WorldWideScience

Sample records for antiparticles

  1. Classical antiparticles

    Energy Technology Data Exchange (ETDEWEB)

    Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.

    1997-03-01

    We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors). 13 refs., 1 tab.

  2. Baryogenesis via particle-antiparticle oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Ipek, Seyda; March-Russell, John

    2016-06-01

    CP violation, which is crucial for producing the baryon asymmetry of the Universe, is enhanced in particle-antiparticle oscillations. We study particle-antiparticle oscillations [of a particle with mass O(100GeV)] with CP violation in the early Universe in the presence of interactions with O(ab-fb) cross sections. We show that if baryon-number-violating interactions exist, a baryon asymmetry can be produced via out-of-equilibrium decays of oscillating particles. As a concrete example we study a U(1)R-symmetric, R-parity-violating supersymmetry model with pseudo-Dirac gauginos, which undergo particle-antiparticle oscillations. Taking bino to be the lightest U(1)R-symmetric particle, and assuming it decays via baryon-number-violating interactions, we show that bino-antibino oscillations can produce the baryon asymmetry of the Universe.

  3. Baryogenesis via particle-antiparticle oscillations

    Science.gov (United States)

    Ipek, Seyda; March-Russell, John

    2016-06-01

    C P violation, which is crucial for producing the baryon asymmetry of the Universe, is enhanced in particle-antiparticle oscillations. We study particle-antiparticle oscillations [of a particle with mass O (100 GeV )] with C P violation in the early Universe in the presence of interactions with O (ab -fb ) cross sections. We show that if baryon-number-violating interactions exist, a baryon asymmetry can be produced via out-of-equilibrium decays of oscillating particles. As a concrete example we study a U (1 )R-symmetric, R -parity-violating supersymmetry model with pseudo-Dirac gauginos, which undergo particle-antiparticle oscillations. Taking bino to be the lightest U (1 )R -symmetric particle, and assuming it decays via baryon-number-violating interactions, we show that bino-antibino oscillations can produce the baryon asymmetry of the Universe.

  4. Baryogenesis via Particle-Antiparticle Oscillations

    CERN Document Server

    Ipek, Seyda

    2016-01-01

    CP violation, which is crucial for producing the baryon asymmetry of the Universe, is enhanced in particle-antiparticle oscillations. We study particle-antiparticle oscillations (of a particle with mass O(100 GeV)) with CP violation in the early Universe in the presence of interactions with O(ab-fb) cross-sections. We show that, if baryon-number-violating interactions exist, a baryon asymmetry can be produced via out-of-equilibrium decays of oscillating particles. As a concrete example we study a $U(1)_R$-symmetric, R-parity-violating SUSY model with pseudo-Dirac gauginos, which undergo particle-antiparticle oscillations. Taking bino to be the lightest $U(1)_R$-symmetric particle, and assuming it decays via baryon-number-violating interactions, we show that bino-antibino oscillations can produce the baryon asymmetry of the Universe.

  5. Antiparticle sources for antihydrogen production and trapping

    DEFF Research Database (Denmark)

    Charlton, M.; Bruun Andresen, Gorm; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, Paul David; Bray, C.C.; Butler, E.; Chapman, S.; Friesen, T.; Fujiwara, M.C.; Gill, D.R.; Hangst, Jeffrey S.; Hardy, W.N.; Hayano, R.S.; Hayden, M.E.; Humphries, A.J.; Hydomako, R.; Jonsell, S.; Jørgensen, L.V.; Kerrigan, S.J.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seif El Nasr, S.; Silveira, D.M.; So, C.; Storey, J.W.; Thompson, R.I.; Van Der Werf, D.P.; Wilding, D.; Wurtele, J.S.; Yamazaki, Y.

    2011-01-01

    located at CERN. Operations performed on the clouds of antiparticles to facilitate their mixing to produce antihydrogen are described. These include accumulation, cooling and manipulation. The formation of antihydrogen and some of the characteristics of the anti-atoms that are created are discussed...

  6. Einstein-Podolsky-Rosen Paradox and Antiparticle

    OpenAIRE

    Ni, Guang-jiong; GUAN, HONG

    1999-01-01

    The original version of Einstein-Podolsky-Rosen (EPR) paradox is discussed to show the completeness of Quantum Mechanics (QM). The unique solution leads to the wave function of antiparticle unambiguously, which implies the essential conformity between QM and Special Relativity (SR).

  7. Particle-antiparticle asymmetries from annihilations

    CERN Document Server

    Baldes, Iason; Petraki, Kalliopi; Volkas, Raymond R

    2014-01-01

    An extensively studied mechanism to create particle-antiparticle asymmetries is the out-of-equilibrium and CP violating decay of a heavy particle. Here we instead examine how asymmetries can arise purely from 2 2 annihilations rather than from the usual 1 2 decays and inverse decays. We review the general conditions on the reaction rates that arise from S-matrix unitarity and CPT invariance, and show how these are implemented in the context of a simple toy model. We formulate the Boltzmann equations for this model, and present an example solution.

  8. Antiparticles In The Vicinity Of Earth

    Science.gov (United States)

    Voronov, S. A.

    2007-05-01

    The study of cosmic ray electrons and positrons outside the atmosphere began in 60's with instruments installed on board satellites. Some indirect measurements were implemented on high altitude balloons. Beginning the first magnetic spectrometer on board Russian Space Station SALUT-7 Mariya 1985 the first separate positron data were obtained. This investigation gave the first result for positron and electron spectra in energy range 20- 200 MeV under radiation belt and inside it. Then Mariya-2 on board MIR station confirms reentrant albedo nature of positron fluxes. The experimental results of these experiments are presented. The results of calculations based on cosmic ray interaction with upper atmosphere were consistent with these experiments. The measurements of charge composition in radiation belt showed the lack of positrons and acceleration nature of electron fluxes. The attempt was made to search for antiprotons in radiation belt. The upper limit was obtained on the level 510-3. Next magnetic spectrometer in space was AMS-01 in 1998. 10 day flight measurements gave the possibility to receive results for antiparticles in energy range 0.2 - 3 GeV with very big statistics. Next steps in this study are PAMELA magnetic spectrometer measurements in orbit. It was launched 15.06.2006 and its goal is antiparticle spectra in near the Earth space in energy range 0.08 - 200 GeV.

  9. Big Bang Day: 5 Particles - 3. The Anti-particle

    CERN Multimedia

    Franck Close

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  10. Particles and Antiparticles in the Planck Vacuum Theory

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2011-01-01

    Full Text Available This short note sheds some light on the negative energy vacuum state by expanding the Planck vacuum (PV model and taking a closer look at the particle-antiparticle nature of the Dirac equation. Results of the development are briefly discussed with regard to the complexity of the PV interaction with the massless free charge, the Dirac electron, and the proton; an exercise that may lead to a better proton model.

  11. Cosmic AntiParticle Ring Imaging Cerenkov Experiment

    CERN Multimedia

    2002-01-01

    %RE2A \\\\ \\\\ %title \\\\ \\\\The CAPRICE experiment studies antimatter and light nuclei in the cosmic rays as well as muons in the atmosphere. The experiment is performed with the spectrometer shown in the figure which is lifted by a balloon to an altitude of 35-40 km. At this altitude less than half a percent of the atmosphere is above the 2 ton spectrometer which makes it possible to study the cosmic ray flux without too much background from atmospherically produced particles. The spectrometer includes time-of-flight scintillators, a gaseous RICH counter, a drift chamber tracker and a silicon electromagnetic calorimeter. The important feature of the spectrometer is to discriminate between different particles.\\\\ \\\\ The experiment aims at measuring the flux of the antiparticles (antiprotons and positrons) above about 5 GeV and relate the fluxes to models including exotic production of antiparticles like dark matter supersymmetric particles. The flux of muons is measured during descent of the balloon through the at...

  12. Retrieving the missed particle-antiparticle degrees of freedom of Dirac particles

    CERN Document Server

    Wang, S J; Pauli, H C; Wang, Shun-Jin; Zhou, Shan-Gui; Pauli, Hans-Christian

    2005-01-01

    The missed particle-antiparticle degrees of freedom are retrieved and the corresponding particle-antiparticle intrinsic space are introduced to study the dynamical symmetry of the Dirac particle. As a result, the particle-antiparticle quantum number appears naturally and the Dirac particle has five quantum numbers instead of four. An anti-symmetry (different from the conventional symmetry) of the Dirac Hamiltonian and a dual symmetry of its eigenfunctions are explored. The $\\hat{\\kappa}$ operator of the Dirac equation in central potentials is found to be the analog of the helicity operator of the free particle--the alignment of the spin along the angular momentum.

  13. A topological spin-statistics theorem or a use of the antiparticle

    International Nuclear Information System (INIS)

    A spin-statistics theorem for spinning particles in Rd is proved without using relativity or field theory, but assuming the existence of antiparticles. The theorem excludes nonabelian statistics such as parastatistics of order 2 and more for d≥3 and statistics based on nonabelian representations of the braid groups for d=2. (orig.)

  14. Particle-antiparticle pair production in four body reactions in Π+p interaction at 16 GeV/C

    International Nuclear Information System (INIS)

    In this thesis, it was studied experimentally, particle-Antiparticle pair formation, taking into account the partonic Structure of the hadrons. Pair formation such as K+K-, p p-, and Π+Π- at 16 GeV/C was studied using the models based on parton concept. (A.C.A.C.)

  15. Semiclassical Models for Virtual Antiparticle Pairs, the Unit of Charge e, and the QCD Coupling alpha(sub s)

    Science.gov (United States)

    Batchelor, David; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    New semiclassical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields approximately Planck's constant/2 for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semiclassical representation for such virtual antiparticle pairs, to good approximation. When the results of the new models and QFT are combined, formulae for e and alpha(sub s)(q) are derived in terms of only Planck's constant and c.

  16. Theory of self-resonance after inflation. II. Quantum mechanics and particle-antiparticle asymmetry

    Science.gov (United States)

    Hertzberg, Mark P.; Karouby, Johanna; Spitzer, William G.; Becerra, Juana C.; Li, Lanqing

    2014-12-01

    We further develop a theory of self-resonance after inflation in a large class of models involving multiple scalar fields. We concentrate on inflaton potentials that carry an internal symmetry, but also analyze weak breaking of this symmetry. This is the second part of a two-part series of papers. Here in Part 2 we develop an understanding of the resonance structure from the underlying many-particle quantum mechanics. We begin with a small-amplitude analysis, which obtains the central resonant wave numbers, and relate it to perturbative processes. We show that the dominant resonance structure is determined by (i) the nonrelativistic scattering of many quantum particles and (ii) the application of Bose-Einstein statistics to the adiabatic and isocurvature modes, as introduced in Part 1 [M. P. Hertzberg et al., Phys. Rev. D 90, 123528 (2014)]. Other resonance structures are understood in terms of annihilations and decays. We set up Bunch-Davies vacuum initial conditions during inflation and track the evolution of modes including Hubble expansion. In the case of a complex inflaton carrying an internal U(1) symmetry, we show that when the isocurvature instability is active, the inflaton fragments into separate regions of ϕ -particles and anti-ϕ -particles. We then introduce a weak breaking of the U(1) symmetry; this can lead to baryogenesis, as shown by some of us recently [M. P. Hertzberg and J. Karouby, Phys. Lett. B 737, 34 (2014); Phys. Rev. D 89, 063523 (2014)]. Then using our results, we compute corrections to the particle-antiparticle asymmetry from this preheating era.

  17. Testing the CKM picture of flavour and CP violation in rare K and B decays and particle-antiparticle mixing

    International Nuclear Information System (INIS)

    We summarize briefly the CKM picture of flavour and CP violation that governs the models with minimal flavour violation (MFV). We then describe how this framework can be effectively tested through particle-antiparticle mixing and rare K and B decays. In particular we provide a list of theoretically clean tests that the simplest version of the MFV framework, the constrained MFV hypothesis, has to face in the coming years. Finally we offer a brief look at the most popular SM extensions that go beyond the CKM framework like the general MSSM, Little Higgs model with T-parity and Randall-Sundrum models with bulk fermions. (author)

  18. Observation of an energy-dependent difference in elliptic flow between particles and anti-particles in relativistic heavy ion collisions

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E; Averichev, G S; Balewski, J; Banerjee, A; Barnovska, Z; Beavis, D R; Bellwied, R; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bhattarai,; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bruna, E; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, P; Chwastowski, J; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks,; Ding, F; Dion, A; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Elnimr, M; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Fatemi, R; Fazio, S; Fedorisin, J; Fersch, R G; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Gliske, S; Grebenyuk, O G; Grosnick, D; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hajkova, O; Hamed, A; Han, L-X; Haque, R; Harris, J W; Hays-Wehle, J P; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jena, C; Judd, E G; Kabana, S; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Kikola, D P; Kiryluk, J; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Korsch, W; Kotchenda, L; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Lamont, M A C; Landgraf, J M; Landry, K D; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Leight, W; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lima, L M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Longacre, R S; Luo, X; Luszczak, A; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Mioduszewski, S; Mitrovski, M K; Mohammed, Y; Mohanty, B; Mondal, M M; Munhoz, M G; Mustafa, M K; Naglis, M; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nogach, L V; Novak, J; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Oliveira, R A N; Olson, D; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Plyku, D; Poljak, N; Porter, J; Poskanzer, A M; Powell, C B; Pruneau, C; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandacz, A; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, B; Schmitz, N; Schuster, T R; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shao, M; Sharma, B; Sharma, M; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; deSouza, U G; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; de Toledo, A Szanto; Takahashi, J; Tang, A H; Tang, Z; Tarini, L H; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, Q; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, N; Xu, Q H; Xu, W; Xu, Y; Xu, Z; Yan,; Yang, C; Yang, Y; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2013-01-01

    Elliptic flow ($v_{2}$) values for identified particles at mid-rapidity in Au+Au collisions, measured by the STAR experiment in the Beam Energy Scan at RHIC at $\\sqrt{s_{NN}}=$ 7.7--62.4 GeV, are presented. A beam-energy dependent difference of the values of $v_{2}$ between particles and corresponding anti-particles was observed. The difference increases with decreasing beam energy and is larger for baryons compared to mesons. This implies that, at lower energies, particles and anti-particles are not consistent with the universal number-of-constituent-quark (NCQ) scaling of $v_{2}$ that was observed at $\\sqrt{s_{NN}}=$ 200 GeV.

