Colton, E.; Hojvat, C.

    1983-03-01

    120-GeV protons from the Main Ring will be used to produce 8-GeV antiprotons. A pulsed lithium lens collects and matches the antiprotons to a beam line for injection into the Debuncher Ring. The anti p beam has a transverse emittance of 20..pi.. mm-mr and a deltap/p = +-2.0%. The beam line consists of a clean-up section with vertical emittance selection, two long dispersion free sections, a bend and a vertical injector. Antiprotons with a transverse emittance of 2..pi.. mm-mr and deltap/p = +-7.0 x 10/sup -4/ are transported in the reverse direction, bypassing the target area, and along the 120-GeV proton transport line for reverse injection in the Main Ring.

  18. QCD studies with anti-protons at FAIR: Indian participation in PANDA

    International Nuclear Information System (INIS)

    Kailas, S.; Roy, B.J.; Dutta, D.; Jha, V.; Varma, R.

    2011-01-01

    The Facility for Antiproton and Ion Research (FAIR) is a future project at GSI which will extend hadron physics studies up to the charm meson region using antiproton beams together with a state-of-the-art detector antiproton annihilation at Darmstadt (PANDA). The physics aim, in a broader sense, is to address the fundamental problems of hadron physics and aspects of quantum chromo-dynamics (QCD) at low energies. The proposed work in India will consist of several parts: R and D studies of silicon micro-strip detector, development of a scintillator hodoscope with silicon photomultiplier (SiPM) readout, studies of SiPM as photon counter and simulation studies of the detector design as well as physics case studies. The present article describes the physics motivation and initial progress made towards achieving these goals. (author)

  19. Study of Anti-Hydrogen and Plasma Physics 4.Observation of Antiproton Beams and Nonneutral Plasmas

    CERN Document Server

    Hori, Masaki; Fujiwara, Makoto; Kuroda, Naofumi

    2004-01-01

    Diagnostics of antiproton beams and nonneutral plasmas are described in this chapter. Parallel plate secondary electron emission detectors are used to non-destructively observe the beam position and intensity without loss. Plastic scintillation tracking detectors are useful in determining the position of annihilations of antiprotons in the trap. Three-dimensional imaging of antiprotons in a Penning trap is discussed. The unique capability of antimatter particle imaging has allowed the observation of the spatial distribution of particle loss in a trap. Radial loss is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. By observing electrostatic eigen-modes of nonneutral plasmas trapped in the Multi-ring electrode trap, the non-destructive measurement of plasma parameters is performed.

  20. Status of antiproton accumulation and cooling at Fermilab's Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Bhat, C.M.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Crisp, J.; Derwent, P.; Eddy, N.; Gattuso, C.; Hu, M.; Pruss, S.; /Fermilab

    2009-08-01

    The Recycler ring is an 8 GeV permanent magnet storage ring where antiprotons are accumulated and prepared for Fermilab's Tevatron Collider program. With the goal of maximizing the integrated luminosity delivered to the experiments, storing, cooling and extracting antiprotons with high efficiency has been pursued. Over the past two years, while the average accumulation rate doubled, the Recycler continued to operate at a constant level of performance thanks to changes made to the Recycler Electron Cooler (energy stability and regulation, electron beam optics), RF manipulations and operating procedures. In particular, we discuss the current accumulation cycle in which {approx} 400 x 10{sup 10} antiprotons are accumulated and extracted to the Tevatron every {approx}15 hours.

  1. Experimental setup and first measurement of DNA damage induced along and around an antiproton beam

    DEFF Research Database (Denmark)

    Kavanagh, J. N.; Currell, F. J.; Timson, D. J.

    2010-01-01

    a further enhancement due to their annihilation at the end of the path. The work presented here aimed to establish and validate an experimental procedure for the quantification of plasmid and genomic DNA damage resulting from antiproton exposure. Immunocytochemistry was used to assess DNA damage in directly......Radiotherapy employs ionizing radiation to induce lethal DNA lesions in cancer cells while minimizing damage to healthy tissues. Due to their pattern of energy deposition, better therapeutic outcomes can, in theory, be achieved with ions compared to photons. Antiprotons have been proposed to offer...... and indirectly exposed human fibroblasts irradiated in both plateau and Bragg peak regions of a 126 MeV antiproton beam at CERN. Cells were stained post irradiation with an anti-γ-H2AX antibody. Quantification of the γ-H2AX foci-dose relationship is consistent with a linear increase in the Bragg peak region...

  2. Charge asymmetry in alignment of atoms excited by protons and antiprotons

    International Nuclear Information System (INIS)

    Balashov, V.V.; Sokolik, A.A.; Stysin, A.V.

    2007-01-01

    The multichannel diffraction approximation is used to consider excitation of lithium atom by proton and antiproton impact. Calculations are performed for the energy range 100 keV - 1 MeV of incoming proton and anti-proton which should be reliable enough due to the general requirements of the multichannel diffraction approximation. The sign-of-charge effect in the alignment of produced 1s 2 3d excited state and in the linear polarization of the subsequent spontaneous 1s 2 3d → 1s 2 2p radiation is expected to be considerable. The clear sign-of-charge effect in the polarization occurs for projectile energies below 1 MeV and become stronger when going to lower energies and the difference between the proton case and the anti-proton one looks considerable enough for experimental observation

  3. Antiproton-proton annihilation into light neutral meson pairs within an effective meson theory

    Science.gov (United States)

    Wang, Ying; Bystritskiy, Yury M.; Ahmadov, Azad I.; Tomasi-Gustafsson, Egle

    2017-08-01

    Antiproton-proton annihilation into light neutral mesons in the few GeV energy domain is investigated in view of a global description of the existing data and predictions for future work at the Antiproton Annihilation at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR). An effective meson model earlier developed, with mesonic and baryonic degrees of freedom in s , t , and u channels, is applied here to π0π0 production. Form factors with logarithmic s and t (u ) dependencies are applied. A fair agreement with the existing angular distributions is obtained. Applying SU(3) symmetry, it is straightforward to recover the angular distributions for π0η and η η production in the same energy range. A good agreement is generally obtained with all existing data.

  4. Challenging the standard model by high-precision comparisons of the fundamental properties of protons and antiprotons.

    Science.gov (United States)

    Ulmer, S; Mooser, A; Nagahama, H; Sellner, S; Smorra, C

    2018-03-28

    The BASE collaboration investigates the fundamental properties of protons and antiprotons, such as charge-to-mass ratios and magnetic moments, using advanced cryogenic Penning trap systems. In recent years, we performed the most precise measurement of the magnetic moments of both the proton and the antiproton, and conducted the most precise comparison of the proton-to-antiproton charge-to-mass ratio. In addition, we have set the most stringent constraint on directly measured antiproton lifetime, based on a unique reservoir trap technique. Our matter/antimatter comparison experiments provide stringent tests of the fundamental charge-parity-time invariance, which is one of the fundamental symmetries of the standard model of particle physics. This article reviews the recent achievements of BASE and gives an outlook to our physics programme in the ELENA era.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Authors.

  5. The experiment PANDA: physics with antiprotons at FAIR

    Science.gov (United States)

    Boca, Gianluigi

    2015-05-01

    PANDA is an experiment that will run at the future facility FAIR, Darmstadt, Germany. A high intensity and cooled antiproton beam will collide on a fixed hydrogen or nuclear target covering center-of-mass energies between 2.2 and 5.5 GeV. PANDA addresses various physics aspects from the low energy non-perturbative region towards the perturbative regime of QCD. With the impressive theoretical developments in this field, e.g. lattice QCD, the predictions are becoming more accurate in the course of time. The data harvest with PANDA will, therefore, be an ideal test bench with the aim to provide a deeper understanding of hadronic phenomena such as confinement and the generation of hadron masses. A variety of physics topics will be covered with PANDA, for example: the formation or production of exotic non-qqbar charm meson states connected to the recently observed XYZ spectrum; the study of gluon-rich matter, such as glueballs and hybrids; the spectroscopy of the excited states of strange and charm baryons, their production cross section and their spin correlations; the behaviour of hadrons in nuclear matter; the hypernuclear physics; the electromagnetic proton form factors in the timelike region. The PANDA experiment is designed to achieve the above mentioned physics goals with a setup with the following characteristics: an almost full solid angle acceptance; excellent tracking capabilities with high resolution (1-2 % at 1 GeV/c in the central region); secondary vertex detection with resolution ≈ 100 microns or better; electromagnetic calorimetry for detections of gammas and electrons up to 10 GeV; good particle identification of charge tracks (electrons, muons, pions, kaons, protons); a dedicated interchangeable central apparatus for the hypernuclear physics; detector and data acquisition system capable of working at 20 MHz interaction rate with an intelligent software trigger that can provide maximum flexibility.

  6. Centrifugal Separation and Equilibration Dynamics in an Electron-Antiproton Plasma

    International Nuclear Information System (INIS)

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Bertsche, W.; Butler, E.; Charlton, M.; Deller, A.; Eriksson, S.; Humphries, A. J.; Madsen, N.; Werf, D. P. van der; Cesar, C. L.; Friesen, T.

    2011-01-01

    Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result. Electron-antiproton plasmas play a crucial role in antihydrogen trapping experiments.

  7. Centrifugal separation and equilibration dynamics in an electron-antiproton plasma

    CERN Document Server

    Andresen, G B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Butler, Eoin; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Deller, A; Eriksson, S; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Gutierrez, A; Hangst, Jeffrey S; Hardy, Walter N; Hayden, Michael E; Humphries, Andrew J; Hydomako, Richard; Jonsell, Svante; Madsen, Niels; Menary, Scott; Nolan, Paul; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally-separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally-separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result. Electron-antiproton plasmas play a crucial role in antihydrogen trapping experiments.

  8. Dispersion suppression with missing magnets in a FODO structure - application to the CERN Antiproton Accumulator

    CERN Document Server

    Autin, Bruno

    1979-01-01

    The lattice of an antiproton accumulator which uses the stochastic cooling method must meet a variety of requirements arising from its double function: storing particles in momentum space, and reducing their phase space volume in both transverse and longitudinal dimensions. A number of long straight sections, some of them with a zero momentum dispersion function alpha /sub p/, are required and have to be disposed on a relatively small circumference. Firstly, a systematic analysis of dipole distributions in a dispersion suppressor is presented. Then the requirements to be fulfilled by the lattice of an antiproton accumulator are listed and serve as criteria for the choice of a scheme of dispersion suppressor. (4 refs).

  9. Quenching of metastable antiprotonic helium atoms in collisions with deuterium molecules

    CERN Document Server

    Juhász, B; Hayano, R S; Hori, Masaki; Horváth, D; Ishikawa, T; Sakaguchi, J; Torii, H A; Widmann, E; Yamaguchi, H; Yamazaki, T

    2002-01-01

    Quenching of metastable antiprotonic helium atoms in collisions with deuterium molecules has been studied using laser spectroscopy at CERN's new Antiproton Decelerator facility. The quenching cross- sections of the states (n, l)=(39, 36), (39, 37), and (39, 38) were determined from the decay rates of the states which were observed using the "deuterium-assisted inverse resonance" (DAIR) method. The results. revealed a similar (n, l)-dependence of the quenching cross- sections as in the case of hydrogen but the values were smaller by a factor of ~1.5. (27 refs).

  10. Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to–electron mass ratio

    CERN Document Server

    Hori, Masaki; Sótér, Anna; Barna, Daniel; Dax, Andreas; Hayano, Ryugo; Kobayashi, Takumi; Murakami, Yohei; Todoroki, Koichi; Yamada, Hiroyuki; Horváth, Dezső; Venturelli, Luca

    2016-01-01

    Charge, parity, and time reversal (CPT) symmetry implies that a particle and its antiparticle have the same mass. The antiproton-to-electron mass ratio Embedded Image can be precisely determined from the single-photon transition frequencies of antiprotonic helium. We measured 13 such frequencies with laser spectroscopy to a fractional precision of 2.5 × 10−9 to 16 × 10−9. About 2 × 109 antiprotonic helium atoms were cooled to temperatures between 1.5 and 1.7 kelvin by using buffer-gas cooling in cryogenic low-pressure helium gas; the narrow thermal distribution led to the observation of sharp spectral lines of small thermal Doppler width. The deviation between the experimental frequencies and the results of three-body quantum electrodynamics calculations was reduced by a factor of 1.4 to 10 compared with previous single-photon experiments. From this, Embedded Image was determined as 1836.1526734(15), which agrees with a recent proton-to-electron experimental value within 8 × 10−10.

  11. Proton and antiproton interactions in hydrogen, argon and xenon at 200 GeV

    International Nuclear Information System (INIS)

    Malecki, P.

    1984-01-01

    The detailed analysis of the production of particles emitted into forward hemisphere in 200 GeV proton and antiproton interactions with hydrogen, argon and xenon targets is presented. Two-particle rapidity correlations and long-range multiplicity correlations are also discussed. (author)

  12. Challenging the Standard Model: High-Precision Comparisons of the Fundamental Properties of Protons and Antiprotons

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Baryon Antibaryon Symmetry Experiment (BASE-CERN) at CERN’s antiproton decelerator facility is aiming at high-precision comparisons of the fundamental properties of protons and antiprotons, such as charge-to-mass ratios, magnetic moments and lifetimes. Such experiments provide sensitive tests of the fundamental charge-parity-time invariance in the baryon sector. BASE was approved in 2013 and has measured since then, utilizing single-particle multi-Penning-trap techniques, the antiproton-to-proton charge-to-mass ratio with a fractional precision of 69 p.p.t. [1], as well as the antiproton magnetic moment with fractional precisions of 0.8 p.p.m. and 1.5 p.p.b., respectively [2]. At our matter companion experiment BASE-Mainz, we have performed proton magnetic moment measurements with fractional uncertainties of 3.3 p.p.b. [3] and 0.3 p.p.b. [4]. By combining the data of both experiments we provide a baryon-magnetic-moment based CPT test gpbar/gp = 1.000 000 000 2(15), which improves the uncertainty of p...

  13. A study of Two Photon Decays of Charmonium Resonances Formed in Proton Anti-Proton Annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Pedlar, Todd Kristofer [Northwestern Univ., Evanston, IL (United States)

    1999-06-01

    In this dissertation we describe the results of an investigation of the production of charmonium states (ηc, η'c, χ0 and χ2) in Fermilab experiment E835 via antiproton-proton annihilation and their detection via their decay into two photons.

  14. Status Report for Experiment AD-4/ACE Biological Effectiveness of Antiproton Annihilation

    CERN Document Server

    Holzscheiter, M H; Angelopoulos, Angelo; Bassler, Niels; Beyer, Gerd; Currell, Fred; De Marco, John; Doser, Michael; Hajdukovic, Dragan; Hartley, Oliver; Kavanagh, Joy; Iwamoto, Kei; Jäkel, Oliver; Kantemiris, Ioannis; Knudsen, Helge; Kovacevic, Sandra; McBride, Bill; Møller, Søren Pape; Overgaard, Jens; Petersen, Jørgen; Ratib, Osman; Schettino, Giuseppe; Timson, David; Singers-Sørensen, Brita; Solberg, Timothy; Vranjes, Sanja; Wouters, Brad

    2009-01-01

    Status report for experiment AD-4/ACE showing recent progress in RBE measurements for V79 Chinese Hamster cells irradiated with antiprotons. Also discussed are initial test experiments using the H2AX assay to study DNA damage to cells and initial experiments using liquid ionization chambers.

  15. Antiproton signatures from astrophysical and dark matter sources at the galactic center

    Energy Technology Data Exchange (ETDEWEB)

    Cembranos, J.A.R.; Gammaldi, V.; Maroto, A.L., E-mail: cembra@ucm.es, E-mail: vivigamm@ucm.es, E-mail: maroto@fis.ucm.es [Departamento de Física Teórica I, Facultad Ciencias Físicas, Universidad Complutense Madrid, Ciudad Universitaria, E-28040 Madrid (Spain)

    2015-03-01

    The center of our Galaxy is a complex region characterized by extreme phenomena. The presence of the supermassive Sagittarius A* black hole, a high dark matter density and an even higher baryonic density are able to produce very energetic processes. Indeed, high energetic gamma-rays have been observed by different telescopes, although their origin is not clear. In this work, we estimate the possible antiproton flux component associated with this signal. The expected secondary astrophysical antiproton background already saturates the observed data. It implies that any other important astrophysical source leads to an inconsistent excess. We estimate the sensitivity of PAMELA to this new primary antiproton source, which depends on the diffusion model and its spectral features. In particular, we consider antiproton spectra described by a power-law, a monochromatic signal and a Standard Model particle-antiparticle channel production. This latter spectrum is typical in the production from annihilating or decaying dark matter. We pay particular attention to the case of a heavy dark matter candidate, which could be associated with the High Energy Stereoscopic System (HESS) data observed from the J1745-290 source.

  16. Properties of Antiprotons and Antihydrogen, and the Study of Exotic Atoms

    CERN Document Server

    Doser, Michael

    2015-01-01

    The study of exotic atoms, of antiprotons and of antihydrogen atoms provides many windows into the investigation of fundamental symmetries, of interactions between particles and nuclei, of nuclear physics and of atomic physics. This field appeared at CERN simultaneously with the first accelerators, and has advanced over the decades in parallel with improvements and advances in its infrastructure.

  17. Closing in on mass-degenerate dark matter scenarios with antiprotons and direct detection

    International Nuclear Information System (INIS)

    Garny, Mathias; Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan

    2012-01-01

    Over the last years both cosmic-ray antiproton measurements and direct dark matter searches have proved particularly effective in constraining the nature of dark matter candidates. The present work focusses on these two types of constraints in a minimal framework which features a Majorana fermion as the dark matter particle and a scalar that mediates the coupling to quarks. Considering a wide range of coupling schemes, we derive antiproton and direct detection constraints using the latest data and paying close attention to astrophysical and nuclear uncertainties. Both signals are strongly enhanced in the presence of degenerate dark matter and scalar masses, but we show that the effect is especially dramatic in direct detection. Accordingly, the latest direct detection limits take the lead over antiprotons. We find that antiproton and direct detection data set stringent lower limits on the mass splitting, reaching 19% at a 300 GeV dark matter mass for a unity coupling. Interestingly, these limits are orthogonal to ongoing collider searches at the Large Hadron Collider, making it feasible to close in on degenerate dark matter scenarios within the next years

  18. Closing in on mass-degenerate dark matter scenarios with antiprotons and direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2012-07-15

    Over the last years both cosmic-ray antiproton measurements and direct dark matter searches have proved particularly effective in constraining the nature of dark matter candidates. The present work focusses on these two types of constraints in a minimal framework which features a Majorana fermion as the dark matter particle and a scalar that mediates the coupling to quarks. Considering a wide range of coupling schemes, we derive antiproton and direct detection constraints using the latest data and paying close attention to astrophysical and nuclear uncertainties. Both signals are strongly enhanced in the presence of degenerate dark matter and scalar masses, but we show that the effect is especially dramatic in direct detection. Accordingly, the latest direct detection limits take the lead over antiprotons. We find that antiproton and direct detection data set stringent lower limits on the mass splitting, reaching 19% at a 300 GeV dark matter mass for a unity coupling. Interestingly, these limits are orthogonal to ongoing collider searches at the Large Hadron Collider, making it feasible to close in on degenerate dark matter scenarios within the next years.

  19. Measurement of 0.25-3.2 GeV antiprotons in the cosmic radiation

    DEFF Research Database (Denmark)

    Mitchell, J.W.; Barbier, L.M.; Christian, E.R.

    1996-01-01

    The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba, Canada on 16-17 July 1992. Using velocity and magnetic rigidity to determine mass, we have directly measured the abundances of cosmic ray antiprotons and protons in the energy range from 0.25 to 3.2 ...

  20. Experimental setup and first measurement of DNA damage induced along and around an antiproton beam

    International Nuclear Information System (INIS)

    Kavanagh, J.N.; Currell, F.J.; Prise, K.M.; Schettino, G.; Currell, F.J.; Timson, D.J.; Holzscheiter, M.H.; Bassler, N.; Herrmann, R.

    2010-01-01

    Radiotherapy employs ionizing radiation to induce lethal DNA lesions in cancer cells while minimizing damage to healthy tissues. Due to their pattern of energy deposition, better therapeutic outcomes can, in theory, be achieved with ions compared to photons. Antiprotons have been proposed to offer a further enhancement due to their annihilation at the end of the path. The work presented here aimed to establish and validate an experimental procedure for the quantification of plasmid and genomic DNA damage resulting from antiproton exposure. Immunocytochemistry was used to assess DNA damage in directly and indirectly exposed human fibroblasts irradiated in both plateau and Bragg peak regions of a 126 MeV antiproton beam at CERN. Cells were stained post irradiation with an anti-γ-H2AX antibody. Quantification of the γ-H2AX foci-dose relationship is consistent with a linear increase in the Bragg peak region. A qualitative analysis of the foci detected in the Bragg peak and plateau region indicates significant differences highlighting the different severity of DNA lesions produced along the particle path. Irradiation of desalted plasmid DNA with 5 Gy antiprotons at the Bragg peak resulted in a significant portion of linear plasmid in the resultant solution. (authors)

  1. Antiproton and proton collisions with the alkali-metal atoms Li, Na, and K

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2008-01-01

    Single-electron ionization and excitation cross sections as well as cross sections for excitation into the first excited p state of the alkali-metal atoms Li(2s), Na(3s), and K(4s) colliding with antiprotons and protons were calculated using a time-dependent channel-coupling approach. For antipro...

  2. Antiproton-nucleus interactions at 5 to 9 GeV/c

    International Nuclear Information System (INIS)

    Ahmad, S.; Bonner, B.E.; Buchanan, J.A.; Chan, C.S.; Clement, J.M.; Eiseman, S.E.; Empl, A.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Hallman, T.J.; Kramer, M.A.; Kruk, J.; Lindenbaum, S.J.; Longacre, R.S.; Love, W.A.; Madansky, L.; Morris, W.; Mutchler, G.S.; Peaslee, D.C.; Platner, E.D.; Saulys, A.C.; Toshkov, S.

    1993-01-01

    Antiproton beams of 5, 7 and 9 GeV/c were used to interact with C, Al, Cu, Sn and Pb nuclear targets. Charged particle multiplicity distributions, strange particle production cross sections and rapidity distributions were measured. The charged particle multiplicities are reported in this paper. (orig.)

  3. S142 set-up to detect X-ray from antiproton-proton atoms (protonium).

    CERN Multimedia

    1978-01-01

    This experiment was designed by the Daresbury-Mainz-TRIUMF Collaboration and was located in the m14 partially separated antiproton beam in the PS South Hall. It used a gaseous hydrogen target, 1 m long, surrounded by a ring of proportional counters, surrounded in turn by a ring of 36 scintillators strips to aid in the annihilation product identification. Ugo Gastaldi (centre)

  4. Full two-electron calculations of antiproton collisions with molecular hydrogen

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2010-01-01

    Total cross sections for single ionization and excitation of molecular hydrogen by antiproton impact are presented over a wide range of impact energies from 1 keV to 6.5 MeV. A nonperturbative time-dependent close-coupling method is applied to fully treat the correlated dynamics of the electrons....

  5. Observation of φφ production in the reaction overlinepp → 4K ± at 1.4 GeV / c incident overlinep momentum

    Science.gov (United States)

    Bertolotto, L.; Buzzo, A.; Debevec, P. T.; Drijard, D.; Easo, S.; Eisenstein, R. A.; Eyrich, W.; Fearnley, T.; Fischer, H.; Franz, J.; Geyer, R.; Hamann, N. H.; Harris, P. G.; Hertzog, D. W.; Gughes, S. A.; Johansson, A.; Johansson, T.; Jones, R. T.; Kilian, K.; Kirsebom, K.; Klett, A.; Korsmo, H.; Lo Vetere, M.; Macri, M.; Marinelli, M.; Moosburger, M.; Mouëllic, B.; Oelert, W.; Ohlsson, S.; Palano, A.; Passaggio, S.; Perreau, J.-M.; Pia, M. G.; Pomp, S.; Price, M.; Reimer, P. E.; Ritter, J.; Robutti, E.; Röhrich, K.; Rook, M.; Rössle, E.; Santroni, A.; Schmitt, H.; Sefzick, T.; Steinkamp, O.; Stinzing, F.; Stugu, B.; Tayloe, R.; Tscheulin, M.; Urban, H. J.; Wirth, H.; Zipse, H.; Jetset Collaboration

    1995-02-01

    The JETSET (PS202) experiment at CERN-LEAR searches for hadronic resonances by means of in-flight antiproton-proton annihilations in the reaction overlinepp → φφ . In order to obtain sufficient luminosity and good final-state mass resolution, this experiment uses an internal hydrogen-cluster jet target intersecting the LEAR antiproton beam. We report on the study of the reaction overlinepp → 4K ± at 1.4 GeV / c incident p¯ momentum, and we present the first experimental observation of a stro φφ signal in this reaction.

  6. The low-energy antiproton beam K4 at the KEK 12 GeV proton synchrotron

    International Nuclear Information System (INIS)

    Takasaki, M.; Kurokawa, S.; Kobayashi, M.; Taino, M.; Suzuki, Y.; Ishii, H.; Kato, Y.; Fujitani, T.; Nagashima, Y.; Omori, T.; Sugimoto, S.; Yamaguchi, Y.; Iwahori, J.; Yoshida, H.; Takeutchi, F.; Chiba, M.; Koike, M.

    1986-01-01

    The beam K4 is designed to transport high-intensity, high-purity antiprotons in the momentum range between 0.4 and 0.8 GeV/c. Antiprotons are separated from unwanted pions, muons, and electrons by double-stage mass separation. The solid-angle momentum acceptance of the beam is 34.1 msr % ΔP/P and the beam length is 28.5 m. The measured intensities of antiprotons at 450, 500, 580 and 650 MeV/c are 100, 210, 510 and 1100 per 10 12 ppp; the corresponding π - μ - e - /anti p ratios are 13.1, 7.7, 8.8 and 22.5, respectively. About 45% of the incomming antiprotons at 580 MeV stop or annihilate in flight in liquid hydrogen contained in a target cell with the dimension of 140 mm in diameter and 230 mm in length. (orig.)

  7. Euro-led research team creates first ever reaction between matter and antimatter

    CERN Multimedia

    2006-01-01

    "An EU-funded team of international researchers has produced the first ever reaction between matter and antimatter, creating protonium. Protonium is a unique type of atom that consists of a proton and an antiproton orbiting around each other." (1 page)

  8. Determination of the antiproton-to-electron mass ratio by precision laser spectroscopy of $\\overline{p}He^{+}$

    CERN Document Server

    Hori, M; Eades, John; Gomikawa, K; Hayano, R S; Ono, N; Pirkl, Werner; Widmann, E; Torii, H A; Juhász, B; Barna, D; Horváth, D

    2006-01-01

    A femtosecond optical frequency comb and continuous-wave pulse- amplified laser were used to measure 12 transition frequencies of antiprotonic helium to fractional precisions of (9-16) 10/sup -9lifetimes hitherto unaccessible to our precision laser spectroscopy method. Comparisons with three-body QED calculations yielded an antiproton-to-electron mass ratio of M/sub pmacron//m/sub e/=1836.152 674(5).

  9. The Bess Investigation of the Origin of Cosmic-ray Antiprotons and Search for Cosmological Antimatter

    Science.gov (United States)

    Mitchell, John; Yamamoto, Akira; Yoshimura, Koji; Makida, Yasuhiro; Matsuda, Shinya; Hasegawa, Masaya; Horikoshi, Atsushi; Tanaka,Ken-ichi; Suzuki, Junichi; Nishimura, Jun; hide

    2008-01-01

    The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) collaboration has made precise measurements of the spectra of cosmic ray antiprotons and light nuclei and conducted a sensitive search for antinuclei. Ten BESS high-latitude flights, eight from Canada and two from Antarctica, span more than a Solar cycle between 1993 and 2007/2008. BESS measurements of low-energy antiprotons constrain candidate models for dark matter including the possible signature of primordial black hole evaporation. The stringent BESS measurements of antiprotons and the elemental and isotopic spectra of H and He provide strong constraints on models of cosmic-ray transport in the Galaxy and Solar System. BESS has also reported the first antideuterium upper limit. BESS employs a superconducting magnetic-rigity spectrometer with time-of-flight and aerogel Cherenkov detectors to identify incident particles by charge, charge sign, mass, and energy. The BESS-Polar long-duration instrument has reduced lower energy limit of 100 MeV (top of the atmosphere) to increase its sensitivity to possible primary antiproton sources. BESS-Polar II was rebuilt with extended magnet lifetime, improved detector and electronic performance, and greater data storage capacity. It was flown fro Antarctica December 2007-January 2008, recording about 4.6 bission events during 24.5 days at float altitude with the magnet on. During the flight the influence of a high-speed stream in the Solar wind was observed. Details of the BESS-Polar II instrument and flight performance are reported elsewhere at this conference. The successful BESS-Polar II flight at Solar minimum is especially important. Most cosmic-ray antiprotons are secondary products of nuclear interactions of primary cosmic-ray nuclei with the interstellar gas, giving a spectrum that peaks at about 2 GeV and falls rapidly to higher and lower energies. However, BESS data taken in the previous Solar minimum show a small excess over secondary

  10. Atomic approaches in metastable antiprotonic helium atoms. REPLY to 'analysis of the lifetimes and fractions of antiprotons trapped in metastable antiprotonic-helium states' by I. Shimamura and M. Kimura

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu; Ohtsuki, Kazumasa.

    1994-08-01

    In the present note the authors clarify the purpose of YO and complement its essential points, thus showing that the criticisms of SK are inappropriate. The paper YO [1] was aimed at discussing some new aspects related to the metastability of hadronic helium atoms which had been discovered when negative kaons [2], negative pions [3] and antiprotons [4] were stopped in liquid helium. The delayed fraction, time spectrum shape and lifetimes were the observables. Further experimental studies are in progress [5], and as of today there is no successful explanation for these interesting phenomena. So, YO tried to give brief and rather qualitative estimates for the observations in an intuitive way, considering only the leading terms. The following problems are discussed in as simple a manner as possible, starting from the exotic-atom viewpoints of Condo [6] and Russell [7]: i)the atomic core polarization effect, ii)the structure and radiative lifetimes, iii)the non-statistical distribution of the angular momentum and an estimate of the delayed fraction, and iv)the isotope effect, though the title represents only i). To respond to the comments of SK, it is important to consider the correspondence between the atomic approach and the molecular approach for the metastable antiprotonic helium atom of Condo-Russell. We therefore begin this note with a discussion of this aspect. (author)

  11. A Cryogenic Current Comparator for the Low Energy Antiproton Facilities at CERN

    CERN Document Server

    Fernandes, M; Welsch, CP

    2014-01-01

    Several laboratories have shown the potential of using Superconducting QUantum Interference Device (SQUID) magnetometers together with superconductor magnetic shields to measure beam current intensities in the submicro-Ampere regime. CERN, in collaboration with GSI, Jena university and Helmholtz Institute Jena, is currently working on developing an improved version of such a current monitor for the Antiproton Decelerator (AD) and Extra Low ENergy Antiproton (ELENA) rings at CERN, aiming for better current resolution and overall system availability. This contribution will present the current design, including theoretical estimation of the current resolution; stability limits of SQUID systems and adaptation of the coupling circuit to the AD beam parameters; the analysis of thermal and mechanical cryostat modes.

  12. Investigation of silicon sensors for their use as antiproton annihilation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pacifico, N., E-mail: nicola.pacifico@cern.ch [University of Bergen, Institute of Physics and Technology, Allégaten 55, 5007 Bergen (Norway); Aghion, S. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Milano, Via Celoria 16, 20133 Milano (Italy); Ahlén, O. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Belov, A.S. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation); Bonomi, G. [University of Brescia, Department of Mechanical and Industrial Engineering, Via Branze 38, 25133 Brescia (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, Via Agostino Bassi 6, 27100 Pavia (Italy); Bräunig, P. [Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, 69120 Heidelberg (Germany); Bremer, J. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Brusa, R.S. [Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento (Italy); INFN-TIFPA, via Sommarive 14, 38123 Povo, Trento (Italy); Burghart, G. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Cabaret, L. [Laboratoire Aimé Cotton, CNRS, Université Paris Sud, ENS Cachan, Bâtiment 505, Campus d' Orsay, 91405 Orsay Cedex (France); Caccia, M. [University of Insubria, Dipartimento di Scienza ed Alta Tecnologia, via Valleggio 11, Como (Italy); Canali, C. [University of Zurich, Physics Institute, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Caravita, R. [Istituto Nazionale di Fisica Nucleare, Sez. di Genova, Via Dodecaneso 33, 16146 Genova (Italy); University of Genoa, Department of Physics, Via Dodecaneso 33, 16146 Genova (Italy); Castelli, F. [University of Milano, Department of Physics, Via Celoria 16, 20133 Milano (Italy); and others

    2014-11-21

    We present here a new application of silicon sensors aimed at the direct detection of antinucleons annihilations taking place inside the sensor's volume. Such detectors are interesting particularly for the measurement of antimatter properties and will be used as part of the gravity measurement module in the AEg{sup ¯}IS experiment at the CERN Antiproton Decelerator. One of the goals of the AEg{sup ¯}IS experiment is to measure the gravitational acceleration of antihydrogen with 1% precision. Three different silicon sensor geometries have been tested with an antiproton beam to investigate their properties as annihilation detection devices: strip planar, 3D pixels and monolithic pixel planar. In all cases we were successfully detecting annihilations taking place in the sensor and we were able to make a first characterization of the clusters and tracks.