  19. Engineering the unitary charge conjugation operator of quantum field theory for particle–antiparticle using trapped ions and light fields in cavity QED

    International Nuclear Information System (INIS)

    In this paper we present a method to engineer the unitary charge conjugation operator, as given by quantum field theory, in the highly controlled context of quantum optics, thus allowing one to simulate the creation of charged particles with well-defined momenta simultaneously with their respective antiparticles. Our method relies on trapped ions driven by a laser field and interacting with a single mode of a light field in a high Q cavity. (paper)

  20. Ratios of Charged Antiparticles-to-Particles near Mid-Rapidity in Au + Au Collisions at (sNN) = 130 GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Heintzelman, G. A.; Henderson, C.; Hołyński, R.; Hofman, D.; Holzman, B.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Stephans, G. S.; Steinberg, P.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2001-09-01

    We have measured the ratios of antiparticles to particles for charged pions, kaons, and protons near mid-rapidity in central Au+Au collisions at (sNN) = 130 GeV. We observe / = 1.00+/-0.01(stat)+/-0.02(syst), / = 0.91+/-0.07(stat)+/-0.06(syst), and / = 0.60+/-0.04(stat)+/-0.06(syst). The / and / ratios give a consistent estimate of the baryo-chemical potential μB of 45 MeV, a factor of 5-6 smaller than in central Pb+Pb collisions at (sNN) = 17.2 GeV.

  1. Centrality dependence of charged antiparticle to particle ratios near midrapidity in d+Au collisions at √(sNN )=200 GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.

    2004-07-01

    The ratios of the yields of charged antiparticles to particles have been obtained for pions, kaons, and protons near midrapidity for d+Au collisions at √(sNN )=200 GeV as a function of centrality. The reported values represent the ratio of the yields averaged over the rapidity range of 0.1< yπ <1.3 and 0< yK,p <0.8 , where positive rapidity is in the deuteron direction, and for transverse momenta 0.1< pπ,K T <1 GeV/c and 0.3< ppT <1 GeV/c . Within the uncertainties, a lack of centrality dependence is observed in all three ratios. The data are compared to results from other systems and model calculations.

  2. Ratios of charged antiparticles to particles near midrapidity in Au+Au collisions at (sNN)=200 GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-02-01

    The ratios of charged antiparticles to particles have been obtained for pions, kaons, and protons near midrapidity in central Au+Au collisions at (sNN)=200 GeV. Ratios of /=1.025±0.006(stat.)±0.018(syst.), /=0.95±0.03(stat.)±0.03(syst.), and / =0.73±0.02(stat.)±0.03(syst.) have been observed. The / and / ratios are consistent with a baryochemical potential μB of 27 MeV, roughly a factor of 2 smaller than in (sNN)=130 GeV collisions. The data are compared to results from lower energies and model calculations. Our accurate measurements of the particle ratios impose stringent constraints on current and future models dealing with baryon production and transport.

  3. Charged antiparticle to particle ratios near midrapidity in p+p collisions at √(sNN)=200GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.

    2005-02-01

    The ratios of the yields of primary charged antiparticles to particles have been obtained for pions, kaons, and protons near midrapidity for p+p collisions at √(sNN)=200GeV. Ratios of =1.000±0.012 (stat.) ±0.019 (syst.), =0.93±0.05 (stat.) ±0.03 (syst.), and =0.85±0.04 (stat.) ±0.03 (syst.) have been measured. The reported values represent the ratio of the yields averaged over the rapidity range of 0.1

  4. A Multi-frequency analysis of dark matter annihilation interpretations of recent anti-particle and γ-ray excesses in cosmic structures

    Science.gov (United States)

    Beck, G.; Colafrancesco, S.

    2016-05-01

    The Fermi-LAT observation of a γ-ray excess from the galactic-centre, as well as the PAMELA, AMS, and AMS-2 anti-particle excesses, and the recent indications of a Fermi-LAT γ-ray excess in the Reticulum II dwarf galaxy have all been variously put forward as possible indirect signatures of supersymmetric neutralino dark matter. These are of particular interest as the neutralino annihilation models which fit these observations must have observable consequences across the frequency spectrum, from radio to γ-ray emission. Moreover, since dark matter is expected to be a major constituent of cosmic structure, these multi-frequency consequences should be common to such structures across the mass spectrum, from dwarf galaxies to galaxy clusters. Thus, in this work we make predictions for the multi-frequency spectra of three well-known sources dominated by dark matter on cluster, galaxy and dwarf galaxy scales, e.g. the Coma cluster, the galaxy M81, and the Draco dwarf galaxy, using models favoured by dark matter interpretations of the aforementioned observations. We pay special attention to the consequences for these models when their cross-sections are renormalised to reproduce the recent γ-ray excess observed in the Reticulum II dwarf galaxy, as well as using cross-sections from the Fermi-LAT dwarf galaxy limits, which throw a dark matter interpretation of this excess into doubt. We find that the multi-frequency data of Coma and Draco are in conflict with the dark matter interpretation of the AMS, PAMELA and Fermi positron excess. Additionally, models derived from Fermi-LAT galactic centre observations, and AMS-2 re-analysis, present similar but less extensive conflicts. Using the sensitivity projections for the Square Kilometre Array, the Cherenkov Telescope Array, as well as the ASTROGAM and ASTRO-H satellites, we determine the detection prospects for a subset of neutralino models that remain consistent with Planck cosmological constraints. Although the SKA has

  5. Particle-Antiparticle Metamorphosis of Massive Majorana Neutrinos and Gauginos

    CERN Document Server

    Ahluwalia, D V

    2002-01-01

    Recent results on neutrinoless double beta decay, as reported by Klapdor-Kleingrothaus et al., take us for the first time into the realm of Majorana spacetime structure. However, this structure has either been treated as an afterthought to the Dirac construct; or, when it has been attended to in its own right, its physical and mathematical content was never fully unearthed. In this Letter,we undertake to remedy the existing situation. We present a detailed formalism required for the description of the non-trivial spacetime structure underlying the "nu-nubar" metamorphosis - where "nu" generically represents a massive Majorana neutrino, or a massive gaugino.

  6. Mechanical analogies for the Lorentz gauge, particles and antiparticles

    OpenAIRE

    Dmitriyev, Valery P.

    1999-01-01

    An exact analogy of electromagnetic fields and particles can be found in mechanics of a turbulent ideal fluid with voids. The system is supposed to form a fine dispersion of voids in the fluid. This microscopically discontinuous medium is treated as a continuum. The turbulence is described in terms of the Reynolds stresses. Perturbations of the homogeneous isotropic turbulence are considered. For the high-energy low-pressure turbulence they are usually small. This entails the linearization of...

  7. Particle-antiparticle asymmetry due to nonrenormalizable effective interactions

    International Nuclear Information System (INIS)

    A toy baryogenesis model is presented in which a net global charge is generated through out-of-equilibrium decays of a massive particle due to nonrenormalizable, effective interactions. The different generation scenarios are classified according to the regions of parameter space where they occur. Differences and similarities with renormalizable models are also discussed. copyright 1997 The American Physical Society

  8. Future cancer treatment using antiparticles form the exotic "antiworld"

    CERN Multimedia

    2006-01-01

    "An international research team has taken the first, but nevertheless promisiong step towards a new form of radiotherapy for cancer. This team includes scientists at the Department of Physics and Astronomy, the University of Aarhus, as well as the Department of Medical Physics and the Department of Experimental Clinical Oncology, the Aarhus University Hospital." (1 page)

  9. The General Antiparticle Spectrometer (GAPS) - Hunt for dark matter using low-energy antideuterons

    CERN Document Server

    von Doetinchem, Ph; Boggs, St; Craig, W; Fuke, H; Gahbauer, F; Hailey, Ch; Koglin, J; Madden, N; Mognet, I; Mori, K; Ong, R; Yoshida, T; Zhang, T; Zweerink, J

    2010-01-01

    The GAPS experiment is foreseen to carry out a dark matter search using a novel detection approach to detect low-energy cosmic-ray antideuterons. The theoretically predicted antideuteron flux resulting from secondary interactions of primary cosmic rays with the interstellar medium is very low. So far not a single cosmic antideuteron has been detected by any experiment, but well-motivated theories beyond the standard model of particle physics, e.g., supersymmetry or universal extra dimensions, contain viable dark matter candidates, which could led to a significant enhancement of the antideuteron flux due to self-annihilation of the dark matter particles.This flux contribution is believed to be especially large at small energies, which leads to a high discovery potential for GAPS. GAPS is designed to achieve its goals via a series of ultra-long duration balloon flights at high altitude in Antarctica, starting in 2014. The detector itself will consist of 13 planes of Si(Li) solid state detectors and a time of fl...

  10. BESS-Polar: long duration flights at Antarctica to search for primordial antiparticles

    International Nuclear Information System (INIS)

    The BESS-Polar experiment with long-duration balloon flights at Antarctica aims at extremely sensitive measurement of low energy antiprotons to search for novel primary origins in the early Universe, and to study cosmic-ray propagation and solar modulation. The search for cosmic antimatter is a fundamental objective to study baryon asymmetry in the Universe. The BESS experiment with high rigidity resolution and large geometrical acceptance will maximize advantages of long duration flights at Antarctica where the rigidity cut-off is lowest. A very compact and thin superconducting magnet spectrometer is being developed to maximize the detector performance in low energies. The BESS-Polar project and progress of the development are described

  11. Oscillations of neutral mesons and the equivalence principle for particles and antiparticles

    International Nuclear Information System (INIS)

    The K0-K0 bar, D0-D0 bar, and B0-B0 bar oscillations are extremely sensitive to the K0 and K0 bar energy at rest. The energy is determined by the values mc2 with the related mass as well as the energy of the gravitational interaction. Assuming the CPT theorem for the inertial masses and estimating the gravitational potential through the dominant contribution of the gravitational potential of our Galaxy center, we obtain from the experimental data on the K0-K0 bar oscillations the following constraint: |(mg/mi)K0 - (mg/mi)K0 bar| ≤ 8·10-13, CL=90%. This estimation is model dependent and in particular it depends on a way we estimate the gravitational potential. Examining the K0-K0 bar, B0-B0 bar, and D0-D0 bar oscillations provides us also with weaker, but model independent constraints, which in particular rule out the very possibility of antigravity for antimatter

  12. Vacuum particle-antiparticle creation in strong fields as a field induced phase transition

    CERN Document Server

    Smolyansky, S A; Blaschke, D B; Juchnowski, L; Kaempfer, B; Otto, A

    2016-01-01

    The features of vacuum particle creation in an external classical field are studied for simplest external field models in $3 + 1$ dimensional QED. The investigation is based on a kinetic equation that is a nonperturbative consequence of the fundamental equations of motion of QED. The observed features of the evolution of the system apply on the qualitative level also for systems of other nature and therefore are rather general. Examples from cosmology and condensed matter physics illustrate this statement. The common basis for the description of these systems are kinetic equations for vacuum particle creation belonging to the class of integro-differential equations of non-Markovian type with fastly oscillating kernel. This allows to characterize processes of this type as belonging to the class of field induced phase transitions.

  13. A Theory of Self-Resonance After Inflation, Part 2: Quantum Mechanics and Particle-Antiparticle Asymmetry

    CERN Document Server

    Hertzberg, Mark P; Spitzer, William G; Becerra, Juana C; Li, Lanqing

    2014-01-01

    We further develop a theory of self-resonance after inflation in a large class of models involving multiple scalar fields. We concentrate on inflaton potentials that carry an internal symmetry, but also analyze weak breaking of this symmetry. This is the second part of a two part series of papers. Here in Part 2 we develop an understanding of the resonance structure from the underlying many particle quantum mechanics. We begin by a small amplitude analysis, which obtains the central resonant wave numbers, and relate it to perturbative processes. We show that the dominant resonance structure is determined by (i) the nonrelativistic scattering of many quantum particles and (ii) the application of Bose-Einstein statistics to the adiabatic and isocurvature modes, as introduced in Part 1 [1]. Other resonance structure is understood in terms of annihilations and decays. We setup Bunch-Davies vacuum initial conditions during inflation and track the evolution of modes including Hubble expansion. In the case of a comp...

  14. Blast Wave Fits to Elliptic Flow Data at $\\sqrt{s_{\\rm NN}} =$ 7.7--2760 GeV

    CERN Document Server

    Sun, X; Poskanzer, A M; Schmah, A

    2014-01-01

    We present blast wave fits to elliptic flow ($v_{2}(p_{\\rm T})$) data in minimum bias collisions from the $\\sqrt{s_{\\rm NN}} =$ 7.7--200 GeV at RHIC, and 2.76 TeV at LHC. The fits are performed separately for particles and corresponding anti-particles. The mean transverse velocity parameter $\\beta$ shows an energy dependent difference between particles and corresponding anti-particles, which increases as the beam energy decreases. Possible effects of feed down, baryon stopping, anti-particle absorption, and early production times for anti-particles are discussed.

  15. High spin particles with spin-mass coupling

    OpenAIRE

    Daszkiewicz, Marcin; Hasiewicz, Zbigniew; Walczyk, Cezary J.

    2006-01-01

    The classical and quantum model of high spin particles is proposed and analyzed in this paper. The covariant quantization leads to the spectrum of the particles with the masses correlated with their spins. The particles (and anti-particles) appear to be orphaned as their potential anti-particle partners are of different mass.