  13. Dynamic studies of multiple configurations of CERN's Antiproton Decelerator Target core under proton beam impact

    CERN Document Server

    AUTHOR|(CDS)2248381

    Antiprotons, like many other exotic particles, are produced by impacting high energy proton beams onto fixed targets. At the European Organization for Nuclear Research (CERN), this is done in the Antiproton Decelerator (AD) Facility. The engineering challenges related to the design of an optimal configuration of the AD-Target system derive from the extremely high energy depositions reached in the very thin target core as a consequence of each proton beam impact. A new target design is foreseen for operation after 2021, triggering multiple R&D activities since 2013 for this purpose. The goal of the present Master Thesis is to complement these activities with analytical and numerical calculations, delving into the phenomena associated to the dynamic response of the target core. In this context, two main studies have been carried out. First, the experimental data observed in targets subjected to low intensity proton pulses was cross-checked with analytical and computational methods for modal analysis, applie...

  14. Anti- and Hypermatter Research at the Facility for Antiproton and Ion Research FAIR

    International Nuclear Information System (INIS)

    Steinheimer, J; Xu, Z; Gudima, K; Botvina, A; Mishustin, I; Bleicher, M; Stöcker, H

    2012-01-01

    Within the next six years, the Facility for Antiproton and Ion Research (FAIR) is built adjacent to the existing accelerator complex of the GSI Helmholtz Center for Heavy Ion Research at Darmstadt, Germany. Thus, the current research goals and the technical possibilities are substantially expanded. With its worldwide unique accelerator and experimental facilities, FAIR will provide a wide range of unprecedented fore-front research in the fields of hadron, nuclear, atomic, plasma physics and applied sciences which are summarized in this article. As an example this article presents research efforts on strangeness at FAIR using heavy ion collisions, exotic nuclei from fragmentation and antiprotons to tackle various topics in this area. In particular, the creation of hypernuclei and antimatter is investigated.

  15. Carbon filament beam profile monitor for high energy proton-antiproton storage rings

    International Nuclear Information System (INIS)

    Evans, L.R.; Shafer, R.E.

    1979-01-01

    The measurement of the evolution of the transverse profile of the stored beams in high energy proton storage rings such as the p-anti p colliders at CERN and at FNAL is of considerable importance. In the present note, a simple monitor is discussed which will allow almost non-destructive measurement of the profile of each individual proton and antiproton bunch separately. It is based on the flying wire technique first used at CEA and more recently at the CPS. A fine carbon filament is passed quickly through the beam, acting as a target for secondary particle production. The flux of secondary particles is measured by two scintillator telescopes, one for protons and one for antiprotons, having an angular acceptance between 30 and 100 mrad. Measurements of secondary particle production performed at FNAL in this angular range show that a very respectable flux can be expected

  16. Cosmic-ray antiproton flux: an upper limit near that predicted for secondary production

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Daniel, R.R.; Cleghorn, T.; Golden, R.L.; Lacy, J.L.; Stephens, S.A.; Zipse, J.E.

    1977-01-01

    Data gathered from the 1976 September 16 balloon flight of the Johnson Space Center superconducting magnet spectrometer have been examined for the presence of cosmic-ray antiprotons. The ratio of antiprotons to protons, p-bar/p, in cosmic rays was found to be (0.03 +- 3.3) x 10 -4 in the rigidity interval 4.2 to 12.5 GV. The 95% confidence level upper limit for p-bar/p is thus 6.6 x 10 -4 . This upper limit is in strong contradiction to the prediction of the closed-galaxy model of Rasmussen and Peters, but is not inconsistent with the prediction of the modified closed-galaxy model of Peters and Westergaard. It is nearly equal to the predictions of conventional propagation models. This result provides an independent confirmation of the absence of primary antimatter in the cosmic rays at a level of approximately a few times 10 -4

  17. Production of hyperfragments by antiprotons at rest annihilating on nuclei in nuclear photoemulsion

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Bunyatov, S.A.; Pontecorvo, G.B.

    1992-01-01

    Events have been observed, for the first time, of the production, departure and mesonic decay of the light hyperfragments Λ 3 H and Λ 4 H in the annihilation on the light (C, N, O, S)-nuclei of antiprotons stopping in nuclear photoemulsion. The lower limit of the production probability of Λ 3 H and Λ 4 H hyperfragments per single antiproton stopping in nuclear photoemulsion has been determined to be (6.1±3.5)x10 -4 . The charge exchange, on nucleons of the residual nucleus, of K - -mesons resulting from the annihilation process has been demonstrated to be the most probable mechanism of hyperfragment production. 17 refs.; 9 figs

  18. Secondary emission monitor for keV ion and antiproton beams

    CERN Document Server

    Sosa, Alejandro; Bravin, Enrico; Harasimowciz, Janusz; Welsch, C P

    2013-01-01

    Beam profile monitoring of low intensity keV ion and antiproton beams remains a challenging task. A Sec- ondary electron Emission Monitor (SEM) has been de- signed to measure profiles of beams with intensities below 107 and energies as low as 20 keV. The monitor is based on a two stage microchannel plate (MCP) and a phosphor screen facing a CCD camera. Its modular design allows two different operational setups. In this contribution we present the design of a prototype and discuss results from measurements with antiprotons at the AEgIS experiment at CERN. This is then used for a characterization of the monitor with regard to its possible future use at different facilities.

  19. Suppression of propagating TE modes in the FNAL antiproton source stochastic beam cooling system

    International Nuclear Information System (INIS)

    Barry, W.C.

    1985-05-01

    A method of attenuating the propagation of waveguide modes in the stochastic cooling array beam pipes to be utilized in the accumulator and debuncher rings of the Fermilab antiproton source is described. The attenuation method treated involves lining the vertical walls of the beam pipes with a ferrimagnetic material. The general solution for propagation in a nonhomogeneously loaded waveguide is presented along with numerical results specific to the antiproton source beam cooling system. Also described is a broadband, automated technique for the simultaneous measurement of complex μ and epsilon developed to aid in the characterization of different ferrite materials. Permittivity and permeability data for a typical ferrite are presented along with a discussion of the effects of these parameters on waveguide mode attenuation in the ferrite lined beam pipes

  20. Information on antiprotonic atoms and the nuclear periphery from the PS209 experiment

    CERN Document Server

    Trzcinska, A.; Czosnyka, T.; von Egidy, T.; Gulda, K.; Hartmann, F.J.; Iwanicki, J.; Ketzer, B.; Kisielinski, M.; Klos, B.; Kurcewicz, W.; Lubinski, P.; Napiorkowski, P.J.; Pienkowski, L.; Schmidt, R.; Widmann, E.

    2001-01-01

    In the PS209 experiments at CERN two kinds of measurements were performed: the in-beam measurement of X-rays from antiprotonic atoms and the radiochemical, off-line determination of the yield of annihilation products with mass number A_t -1 (less by 1 than the target mass). Both methods give observables which allows to study the peripheral matter density composition and distribution.

  1. The GSI plans for an international accelerator facility for beams of ions and antiprotons

    International Nuclear Information System (INIS)

    Suemmerer, K.

    2003-01-01

    GSI proposes to build a next-generation facility for research with relativistic beams of ions and antiprotons. This facility allows a broad range of topics in nuclear and astrophysics, plasma and atomic physics to be addressed. The topic most interesting in the context of this conference is physics with high-intensity beams of exotic nuclei. In addition, a short overview of the opportunities in the other fields of nuclear physics is given

  2. Antiproton interaction with 4He as a test of GUT cosmology

    International Nuclear Information System (INIS)

    Chechetkin, V.M.; Khlopov, M.Yu.; Zeldovich, Ya.B.

    1982-01-01

    A new possibility of checking some GUT models is suggested, basing on the analysis of their cosmological consequences and the experimental study of the anti p 4 He interaction. The study of annihilation of antiprotons with 4 He may provide limits on the possible amount of antimatter in the early Universe, limits on the probability of formation of primordial black holes and restrictions on the GUT parameters determining the properties of domains of antimatter

  3. Study of double scattering effect in antiproton--deuteron annihilation

    International Nuclear Information System (INIS)

    Zemany, P.D.

    1975-01-01

    The double scattering process in the deuteron is investigated for the reaction anti pd → p/sub s/ + mesons. About 30 percent of the apparent anti pn annihilations are involved in double scattering. A model which describes the properties of protons emerging from apparent anti pn annihilations is presented

  4. Measurement of asymmetries and differential cross sections in antiproton-proton elastic scattering at momenta between 497 and 1550 MeV/c

    International Nuclear Information System (INIS)

    Kunne, R.A.

    1988-01-01

    An intermediate energy antiproton proton (anti pp) elastic scattering experiment is described. The data comprise a set of 15 measurements of the differential cross section and the asymmetry between 497 and 1550 MeV/c antiproton momentum. The measurements were carried out using the high quality antiproton beam provided by the Low Energy Antiproton Ring (LEAR) at CERN. A conventional polarized target was used, consisting of pentanol. The motivation for the measurements is the study of the anti pp interaction by providing data on the spin observable A on in a momentum range where it has never been measured before. 56 refs.; 55 figs.; 40 tabs

  5. Antiproton-proton annihilation into charged light meson pairs within effective meson theory

    Science.gov (United States)

    Wang, Ying; Bystritskiy, Yury M.; Tomasi-Gustafsson, Egle

    2017-04-01

    We revisit antiproton-proton annihilation into light mesons in the energy domain relevant to the antiproton annihilation at Darmstadt (PANDA) experiment at the GSI Facility for Antiproton and Ion Research (FAIR) [2.25 (1.5 ) ≤√{s }(pL) ≤5.47 (15 ) GeV (GeV /c ) where √{s }(pL) is the total energy (the beam momentum in the laboratory frame)]. An effective meson model is developed, with mesonic and baryonic degrees of freedom. Form factors are added to take into account the composite nature of the interacting hadrons. A comparison is made with the existing data for charged pion pair production and predictions for angular distributions and energy dependence in the range 3.362 (5 ) ≤√{s }(pL) ≤4.559 (10.1 ) GeV (GeV /c ). The model is applied to π±p elastic scattering, using crossing symmetry, and to charged kaon pair production, on the basis of SU(3) symmetry. In all cases the results illustrate a nice agreement with the data.

  6. Measurements of Wake-Riding Electrons in Antiproton-Carbon-Foil Collisions

    CERN Multimedia

    2002-01-01

    When a charged particle passes through dielectric media, e.g. a thin carbon foil, a ``wake'' is induced. The characteristic wake-potential shows an oscillatory behaviour, with a wavelength of about $ 2 \\pi v _{p} / \\omega _{p} _{l} $ where $ v _{p} $ is the projectile velocity and $ \\omega _{p} _{l} $ the plasmon energy of the target. This induced wake potential is superimposed on the Coulomb potential of the projectile, the latter leading to a pronounced ``cusp'' of electrons leaving the solid at $ v _{e} app v _{p} $ for positively charged projectiles in the MeV region. Correspondingly, an ``anti-cusp'' is expected for antiprotons. \\\\ \\\\ In the solid, the wake-potential leads to an attractive force on electrons, and a dynamic electronic state is predicted both for proton and antiproton projectiles. In the solid, the wake-riding electrons are travelling with the projectile speed $ v _{p} $ Upon exit of the foil, the electron released from the wake-riding state of an antiproton will suddenly find itself in th...

  7. Heavy flavour production and heavy flavour mixing at the CERN proton-antiproton collider

    International Nuclear Information System (INIS)

    Eijk, B. van.

    1987-01-01

    In this thesis some results of the proton-antiproton-collision experiment UA1 with the CERN Super Proton-Antiproton Synchrotron are presented and interpreted. Ch. 1 contians a general introduction to the physics motivations behind the proton-antiproton-collider project, a brief description of the CERN facilities and a summary of collider and UA1 physics achievements. Furthermore the concept of studying heavy flavours via their weak decays into muons is introduced. Ch. 2 gives a brief overview of the UA1 experimental set-up, while those parts of the detector that are relevant for the analysis, presented in this thesis, is discussed in some more detail. Ch. 3 contains a short introduction to, and motivation for the use of Monte Carlo techniques in event simulations, while Ch. 4 describes the framework of the recently developed 'EUROJET' event generator. In Ch. 5 a treatment is given of the theoretical background and concepts like 'quark-mixing' and 'CP-violation' are explained, also other useful definitions and formulae are introduced on which the later analysis of the same-sign to opposite-sign dimuon ratio is built. Data collection and event reconstruction is the subject of Ch. 6, while a detailed comparison between the theoretical models and experimentally obtained distributions is given in Ch. 7. Finally, in Ch. 8 some concluding remarks are made. 182 refs.; 81 figs.; 9 tabs

  8. Unified interpretation of cosmic-ray nuclei and antiproton recent measurements

    International Nuclear Information System (INIS)

    Di Bernardo, Giuseppe; Gaggero, Daniele; Evoli, Carmelo; Grasso, Dario; Maccione, Luca

    2009-09-01

    We use our numerical code, DRAGON, to study the implications and the impact of recent CREAM and PAMELA data on our knowledge of the propagation properties of cosmic ray nuclei with energy >or similar 1 GeV/n in the Galaxy. We will show that B/C (as well as N/O and C/O) and anti p/p data (especially including recent PAMELA results) can consistently be matched within a unique diffusion-reacceleration model. The requirement that light nuclei and anti p data are both reproduced within experimental uncertainties places stringent limits on suitable propagation parameters. In particular, we find the allowed range of the diffusion coefficient spectral index to be 0.38 A ≅15 kms -1 ) is allowed. Furthermore, we do not need to introduce any ad hoc break in the injection spectrum of primary cosmic rays. If antiproton data are not used to constrain the propagation parameters, a larger set of models is allowed. In this case, we determine which combinations of the relevant parameters maximize and minimize the antiproton flux under the condition of still fitting light nuclei data at 95% C.L. These models may then be used to constrain a possible extra antiproton component arising from astrophysical or exotic sources (e.g. dark matter annihilation or decay). (orig.)

  9. Conceptual Design Report. Antiproton - Proton Collider Upgrade 20 GeV Rings. Technical Components and Civil Construction May, 1988

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-05-01

    This report contains a description of the design and cost estimate of two new 20 GeV rings which will be required to support the upgrade of the Fermilab Collider with a luminosity goal of 5x10 31 cm-2s-1. The new rings include an antiproton post-accumulator, denoted the Antiproton Super Booster (ASB), and a proton post-booster, denoted the Proton Super Booster (PSB). The siting of the rings is shown in Figure I-1. Both rings are capable of operation at 20 GeV, eliminating the need for ever again injecting beam into the Main Ring below transition, and significantly enhancing Main Ring performance. The Antiproton Super Booster is designed to accept and accumulate up to 4x1012 antiprotons from the existing Antiproton Accumulator, and deliver them to the Main Ring at 20 GeV for acceleration and injection into the Collider. It is also designed to accept diluted antiprotons from the Main Ring at 20 GeV for recooling. The PSB accepts 8.9 GeV protons from the existing Booster and accelerates them to 20 GeV for injection into the Main Ring. The PSB is designed to operate at 5 Hz. The siting shown in Figure I-1 has the attractive feature that it removes all Main Ring injection hardware from the AO straight section, opening the possibility of installing a third proton-antiproton interaction region in the Tevatron Collider.

  10. Proton-antiproton annihilation into massive leptons and polarization phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Dbeyssi, A. [Univ. Paris-Sud, CNRS/IN2P3, Institut de Physique Nucleaire, UMR 8608, 91405 Orsay (France); Tomasi-Gustafsson, E., E-mail: etomasi@cea.fr [Univ. Paris-Sud, CNRS/IN2P3, Institut de Physique Nucleaire, UMR 8608, 91405 Orsay (France); Gakh, G.I.; Konchatnyi, M. [National Science Centre, Kharkov Institute of Physics and Technology, 61108 Akademicheskaya 1, Kharkov (Ukraine)

    2012-11-15

    We extend previous calculations of polarization observables for the annihilation reaction p{sup Macron }+p{yields} Script-Small-L {sup -}+ Script-Small-L {sup +} to the case of heavy leptons, such as the {mu}- and {tau}-leptons. We consider the case when the beam and/or the target are polarized, as well as when the outgoing leptons are polarized. We give the dependence of the unpolarized cross section, angular asymmetry, and various polarization observables on the relevant kinematical variables in the center of mass and in the laboratory system, paying particular attention to the effect of the mass induced terms.

  11. Antiproton production in Au + Au collisions at 11.7 A{center_dot}GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Hiroyuki [Tokyo Univ. (Japan)

    1997-02-01

    We investigated the dependence of antiproton yields on the number of wounded projectile nucleons (N{sub proj}). The dN/dy/N{sub proj} of antiprotons with the beam energy correction is almost constant from p+A to Si+A collisions, while it decreases in Au+Au collisions to 30-60% of the constant. Next, we have compared dependence of ratios of dN/dy, p-bar/{pi}{sup -}, p/{pi}{sup -}, K{sup -}/{pi}{sup -}, K{sup +}/{pi}{sup -}, and {pi}{sup +}/{pi}{sup -} at 1.2antiprotons in Au+Au collisions is much stronger than in p+A and Si+A collisions. We have compared the antiproton data with the RQMD model. In RQMD, antiprotons are produced initially from multi-step excitation processes and some of them are absorbed by nucleons with free NN-bar annihilation cross sections. RQMD reproduces overall tendencies of antiproton yields from p+A to Au+Au collisions within 50%. Finally, we explored the relation between baryon densities and antiproton yields in A+A collisions. We used a model in a static participant volume with the RQMD initial production and the absorption length with the free NN-bar annihilation cross section. In the model, only the antiprotons produced around the surface of the participant volume can survive. The model reproduces the scaling of experimental antiproton yields with the 2/3 power of the number of participants. By comparing the model with the experimental data, it is found that the ratio of the mean baryon density to the surface baryon density is 3-4 independent of collision systems. (J.P.N.). 109 refs.

  12. V-79 Chinese Hamster Cells irradiated with antiprotons, a study of peripheral damage due to medium and long range components of the annihilation radiation

    DEFF Research Database (Denmark)

    Kovacevic, Sandra; Bassler, Niels; Hartley, Oliver

    2009-01-01

    produce a significant background dose and reverse any benefits of higher biological dose in the target area. Materials and methods: Using the Antiproton Decelerator (AD) at CERN (Conseil Europeen pour la Recherche Nucleaire) we irradiated V-79 Chinese Hamster cells embedded in gelatine using an antiproton...

  13. High-precision comparison of the antiproton-to-proton charge-to-mass ratio.

    Science.gov (United States)

    Ulmer, S; Smorra, C; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-08-13

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of |α − 1| < 8.7 × 10(-7).

  14. What Does The PAMELA Antiproton Spectrum Tell Us About Dark Matter?

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Chicago U., Astron. Astrophys. Ctr.; Linden, Tim [Chicago U., KICP; Mertsch, Philipp [KIPAC, Menlo Park

    2015-03-11

    Measurements of the cosmic ray antiproton spectrum can be used to search for contributions from annihilating dark matter and to constrain the dark matter annihilation cross section. Depending on the assumptions made regarding cosmic ray propagation in the Galaxy, such constraints can be quite stringent. We revisit this topic, utilizing a set of propagation models fit to the cosmic ray boron, carbon, oxygen and beryllium data. We derive upper limits on the dark matter annihilation cross section and find that when the cosmic ray propagation parameters are treated as nuisance parameters (as we argue is appropriate), the resulting limits are significantly less stringent than have been previously reported. We also note (as have several previous groups) that simple GALPROP-like diffusion-reacceleration models predict a spectrum of cosmic ray antiprotons that is in good agreement with PAMELA's observations above ~ 5 GeV, but that significantly underpredict the flux at lower energies. Although the complexity of modeling cosmic ray propagation at GeV-scale energies makes it difficult to determine the origin of this discrepancy, we consider the possibility that the excess antiprotons are the result of annihilating dark matter. Suggestively, we find that this excess is best fit for mDM ~ 35 GeV and σ v ~ 10$-$26 cm3/s (to $b\\bar{_b}$), in good agreement with the mass and cross section previously shown to be required to generate the gamma-ray excess observed from the Galactic Center.

  15. Exploration of a High Luminosity 100 TeV Proton Antiproton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Oliveros, Sandra J. [Univ. of Mississippi, Oxford, MS (United States); Summers, Don [Univ. of Mississippi, Oxford, MS (United States); Cremaldi, Lucien [Univ. of Mississippi, Oxford, MS (United States); Acosta, John [Univ. of Mississippi, Oxford, MS (United States); Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-04-12

    New physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. We explore a 10$^{\\,34}$ cm$^{-2}$ s$^{-1}$ luminosity, 100 TeV $p\\bar{p}$ collider with 7$\\times$ the energy of the LHC but only 2$\\times$ as much NbTi superconductor, motivating the choice of 4.5 T single bore dipoles. The cross section for many high mass states is 10 times higher in $p\\bar{p}$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per beam crossing, because lower beam currents can produce the same rare event rates. Events are more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $\\beta^{*}$ for higher luminosity. A Fermilab-like $\\bar p$ source would disperse the beam into 12 momentum channels to capture more antiprotons. Because stochastic cooling time scales as the number of particles, 12 cooling ring sets would be used. Each set would include phase rotation to lower momentum spreads, equalize all momentum channels, and stochastically cool. One electron cooling ring would follow the stochastic cooling rings. Finally antiprotons would be recycled during runs without leaving the collider ring by joining them to new bunches with synchrotron damping.

  16. The BESS Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter

    Science.gov (United States)

    Mitchell, John; Yamamoto, Akira

    2009-01-01

    The apex of the Balloon-borne Experiment with a Superconducting Spectrometer (BESS) program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier antinuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of antideuterons and antihelium. The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.

  17. Kickers and power supplies for the Fermilab Tevatron I antiproton source

    International Nuclear Information System (INIS)

    Castellano, T.; Bartoszek, L.; Tilles, E.; Petter, J.; McCarthy, J.

    1985-05-01

    The Fermilab Antiproton Source Accumulator and Debuncher rings require 5 kickers in total. These range in design from conventional ferrite delay line type magnets, with ceramic beam tubes to mechanically complex shuttered kickers situated entirely in the Accumulator Ring's 10 -10 torr vacuum. Power supplies are thyratron switched pulse forming networks that produce microsecond width pulses of several kiloamps with less than 30 nanoseconds rise and fall times. Kicker and power supply design requirements for field strength, vacuum, rise and fall time, timing and magnetic shielding of the stacked beam in the accumulator by the eddy current shutter will be discussed. 8 refs., 3 figs., 2 tabs

  18. The FLUKA study of the secondary particles fluence in the AD-Antiproton Decelerator target area

    CERN Document Server

    Calviani, M

    2014-01-01

    In this paper we present Monte Carlo FLUKA simulations [1, 2] carried out to investigate the secondary particles fluence emerging from the antiproton production target and their spatial distribution in the AD target area. The detailed quantitative analysis has been performed for different positions along the magnet dog-leg as well as after the main collimator. These results allow tuning the position of the new beam current transformers (BCT) in the target area, in order to have a precise pulse-by-pulse evaluation of the intensity of negative particles injected in the AD-ring before the deceleration phase.

  19. Profile measurements by ondulator radiation of proton and anti-proton beams

    International Nuclear Information System (INIS)

    Meot, F.

    1981-12-01

    The CERN SPS synchrotron is presently under transformation in a proton-antiproton storage ring. As part of this plan, circulating beams must be adjusted. After a first experiment of synchrotron radiation operation, reserved up to now to high intensity and high energy proton beams, a system, based on the use of light emitted by particles crossing the ondulator periodic magnetic field, is decided to be realized. Context and nature of this plan are presented in this thesis, together with details of elaboration and realization. To conclude, first experimental results on the proton ondulator radiation are presented [fr

  20. Basic physics program for a low energy antiproton source in North America

    International Nuclear Information System (INIS)

    Bonner, B.E.; Nieto, M.M.

    1987-01-01

    We summarize much of the important science that could be learned at a North American low energy antiproton source. It is striking that there is such a diverse and multidisciplinary program that would be amenable to exploration. Spanning the range from high energy particle physics to nuclear physics, atomic physics, and condensed matter physics, the program promises to offer many new insights into these disparate branches of science. It is abundantly clear that the scientific case for rapidly proceeding towards such a capability in North America is both alluring and strong. 38 refs., 2 tabs

  1. Comparison of antiproton-proton and proton-proton collisions at the CERN Intersecting Storage Ring

    International Nuclear Information System (INIS)

    di Ciaccio, A.; Gordon, H.; Hogue, R.

    1981-01-01

    A comparative investigation of anti pp and pp collisions at the CERN Intersecting Storage Rings is reported. The study was performed using the cylindrical drift chamber of the Axial Field Spectrometer. Non-relativistic particles were identified through multiple ionization sampling. The inclusive production of pions, kaons, protons and antiprotons in the central region of rapidity (absolute value y < 0.8) is compared. Distributions in charged particle multiplicity, rapidity and P/sub T/ are found to be very similar in anti pp and pp data

  2. Highlights on gamma rays, neutrinos and antiprotons from TeV Dark Matter

    Directory of Open Access Journals (Sweden)

    Gammaldi Viviana

    2016-01-01

    Full Text Available It has been shown that the gamma-ray flux observed by HESS from the J1745-290 Galactic Center source is well fitted as the secondary gamma-rays photons generated from Dark Matter annihilating into Standard Model particles in combination with a simple power law background. The neutrino flux expected from such Dark Matter source has been also analyzed. The main results of such analyses for 50 TeV Dark Matter annihilating into W+W− gauge boson and preliminary results for antiprotons are presented.

  3. Measurement of (anti)deuteron and (anti)proton production in DIS at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2007-05-01

    The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300-318 GeV using an integrated luminosity of 120 pb -1 . The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3 T /M<0.7. The particle rates have been extracted and interpreted in terms of the coalescence model. The (anti)deuteron production yield is smaller than the (anti)proton yield by approximately three orders of magnitude, consistent with the world measurements. (orig.)

  4. Hydrogen-assisted laser-induced resonant transitions between metastable states of antiprotonic helium atoms

    International Nuclear Information System (INIS)

    Ketzer, B.; Hartmann, F.J.; Egidy, T. von

    1996-11-01

    Laser resonance transitions between normally metastable states of antiprotonic helium atoms were observed making use of state dependent quenching effects caused by small admixtures of H 2 molecules. By selectively shortening the lifetimes of states with higher principal quantum number n as compared to those of lower n, this method for the first time provides access to all initially populated metastable states of p-bar He + atoms. This was demonstrated by observing the transitions (n,l) = (38,l) → (39,l+1), l 35, 36, 37 and (n,l) = (37,l) → (38,l+1), l = 34, 35, 36. (author)

  5. Measurement of the Transverse Momentum of Dielectron Pairs in Proton - Anti-Proton Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Dylan Patrick [Univ. of Rochester, NY (United States)

    1997-01-01

    We present a measurement of the transverse momentum distribution of dielectron pairs with invariant mass near the mass of the Z boson. The data were obtained using the DO detector during the 1994-1995 run of the Tevatron Co!lider at Fermilab. The data used in the measurement corresponds to an integrated luminosity of 108.5 $pb^{-1}$ The measurement is compared to current phenomenology for vector boson production in proton-antiproton interactions, and the results are found to be consistent with expectation from Quantum Chromodynamics (QCD).

  6. Hydrogen-assisted laser-induced resonant transitions between metastable states of antiprotonic helium atoms

    CERN Document Server

    Ketzer, B; Von Egidy, T; Maierl, C; Pohl, R; Eades, John; Widmann, E; Yamazaki, T; Kumakura, M; Morita, N; Hayano, R S; Hori, Masaki; Ishikawa, T; Torii, H A; Sugai, I; Horváth, D

    1997-01-01

    Laser resonance transitions between normally metastable states of antiprotonic helium atoms were observed making use of state dependent quenching effects caused by small admixtures of \\htwo\\ molecules. By selectively shortening the lifetimes of states with higher principal quantum number $n$ as compared to those of lower $n$, this method for the first time provides access to all initially populated metastable states of \\pbar\\hep\\ atoms. This was demonstrated by observing the transitions $(n,l)=(38,l)\\rightarrow (39,l+1),\\ l=35,36,37$ and $(n,l)=(37,l)\\rightarrow (38,l+1),\\ l=34,35,36$.

  7. Overview of the recent operation of the AAC and LEAR for the low-energy antiproton physics programme

    CERN Document Server

    Baird, S A; Caspers, Friedhelm; Chanel, M; Chohan, V; Eriksson, T; Ley, R; Maury, S; Metzger, C; Möhl, D; Mulder, H; Pedersen, F; Tranquille, G

    1998-01-01

    This paper reviews the recent performance of the AAC and LEAR. Activities on the AAC include the successful exploitation of a magnetic horn as an antiproton collector lens and an energy-saving mode of operation, which has been possible since 1992, when LEAR became the only client of the AAC. LEAR worked in its full momentum range between 100 MeV/c and 2 GeV/c, with perform-ance (intensities, ejection modes and spill length) exceeding the design specifications. Improvements are described, which contributed to the quality of the beam delivered to experiments. The reliability and availability of the antiproton machines are also discussed.

  8. Measurement of antiproton production in $p$He collisions at $\\sqrt{s_{\\scriptscriptstyle\\rm NN}}=110$ GeV

    CERN Document Server

    The LHCb Collaboration

    2017-01-01

    The antiproton production cross-section in collisions of a 6.5 TeV LHC proton beam on helium at rest is measured by the LHCb experiment using the SMOG internal gas target from a dataset corresponding to an integrated luminosity of 0.4 $\\text{nb}^{-1}$. This is the first direct measurement of antimatter production in $p$He collisions, and has important implications for the interpretation of recent results from the PAMELA and AMS-02 experiments, which measure the antiproton component in cosmic rays outside of the Earth's atmosphere.

  9. Calculations of antiproton nucleus quasi-bound states using the Paris (N)over-barN potential

    Czech Academy of Sciences Publication Activity Database

    Hrtánková, Jaroslava; Mareš, Jiří

    2018-01-01

    Roč. 969, č. 1 (2018), s. 45-59 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : antiproton-nucleus interaction * Paris (N)over-barN potential * antiproton-nuclear bound states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.916, year: 2016

  10. The CERN antiproton target: hydrocode analysis of its core material dynamic response under proton beam impact

    CERN Document Server

    Martin, Claudio Torregrosa; Calviani, Marco; Muñoz-Cobo, José-Luis

    2016-01-01

    Antiprotons are produced at CERN by colliding a 26 GeV/c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 {\\deg}C after each pulse impact and successive dynamic pressure waves of the order of GPa's. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i) the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii) The existence of...

  11. High precision spectroscopy of pionic and antiprotonic atoms; Spectroscopie de precision des atomes pioniques et antiprotoniques

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, P

    1998-04-15

    The study of exotic atoms, in which an orbiting electron of a normal atom is replaced by a negatively charged particle ({pi}{sup -}, {mu}{sup -}, p, {kappa}{sup -}, {sigma}{sup -},...) may provide information on the orbiting particle and the atomic nucleus, as well as on their interaction. In this work, we were interested in pionic atoms ({pi}{sup -14} N) on the one hand in order to determine the pion mass with high accuracy (4 ppm), and on the other hand in antiprotonic atoms (pp-bar) in order to study the strong nucleon-antinucleon interaction at threshold. In this respect, a high-resolution crystal spectrometer was coupled to a cyclotron trap which provides a high stop density for particles in gas targets at low pressure. Using curved crystals, an extended X-ray source could be imaged onto the detector. Charge-Coupled Devices were used as position sensitive detectors in order to measure the Bragg angle of the transition to a high precision. The use of gas targets resolved the ambiguity owing to the number of K electrons for the value of the pion mass, and, for the first time, strong interaction shift and broadening of the 2p level in antiprotonic hydrogen were measured directly. (author)

  12. Meas.of the Ratio Between Double and Single Ionization of Helium for Antiprotons

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to measure the ratio between double and single ionization of helium by antiprotons in the energy range $>$~3~MeV. Comparison with already existing proton data will yield information on the mechanisms for double ionization, which could not be extracted from previous comparisons between ratios measured for equivelocity electrons and protons. The most basic information to be obtained from an antiproton experiment will be the amount of correlation existing between the two electrons in the ground-state helium atom.\\\\ \\\\ The equipment consists of a gas cell, which employs slow-ion collection via the so-called condenser-plate method for the absolute sum of partial-ionization cross sections and determination of the relative contribution of multiple charged ions by TOF. The gas cell has movable entrance and exit slits and a grid system to account for secondary emission from the collection of slow ions. Together with a field of 800~V/cm in the collision region, the potentials of the TOF sp...

  13. Neutrons produced by 1.22 GeV antiproton interactions with nuclei

    CERN Document Server

    Von Egidy, T; Galin, J; Goldenbaum, F; Golubeva, Y S; Hasinoff, M D; Hilscher, D; Iljinov, A S; Jahnke, U; Krause, M; Kurcewicz, W; Ledoux, X; Lott, B; Maier, L; Manrique de Lara, M; Pausch, G; Pienkowski, L; Quednau, B; Schott, W; Schröder, W U; Töke, J

    2000-01-01

    Inclusive neutron energy spectra were measured by time of flight using 1.22 GeV antiprotons from LEAR, CERN, as projectiles and targets from natural Al, Cu, Ag, Ho, Ta, Au, Pb, Bi, and U. The sum of two Maxwellian distributions was fitted to the spectra d/sup 2/ sigma /(d Omega dE) obtained at several forward and backward angles yielding neutron multiplicities M/sub i/ and slope or temperature parameters T/sub i/ for the low-energy (evaporative, i=1) and high- energy (pre-equilibrium, i=2) parts, respectively. M/sub 1/ increases with A, proportional to the nuclear volume, and M/sub 2/ is growing with A/sup 1/3/, proportional to the nuclear radius. The T parameters are nearly independent of A. The results are compared with previous multiplicity measurements with a 4 pi neutron detector, intranuclear cascade calculations and neutron spectra from stopped antiproton annihilation on nuclei. With the measured proton spectra also the ratio of emitted neutrons to protons was determined for Au. (26 refs) .

  14. Novel Dark Matter Constraints from Antiprotons in Light of AMS-02.

    Science.gov (United States)

    Cuoco, Alessandro; Krämer, Michael; Korsmeier, Michael

    2017-05-12

    We evaluate dark matter (DM) limits from cosmic-ray antiproton observations using the recent precise AMS-02 measurements. We properly take into account cosmic-ray propagation uncertainties, fitting DM and propagation parameters at the same time and marginalizing over the latter. We find a significant indication of a DM signal for DM masses near 80 GeV, with a hadronic annihilation cross section close to the thermal value, ⟨σv⟩≈3×10^{-26}  cm^{3} s^{-1}. Intriguingly, this signal is compatible with the DM interpretation of the Galactic center gamma-ray excess. Confirmation of the signal will require a more accurate study of the systematic uncertainties, i.e., the antiproton production cross section, and the modeling of the effect of solar modulation. Interpreting the AMS-02 data in terms of upper limits on hadronic DM annihilation, we obtain strong constraints excluding a thermal annihilation cross section for DM masses below about 50 GeV and in the range between approximately 150 and 500 GeV, even for conservative propagation scenarios. Except for the range around ∼80  GeV, our limits are a factor of ∼4 stronger than the limits from gamma-ray observations of dwarf galaxies.

  15. Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter with BESS

    Science.gov (United States)

    Yamamoto, A.; Mitchell, J. W.; Yoshimura, K.; Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; hide

    2011-01-01

    The balloon-borne experiment with a superconducting spectrometer (BESS) has performed cosmic-ray observations as a US-Japan cooperative space science program, and has provided fundamental data on cosmic rays to study elementary particle phenomena in the early Universe. The BESS experiment has measured the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic origins such as dark matter candidates or primordial black holes. and searched for heavier antinuclei that might reach Earth from antimatter domains formed in the early Universe. The apex of the BESS program was reached with the Antarctic flight of BESS-Polar II, during the 2007- 2008 Austral Summer, that obtained over 4.7 billion cosmic-ray events from 24.5 days of observation. The flight took place at the expected solar minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. Here, we report the scientific restults, focusing on the long-duration flights of BESS-Polar I (2004) and BESS-Polar II (2007-2008).

  16. Measurement of the Antiproton-Proton Total Cross-Section at the CERN ISR

    CERN Multimedia

    2002-01-01

    This experiment is a measurement of small angle scattering of antiprotons on protons and of protons on protons at 15/15, 22/22, 26/26 and 31/31 GeV, with the aim of obtaining data on the total cross-section for the scattering of protons on protons, and of determining the ratio of the real to the imaginary scattering amplitude at zero momentum transfer for antiprotons on protons. The measurement is divided into two parts: \\item 1) The measurement of @s^t^o^t(@*p) and @s^t^o^t(pp), using hodoscopes placed at small angles, outside the vacuum pipe, at approximately 9 metres from the intersection point. \\item 2) The measurement of the region in !t!, the momentum transfer squared, around the value !t^c!, where Coulomb and nuclear scattering are equal, in order to deduce the quantity @r = Re f(t=0)/Im f(t=0). This latter measurement is done by employi in earlier @s^t(pp) and @r experiments at the ISR. \\end{enumerate} In both set-ups the measurements are made by recording coincidences between collinear counters in th...

  17. CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact

    Directory of Open Access Journals (Sweden)

    Claudio Torregrosa Martin

    2016-07-01

    Full Text Available Antiprotons are produced at CERN by colliding a 26  GeV/c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 °C after each pulse impact and successive dynamic pressure waves of the order of GPa’s. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii The existence of end-of-pulse tensile waves and its relevance on the overall response (iii A reduction of 44% in tensile pressure could be obtained by the use of a high density tantalum cladding.

  18. CrossRef Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Aguilar, M; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M  J; Bourquin, M; Bueno, E  F; Burger, J; Cadoux, F; Cai, X  D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M  J; Chang, Y  H; Chen, A  I; Chen, G  M; Chen, H  S; Cheng, L; Chou, H  Y; Choumilov, E; Choutko, V; Chung, C  H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y  M; Delgado, C; Della Torre, S; Demirköz, M  B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R  J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D  M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K  H; Habiby, M; Haino, S; Han, K  C; He, Z  H; Heil, M; Hoffman, J; Hsieh, T  H; Huang, H; Huang, Z  C; Huh, C; Incagli, M; Ionica, M; Jang, W  Y; Jinchi, H; Kang, S  C; Kanishev, K; Kim, G  N; Kim, K  S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M  S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H  T; Lee, S  C; Leluc, C; Li, H  S; Li, J  Q; Li, Q; Li, T  X; Li, W; Li, Z  H; Li, Z  Y; Lim, S; Lin, C  H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S  Q; Lu, Y  S; Luebelsmeyer, K; Luo, F; Luo, J  Z; Lv, S  S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D  C; Morescalchi, L; Mott, P; Nelson, T; Ni, J  Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X  M; Qin, X; Qu, Z  Y; Räihä, T; Rancoita, P  G; Rapin, D; Ricol, J  S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S  M; Schulz von Dratzig, A; Schwering, G; Seo, E  S; Shan, B  S; Shi, J  Y; Siedenburg, T; Son, D; Song, J  W; Sun, W  H; Tacconi, M; Tang, X  W; Tang, Z  C; Tao, L; Tescaro, D; Ting, Samuel C  C; Ting, S  M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J  P; Vitale, V; Vitillo, S; Wang, L  Q; Wang, N  H; Wang, Q  L; Wang, X; Wang, X  Q; Wang, Z  X; Wei, C  C; Weng, Z  L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R  Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y  J; Yu, Z  Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J  H; Zhang, S  D; Zhang, S  W; Zhang, Z; Zheng, Z  M; Zhu, Z  Q; Zhuang, H  L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P

    2016-01-01

    A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×105 antiproton events and 2.42×109 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500  GV, the antiproton p¯, proton p, and positron e+ fluxes are found to have nearly identical rigidity dependence and the electron e− flux exhibits a different rigidity dependence. Below 60 GV, the (p¯/p), (p¯/e+), and (p/e+) flux ratios each reaches a maximum. From ∼60 to ∼500  GV, the (p¯/p), (p¯/e+), and (p/e+) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.

  19. Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station.

    Science.gov (United States)

    Aguilar, M; Ali Cavasonza, L; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kang, S C; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, J Q; Li, Q; Li, T X; Li, W; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Sun, W H; Tacconi, M; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J H; Zhang, S D; Zhang, S W; Zhang, Z; Zheng, Z M; Zhu, Z Q; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P

    2016-08-26

    A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×10^{5} antiproton events and 2.42×10^{9} proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500  GV, the antiproton p[over ¯], proton p, and positron e^{+} fluxes are found to have nearly identical rigidity dependence and the electron e^{-} flux exhibits a different rigidity dependence. Below 60 GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios each reaches a maximum. From ∼60 to ∼500  GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.

  20. Shielding experiments by the JASMIN collaboration at Fermilab (II) - Radioactivity measurement induced by secondary particles from the anti-proton production target

    Energy Technology Data Exchange (ETDEWEB)

    Yashima, Hiroshi; /Kyoto U., KURRI; Matsuda, Norihiro; Kasugai, Yoshimi; /JAEA, Ibaraki; Matsumura, Hiroshi; Iwase, Hiroshi; /KEK, Tsukuba; Kinoshita, Norikazu; /KEK, Tsukuba /Tsukuba U.; Boehnlein, David; Lauten, Gary; Leveling, Anthony; Mokhov, Nikolai; Vaziri, Kamran; /Fermilab /Shimizu, Tokyo /JAEA, Ibaraki

    2011-01-01

    The JASMIN Collaboration has performed an experiment to conduct measurements of nuclear reaction rates around the anti-proton production (Pbar) target at the Fermi National Accelerator Laboratory (FNAL). At the Pbar target station, the target, consisting an Inconel 600 cylinder, was irradiated by a 120 GeV/c proton beam from the FNAL Main Injector. The beam intensity was 3.6 x 10{sub 12} protons per second. Samples of Al, Nb, Cu, and Au were placed near the target to investigate the spatial and energy distribution of secondary particles emitted from it. After irradiation, the induced activities of the samples were measured by studying their gamma ray spectra using HPGe detectors. The production rates of 30 nuclides induced in Al, Nb, Cu, Au samples were obtained. These rates increase for samples placed in a forward (small angle) position relative to the target. The angular dependence of these reaction rates becomes larger for increasing threshold energy. These experimental results are compared with Monte Carlo calculations. The calculated results generally agree with the experimental results to within a factor of 2 to 3.

  1. Comparison of diffraction dissociation of antiprotons with inelastic anti pp interactions and e+e- annihilation into hadrons

    International Nuclear Information System (INIS)

    Batyunya, B.V.; Boguslavskij, I.V.; Vrba, V.

    1982-01-01

    The comparison of experimental multiplicity distributions for the processes of inelastic anti pp interaction and antiproton diffraction dissociation at 22.4 GeV/c with leading particles removed from event with e + e - annihilation into hadron is presented. The observed similarity of these processes corresponds to the dual parton model predictions

  2. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  3. The AFIS experiment: Detecting low energetic antiprotons in a low earth orbit, using an active target detector

    Energy Technology Data Exchange (ETDEWEB)

    Poeschl, Thomas; Gaisbauer, Dominic; Greenwald, Daniel; Hahn, Alexander; Hauptmann, Philipp; Konorov, Igor; Meng, Lingxin; Paul, Stephan [Physics Department E18, Technische Universitaet Muenchen (Germany); Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany); Renker, Dieter [Physics Department E17, Technische Universitaet Muenchen (Germany)

    2014-07-01

    Since the first observation of geomagnetically trapped antiprotons by the PAMELA experiment and the new results on the positron excess by the AMS-02 experiment, the creation and transport of antimatter in the Earth's upper atmosphere attracts more and more attention both at theoretical and experimental side. For this reason the AFIS experiment was initiated to measure the flux of low energetic antiprotons in the South Atlantic Anomaly (SAA). We developed an active target detector made from scintillating fibers connected to silicon photomultipliers which allows to detect antiprotons in the energy interval of about 30 MeV-100 MeV. The stopping curve of incoming antiprotons (Bragg peak) and the signal of outgoing pions created from the annihilation, are used for particle identification as well as triggering. We plan to implement this detector on a 3 unit cubesat satellite in the framework the 'Move2Warp' mission, which is carried out as a student project by the Technische Universitaet Muenchen.

  4. Elastic scattering of antiprotons on 4He at 600 MeV/c

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Bunyatov, S.A.; Falomkin, I.V.

    1990-01-01

    The differential cross section for antiproton elastic scattering on 4 He at 607.7 MeV/c momentum is measured. The total elastic cross section σ el =(120.9±2.5) mb and the total p -4 He interaction cross section σ tot =(360.1±5.6) mb are determined. Partial wave analysis reveals that the P,D and F-waves are dominant in the scattering. The angular dependence of differential cross section exhibits the diffraction pattern typical of scattering on a strongly absorbing disk. Simply taking into account diffuseness of the disk provides good agreement of calculations with the experimental data. 17 refs.; 8 figs.; 1 tab

  5. Measurement of (anti)deuteron and (anti)proton production in DIS at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2007-05-15

    The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300-318 GeV using an integrated luminosity of 120 pb{sup -1}. The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3anti)proton yield by approximately three orders of magnitude, consistent with the world measurements. (orig.)

  6. Atomic physics at the future facility for antiproton and ion research: a status report

    International Nuclear Information System (INIS)

    Gumberidze, A

    2013-01-01

    The new international accelerator Facility for Antiproton and Ion Research (FAIR) which is currently under construction in Darmstadt has key features that offer a wide range of exciting new opportunities in the field of atomic physics and related fields. The facility will provide highest intensities of relativistic beams of both stable and unstable heavy nuclei, in combination with the strong electromagnetic fields generated by high-power lasers, thus allowing to widen atomic physics research into completely new domains. In the current contribution, a short overview of the SPARC (Stored Particle Atomic physics Research Collaboration) research programme at the FAIR facility is given. Furthermore, we present the current strategy for the realization of the envisioned SPARC physics programme at the modularized start version of the FAIR facility. (paper)

  7. Exclusive production of proton-antiproton pairs in photon-photon collisions

    International Nuclear Information System (INIS)

    Bartel, W.; Becker, L.; Cords, D.; Felst, R.; Haidt, D.; Knies, G.; Krehbiel, H.; Laurikainen, P.; Magnussen, N.; Meinke, R.; Naroska, B.; Olsson, J.; Schmidt, D.; Steffen, P.; Dietrich, G.; Hagemann, J.; Heinzelmann, G.; Kado, H.; Kawagoe, K.; Kleinwort, C.; Kuhlen, M.; Petersen, A.; Ramcke, R.; Schneekloth, U.; Weber, G.; Allison, J.; Ball, A.H.; Barlow, R.J.; Chrin, J.; Duerdoth, I.P.; Greenshaw, T.; Loebinger, F.K.; Macbeth, A.A.; Mills, H.E.; Murphy, P.G.; Stephens, K.; Warming, P.; Glasser, R.G.; Hill, P.; Skard, J.A.J.; Wagner, S.R.; Zorn, G.T.; Cartwright, S.L.; Clarke, D.; Marshall, R.; Middleton, R.P.; Kawamoto, T.; Kobayashi, T.; Takeda, H.; Takeshita, T.; Yamada, S.

    1986-01-01

    Total and differential cross sections for exclusive production of proton-antiproton pairs in photon-photon collisions have been measured using the JADE detector at PETRA. The total cross section in the CM angular range vertical strokecos thetasup(*)vertical stroke<0.6 reaches a maximum value of 3.8 nb for a γγ invariant mass of Wsub(γγ) = 2.25 GeV, and decreases rapidly for higher values of Wsub(γγ). In the range 2.0 GeV < Wsub(γγ) < 2.6 GeV the angular distribution is not isotropic. The nucleons are preferentially emitted at large angles to the collision axis. (orig.)

  8. Bottom quark anti-quark production and mixing in proton anti-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhaoou [Yale Univ., New Haven, CT (United States)

    2003-03-01

    The studies of bottom quark-antiquark production in proton-antiproton collisions play an important role in testing perturbative QCD. Measuring the mixing parameter of B mesons imposes constraints on the quark mixing (CKM) matrix and enhances the understanding of the Standard Model. Multi-GeV p$\\bar{p}$ colliders produce a significant amount of b$\\bar{b}$ pairs and thus enable studies in both of these fields. This thesis presents results of the b$\\bar{b}$ production cross section from p$\\bar{p}$ collisions at √s = 1.8 TeV and the time-integrated average B$\\bar{B}$ mixing parameter ($\\bar{χ}$) using highmass dimuon d a ta collected by CDF during its Run IB.

  9. CERN: LEP delivers; Looking deeper at spin; Handling low energy antiprotons

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    One year ago, with the world catalogue of Z particles - the electrically neutral carrier of the weak nuclear force - containing a few hundred examples, it sounded extravagant when proponents of CERN's new LEP electron-positron collider promised a hundred thousand Zs by Christmas 1989. The first round of experiments in the North Area of CERN's SPS proton synchrotron included a considerable investment in studies using high energy muon beams. This paid off with important contribuions to physics, particularly in the measurement of the quark/gluon content (structure functions) of nucleons. ; The LEAR low energy antiproton ring at CERN takes its antimatter beams down to very low kinetic energies - less than 10 MeV - for a unique range of physics studies. However even these modest energies are too high for a series of experiments aiming to explore the effects of gravity on antimatter

  10. Further properties of high-mass multijet events at the Fermilab proton-antiproton collider

    International Nuclear Information System (INIS)

    Abe, F.; Akimoto, H.; Akopian, A.; Albrow, M.G.; Amendolia, S.R.; Amidei, D.; Antos, J.; Anway-Wiese, C.; Aota, S.; Apollinari, G.; Asakawa, T.; Ashmanskas, W.; Atac, M.; Azfar, F.; Azzi-Bacchetta, P.; Bacchetta, N.; Badgett, W.; Bagdasarov, S.; Bailey, M.W.; Bao, J.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barzi, E.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Benton, D.; Beretvas, A.; Berge, J.P.; Berryhill, J.; Bertolucci, S.; Bhatti, A.; Biery, K.; Binkley, M.; Bisello, D.; Blair, R.E.; Blocker, C.; Bodek, A.; Bokhari, W.; Bolognesi, V.; Bortoletto, D.; Boudreau, J.; Breccia, L.; Bromberg, C.; Bruner, N.; Buckley-Geer, E.; Budd, H.S.; Burkett, K.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Cammerata, J.; Campagnari, C.; Campbell, M.; Caner, A.; Carithers, W.; Carlsmith, D.; Castro, A.; Cauz, D.; Cen, Y.; Cervelli, F.; Chang, P.S.; Chang, P.T.; Chao, H.Y.; Chapman, J.; Cheng, M.; Chiarelli, G.; Chikamatsu, T.; Chiou, C.N.; Christofek, L.; Cihangir, S.; Clark, A.G.; Cobal, M.; Contreras, M.; Conway, J.; Cooper, J.; Cordelli, M.; Couyoumtzelis, C.; Crane, D.; Cronin-Hennessy, D.; Culbertson, R.; Cunningham, J.D.; Daniels, T.; DeJongh, F.; Delchamps, S.; DellAgnello, S.; DellOrso, M.; Demina, R.; Demortier, L.; Denby, B.; Deninno, M.; Derwent, P.F.; Devlin, T.; Dittmann, J.R.; Donati, S.; Done, J.; Dorigo, T.; Dunn, A.; Eddy, N.; Einsweiler, K.; Elias, J.E.; Ely, R.; Engels, E. Jr.; Errede, D.; Errede, S.; Fan, Q.; Fiori, I.; Flaugher, B.; Foster, G.W.; Franklin, M.; Frautschi, M.; Freeman, J.; Friedman, J.; Frisch, H.; Fuess, T.A.; Fukui, Y.; Funaki, S.; Gagliardi, G.; Galeotti, S.; Gallinaro, M.; Garcia-Sciveres, M.; Garfinkel, A.F.; Gay, C.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Glenzinski, D.; Gold, M.; Gonzalez, J.; Gordon, A.; Goshaw, A.T.; Goulianos, K.; Grassmann, H.; Groer, L.

    1996-01-01

    The properties of high-mass multijet events produced at the Fermilab proton-antiproton collider are compared with leading order QCD matrix element predictions, QCD parton shower Monte Carlo predictions, and the predictions from a model in which events are distributed uniformly over the available multibody phase space. Multijet distributions corresponding to (4N-4) variables that span the N-body parameter space are found to be well described by the QCD calculations for inclusive three-jet, four-jet, and five-jet events. The agreement between data, QCD matrix element calculations, and QCD parton shower Monte Carlo predictions suggests that 2→2 scattering plus gluon radiation provides a good first approximation to the full LO QCD matrix element for events with three, four, or even five jets in the final state. copyright 1996 The American Physical Society

  11. Theoretical motivation for gravitation experiments on ultra-low energy antiprotons and antihydrogen

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1995-01-01

    It is known that the generally accepted theories of gravity and quantum mechanics are fundamentally incompatible. Thus, when one tries to combine these theories, one must beware of physical pitfalls. Modern theories of quantum gravity are trying to overcome these problems. Any ideas must confront the present agreement with general relativity, but yet be free to wonder about not understood phenomena, such as the dark matter problem. This all has led some open-quotes intrepidclose quotes theorists to consider a new gravitational regime, that of antimatter. Even more open-quotes daringclose quotes experimentalists are attempting, or considering attempting, the measurement of the gravitational force on antimatter, including low-energy antiprotons and, perhaps most enticing, antihydrogen

  12. Sixfold improved single particle measurement of the magnetic moment of the antiproton

    CERN Document Server

    Nagahama, H; Sellner, S; Harrington, J; Higuchi, T; Borchert, M J; Tanaka, T; Besirli, M; Mooser, A; Schneider, G; Blaum, K; Matsuda, Y; Ospelkaus, C; Quint, W; Walz, J; Yamazaki, Y; Ulmer, S

    2017-01-01

    Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and antiparticles with high precision. Here we report on a measurement of the g-factor of the antiproton with a fractional precision of 0.8 parts per million at 95% confidence level. Our value /2=2.7928465(23) outperforms the previous best measurement by a factor of 6. The result is consistent with our proton g-factor measurement gp/2=2.792847350(9), and therefore agrees with the fundamental charge, parity, time (CPT) invariance of the Standard Model of particle physics. Additionally, our result improves coefficients of the standard model extension which discusses the sensitivity of experiments with respect to CPT violation by up to a factor of 20.

  13. Simulation of antiproton-nucleus interactions in the framework of the UrQMD model

    International Nuclear Information System (INIS)

    Galoyan, A.S.; Polanski, A.

    2003-01-01

    This paper proposes to apply the Ultra-Relativistic Quantum Molecular Dynamics (UrQMD) approach to implement the PANDA project (GSI, Germany). Simulation of p bar A interactions has been performed at antiproton energies from 1 to 200 GeV by using the UrQMD model. We have studied average multiplicities, multiplicity distributions of various types of secondary particles, correlations between the multiplicities, rapidity, and transverse momentum distributions of the particles. The UrQMD model predictions on inelastic p bar A collisions have been found to reproduce qualitatively the experimental data. However, to reach the quantitative agreement, especially, in fragmentation regions, it is needed to modify the UrQMD model

  14. Probing dark matter annihilation in the Galaxy with antiprotons and gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Cuoco, Alessandro; Heisig, Jan; Korsmeier, Michael; Krämer, Michael, E-mail: cuoco@physik.rwth-aachen.de, E-mail: heisig@physik.rwth-aachen.de, E-mail: korsmeier@physik.rwth-aachen.de, E-mail: mkraemer@physik.rwth-aachen.de [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52056 Aachen (Germany)

    2017-10-01

    A possible hint of dark matter annihilation has been found in Cuoco, Korsmeier and Krämer (2017) from an analysis of recent cosmic-ray antiproton data from AMS-02 and taking into account cosmic-ray propagation uncertainties by fitting at the same time dark matter and propagation parameters. Here, we extend this analysis to a wider class of annihilation channels. We find consistent hints of a dark matter signal with an annihilation cross-section close to the thermal value and with masses in range between 40 and 130 GeV depending on the annihilation channel. Furthermore, we investigate in how far the possible signal is compatible with the Galactic center gamma-ray excess and recent observation of dwarf satellite galaxies by performing a joint global fit including uncertainties in the dark matter density profile. As an example, we interpret our results in the framework of the Higgs portal model.

  15. A parts-per-billion measurement of the antiproton magnetic moment

    Science.gov (United States)

    Smorra, C.; Sellner, S.; Borchert, M. J.; Harrington, J. A.; Higuchi, T.; Nagahama, H.; Tanaka, T.; Mooser, A.; Schneider, G.; Bohman, M.; Blaum, K.; Matsuda, Y.; Ospelkaus, C.; Quint, W.; Walz, J.; Yamazaki, Y.; Ulmer, S.

    2017-10-01

    Precise comparisons of the fundamental properties of matter–antimatter conjugates provide sensitive tests of charge–parity–time (CPT) invariance, which is an important symmetry that rests on basic assumptions of the standard model of particle physics. Experiments on mesons, leptons and baryons have compared different properties of matter–antimatter conjugates with fractional uncertainties at the parts-per-billion level or better. One specific quantity, however, has so far only been known to a fractional uncertainty at the parts-per-million level: the magnetic moment of the antiproton, . The extraordinary difficulty in measuring with high precision is caused by its intrinsic smallness; for example, it is 660 times smaller than the magnetic moment of the positron. Here we report a high-precision measurement of in units of the nuclear magneton μN with a fractional precision of 1.5 parts per billion (68% confidence level). We use a two-particle spectroscopy method in an advanced cryogenic multi-Penning trap system. Our result  = ‑2.7928473441(42)μN (where the number in parentheses represents the 68% confidence interval on the last digits of the value) improves the precision of the previous best measurement by a factor of approximately 350. The measured value is consistent with the proton magnetic moment, μp = 2.792847350(9)μN, and is in agreement with CPT invariance. Consequently, this measurement constrains the magnitude of certain CPT-violating effects to below 1.8 × 10‑24 gigaelectronvolts, and a possible splitting of the proton–antiproton magnetic moments by CPT-odd dimension-five interactions to below 6 × 10‑12 Bohr magnetons.

  16. A fussy revisitation of antiprotons as a tool for Dark Matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Boudaud, Mathieu; Salati, Pierre [LAPTh, Université Savoie Mont Blanc, CNRS, BP 110, 74941 Annecy-le-Vieux (France); Cirelli, Marco; Giesen, Gaëlle, E-mail: mathieu.boudaud@lapth.cnrs.fr, E-mail: marco.cirelli@cea.fr, E-mail: gaelle.giesen@cea.fr, E-mail: pierre.salati@lapth.cnrs.fr [Institut de Physique Théorique, CNRS, URA 2306 and CEA/Saclay, F-91191 Gif-sur-Yvette (France)

    2015-05-01

    Antiprotons are regarded as a powerful probe for Dark Matter (DM) indirect detection and indeed current data from PAMELA have been shown to lead to stringent constraints. However, in order to exploit their constraining/discovery power properly and especially in anticipation of the exquisite accuracy of upcoming data from AMS-02, great attention must be put into effects (linked to their propagation in the Galaxy) which may be perceived as subleading but actually prove to be quite relevant. Using a semi-analytic code for rapidity, we revisit the computation of the astrophysical background and of the DM antiproton fluxes. Like in the fully numerical standard calculations, we include the effects of: diffusive reacceleration, energy losses including tertiary component and solar modulation (in a force field approximation). We show that their inclusion can somewhat modify the current bounds, even at large DM masses, and that a wrong interpretation of the data may arise if they are not taken into account. At the present level of accuracy of the data from PAMELA, the inclusion of the above effects amounts to changing the constraints, with respect to the case in which they are neglected, of up to about 40% at a DM mass of 1 TeV and 30% at 10 TeV . When the AMS-02 level of precision is reached, including them would strengthen (lessen) the bounds on the annihilation cross section by up to a factor of 15 below (above) a DM mass of 300 GeV. The numerical results for the astrophysical background are provided in terms of fit functions; the results for Dark Matter are incorporated in the new release of the PPPC4DMID.

  17. A fussy revisitation of antiprotons as a tool for Dark Matter searches

    International Nuclear Information System (INIS)

    Boudaud, Mathieu; Salati, Pierre; Cirelli, Marco; Giesen, Gaëlle

    2015-01-01

    Antiprotons are regarded as a powerful probe for Dark Matter (DM) indirect detection and indeed current data from PAMELA have been shown to lead to stringent constraints. However, in order to exploit their constraining/discovery power properly and especially in anticipation of the exquisite accuracy of upcoming data from AMS-02, great attention must be put into effects (linked to their propagation in the Galaxy) which may be perceived as subleading but actually prove to be quite relevant. Using a semi-analytic code for rapidity, we revisit the computation of the astrophysical background and of the DM antiproton fluxes. Like in the fully numerical standard calculations, we include the effects of: diffusive reacceleration, energy losses including tertiary component and solar modulation (in a force field approximation). We show that their inclusion can somewhat modify the current bounds, even at large DM masses, and that a wrong interpretation of the data may arise if they are not taken into account. At the present level of accuracy of the data from PAMELA, the inclusion of the above effects amounts to changing the constraints, with respect to the case in which they are neglected, of up to about 40% at a DM mass of 1 TeV and 30% at 10 TeV . When the AMS-02 level of precision is reached, including them would strengthen (lessen) the bounds on the annihilation cross section by up to a factor of 15 below (above) a DM mass of 300 GeV. The numerical results for the astrophysical background are provided in terms of fit functions; the results for Dark Matter are incorporated in the new release of the PPPC4DMID

  18. Search for charm in pion and anti-proton interactions near threshold

    International Nuclear Information System (INIS)

    Kadel, R.W.

    1977-08-01

    A search is reported for charmed particles produced by antiprotons of momentum 15.0, 12.4, and 8.5 GeV/c and pions of momentum 15.0 and 10.5 GeV/c. Charged particles emerging from a carbon target near 90 0 in the center of mass (18 0 lab) were detected in a double arm spectrometer with a low momentum cutoff of P/sub lab/ greater than or equal to 1 GeV/c. The best upper limit is the process anti PN → D 0 ( anti D 0 ) + X, where the D 0 (anti D 0 ) decays into K - - π + (K + - π - ), is: sigmaB = 780 +- 300 nb at a beam momentum of 8.5 GeV/c. For the 10.5 GeV/c pion running the trigger was restricted by requiring the presence of a slow forward pion in a third spectrometer area, in coincidence with the usual double arm trigger. The acceptance of the third arm was chosen to include pions from the decay of the charmed D* - meson, which has a very small Q value. The upper limit for the process: π - N → D* - + X, D* - → π - + anti D 0 , anti D 0 → K + + π - is sigmaB = 16 +- 16 nb. Additionally, a measurement of inclusive K* (1421) production in anti-proton interactions at 8.5 GeV/c is reported. The cross-section times branching ratio is: sigma(anti PN → K*(1421) + X)*B/sub K*→Kπ/ = 4. +- .8 x 10 -29 cm 2

  19. A parts-per-billion measurement of the antiproton magnetic moment.

    Science.gov (United States)

    Smorra, C; Sellner, S; Borchert, M J; Harrington, J A; Higuchi, T; Nagahama, H; Tanaka, T; Mooser, A; Schneider, G; Bohman, M; Blaum, K; Matsuda, Y; Ospelkaus, C; Quint, W; Walz, J; Yamazaki, Y; Ulmer, S

    2017-10-18

    Precise comparisons of the fundamental properties of matter-antimatter conjugates provide sensitive tests of charge-parity-time (CPT) invariance, which is an important symmetry that rests on basic assumptions of the standard model of particle physics. Experiments on mesons, leptons and baryons have compared different properties of matter-antimatter conjugates with fractional uncertainties at the parts-per-billion level or better. One specific quantity, however, has so far only been known to a fractional uncertainty at the parts-per-million level: the magnetic moment of the antiproton, . The extraordinary difficulty in measuring with high precision is caused by its intrinsic smallness; for example, it is 660 times smaller than the magnetic moment of the positron. Here we report a high-precision measurement of in units of the nuclear magneton μ N with a fractional precision of 1.5 parts per billion (68% confidence level). We use a two-particle spectroscopy method in an advanced cryogenic multi-Penning trap system. Our result  = -2.7928473441(42)μ N (where the number in parentheses represents the 68% confidence interval on the last digits of the value) improves the precision of the previous best measurement by a factor of approximately 350. The measured value is consistent with the proton magnetic moment, μ p  = 2.792847350(9)μ N , and is in agreement with CPT invariance. Consequently, this measurement constrains the magnitude of certain CPT-violating effects to below 1.8 × 10 -24 gigaelectronvolts, and a possible splitting of the proton-antiproton magnetic moments by CPT-odd dimension-five interactions to below 6 × 10 -12 Bohr magnetons.