  16. Regenerating a symmetry in asymmetric dark matter.

    Science.gov (United States)

    Buckley, Matthew R; Profumo, Stefano

    2012-01-01

    Asymmetric dark matter theories generically allow for mass terms that lead to particle-antiparticle mixing. Over the age of the Universe, dark matter can thus oscillate from a purely asymmetric configuration into a symmetric mix of particles and antiparticles, allowing for pair-annihilation processes. Additionally, requiring efficient depletion of the primordial thermal (symmetric) component generically entails large annihilation rates. We show that unless some symmetry completely forbids dark matter particle-antiparticle mixing, asymmetric dark matter is effectively ruled out for a large range of masses, for almost any oscillation time scale shorter than the age of the Universe. PMID:22304253

  17. On the Origins of the Planck Zero Point Energy in Relativistic Quantum Field Theory

    CERN Document Server

    Widom, A; Srivastava, Y N

    2015-01-01

    It is argued that the zero point energy in quantum field theory is a reflection of the particle anti-particle content of the theory. This essential physical content is somewhat disguised in electromagnetic theory wherein the photon is its own anti-particle. To illustrate this point, we consider the case of a charged Boson theory $(\\pi^+,\\pi^-)$ wherein the particle and anti-particle can be distinguished by the charge $\\pm e$. Starting from the zero point energy, we derive the Boson pair production rate per unit time per unit volume from the vacuum in a uniform external electric field. The result is further generalized for arbitrary spin $s$.

  18. Narrow resonances of high mass in particle-anti particle mode

    International Nuclear Information System (INIS)

    A review is given of high mass narrow resonances in the particle--antiparticle mode. Included are a discussion of the particle properties, the detection apparatus at Brookhaven, the first measurements, and the discovery of the new particles

  19. Odderon Effects in pp Collisions: Predictions for LHC Energies

    CERN Document Server

    Merino, C; Shabelski, Yu M

    2009-01-01

    We consider the possible contribution of Odderon (Reggeon with alpha_(Odd)(0) similar to 1 and negative signature) exchange to the differences in the total cross sections of particle and antiparticle, to the ratios of real/imaginary parts of the elastic pp amplitude, and to the differences in the inclusive spectra of particle and antiparticle in the central region. The experimental differences in total cross sections of particle and antiparticle are compatible with the existence of the Odderon component but such a large Odderon contribution seems to be inconsistent with the values of Re/Im ratios. In the case of inclusive particle and antiparticle production the current energies and/or accuracy of the experimental data don't allow a clear conclusion. It is expected that the LHC will finally solve the question of the Odderon existence.

  20. Space and time reversals: II. Phenomenological classification of elementary particles; quantum numbers and conservation laws

    International Nuclear Information System (INIS)

    Using the six ''matrices'', we give a classification of the leptons and of the flavours of quarks in three families containing particles and antiparticles; quantum numbers and condensed forms of conservation laws are also discussed for weak and strong interactions

  1. An introduction to QED

    International Nuclear Information System (INIS)

    The lecture concerns quantum electrodynamics (QED), the relativistic quantum theory of electromagnetic interactions. Antiparticles, electrodynamics of spinless particles, the dirac equation and electrodynamics of spin 1/2 particles are discussed in detail. (U.K.)

  2. L'expérience AMS: à la recherche de l'anti-matière perdue

    CERN Multimedia

    2007-01-01

    Where is gone the essential matter? This tune is still one of the great "open" questions of physics. At CERN, physicists created for a long time great quantities of anti-atoms and use antiparticles in their accelerators. (1 page)

  3. Asymmetric Dark Matter in the Shear--dominated Universe

    OpenAIRE

    Iminniyaz, Hoernisa

    2016-01-01

    We explore the relic abundance of asymmetric Dark Matter in shear--dominated universe in which it is assumed the universe is expanded anisotropically. The modified expansion rate leaves its imprint on the relic density of asymmetric Dark Matter particles if the asymmetric Dark Matter particles are decoupled in shear dominated era. We found the relic abundances for particle and anti--particle are increased. The particle and anti--particle abundances are almost in the same amount for appropriat...

  4. Dirac solutions for quaternionic potentials

    CERN Document Server

    De Leo, Stefano

    2014-01-01

    In this paper, the quaternionic Dirac equation is solved for quaternionic potentials, iV0+jW0. The study shows two different solutions. The first solution contains particles and anti-particles and leads to the diffusion, tunneling and Klein energy zones. The complex limit is recovered from this solution. The second solution, which does not have a complex counterpart, can be seen as a V0-antiparticle or |W0|-particle.

  5. ACADEMIC TRAINING

    CERN Multimedia

    Françoise Benz

    2002-01-01

    24, 25, 26 April LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Anti-Matter by R. LANDUA /CERN-EP Antiparticles are a crucial ingredient of particle physics and cosmology. More than 70 years after Dirac's bold prediction and the subsequent discovery of the positron in 1932, antiparticles are still in the spotlight of modern physics. This lecture for non-specialists will start with a theoretical and historical introduction. Why are antiparticles needed? Why is the (CPT) symmetry between particles and antiparticles so fundamental? What is their role in cosmology? The second part will give an overview about the many aspects of antiparticles in experimental physics: as a tool in accelerators; as a probe inside atoms or nuclei; or as an object to study fundamental symmetries. In the third part, the lecture will focus on the experimental 'antimatter' programme at the Antiproton Decelerator (AD), with special emphysis on antihydrogen production and spectroscopy. The lecture will conclude with an outl...

  6. Academic Training - Studying Anti-Matter

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 24, 25, 26 April from 11:00 to 12:00 - Main Auditorium, bldg. 500 Main Auditorium, bldg. 500 on 14, 15 March, Council Room on 13, 16 March Studying Anti-Matter R. LANDUA / DSU Antiparticles are a crucial ingredient of particle physics and cosmology. Almost 80 years after Dirac's bold prediction and the subsequent discovery of the positron in 1932, antiparticles are still in the spotlight of modern physics. This lecture for non-specialists will start with a theoretical and historical introduction. Why are antiparticles needed? When and how were they discovered? Why is the (CPT) symmetry between particles and antiparticles so fundamental? What is their role in cosmology? The second part will give an overview about the many aspects of antiparticles in experimental physics: their production, their use in colliders; as a probe inside atoms or nuclei; or as an object to study fundamental symmetries. In the third part, the lecture will focus on results and challenges of the '...

  7. A cosmic conundrum

    Science.gov (United States)

    Wolfenstein, Lincoln

    2008-07-01

    Each charged elementary particle has a counterpart with the opposite charge, which is known as an antiparticle. The antiparticle partner of the negative electron, for example, is the positive positron, which was predicted by Paul Dirac in 1930 and discovered by Carl Anderson in 1932; while for the proton it is the antiproton, which was discovered by Emilio Segré and Owen Chamberlain in 1955. Just like normal particles, antiparticles can combine, forming atoms of "antimatter". Dirac's theory suggested that the laws of physics were exactly the same for matter and antimatter; so given this symmetry, why is our visible universe made of matter with no antimatter? This is the question addressed by Helen Quinn and Yossi Nir in The Mystery of the Missing Antimatter.

  8. Professor Walter Oelert, leader of the team which created the first atoms of antihydrogen at the Low Energy Antiproton Ring (LEAR) in January 1996

    CERN Multimedia

    Laurent Guiraud

    1996-01-01

    Antiparticles were predicted in the work of Paul Dirac in the 1920's, since when physicists have identified all the necessary antiparticle constituents of an antiparticle atom - antielectrons (positrons), antiprotons and antineutrons. However, an antihydrogen atom wasn't produced until the PS210 experiment at CERN in 1995. PS210 used the LEAR accelerator, which was then nearing the end of its lifetime, so everything in the experiment had to work first time. After installing the equipment in spring 1995, the experiment took place in the autumn, in two hour periods over 4 weeks. The experiment team collided energetic antiprotons from LEAR with a heavy element, a challenge for them as well as the LEAR operators. Proving that antihydrogen atoms had been formed required several more weeks of data analysis, but the announcement that nine antihydrogen atoms had been produced came on 4 January 1996.

  9. Electromagnetic interaction in theory with Lorentz invariant CPT violation

    Energy Technology Data Exchange (ETDEWEB)

    Chaichian, Masud, E-mail: Masud.Chaichian@helsinki.fi [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland); Fujikawa, Kazuo [Mathematical Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Tureanu, Anca [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland)

    2013-01-29

    An attempt is made to incorporate the electromagnetic interaction in a Lorentz invariant but CPT violating non-local model with particle-antiparticle mass splitting, which is regarded as a modified QED. The gauge invariance is maintained by the Schwinger non-integrable phase factor but the electromagnetic interaction breaks C, CP and CPT symmetries. Implications of the present CPT breaking scheme on the electromagnetic transitions and particle-antiparticle pair creation are discussed. The CPT violation such as the one suggested in this Letter may open a new path to the analysis of baryon asymmetry since some of the Sakharov constraints are expected to be modified.

  10. Why search for double beta decay?

    International Nuclear Information System (INIS)

    Searching for neutrinoless double beta decay is the only known practical method for trying to determine whether neutrinos are their own antiparticles. The theoretical motivation for supposing that they may indeed be their own antiparticles is described. The reason that it is so difficult to ascertain experimentally whether they are or are not is explained, as is the special sensitivity of neutrinoless double beta decay. The potential implications of the observation of this reaction for neutrino mass and for the physics of neutrinos is discussed

  11. On the nature of the neutrino

    CERN Document Server

    Romero, R

    2016-01-01

    Assuming that one neutrino type with definite mass is described by a massive Dirac field operator, it is shown that the physical one-particle states for particles and antiparticles can be rotated to each other, irrespective of their helicity. This result is used to prove that the neutrino must necessarily be a Majorana particle.

  12. Consequences of DM/antiDM oscillations for asymmetric WIMP darkmatter

    DEFF Research Database (Denmark)

    Cirelli, M.; Panci, P.; Servant, G.;

    2012-01-01

    Assuming the existence of a primordial asymmetry in the dark sector, a scenario usually dubbed Asymmetric Dark Matter (aDM), we study the effect of oscillations between dark matter and its antiparticle on the re-equilibration of the initial asymmetry before freeze-out, which enable efficient anni...

  13. P.A.M. Dirac and the beauty of physics

    International Nuclear Information System (INIS)

    Dirac's life is shortly described and his creativity and major discoveries and theories are highlighted, such as the original and powerful formulation of quantum mechanics, the quantum theory of radiation emission and absorption by atoms (a simple but important version of quantum electrodynamics), the relativistic wave equation for the electron, the antiparticle concept, and the theory of magnetic monopoles. (Z.S). 4 refs

  14. STAR results from the first year at RHIC

    Indian Academy of Sciences (India)

    Helen Caines

    2003-04-01

    An overview of the latest results from the STAR experiment at RHIC is presented. Preliminary measurements of , , , and Ξ, plus their respective anti-particles at t < 2 GeV/c, where the majority of particle production occurs, allow us to probe the soft processes whilst the harder perturbative regime can be accessed by studying particle spectra and yields at higher momenta.

  15. Scientists hope to crack missing antimatter

    CERN Multimedia

    2000-01-01

    CERN announced that it would be able to study antimatter in depth using the world's first 'antimatter factory'. The AD has a circumference of 188 meters and will slow down particles and antiparticles to one tenth of the speed of light and then deliver them to experiments for study (1 page).

  16. The $DKP$ equation in the Woods-Saxon potential well: Bound states

    CERN Document Server

    Boutabia-Chéraitia, Boutheina

    2016-01-01

    We solve the Duffin-Kemmer-P\\'{e}tiau equation in the presence of a spatially one-dimensional symmetric potential well. We compute the scattering state solutions and we derive conditions for transmission resonances. The bound solutions are derived by a graphic study and the appearance of the antiparticle bound state is discussed.

  17. To Enjoy the Morning Flower in the Evening -- Is Special Relativity a Classical Theory?

    OpenAIRE

    Ni, Guang-jiong

    1998-01-01

    The relation between the special relativity and quantum mechanics is discussed. Based on the postulate that space-time inversion is equavalent to particle-antiparticle transformation, the essence of special relativity is explored and the relativistic modification on Stationary Schr\\"{o}dinger Equation is derived.

  18. Fundamental symmetry tests with antihydrogen

    International Nuclear Information System (INIS)

    The prospects for testing CPT invariance and the weak equivalence principle (WEP) for antimatter with spectroscopic measurements on antihydrogen are discussed. The potential precisions of these tests are compared with those from other measurements. The arguments involving energy conservation, the behavior of neutral kaons in a gravitational field and the equivalence principle for antiparticles are reviewed in detail

  19. Charge Conjugation in the Galilean Limit

    OpenAIRE

    Socolovsky, Miguel

    2006-01-01

    Strictly working in the framework of the nonrelativistic quantum mechanics of a spin 1/2 particle coupled to an external electromagnetic field, we show, by explicit construction, the existence of a charge conjugation operator matrix which defines the corresponding antiparticle wave function and leads to the galilean and gauge invariant Schroedinger-Pauli equation satisfied by it.

  20. Physics Achievements from the Belle Experiment

    CERN Document Server

    Brodzicka, Jolanta; Chang, Paoti; Eidelman, Simon; Golob, Bostjan; Hayasaka, Kiyoshi; Hayashii, Hisaki; Iijima, Toru; Inami, Kenji; Kinoshita, Kay; Kwon, Youngjoon; Miyabayashi, Kenkichi; Mohanty, Gagan; Nakao, Mikihiko; Nakazawa, Hideyuki; Olsen, Stephen; Sakai, Yoshihide; Schwanda, Christoph; Schwartz, Alan; Trabelsi, Karim; Uehara, Sadaharu; Uno, Shoji; Watanabe, Yasushi; Zupanc, Anze

    2012-01-01

    The Belle experiment, running at the KEKB e+e- asymmetric energy collider during the first decade of the century, achieved its original objective of measuring precisely differences between particles and anti-particles in the B system. After collecting 1000 fb-1 of data at various Upsilon resonances, Belle also obtained the many other physics results described in this article.