  20. Measurement of the Antiprotonic Lyman- and Balmer X-rays of $\\overline{p}H$ and $\\overline{p}D$ Atoms at Very Low Target Pressures

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to measure the energies and intensities of the n @A 1 (Lyman) and n @A 2 (Balmer) tansitions with high accuracy in both @*H and @*D, from which the strong interaction effects of the 1s- and 2p-level can be extracted. These observables may be related to the antiproton-proton and antiproton-neutron scattering length. \\\\ \\\\ Since in these targets collisional Stark effect occurs, we will stop the antiprotons in extreme thin gaseous targets (pressure as low as 10 Torr), where no Stark effect occurs and the 2-1 transition is favoured. In order to use antiprotons with high efficiency despite of the low target density, we will trap antiprotons of a momentum of 100 MeV/c in a magnetic field of cyclotron characteristics. The antiprotons are decelerated by their energy loss in the target gas. The focusing properties of the magnetic field serve to compensate the multiple scattering and we will end up with a concentrated stopping distribution at the centre. Due to the long orbiting time, back...

  1. Large-angle inclusive production of protons, antiprotons and kaons, and particle composition at the CERN ISR

    CERN Document Server

    Alper, B; Booth, P; Bulos, F; Carroll, L J; Damgaard, G; Duff, Brian G; Heymann, Franz F; Jackson, J N; Jarlskog, G; Jönsson, L B; Klovning, A; Leistam, L; Lillethun, E; Lynch, G; Prentice, M; Quarrie, D; von Dardel, Guy F; Weiss, J M

    1973-01-01

    The production cross-sections for protons, antiprotons and kaons in proton-proton collisions at centre-of-mass energies square root s=30.6 and 52.8 GeV at large angles and for the transverse momentum range p /sub T/<1.2 GeV/c for protons and antiprotons and 0.2

  2. Charmed meson rescattering in the reaction anti pd→ anti DDN

    International Nuclear Information System (INIS)

    Haidenbauer, J.; Krein, G.; Meissner, U.G.; Sibirtsev, A.

    2008-01-01

    We examine the possibility to extract information about the DN and anti DN interactions from the anti pd→D 0 D - p reaction. We utilize the notion that the open-charm mesons are first produced in the annihilation of the antiproton on one nucleon in the deuteron and subsequently rescatter on the other (the spectator) nucleon. The latter process is then exploited for investigating the DN and anti DN interactions. We study different methods for isolating the contributions from the D 0 p and D - p rescattering terms. (orig.)

  3. Precision Measurement of the Energies and Line Shapes of Antiprotonic Lyman and Balmer Transitions From Hydrogen and Helium Isotopes

    CERN Multimedia

    2002-01-01

    % PS207 \\\\ \\\\ For the study of the antiproton-proton and antiproton-nuclear spin-spin and spin-orbital interaction at threshold a high resolution measurement is proposed of the line shapes and energy shifts of antiprotonic K$\\alpha$ and L$\\alpha$ transitions of hydrogen and helium isotopes. The intense LEAR beam, stopped in the cyclotron trap at low gas pressure, provides a unique~X-ray~source with sufficient brightness. Charge coupled devices with their excellent background rejection and energy resolution allow a precise determination of the strong shifts and widths of the 1s hyperfine states of protonium, in addition the detection of the $\\bar{p}$D K$\\alpha$ transition should be possible. A focussing crystal spectrometer with a resolution $\\Delta$E/E of about l0$ ^- ^{4} $, which is superior in the accuracy of the energy determination by two orders of magnitude as compared to the present detection methods, will be used to measure the energies of the L$\\alpha$ transitions. This permits a first direct measure...

  4. Study of antiproton flux of atmospheric origin in neighbourhood of the earth

    International Nuclear Information System (INIS)

    Huang, Ching-Yuan

    2002-01-01

    Secondary atmospheric antiprotons are studied. A parametrisation of the inclusive cross section for the p-bar production in p + p and p + A collisions is developed, based on the Quark Counting Rule, the Regge Phenomenology and data fitting. This parametrisation is shown to have a good agreement with experimental data for incident nucleon energy at least up to 24 GeV/n in the laboratory frame. By the analysis of the p-bar mean multiplicity distribution, this parametrisation can extend at least up to the centre of mass energy √s ∼ 25 GeV. Based on this well developed parametrisation, the Wounded Nucleon Model is applied to obtain the p-bar production cross section in A + A collisions. By including cosmic protons and α particles, the atmospheric p-bar flux at high balloon and satellite altitudes are calculated. The He-induced collisions are shown to contribute about 30 % in the total secondary atmospheric p-bar flux. It is observed that, for the search of the p-bar exotic origins such as the annihilation of supersymmetric dark matter (neutralino) and the evaporation of primordial black holes, the energy range up to E = 200 GeV/n for cosmic particles generating the secondary atmospheric p-bar production is the most important. It is shown that the secondary atmospheric p-bar flux used to correct the p-bar flux at TOA was underestimated in the previous works. In this work, the p-bar flux at TOA is then modified 10-15 % lower than the originally deduced, for the energy range E k > 1 GeV. A p-bar measurement experiment at the ground level is used to test the accuracy of secondary atmospheric p-bar production calculated by different works. The results of the BESS 1999 experiment at 2.77 km have confirmed the correctness of the present approach. At the AMS altitude, it is shown that the p-bar flux measured by AMS is almost the exact p-bar flux at TOA, with only 2-3 % of the atmospheric p-bar component. It is found that, even at very high altitudes, thousands of

  5. The anti pp yields anti λ λ reaction near threshold

    International Nuclear Information System (INIS)

    Maher, C.J.

    1986-06-01

    Measurements of differential and integrated cross sections as well as final state polarizations for the anti p p → anti Λ Λ reaction are presented. The reaction was studied at two incident antiproton momenta (1476.5 MeV/c and 1507.5 MeV/c) corresponding to total center of mass energies of 15.5 MeV and 26.4 MeV above the reaction threshold. The trajectories of charged decay products of the anti Λ and Λ were observed in a multiwire proportional chamber and in two sets of drift chambers. The data were analyzed with a computer program which reconstructed anti p p → anti Λ Λ → anti p π + pπ - events and performed kinematic fitting. The results are compared to several recent meson exchange calculations, and a one-gluon exchange calculation. The experiment was performed at the Low Energy Antiproton Ring (LEAR) at CERN. The data presented represent the first results of the PS185 collaboration's study of the threshold production of hyperon-antihyperon states

  6. Indirect Search for Dark Matter with AMS in Positrons, Gamma and Antiprotons Channels

    Science.gov (United States)

    Casadei, D.

    2007-11-01

    The Alpha Magnetic Spectrometer (AMS), to be installed on the International Space Station, will provide data on cosmic radiations in a large energy range. The main physics goals in the astroparticle domain are the antimatter and the dark matter searches. Dark matter should be composed of non baryonic weakly interacting massive particles, a good candidate being the lightest SUSY particle in R-parity conserving models. As a prototype for the AMS-02 experiment, the AMS-01 particle spectrometer was flown on the Space Shuttle Discovery in near earth orbit for a ten day mission in June 1998. The direct identification of positrons in AMS-01 was limited to energies below 3 GeV due to the vast proton background and the characteristics of the subdetectors, but the sensitivity towards higher energies (up to 40 GeV) was extended by identifying positrons through the conversion of bremsstrahlung photons. AMS-02 will greatly improve the accuracy on the positron spectrum, which will be measured up to 300 GeV, together with the antiproton and γ-ray flux, thus providing a unique chance to measure all relevant neutralino decay channels with the same experiment.

  7. A parts-per-billion measurement of the antiproton magnetic moment

    CERN Document Server

    Smorra, C; Borchert, M J; Harrington, J A; Higuchi, T; Nagahama, H; Tanaka, T; Mooser, A; Schneider, G; Blaum, K; Matsuda, Y; Ospelkaus, C; Quint, W; Walz, J; Yamazaki, Y; Ulmer, S

    2016-01-01

    Precise comparisons of the fundamental properties of matter–antimatter conjugates provide sensitive tests of charge–parity–time (CPT) invariance1, which is an important symmetry that rests on basic assumptions of the standard model of particle physics. Experiments on mesons2, leptons3, 4 and baryons5, 6 have compared different properties of matter–antimatter conjugates with fractional uncertainties at the parts-per-billion level or better. One specific quantity, however, has so far only been known to a fractional uncertainty at the parts-per-million level7, 8: the magnetic moment of the antiproton, . The extraordinary difficulty in measuring with high precision is caused by its intrinsic smallness; for example, it is 660 times smaller than the magnetic moment of the positron3. Here we report a high-precision measurement of in units of the nuclear magneton μN with a fractional precision of 1.5 parts per billion (68% confidence level). We use a two-particle spectroscopy method in an advanced cryogenic ...

  8. A self-consistent model for the Galactic cosmic ray, antiproton and positron spectra

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    In this talk I will present the escape model of Galactic cosmic rays. This model explains the measured cosmic ray spectra of individual groups of nuclei from TeV to EeV energies. It predicts an early transition to extragalactic cosmic rays, in agreement with recent Auger data. The escape model also explains the soft neutrino spectrum 1/E^2.5 found by IceCube in concordance with Fermi gamma-ray data. I will show that within the same model one can explain the excess of positrons and antiprotons above 20 GeV found by PAMELA and AMS-02, the discrepancy in the slopes of the spectra of cosmic ray protons and heavier nuclei in the TeV-PeV energy range and the plateau in cosmic ray dipole anisotropy in the 2-50 TeV energy range by adding the effects of a 2 million year old nearby supernova.

  9. Two Photon Decay Widths of Charmonium Resonances Formed in Proton Antiproton Annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Michelle Dawn [UC, Irvine

    1999-01-01

    E835 is an experiment dedicated to the precision study of charmonium formed in $\\bar{p}p$ annihilations at the Fermilab Antiproton Accumulator. E835 has measured the resonance parameters of the $\\eta_c$ resonance: $M(\\eta_c$) = 2985.4 $\\pm$ 2.1 MeV, ,($\\eta_c$) = 21.1 $\\pm$ $^{7.5}_{6.2}$ MeV, and, ($\\eta_c \\to \\gamma\\gamma$ ) = 3.9 $^{1.5}_{ 1.3}$ $\\pm$ $^{1.8}_ {1.1}$. Also reported is the two photon width of the $X_2$,,($X_2 \\to \\gamma\\gamma$) = 0.29 $\\pm$ 0.06 $\\pm$ 0:04. A search for the $\\eta^{\\prime}_c$ resonance has resulted in an upper limit for the product of the branching ratios $B(\\eta^{\\prime}_c \\to \\bar{p}p$) x $B(\\eta^{\\prime}_c \\to \\gamma\\gamma$ ) < 12 x $10^{-8}$. An upper limit, ($\\chi_0 \\to \\gamma\\gamma$) < 2.7 keV is set.

  10. Study of the energy dependence of the underlying event in proton-antiproton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nodulman, L.; Aaltonen, T; Albrow, M; Amerio, S.; Amidei, D; Anastassov, A.; Annovi, A; Antos, J; Apollinari, G.; Appel, J A; Arisawa, T

    2015-11-23

    We study charged particle production (p(T) > 0.5 GeV/c, vertical bar eta vertical bar < 0.8) in proton-antiproton collisions at total center-of-mass energies root s = 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of eta - phi space: "toward", "away", and "transverse." The average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the "underlying event." The transverse region is divided into a MAX and MIN transverse region, which helps separate the "hard component" (initial and final-state radiation) from the "beam-beam remnant" and multiple parton interaction components of the scattering. The center-of-mass energy dependence of the various components of the event is studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.

  11. Dark matter annihilations into two light fermions and one gauge boson. General analysis and antiproton constraints

    International Nuclear Information System (INIS)

    Garny, Mathias; Ibarra, Alejandro; Vogl, Stefan

    2011-12-01

    We study in this paper the scenario where the dark matter is constituted by Majo- rana particles which couple to a light Standard Model fermion and an extra scalar via a Yukawa coupling. In this scenario, the annihilation rate into the light fermions with the mediation of the scalar particle is strongly suppressed by the mass of the fermion. Nevertheless, the helicity suppression is lifted by the associated emission of a gauge boson, yielding annihilation rates which could be large enough to allow the indirect detection of the dark matter particles. We perform a general analysis of this scenario, calculating the annihilation cross section of the processes χχ → f anti fV when the dark matter particle is a SU(2) L singlet or doublet, f is a lepton or a quark, and V is a photon, a weak gauge boson or a gluon. We point out that the annihilation rate is particularly enhanced when the dark matter particle is degenerate in mass to the intermediate scalar particle, which is a scenario barely constrained by collider searches of exotic charged or colored particles. Lastly, we derive upper limits on the relevant cross sections from the non-observation of an excess in the cosmic antiproton-to-proton ratio measured by PAMELA. (orig.)

  12. A Study of the Energy Dependence of the Underlying Event in Proton-Antiproton Collisions

    CERN Document Server

    Aaltonen, Timo Antero; Amidei, Dante E; Anastassov, Anton Iankov; Annovi, Alberto; Antos, Jaroslav; Apollinari, Giorgio; Appel, Jeffrey A; Arisawa, Tetsuo; Artikov, Akram Muzafarovich; Asaadi, Jonathan A; Ashmanskas, William Joseph; Auerbach, Benjamin; Aurisano, Adam J; Azfar, Farrukh A; Badgett, William Farris; Bae, Taegil; Barbaro-Galtieri, Angela; Barnes, Virgil E; Barnett, Bruce Arnold; Barria, Patrizia; Bartos, Pavol; Bauce, Matteo; Bedeschi, Franco; Behari, Satyajit; Bellettini, Giorgio; Bellinger, James Nugent; Benjamin, Douglas P; Beretvas, Andrew F; Bhatti, Anwar Ahmad; Bland, Karen Renee; Blumenfeld, Barry J; Bocci, Andrea; Bodek, Arie; Bortoletto, Daniela; Boudreau, Joseph Francis; Boveia, Antonio; Brigliadori, Luca; Bromberg, Carl Michael; Brucken, Erik; Budagov, Ioulian A; Budd, Howard Scott; Burkett, Kevin Alan; Busetto, Giovanni; Bussey, Peter John; Butti, Pierfrancesco; Buzatu, Adrian; Calamba, Aristotle; Camarda, Stefano; Campanelli, Mario; Canelli, Florencia; Carls, Benjamin; Carlsmith, Duncan L; Carosi, Roberto; Carrillo Moreno, Salvador; Casal Larana, Bruno; Casarsa, Massimo; Castro, Andrea; Catastini, Pierluigi; Cauz, Diego; Cavaliere, Viviana; Cerri, Alessandro; Cerrito, Lucio; Chen, Yen-Chu; Chertok, Maxwell Benjamin; Chiarelli, Giorgio; Chlachidze, Gouram; Cho, Kihyeon; Chokheli, Davit; Clark, Allan Geoffrey; Clarke, Christopher Joseph; Convery, Mary Elizabeth; Conway, John Stephen; Corbo, Matteo; Cordelli, Marco; Cox, Charles Alexander; Cox, David Jeremy; Cremonesi, Matteo; Cruz Alonso, Daniel; Cuevas Maestro, Javier; Culbertson, Raymond Lloyd; D'Ascenzo, Nicola; Datta, Mousumi; de Barbaro, Pawel; Demortier, Luc M; Marchese, Luigi; Deninno, Maria Maddalena; Devoto, Francesco; D'Errico, Maria; Di Canto, Angelo; Di Ruzza, Benedetto; Dittmann, Jay Richard; D'Onofrio, Monica; Donati, Simone; Dorigo, Mirco; Driutti, Anna; Ebina, Koji; Edgar, Ryan Christopher; Erbacher, Robin D; Errede, Steven Michael; Esham, Benjamin; Farrington, Sinead Marie; Fernández Ramos, Juan Pablo; Field, Richard D; Flanagan, Gene U; Forrest, Robert David; Franklin, Melissa EB; Freeman, John Christian; Frisch, Henry J; Funakoshi, Yujiro; Galloni, Camilla; Garfinkel, Arthur F; Garosi, Paola; Gerberich, Heather Kay; Gerchtein, Elena A; Giagu, Stefano; Giakoumopoulou, Viktoria Athina; Gibson, Karen Ruth; Ginsburg, Camille Marie; Giokaris, Nikos D; Giromini, Paolo; Glagolev, Vladimir; Glenzinski, Douglas Andrew; Gold, Michael S; Goldin, Daniel; Golossanov, Alexander; Gomez, Gervasio; Gomez-Ceballos, Guillelmo; Goncharov, Maxim T; González López, Oscar; Gorelov, Igor V; Goshaw, Alfred T; Goulianos, Konstantin A; Gramellini, Elena; Grosso-Pilcher, Carla; Guimaraes da Costa, Joao; Hahn, Stephen R; Han, Ji-Yeon; Happacher, Fabio; Hara, Kazuhiko; Hare, Matthew Frederick; Harr, Robert Francis; Harrington-Taber, Timothy; Hatakeyama, Kenichi; Hays, Christopher Paul; Heinrich, Joel G; Herndon, Matthew Fairbanks; Hocker, James Andrew; Hong, Ziqing; Hopkins, Walter Howard; Hou, Suen Ray; Hughes, Richard Edward; Husemann, Ulrich; Hussein, Mohammad; Huston, Joey Walter; Introzzi, Gianluca; Iori, Maurizio; Ivanov, Andrew Gennadievich; James, Eric B; Jang, Dongwook; Jayatilaka, Bodhitha Anjalike; Jeon, Eun-Ju; Jindariani, Sergo Robert; Jones, Matthew T; Joo, Kyung Kwang; Jun, Soon Yung; Junk, Thomas R; Kambeitz, Manuel; Kamon, Teruki; Karchin, Paul Edmund; Kasmi, Azeddine; Kato, Yukihiro; Ketchum, Wesley Robert; Keung, Justin Kien; Kilminster, Benjamin John; Kim, DongHee; Kim, Hyunsoo; Kim, Jieun; Kim, Min Jeong; Kim, Soo Bong; Kim, Shin-Hong; Kim, Young-Kee; Kim, Young-Jin; Kimura, Naoki; Kirby, Michael H; Knoepfel, Kyle James; Kondo, Kunitaka; Kong, Dae Jung; Konigsberg, Jacobo; Kotwal, Ashutosh Vijay; Kreps, Michal; Kroll, IJoseph; Kruse, Mark Charles; Kuhr, Thomas; Kurata, Masakazu; Laasanen, Alvin Toivo; Lammel, Stephan; Lancaster, Mark; Lannon, Kevin Patrick; Latino, Giuseppe; Lee, Hyun Su; Lee, Jaison; Leo, Sabato; Leone, Sandra; Lewis, Jonathan D; Limosani, Antonio; Lipeles, Elliot David; Lister, Alison; Liu, Qiuguang; Liu, Tiehui Ted; Lockwitz, Sarah E; Loginov, Andrey Borisovich; Lucà, Alessandra; Lucchesi, Donatella; Lueck, Jan; Lujan, Paul Joseph; Lukens, Patrick Thomas; Lungu, Gheorghe; Lys, Jeremy E; Lysak, Roman; Madrak, Robyn Leigh; Maestro, Paolo; Malik, Sarah Alam; Manca, Giulia; Manousakis-Katsikakis, Arkadios; Margaroli, Fabrizio; Marino, Christopher Phillip; Matera, Keith; Mattson, Mark Edward; Mazzacane, Anna; Mazzanti, Paolo; McNulty, Ronan; Mehta, Andrew; Mehtala, Petteri; Mesropian, Christina; Miao, Ting; Mietlicki, David John; Mitra, Ankush; Miyake, Hideki; Moed, Shulamit; Moggi, Niccolo; Moon, Chang-Seong; Moore, Ronald Scott; Morello, Michael Joseph; Mukherjee, Aseet; Muller, Thomas; Murat, Pavel A; Mussini, Manuel; Nachtman, Jane Marie; Nagai, Yoshikazu; Naganoma, Junji; Nakano, Itsuo; Napier, Austin; Nett, Jason Michael; Nigmanov, Turgun S; Nodulman, Lawrence J; Noh, Seoyoung; Norniella Francisco, Olga; Oakes, Louise Beth; Oh, Seog Hwan; Oh, Young-do; Okusawa, Toru; Orava, Risto Olavi; Ortolan, Lorenzo; Pagliarone, Carmine Elvezio; Palencia, Jose Enrique; Palni, Prabhakar; Papadimitriou, Vaia; Parker, William Chesluk; Pauletta, Giovanni; Paulini, Manfred; Paus, Christoph Maria Ernst; Phillips, Thomas J; Piacentino, Giovanni M; Pianori, Elisabetta; Pilot, Justin Robert; Pitts, Kevin T; Plager, Charles; Pondrom, Lee G; Poprocki, Stephen; Potamianos, Karolos Jozef; Prokoshin, Fedor; Pranko, Aliaksandr Pavlovich; Ptohos, Fotios K; Punzi, Giovanni; Redondo Fernández, Ignacio; Renton, Peter B; Rescigno, Marco; Rimondi, Franco; Ristori, Luciano; Robson, Aidan; Rodriguez, Tatiana Isabel; Rolli, Simona; Ronzani, Manfredi; Roser, Robert Martin; Rosner, Jonathan L; Ruffini, Fabrizio; Ruiz Jimeno, Alberto; Russ, James S; Rusu, Vadim Liviu; Sakumoto, Willis Kazuo; Sakurai, Yuki; Santi, Lorenzo; Sato, Koji; Saveliev, Valeri; Savoy-Navarro, Aurore; Schlabach, Philip; Schmidt, Eugene E; Schwarz, Thomas A; Scodellaro, Luca; Scuri, Fabrizio; Seidel, Sally C; Seiya, Yoshihiro; Semenov, Alexei; Sforza, Federico; Shalhout, Shalhout Zaki; Shears, Tara G; Shepard, Paul F; Shimojima, Makoto; Shochet, Melvyn J; Shreyber-Tecker, Irina; Simonenko, Alexander V; Sliwa, Krzysztof Jan; Smith, John Rodgers; Snider, Frederick Douglas; Sorin, Maria Veronica; Song, Hao; Stancari, Michelle Dawn; St Denis, Richard Dante; Stentz, Dale James; Strologas, John; Sudo, Yuji; Sukhanov, Alexander I; Suslov, Igor M; Takemasa, Ken-ichi; Takeuchi, Yuji; Tang, Jian; Tecchio, Monica; Teng, Ping-Kun; Thom, Julia; Thomson, Evelyn Jean; Thukral, Vaikunth; Toback, David A; Tokar, Stanislav; Tollefson, Kirsten Anne; Tomura, Tomonobu; Tonelli, Diego; Torre, Stefano; Torretta, Donatella; Totaro, Pierluigi; Trovato, Marco; Ukegawa, Fumihiko; Uozumi, Satoru; Vázquez-Valencia, Elsa Fabiola; Velev, Gueorgui; Vellidis, Konstantinos; Vernieri, Caterina; Vidal Marono, Miguel; Vilar Cortabitarte, Rocio; Vizán Garcia, Jesus Manuel; Vogel, Marcelo; Volpi, Guido; Wagner, Peter; Wallny, Rainer S; Wang, Song-Ming; Waters, David S; Wester, William Carl; Whiteson, Daniel O; Wicklund, Arthur Barry; Wilbur, Scott; Williams, Hugh H; Wilson, Jonathan Samuel; Wilson, Peter James; Winer, Brian L; Wittich, Peter; Wolbers, Stephen A; Wolfe, Homer; Wright, Thomas Roland; Wu, Xin; Wu, Zhenbin; Yamamoto, Kazuhiro; Yamato, Daisuke; Yang, Tingjun; Yang, Un-Ki; Yang, Yu Chul; Yao, Wei-Ming; Yeh, Gong Ping; Yi, Kai; Yoh, John; Yorita, Kohei; Yoshida, Takuo; Yu, Geum Bong; Yu, Intae; Zanetti, Anna Maria; Zeng, Yu; Zhou, Chen; Zucchelli, Stefano

    2015-11-23

    We study charged particle production in proton-antiproton collisions at 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of eta-phi space; toward, away, and transverse. The average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the underlying event. The transverse region is divided into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The center-of-mass energy dependence of the various components of the event are studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.

  13. Bag-model analyses of proton-antiproton scattering and atomic bound states

    International Nuclear Information System (INIS)

    Alberg, M.A.; Freedman, R.A.; Henley, E.M.; Hwang, W.P.; Seckel, D.; Wilets, L.

    1983-01-01

    We study proton-antiproton (pp-bar ) scattering using the static real potential of Bryan and Phillips outside a cutoff radius rsub0 and two different shapes for the imaginary potential inside a radius R*. These forms, motivated by bag models, are a one-gluon-annihilation potential and a simple geometric-overlap form. In both cases there are three adjustable parameters: the effective bag radius R*, the effective strong coupling constant αsubssup*, and rsub0. There is also a choice for the form of the real potential inside the cutoff radius rsub0. Analysis of the pp-bar scattering data in the laboratory-momentum region 0.4--0.7 GeV/c yields an effective nucleon bag radius R* in the range 0.6--1.1 fm, with the best fit obtained for R* = 0.86 fm. Arguments are presented that the deduced value of R* is likely to be an upper bound on the isolated nucleon bag radius. The present results are consistent with the range of bag radii in current bag models. We have also used the resultant optical potential to calculate the shifts and widths of the sup3Ssub1 and sup1Ssub0 atomic bound states of the pp-bar system. For both states we find upward (repulsive) shifts and widths of about 1 keV. We find no evidence for narrow, strongly bound pp-bar states in our potential model

  14. Fibre Optic Notch Filter For The Antiproton Decelerator Stochastic Cooling System

    CERN Document Server

    Simmonds, Max Vincent John

    2016-01-01

    The project scope included reverse engineering, upgrading, and recovering the operational conditions of an existing fibre optic notch filter. Once operational, tests were to be preformed to confirm the performance of the temperature stabilisation. The end goal is to use said notch filter in the Antiproton Decelerator (AD) facility at CERN to help aid antimatter research. The notch filter was successfully reverse engineered and then documented. Changes were made in order to increase performance and reliability, and also allow easy integration into the AD. An additional phase was added whereby the notch filter was to be controller via a touchscreen computer, situated next to the filter, allowing engineers to set-up each of the electronic devices used. While one of the devices (Motorised Delay Line) can be controlled by the touchscreen computer, the other two cannot.Due to time constraints and difficulties with the Beckhoff TwincatII programming language, the USB devices were not able to be controlled via the To...

  15. Possible Dark Matter Annihilation Signal in the AMS-02 Antiproton Data.

    Science.gov (United States)

    Cui, Ming-Yang; Yuan, Qiang; Tsai, Yue-Lin Sming; Fan, Yi-Zhong

    2017-05-12

    Using the latest AMS-02 cosmic-ray antiproton flux data, we search for a potential dark matter annihilation signal. The background parameters about the propagation, source injection, and solar modulation are not assumed a priori but based on the results inferred from the recent B/C ratio and proton data measurements instead. The possible dark matter signal is incorporated into the model self-consistently under a Bayesian framework. Compared with the astrophysical background-only hypothesis, we find that a dark matter signal is favored. The rest mass of the dark matter particles is ∼20-80  GeV, and the velocity-averaged hadronic annihilation cross section is about (0.2-5)×10^{-26}  cm^{3} s^{-1}, in agreement with that needed to account for the Galactic center GeV excess and/or the weak GeV emission from dwarf spheroidal galaxies Reticulum 2 and Tucana III. Tight constraints on the dark matter annihilation models are also set in a wide mass region.

  16. Search for Λ–Λ hyperuclei using antiprotons in PANDA

    Directory of Open Access Journals (Sweden)

    Introzzi R.

    2014-06-01

    Full Text Available The Double Hypernuclei are the only systems that allow to study the hyperon-hyperon interaction because the hyperon-hyperon scattering experiments are at present impossible. Experimental data are still very scarce, due to the difficulty of producing the doubly strange hyperon Ξ−, from which a double hypernucleus is formed. The formation of such a hypernucleus proceeds through a multiple-step process and the measurement of the relevant parameters (e.g. energy separation and decay branching ratios requires high statistics. The PANDA Collaboration planned to exploit the intense beam of the HESR machine at the future facility FAIR to produce Ξ− hyperons from antiproton annihilation in nuclei. A 12C target will be inserted inside the ring: the sizes of the target and the beam spot overlap play a crucial role to avoid serious damage of beam and detectors. The status of the art of the present data, the design of the optimized target and the tests on the prototype will be presented.

  17. Interpretation of the gamma-ray excess and AMS-02 antiprotons: Velocity dependent dark matter annihilations

    Science.gov (United States)

    Jia, Lian-Bao

    2017-09-01

    The two messenger results of the GeV gamma-ray excess at the Galactic center and a probable antiproton excess in the recent AMS-02 observation suggest that these two anomalies may be owing to the same origin—the dark matter (DM) annihilation into b b ¯, while these results seem in tension with the dwarf spheroidal galaxy observations. To give a compatible explanation about it, we consider the pseudoscalar DM particles Sd+Sd- annihilating via Sd+Sd-→Sd0Sd0, with the process mediated by a new scalar ϕ and Sd0 quickly decaying into b b ¯. For the particles Sd+, Sd-, and Sd0 in a triplet with degenerate masses, the annihilation cross section of DM today is linearly dependent on the relative velocity vr, and thus constraints from the dwarf spheroidal galaxies are relaxed. The parameter spaces are derived with corresponding constraints. Though traces from the new sector seem challenging to be disclosed at the collider and in DM direct detections, the indirect search of the gamma-ray line from the Sd0's decay has the potential to shed light on DM annihilations, with the energy of the gamma-ray line ˜mSd0/2 , i.e. about 50-75 GeV.

  18. Multiplicity dependence of charged pion, kaon, and (antiproton production at large transverse momentum in p–Pb collisions at sNN=5.02 TeV

    Directory of Open Access Journals (Sweden)

    J. Adam

    2016-09-01

    At intermediate pT the (antiproton RpPb shows a Cronin-like enhancement, while pions and kaons show little or no nuclear modification. At high pT the charged pion, kaon and (antiproton RpPb are consistent with unity within statistical and systematic uncertainties.

  19. Two Photon Decays of Charmonium States Produced in Proton - Anti-proton Annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Fast, James Elliot [UC, Irvine

    1992-01-01

    The two photon decays of the $\\eta_c$ and $\\chi_2$ charmonium states have been measured in $p\\bar{p}$ annihilation using the E760 apparatus at Fermilab during the 1990-1991 fixed target run. A search for the $\\eta^\\prime_c$ resonance decaying into two photons has also been conducted. The processes $p\\bar{p} \\to R \\to \\gamma \\gamma$ have been measured using a cooled beam of antiprotons circulating in the Fermilab accumulator ring intersecting an internal hydrogen gas-jet target. The final state photons were measured with a high granularity, high resolution lead glass calorimeter. From a scan of the $\\eta_c$ resonance region, the mass, the total width, and the branching ratio to two photons have been measured. The results are $M_{\\eta_c}$ = 2989.9 ± 2.2 ±0.4 MeV/$c^2$, $\\Gamma_{\\eta_c}$ = 15.6±6.9±6.4 MeV, and $BR({\\eta_c} \\to \\gamma \\gamma)$ = (2.77 ± 1.19 ± 0.43) x $10^{-4}$. Data were taken at the peak of the $X_2$ resonance, and the two photon branching ratio was determined to be $BR(X_2 \\to \\gamma \\gamma)$ = (1.54 ± 0.40 ± 0.24) x $10^{-4}$. Data were collected at several energies around the expected mass of the $\\eta^\\prime_c$. Upper limits have been placed on the product of branching ratios, $BR(\\eta^\\prime_c \\to p\\bar{p})BR(\\eta^\\prime_c \\to \\gamma \\gamma)$, as function of the $\\eta^\\prime_c$ mass and total width.

  20. Antiproton annihilation physics annihilation physics in the Monte Carlo particle transport code particle transport code SHIELD-HIT12A

    DEFF Research Database (Denmark)

    Taasti, Vicki Trier; Knudsen, Helge; Holzscheiter, Michael

    2015-01-01

    –Teller Z-law, which is implemented by default in SHIELD-HIT12A has been shown not to be a good approximation for the capture probability of negative projectiles by nuclei. We investigate other theories which have been developed, and give a better agreement with experimental findings. The consequence...... sections, which restores the agreement, but some small deviations still remain. Best agreement is achieved by using the most recent antiproton collision cross sections and the Fermi–Teller Z-law, even if experimental data conclude that the Z-law is inadequately describing annihilation on compounds. We...