  1. Symmetric ordering effect on Casimir energy in $\\kappa-$Minkowski spacetime

    CERN Document Server

    Kim, Hyeong-Chan; Yee, Jae Hyung

    2008-01-01

    We present the Casimir energy of spherical shell, for the symmetrically deformed scalar field in $\\kappa$-Minkowski space-time, satisfying Dirichlet boundary condition. The Casimir energy shows the particle anti-particle symmetry contrary to the asymmetrically deformed case. In addition, the deformation effect starts from $O(1/\\kappa)$ term unlike in the parallel plates.

  2. Identified particles in Au+Au collisions at S=200 GeV

    Science.gov (United States)

    Phobos Collaboration; Wosiek, Barbara; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The yields of identified particles have been measured at RHIC for Au+Au collisions at S=200 GeV using the PHOBOS spectrometer. The ratios of antiparticle to particle yields near mid-rapidity are presented. The first measurements of the invariant yields of charged pions, kaons and protons at very low transverse momenta are also shown.

  3. On the relation between the geometric phase and the Schwinger term

    International Nuclear Information System (INIS)

    In second quantization an m-particle and n-antiparticle state picks up the sum of geometric phases for each individual mode after parallel transport along a closed curve in parameter space. The transport of the vacuum implies in addition the occurrence of a Schwinger term. Depending on the transformation considered various relations between the two types of obstructions result. 6 refs. (Authors)

  4. Neutral-meson oscillations with torsion

    CERN Document Server

    Poplawski, Nikodem J

    2011-01-01

    We propose a simple mechanism that may explain the observed particle-antiparticle asymmetry in the Universe. In the Einstein-Cartan-Sciama-Kibble theory of gravity, the intrinsic spin of matter generates spacetime torsion. Classical Dirac fields in the presence of torsion obey the nonlinear Hehl-Datta equation which is asymmetric under a charge-conjugation transformation. Accordingly, at extremely high densities that existed in the very early Universe, fermions have higher effective masses than antifermions. As a result, a meson composed of a light quark and a heavy antiquark has a lower effective mass than its antiparticle. Neutral-meson oscillations in thermal equilibrium therefore favor the production of light quarks and heavy antiquarks, which may be related to baryogenesis.

  5. Leptophilic Effective WIMPs

    CERN Document Server

    Chang, Spencer; Hutchinson, Jeffrey; Luty, Markus

    2014-01-01

    Effective WIMP models are minimal extensions of the standard model that explain the relic density of dark matter by the ``WIMP miracle.'' In this paper we consider the phenomenology of effective WIMPs with trilinear couplings to leptons and a new ``lepton partner'' particle. The observed relic abundance fixes the strength of the cubic coupling, so the parameters of the models are defined by the masses of the WIMP and lepton partner particles. This gives a simple parameter space where collider and direct detection experiments can be compared under well-defined physical minimality assumptions. The most sensitive collider probe is the search for leptons + MET, while the most sensitive direct detection channel is scattering from nuclei arising from loop diagrams. Collider and direct detection searches are highly complementary: colliders give the only meaningful constraint when dark matter is its own antiparticle, while direct detection is generally more sensitive if the dark matter is not its own antiparticle.

  6. Search for pentaquarks decaying to Xi-pi in deep inelastic scattering at HERA

    CERN Document Server

    Adams, F; Abt, I; Adamczyk, L; Adamus, M; Adler, V; Aghuzumtsyan, G; Allfrey, P D; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Behrens, U; Bell, M A; Bellagamba, L; Bellan, P M; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Büttner, C; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Catterall, C D; Chekanov, S; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Corradi, M; Corriveau, F; Costa, M; Cottrell, A; Cui, Y; D'Agostini, G; Dal Corso, F; Danilov, P; De Pasquale, S; Dementiev, R K; Derrick, M; Devenish, R C E; Dhawan, S; Dobur, D; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Everett, A; Ferrando, J; Ferrero, M I; Figiel, J; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fry, C; Gabareen, A; Galas, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Goers, S; Goncalo, R; González, O; Gosau, T; Göttlicher, P; Grabowska-Bold, I; Grigorescu, G; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, C; Hartmann, H; Hartner, G; Heaphy, E A; Heath, G P; Helbich, M; Hilger, E; Hochman, D; Holm, U; Horn, C; Iacobucci, G; Iga, Y; Irrgang, P; Jakob, P; Jiménez, M; Jones, T W; Kagawa, S; Kahle, B; Kaji, H; Kananov, S; Karshon, U; Karstens, F; Kataoka, M; Katkov, I I; Kcira, D; Keramidas, A; Khein, L A; Kim, J Y; Kind, O; Kisielewska, D; Kitamura, S; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav--, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, H; Kramberger, G; Kreisel, A; Krumnack, N; Kulinski, P; Kuze, M; Kuzmin, V A; Labarga, L; Lammers, S; Lelas, D; Levchenko, B B; Levy, A; Li, L; Lightwood, M S; Lim, H; Limentani, S; Ling, T Y; Liu, C; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukasik, J; Lukina, O Yu; Luzniak, P; Ma, K J; Maddox, E; Magill, S; Malka, J; Mankel, R; Margotti, A; Marini, G; Martin, J F; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Miglioranzi, S; Milite, M; Mirea, A; Monaco, V; Montanari, A; Musgrave, B; Nagano, K; Namsoo, T; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Noor, U; Notz, D; Nowak, R J; Nuncio-Quiroz, A E; Oh, B Y; Olkiewicz, K; Ota, O; Padhi, S; Palmonari, F; Patel, S; Paul, E; Pavel, Usan; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Piotrzkowski, K; Plamondon, M; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Ri, Y D; Rinaldi, L; Robins, S; Rosin, M; Ruspa, M; Ryan, P; Sacchi, R; Salehi, H; Santamarta, R; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schleper, P; Schmidke, W B; Schneekloth, U; Schörner-Sadenius, T; Sciulli, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stonjek, S; Stopa, P; Stösslein, U; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutiak, J; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tapper, A D; Targett--, C; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Tyszkiewicz, A; Ukleja, A; Ukleja, J; Vázquez, M; Vlasov, N N; Voss, K C; Walczak, R; Walsh, R; Wang, M; Whitmore, J J; Whyte, J; Wichmann, K; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wlasenko, M; Wolf, G; Yagues-Molina, A G; Yamada, S; Yamazaki, Y; Yoshida, R; Youngman, C; Za, L; Zambrana, M; Zeuner, W; Zhautykov, B O; Zhou, C; Zichichi, A; Ziegler, A; Zotkin, D S; Zotkin, S A; De Favereau, J; De Wolf, E; Del Peso, J

    2005-01-01

    A search for pentaquarks decaying to Xi^{-} pi^{-} (Xi^{-} pi^{+}) and corresponding antiparticles has been performed with the ZEUS detector at HERA. The data sample consists of deep inelastic ep scattering events at centre-of-mass energies of 300 and 318 GeV, and corresponds to 121 pb^{-1} of integrated luminosity. A clear signal for Xi^{0}(1530) to Xi^{-} pi^{+} was observed. However, no signal for any new baryonic state was observed at higher masses in either the Xi^{-} pi^{-} or Xi^{-} pi^{+} channels. The searches in the antiparticle channels were also negative. Upper limits on the ratio of a possible Xi^{--}_{3/2} (Xi^{0}_{3/2}) signal to the Xi^{0}(1530) signal were set in the mass range 1650-2350 MeV.

  7. Discrete symmetries in the Kaluza-Klein-like theories

    CERN Document Server

    Borstnik, N S Mankoc

    2014-01-01

    In theories of the Kaluza-Klein type there are spins (or rather total angular momentum) in higher dimensions which manifest as charges in the observable $d=(3+1)$. The charge conjugation requirement, if following the 3+1 prescription, would any particle state out of the Dirac sea transform into the hole in the Dirac sea, which manifests as an anti-particle having all the spin degrees of freedom in $d$, except $S^{03}$, the same as the corresponding particle state. This is in contradiction with what we observe for the anti-particle. In this paper we redefine the discrete symmetries so that we stay within the subgroups of the starting group of symmetries, while we require that the spin in higher dimensions manifest as charges in $d=(1+3)$. We pay attention on spaces with $d=2\\,(\\mod 4)$.

  8. Geodesics in the (anti-)de Sitter spacetime

    CERN Document Server

    Tho, Nguyen Phuc Ky

    2016-01-01

    A class of exact solutions of the geodesic equations in (anti-)de Sitter spacetimes is presented. The geodesics for test particles in $AdS_4$ and $dS_4$ spacetimes are respectively sinusoidal and hyperbolic sine world lines. The world line for light rays is straight lines as known. The world lines of test particles are not dependent on their energy as noted. Spontaneous symmetry breaking of $AdS_4$ spacetime provides a physical explanation for arising of the virtual particle and antiparticle pairs in the vacuum. Interestingly, the energy of a pair and the time its particles moving along their geodesics can be related by a relation similar to Heisenberg uncertainty one pertaining quantum vacuum fluctuations. The sinusoidal geodesics of $AdS_4$ spacetime can describe the world lines of the virtual particles and antiparticles. The hyperbolic sine geodesics of $dS_4$ spacetime can explain why galaxies move apart with positive accelerations.

  9. Does antimatter emit a new light ?

    CERN Document Server

    Santilli, R M

    1997-01-01

    We identify a number of problematic aspects of current classical and quantum theories of antimatter; we introduce a new mathematical formalism which is an antiautomorphic image of that of matter equivalent to charge conjugation at the operator level, but applicable from Newton's equations to quantum mechanics; we show that the emerging new theory of antimatter recovers known experimental data on electroweak interactions; we finally identity the following predictions of the theory: 1) reversal in the field of matter of the gravitational curvature (antigravity) for stable antiparticles and their bound states, such as the anti-hydrogen atom; 2) conventional (attractive) gravity for a bound state of an elementary particle and its antiparticle, such as the positronium; and 3) prediction that the anti- hydrogen atom emits a new photon which coincides with the conventional photon for all electroweak interactions but experiences repulsion in the gravitational field of matter.

  10. Introduction to a Quantum Theory over a Galois Field

    Directory of Open Access Journals (Sweden)

    Felix M. Lev

    2010-11-01

    Full Text Available We consider a quantum theory based on a Galois field. In this approach infinities cannot exist, the cosmological constant problem does not arise, and one irreducible representation (IR of the symmetry algebra splits into independent IRs describing a particle an its antiparticle only in the approximation when de Sitter energies are much less than the characteristic of the field. As a consequence, the very notions of particles and antiparticles are only approximate and such additive quantum numbers as the electric, baryon and lepton charges are conserved only in this approximation. There can be no neutral elementary particles and the spin-statistics theorem can be treated simply as a requirement that standard quantum theory should be based on complex numbers.

  11. Dirac's Quantum Phase Problem

    CERN Document Server

    Sperling, J

    2009-01-01

    In 1927 the great physicist Paul A. M. Dirac failed to provide a consistent quantum description of the phase of a radiation field. Only one year later, he developed the famous Dirac theory of the electron, which led to the anti-particle -- the positron. We show that the reason for Dirac's failure with the phase problem bears a striking resemblance to his ingenious insight into the nature of the electron. For a correct quantum description of the phase of a radiation field it is necessary to take the polarisation into account. Similarly to the introduction of the anti-particle of the electron, the inclusion of the second polarisation resolves the inconsistency of the quantum phase problem. This also leads to new insight into the quantum measurement problem of time.

  12. Asymmetric Dark Matter in the Shear--dominated Universe

    CERN Document Server

    Iminniyaz, Hoernisa

    2016-01-01

    We explore the relic abundance of asymmetric Dark Matter in shear--dominated universe in which it is assumed the universe is expanded anisotropically. The modified expansion rate leaves its imprint on the relic density of asymmetric Dark Matter particles if the asymmetric Dark Matter particles are decoupled in shear dominated era. We found the relic abundances for particle and anti--particle are increased. The particle and anti--particle abundances are almost in the same amount for appropriate annihilation cross section which makes the indirect detection possible for asymmetric Dark Matter. We use the present day Dark Matter density from the observation to find the constraints on the parameter space in this model.

  13. The prototype GAPS (pGAPS) experiment

    International Nuclear Information System (INIS)

    The General Antiparticle Spectrometer (GAPS) experiment is a novel approach for the detection of cosmic ray antiparticles. A prototype GAPS (pGAPS) experiment was successfully flown on a high-altitude balloon in June of 2012. The goals of the pGAPS experiment were: to test the operation of lithium drifted silicon (Si(Li)) detectors at balloon altitudes, to validate the thermal model and cooling concept needed for engineering of a full-size GAPS instrument, and to characterize cosmic ray and X-ray backgrounds. The instrument was launched from the Japan Aerospace Exploration Agency's (JAXA) Taiki Aerospace Research Field in Hokkaido, Japan. The flight lasted a total of 6 h, with over 3 h at float altitude (∼33km). Over one million cosmic ray triggers were recorded and all flight goals were met or exceeded

  14. Baryon asymmetry of the Universe in unified gauge theories

    International Nuclear Information System (INIS)

    In the framework of unified gauge theories of strong, weak and electromagnetic interactions the problem of the Universe baryon asymmetry (UBA) formation is considered. It is shown that the asymmetry between particles and antiparticles cannot arise at thermodynamic equilibrium and consequently the UBA can appear only at the nonequilibrium stage of the Universe expansion. It has been found that the UBA arises because of CP noninvariant mixing of scalar bosons with their antiparticles and consequent asymmetric decay of these bosons resulting in quark antiquark surplus. The UBA can arise in decays of colourless as well as colour bosons. The general picture of the UBA generation is spread to the special SO(10) unified gauge theory. A new possible relationship between cosmology and physics of particles is revealed

  15. Analytic Representation of the Dirac Equation

    CERN Document Server

    Gill, T L; Zachary, W W

    2006-01-01

    In this paper we construct an analytical separation (diagonalization) of the full (minimal coupling) Dirac equation into particle and antiparticle components. The diagonalization is analytic in that it is achieved without transforming the wave functions, as is done by the Foldy-Wouthuysen method, and reveals the nonlocal time behavior of the particle-antiparticle relationship. We then show explicitly that the Pauli equation is not completely valid for the study of the Dirac hydrogen atom problem in s-states (hyperfine splitting). We conclude that there are some open mathematical problems with any attempt to explicitly show that the Dirac equation is insufficient to explain the full hydrogen spectrum. If the perturbation method can be justified, our analysis suggests that the use of cutoffs in QED is already justified by the eigenvalue analysis that supports it. Using a new method, we are able to effect separation of variables for full coupling, solve the radial equation and provide graphs of the probability d...

  16. The Stationary Dirac Equation as a Generalized Pauli Equation for Two Quasiparticles

    Science.gov (United States)

    Chuprikov, Nikolay L.

    2015-06-01

    By analyzing the Dirac equation with static electric and magnetic fields it is shown that Dirac's theory is nothing but a generalized one-particle quantum theory compatible with the special theory of relativity. This equation describes a quantum dynamics of a single relativistic fermion, and its solution is reduced to solution of the generalized Pauli equation for two quasiparticles which move in the Euclidean space with their effective masses holding information about the Lorentzian symmetry of the four-dimensional space-time. We reveal the correspondence between the Dirac bispinor and Pauli spinor (two-component wave function), and show that all four components of the Dirac bispinor correspond to a fermion (or all of them correspond to its antiparticle). Mixing the particle and antiparticle states is prohibited. On this basis we discuss the paradoxical phenomena of Zitterbewegung and the Klein tunneling.

  17. Discrete Symmetries of Off-Shell Electromagnetism

    CERN Document Server

    Land, M

    2005-01-01

    We discuss the discrete symmetries of the Stueckelberg-Schrodinger relativistic quantum theory and its associated 5D local gauge theory, a dynamical description of particle/antiparticle interactions, with monotonically increasing Poincare-invariant parameter. In this framework, worldlines are traced out through the parameterized evolution of spacetime events, advancing or retreating with respect to the laboratory clock, with negative energy trajectories appearing as antiparticles when the observer describes the evolution using the laboratory clock. The associated gauge theory describes local interactions between events (correlated by the invariant parameter) mediated by five off-shell gauge fields. These gauge fields are shown to transform tensorially under under space and time reflections, unlike the standard Maxwell fields, and the interacting quantum theory therefore remains manifestly Lorentz covariant. Charge conjugation symmetry in the quantum theory is achieved by simultaneous reflection of the sense o...

  18. Confinement of antihydrogen for 1,000 seconds

    DEFF Research Database (Denmark)

    Bruun Andresen, Gorm; Ashkezari, M.D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, Paul David; Butler, E.; Cesar, C.L.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M.C.; Gill, D.R.; Gutierrez, A.; Hangst, Jeffrey S.; Hardy, W.N.; Hayano, R.S.; Hayden, M.E.; Humphries, A.J.; Hydomako, R.; Jonsell, S.; Kemp, S.L.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, Chris Ørum

    2011-01-01

    Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter–antimatter symmetry. We have recently...... demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172 ms. A critical question for future studies is: how long can anti-atoms be trapped? Here, we report the observation of anti-atom confinement for 1,000 s, extending our earlier results by nearly four orders of magnitude....... Our calculations indicate that most of the trapped anti-atoms reach the ground state. Further, we report the first measurement of the energy distribution of trapped antihydrogen, which, coupled with detailed comparisons with simulations, provides a key tool for the systematic investigation of trapping...

  19. A New Route to the Majorana Equation

    Directory of Open Access Journals (Sweden)

    Eckart Marsch

    2013-09-01

    Full Text Available In this paper, we suggest an alternative strategy to derive the complex two-component Majorana equation with a mass term and elucidate the related Lorentz transformation. The Majorana equation is established completely on its own, rather than derived from the chiral Dirac equation. Thereby, use is made of the complex conjugation operator and Pauli spin matrices only. The eigenfunctions of the two-component complex Majorana equation are also calculated. The associated quantum fields are found to describe particles and antiparticles, which have opposite mean helicities and are not their own antiparticles, but correspond to two independent degrees of freedom. The four-component real Dirac equation in its Majorana representation is shown to be the natural outcome of the two-component complex Majorana equation. Both types of equations come in two forms, which correspond to the irreducible left- and right-chiral representations of the Lorentz group.

  20. Essence of Special Relativity, Reduced Dirac Equation and Antigravity

    CERN Document Server

    Ni, Guang-jiong; Lou, Senyue; Xu, Jianjun

    2010-01-01

    The essence of special relativity is hiding in the equal existence of particle and antiparticle, which can be expressed by two discrete symmetries within one inertial frame --- the invariance under the (newly defined) space-time inversion (${\\bf x}\\to -{\\bf x},t\\to -t$), or equivalently, the invariance under a mass inversion ($m\\to -m$). The problems discussed are: the evolution of the $CPT$ invariance into a basic postulate, an unique solution to the original puzzle in Einstein-Podolsky-Rosen paradox, the reduced Dirac equation for hydrogenlike atoms, and the negative mass paradox leading to the prediction of antigravity between matter and antimatter. {\\bf Keywords}: Special relativity, Reduced Dirac Equation, Antiparticle, Antigravity

  1. Antideuteron Sensitivity for the GAPS Experiment

    CERN Document Server

    Aramaki, T; Boggs, S E; von Doetinchem, P; Fuke, H; Mognet, S I; Ong, R A; Perez, K; Zweerink, J

    2015-01-01

    The General Antiparticle Spectrometer (GAPS) is a novel approach for indirect dark matter searches that exploits cosmic antiparticles, especially antideuterons. The GAPS antideuteron measurement utilizes distinctive detection methods using atomic X-rays and charged particles from the decay of exotic atoms as well as the timing and stopping range of the incoming particle, which together provide excellent antideuteron identification. Prior to the future balloon experiment, an accelerator test and a prototype flight were successfully conducted in 2005 and 2012 respectively, in order to verify the GAPS detection concept. This paper describes how the sensitivity of GAPS to antideuterons was estimated using a Monte Carlo simulation along with the atomic cascade model and the Intra-Nuclear Cascade model. The sensitivity for the GAPS antideuteron search obtained using this method is 2.0 $\\times 10^{-6}$ [m$^{-2}$s$^{-1}$sr$^{-1}$(GeV/$n$)$^{-1}$] for the proposed long duration balloon program (LDB, 35 days $\\times$ 3...

  2. Example of an explicit function for confining classical Yang-Mills fields with quantum fluctuations in path integral scheme

    CERN Document Server

    Fukushima, Kimichika

    2014-01-01

    This article reports an explicit function of confining classical Yang-Mills vector potentials as well as quantum fluctuations around the classical field. The classical vector potential, which is composed of a confining localized function and an unlocalized function, satisfies the classical Yang-Mills equation. The confining localized function contributes to the Wilson loop, while the unlocalized function has no contribution to this loop. The confining linear potential between a pair of a heavy fermion particle and an antiparticle is due to the Lie algebra and the form of the confining localized function, which have opposite signs at positions of the particle and antiparticles along the Wilson loop in the time direction. Some classical confining parts of vector potentials also have the opposite sign for the inversion of coordinate of the axis perpendicular to the axis between two particles. The localized functions of vector potentials are squeezed around the axis connecting two particles, and the string tensio...

  3. Generations: Three Prints, in Colour

    CERN Document Server

    Furey, Cohl

    2014-01-01

    We point out a somewhat mysterious appearance of $SU_c(3)$ representations, which exhibit the behaviour of three full generations of standard model particles. These representations are found in the Clifford algebra $\\mathbb{C}l(6)$, arising from the complex octonions. In this paper, we explain how this 64-complex-dimensional space comes about. With the algebra in place, we then identify generators of $SU(3)$ within it. These $SU(3)$ generators then act to partition the remaining part of the 64-dimensional Clifford algebra into six triplets, six singlets, and their antiparticles. That is, the algebra mirrors the chromodynamic structure of exactly three generations of the standard model's fermions. Passing from particle to antiparticle, or vice versa, requires nothing more than effecting the complex conjugate, $*$: $i \\mapsto -i$. The entire result is achieved using only the eight-dimensional complex octonions as a single ingredient.

  4. Generations: three prints, in colour

    Science.gov (United States)

    Furey, Cohl

    2014-10-01

    We point out a somewhat mysterious appearance of SUc(3) representations, which exhibit the behaviour of three full generations of standard model particles. These representations are found in the Clifford algebra ℂ l(6), arising from the complex octonions. In this paper, we explain how this 64-complex-dimensional space comes about. With the algebra in place, we then identify generators of SU(3) within it. These SU(3) generators then act to partition the remaining part of the 64-dimensional Clifford algebra into six triplets, six singlets, and their antiparticles. That is, the algebra mirrors the chromodynamic structure of exactly three generations of the standard model's fermions. Passing from particle to antiparticle, or vice versa, requires nothing more than effecting the complex conjugate, ∗: i ↦ - i. The entire result is achieved using only the eight-dimensional complex octonions as a single ingredient.

  5. Study for (anti)hypertriton and light (anti)nuclei production in high energy collisions at at \\sqrt{s_{\\rm{NN}}} = 200 GeV

    CERN Document Server

    Li, Hai-jun; Chen, Gang

    2016-01-01

    We used the parton and hadron cascade (PACIAE) model and the dynamically constrained phase-space coalescence (DCPC) model to investigate the production of (anti)hypertriton and light (anti)nuclei generated by 0-10% centrality 12C+12C, 24Mg+24Mg, 40Ca+40Ca and 64Cu+64Cu collisions at \\sqrt{s_{\\rm{NN}}} = 200 GeV with |y| < 1.5 and pT < 5. We studied the yield ratios of antiparticle to particle and the rapidity distributions of the different (anti)nuclei, and found that the amount of antimatter produced is significantly lower than that of the corresponding particles, the results of theoretical model are well consistent with PHOBOS data. The yield ratios of the particle to antiparticle in different transverse momentum region is also given, and we found the ratios is increased with the increase of the transverse momentum.

  6. One century of cosmic rays – A particle physicist's view

    OpenAIRE

    Sutton Christine

    2015-01-01

    Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques develope...

  7. Antimateria, la otra realidad

    CERN Multimedia

    González, Gabriel

    2005-01-01

    If, according to the history of cosmos, there is the same quantity of matter and antimatter; if, for every particle there is an antiparticle, why do we live in an universe composed exclusively by matter? Where is gone the antimatter? Is it possible that parallel antiuniverses exist? Such questions are not a wild imagining. The answer worries the physicists of the whole world (3 ½ pages)

  8. Statistical fluctuations as the origin of nontopological solitons

    Science.gov (United States)

    Griest, Kim; Kolb, Edward W.; Masarotti, Alessandro

    1989-01-01

    Nontopological solitons can be formed during a phase transition in the early universe as long as some net charge can be trapped in regions of false vacuum. It has been previously suggested that a particle-antiparticle asymmetry would provide a source for such trapped charge. It is pointed out that, for the model and parameters considered, statistical fluctuations provide a much larger concentration of charge, and are therefore, the dominant source of charge fluctuations in solitogenesis.

  9. Une Web-émission sur l'antimatière en direct du CERN

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    Dive into the anti-world from the Web ! On 18 and 21 November, you will be able to discover antimatter thanks to a Webcast live from CERN*. An hour long show for the general public broadcast through the Internet will show you how and why CERN's antimatter factory is producing anti-particles. Interviews, video clips and questions from the public are on the programme.

  10. Searches for neutrinoless double beta decay

    Science.gov (United States)

    Schwingenheuer, Bernhard

    2012-07-01

    Neutrinoless double beta decay is a lepton number violating process whose observation would also establish that neutrinos are their own anti-particles. There are many experimental efforts with a variety of techniques. Some (EXO, Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has reported the first measurement of the half life for the double beta decay with two neutrinos of 136Xe. The sensitivities of the different proposals are reviewed.

  11. Searches for neutrinoless double beta decay

    CERN Document Server

    Schwingenheuer, B

    2012-01-01

    Neutrinoless double beta decay is a lepton number violating process whose observation would also establish that neutrinos are their own anti-particles. There are many experimental efforts with a variety of techniques. Some (EXO, Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has reported the first measurement of the half life for the double beta decay with two neutrinos of $^{136}$Xe. The sensitivities of the different proposals are reviewed.

  12. Strongly enhanced pair production in combined high- and low-frequency laser fields

    OpenAIRE

    Jansen, Martin J. A.; Müller, Carsten

    2013-01-01

    Production of particle-antiparticle pairs by a high-energy probe photon propagating through a high-intensity laser field is considered in the nonperturbative interaction regime. The laser field consists of a strong low-frequency and a weak high-frequency component. While for each component alone photoproduction of pairs is strongly suppressed, we show that their combination can largely amplify the pair production probability by facilitating to bridge the energetic barrier of the process. Our ...

  13. Probing Positron Gravitation at HERA

    CERN Document Server

    Gharibyan, Vahagn

    2015-01-01

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)\\% weaker coupling to the gravitational field relative to an electron.

  14. Probing Positron Gravitation at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Vahagn

    2015-07-15

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  15. Heavy Pair Production Currents with General Quantum Numbers in Dimensionally Regularized NRQCD

    OpenAIRE

    Hoang, Andre H.; Ruiz-Femenia, Pedro

    2006-01-01

    We discuss the form and construction of general color singlet heavy particle-antiparticle pair production currents for arbitrary quantum numbers, and issues related to evanescent spin operators and scheme-dependences in nonrelativistic QCD (NRQCD) in n=3-2epsilon dimensions. The anomalous dimensions of the leading interpolating currents for heavy quark and colored scalar pairs in arbitrary (2S+1)L_J angular-spin states are determined at next-to-leading order in the nonrelativistic power count...