  1. Self-polarization of stored (anti-)protons: Status of the Spin-Splitter experiment at IUCF

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1990-01-01

    Several years ago a selfpolarization effect for stored (anti-)protons and ions was investigated theoretically. The effect is based on the well-known Stern-Gerlach effect in gradient fields. The aim of the ongoing measurements at IUCF is to verify experimentally the various assumptions on which this effect is based. The final goal is to demonstrate this new polarization effect. The proposed effect could be a powerful tool to produce polarized stored hadron beams both in the low energy range and at SSC and LHC energies

  2. Measurement of the antiproton-proton total cross section at √s =546 and 1800 GeV

    International Nuclear Information System (INIS)

    Abe, F.; Albrow, M.; Amidei, D.; Anway-Wiese, C.; Apollinari, G.; Atac, M.; Auchincloss, P.; Azzi, P.; Bacchetta, N.; Baden, A.R.; Badgett, W.; Bailey, M.W.; Bamberger, A.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Beretvas, A.; Berge, J.P.; Bertolucci, S.; Biery, K.; Bhadra, S.; Binkley, M.; Bisello, D.; Blair, R.; Blocker, C.; Bodek, A.; Bolognesi, V.; Booth, A.W.; Boswell, C.; Brandenburg, G.; Brown, D.; Buckley-Geer, E.; Budd, H.S.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Campagnari, C.; Campbell, M.; Caner, A.; Carey, R.; Carithers, W.; Carlsmith, D.; Carroll, J.T.; Cashmore, R.; Castro, A.; Cen, Y.; Cervelli, F.; Chadwick, K.; Chapman, J.; Chapin, T.J.; Chiarelli, G.; Chinowsky, W.; Cihangir, S.; Clark, A.G.; Cobal, M.; Connor, D.; Contreras, M.; Cooper, J.; Cordelli, M.; Crane, D.; Cunningham, J.D.; Day, C.; DeJongh, F.; Dell'Agnello, S.; Dell'Orso, M.; Demortier, L.; Denby, B.; Derwent, P.F.; Devlin, T.; Dickson, M.; Drucker, R.B.; Dunn, A.; Einsweiler, K.; Elias, J.E.; Ely, R.; Eno, S.; Errede, S.; Etchegoyen, A.; Farhat, B.; Frautschi, M.; Feldman, G.J.; Flaugher, B.; Foster, G.W.; Franklin, M.; Freeman, J.; Fuess, T.; Fukui, Y.; Garfinkel, A.F.; Gauthier, A.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Gold, M.; Gonzalez, J.; Goulianos, K.; Grassmann, H.; Grieco, G.M.; Grindley, R.; Grosso-Pilcher, C.; Grunhaus, J.; Haber, C.; Hahn, S.R.; Handler, R.; Hara, K.; Harral, B.; Harris, R.M.; Hauger, S.A.; Hauser, J.; Hawk, C.; Hessing, T.; Hollebeek, R.; Holloway, L.; Hoelscher, A.; Hong, S.; Houk, G.; Hu, P.; Hubbard, B.; Huffman, B.T.; Hughes, R.; Hurst, P.; Huth, J.; Hylen, J.; Incagli, M.; Ino, T.; Iso, H.; Jessop, C.P.; Johnson, R.P.; Joshi, U.; Kadel, R.W.; Kamon, T.; Kanda, S.; Kardelis, D.A.; Karliner, I.; Kearns, E.; Keeble, L.

    1994-01-01

    We report a measurement of the proton-antiproton total cross section σ T at c.m.s. energies √s =546 and 1800 GeV. Using the luminosity-independent method, we find σ T =61.26±0.93 mb at √s =546 GeV and 80.03±2.24 mb at √s =1800 GeV. In this energy range, the ratio σ el /σ T increases from 0.210±0.002 to 0.246±0.004

  3. Measurement of small angle antiproton-proton elastic scattering at √s =546 and 1800 GeV

    International Nuclear Information System (INIS)

    Abe, F.; Albrow, M.; Amidei, D.; Anway-Wiese, C.; Apollinari, G.; Atac, M.; Auchincloss, P.; Azzi, P.; Bacchetta, N.; Baden, A.R.; Badgett, W.; Bailey, M.W.; Bamberger, A.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Beretvas, A.; Berge, J.P.; Bertolucci, S.; Biery, K.; Bhadra, S.; Binkley, M.; Bisello, D.; Blair, R.; Blocker, C.; Bodek, A.; Bolognesi, V.; Booth, A.W.; Boswell, C.; Brandenburg, G.; Brown, D.; Buckley-Geer, E.; Budd, H.S.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Campagnari, C.; Campbell, M.; Caner, A.; Carey, R.; Carithers, W.; Carlsmith, D.; Carroll, J.T.; Cashmore, R.; Castro, A.; Cen, Y.; Cervelli, F.; Chadwick, K.; Chapman, J.; Chapin, T.J.; Chiarelli, G.; Chinowsky, W.; Cihangir, S.; Clark, A.G.; Cobal, M.; Connor, D.; Contreras, M.; Cooper, J.; Cordelli, M.; Crane, D.; Cunningham, J.D.; Day, C.; DeJongh, F.; Dell'Agnello, S.; Dell'Orso, M.; Demortier, L.; Denby, B.; Derwent, P.F.; Devlin, T.; Dickson, M.; Drucker, R.B.; Dunn, A.; Einsweiler, K.; Elias, J.E.; Ely, R.; Eno, S.; Errede, S.; Etchegoyen, A.; Farhat, B.; Frautschi, M.; Feldman, G.J.; Flaugher, B.; Foster, G.W.; Franklin, M.; Freeman, J.; Fuess, T.; Fukui, Y.; Garfinkel, A.F.; Gauthier, A.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Gold, M.; Gonzalez, J.; Goulianos, K.; Grassmann, H.; Grieco, G.M.; Grindley, R.; Grosso-Pilcher, C.; Haber, C.; Hahn, S.R.; Handler, R.; Hara, K.; Harral, B.; Harris, R.M.; Hauger, S.A.; Hauser, J.; Hawk, C.; Hessing, T.; Hollebeek, R.; Holloway, L.; Hoelscher, A.; Hong, S.; Houk, G.; Hu, P.; Hubbard, B.; Huffman, B.T.; Hughes, R.; Hurst, P.; Huth, J.; Hylen, J.; Incagli, M.; Ino, T.; Iso, H.; Jessop, C.P.; Johnson, R.P.; Joshi, U.; Kadel, R.W.; Kamon, T.; Kanda, S.; Kardelis, D.A.; Karliner, I.; Kearns, E.; Keeble, L.; Kephart, R.; Kesten, P.

    1994-01-01

    Antiproton-proton elastic scattering was measured at c.m.s. energies √s =546 and 1800 GeV in the range of four-momentum transfer squared 0.025 2 . The data are well described by the exponential form e bt with a slope b=15.28±0.58 (16.98±0.25) GeV -2 at √s =546 (1800) GeV. The elastic scattering cross sections are, respectively, σ el =12.87±0.30 and 19.70±0.85 mb

  4. A recoil detector for the measurement of antiproton-proton elastic scattering at angles close to 90°

    Science.gov (United States)

    Hu, Q.; Bechstedt, U.; Gillitzer, A.; Grzonka, D.; Khoukaz, A.; Klehr, F.; Lehrach, A.; Prasuhn, D.; Ritman, J.; Sefzick, T.; Stockmanns, T.; Täschner, A.; Wuestner, P.; Xu, H.

    2014-10-01

    The design and construction of a recoil detector for the measurement of recoil protons of antiproton-proton elastic scattering at scattering angles close to are described. The performance of the recoil detector has been tested in the laboratory with radioactive sources and at COSY with proton beams by measuring proton-proton elastic scattering. The results of laboratory tests and commissioning with beam are presented. Excellent energy resolution and proper working performance of the recoil detector validate the conceptual design of the KOALA experiment at HESR to provide the cross section data needed to achieve a precise luminosity determination at the PANDA experiment.

  5. Overview of the recent operation of the AAC and LEAR for the low-energy antiproton physics programme

    OpenAIRE

    Baird, S A; Boillot, J; Caspers, Friedhelm; Chanel, M; Chohan, V; Eriksson, T; Ley, R; Maury, S; Metzger, C; Möhl, D; Mulder, H; Pedersen, F; Tranquille, G

    1997-01-01

    This paper reviews the recent performance of the AAC and LEAR. Activities on the AAC include the successful exploitation of a magnetic horn as an antiproton collector lens and an energy-saving mode of operation, which has been possible since 1992, when LEAR became the only client of the AAC. LEAR worked in its full momentum range between 100 MeV/c and 2 GeV/c, with perform-ance (intensities, ejection modes and spill length) exceeding the design specifications. Improvements are described, whic...

  6. Study of the K Kπ meson resonances produced in antiproton proton annihilations at 750 MeV/c

    International Nuclear Information System (INIS)

    Gil Lopez, E.

    1977-01-01

    In this work we present an analysis of the antiproton proton annihilations into strange particles at 700 and 750 MeV/c, restricted to the four and five body final states. We study in detail the resonances decaying into the K Kπ; system, in particular the D and E mesons. For the D meson we present a determination of i ts mass, width, isospin, G-parity, C-parity and spin. For the E meson we present parametrizations of the complete final state which decrease its statistical significance in this type of production. (Author)

  7. The W boson transverse momentum spectrum in proton-antiproton collisions at radical s = 1. 8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Winer, B.L.

    1991-02-01

    The Collider Detector at Fermilab (CDF) was used to measure the transverse momentum distribution of W boson produced in proton-antiproton collisions at the Tevatron collider. The W bosons were identified by the decay W {yields} e{nu}. The results are in good agreement with a next-to-leading order calculation. The cross section for W production with P{sub T} > 50 GeV/c is 423 {plus minus} 58 (stat.) {plus minus} 108 (sys.) pb. 58 refs., 53 figs., 16 tabs.

  8. Antiprotonic atoms in gaseous H/sub 2/ and He and in liquid H/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Lindemuth, J.R.; Eckhause, M.; Giovanetti, K.L.; Kane, J.R.; Pandey, M.S.; Rushton, A.M.; Vulcan, W.F.; Welsh, R.E.; Winter, R.G.; Barnes, P.D.; Craig, J.N.; Eisenstein, R.A.; Sherman, J.D.; Sutton, R.B.; Wharton, W.R.; Miller, J.P.; Roberts, B.L.; Kunselman, A.R.; Powers, R.J.

    1984-11-01

    Antiprotons were brought to rest in targets of gaseous H/sub 2/ and gaseous He at temperatures of 30 K and also in a target of liquid H/sub 2/. High-resolution x-ray detectors were used to measure the energies of x rays from p-bar-He and to search for x rays from p-bar-H. The p-bar-He data are compared with similar measurements at different densities and with the theoretical predictions of Landua and Klempt. The p-bar-H data provide upper limits for the yields of nP..-->..1S x rays in liquid and gaseous hydrogen.

  9. Reaction Automata

    OpenAIRE

    Okubo, Fumiya; Kobayashi, Satoshi; Yokomori, Takashi

    2011-01-01

    Reaction systems are a formal model that has been introduced to investigate the interactive behaviors of biochemical reactions. Based on the formal framework of reaction systems, we propose new computing models called reaction automata that feature (string) language acceptors with multiset manipulation as a computing mechanism, and show that reaction automata are computationally Turing universal. Further, some subclasses of reaction automata with space complexity are investigated and their la...

  10. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2008-01-01

    Full text: Our scientific activities last year focused on nuclear physics, materials science and medical applications. · As far as nuclear physics is concerned, our interest ranged from the structure of the nucleon to that of the nucleus. On the 30 th June 2007 DESY's HERA collider was shut down, and so data taking by the HERMES experiment was terminated. However, our colleagues involved in studies of the spin structure of the nucleon have been working and will still work for a few more years analysing experimental data taken during the whole HERMES campaign. Last year they worked, among others, on the beam spin asymmetries for charged and neutral pions produced in deep inelastic scattering of polarized electrons on protons. A team led by Assoc. Prof. B. Zwieglinski was involved in a large-scale international collaboration PANDA. The PANDA (antiProton ANnihilation at Darmstadt) experiment will be installed at the High Energy Storage Ring for antiprotons of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. In this report the team presents a proposal for an experimental study of the two-quark system. Low energy nuclear physics experiments were performed at the Heavy Ion Laboratory of Warsaw University in collaboration with foreign institutions: University of Jyvaeskylae, the Institute of Nuclear Research of the Ukrainian Academy of Sciences and the Institute de Recherches Subatomique in Strasbourg. One of the achievements was the commissioning of a large scattering chamber ICARE equipped with charged particle detectors. · Material science studies focused on semiconductor compounds that could be used in electronic and optoelectronic devices. This was done in collaboration with the Institute of Electronic Materials Technology. In particular, a channeling study of GaN was performed in order to learn about the thermal stability of this compound. · Radiobiological studies was a new domain of our activity last year. The team of Prof

  11. Study of the reaction $\\overline{p}p \\to \\phi \\phi$ from 1.1 to 2.0 GeV/c

    CERN Document Server

    Evangelista, C.; Drijard, D.; Hamann, N.H.; Jones, R.T.; Mouellic, B.; Ohlsson, S.; Perreau, J.M.; Eyrich, W.; Moosburger, M.; Pomp, S.; Stinzing, F.; Fischer, H.; Franz, J.; Rossle, E.; Schmitt, H.; Wirth, H.; Buzzo, A.; Kirsebom, K.; Lo Vetere, M.; Macri, M.; Marinelli, M.; Passaggio, S.; Pia, M.G.; Pozzo, A.; Robutti, E.; Santroni, A.; Debevec, P.T.; Eisenstein, R.A.; Harris, P.G.; Hertzog, D.W.; Hughes, S.A.; Reimer, P.E.; Ritter, J.; Geyer, R.; Kilian, K.; Oelert, W.; Rohrich, K.; Rook, M.; Steinkamp, O.; Korsmo, H.; Stugu, B.; Johansson, T.

    1998-01-01

    A study has been performed of the reaction $\\pptofourk$ using in-flight antiprotons from 1.1 to 2.0 GeV/$c$ incident momentum interacting with a hydrogen jet target. The reaction is dominated by the production of a pair of $\\phi$ mesons. The $\\bar p p \\to \\phi \\phi$ cross section rises sharply above threshold and then falls continuously as a function of increasing antiproton momentum. The overall magnitude of the cross section exceeds expectations from a simple application of the OZI rule by two orders of magnitude. In a fine scan around the $\\xi/f_J(2230)$ resonance, no structure is observed. A limit is set for the double branching ratio B($\\pbarp\\rightarrow\\ xi)\\times\\rm{B}(\\xi\\rightarrow\\phi\\phi) \\lt 6 \\times 10^{-5}$ for a spin 2 resonance of M = 2.235 GeV and $\\Gamma$ = 15 MeV.

  12. Theses. Beam studies for the CERN antiproton decelerator and a new interpretation of the resonance theory for betatron motion

    Energy Technology Data Exchange (ETDEWEB)

    De Ninno, G

    1999-07-01

    The two parts of the thesis are a mission-oriented task devoted to solve some practical problems of the Antiproton Decelerator (AD) project at CERN, and a theoretical study leading to a new method for representing and compensating betatron resonances. The AD is a new machine (at the moment under commissioning at CERN) that will allow the collection and the deceleration of an antiproton beam from 3.5 GeV/c down to 100 MeV/c (the momentum favoured for the foreseen physics experiments). The need to employ the AD magnets over a wide range required a careful study of their characteristics. The presence of a solenoid inside the AD electron cooling device generates linear coupling between the transverse degrees of freedom of the single-particle motion. Coupling can lead to operational problems and therefore a compensation scheme had tobe designed. The long-standing problem has been solved of how to establish a relationship between the two standard methods for dealing with linear coupling: the matrix approach and the Hamiltonian approach. The bridge was built by including in the Hamiltonian approach in the high frequency part of the perturbative Hamiltonian due to coupling. The procedure was generalised to the nonlinear case and, a new method was proposed for dealing both with linear and nonlinear resonances. (author)

  13. Energy dependence of proton-proton and antiproton-proton scattering at the CERN intersecting storage rings

    International Nuclear Information System (INIS)

    Botje, M.A.J.

    1984-01-01

    This thesis describes measurements of proton-proton and proton-antiproton elastic scattering with the scattered particles emerging at small angles in the centre of mass (CM) system. These measurements have been performed at the CERN Intersecting Storage Rings (ISR). The direct comparison of pp and anti pp scattering in this energy range is of considerable interest. This is because measurements on pp scattering alone, have revealed that in the ISR energy range both elastic- and total pp cross-sections increase with increasing energy. It is the subject of this thesis to check the prediction that the proton-antiproton cross section will do the same. The present experiment measures the angular distribution of pp and anti pp elastic scattering at small angles (typically 1-10 mrad) and at different energies. From these measurements a comparison of the energy behaviour of the pp and anti pp forward nuclear scattering amplitudes is obtained. This behaviour can be described in terms of three parameters: the total cross-section, the ratio of the real-to-imaginary part of the forward nuclear amplitude and a parameter, the slope, characterising the dependence of the process on the squared four-momentum transfer between the incident and the scattered particle. (Auth.)

  14. Evaluation on Geant4 Hadronic Models for Pion Minus, Pion Plus and Neutron Particles as Major Antiproton Annihilation Products.

    Science.gov (United States)

    Tavakoli, Mohammad Bagher; Mohammadi, Mohammad Mehdi; Reiazi, Reza; Jabbari, Keyvan

    2015-01-01

    Geant4 is an open source simulation toolkit based on C++, which its advantages progressively lead to applications in research domains especially modeling the biological effects of ionizing radiation at the sub-cellular scale. However, it was shown that Geant4 does not give a reasonable result in the prediction of antiproton dose especially in Bragg peak. One of the reasons could be lack of reliable physic model to predict the final states of annihilation products like pions. Considering the fact that most of the antiproton deposited dose is resulted from high-LET nuclear fragments following pion interaction in surrounding nucleons, we reproduced depth dose curves of most probable energy range of pions and neutron particle using Geant4. We consider this work one of the steps to understand the origin of the error and finally verification of Geant4 for antiproton tracking. Geant4 toolkit version 9.4.6.p01 and Fluka version 2006.3 were used to reproduce the depth dose curves of 220 MeV pions (both negative and positive) and 70 MeV neutrons. The geometry applied in the simulations consist a 20 × 20 × 20 cm(3) water tank, similar to that used in CERN for antiproton relative dose measurements. Different physic lists including Quark-Gluon String Precompound (QGSP)_Binary Cascade (BIC)_HP, the recommended setting for hadron therapy, were used. In the case of pions, Geant4 resulted in at least 5% dose discrepancy between different physic lists at depth close to the entrance point. Even up to 15% discrepancy was found in some cases like QBBC compared to QGSP_BIC_HP. A significant difference was observed in dose profiles of different Geant4 physic list at small depths for a beam of pions. In the case of neutrons, large dose discrepancy was observed when LHEP or LHEP_EMV lists were applied. The magnitude of this dose discrepancy could be even 50% greater than the dose calculated by LHEP (or LHEP_EMV) at larger depths. We found that effect different Geant4 physic list in

  15. Charge-charge correlations and the detection of weak vector bosons by hadronic jets in proton-antiproton and proton-proton collisions at collider energies

    International Nuclear Information System (INIS)

    Ranft, J.; Ritter, S.

    1980-07-01

    The charge properties of quark jets are studied within a chain decay model for quark jet fragmentation. Using the charge properties of quark jets, charge-charge two-jet cross sections and correlations are defined. In proton-antiproton collisions these correlations show significant structure due to the weak vector bosons W +- and Z 0 . (author)

  16. Rapidity spectra in proton-proton and proton-antiproton scattering up to 540 GeV in a dual parton model

    International Nuclear Information System (INIS)

    Aurenche, P.; Bopp, F.W.

    1982-01-01

    Some recent data at the ISR and SPS colliders are discussed in terms of a multi-Pomeron exchange model formulated in the dual parton framework. Charged particle rapidity distributions, energy dependence of the central plateau, ratio of particle densities in proton-proton and antiproton-proton scattering and non diffractive multiplicities are successfully accounted for in the model

  17. About the creation of proton-antiproton pair at electron-positron collider in the energy range of ψ (3770) mass

    Science.gov (United States)

    Ahmadov, A. I.; Bystritskiy, Yu. M.; Kuraev, E. A.; Wang, P.

    2014-11-01

    The process of electron-positron annihilation into proton-antiproton pair is considered within the vicinity of ψ (3770) resonance. The interference between the pure electromagnetic intermediate state and the ψ (3770) state is evaluated. It is shown that this interference is destructive and the relative phase between these two contributions is large (ϕ0 ≈ 250 °).

  18. Search for Wh Production Using High-PT Isolated Like-Sign Dilepton Events in 1.96-TeV Proton-Antiproton Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Wakisaka, Takayuki [Osaka City Univ. (Japan)

    2009-04-01

    The thesis describes search for the neutral Higgs production associated with the W boson using high-PT isolated like-sign (LS) dilepton events in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV.

  19. Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-Pb collisions at $\\sqrt{s_{\\rm NN}}$= 5.02 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Benacek, Pavel; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kostarakis, Panagiotis; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shahzad, Muhammed Ikram; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Derradi De Souza, Rafael; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stefanek, Grzegorz; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasin, Zafar; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-09-10

    The production of charged pions, kaons and (anti)protons has been measured at mid-rapidity ($-0.5 10$ GeV/$c$), the particle ratios are consistent with those reported for pp and Pb-Pb collisions at the LHC energies. At intermediate $p_{\\rm T}$ the (anti)proton $R_{\\rm pPb}$ shows a Cronin-like enhancement, while pions and kaons show little or no nuclear modification. At high $p_{\\rm T}$ the charged pion, kaon and (anti)proton $R_{\\rm pPb}$ are consistent with unity within statistical and systematic uncertainties.

  20. Physics of antimatter-matter reactions for interstellar propulsion

    International Nuclear Information System (INIS)

    Morgan, D.L. Jr.

    1986-01-01

    At the stage of the antiproton-nucleon annihilation chain of events relevant to propulsion the annihilation produces energetic charged pions and gamma rays. If annihilation occurs in a complex nucleus, protons, neutrons, and other nuclear fragments are also produced. The charge, number, and energy of the annihilation products are such that annihilation rocket engine concepts involving relatively low specific impulse (I/sub sp/ ≅ 1000 to 2000 s) and very high I/sub sp/ (3 x 10 7 s) appear feasible and have efficiencies on the order of 50% for annihilation energy to propulsion energy conversion. At I/sub sp/'s of around 15,000 s, however, it may be that only the kinetic energy of the charged nuclear fragments can be utilized for propulsion in engines of ordinary size. An estimate of this kinetic energy was made from known pieces of experimental and theoretical information. Its value is about 10% of the annihilation energy. Control over the mean penetration depth of protons into matter prior to annihilation is necessary so that annihilation occurs in the proper region within the engine. Control is possible by varying the antiproton kinetic energy to obtain a suitable annihilation cross section. The annihilation cross section at low energies is on the order of or larger than atomic areas due to a rearrangement reaction, but it is very low at high energy where its value is closer to nuclear areas

  1. Antiproton-proton elastic scattering at 3.0 and 4.0 GeV/C; Difusion elastica antiproton-proton a 3,0 y 4,0 GeV/C

    Energy Technology Data Exchange (ETDEWEB)

    Unamuno, S.

    1965-07-01

    This paper presents the results-obtained in studying the two-prong interactions observed in the Saclay 81 cm hydrogen bubble chamber exposed to the 3.0 and 4.0 GeV/c antiproton beams from CERN Proton-Synchroton. Total elastic cross-sections corresponding to both energies are given. The results are given. The results are compared with those of p-p scaterring at different energies and with those of p-p scattering. Several optical-models, from the simples one (the black disk model) to a rather elaborated, four-parameters model have been applied. These models can explain some of the experimental results but fail in predicting the angular distribution of large angle scattering. (Author)

  2. Nuclear reactions

    International Nuclear Information System (INIS)

    Lane, A.M.

    1980-01-01

    In reviewing work at Harwell over the past 25 years on nuclear reactions it is stated that a balance has to be struck in both experiment and theory between work on cross-sections of direct practical relevance to reactors and on those relevant to an overall understanding of reaction processes. The compound nucleus and direct process reactions are described. Having listed the contributions from AERE, Harwell to developments in nuclear reaction research in the period, work on the optical model, neutron capture theory, reactions at doorway states with fine structure, and sum-rules for spectroscopic factors are considered in more detail. (UK)

  3. Collisions of low-energy antiprotons and protons with atoms and molecules

    International Nuclear Information System (INIS)

    Luehr, Armin

    2010-01-01

    Antiproton (anti p) collisions have evolved to a powerful tool for the testing of dynamic electron correlations in atoms and molecules. While advances in the understanding of anti p collisions with the simplest one- and two-electron atoms, H and He, have been achieved experiment and theory did not agree for low-energy anti p+He collisions ( 2 despite its fundamental role in representing the simplest two-electron molecule. The obtained results may be useful for the anti p experiments at CERN (e.g., antihydrogen production) and in particular for the facility design of low-energy anti p storage rings (e.g., at FLAIR) where a precise knowledge of the anti p interaction with the dominant residual-gas molecule H 2 is needed. In this work a nonperturbative, time-dependent numerical approach is developed which describes ionization and excitation of atoms or molecules by either anti p or p impact based on the impact-parameter method. A spectral close-coupling method is employed for solving the time-dependent Schroedinger equation in which the scattering wave function is expanded in (effective) one- or two-electron eigenstates of the target. This includes for the first time a full two-electron, two-center description of the H 2 molecule in anti p collisions. The radial part of the one-electron eigenstates is expanded in B splines while the two-electron basis is obtained with a configurationinteraction approach. Calculations are performed for anti p collisions with H, H 2 + , and H 2 as well as with He and alkali-metal atoms Li, Na, K, and Rb. Additionally, data are obtained for p collisions with H 2 , Li, Na, and K. The developed method is tested and validated by detailed comparison of the present findings for p impacts and for anti p+He collisions with literature data. On the other hand, total and differential cross sections for ionization and excitation of the targets by anti p impact complement the sparse literature data of this kind. Results gained from different targets

  4. Collisions of low-energy antiprotons and protons with atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Luehr, Armin

    2010-02-18

    Antiproton (anti p) collisions have evolved to a powerful tool for the testing of dynamic electron correlations in atoms and molecules. While advances in the understanding of anti p collisions with the simplest one- and two-electron atoms, H and He, have been achieved experiment and theory did not agree for low-energy anti p+He collisions (<40 keV), stimulating a vivid theoretical activity. On the other hand, only very few theoretical anti p studies can be found considering molecular as well as other atomic targets, in contrast to proton (p) collisions. This is in particular true for anti p impacts on H{sub 2} despite its fundamental role in representing the simplest two-electron molecule. The obtained results may be useful for the anti p experiments at CERN (e.g., antihydrogen production) and in particular for the facility design of low-energy anti p storage rings (e.g., at FLAIR) where a precise knowledge of the anti p interaction with the dominant residual-gas molecule H{sub 2} is needed. In this work a nonperturbative, time-dependent numerical approach is developed which describes ionization and excitation of atoms or molecules by either anti p or p impact based on the impact-parameter method. A spectral close-coupling method is employed for solving the time-dependent Schroedinger equation in which the scattering wave function is expanded in (effective) one- or two-electron eigenstates of the target. This includes for the first time a full two-electron, two-center description of the H{sub 2} molecule in anti p collisions. The radial part of the one-electron eigenstates is expanded in B splines while the two-electron basis is obtained with a configurationinteraction approach. Calculations are performed for anti p collisions with H, H{sub 2}{sup +}, and H{sub 2} as well as with He and alkali-metal atoms Li, Na, K, and Rb. Additionally, data are obtained for p collisions with H{sub 2}, Li, Na, and K. The developed method is tested and validated by detailed

  5. Non-linear transverse dynamics for storage rings with applications to the low-energy antiproton ring (LEAR) at CERN

    International Nuclear Information System (INIS)

    Bengtsson, J.

    1988-01-01

    A tensor equation has been used to derive the equations of motion for the curvilinear coordinate system customarily used for particle accelerators. A Hamiltonian formalism, expanded to third order in the canonical variables, has also been developed to describe the transverse motion in an accelerator. Time-dependent perturbation theory has been applied and computerized using a computer-algebra system. In particular, the perturbations due to magnetic sextupoles have been calculated to second power in the sextupole strength. The frequency spectra for the horizontal and the vertical betatron motion close to a single resonance have been calculated using time-independent perturbation theory. It has been shown that information about excited resonances and the type of driving field can be derived from the spectra. In particular, it is possible to obtain the amplitude and the phase of a given resonance. The results have been used to study the perturbations in the Low Energy Antiproton Ring (LEAR) at CERN. (orig.)

  6. Non-linear transverse dynamics for storage rings with application to the low-energy antiproton ring (LEAR) at CERN

    International Nuclear Information System (INIS)

    Bengtsson, J.

    1988-01-01

    A tensor equation has been used to derive the equations of motion for the curvilinear coordinate system customary used for accelerators. A Hamiltonian formalism, expanded to third order in the canonical variables, describing the transverse motion in an acceleration has also been developed. Time-dependent perturbation theory has been applied and computerized using a computer algebra system. In particular, the perturbations due to magnetic sextupoles have been calculated to second power in the sextupole strength. The frequency spectra for the betatron motion close to a single resonance has been calculated by using time-independent perturbation theory. It has been shown that information about excited resonances and the type of driving field can be derived from the spectra. In particular, it is possible to obtain the amplitude and the phase of a given resonance. The results have been used to study the perturbations in the Low Energy Antiproton Ring, LEAR at CERN. (With 67 refs.) (author)

  7. Beam-energy dependence of the directed flow of protons, antiprotons, and pions in Au+Au collisions.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Levine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-04-25

    Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y=0) are reported in sNN=7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.

  8. Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au+Au Collisions

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-04-01

    Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y =0) are reported in √sNN =7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.

  9. Signatures of a Two Million Year Old Supernova in the Spectra of Cosmic Ray Protons, Antiprotons, and Positrons.

    Science.gov (United States)

    Kachelrieß, M; Neronov, A; Semikoz, D V

    2015-10-30

    The locally observed cosmic ray spectrum has several puzzling features, such as the excess of positrons and antiprotons above ~20  GeV and the discrepancy in the slopes of the spectra of cosmic ray protons and heavier nuclei in the TeV-PeV energy range. We show that these features are consistently explained by a nearby source which was active approximately two million years ago and has injected (2-3)×10^{50} erg in cosmic rays. The transient nature of the source and its overall energy budget point to the supernova origin of this local cosmic ray source. The age of the supernova suggests that the local cosmic ray injection was produced by the same supernova that has deposited ^{60}Fe isotopes in the deep ocean crust.

  10. European Facility for Antiproton and Ion Research (FAIR): the new international center for fundamental physics and its research program

    International Nuclear Information System (INIS)

    Fortov, Vladimir E; Sharkov, Boris Yu; Stöker, H

    2012-01-01

    The Facility for Antiproton and Ion Research (FAIR) accelerator center at Darmstadt, Germany, will provide the international scientific community with unique experimental opportunities of a scope and scale out of reach for any other large-scale facility in the world. With its staff of over 2500, it is expected to fundamentally expand our knowledge of hadron, nuclear, and atomic physics and their application to cosmology, astrophysics, and technology. In this review, the design details of the accelerator complex are discussed and the experimental research program for FAIR is presented. Particular attention is paid to experiments on the extreme state of matter arising from the isochoric heating of a material by heavy-ion beams. One of the largest facilities of its kind in Europe, FAIR is a part of the strategic development roadmap for the European Strategic Forum on Research Infrastructures (ESFRI). (physics of our days)

  11. Observation and study of bottom-meson decays to a charm meson, a proton-antiproton pair, and pions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tae Min [Univ. of California, Santa Barbara, CA (United States)

    2010-04-27

    Bottom-meson decays with baryons show two unusual features—the branching fractions are enhanced for multibody decays and the baryon-antibaryon subsystem recoils against the other decay products—and their reasons are not yet well understood. Moreover, measurements using explicit reconstruction techniques constitute only about 1% out of about 8% of such decays. This Dissertation reports the study of ten bottom-meson decays (labeled 0– 9) to a proton-antiproton pair, a charm meson, and a system of up to two pions, using the BABAR Experiment’s 455×106 BB pairs produced with the PEP-II asymmetric-energy e+e- collider at the Stanford Linear Accelerator Center.

  12. Proton-antiproton annihilation into a lambdaC-antiLambdaC pair within the generalized parton picture

    International Nuclear Information System (INIS)

    Goritschnig, A. T.

    2009-01-01

    The proton-antiproton annihilation into a LambdaC-AntiLambdaC pair is investigated within the handbag approach. It is shown that the dominant dynamical mechanism, characterized by the partonic subprocess anti-u u -> anti-c c, factorizes in the sense that only the subprocess contains highly virtual partons, a gluon to lowest order of perturbative QCD, while the hadronic matrix elements embody only soft scales and can be parameterized in terms of helicity flip and non-flip generalized parton distributions. Modelling these parton distributions by overlaps of light-cone wave functions for the involved baryons were able to predict cross sections and spin correlation parameters for the process of interest. (author) [de

  13. Electrostatic protocol treatment lens. The purpose of this device is to transport Antiprotons from the new ELENA storage beam to all AD experiments. The electrostatic device was successfully tested in ASACUSA two weeks ago.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Electrostatic protocol treatment lens. The purpose of this device is to transport Antiprotons from the new ELENA storage beam to all AD experiments. The electrostatic device was successfully tested in ASACUSA two weeks ago.

  14. An investigation of narrow meson resonance production in antiproton-proton and antiproton-neutron interactions at 6.1 and 8.9 GeV/c

    International Nuclear Information System (INIS)

    Azooz, F.; Butterworth, I.; Dornan, P.J.