  16. Measurements of Cosmic Ray Antiprotons with PAMELA

    OpenAIRE

    Wu, Juan

    2010-01-01

    The PAMELA experiment is a satellite-borne apparatus designed to study charged particles, and especially antiparticles, in the cosmic radiation. The apparatus is mounted on the Resurs DK1 satellite which was launched on 15 June 2006. PAMELA has been traveling around the earth along an elliptical and semi-polar orbit for almost five years. It mainly consists of a permanent magnetic spectrometer, a time of flight system and an electromagnetic imaging calorimeter, which allows antiprotons to be ...

  17. The discovery of geomagnetically trapped cosmic ray antiprotons

    OpenAIRE

    Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; M. Boezio; Bogomolov, E.A.; M. Bongi; Bonvicini, V.; Borisov, S.; Bottai, S.; Bruno, A.; F. Cafagna; Campana, D.; Carbone, R.; Carlson, P.

    2011-01-01

    The existence of a significant flux of antiprotons confined to Earth's magnetosphere has been considered in several theoretical works. These antiparticles are produced in nuclear interactions of energetic cosmic rays with the terrestrial atmosphere and accumulate in the geomagnetic field at altitudes of several hundred kilometers. A contribution from the decay of albedo antineutrons has been hypothesized in analogy to proton production by neutron decay, which constitutes the main source of tr...

  18. Anti-hydrogen: The cusp between quantum mechanics and general relativity

    International Nuclear Information System (INIS)

    We argue that the crossing (CPT) symmetry of relativistic quantum mechanics requires that both the coulombic and the Newtonian force between pairs of particles will reverse when one is replaced by its anti-particle. For consistency, this requires a theory in which both the equivalence principles and gauge invariance are abandoned. thus whether anti-hydrogen ''falls'' up or down will provide an experiment crusis separating general relativity and gauge invariance from this version of quantum mechanics

  19. Dirac particles in a gravitational field

    International Nuclear Information System (INIS)

    The semiclassical approximation for the Hamiltonian of Dirac particles interacting with an arbitrary gravitational field is investigated. The time dependence of the metric leads to new contributions to the in-band energy operator in comparison to previous works in the static case. In particular we find a new coupling term between the linear momentum and the spin, as well as couplings that contribute to the breaking of the particle-antiparticle symmetry. (orig.)

  20. Elementary particles and the laws of physics: The 1986 Dirac Memorial Lectures

    International Nuclear Information System (INIS)

    Elementary Particles and the Laws of Physics contains transcriptions of the two lectures given in Cambridge, England, in 1986 by Nobel Laureates Richard P. Feynman and Steven Weinberg to commemorate the famous British physicist Paul Dirac. The talks focus on the fundamental problems of physics and the present state of our knowledge. Professor Feynman discusses how the laws of physics require the existence of antiparticles; Professor Weinberg examines the development of the fundamental laws of elementary particle intersection

  1. The statistical model for parton distributions

    OpenAIRE

    Bourrely, Claude; Buccella, Franco; Soffer, Jacques

    2012-01-01

    The phenomenological motivations, the expressions and the comparison with experiment of the parton distributions inspired by the quantum statistics are described. The Fermi-Dirac expressions for the quarks and their antiparticles automatically account for the correlation between the shape and the first moments of the valence partons, as well as the flavor and spin asymmetries of the sea. One is able to describe with a small number of parameters both unpolarized and polarized structure functions.

  2. A model theory for tachyons in two dimensions

    International Nuclear Information System (INIS)

    The paper is divided in two parts, the first one having nothing to do with tachyons. In fact, to prepare the ground, in part one (sect. 2) it is shown that special relativity, even without tachyons, can be given a form such to describe both particles and antiparticles. The plan of part two is confined only to a model theory in two dimensions, for the reasons stated in sect. 3

  3. Hyperon production in proton-sulphur collisions at 200 GeV/c

    CERN Document Server

    Abatzis, A; Andrighetto, A; Antinori, Federico; Bayes, A C; Benayoun, M; Beusch, Werner; Böhm, J; Carney, J N; Carrer, N; de la Cruz, B; Davies, J P; Di Bari, D; Elia, D; Evans, D; Fanebust, K; Fini, R A; French, Bernard R; Ftácnik, J; Ghidini, B; Helstrup, H; Holme, A K; Jacholkowski, A; Kahane, J; Katchanov, V A; Kinson, J B; Kirk, A; Knudson, K P; Králik, K; Ladrón de Guevara, P; Lassalle, J C; Lenti, V; Leruste, P J; Lietava, R; Loconsole, R A; Løvhøiden, G; Manzari, V; Morando, M; Narjoux, J L; Navach, F; Norman, K L; Pellegrini, F; Quercigh, Emanuele; Ricci, R A; Safarík, K; Sándor, L; Segato, G F; Sené, M; Sené, R; Sennels, P; Singovsky, A V; Thorsteinsen, T F; Urbán, J; Vasileiadis, G; Venables, M; Villalobos Baillie, O; Volte, A; Votruba, M F; Závada, P

    1997-01-01

    The WA94 experiment uses the production of strange particles and antiparticles to investigate the properties of hot hadronic matter created in heavy--ion interactions. \\PgL, \\PagL, \\PgXm\\ and \\PagXp\\ particle yields and transverse mass spectra are presented for pS interactions. These results are compared with those from SS interactions. Our results are also compared with those from pW and SW interactions of the WA85 experiment.

  4. Tailored charged particle beams from single-component plasmas

    OpenAIRE

    Weber, Tobin Robert

    2010-01-01

    There are currently many uses of positrons as well as a strong potential for novel applications on the horizon. Due to the scarce nature of antimatter, positron research and technology is frequently limited by the ability to collect, confine, and manipulate antiparticles. Trapping large numbers of positrons as nonneutral plasmas has proven ideal in this endeavor. This thesis focuses on exploiting the attractive properties of single-component positron plasmas to develop new tools for antimatte...

  5. On the Relativistic Quantum Plasma

    OpenAIRE

    Ahmad, Rashid; Ikramullah; Sharif, Saqib; Husain, Shakir; Khattak, Fida Younus

    2012-01-01

    Recently the interest in relativistic quantum plasma is increasing primarily to understand the fundamentals of the plasma behaviour and its properties. Mathematical models used to investigate these plasma are still need to be matured. Especially, the relativistic quantum electron-ion plasma are modeled using the Klein-Gordon equation and the Dirac equation for relativistic electrons. However, different properties of these plasma are investigated without anti-particles. We note that in order t...

  6. Heavy leptons

    International Nuclear Information System (INIS)

    A history is given of the discovery of the new heavy lepton and its antiparticle, the tau and anti tau. The experimental goals, means of detection, signature of the particles are all set forth as well as the properties of the new particles, as far as these are known, and their relation to characteristics of other leptons. The accelerators used and those being built are also described

  7. Experimental Hint for Gravitational CP Violation

    OpenAIRE

    Gharibyan, Vahagn

    2016-01-01

    An equality of particle and antiparticle gravitational interactionsholds in general relativity and is supported by indirect observations. Gravity dependence on rotation or spin directionis experimentally constrained only at low energies.Here a method based on high energy Compton scattering is developedto measure the gravitational interaction of accelerated charged particles.Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a gravitati...

  8. A constraint on antigravity of antimatter from precision spectroscopy of simple atoms

    OpenAIRE

    Karshenboim, Savely G.

    2008-01-01

    Consideration of antigravity for antiparticles is an attractive target for various experimental projects. There are a number of theoretical arguments against it but it is not quite clear what kind of experimental data and theoretical suggestions are involved. In this paper we present straightforward arguments against a possibility of antigravity based on a few simple theoretical suggestions and some experimental data. The data are: astrophysical data on rotation of the Solar System in respect...

  9. Entanglement in a QFT Model of Neutrino Oscillations

    OpenAIRE

    Blasone, M.; Dell’Anno, F.; De Siena, S.; Illuminati, F.

    2014-01-01

    Tools of quantum information theory can be exploited to provide a convenient description of the phenomena of particle mixing and flavor oscillations in terms of entanglement, a fundamental quantum resource. We extend such a picture to the domain of quantum field theory where, due to the nontrivial nature of flavor neutrino states, the presence of antiparticles provides additional contributions to flavor entanglement. We use a suitable entanglement measure, the concurrence, that allows e...

  10. Calculations of pair production by Monte Carlo methods

    International Nuclear Information System (INIS)

    We describe some of the technical design issues associated with the production of particle-antiparticle pairs in very large accelerators. To answer these questions requires extensive calculation of Feynman diagrams, in effect multi-dimensional integrals, which we evaluate by Monte Carlo methods on a variety of supercomputers. We present some portable algorithms for generating random numbers on vector and parallel architecture machines. 12 refs., 14 figs

  11. Calculations of pair production by Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Bottcher, C.; Strayer, M.R.

    1991-01-01

    We describe some of the technical design issues associated with the production of particle-antiparticle pairs in very large accelerators. To answer these questions requires extensive calculation of Feynman diagrams, in effect multi-dimensional integrals, which we evaluate by Monte Carlo methods on a variety of supercomputers. We present some portable algorithms for generating random numbers on vector and parallel architecture machines. 12 refs., 14 figs.

  12. Dynamical seesaw mechanism for Dirac neutrinos

    Directory of Open Access Journals (Sweden)

    José W.F. Valle

    2016-04-01

    Full Text Available So far we have not been able to establish that, as theoretically expected, neutrinos are their own anti-particles. Here we propose a dynamical way to account for the Dirac nature of neutrinos and the smallness of their mass in terms of a new variant of the seesaw paradigm in which the energy scale of neutrino mass generation could be accessible to the current LHC experiments.

  13. Phenomenological analysis connecting proton-proton and antiproton-proton elastic scattering

    OpenAIRE

    Avila, R. F.; Campos, S. D.; Menon, M. J.; Montanha, J.

    2006-01-01

    Based on the behavior of the elastic scattering data, we introduce an almost model-independent parametrization for the imaginary part of the scattering amplitude, with the energy and momentum transfer dependences inferred on empirical basis and selected by rigorous theorems and bounds from axiomatic quantum field theory. The corresponding real part is analytically evaluated by means of dispersion relations, allowing connections between particle-particle and particle-antiparticle scattering. S...

  14. Forecasting report. Particle physics

    International Nuclear Information System (INIS)

    The present status of particle and antiparticle physics is examined. As for electromagnetic interactions, the quantum electrodynamics theory is briefly reviewed and the various types of hadronic electromagnetic interactions classified. The theoretical approaches of strong interactions are outlined with hadron spectroscopy. Dynamical models and high energy phenomena are presented. The theoretical problems of weak interaction physics are examined with some experimental aspects. Experimental investigations of the hadron internal structure are briefly surveyed

  15. The GALATEA test facility and a first study of alpha-induced surface events in a Germanium detector

    OpenAIRE

    Irlbeck, Sabine

    2014-01-01

    Germanium detectors are a choice technology in fundamental research. They are suitable for the search for rare events due to their high sensitivity and excellent energy resolution. As an example, the GERDA (GERmanium Detector Array) experiment searching for neutrinoless double beta decay is described. The observation of this decay would resolve the fundamental question whether the neutrino is its own antiparticle. Especially adapted detector technologies and low background rates n...

  16. Multi-strange baryon production at mid-rapidity in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV

    CERN Document Server

    Abelev, Betty Bezverkhny; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agocs, Andras Gabor; Agostinelli, Andrea; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bairathi, Vipul; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bornschein, Joerg; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contin, Giacomo; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Kushal; Das, Debasish; Das, Indranil; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; Deppman, Airton; Oliveira Valeriano De Barros, Gabriel; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Doenigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; D'Erasmo, Ginevra; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gorlich, Lidia Maria; Gomez Jimenez, Ramon; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Costin; Grigoras, Alina Gabriela; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard Richard; Hippolyte, Boris; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Shuaib Ahmad; Khan, Mohammed Mohisin; Khan, Palash; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Minwoo; Kim, Mimae; Kim, Taesoo; Kim, Jinsook; Kim, Do Won; Kim, Dong Jo; Kim, Beomkyu; Kim, Se Yong; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratyev, Valery; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasilij; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Lechman, Mateusz Arkadiusz; Lee, Sung Chul; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Jacobs, Peter Martin; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mazer, Joel Anthony; Mazumder, Rakesh; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexander; Nyatha, Anitha; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Sun Kun; Oh, Saehanseul; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woojin; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Planinic, Mirko; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Pop, Amalia; Porteboeuf, Sarah Julie; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Sudhir; Raniwala, Rashmi; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauch, Wolfgang Hans; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Pradip Kumar; Roy, Christelle Sophie; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Santoro, Romualdo; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Scott, Patrick Aaron; Segato, Gianfranco; Selyuzhenkov, Ilya; Seo, Jeewon; Serci, Sergio; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Satish; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Soltz, Ron Ariel; Song, Myunggeun; Song, Jihye; Soos, Csaba; Soramel, Francesca; Spacek, Michal; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Ter-Minasyan, Astkhik; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Torii, Hisayuki; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urciuoli, Guido Maria; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vande Vyvre, Pierre; Vannucci, Luigi; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vargas Trevino, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Sergey; Voloshin, Kirill; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wagner, Jan; Wang, Yifei; Wang, Yaping; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Kengo; Weber, Michael; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Fan; Zhang, Yonghong; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, You; Zhou, Fengchu; Zhu, Xiangrong; Zhu, Jianlin; Zhu, Jianhui; Zhu, Hongsheng; Zichichi, Antonino; Zimmermann, Markus Bernhard; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2014-01-01

    The ALICE experiment at the LHC has measured the production of $\\Xi^-$ and $\\Omega^-$ baryons and their anti-particles in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV. The transverse momentum spectra at mid-rapidity (|y| $ ~ 150 and saturate thereafter. The enhancements (yields per participant nucleon relative to p-p collisions) increase both with the strangeness content of the baryon and with centrality, but are less pronounced than at lower energies.