    1984-04-01

    The authors made a comprehensive search for narrow meson resonance production in reactions of the type p-barN → π +- sub(fast)X and p-barN → psub(fast)(sub(n-bar)sup(p-bar)X at 6.1 and 8.9 GeV.c in a triggered bubble chamber experiment at the SLAC Hybrid Facility. From a study of all accessible inclusive, semi-inclusive and exclusive states, upper limits are given for production of non-strange resonances with width 2 . The authors find two further peaks of statistical significance in excess of 4 standard deviations with masses in the M approx. 2 GeV/c 2 region, and one further multipion peak with mass approx. 1.54 GeV/c 2 . (author)

  15. Professor Walter Oelert, leader of the team which created the first atoms of antihydrogen at the Low Energy Antiproton Ring (LEAR) in January 1996

    CERN Multimedia

    Laurent Guiraud

    1996-01-01

    Antiparticles were predicted in the work of Paul Dirac in the 1920's, since when physicists have identified all the necessary antiparticle constituents of an antiparticle atom - antielectrons (positrons), antiprotons and antineutrons. However, an antihydrogen atom wasn't produced until the PS210 experiment at CERN in 1995. PS210 used the LEAR accelerator, which was then nearing the end of its lifetime, so everything in the experiment had to work first time. After installing the equipment in spring 1995, the experiment took place in the autumn, in two hour periods over 4 weeks. The experiment team collided energetic antiprotons from LEAR with a heavy element, a challenge for them as well as the LEAR operators. Proving that antihydrogen atoms had been formed required several more weeks of data analysis, but the announcement that nine antihydrogen atoms had been produced came on 4 January 1996.

  16. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2003-01-01

    Full text: In 2002, the Department has been involved in two new experimental programmes. Our colleagues led by Prof. Pawel Zupranski joined a large international collaboration HERMES and took part in experiments at DESY devoted to the study of the spin structure of the nucleon. Another group directed by Associate Prof. Bogdan Zwieglinski has worked on a conceptual design of a new generation detector PANDA (Proton-Antiproton Detection) which will be used in future experiments at GSI. Moreover, the experimental programmes covering three major domains of our scientific activities: nuclear physics, materials research and atomic physics were continued. - Nuclear physics: Experimental studies of nuclear reactions induced by heavy ions provided by the Warsaw U-200P Cyclotron were performed in collaboration with scientists from the Institute for Nuclear Studies in Kiev, Ukraine. The aim of the experiments was to investigate isotopic effects in the scattering of 11 B from carbon nuclides. Also, excited states of 6 Li predicted theoretically but never seen in experiments were investigated by means of one-neutron transfer reactions. Proton induced reactions were investigated theoretically by means of the multistep-direct model. Good agreement with the experimental data was achieved. The mechanism of fragments production in collisions of 197 Au with a gold target in the wide range of energies was studied by ALADIN and INDRA Collaborations. The production of η mesons from proton - proton collisions was investigated experimentally at the Juelich Cooler Synchrotron COSY. - Atomic physics: The ionisation of Au, Bi, Th and U atoms by Si ions was investigated in collaboration with the Swietokrzyska Academy, Kielce, and the University of Erlangen-Nuernberg. - Materials research: The sensitivity of the Solid State Nuclear Track PM-355 detectors was tested against intensive gamma and electron radiation. Moreover, using a monoenergetic sulphur ion beam from the Warsaw Cyclotron, the

  17. Measurement of the Shadowing of High-Energy Cosmic Rays by the Moon A Search for TeV-Energy Antiprotons

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kraber, M; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2005-01-01

    The shadowing of high-energy cosmic rays by the Moon has been observed with a significance of 9.4 standard deviations with the L3+C muon spectrometer at CERN. A significant effect of the Earth magnetic field is observed. Since no event deficit on the east side of the Moon has been observed, an upper limit at 90% confidence level on the antiproton to proton ratio of 0.11 is obtained for primary energies around 1 TeV.

  18. Measurement of the Shadowing of High-Energy Cosmic Rays by the Moon: A Search for TeV-Energy Antiprotons

    OpenAIRE

    Achard, P; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P

    2004-01-01

    The shadowing of high-energy cosmic rays by the Moon has been observed with a significance of 9.4 standard deviations with the L3+C muon spectrometer at CERN. A significant effect of the Earth magnetic field is observed. Since no event deficit on the east side of the Moon has been observed, an upper limit at 90% confidence level on the antiproton to proton ratio of 0.11 is obtained for primary energies around 1 TeV.

  19. Cosmic ray antiproton measurements in the 4-19 GeV energy range using the NMSU/WiZard-matter antimatter superconducting spectrometer 2 (MASS2)

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Brunetti, M.T.; Codini, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Hof, M. [Siegen Univ. (Germany). Fachbereich Physik; Golden, R.L.; Stochaj, S.J. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.M. [Florence Univ. (Italy)]|[INFN, Florence (Italy)

    1995-09-01

    The p/p-ratio from 4 to 19 GeV has been measured using the NMSU/WiZard balloon borne matter antimatter superconducting spectrometer (MASS2) instrument. This is the first confirmation of the cosmic ray antiproton component made in this energy range since their discovery in 1979. The MASS2 instrument is an updated version of the instrument flown in 1979. The p/p- ratio is 1.52x10{sup -}4.

  20. A Search for universal extra dimensions in the multi-lepton channel from proton anti-proton collisions at √s = 1.8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun [Yale Univ., New Haven, CT (United States)

    2005-12-01

    In this thesis we present the results of a search for Universal Extra Dimensions (UED) with compactification radius near the TeV scale in the multi-lepton channel from proton-antiproton collisions at center-of-mass energy of 1.8 TeV at the Fermi National Accelerator Laboratory. This is the first UED search in the multi-lepton channel performed at the Tevatron.

  1. Software for investigations of inclusive reactions in anti pp interactions

    International Nuclear Information System (INIS)

    Badalyan, S.G.; Batyunya, B.V.; Govorun, N.N.; Dirner, A.; Ivanov, V.G.

    1981-01-01

    In connection with the inclusive reaction studying carried out on the 2 m ''Ludmila'' hydrogen bubble chamber in the antiproton beam the complex of programs has been created. This complex is intended for solving the following tasks: space reconstruction, combining several reconstuction results in the same event, preparing the data summary tapes. The complex has been realized on the CDC-6500 computer (JINR). It consists of the HYDRA system application programs and is used for writing permanent files on private disk packages. Using these disks for writing and reading the intermediate data provides an effective operation of central processors and minimum time of peripheral processor operation. The program chain considered allows one to handle events of any mulltiplicity with the speed of 500-600 event per hour [ru

  2. Search for TeV-Antiprotons in Space from the Shadowing of Cosmic Rays by the Moon with the L3+C Detector

    CERN Document Server

    Xu, Yupeng

    2005-01-01

    A search for antiprotons in the primary cosmic ray flux has been performed by observing the Moon shadow with the muon data collected by the L3+C experiment at CERN during 1999 and 2000. The angular resolution of the detector and its dependences on the muon energy and zenith angle are obtained at the event level with a Monte Carlo simulation and the analysis of real double muon data using a maximum likelihood method. The Moon shadow effect is observed in three muon momentum bands > 100GeV/c, 65 - 100 GeV/c and 30 - 65 GeV/c with a significance of 7.0 cr, 5.8 cr and 5.2 cr respectively. Two dimensional maximum likelihood analyses are performed, both with binned data and unbinned data. The unbinned method gives a smaller uncertainty on the measurement of the antiproton to proton ratio. For a muon momentum cut at 70 GeV/c, the antiproton to proton ratio is measured to be -0.12 + 0.11 and an upper limit of this ratio is estimated to be 0.08 (at 90% confidence level) for primary energies in the range 0.8 TeV to 2.4...

  3. Impact parameter analysis of proton-antiproton elastic scattering from √s=7.6 GeV to √s=546 GeV

    International Nuclear Information System (INIS)

    Fearnley, T.

    1985-09-01

    The proton-antiproton elastic profile function GAMMA (b) and inelastic overlap function Gsub(in)(b) are calculated from a coherent set of proton-antiproton elastic scattering data at Psub(L)=30 and 50 GeV/c (√s=7.6 and 9.8 GeV), and at √s=53 and 546 GeV. The energy dependence of Gsub(in)(b) is studied in the low energy regime and in the high energy regime. The increase of the inelastic cross section from 50 GeV/c to 30 GeV/c and from √s=53 GeV to √s=546 GeV is found to originate from a peripheral increase of Gsub(in) around 1 fm, accompanied by a non-negligible central increase. The proton-antiproton collision at √s=53 GeV is shown to be slightly less absorptive centrally than pp at this energy, while it is more absorptive peripherally around 1.2 fm. The inelastic overlap functions strongly disagree with the predictions of geometrical scaling and factorizing eikonal models, both in the low energy regime psub(L)=30-50 GeV/c and in the high energy regime √s=53-546 GeV

  4. Contribution to the study of the reactions antipd→antipd π+π- and pd→pd π+π- in the √s=5GeV/c region. Impact parameter analysis of antip induced reactions in the 4-15 GeV /c incident momentum range

    International Nuclear Information System (INIS)

    Fischer, Pierre.

    1978-01-01

    The study of the anti pd→anti pd π + π - and pd→pd π + π - has been made using bubble chamber pictures taken with 4.72 GeV /c antiproton and 11.9 deuteron beams respectively. The found cross sections are 0.27+-0.07mb and 0.35+-0.10mb respectively. The usual features of the coherent interactions on deuteron are found: peripherism, d* effect, Δ resonance production. An impact parameter analysis, extended to about 30 antiproton induced reactions, allowed us to draw out some general features which can be associated to peripherism, multiplicity, and energy. This work was done using the Webber method [fr

  5. Investigation of the anti pp → xi (2220) → K/sub s/K/sub s/ reaction at LEAR

    International Nuclear Information System (INIS)

    Hertzog, D.W.

    1985-01-01

    Measurement of the total and differential cross section of the reaction anti pp → K/sub s/K/sub s/ in a fine momentum scan corresponding to the mass range of the xi (2220) was proposed. The mass and width of such a resonance coupling to anti pp can be determined to better than 500 keV and additionally the spin can be established from the differential cross section. Only modest additions to our existing threshold detector and antiproton beam intensities currently available at LEAR are required for these studies. 14 refs

  6. Search for Electroweak Single Top Quark Production in 1.96 TeV Proton-Antiproton Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Stelzer, Bernd [Univ. of Toronto, ON (Canada). Dept. of Physics

    2005-01-01

    This thesis describes the first search for electroweak single top quark production in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The data sample used for this analysis corresponds to 162 pb-1 recorded by the upgraded Collider Detector at Fermilab. The search is performed by doing a classic maximum likelihood fit to the HT distribution in data. The kinematic variable HT is the scalar sum of transverse energies of all final state particles in the event. This variable has the advantage that its distribution looks very similar for both contributing (s-channel and t-channel) single top processes, but is different for background processes. The combination of both channels to one signal improves the sensitivity of the search. No significant evidence for electroweak single top quark production is found and we set an upper limit at the 95% confidence level on the combined single top quark production cross section of 17.8 pb.

  7. Regge description of two pseudoscalar meson production in antiproton-proton annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Wiele, J. van de [Universite de Paris-Sud, Institut de Physique Nucleaire, IN2P3-CNRS, Orsay Cedex (France); Ong, S. [Universite de Paris-Sud, Institut de Physique Nucleaire, IN2P3-CNRS, Orsay Cedex (France); Universite de Picardie Jules Verne, Amiens (France)

    2010-11-15

    A Regge-inspired model is used to discuss the hard exclusive two-body hadronic reactions (anti pp{yields}{pi}{sup -}{pi}{sup +}, {pi}{sup 0}{pi}{sup 0}, K{sup -}K{sup +}, anti K{sup 0}K{sup 0}) for the FAIR facility project at GSI with the PANDA detector. The comparison between the differential cross-sections predictions and the available data is shown to determine the values of the few parameters of the model. (orig.)

  8. Reaction mechanisms

    International Nuclear Information System (INIS)

    Nguyen Trong Anh

    1988-01-01

    The 1988 progress report of the Reaction Mechanisms laboratory (Polytechnic School, France), is presented. The research topics are: the valence bond methods, the radical chemistry, the modelling of the transition states by applying geometric constraints, the long range interactions (ion - molecule) in gaseous phase, the reaction sites in gaseous phase and the mass spectroscopy applications. The points of convergence between the investigations of the mass spectroscopy and the theoretical chemistry teams, as well as the purposes guiding the research programs, are discussed. The published papers, the conferences, the congress communications and the thesis, are also reported [fr

  9. Capture reactions

    NARCIS (Netherlands)

    Endt, P.M.

    1956-01-01

    Capture reactions will be considered here from the viewpoint of the nuclear spectroscopist. Especially important to him are the capture of neutrons, protons, and alpha particles, which may proceed through narrow resonances, offering a well defined initial state for the subsequent deexcitation

  10. Allergic reactions

    Science.gov (United States)

    ... that don't bother most people (such as venom from bee stings and certain foods, medicines, and pollens) can ... person. If the allergic reaction is from a bee sting, scrape the ... more venom. If the person has emergency allergy medicine on ...

  11. cycloaddition reactions

    Indian Academy of Sciences (India)

    Unknown

    ... has shown very severe limitations in predicting the regioselectivity. In comparison,. DFT-based descriptors are better suited to model the regioselectivity of cycloaddition reactions. Acknowledgements. GG thanks the Council of Scientific and Industrial. Research for a fellowship. References. 1. Winkler J D 1996 Chem. Rev.

  12. Distillation of scalar exchange by coherent hypernucleus production in antiproton-nucleus collisions

    Science.gov (United States)

    Larionov, A. B.; Lenske, H.

    2017-10-01

    The total and angular differential cross sections of the coherent process p bar +A Z → ΛA(Z-1) + Λ bar are evaluated at the beam momenta 1.5 ÷ 20 GeV / c within the meson exchange model with bound proton and Λ-hyperon wave functions. It is shown that the shape of the beam momentum dependence of the hypernucleus production cross sections with various discrete Λ states is strongly sensitive to the presence of the scalar κ-meson exchange in the p bar p → Λ bar Λ amplitude. This can be used as a clean test of the exchange by scalar πK correlation in coherent p bar A reactions.

  13. Developement of proportional chamber detectors and simulations to measure charm hadrons in antiproton-proton annihilation

    International Nuclear Information System (INIS)

    Sokolov, A.

    2005-07-01

    The present thesis describes the results of the simulation and the design of the tracking system of the anti PANDA detector together with the study of the physics efficiency of the complete system. The central tracking system of the proposed anti PANDA at FAIR/Darmstadt was studied by Monte-Carlo simulations. From this a spatial resolution of 20 μm for the micro-vertex detector (MVD) resulted. A new, more realistic design of the MVD was established on the base of the simulation results, in order to reach a better balance between the physical and technical requirements. It was shown that a momentum resolution of 0.4% can be reached with the straw-tube tracker (SST). The chosen gas mixture of Ar+10% CO 2 combines the measured good spatial resolution of ∝120 μm with a drift time of less than 100 ns, which is necessary in order to process the high hit rates. With a straw-tube prototype it was shown that is is possible, to determine the z coordinate from the measurement od the signal charge on both ends of the tube. A resolution of 8.9 mm or of 0.6% of the tube length was reached. Basing on these measurements a new design of the SST without a stereo-angle between single layers was proposed. The study of the only very unprecisely known charmonium spectrum above the d anti d threshold is one of the most important aspects of the anti PANDA physics program. In order to check, whether the anti PANDA detector fulfils the physical requirements the reactions: anti pp→ψ(3770)toD anti D and anti pp→ψ(4040)→D *+ D *- were studied as benchmark processes. A resolution of the invariant mass of 10 and of 16 MeV/c were demonstrated for the ψ(3770) respectively the ψ(4040). It was furthermore shown that the necessary background suppression by the factor 10 10 is reached. The widths of the states D * sJ (2317) + and D sJ (2460) + can be measured with a precission of better than 100 keV because of the excellent beam quality of the HESR storage ring. The reconstruction

  14. Study on the top quark pair production mechanism in 1.96 TeV proton-antiproton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Naganoma, Junji [Waseda Univ., Shinjuku (Japan)

    2008-03-01

    The study of the top quark pair production mechanism in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV is described. The main subjects are the measurements of the top quark pair production cross section, the top quark mass and a search for a new particle decaying to the top quark pair. The analyses are based on 1.9 fb-1 of data collected by the Collider Detector at Fermilab (CDF) Run II experiment between March 2002 and May 2007, using the lepton+jets events. The measured top quark pair production cross section is 8.2 ± 0.5 (stat.) ± 0.8 (syst.) ± 0.5 (lum.) pb, which is slightly higher than the standard model prediction at the top mass of 175 GeV/c2. The top quark mass is an important parameter in the standard model, and also in the experimental studies. The measured top quark mass if 171.6 ± 2.0 (stat.) ± 1.3(syst.) GeV/c2. Finally, they report on a search for a new gauge boson decaying to t$\\bar{t}$, which interferes with the standard model gluon in the q$\\bar{q}$ → t$\\bar{t}$ production process. They call such a hypothetical particle a 'Massive Gluon'. The observed t$\\bar{t}$ invariant mass distribution is consistent with the standard model expectations, and also the measured massive gluon coupling strength with quarks is consistent within a statistical fluctuation of the standard model expectation in the wide range of the massive gluon masses and widths. They set the upper and lower limits on the coupling strength of the massive gluon.

  15. Measurement of electroweak single top quark production in proton-antiproton collisions at 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Peter Joseph [Univ. of California, Los Angeles, CA (United States)

    2008-01-01

    The top quark is an extremely massive fundamental particle that is predominantly produced in pairs at particle collider experiments. The Standard Model of particle physics predicts that top quarks can also be produced singly by the electroweak force; however, this process is more difficult to detect because it occurs at a smaller rate and is more difficult to distinguish from background processes. The cross section of this process is related to the Cabbibo-Kobayashi-Maskawa matrix element |V tb|, and measurement of the single top quark production cross section is currently the only method to directly measure this quantity without assuming the number of generations of fermions. This thesis describes a measurement of the cross section of electroweak single top quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. This analysis uses 2.2 fb-1 of integrated luminosity recorded by the Collider Detector at Fermilab. The search is performed using a matrix element method which calculates the differential cross section for each event for several signal and background hypotheses. These numbers are combined into a single discriminant and used to construct templates from Monte Carlo simulation. A maximum likelihood fit to the data distribution gives a measurement of the cross section. This analysis measures a value of 2.2$+0.8\\atop{-0.7}$ pb, which corresponds to a value of |V tb| = 0.88$+0.16\\atop{-0.14}$experimental±0.7(theoretical). The probability that this result originates from a background fluctuation in the absence of single top production (p-value) is 0.0003, which is equivalent to 3.4 standard deviations in Gaussian statistics. The expected (median) p-value as estimated from pseudo-experiments for this analysis is 0.000003, which corresponds to 4.5 standard deviations in Gaussian statistics.

  16. High energy density physics studies at the facility for antiprotons and ion research: the HEDgeHOB collaboration

    International Nuclear Information System (INIS)

    Tahir, N.A.; Stoehlker, T.; Geissel, H.; Shutov, A.; Lomonosov, I.V.; Fortov, V.E.; Piriz, A.R.; Redmer, R.; Deutsch, C.

    2011-01-01

    The forthcoming Facility for Antiprotons and Ion Research (FAIR) at Darmstadt, is going to be a unique accelerator facility that will deliver high quality, strongly bunched, well focused, intense beams of heavy ions that will lead to unprecedented specific power deposition in solid matter. This will generate macroscopic samples of High Energy Density (HED) matter with fairly uniform physical conditions. These samples can be used to study the thermophysical and transport properties of HED matter. Extensive theoretical work has been carried out over the past decade to design numerous dedicated experiments to study HED physics at the FAIR, which has provided the basis for the HEDgeHOB (High Energy Density Matter Generated by Heavy Ion Beams) scientific proposal. This work is still in progress as the feasibility studies for more experimental schemes are being carried out. Another, very important research area that will benefit tremendously from the FAIR facility, is the production of radioactive beams. A superconducting fragment separator, Super-FRS is being designed for the production and separation of rare radioactive isotopes. Unlike the HED targets, the Super-FRS production target should not be destroyed or damaged by the beam, but should remain intact during the long experimental campaign. However, the high level of specific power deposited in the production target by the high intensity ion beam at FAIR, could cause serious problems to the target survival. These HED issues related to the Super-FRS production target are also discussed in the present paper (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Measurement of Neutral B Meson Mixing in Electron-Muon Events in 1.8-TeV Proton - Anti-proton Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mitsushio, Hisafumi [Univ. of Tsukuba (Japan)

    1996-01-01

    The B0$\\bar{B}$0 mixing parameter, x, has been measured in eμ events in proton-antiproton collisions at a center of mass energy of 1800 GeV. The experiment has been performed at the Fermi National Accelerator Laboratory in the United States using the Tevatron accelerator. The data were collected with the Collider Detector at Fermilab (CDF) during the 1992-1993 Tevatron collider run. The corresponding integrated luminosity is 20 pb-1.

  18. Observation of double resonant laser induced transitions in the $v = n - l - 1 = 2$ metastable cascade of antiprotonic helium-4 atoms

    CERN Document Server

    Hayano, R S; Tamura, H; Torii, H A; Hori, Masaki; Maas, F E; Morita, N; Kumakura, M; Sugai, I; Hartmann, F J; Daniel, H; Von Egidy, T; Ketzer, B; Pohl, R; Horváth, D; Eades, John; Widmann, E; Yamazaki, T

    1997-01-01

    A new laser-induced resonant transition in the $v=n-l-1=2$ metastable cascade of antiprotonic $^4$He atoms has been found by using a double resonance technique. This was done by setting the first laser to the already known 470.724 nm resonance ($(n,l)=(37,34)\\rightarrow (36,33)$), while the $(38,35)\\rightarrow (37,34)$ transition was searched for with the second laser. The resonant transition was found at wavelength of 529.622$\\pm$0.003 nm, showing excellent agreement with a recent prediction of Korobov.

  19. Production of a pion in association with a high-Q2 dilepton pair in antiproton-proton annihilation at GSI-FAIR

    International Nuclear Information System (INIS)

    Lansberg, J. P.; Pire, B.; Szymanowski, L.

    2007-01-01

    We evaluate the cross section for pp→l + l - π 0 in the forward direction and for a large lepton pair invariant mass. In this kinematical region, the leading-twist amplitude factorizes into a short-distance matrix element, long-distance antiproton-distribution amplitudes, and proton to pion transition distribution amplitudes (TDAs). Using a modeling inspired from the chiral limit for these TDAs, we obtain a first estimate of this cross section, which demonstrates that this process can be measured at GSI-FAIR

  20. Measurement of antiproton production in p-He collisions and prospects for other inputs to cosmic rays physics from the fixed target program of the LHCb experiment

    CERN Document Server

    Graziani, Giacomo

    2018-01-01

    The LHCb experiment has the unique possibility, among the LHC experiments, to be operated in fixed target mode, using its internal gas target SMOG. The energy scale achievable at the LHC and the excellent detector capabilities for vertexing, tracking and particle identification allow a wealth of measurements of great interest for cosmic ray physics. We present the first measurement of antiproton production in proton-helium collisions at $\\sqrt s_{NN} = 110$ GeV, which allows to improve the accuracy of the prediction for secondary antiproton production in cosmic rays. Prospects for other measurements achievable in the fixed target program are also discussed.

  1. Spallation reactions

    International Nuclear Information System (INIS)

    Cugon, J.

    1996-01-01

    Spallation reactions dominate the interactions of hadrons with nuclei in the GeV range (from ∼ 0.1 to ∼ 10 GeV). They correspond to a sometimes important ejection of light particles leaving most of the time a residue of mass commensurate with the target mass. The main features of the experimental data are briefly reviewed. The most successful theoretical model, namely the intranuclear cascade + evaporation model, is presented. Its physical content, results and possible improvements are critically discussed. Alternative approaches are shortly reviewed. (author)

  2. Nuclear reactions

    International Nuclear Information System (INIS)

    Corner, J.; Richardson, K.; Fenton, N.

    1990-01-01

    Nuclear reactions' marks a new development in the study of television as an agency of public policy debate. During the Eighties, nuclear energy became a major international issue. The disasters at Three-mile Island and Chernobyl created a global anxiety about its risks and a new sensitivity to it among politicians and journalists. This book is a case-study into documentary depictions of nuclear energy in television and video programmes and into the interpretations and responses of viewers drawn from many different occupational groupings. How are the complex and specialist arguments about benefit, risk and proof conveyed through the different conventions of commentary, interview and film sequence? What symbolic associations does the visual language of television bring to portrayals of the issue? And how do viewers make sense of various and conflicting accounts, connecting what they see and hear on the screen with their pre-existing knowledge, experience and 'civic' expectations. The authors examine some of the contrasting forms and themes which have been used by programme makers to explain and persuade, and then give a sustained analysis of the nature and sources of viewers' own accounts. 'Nuclear Reactions' inquires into the public meanings surrounding energy and the environment, spelling out in its conclusion some of the implications for future media treatments of this issue. It is also a key contribution to the international literature on 'television knowledge' and the processes of active viewing. (author)

  3. Inclusive production of protons, anti-protons and neutrons in p+p collisions at 158 GeV/c beam momentum

    CERN Document Server

    Anticic, T.; Bartke, J.; Betev, L.; Bialkowska, H.; Blume, C.; Boimska, B.; Bracinik, J.; Cerny, V.; Chvala, O.; Dolejsi, J.; Eckardt, V.; Fischer, H.G.; Fodor, Z.; Foka, P.; Friese, V.; Gazdzicki, M.; Hohne, C.; Kadija, K.; Karev, A.; Kolesnikov, V.; Kowalski, M.; Kreps, M.; Makariev, M.; Malakhov, A.; Mateev, M.; Melkumov, G.; Mitrovski, M.; Mrowczynski, S.; Renfordt, R.; Rybczynski, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Seyboth, P.; Stefanek, G.; Stock, R.; Strobele, H.; Susa, T.; Szymanski, P.; Trubnikov, V.; Varga, D.; Vesztergombi, G.; Vranic, D.; Wenig, S.; Wlodarczyk, Z.; Wojtaszek, A.

    2010-01-01

    New data on the production of protons, anti-protons and neutrons in p+p interactions are presented. The data come from a sample of 4.8 million inelastic events obtained with the NA49 detector at the CERN SPS at 158 GeV/c beam momentum. The charged baryons are identified by energy loss measurement in a large TPC tracking system. Neutrons are detected in a forward hadronic calorimeter. Inclusive invariant cross sections are obtained in intervals from 0 to 1.9 GeV/c (0 to 1.5 GeV/c) in transverse momentum and from -0.05 to 0.95 (-0.05 to 0.4) in Feynman x for protons (anti-protons), respectively. pT integrated neutron cross sections are given in the interval from 0.1 to 0.9 in Feynman x. The data are compared to a wide sample of existing results in the SPS and ISR energy ranges as well as to proton and neutron measurements from HERA and RHIC.

  4. Proton-antiproton annihilation into π0π0π0, π0π0η and π0ηη at 900 MeV/c

    International Nuclear Information System (INIS)

    Amsler, C.

    2001-01-01

    Crystal barrel data for proton-antiproton annihilation in flight at 900 MeV/c are presented. The channels pp → π 0 π 0 π 0 , π 0 π 0 η and π 0 ηη are used to search for isoscalar 0 ++ and 2 ++ mesons in the mass range 1500-2000 MeV, which is not accessible with stopping antiprotons. Both π 0 π 0 π 0 and π 0 ηη data sets require an isoscalar 2 ++ resonance decaying into π 0 π 0 and ηη with mass M = (1867 ± 46) MeV and width Γ = (385 ± 58) MeV. The analysis of π 0 π 0 η leads to an isovector 2 ++ state decaying into π 0 η (M = (1698 ± 44) MeV, Γ = (265 ± 55) MeV). The π 0 ηη data show a strong f' 2 (1525) signal, larger than predicted by the OZI rule. The π 0 π 0 π 0 and π 0 ηη data do not show any f 0 (1710). This adds supportive evidence that this meson is mainly ss. (orig.)

  5. Study of Interaction of Low-Energy Antiprotons with H$^{2}$,He$^{3}$,He$^{4}$,Ne-Nuclei Using a Streamer Chamber in Magnetic Field

    CERN Multimedia

    2002-01-01

    The aim of this experiment is the systematic study of the interaction between low-energy antiprotons and the H|2,~He|3,~He|4,~Ne-nuclei using a self shunted streamer chamber in a magnetic field exposed to the antiproton beam of the LEAR facility. The properties of the self shunted streamer chamber, which allows the use of the filling gas (hydrogen, helium, neon at a pressure of l~atm) as a target, permit to carry out experiments also in the very low-energy region. \\\\ \\\\ The experimental apparatus is suitable for a large programme of measurements. We plan to measure the @*H|2 cross section and the spectator momentum distributions at @* momenta lower than 250~MeV/c, where data are lacking. It is interesting to study for the first time the @*He|3 and @*He|4 interactions measuring the cross sections and the emitted particle distributions. Among other things the knowledge of the branching ratio of the @*He|4 annihilation channels clarifies some open cosmological questions. The study of the process of nuclear absor...

  6. Measurement of the single top production cross section in proton-antiproton collisions at 1.96 TeV

    International Nuclear Information System (INIS)

    Tanasijczuk, Andres Jorge

    2010-01-01

    This thesis describes a search for singly produced top quarks via an electroweak vertex in head-on proton-antiproton collisions at a center of mass energy of √s = 1.96 TeV. The analysis uses a total of 2.3 fb -1 of data collected with the D0 detector at Fermilab, corresponding to two different run periods of the Tevatron collider. Two channels contribute to single top quark production at the Tevatron, the s-channel and the t-channel. In the s-channel, a virtual W boson is produced from the aniquilation of a quark and an antiquark and a top and a bottom quarks are produced from the W decay. The top quark decays almost exclusively into a W boson and a bottom quark. Final states are considered in which the W boson decays leptonically into an electron or a muon plus a neutrino. Thus, at the detector level, the final state characterizing the s-channel contains one lepton, missing energy accounting for the neutrino, and two jets from the two bottom quarks. In the t-channel, the final state has an additional jet coming from a light quark. Clearly, a precise reconstruction of the events requires a precise measurement of the energy of the jets. A multivariate technique, Bayesian neural networks, is used to extract the single top signal from the overwhelming background still left after event selection. A Bayesian likelihood probability is then computed to measure the single top cross section. Assuming the observed excess is due to single top events, the measured single top quark production cross section is σ(p(bar p) → tb + X, tqb + X) = 4.70 -0.93 +1.18 pb. The observed excess is associated with a p-value of (3.2 ± 2.3) x 10 -8 , assuming the background-only hypothesis. This p-value corresponds to an excess over background of 5.4 standard deviations for a Gaussian density. The p-value computed using the standard model signal cross section of 3.46 pb is (22.7 ± 0.6) x 10 -6 , corresponding to an expected significance of 4.08 standard deviations.

  7. Measurement of the single top production cross section in proton-antiproton collisions at 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Tanasijczuk, Andres Jorge [Univ. of Buenos Aires (Argentina)

    2010-03-25

    This thesis describes a search for singly produced top quarks via an electroweak vertex in head-on proton-antiproton collisions at a center of mass energy of √s = 1.96 TeV. The analysis uses a total of 2.3 fb-1 of data collected with the D0 detector at Fermilab, corresponding to two different run periods of the Tevatron collider. Two channels contribute to single top quark production at the Tevatron, the s-channel and the t-channel. In the s-channel, a virtual W boson is produced from the aniquilation of a quark and an antiquark and a top and a bottom quarks are produced from the W decay. The top quark decays almost exclusively into a W boson and a bottom quark. Final states are considered in which the W boson decays leptonically into an electron or a muon plus a neutrino. Thus, at the detector level, the final state characterizing the s-channel contains one lepton, missing energy accounting for the neutrino, and two jets from the two bottom quarks. In the t-channel, the final state has an additional jet coming from a light quark. Clearly, a precise reconstruction of the events requires a precise measurement of the energy of the jets. A multivariate technique, Bayesian neural networks, is used to extract the single top signal from the overwhelming background still left after event selection. A Bayesian likelihood probability is then computed to measure the single top cross section. Assuming the observed excess is due to single top events, the measured single top quark production cross section is σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.70+1.18-0.93 pb. The observed excess is associated with a p-value of (3.2 ± 2.3) x 10-8, assuming the background-only hypothesis. This p-value corresponds to an excess over background of 5.4 standard deviations for a Gaussian density. The p-value computed using the standard model signal cross section of 3.46 pb is (22.7 ± 0.6) x 10-6, corresponding to an expected significance

  8. Chain reaction

    International Nuclear Information System (INIS)

    Balogh, Brian.