  17. Neutrino Oscillations, Lorentz/CPT Violation, and Dark Energy

    CERN Document Server

    Ando, Shin'ichiro; Mocioiu, Irina

    2009-01-01

    If dark energy (DE) couples to neutrinos, then there may be apparent violations of Lorentz/CPT invariance in neutrino oscillations. The DE-induced Lorentz/CPT violation takes a specific form that introduces neutrino oscillations that are energy independent, differ for particles and antiparticles, and can lead to novel effects for neutrinos propagating through matter. We show that ultra-high-energy neutrinos may provide one avenue to seek this type of Lorentz/CPT violation in \

  18. Baryon Asymmetry, Inflation and Squeezed States

    OpenAIRE

    Bambah, Bindu A.; Chaitanya, K. V. S. Shiv; Mukku, C.

    2006-01-01

    We use the general formalism of squeezed rotated states to calculate baryon asymmetry in the wake of inflation through parametric amplification. We base our analysis on a B and CP violating Lagrangian in an isotropically expanding universe. The B and CP violating terms originate from the coupling of complex fields with non-zero baryon number to a complex background inflaton field. We show that a differential amplification of particle and anti-particle modes gives rise to baryon asymmetry.

  19. The standard model of quantum physics in Clifford algebra

    CERN Document Server

    Daviau, Claude

    2016-01-01

    We extend to gravitation our previous study of a quantum wave for all particles and antiparticles of each generation (electron + neutrino + u and d quarks for instance). This wave equation is form invariant under Cl3*, then relativistic invariant. It is gauge invariant under the gauge group of the standard model, with a mass term: this was impossible before, and the consequence was an impossibility to link gauge interactions and gravitation.

  20. Holographic Schwinger effect in non-relativistic backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Fadafan, Kazem Bitaghsir, E-mail: kbitaghsir@gmail.com; Saiedi, Fateme, E-mail: fatimasaiedi@yahoo.com [Physics Department, University of Shahrood, Shahrood (Iran, Islamic Republic of)

    2015-12-22

    Using the AdS/CFT correspondence, we study the Schwinger effect in strongly coupled theories with an anisotropic scaling symmetry in time and spatial directions. We consider Lifshitz and hyperscaling violation theories and use their gravity duals. It is shown that the shape of the potential barrier depends on the parameters of theory. One concludes that the production rate for the pair creation of particle and antiparticle will be easier in the Lifshitz theory.

  1. Neutrinoless Double Beta Decay Experiments

    OpenAIRE

    Zuber, K.

    2014-01-01

    Neutrinoless double beta decay is the only process known so far able to test the neutrino intrinsic nature: its experimental observation would imply that the lepton number is violated by two units and prove that neutrinos have a Majorana mass components, being their own anti-particle. While several experiments searching for such a rare decay have been performed in the past, a new generation of experiments using different isotopes and techniques have recently released their results or are taki...

  2. Holographic Schwinger effect in non-relativistic backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Fadafan, Kazem Bitaghsir; Saiedi, Fateme [University of Shahrood, Physics Department, Shahrood (Iran, Islamic Republic of)

    2015-12-15

    Using the AdS/CFT correspondence, we study the Schwinger effect in strongly coupled theories with an anisotropic scaling symmetry in time and spatial directions. We consider Lifshitz and hyperscaling violation theories and use their gravity duals. It is shown that the shape of the potential barrier depends on the parameters of theory. One concludes that the production rate for the pair creation of particle and antiparticle will be easier in the Lifshitz theory. (orig.)

  3. Golden Jubilee photos: Welcome to the antiworld

    CERN Multimedia

    2004-01-01

    Professor Walter Oelert, leader of the team which created the first atoms of antihydrogen at the LEAR (Low Energy Antiproton Ring).Antiparticles were predicted in the work of Paul Dirac in the 1920's, since when physicists have identified all the necessary antiparticle constituents of an antiparticle atom - antielectrons (positrons), antiprotons and antineutrons. However, an antihydrogen atom wasn't produced until the PS210 experiment at CERN in 1995. PS210 used the LEAR accelerator, which was then nearing the end of its lifetime (see Bulletin 28/04), so everything in the experiment had to work first time. After installing the equipment in spring 1995, the experiment took place in the autumn, in two hour periods over 4 weeks. The experiment team collided energetic antiprotons from LEAR with a heavy element, a challenge for them as well as the LEAR operators. Proving that antihydrogen atoms had been formed required several more weeks of data analysis, but the announcement that nine antihydrogen atoms had been ...

  4. SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500

    CERN Multimedia

    2004-01-01

    DATE TIME LECTURER TITLE Monday 9 August 09:15 - 10:00 T. Nakada (CERN) CP Violation: Asymmetry Between Particle and Antiparticle (2/4) 10:15 - 11:00 J.-J. Gomez-Cadenas (IFIC) Neutrino Physics (3/4) 11:15 - 12:00 J. Lesgourgues (CERN) Introduction to Cosmology (1/4) Tuesday 10 August 09:15 - 10:00 T. Nakada (CERN) CP Violation: Asymmetry Between Particle and Antiparticle(3/4) 10:15 - 11:00 J.-J. Gomez-Cadenas (IFIC) Neutrino Physics (4/4) 11:15 - 12:00 J.-J. Gomez-Cadenas (IFIC) T. Nakada (CERN) Discussion Session Wed. 11 August 09:15 - 10:00 T. Nakada (CERN) CP Violation: Asymmetry Between Particle and Antiparticle(4/4) 10:15 - 11:00 J. Lesgourgues (CERN) Introduction to Cosmology (2/4) 11:15 - 12:00 R. Landua (CERN) Antimatter in the Laboratory (1/2) 14:00 - 15:00 P. Le Brun (CERN) Superconductivity and cryogenics in particle accelerators Thursday 12 August 09:15 - 10:00 J. Lesgourgues (CERN) Introduction to Cosmology (3/4) 10:15 - 11:00 R. Landua (CERN) Antimatter in th...

  5. One century of cosmic rays - A particle physicist's view

    Science.gov (United States)

    Sutton, Christine

    2015-12-01

    Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  6. High-pT azimuthal correlations of neutral strange baryons and mesons in STAR at RHIC

    International Nuclear Information System (INIS)

    We present results on two-particle azimuthal correlations of high-pT neutral strange baryons (Λ,Λ-bar) and mesons (KS0) associated with non-identified charged particles in d+Au and Au+Au collisions at √(sNN) = 200 GeV. In particular, we discuss properties of the near-side yield of associated charged particles as a function of centrality, transverse momentum and zT, as well as possible baryon/meson and particle/antiparticle differences. The results are compared to the proton and pion triggered correlations and to fragmentation and recombination models

  7. The antimatter gravitational field

    CERN Document Server

    Chiarelli, Piero

    2015-01-01

    In this work the author derives the Galilean limit of the gravitational field of antimatter by using the hydrodynamic quantum gravity equations that comprehend the antiparticle impulse-energy tensor. The result shows that, even the antimatter mass is a positive valued quantity, its presence gives a negative 4-d space curvature respect to that one of the matter as a consequence of the backward propagation in time of the antimatter wave function. The result leads to the consequence that the null space curvature of photons undergoing to electron-positron couples generation (or annihilation) does not change during the process. A laboratory experiment to validate the theory output is also proposed .

  8. Search for a narrow charmed baryonic state decaying to $D^{*\\pm}p^{\\mp}$ in ep collisions at HERA

    CERN Document Server

    Chekanov, S; Abramowicz, H; Adamczyk, L; Adamus, M; Adler, V; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Bauerdick, L A T; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bodmann, B; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Catterall, C D; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Cottrell, A; D'Agostini, Giulio; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fricke, U; Fusayasu, T; Gabareen, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Gliga, S; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G; Hartner, G F; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jones, T W; Kagawa, S; Kahle, B; Kaji, H; Kananov, S; Kappes, A; Kataoka, Y; Yamazaki, M; Katkov, I I; Katz, U F; Kcira, D; Khein, L A; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D; Kramberger, G; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lainesse, J; Lammers, S; Lee, J H; Lee, S W; Lelas, D; Levchenko, B B; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukina, O Yu; Lupi, A; Luzniak, P; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Milite, M; Mirea, A; Monaco, V; Montanari, A; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Nishimura, T; Notz, D; Nowak, R J; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Patel, S; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Petrucci, M C; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Riveline, U; Karshon, M; Robins, S; Rodrigues, E; Rosin, M; Rurua, L; Ruspa, M; Sacchi, R; Salehi, H; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Sciulli, F; Scott, J; Selonke, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stoesslein, U; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Walsh, R; Wang, M; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yoshida, R; Youngman, C; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J

    2004-01-01

    A resonance search has been made in the D^*+/- p^-/+ invariant-mass spectrum with the ZEUS detector at HERA using an integrated luminosity of 126 pb^-1. The decay channels D^*+ -> D^0 pi^+_s -> (K^- pi^+) pi^+_s and D^*+ -> D^0 pi^+_s -> (K^- pi^+ pi^+ pi^-) pi^+_s (and the corresponding antiparticle decays) were used to identify D^*+/- mesons. No resonance structure was observed in the D^*+/- p^-/+ mass spectrum from more than 60000 reconstructed D^*+/- mesons. The results are not compatible with a report of the H1 Collaboration of a charmed pentaquark, Theta^0_c.

  9. Measurements of quarkonia with the central detectors of ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Wolfgang

    2008-03-26

    The production of quarkonia, the bound state of an heavy quark with its anti-particle, has for a long time been seen as a key process to understand the properties of nuclear matter in a relativistic heavy-ion collision. This thesis presents studies on the production of quarkonia in heavy-ion collisions at the new Large Hadron collider (LHC). The focus is set on the decay of J/Psi and Upsilon-states into their di-electronic decay channel, measured within the central detectors of the ALICE detector. (orig.)

  10. Detecting Asymmetric Dark Matter in the Sun with Neutrinos

    OpenAIRE

    Murase, Kohta; Shoemaker, Ian M.

    2016-01-01

    Dark Matter (DM) may have a relic density that is in part determined by a particle/antiparticle asymmetry, much like baryons. If this is the case, it can accumulate in stars like the Sun to sizable number densities and annihilate to Standard Model (SM) particles including neutrinos. We show that the combination of neutrino telescope and direct detection data can be used in conjunction to determine or constrain the DM asymmetry from data. Depending on the DM mass, the current neutrino data fro...

  11. Beyond the SM ΔL=2 operators and neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Neutrinoless double beta decay is a lepton number violating process (ΔL=2) whose observation would prove that neutrinos are Majorana particles, i.e. their own antiparticles. The simplest realisation of this process (mediation by light massive Majorana neutrinos) may however interfere with other lepton number violating operators. Therefore, the possibility to reliably extract neutrino parameters from the experimental results may be affected by this interplay. We discuss the effects of various beyond the SM ΔL=2 processes at higher scales on the measurement of the effective Majorana mass and their implications on different parameters in the neutrino sector.

  12. Is the non observation of neutrinoless double beta decay a question of sensitivity?

    International Nuclear Information System (INIS)

    The hypothetical neutrinoless double beta decay is possible only if the neutrino is a truly neutral particle and if it is massive. A truly neutral particle (e.g. a particle identical with its antiparticle) should have all its algebraic intrinsic properties equal to zero, in particular, its lepton number should be 0. Now, since the neutrino is a lepton, its lepton number should be 1. This contradiction would lead to conclude that neutrinoless double beta decay could not take place in nature. This conclusion is, up to now, in agreement with persistent failures to put this long sought hypothetical key decay into evidence despite huge efforts dedicated to this aim

  13. Is the non-observation of neutrinoless double beta decay a question of sensitivity?

    International Nuclear Information System (INIS)

    Hypothetical neutrinoless double beta decay is possible only if the neutrino is a truly neutral particle and if it is massive. A truly neutral particle (e.g. a particle identical with its antiparticle) should have all its algebraic intrinsic properties equal to zero, in particular, its lepton number should be 0. Now, since the neutrino is a lepton, its lepton number should be 1. This contradiction would lead one to conclude that neutrinoless double beta decay cannot take place in nature. This conclusion is, up to now, in agreement with persistent failures to find evidence for this long sought key hypothetical decay despite huge efforts dedicated to this aim. (author)

  14. Bose-Einstein condensation of spin-1 field in an Einstein universe

    International Nuclear Information System (INIS)

    In this paper we investigate the Bose-Einstein condensation of massive spin-1 particles in an Einstein universe. The system is considered under relativistic conditions taking into consideration the possibility of particle-antiparticle pair production. An exact expression for the charge density is obtained, then certain approximations are employed in order to obtain the solutions in closed form. A discussion of the approximations employed in this and other work is given. The effects of finite-size and spin-curvature coupling are emphasized. (author)

  15. Baryon-antibaryon asymmetry in a model with domain structure and soft CP violation

    International Nuclear Information System (INIS)

    We consider a model with an abelian gauge symmetry, a Higgs potential involving two scalar fields, and two spinor fields coupled to the scalars through Yukawa couplings. The model accomodates soft violation of charge conjugation, and a domain structure of the universe with two different types of domains, which have identical energy but are governed by different effective lagrangians. The effective lagrangian has complex c-number coefficients that become parts of effective coupling constants, and these are different in the two kinds of domains. In spite of that fact the model neither predicts any domain-dependent effects, nor any particle-antiparticle asymmetries within domains. (orig.)

  16. Measurement of the positronium 1 3S1–2 3S1 interval by continuous-wave two-photon excitation

    OpenAIRE

    Fee, M.; Chu, S.; Mills, A.; Chichester, R.; Zuckerman, D.; Shaw, E; Danzmann, K.