    1991-01-01

    Chain Reaction is a work of recent American political history. It seeks to explain how and why America came to depend so heavily on its experts after World War II, how those experts translated that authority into political clout, and why that authority and political discretion declined in the 1970s. The author's research into the internal memoranda of the Atomic Energy Commission substantiates his argument in historical detail. It was not the ravages of American anti-intellectualism, as so many scholars have argued, that brought the experts back down to earth. Rather, their decline can be traced to the very roots of their success after World War II. The need to over-state anticipated results in order to garner public support, incessant professional and bureaucratic specialization, and the sheer proliferation of expertise pushed arcane and insulated debates between experts into public forums at the same time that a broad cross section of political participants found it easier to gain access to their own expertise. These tendencies ultimately undermined the political influence of all experts. (author)

  9. Influence of the p ¯ -p Nuclear Interaction on the Rate of the Low-Energy p ¯ + H μ → ( p ¯ p α + μ − Reaction

    Directory of Open Access Journals (Sweden)

    Renat A. Sultanov

    2018-04-01

    Full Text Available The influence of an additional strong p ¯ -p nuclear interaction in a three-charge-particle system with arbitrary masses is investigated. Specifically, the system of p ¯ , μ − , and p is considered in this paper, where p ¯ is an antiproton, μ − is a muon and p is a proton. A numerical computation in the framework of a detailed few-body approach is carried out for the following protonium (antiprotonic hydrogen formation three-body reaction: p ¯ + H μ ( 1 s → ( p ¯ p α + μ − . Here, H μ ( 1 s is a ground state muonic hydrogen, i.e., a bound state of p and μ − . A bound state of p and its antimatter counterpart p ¯ is a protonium atom in a quantum atomic state α , i.e., P n = ( p ¯ p α . The low-energy cross sections and rates of the P n formation reaction are computed in the framework of coupled Faddeev-Hahn-type equations. The strong p ¯ -p interaction is included in these calculations within a first order approximation. It was found, that the inclusion of the nuclear interaction results in a quite significant correction to the rate of the three-body reaction.

  10. Study of the K K{pi} meson resonances produced in antiproton proton annihilations at 750 MeV/c; Estudio de resonancias mesonicas en el sistema KK{pi} en aniquilaciones de antiprotones a 750 MeV/cde momento

    Energy Technology Data Exchange (ETDEWEB)

    Gil Lopez, E.

    1977-07-01

    In this work we present an analysis of the antiproton proton annihilations into strange particles at 700 and 750 MeV/c, restricted to the four and five body final states. We study in detail the resonances decaying into the K K{pi}; system, in particular the D and E mesons. For the D meson we present a determination of i ts mass, width, isospin, G-parity, C-parity and spin. For the E meson we present parametrizations of the complete final state which decrease its statistical significance in this type of production. (Author)

  11. Neutrons from Antiproton Irradiation

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Petersen, Jørgen B.B.

    the volume targeted for irradiation. A major part of this peripheral dose arise from neutrons, which in particular are problematic due to their high RBE for secondary cancer incidence. We have measured the fast and thermal neutron spectrum in different geometrical configurations in order to experimentally...

  12. Antiproton-nucleus interaction

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1984-01-01

    Several facets of antinucleon-nucleus interactions are explored. The topics treated are: coherent interactions, production of unusual states and particles in the nuclear medium, and the creation of extreme states of matter by antimatter annihilation. It is found that temperatures of the magnitude necessary to achieve the predicted quark-gluon phase transition are obtained. 20 references

  13. Study of the antiproton-proton annihilations into six body final states at 750 MeV/c and channels with associated production of K K

    International Nuclear Information System (INIS)

    Adeva, B.; Duran, I.

    1980-01-01

    In this work we present an analysis of the antiproton-proton annihilations into six body final states with strange particle production at 750 HeV/c. It is shown that these final states are dominated at this energy by resonance production in quasi-three body Intermediate states. We determine the scattering length of the resonanceδ+ (970) which is found to be compatible with earlier determinations. fe also study the production of the resonance ω(783) associated to the system K 0 K 0 in the five body final state and determine Its polarization, which 1s not compatible with that obtained for the p 0 (770) in the final state K 0 K 0 p 0 . The amplitudes should be equal in a quark rearrangement model. (Author) 11 refs

  14. First results for the two-spin parameter ALL in π0 production by 200 GeV polarized protons and antiprotons

    International Nuclear Information System (INIS)

    Adams, D.L.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bystricky, J.; Chaumette, P.; Deregel, J.; Durand, G.; Fabre, J.; Lehar, F.; Lesquen, A. de; Cossairt, J.D.; Read, A.L.; En'yo, H.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Grosnick, D.P.; Hill, D.A.; Kasprzyk, T.; Laghai, M.; Lopiano, D.; Ohashi, Y.; Shepard, J.; Spinka, H.; Underwood, D.G.; Yokosawa, A.; Iwatani, K.; Krueger, K.W.; Kuroda, K.; Michalowicz, A.; Pauletta, G.; Penzo, A.; Schiavon, P.; Zanetti, A.; Salvato, G.; Villari, A.; Takeutchi, F.; Tamura, N.; Tanaka, N.; Yoshida, T.

    1991-01-01

    The two-spin parameter A LL in inclusive π 0 production by longitudinally-polarized protons and antiprotons on a longitudinally-polarized proton target has been measured at the 200 GeV Fermilab spin physics facility, for π 0 's at x F = 0 with 1 ≤ p t ≤ 3 GeV/c. The results exclude, at the 95% confidence level, values of A LL (pp) > 0.1 and 0 's produced by protons, and values of A LL (anti pp) > 0.1 and LL (pp) for the gluon spin density is discussed. The data are in good agreement with 'conventional' small or zero, gluon polarization. (orig.)

  15. A study of events with large total transverse energy produced in proton-antiproton collisions at √s = 1.8 TeV

    International Nuclear Information System (INIS)

    Piekarz, H.

    1994-09-01

    Properties of events originating from proton-antiproton interactions in which the total transverse energy, Σ|E T |, of the event exceeded 400 GeV are presented. These events were produced at the Fermilab Tevatron Collider operating at a center-of-mass energy of 1.8 TeV and recorded in the D0 detector. The authors describe their analysis method which minimizes the effect of multiple interactions in the data sample. Based on a data sample of 5.45 ± 0.65 pb -1 , the topology of these hard scattering events as well as preliminary results for the cross-section, dσ/dΣ|E T |, are presented and discussed

  16. Search for charm in pion and anti-proton interactions near threshold. [8. 5 to 15. 0, cross sections, branching ratios

    Energy Technology Data Exchange (ETDEWEB)

    Kadel, R W

    1977-08-01

    A search is reported for charmed particles produced by antiprotons of momentum 15.0, 12.4, and 8.5 GeV/c and pions of momentum 15.0 and 10.5 GeV/c. Charged particles emerging from a carbon target near 90/sup 0/ in the center of mass (18/sup 0/ lab) were detected in a double arm spectrometer with a low momentum cutoff of P/sub lab/ greater than or equal to 1 GeV/c. The best upper limit is the process anti PN ..-->.. D/sup 0/( anti D/sup 0/) + X, where the D/sup 0/ (anti D/sup 0/) decays into K/sup -/ - ..pi../sup +/ (K/sup +/ - ..pi../sup -/), is: sigmaB = 780 +- 300 nb at a beam momentum of 8.5 GeV/c. For the 10.5 GeV/c pion running the trigger was restricted by requiring the presence of a slow forward pion in a third spectrometer area, in coincidence with the usual double arm trigger. The acceptance of the third arm was chosen to include pions from the decay of the charmed D*/sup -/ meson, which has a very small Q value. The upper limit for the process: ..pi../sup -/N ..-->.. D*/sup -/ + X, D*/sup -/ ..-->.. ..pi../sup -/ + anti D/sup 0/, anti D/sup 0/ ..-->.. K/sup +/ + ..pi../sup -/ is sigmaB = 16 +- 16 nb. Additionally, a measurement of inclusive K* (1421) production in anti-proton interactions at 8.5 GeV/c is reported. The cross-section times branching ratio is: sigma(anti PN ..-->.. K*(1421) + X)*B/sub K*..-->..K..pi../ = 4. +- .8 x 10/sup -29/ cm/sup 2/. (JFP)

  17. FAIRNESS 2016 [4. workshop for young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research), Garmisch-Partenkirchen (Germany), 14-19 Feb 2016

    International Nuclear Information System (INIS)

    2016-01-01

    FAIRNESS 2016 was the fourth edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on February 14-19 2016 in Garmisch-Partenkirchen, Germany. The topics of the workshops cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI facility close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. young non-tenured scientists, postdocs and advanced PhD students to present their work, to foster active informal discussions and build up networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in a box to stimulate discussions. The broad physics program at FAIR is reflected in the wide range of topics covered by the workshop: • Atomic and plasma physics, biophysics, material sciences and applications • Nuclear structure, astrophysics and reactions • Physics of hot and dense nuclear matter, QCD phase transitions and critical point • Hadron Spectroscopy, Hadrons in matter and Hypernuclei • Experimental programs APPA, CBM, HADES, PANDA, NUSTAR, as well as BES, NICA and the RHIC beam energy scan For these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2016 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that is dedicated to the

  18. Catalysis of Photochemical Reactions.

    Science.gov (United States)

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  19. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2007-01-01

    The scientific activity of our department is traditionally focused on nuclear physics, atomic physics and material research. Our interest in nuclear physics is broad, ranging from the structure of a nucleon to the structure of the nucleus. The spin structure of a nucleon has been investigated within the HERMES Collaboration which comprises 32 institutions from 11 countries. The collaboration performs experiments at Deutches Elektronen-Synchrotron in Hamburg. Another large-scale international collaboration we are participating in is PANDA. The PANDA (antiProton ANnihilation at DArmstadt) experiment will be installed at the High Energy Storage Ring for antiprotons of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. Our colleagues, led by Dr. B. Zwieglinski, have been working on the concept of a calorimeter, testing different scintillators. Many experiments in low energy nuclear physics were performed in collaboration with University of Jyvaeskylae, the Institute of Nuclear Research of the Ukrainian Academy of Science and Heavy Ion Laboratory of the Warsaw University. They were devoted to studying nucleus-nucleus interactions near the Coulomb barrier. This year, atomic studies focused on the L-shell ionisation of some heavy elements by silicon ions accelerated to the energy of 8.5-36 MeV. The results are presented in this report and are compared to different model calculations. Finally, I take great pleasure in congratulating Dr. L. Nowicki, whose study of uranium oxide structure, performed in collaboration with Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse in Orsay, was chosen as an important scientific achievement of our Institute in 2006. Apart from purely scientific activities, a few of our colleagues have been involved in education, giving lectures to students from high schools in Warsaw and Warsaw University. R. Ratajczak contributed to the 10 th Science Festival, an event organized for the general public every year

  20. On Thermonuclear Reaction Rates

    OpenAIRE

    Haubold, H. J.; Mathai, A. M.

    1996-01-01

    Nuclear reactions govern major aspects of the chemical evolution of galaxies and stars. Analytic study of the reaction rates and reaction probability integrals is attempted here. Exact expressions for the reaction rates and reaction probability integrals for nuclear reactions in the cases of nonresonant, modified nonresonant, screened nonresonant and resonant cases are given. These are expressed in terms of H-functions, G-functions and in computable series forms. Computational aspects are als...

  1. Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at $\\sqrt{s_{NN}}$=2.76 TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonschior, Alexey; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jangal, Swensy Gwladys; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kanaki, Kalliopi; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Minwoo; Kim, Mimae; Kim, Se Yong; Kim, Seon Hee; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lechman, Mateusz; Lee, Graham Richard; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Ajit Kumar; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, S; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Pujol Teixido, Jordi; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stefanini, Giorgio; Steinbeck, Timm Morten; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Toia, Alberica; Torii, Hisayuki; Tosello, Flavio; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-02-12

    The elliptic, $v_2$, triangular, $v_3$, and quadrangular, $v_4$, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions, and (anti-)protons in Pb–Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range |$\\eta$|8 GeV/c. The small $p_T$ dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to $p_T$ =8 GeV/c. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least $p_T$ =8 GeV/c indicating that the particle type dependence persists out to high $p_T$.

  2. Search for Associated Chargino-Neutralino Production in Proton-Antiproton Collisions at 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Blumenschein, Ulla [Albert Ludwigs Univ. of Freiburg (Germany)

    2005-08-01

    interacting, carrying away energy and momentum and leading to detector signatures with large missing energy. Supersymmetric particles have been searched for at the electron-positron collider LEP up to the kinematic limit. No evidence for these particles has been observed which results in lower limits on their masses. Additional constraints stem from precision measurements of quantities, which are sensitive to corrections from SUSY particles and from the search for dark matter in cosmological experiments. The search for SUSY particles beyond the reach of LEP is continued at larger energy regimes at present and future hadron colliders. In its second phase of data taking (Run II), the center-of-mass energy of the proton-antiproton collider Tevatron at Fermilab has been raised and the luminosity has been increased considerably. The D0 experiment, one of the two Tevatron experiments, has been upgraded accordingly. The Tevatron collider allows to probe a substantial SUSY mass range beyond the LEP limits. The search will be continued at the Large Hadron Collider (LHC) which is presently being constructed at the European Research laboratory for particle physics CERN in Geneva. At hadron colliders the supersymmetric partners of quarks and gluons are copiously produced in strong interactions, provided they are light enough. Within most of the established SUSY models, these particles are too heavy to be produced at a sufficient rate at the Tevatron collider and the production of the lighter super-partners of the Higgs and gauge bosons, the charginos and neutralinos, becomes an important source of SUSY particles. Decays of these particles result in final states with leptons or hadrons and large missing energy. Leptonic final states can be separated more easily from the large background of hadronic Standard Model processes. A search for the associated production of the lightest chargino and the second lightest neutralino has been performed in final states with two electrons, an additional

  3. Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p–Pb collisions at sNN=5.02 TeV

    NARCIS (Netherlands)

    Peitzmann, T.; Grelli, A.; Snellings, R.J.M.; Mischke, A.; Bertens, R.A.; Keijdener, D.L.D.

    2016-01-01

    The production of charged pions, kaons and (anti)protons has been measured at mid-rapidity (−0.5

  4. Search for Standard Model Higgs Boson Produced in Association with a Top-Antitop Quark Pair in 1.96 TeV Proton-Antiproton Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Stanley T. [Univ. of Toronto, ON (Canada)

    2007-01-01

    This thesis describes the first search for Standard Model Higgs boson production in association with a top-antitop quark pair in proton-antiproton collisions at a centre of mass energy of 1.96 TeV. The integrated luminosity for othis search corresponds to 319 pb-1 of data recorded by the Collider Detector at Fermilab. We outline the even selection criteria, evaluate the even acceptance and estimate backgrounds from Standard Model sources. These events are observed that satisfy our event selection, while 2.16 ± 0.66 events are expected from background processes. no significant excess of events above background is thus observed, and we set 95% confidence level upper limits on the production cross section for this process as a function of the Higgs mass. For a Higgs boson mass of 115 GeV/c2 we find that σ$t\\bar{t}H$ x BR (Hbb) < 690 fb at 95% C.L. These are the first limits set for $t\\bar{t}H$ production. This search also allows us to anticipate the challenges and necessary strategies needed for future searches of $t\\bar{t}H$ production.

  5. Measurement of Event Shapes in Proton-Antiproton Collisions at Center-of-Mass Energy 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Apresyan, A.; /Purdue U. /Waseda U. /Dubna, JINR

    2011-03-01

    A study of event shape observables in proton-antiproton collisions at {radical}s = 1.96 TeV is presented. The data for this analysis were recorded by the CDF II detector at the Tevatron collider. The variables studied are the transverse thrust and thrust minor, both defined in the plane perpendicular to the beam direction. The observables are measured using energies from unclustered calorimeter cells. In addition to studies of the differential distributions, we present the dependence of event shape mean values on the leading jet transverse energy. Data are compared with pythia Tune A and to resummed parton level predictions that were matched to fixed order results at NLO accuracy (NLO+NLL). Predictions from pythia Tune A agree fairly well with the data. However, the underlying event contributes significantly to these observables, making it difficult to make direct comparisons to the NLO+NLL predictions, which do not account for the underlying event. To overcome this difficulty, we introduce a new observable, a weighted difference of the mean values of the thrust and thrust minor, which is less sensitive to the underlying event, allowing for a comparison with NLO+NLL. Both pythia Tune A and the NLO+NLL calculations agree well within the 20% theoretical uncertainty with the data for this observable, indicating that perturbative QCD successfully describes shapes of the hadronic final states.

  6. Cryogenic upgrade of the low heat load liquid helium cryostat used to house the Cryogenic Current Comparator in the Antiproton Decelerator at CERN

    Science.gov (United States)

    Lees, A.; Koettig, T.; Fernandes, M.; Tan, J.

    2017-12-01

    The Cryogenic Current Comparator (CCC) and its purpose built cryostat were installed in the low-energy Antiproton Decelerator (AD) at CERN in 2015. A pulse-tube cryocooler recondenses evaporated helium to liquid at 4.2 K filling the helium vessel of the cryostat at an equivalent cooling power of 0.69 W. To reduce the transmission of vibration to the highly sensitive CCC, the titanium support systems of the cryostat were optimized to be as stiff as possible while limiting the transmission of heat to the liquid helium vessel. During operation the liquid helium level in the cryostat was seen to reduce, indicating that heat load was higher than intended. To verify the reason for this additional heat load and improve the cryogenic performance of the cryostat, an upgrade was undertaken during the 2016 technical stop of the AD. This article presents the studies undertaken to understand the thermal performance of the cryostat and details the improvements made to reduce heat load on the liquid helium vessel. Also discussed are the procedures used to reduce the diffusion of helium to the vacuum space through ceramic insulators. Finally the upgraded cryogenic performance of the cryostat is presented.

  7. Midrapidity antiproton-to-proton ratio in pp collisions at $\\sqrt{s} = 0.9$ and $7$~TeV measured by the ALICE experiment

    CERN Document Server

    Aamodt, K.; Abeysekara, U.; Abrahantes Quintana, A.; Abramyan, A.; Adamova, D.; Aggarwal, M.M.; Aglieri Rinella, G.; Agocs, A.G.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahn, S.U.; Akimoto, R.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Almaraz Avina, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Andrei, C.; Andronic, A.; Anelli, G.; Angelov, V.; Anson, C.; Anticic, T.; Antinori, F.; Antinori, S.; Antipin, K.; Antonczyk, D.; Antonioli, P.; Anzo, A.; Aphecetche, L.; Appelshauser, H.; Arcelli, S.; Arceo, R.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I.C.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T.C.; Aysto, J.; Azmi, M.D.; Bablok, S.; Bach, M.; Badala, A.; Baek, Y.W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Ban, J.; Barbera, R.; Barnafoldi, G.G.; Barnby, L.; Barret, V.; Bartke, J.; Barile, F.; Basile, M.; Basmanov, V.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I.G.; Becker, B.; Belikov, I.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Benhabib, L.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Betev, L.; Bhasin, A.; Bhati, A.K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Bimbot, L.; Biolcati, E.; Blanc, A.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Boggild, H.; Bogolyubsky, M.; Bohm, J.; Boldizsar, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Borel, H.; Borisov, A.; Bortolin, C.; Bose, S.; Bosisio, L.; Bossu, F.; Botje, M.; Bottger, S.; Bourdaud, G.; Boyer, B.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Breitner, T.; Bruckner, G.; Brun, R.; Bruna, E.; Bruno, G.E.; Budnikov, D.; Buesching, H.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Camacho, E.; Camerini, P.; Campbell, M.; Canoa Roman, V.; Capitani, G.P.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Castillo Hernandez, J.F.; Catanescu, V.; Cattaruzza, E.; Cavicchioli, C.; Cerello, P.; Chambert, V.; Chang, B.; Chapeland, S.; Charpy, A.; Charvet, J.L.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D.D.; Chochula, P.; Choi, K.; Chojnacki, M.; Christakoglou, P.; Christensen, C.H.; Christiansen, P.; Chujo, T.; Chuman, F.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Conner, E.S.; Constantin, P.; Contin, G.; Contreras, J.G.; Corrales Morales, Y.; Cormier, T.M.; Cortese, P.; Cortes Maldonado, I.; Cosentino, M.R.; Costa, F.; Cotallo, M.E.; Crescio, E.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Cussonneau, J.; Dainese, A.; Dalsgaard, H.H.; Danu, A.; Das, I.; Dash, A.; Dash, S.; de Barros, G.O.V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gaspari, M.; de Groot, J.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Remigis, R.; de Rooij, R.; de Vaux, G.; Delagrange, H.; Dellacasa, G.; Deloff, A.; Demanov, V.; Denes, E.; Deppman, A.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Diaz, L.; Diaz, R.; Dietel, T.; Divia, R.; Djuvsland, O.; Dobretsov, V.; Dobrin, A.; Dobrowolski, T.; Donigus, B.; Dominguez, I.; Dordic, O.; Dubey, A.K.; Dubuisson, J.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A.K.; Dutta Majumdar, M.R.; Elia, D.; Emschermann, D.; Enokizono, A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evrard, S.; Eyyubova, G.; Fabjan, C.W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fateev, O.; Fearick, R.; Fedunov, A.; Fehlker, D.; Fekete, V.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernandez Tellez, A.; Ferreiro, E.G.; Ferretti, A.; Ferretti, R.; Figueredo, M.A.S.; Filchagin, S.; Fini, R.; Fionda, F.M.; Fiore, E.M.; Floris, M.; Fodor, Z.; Foertsch, S.; Foka, P.; Fokin, S.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Frolov, A.; Fuchs, U.; Furano, F.; Furget, C.; Fusco Girard, M.; Gaardhoje, J.J.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gallio, M.; Ganoti, P.; Ganti, M.S.; Garabatos, C.; Garcia Trapaga, C.; Gebelein, J.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giraudo, G.; Giubellino, P.; Gladysz-Dziadus, E.; Glasow, R.; Glassel, P.; Glenn, A.; Gomez Jimenez, R.; Gonzalez Santos, H.; Gonzalez-Trueba, L.H.; Gonzalez-Zamora, P.; Gorbunov, S.; Gorbunov, Y.; Gotovac, S.; Gottschlag, H.; Grabski, V.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J.F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Gustafsson, H.-A.; Gutbrod, H.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamblen, J.; Han, B.H.; Harris, J.W.; Hartig, M.; Harutyunyan, A.; Hasch, D.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heide, M.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Hernandez, C.; Herrera Corral, G.; Herrmann, N.; Hetland, K.F.; Hicks, B.; Hiei, A.; Hille, P.T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hrivnacova, I.; Hu, S.; Huang, M.; Huber, S.; Humanic, T.J.; Hutter, D.; Hwang, D.S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, P.G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Iwasaki, T.; Jacholkowski, A.; Jacobs, P.; Jancurova, L.; Jangal, S.; Janik, R.; Jena, C.; Jena, S.; Jirden, L.; Jones, G.T.; Jones, P.G.; Jovanovic, P.; Jung, H.; Jung, W.; Jusko, A.; Kaidalov, A.B.; Kalcher, S.; Kalinak, P.; Kalisky, M.; Kalliokoski, T.; Kalweit, A.; Kamal, A.; Kamermans, R.; Kanaki, K.; Kang, E.; Kang, J.H.; Kapitan, J.; Kaplin, V.; Kapusta, S.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M.M.; Khan, S.A.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.J; Kim, D.S.; Kim, D.W.; Kim, H.N.; Kim, J.; Kim, J.H.; Kim, J.S.; Kim, M.; Kim, S.H.; Kim, S.; Kim, Y.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J.L.; Klein, J.; Klein-Bosing, C.; Kliemant, M.; Klovning, A.; Kluge, A.; Knichel, M.L.; Kniege, S.; Koch, K.; Kolevatov, R.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskih, A.; Kornas, E.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Kral, J.; Kralik, I.; Kramer, F.; Kraus, I.; Kravcakova, A.; Krawutschke, T.; Krivda, M.; Krumbhorn, D.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P.G.; Kumar, L.; Kumar, N.; Kupczak, R.; Kurashvili, P.; Kurepin, A.; Kurepin, A.N.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kutouski, M.; Kvaerno, H.; Kweon, M.J.; Kwon, Y.; La Rocca, P.; Lackner, F.; Ladron de Guevara, P.; Lafage, V.; Lal, C.; Lara, Camilo; Larsen, D.T.; Laurenti, G.; Lazzeroni, C.; Le Bornec, Y.; Le Bris, N.; Lee, H.; Lee, K.S.; Lee, S.C.; Lefevre, F.; Lenhardt, M.; Leistam, L.; Lehnert, J.; Lenti, V.; Leon, H.; Leon Monzon, I.; Leon Vargas, H.; Levai, P.; Li, X.; Li, Y.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M.A.; Liu, L.; Loginov, V.; Lohn, S.; Lopez, X.; Lopez Noriega, M.; Lopez-Ramirez, R.; Lopez Torres, E.; Lovhoiden, G.; Lozea Feijo Soares, A.; Lu, S.; Lunardon, M.; Luparello, G.; Luquin, L.; Lutz, J.-R.; Ma, K.; Ma, R.; Madagodahettige-Don, D.M.; Maevskaya, A.; Mager, M.; Mahapatra, D.P.; Maire, A.; Makhlyueva, I.; Mal'Kevich, D.; Malaev, M.; Malagalage, K.J.; Maldonado Cervantes, I.; Malek, M.; Malkiewicz, T.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Mares, J.; Margagliotti, G.V.; Margotti, A.; Marin, A.; Martashvili, I.; Martinengo, P.; Martinez Hernandez, M.I.; Martinez Davalos, A.; Martinez Garcia, G.; Maruyama, Y.; Marzari Chiesa, A.; Masciocchi, S.; Masera, M.; Masetti, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z.L.; Matyja, A.; Mayani, D.; Mazza, G.; Mazzoni, M.A.; Meddi, F.; Menchaca-Rocha, A.; Mendez Lorenzo, P.; Meoni, M.; Mercado Perez, J.; Mereu, P.; Miake, Y.; Michalon, A.; Miftakhov, N.; Milano, L.; Milosevic, J.; Minafra, F.; Mischke, A.; Miskowiec, D.; Mitu, C.; Mizoguchi, K.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mondal, M.M.; Montano Zetina, L.; Monteno, M.; Montes, E.; Morando, M.; Moretto, S.; Morsch, A.; Moukhanova, T.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Muller, H.; Munhoz, M.G.; Munoz, J.; Musa, L.; Musso, A.; Nandi, B.K.; Nania, R.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nendaz, F.; Newby, J.; Nianine, A.; Nicassio, M.; Nielsen, B.S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.S.; Nilsson, M.S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyatha, A.; Nygaard, C.; Nyiri, A.; Nystrand, J.; Ochirov, A.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Okada, K.; Okada, Y.; Oldenburg, M.; Oleniacz, J.; Oppedisano, C.; Orsini, F.; Ortiz Velasquez, A.; Ortona, G.; Oskarsson, A.; Osmic, F.; Osterman, L.; Ostrowski, P.; Otterlund, I.; Otwinowski, J.; Ovrebekk, G.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paic, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S.K.; Palaha, A.; Palmeri, A.; Panse, R.; Papikyan, V.; Pappalardo, G.S.; Park, W.J.; Pastircak, B.; Pastore, C.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pepato, A.; Pereira, H.; Peressounko, D.; Perez, C.; Perini, D.; Perrino, D.; Peryt, W.; Peschek, J.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A.J.; Petracek, V.; Petridis, A.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Peyre, J.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Platt, R.; Ploskon, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta Lerma, P.L.M.; Poggio, F.; Poghosyan, M.G.; Polak, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pop, A.; Posa, F.; Pospisil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.K.; Preghenella, R.; Prino, F.; Pruneau, C.A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putis, M.; Putschke, J.; Quercigh, E.; Rachevski, A.; Rademakers, A.; Radomski, S.; Raiha, T.S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rodriguez Cahuantzi, M.; Rammler, M.; Raniwala, R.; Raniwala, S.; Rasanen, S.S.; Rashevskaya, I.; Rath, S.; Read, K.F.; Real, J.S.; Redlich, K.; Renfordt, R.; Reolon, A.R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R.A.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Roed, K.; Rohrich, D.; Roman Lopez, S.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, P.; Rubio-Montero, A.J.; Rui, R.; Rusanov, I.; Russo, G.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Safarik, K.; Sahoo, R.; Saini, J.; Saiz, P.; Sakata, D.; Salgado, C.A.; Salgueiro Domingues da Silva, R.; Salur, S.; Samanta, T.; Sambyal, S.; Samsonov, V.; Sandor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R.P.; Schiaua, C.; Schicker, R.; Schindler, H.; Schmidt, C.; Schmidt, H.R.; Schossmaier, K.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P.A.; Segato, G.; Semenov, D.; Senyukov, S.; Seo, J.; Serci, S.; Serkin, L.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, G.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddi, E.; Siemiarczuk, T.; Silenzi, A.; Silvermyr, D.; Simili, E.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, B.C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T.B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Snow, H.; Sogaard, C.; Soloviev, A.; Soltveit, H.K.; Soltz, R.; Sommer, W.; Son, C.W.; Son, Hyungsuk; Song, M.; Soos, C.; Soramel, F.; Soyk, D.; Spyropoulou-Stassinaki, M.; Srivastava, B.K.; Stachel, J.; Staley, F.; Stan, E.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Stenlund, E.; Steyn, G.; Stocco, D.; Stock, R.; Stolpovsky, P.; Strmen, P.; Suaide, A.A.P.; Subieta Vasquez, M.A.; Sugitate, T.; Suire, C.; Sumbera, M.; Susa, T.; Swoboda, D.; Symons, J.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Szuba, M.; Tadel, M.; Tagridis, C.; Takahara, A.; Takahashi, J.; Tanabe, R.; Tapia Takaki, J.D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Telesca, A.; Terrevoli, C.; Thaeder, Jochen Mathias; Tieulent, R.; Tlusty, D.; Toia, A.; Tolyhy, T.; Torcato de Matos, C.; Torii, H.; Torralba, G.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tribedy, P.; Troger, G.; Truesdale, D.; Trzaska, W.H.; Tsiledakis, G.; Tsilis, E.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Turvey, A.; Tveter, T.S.; Tydesjo, H.; Tywoniuk, K.; Ulery, J.; Ullaland, K.; Uras, A.; Urban, J.; Urciuoli, G.M.; Usai, G.L.; Vacchi, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; Vyvre, P.Vande; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasiliev, A.; Vassiliev, I.; Vasileiou, M.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vetlitskiy, I.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.P.; Vodopianov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Vrlakova, J.; Vulpescu, B.; Wagner, B.; Wagner, V.; Wallet, L.; Wan, R.; Wang, D.; Wang, Y.; Watanabe, K.; Wen, Q.; Wessels, J.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, M.C.S.; Willis, N.; Windelband, B.; Xu, C.; Yang, C.; Yang, H.; Yasnopolskiy, S.; Yermia, F.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I-K.; Yuan, X.; Yurevich, V.; Yushmanov, I.; Zabrodin, E.; Zagreev, B.; Zalite, A.; Zampolli, C.; Zanevsky, Yu.; Zaporozhets, S.; Zarochentsev, A.; Zavada, P.; Zbroszczyk, H.; Zelnicek, P.; Zenin, A.; Zepeda, A.; Zgura, I.; Zhalov, M.; Zhang, X.; Zhou, D.; Zhou, S.; Zhu, J.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zychacek, V.; Zynovyev, M.

    2010-01-01

    The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\\sqrt{s} = 0.9$ and $7$~TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45 < p_{\\rm{t}} < 1.05$~GeV/$c$ and rapidity $|y| < 0.5$. The ratio is measured to be $R_{|y| < 0.5} = 0.957 \\pm 0.006 (stat.) \\pm 0.014 (syst.)$ at $0.9$~TeV and $R_{|y| < 0.5} = 0.991 \\pm 0.005 (stat.) \\pm 0.014 (syst.)$ at $7$~TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.

  8. Study of muons associated with jets in proton-antiproton collisions at $\\sqrt{s}$ = 1.8-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David Austen [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1988-11-01

    Production of heavy quark flavors in proton-antiproton collisions with a centerof- mass energy of 1.8 X 1012 electron volts is studied for events containing hadronic jets with a nearby muon track, where both the jet and the muon are produced at large angles from the incident beams. The muon tracking system and pattern recognition are described. Detailed calculations of the muon background due to meson decay and hadron noninteractive punchthrough are presented, and other background sources are evaluated. Distributions of muon transverse momentum relative to the beam and to the jet axis agree with QCD expectations for semileptonic charm and beauty decay. Muon identification cuts and background subtraction leave 57.5 ± 17.1 muon-jet pairs, a rate consistent with the established production cross sections for charm and beauty quarks and the acceptance for minimum ionizing particles overlapping with nearby jets. A small dimuon sample clarifies the muon signature. No signatures of undiscovered phenomena are observed in this new energy domain. 111

  9. [Adverse reactions to insulin].

    Science.gov (United States)

    Liñana, J J; Montoro, F J; Hernández, M D; Basomba, A

    1997-07-01

    The prevalence of allergic reactions to insuline has decreased during the last few years. Probably this is due to the use of the newly-developed recombinant human insuline. At present, adverse reactions to insuline occur in 5-10% of patients on therapy with insuline. Adverse reactions may be local (more frequent) or systemic (rare). Insuline resistance consists in a different type of immunological reaction. Diagnosis of allergy to insuline is based on clinical history and cutaneous and serological tests. Treatment depends upon the severity of the reaction. When insuline is indispensable despite a previous allergic reaction, a desensitization protocol may be implemented.

  10. Antiproton-nucleus inelastic scattering and the spin-isospin dependence of the N anti N interaction

    International Nuclear Information System (INIS)

    Dover, C.B.

    1985-01-01

    A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ΔT=0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments at LEAR, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 34 refs

  11. Preequilibrium Nuclear Reactions

    International Nuclear Information System (INIS)

    Strohmaier, B.

    1988-01-01

    After a survey on existing experimental data on precompound reactions and a description of preequilibrium reactions, theoretical models and quantum mechanical theories of preequilibrium emission are presented. The 25 papers of this meeting are analyzed separately

  12. Microfluidic chemical reaction circuits

    Science.gov (United States)

    Lee, Chung-cheng [Irvine, CA; Sui, Guodong [Los Angeles, CA; Elizarov, Arkadij [Valley Village, CA; Kolb, Hartmuth C [Playa del Rey, CA; Huang, Jiang [San Jose, CA; Heath, James R [South Pasadena, CA; Phelps, Michael E [Los Angeles, CA; Quake, Stephen R [Stanford, CA; Tseng, Hsian-rong [Los Angeles, CA; Wyatt, Paul [Tipperary, IE; Daridon, Antoine [Mont-Sur-Rolle, CH

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  13. Oral Hypersensitivity Reactions

    Science.gov (United States)

    ... such as cinnamon, peppermint, eugenol and menthol. Even dental floss and denture cleansers may contain ingredients known to cause a hypersensitivity reaction. Q: How can dental treatment trigger a hypersensitivity reaction? A: Some dental ...

  14. Chemical transport reactions

    CERN Document Server

    Schäfer, Harald

    2013-01-01

    Chemical Transport Reactions focuses on the processes and reactions involved in the transport of solid or liquid substances to form vapor phase reaction products. The publication first offers information on experimental and theoretical principles and the transport of solid substances and its special applications. Discussions focus on calculation of the transport effect of heterogeneous equilibria for a gas motion between equilibrium spaces; transport effect and the thermodynamic quantities of the transport reaction; separation and purification of substances by means of material transport; and

  15. Thermonuclear reaction rates. III

    International Nuclear Information System (INIS)

    Harris, M.J.; Fowler, W.A.; Caughlan, G.R.; Zimmerman, B.A.

    1983-01-01

    Stellar thermonuclear reaction rates are revised and updated, adding a number of new important reaction rates. Several reactions with large negative Q-values are included, and examples of them are discussed. The importance of the decay rates for Mg-26(p,n) exp 26 Al and Al-26(n,p) exp 26 Mg for stellar studies is emphasized. 19 references

  16. Cluster knockout reactions

    Indian Academy of Sciences (India)

    2014-04-07

    Apr 7, 2014 ... advancements in the area of (α, 2α) reactions and heavy cluster knockout reactions are discussed. Importance of the finite-range vertex and the final-state interactions are brought out. Keywords. Cluster knockout reactions; FR-DWIA calculations; t-matrix effective interaction. PACS Nos 14.20.Pt; 24.10.

  17. ORGANIC REACTION MECHANISM CONTROVERSY ...

    African Journals Online (AJOL)

    Preferred Customer

    However, there are so many chemical reactions notably in organic chemistry where reactions may not directly lead to products. ... There are concepts that support these ideas but can they be proven to the ... Reaction mechanism is one such issue in organic chemistry that has attracted a lot of controversial comments from ...

  18. Maillard Reaction: review

    Directory of Open Access Journals (Sweden)

    Júlia d'Almeida Francisquini

    2017-11-01

    Full Text Available Maillard reaction is an important subject of study in food science and technology and different areas of knowledge are involved such as chemistry, food engineering, nutrition and food technology. The objective of this paper is to present the basic concepts of the Maillard reaction, such as the reaction stages, the main compounds producced and some technological consequences for dairy products.

  19. Resonant thermonuclear reaction rate

    International Nuclear Information System (INIS)

    Haubold, H.J.; Mathai, A.M.

    1986-01-01

    Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-function is discussed in physical terms

  20. Cross section and panti p invariant mass distribution of the reaction γp → panti pp at 4.74-6.55 GeV, an experimental investigation

    International Nuclear Information System (INIS)

    Bodenkamp, J.

    1981-08-01

    This paper gives a report of a photoproduction experiment of proton-antiproton pairs on hydrogen in the elastic reaction γp → panti pp which was performed at the Deutsches Elektronensynchrotron in Hamburg. The results of our measurements do not show substantial energy dependence in the energy range in our experiment. We obtain an integrated cross section of 79.6 +- 6 nbarn for the investigated reaction. Data accumulations could be observed in the invariant mass distribution of the proton antiproton pairs at 1940 MeV/c 2 and 2020 MeV/c 2 . The signal at 2020 MeV/c 2 has a statistical significance of 3.5 standard deviations and is in agreement with a resonance of the panti p-system reported in earlier experiments, a Breit-Wigner fit to the data yielded for mass msub(o) and width GAMMAsub(o) of this signal m 0 = 2.023 +- .005 GeV/c 2 GAMMA 0 = 27 +- 12 MeV/c 2 . (orig./HSI) [de

  1. Strange hadrons and antiprotons as probes of hot and dense nuclear matter in relativistic heavy-ion collisions; Seltsame Hadronen und Antiprotonen als Proben heisser und dichter Kernmaterie in relativistischen Schwerionenkollisionen

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Henry

    2010-09-15

    Strange particles play an important role as probes of relativistic heavy-ion collisions where hot and dense matter is studied. The focus of this thesis is on the production of strange particles within a transport model of Boltzmann-Uehling-Uhlenbeck (BUU) type. Current data of the HADES Collaboration concerning K{sup {+-}} and {phi} spectra provide the appropriate experimental framework. Moreover, the double-strange hyperon {xi}{sup -} is analyzed below the free NN production threshold. Hadron multiplicities, transversemomentum and rapidity spectra are compared with recent experimental data. Further important issues are in-medium mass shifts, the nuclear equation of state as well as the mean field of nucleons. Besides the study of AA collisions a comparison with recent ANKE data regarding the {phi} yield in pA collisions is done. Transparency ratios are determined and primarily investigated for absorption of {phi} mesons by means of the BUU transport code. Thereby, secondary {phi} production channels, isospin asymmetry and detector acceptance are important issues. A systematic analysis is presented for different system sizes. The momentum integrated Boltzmann equations describe dense nuclear matter on a hadronic level appearing in the Big Bang as well as in little bangs, in the context of kinetic off-equilibrium dynamics. This theory is applied to antiprotons and numerically calculated under consideration of various expansion models. Here, the evolution of proton- and antiproton densities till freeze-out is analyzed for ultra-relativistic heavy-ion collisions within a hadrochemic resonance gas model acting as a possible ansatz for solving the ''antiproton puzzle''. Furthermore, baryonic matter and antimatter is investigated in the early universe and the adiabatic path of cosmic matter is sketched in the QCD phase diagram. (orig.)

  2. Measurement of Z+ γ production and search for anomalous triple gauge couplings in proton-antiproton collisions at √S = 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jianrong [Duke Univ., Durham, NC (United States)

    2008-01-01

    The author presents a measurement of p$\\bar{p}$ → Zγ + X → e+e-γ + X production using proton-antiproton collisions data collected at the Collider Detector at Fermilab at a center of mass energy of 1.96 TeV. Zγ production provides a direct test of the triple neutral gauge couplings. A measurement of Zγ production cross section and search for anomalous ZZγ and Zγγ couplings are presented. The data presented are from 1.1 fb-1 of p$\\bar{p}$ integrated luminosity collected at the CDF Detector. Electrons from Z decays are selected with Et > 20 Gev. Photons (Et > 7 GeV) are required to be well-separated from the electrons. There are 390 eeγ candidate events found with 1.1 fb-1 of data, compared to the SM prediction of 375.3 ± 25.2 events. The Standard Model prediction for the cross section for p$\\bar{p}$ → e+e-γ + X production at √s = 1.96 TeV is 4.5 ± 0.4 pb. The measured cross section is 4.7 ± 0.6 pb. The cross section and kinematic distributions of the eeγ events are in good agreement with theoretical predictions. Limits on the ZZγ and Zγγ couplings are extracted using the photon Et distribution of eeγ events with meeγ > 100 GeV/c2. These are the first limits measured using CDF Run II data. These limits provide important test of the interaction of the photon and the Z boson.

  3. Nr 306 - Report made on the behalf of the Foreign affairs, defence and armed forces Commission on the bill project authorizing the approval of the convention related to the construction and exploitation of an infrastructure for research on antiprotons and ions in Europe

    International Nuclear Information System (INIS)

    Boutant, Michel

    2013-01-01

    This report first recalls the history of the project of a new European infrastructure dedicated to research on antiprotons and ions (FAIR, Facility for Antiproton and Ion Research) which should be built in Germany with the participation of nine European countries. The facility is a set of particle accelerators. Its envisaged and possible applications are indicated. The project is also part of a set of projects comprising existing or under-construction installations in France (GANIL-SPIRAL2), and Switzerland (ISOLDE). The author comments the content of the convention which specifies a rather limited French contribution. He also comments the statutes of the FAIR company

  4. Nuclear reaction studies

    International Nuclear Information System (INIS)

    Alexander, J.M.; Lacey, R.A.

    1994-01-01

    Research focused on the statistical and dynamical properties of ''hot'' nuclei formed in symmetric heavy-ion reactions. Theses included ''flow'' measurements and the mechanism for multifragment disassembly. Model calculations are being performed for the reactions C+C, Ne+Al, Ar+Sc, Kr+Nb, and Xe+La. It is planned to study 40 Ar reactions from 27 to 115 MeV/nucleon. 2 figs., 41 refs

  5. Sleeve reaction chamber system

    Science.gov (United States)

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  6. Sodium-concrete reactions

    International Nuclear Information System (INIS)

    Gadd, P.G.

    1982-09-01

    Reaction products of all the major constituents of commercial concrete with liquid sodium have been identified using X-Ray Powder Diffraction. Eight different aggregate materials were chosen to represent the main rock classes available and Ordinary Portland Cement was used throughout. A Differential Thermal Analysis apparatus which enabled continuous stirring of the reactants was designed to improve contact between the powdered concrete components and the liquid sodium. Heats of reaction were calculated from peak areas, the apparatus having been calibrated using reactions of sodium with simple binary oxides whose heats of reaction were known. The heat evolution from aggregates was rationalised on the basis of their mineralogical composition, thus providing a means of choosing an optimum aggregate for use in the concrete of a LMFBR. The reaction of SiO 2 with liquid sodium was shown to depend on the oxygen concentration of the sodium. Reaction products are identified. The reaction of Al 2 O 3 with sodium has been shown also to depend on the oxygen concentration. Reaction products are identified. The evolution of hydrogen during a sodium-cement reaction has been studied using an electrochemical hydrogen meter and the penetration of the liquid metal into cement blocks was also investigated. (author)

  7. Tattoo reaction: Case series

    Directory of Open Access Journals (Sweden)

    Muneer Mohamed

    2018-04-01

    Full Text Available Tattoo is going to be a very common practice especially among young people and we are witnessing a gradual increase of numerous potential complications to tattoo placement which are often seen by physicians, but generally unknown to the public. The most common skin reactions to tattoo include a transient acute inflammatory reaction due to trauma of the skin with needles and medical complications such as superficial and deep local infections, systemic infections, allergic contact dermatitis, photodermatitis, granulomatous and lichenoid reactions, and skin diseases localized on tattooed area (eczema, psoriasis, lichen, and morphea. In this series we present three cases of tattoo reaction.

  8. Clock Reaction: Outreach Attraction

    Science.gov (United States)

    Carpenter, Yuen-ying; Phillips, Heather A.; Jakubinek, Michael B.

    2010-01-01

    Chemistry students are often introduced to the concept of reaction rates through demonstrations or laboratory activities involving the well-known iodine clock reaction. For example, a laboratory experiment involving thiosulfate as an iodine scavenger is part of the first-year general chemistry laboratory curriculum at Dalhousie University. With…

  9. Nuclear Reaction Data Centers

    International Nuclear Information System (INIS)

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab

  10. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  11. Applications of Reaction Rate

    Science.gov (United States)

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  12. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  13. Allergic reactions during anesthesia.

    Science.gov (United States)

    Levy, J H

    1988-01-01

    Any drug or blood product administered in the perioperative period has the potential to produce a life-threatening allergic (immune reaction) called anaphylaxis. Anaphylactic reactions represent adverse reactions mediated by immunospecific antibodies (IgE and IgG) that interact with mast cells, basophils, or the complement system to liberate vasoactive mediators and recruit other inflammatory cells. Activation of humoral and cellular pathways produces characteristic responses in the respiratory (bronchospasm and upper airway edema), cardiovascular (vasodilation and increased capillary permeability), and cutaneous systems (wheal and flare). Other predictable adverse drug reactions may mimic anaphylaxis to produce similar physiologic consequences independent of allergy (immune responses). Rapid and timely cardiopulmonary intervention with airway maintenance, epinephrine, and volume expansion is essential to avoid an adverse outcome. Severe reactions may be protracted, especially during anesthesia, requiring even larger doses of catecholamines and intensive care observation.

  14. Production of the charmonium states in the direct channel of pantip annihilation and description of a new experimental method. Exclusive reactions pantip#-> #e+e-

    International Nuclear Information System (INIS)

    Brom, J.M.

    1985-06-01

    The experiment R704 at the CERN Intersecting Storages Rings (ISR) utilised a completely new technique for charmonium spectroscopy, using a cooled antiprotons beam in collision with protons of a dense, molecular H 2 ''jet target''. ISR operations, jet target and experimental apparatus are described. Observation of the reaction pantip#-> #J/Ψ#-> #e + e - (193 evts for an integrated luminosity of 141 nb -1 ) and estimation of the J/Ψ mass using the beam parameters (3096.95±0.1±0.27 MeV) are used to test the method, the energy calibration and the reproductibility of the ISR. From these results, a very good precision of ± 300 KeV is expected in the later results on J PC ≠ 1 -- states. In addition, we give new upper limits for the magnetic form factor of the proton at high transfer [fr

  15. Enhancing chemical reactions

    Science.gov (United States)

    Morrey, John R.

    1978-01-01

    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  16. Respiratory transfusion reactions

    Directory of Open Access Journals (Sweden)

    Ivica Marić

    2017-11-01

    Full Text Available Respiratory transfusion-related reactions are not very frequent, partly also because recognition and reporting transfusion reactions is still underemphasized. Tis article describes the most important respiratory transfusion reactions, their pathophysiology, clinical picture and treatment strategies. Respiratory transfusion related reactions can be primary or secondary. The most important primary transfusion-related reactions are TRALI - transfusion-related acute lung injury, TACO – transfusion-associated circulatory overload, and TAD - transfusion-associated dyspnea. TRALI is immuneassociated injury of alveolar basal membrane, which becomes highly permeable and causes noncardiogenic pulmonary edema. Treatment of TRALI is mainly supportive with oxygen, fluids (in case of hypotension and in cases of severe acute respiratory failure also mechanic ventilation. TACO is caused by volume overload in predisposed individuals, such as patients with heart failure, the elderly, infants, patients with anemia and patients with positive fluid balance. Clinical picture is that of a typical pulmonary cardiogenic edema, and the therapy is classical: oxygen and diuretics, and in severe cases also non-invasive or invasive mechanical ventilation. TAD is usually a mild reaction of unknown cause and cannot be classified as TACO or TRALI, nor can it be ascribed to patient’s preexisting diseases. Although the transfusion-related reactions are not very common, knowledge about them can prevent serious consequences. On the one hand preventive measures should be sought, and on the other early recognition is beneficial, so that proper treatment can take place.

  17. A Measurement of Z Boson Production and Rapidity Distribution in Proton-Antiproton Collisions at √s = 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Robson, Aidan [Univ. of Oxford (United Kingdom). Particle Physics Dept.

    2004-12-25

    High-precision measurements are made of Z boson production in proton-antiproton collisions at √s = 1.96 TeV recorded by the Collider Detector at Fermilab, using the electron decay channel. The cross-section times branching ratio is measured to be σZ · Br(Z → e+e-) = (255.7 ± 2.4stat ± 5.2sys ± 15.2lum)pb in a dataset of 194 pb-1 collected between March 2002 and June 2003. This agrees well with theoretical predictions. The cross-section for W boson production in the electron channel has also been measured in the subset of this dataset of 72 pb-1 collected up until January 2003. Using this smaller dataset the ratio of cross-sections is determined to be R ≡ σW · Br(W → eν)/σZ · Br(Z → ee) = 10.82 ± 0.18stat ± 0.16sys. Combining these results with measurements made in the muon channel gives R = 10.92 ± 0.15stat ± 0.14sys (e + μ channels), from which the branching ratio of the W to electrons and muons, and the total width of the W, have been extracted: Br(W → lν) = 0.1089 ± 0.0022 (l = e,μ); Γ(W) = 2078.8 ± 41.4 MeV, which are in good agreement with the Standard Model values and with other measurements. The CKM quark mixing matrix element |Vcs| has been extracted: |Vcs| = 0.967 ± 0.030. The rapidity distribution dσ/dy for Z → ee has also been measured over close to the full kinematic range using 194 pb-1 of data, and is found to be in good agreement with the NNLO prediction.

  18. Measurement of top anti-top cross section in proton - anti-proton collider at √s = 1.96-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Mal, Prolay Kumar [Tata Inst. of Fundamental Research, Bombay (India)

    2005-04-01

    Discovery of the top quark in 1995 at the Fermilab Tevatron collider concluded a long search following the 1977 discovery of bottom (b) quark [1] and represents another triumph of the Standard Model (SM) of elementary particles. Top quark is one of the fundamental fermions in the Standard Model of electroweak interactions and is the weak-isospin partner of the bottom quark. A precise measurement of top pair production cross-section would be a test of Quantum Chromodynamics (QCD) prediction. Presently, Tevatron is the world's highest energy collider where protons (p) and anti-protons ($\\bar{p}$) collide at a centre of mass energy √s of 1.96 TeV. At Tevatron top (t) and anti-top ($\\bar{t}$) quarks are predominantly pair produced through strong interactions--quark annihilation (≅ 85%) and gluon fusion (≅ 15%). Due to the large mass of top quark, t or $\\bar{t}$ decays (~ 10-25 sec) before hadronization and in SM framework, it decays to a W boson and a b quark with ~ 100% branching ratio (BR). The subsequent decay of W boson determines the major signatures of t$\\bar{t}$ decay. If both W bosons (coming from t and $\\bar{t}$ decays) decay into leptons (viz., eve, μvμ or τcτ) the corresponding t$\\bar{t}$ decay is called dileptonic decay. Of all dileptonic decay modes of t$\\bar{t}$, the t$\\bar{t}$ → WWb$\\bar{b}$ → eveμvμb$\\bar{b}$ (eμ channel) decay mode has the smallest background contamination from Z0 production or Drell-Yan process; simultaneously, it has the highest BR (~ 3.16%) [2] amongst all dileptonic decay modes of t$\\bar{t}$. During Run I (1992-1996) of Tevatron, three eμ candidate events were detected by D0 experiment, out of 80 candidate events (inclusive of all decay modes of t$\\bar{t}$). Due to the rarity of the t$\\bar{t}$ events, the measured cross-section has large uncertainty in its value (viz., 5.69 ± 1.21(stat) ± 1.04(sys) pb {at} √s = 1

  19. Measurement of the Cross Section for Production of Prompt Diphoton in proton anti-proton Collisions at √s = 1.96-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan-wen [Univ. of Geneva (Switzerland)

    2004-01-01

    This thesis presents the measurement of prompt diphoton production rate in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV using the upgraded Collider Detector at Fermilab (CDF II). This process deserves some attention for the following reasons. The H → γγ decay mode is an important channel for the Standard Model (SM) Higgs boson searches in the low mass region (MH < 130 GeV) at the forth coming LHC. In many models involving physics beyond the SM, cascade decays of heavy new particles generate a γγ signature. Some examples are supersymmetry with a light gravitino, radiative decays to a higgsino-LSP and models with large symmetry groups. The QCD production of prompt photon pairs with large invariant mass is the irreducible background to these searches. The rate is huge and requires to be quantitatively evaluated prior to any of the possible discoveries. In a hadronic collider environment such as LHC, prompt photon signals are contaminated by the production of neutral mesons which decay to multiple collinear photons. The experience of classifying background of neutral meson is very important. The process can be used to test the Next-to-Leading Order (NLO) calculation of Quantum Chromodynamics (QCD). The 4-momentum of particles in the di-photon final state can be precisely determined due to the fine energy resolution of the electromagnetic calorimeters. The imbalance in the transverse momentum of the two photons reflects the transverse motion of the colliding partons. At collider energies, most of the transverse momentum of the incoming partons can be attributed to multiple soft gluon emissions prior to the collision, of which the effect to di-photon production can be resummed by Collins-Soper-Sterman (CSS) formalism. The Tevatron data can be used to test the resummation formalisms. They have used 207 pb-1 of data collected by CDF II detector during the February 2002 to September 2003 running period to study the diphoton

  20. The Reaction Wheel Pendulum

    CERN Document Server

    Block, Daniel J; Spong, Mark W

    2007-01-01

    This monograph describes the Reaction Wheel Pendulum, the newest inverted-pendulum-like device for control education and research. We discuss the history and background of the reaction wheel pendulum and other similar experimental devices. We develop mathematical models of the reaction wheel pendulum in depth, including linear and nonlinear models, and models of the sensors and actuators that are used for feedback control. We treat various aspects of the control problem, from linear control of themotor, to stabilization of the pendulum about an equilibrium configuration using linear control, t

  1. Electron transfer reactions

    CERN Document Server

    Cannon, R D

    2013-01-01

    Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 tackles the reaction paths of oxidation states and binuclear intermediates, as well as the mechanisms of electron transfer. Part 3 discusses the theories and models of the electron transfer process; theories and experiments involving bridged electron transfe

  2. Reactor for exothermic reactions

    Science.gov (United States)

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  3. Bad Reaction to Cosmetics?

    Science.gov (United States)

    ... Consumers Protect Yourself Health Fraud Bad Reactions to Cosmetics? Tell FDA! Share Tweet Linkedin Pin it More ... Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products

  4. Transfusion reaction - hemolytic

    Science.gov (United States)

    ... Names Blood transfusion reaction Images Surface proteins causing rejection References Choate JD, Maitta RW, Tormey CA, Wu ... PA: Elsevier Saunders; 2016:chap 177. Hall JE. Blood types; transfusion; tissue and organ transplantation. In: Hall JE, ...

  5. Reaction Qualifications Revisited

    DEFF Research Database (Denmark)

    Lippert-Rasmussen, Kasper

    2009-01-01

    to a person's effectiveness by causing a favourable reaction in customers, co-workers etc. (for short: recipients) - are involved, this assumption is false. Building on work by Wertheimer, Mason, and Miller, this paper proposes an account of the reaction qualifications that count, from the point of view...... preferences, recipients should not respond to the applicant actually hired on the basis of their (the recipients') racial preferences. My account decomposes the meritocratic ideal into four separate norms, one of which applies to recipients rather than to selectors. Finally, it defends the view that reaction...... qualifications based on antimeritocratic reactions, while not unproblematic, are not entirely irrelevant from the point of view of merit. Notably, selectors need not discount them when no one - including the targets of the objectionable preferences - is unfairly disadvantaged. Because not all problematic...

  6. Sequential charged particle reaction

    International Nuclear Information System (INIS)

    Hori, Jun-ichi; Ochiai, Kentaro; Sato, Satoshi; Yamauchi, Michinori; Nishitani, Takeo

    2004-01-01

    The effective cross sections for producing the sequential reaction products in F82H, pure vanadium and LiF with respect to the 14.9-MeV neutron were obtained and compared with the estimation ones. Since the sequential reactions depend on the secondary charged particles behavior, the effective cross sections are corresponding to the target nuclei and the material composition. The effective cross sections were also estimated by using the EAF-libraries and compared with the experimental ones. There were large discrepancies between estimated and experimental values. Additionally, we showed the contribution of the sequential reaction on the induced activity and dose rate in the boundary region with water. From the present study, it has been clarified that the sequential reactions are of great importance to evaluate the dose rates around the surface of cooling pipe and the activated corrosion products. (author)

  7. Firefighter Nozzle Reaction

    DEFF Research Database (Denmark)

    Chin, Selena K.; Sunderland, Peter B.; Jomaas, Grunde

    2017-01-01

    to anchor forces, the hose becomes straight. The nozzle reaction is found to equal the jet momentum flow rate, and it does not change when an elbow connects the hose to the nozzle. A forward force must be exerted by a firefighter or another anchor that matches the forward force that the jet would exert...... on a perpendicular wall. Three reaction expressions are derived, allowing it to be determined in terms of hose diameter, jet diameter, flow rate, and static pressure upstream of the nozzle. The nozzle reaction predictions used by the fire service are 56% to 90% of those obtained here for typical firefighting hand......Nozzle reaction and hose tension are analyzed using conservation of fluid momentum and assuming steady, inviscid flow and a flexible hose in frictionless contact with the ground. An expression that is independent of the bend angle is derived for the hose tension. If this tension is exceeded owing...

  8. Nucleon induced reactions

    International Nuclear Information System (INIS)

    Gmuca, S.; Antalik, R.; Kristiak, J.

    1988-01-01

    The collection contains full texts of 37 contributions; all fall within the INIS Subject Scope. The topics treated include some unsolved problems of nuclear reactions and relevant problems of nuclear structure at low and intermediate energies. (Z.S.)

  9. Jets in hadronic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Paige, F.E.

    1983-01-01

    Recent experimental data on the properties of jets in hadronic reactions are reviewed and compared with theoretical expectations. Jets are clearly established as the dominant process for high E/sub T/ events in hadronic reactions. The cross section and the other properties of these events are in qualitative and even semiquantitative agreement with expectations based on perturbative QCD. However, we can not yet make precise tests of QCD, primarily because there are substantial uncertainties in the theoretical calculations. 45 references. (WHK)

  10. Oxygen evolution reaction catalysis

    Science.gov (United States)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  11. Anaphylactic reaction to orthoiodohippurate

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckel, M.; Roedbro, P.; Ennow, K.; Kristensen, K.

    1983-02-01

    A case of an anaphylactic reaction following administration of /sup 125/I- and /sup 131/-I-o-iodohippurate in a 32-year-old woman is reported. The patient had a renography performed because of hematuria. She was known to react to an intravenous pyelography previously performed with an anaphylactic shock. The importance of reporting all adverse reactions to radiopharmaceuticals for central registration is stressed.

  12. Adverse drug reactions.

    Science.gov (United States)

    Patton, K; Borshoff, D C

    2018-01-01

    Adverse drug reactions are a cause of significant morbidity and mortality to patients and a source of financial burden to the healthcare system. Of the wide spectrum of adverse drug reactions, the most concerning to the anaesthetist remain anaphylaxis and malignant hyperthermia. Although the incidence of anaphylaxis under anaesthesia is difficult to ascertain, it occurs commonly enough that most anaesthetists will manage at least one case in their career. The wide range of drugs given in the peri-operative period and the variable presentation in the anaesthetised patient can delay diagnosis and treatment, and adversely affect outcome. Furthermore, despite improvements in testing, causative drugs can still be difficult to identify, as adverse reactions may be mediated by mechanisms other than IgE activation. With an increase in the reporting of anaphylaxis to newer anaesthetic drugs such as sugammadex, combined with change over the recent decades in the most likely causative peri-operative agents, it is imperative anaesthetists remain up to date on recent developments. In addition, they should be vigilant to patient characteristics, including pharmacogenetic variations that may predispose to adverse drug reactions, in order to help minimise risks of a reaction. The severity of adverse drug reactions to peri-operative drugs means morbidity and mortality remain high. © 2018 The Association of Anaesthetists of Great Britain and Ireland.

  13. Immediate reaction to clarithromycin.

    Science.gov (United States)

    Gangemi, S; Ricciardi, L; Fedele, R; Isola, S; Purello-D'Ambrosio, F

    2001-01-01

    We present the case of bronchospastic reaction to clarithromycin had during a drug challenge test. Personal allergic history was negative for respiratory allergies and positive for adverse drug reactions to general and regional anesthesia and to ceftriaxone. After the administration of 1/4 of therapeutic dose of clarithromycin the patient showed dyspnea, cough and bronchospasm in all the lung fields. The positivity of the test was confirmed by the negativity to the administration of placebo. The quickness and the clinical characteristic of the adverse reaction suggest a pathogenic mechanism of immediate-type hypersensitivity. On reviewing the literature we have found no reports of bronchospastic reaction to clarithromycin. Macrolides are a class of antibiotics mainly used in the last years in place of beta-lactams because of a broad spectrum of action and a low allergic power. In fact, there are few reports on allergic reactions to these molecules. Clarithromycin is one of the latest macrolides, characterised by the presence of a 14-carbon-atom lactone ring as erythromycin, active on a wide spectrum of pathogens.

  14. Chemical kinetics of gas reactions

    CERN Document Server

    Kondrat'Ev, V N

    2013-01-01

    Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The rema

  15. Inflammatory reaction in chondroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Sigeki [Dept. of Orthopedic Surgery, Nagoya Univ. School of Medicine (Japan); Sato, Keiji [Dept. of Orthopedic Surgery, Nagoya Univ. School of Medicine (Japan); Sugiura, Hideshi [Dept. of Orthopedic Surgery, Nagoya Univ. School of Medicine (Japan); Iwata, Hisashi [Dept. of Orthopedic Surgery, Nagoya Univ. School of Medicine (Japan)

    1996-05-01

    The objective of this study was to evaluate the inflammatory reaction accompanying chondroblastoma and to define the value of the finding in clinical practice. We reviewed the clinical, radiographic, and magnetic resonance (MR) findings in six patients with histologically proven chondroblastoma. In all cases, MR imaging showered marrow and soft tissue edema. In four of six cases, periosteal reaction related to intra-osseous edema was more clearly demonstrated on MR imaging than on radiographs. Follow-up MR studies after surgery were available in three patients and all showed disappearance of inflammatory responses such as marrow and soft tissue edema, and reactive synovitis. We propose that these inflammatory reactions of chondroblastomas are inportant signs for detecting residual tumor in recurrences after surgery, as well as for making a precise diagnosis. The MR changes may also be valuable in demonstrating eradication of the tumor. (orig./MG)

  16. Nanoparticle Reactions on Chip

    Science.gov (United States)

    Köhler, J. M.; Kirner, Th.; Wagner, J.; Csáki, A.; Möller, R.; Fritzsche, W.

    The handling of heterogenous systems in micro reactors is difficult due to their adhesion and transport behaviour. Therefore, the formation of precipitates and gas bubbles has to be avoided in micro reaction technology, in most cases. But, micro channels and other micro reactors offer interesting possibilities for the control of reaction conditions and transport by diffusion and convection due to the laminar flow caused by small Reynolds numbers. This can be used for the preparation and modification of objects, which are much smaller than the cross section of microchannels. The formation of colloidal solutions and the change of surface states of nano particles are two important tasks for the application of chip reactors in nanoparticle technology. Some concepts for the preparation and reaction of nanoparticles in modular chip reactor arrangements will be discussed.

  17. Normal matter storage of antiprotons

    International Nuclear Information System (INIS)

    Campbell, L.J.

    1987-01-01

    Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs

  18. Velocity pump reaction turbine

    Science.gov (United States)

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  19. Reactions to dietary tartrazine.

    OpenAIRE

    David, T J

    1987-01-01

    Double blind challenges with tartrazine and benzoic acid were performed in hospital in 24 children whose parents gave a definite history of a purely behavioural immediate adverse reaction to one of these substances. The patients, whose ages ranged from 1.6 to 12.4 years, were on a diet that avoided these items, and in all there was a clear history that any lapse of the diet caused an obvious adverse behavioural reaction within two hours. In no patient was any change in behaviour noted either ...

  20. Allergic reactions in anaesthesia

    DEFF Research Database (Denmark)

    Krøigaard, M; Garvey, L H; Menné, T

    2005-01-01

    match, the right substance being suspected, but investigations showed an additional allergen or several substances, including the right substance being suspected. CONCLUSIONS: An informed guess is not a reliable way of determining the cause of a supposed allergic reaction during anaesthesia and may put...... a significant number of patients at unnecessary risk. Some patients may be labelled with a wrong allergy, leading to unnecessary warnings against harmless substances, and some patients may be put at risk of subsequent re-exposure to the real allergen. Patients with suspected allergic reactions during...