    1993-01-01

    Positronium is the quasistable bound system consisting of an electron and its antiparticle, the positron. Its energy levels can be explained to a high degree of accuracy by the electromagnetic interaction, affording an ideal test of the quantum electrodynamic (QED) theory of bound systems. We have measured the 1 3S1–2 3S1 interval in positronium by Doppler-free two-photon spectroscopy to be 1 233 607 216.4±3.2 MHz. We employ continous-wave (cw) excitation to eliminate the problems inherent wi...

  17. Big Bang Day: 5 Particles - 5. The Next Particle

    CERN Multimedia

    Franck Close

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 5. The Next Particle The "sparticle" - a super symmetric partner to all the known particles could be the answer to uniting all the known particles and their interactions under one grand theoretical pattern of activity. But how do researchers know where to look for such phenomena and how do they know if they find them? Simon Singh reviews the next particle that physicists would like to find if the current particle theories are to ring true.

  18. Recent results of the CPLEAR experiment

    International Nuclear Information System (INIS)

    The CPLEAR experiment at CERN has been designed to measure CP and T violating effects in the neutral kaon system by observing particle-antiparticle asymmetries. The motivation and the physics program of CPLEAR is presented and first analyses of the K0, anti K0, to π+π-, π0π0 and π+π-π0 decays are discussed. Special emphasis is given to the recent results of the measurement of the CP violating parameters φ+- and η+- based on first data taken in 1990/1991. (orig.)

  19. Wormholes and entanglement

    Science.gov (United States)

    Baez, John C.; Vicary, Jamie

    2014-11-01

    Maldacena and Susskind have proposed a correspondence between wormholes and entanglement, dubbed ER=EPR. We study this in the context of three-dimensional topological quantum field theory (TQFT), where we show that the formation of a wormhole is the same process as creating a particle-antiparticle pair. A key feature of the ER=EPR proposal is that certain apparently entangled degrees of freedom turn out to be the same. We name this phenomenon ‘fake entanglement’, and show how it arises in our TQFT model.

  20. Wormholes and Entanglement

    CERN Document Server

    Baez, John C

    2014-01-01

    Maldacena and Susskind have proposed a correspondence between wormholes and entanglement, dubbed ER=EPR. We study this in the context of 3d topological quantum field theory, where we show that the formation of a wormhole is the same process as creating a particle-antiparticle pair. A key feature of the ER=EPR proposal is that certain apparently entangled degrees of freedom turn out to be the same. We name this phenomenon "fake entanglement", and show how it arises in our topological quantum field theory model.

  1. Measurements of quarkonia with the central detectors of ALICE

    International Nuclear Information System (INIS)

    The production of quarkonia, the bound state of an heavy quark with its anti-particle, has for a long time been seen as a key process to understand the properties of nuclear matter in a relativistic heavy-ion collision. This thesis presents studies on the production of quarkonia in heavy-ion collisions at the new Large Hadron collider (LHC). The focus is set on the decay of J/Psi and Upsilon-states into their di-electronic decay channel, measured within the central detectors of the ALICE detector. (orig.)

  2. Strange particle production p-Be, p-Pb, Pb-Pb at 158 A GeV/c (WA97 experiment)

    CERN Document Server

    Antinori, Federico; Beusch, Werner; Bloodworth, Ian J; Caliandro, R; Carrer, N; Di Bari, D; Di Liberto, S; Elia, D; Evans, D; Fanebust, K; Fini, R A; Ftácnik, J; Ghidini, B; Grella, G; Helstrup, H; Holme, A K; Huss, D; Jacholkowski, A; Jones, G T; Kinson, J B; Knudson, K; Králik, I; Lenti, V; Lietava, R; Loconsole, R A; Løvhøiden, G; Manzari, V; Mazzoni, M A; Meddi, F; Michalon, A; Michalon-Mentzer, M E; Morando, M; Norman, P I; Pastircák, B; Quercigh, Emanuele; Romano, G; Safarík, K; Sándor, L; Segato, G F; Staroba, P; Thompson, M; Thorsteinsen, T F; Torrieri, G D; Tveter, T S; Urbán, J; Villalobos Baillie, O; Virgili, T; Votruba, M F; Závada, P

    2001-01-01

    The CERN experiment WA97, which studies strange particle production at central rapidity in Pb-Pb, p-Pb, p-Be collisions at 158 A GeV/c, has already reported a pronounced enhancement of hyperon production. This is considered as a sensitive signature for a phase transition to a new state of matter-the quark gluon plasma (QGP). A comprehensive study, including the most recent results, of yields and transverse mass spectra of K/sub S//sup 0/, Lambda , Xi /sup -/, Omega /sup -/ (and antiparticles) and negative particles as a function of the number of nucleons participating in the collisions is presented. (11 refs).

  3. Entanglement in a QFT Model of Neutrino Oscillations

    International Nuclear Information System (INIS)

    Tools of quantum information theory can be exploited to provide a convenient description of the phenomena of particle mixing and flavor oscillations in terms of entanglement, a fundamental quantum resource. We extend such a picture to the domain of quantum field theory where, due to the nontrivial nature of flavor neutrino states, the presence of antiparticles provides additional contributions to flavor entanglement. We use a suitable entanglement measure, the concurrence, that allows extracting the two-mode (flavor) entanglement from the full multimode, multiparticle flavor neutrino states

  4. Basic quantum theory and measurement from the viewpoint of local quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Freie Univ. Berlin (Germany). Inst. fuer Theoretische Physik

    1999-04-01

    Several aspects of the manifestation of the causality principle in LQP (local quantum physics) are reviewed or presented. Particular emphasis is given to those properties which are typical for LQP in the sense that they do go beyond the structure of general quantum theory and even escape the Lagrangian quantization methods of standard QFT. The most remarkable are those relating causality to the modular Tomita-Takesaki theory, since they bring in the basic concepts of antiparticles, charge superselections as well as internal and external (geometric and hidden) symmetries. (author)

  5. Dirac's Quantum Phase Problem

    OpenAIRE

    Sperling, J.; Vogel, W

    2009-01-01

    In 1927 the great physicist Paul A. M. Dirac failed to provide a consistent quantum description of the phase of a radiation field. Only one year later, he developed the famous Dirac theory of the electron, which led to the anti-particle -- the positron. We show that the reason for Dirac's failure with the phase problem bears a striking resemblance to his ingenious insight into the nature of the electron. For a correct quantum description of the phase of a radiation field it is necessary to ta...

  6. Theoretical foundation for treating decays allowed by the Okubo-Zweig-Iizuka rule and related phenomena

    International Nuclear Information System (INIS)

    We derive an expression for the width of unstable mesons whose decays are allowed by the Okubo-Zweig-Iizuka rule. The starting point is an exact expression. In the lattice version a strong-coupling and hopping-parameter expansion of it yields the specific nonperturbative factor for particle-antiparticle creation in a strong field. A more general treatment leads to an expression for the width involving only one universal constant independent of flavor and state. The relation of our formulation to earlier phenomenological approaches is discussed

  7. Antinuclei production in heavy ion collisions at CERN SPS

    CERN Document Server

    Arsenescu, R; Beck, H P; Borer, K; Bussière, A; Elsener, K; Gorodetzky, P; Guillaud, J P; Hess, P; Kabana, S; Klingenberg, R; Lehmann, G; Lindén, T; Lohmann, K D; Mommsen, R K; Moser, U; Pretzl, K; Schacher, J; Spiwoks, R; Stoffel, F; Tuominiemi, J; Weber, M

    1999-01-01

    Besides the dedicated search for strangelets NA52 measures light (anti)particle and (anti)nuclei production over a wide range of rapidity. Compared to previous runs the statistics has been increased in the 1998 run by more than one order of magnitude for negatively charged objects at different spectrometer rigidities. At a rigidity of -20 GeV/c we measured 10 sup 6 p-bar, 10 sup 3 d-bar and one sup 3 He-bar without any centrality requirements. These preliminary results together with previous measurements near central rapidity are discussed in the framework of a thermodynamical and a coalescence model.

  8. Neutrino Cloud Instabilities Just above the Neutrino Sphere of a Supernova.

    Science.gov (United States)

    Sawyer, R F

    2016-02-26

    Most treatments of neutrino flavor evolution, above a surface of the last scattering, take identical angular distributions on this surface for the different initial (unmixed) flavors, and for particles and antiparticles. Differences in these distributions must be present, as a result of the species-dependent scattering cross sections lower in the star. These lead to a new set of nonlinear equations, unstable even at the initial surface with respect to perturbations that break all-over spherical symmetry. There could be important consequences for explosion dynamics as well as for the neutrino pulse in the outer regions. PMID:26967405

  9. Relativistic quantum mechanical spin-1 wave equation in 2+1 dimensional spacetime

    CERN Document Server

    Dernek, Mustafa; Sucu, Yusuf; Unal, Nuri

    2016-01-01

    In the study, we introduce a relativistic quantum mechanical wave equation of the spin-1 particle as an excited state of the zitterbewegung and show that it is consistent with the 2+1 dimensional Proca theory. At the same time, we see that this equation has two eigenstates, particle and antiparticle states or negative and positive energy eigenstates, respectively, in the rest frame and the spin-1 matrices satisfy $SO(2,1)$ spin algebra. As practical applications, we derive the exact solutions of the equation in the presence of a constant magnetic field and a curved spacetime. From these solutions, we construct the current components of the spin-1 particle.

  10. Light (anti-)nuclei production and flow in relativistic heavy-ion collisions

    CERN Document Server

    Zhu, Lilin; Yin, Xuejiao

    2015-01-01

    Using the coalescence model based on the phase-space distributions of protons, neutrons, Lambdas and their antiparticles from a multiphase transport (AMPT) model, we study the production of deuteron, triton, helium 3, hypertriton, hyperhelium 3 and their antinuclei in Pb+Pb collisions at $\\sqrt{s_{NN}}=2.76$ TeV. The resulting transverse momentum spectra, elliptic flows and coalescence parameters for these nuclei are presented and compared with available experimental data. We also show the constituent number scaled elliptic flows of these nuclei and discuss their implications.

  11. Classical and quantum mechanics of the relativistic particle

    International Nuclear Information System (INIS)

    It is shown that the standard actions of the relativistic point-like particle are adapted within the corresponding interpretation to describe particle and antiparticle at the same time. Special gauge in which this possibility realize naturally both in classical and in quantum theory is pointed out. A consistent procedure of canonical quantization of relativistic point-like particle without and with spin is considered. the operator formulation of the system in question is manifestly constructed. So built quantum mechanics proves to be equivalent for a spinless particle to Klein-Gordon theory and for spinning particle to Dirac theory. (author). 14 refs

  12. CP, T, and CPT tests in neutral Kaon decays using tagged K0, K0at LEAR

    International Nuclear Information System (INIS)

    The CPLEAR experiment at CERN measures particle-antiparticle asymmetries of strangeness-tagged K0, K0 decays to two-pion, three-pion, and semileptonic final states. The technique of CPLEAR is an alternative approach to previous CP-violation studies. It provides complementary information with different systematics and gives access to novel measurements. The precision of the CP-violation parameters η+- for π+π-, η+-0 for π+π-π0 and of the T-violation parameter εT for π±eminus-plusν will be discussed for the data taken between 1990--1992. copyright 1995 American Institute of Physics

  13. A one-dimensional lattice model for a quantum mechanical free particle

    Science.gov (United States)

    de La Torre, A. C.; Daleo, A.

    2000-01-01

    Two types of particles, A and B with their corresponding antiparticles, are defined in a onedimensional cyclic lattice with an odd number of sites. In each step of time evolution, each particle acts as a source for the polarization field of the other type of particle with nonlocal action but with an effect decreasing with the distance: A to \\cdots bar BBbar BBbar B \\cdots ;B to \\cdots Abar AAbar AA \\cdots . It is shown that the combined distribution of these particles obeys the time evolution of a free particle as given by quantum mechanics.

  14. Exact correspondence between classical and Dirac-Pauli spinors in the weak-field limit of static and homogeneous electromagnetic fields

    OpenAIRE

    Chiou, Dah-Wei; Chen, Tsung-Wei

    2015-01-01

    It has long been speculated that the Dirac or, more generally, the Dirac-Pauli spinor in the Foldy-Wouthuysen (FW) representation should behave like a classical relativistic spinor in the low-energy limit when the particle-antiparticle interaction is negligible. In the weak-field limit of static and homogeneous electromagnetic fields, we rigorously prove, by applying Kutzelnigg's method inductively on the orders of $1/c$ in the power series, that it is indeed the case: the FW transformation o...

  15. Nonrelativistic factorizable scattering theory of multicomponent Calogero-Sutherland model

    CERN Document Server

    Ahn, C; Nam, S; Ahn, Changrim; Lee, Kong Ju Bock; Nam, Soonkeon

    1995-01-01

    We relate two integrable models in (1+1) dimensions, namely, multicomponent Calogero-Sutherland model with particles and antiparticles interacting via the hyperbolic potential and the nonrelativistic factorizable S-matrix theory with SU(N)-invariance. We find complete solutions of the Yang-Baxter equations without implementing the crossing symmetry, and one of them is identified with the scattering amplitudes derived from the Schr\\"{o}dinger equation of the Calogero-Sutherland model. This particular solution is of interest in that it cannot be obtained as a nonrelativistic limit of any known relativistic solutions of the SU(N)-invariant Yang-Baxter equations.

  16. Modification of meson properties in the vicinty of nuclei

    Directory of Open Access Journals (Sweden)

    Filip Peter

    2014-01-01

    Full Text Available We suggest that modification of meson properties (lifetimes and branching ratios can occur due to the interaction of constituent quark magnetic moments with strong magnetic fields present in the close vicinity of nuclei. A superposition of (J =0 and (J =1, mz =0 particle-antiparticle quantum states (as observed for ortho-Positronium may occur also in the case of quarkonium states J/Ψ, ηc ϒ, ηb in heavy ion collisions. We speculate on possible modification of η(548 meson properties (related to C parity and CP violation in strong magnetic fields which are present in the vicinity of nuclei.

  17. Premiere production d'atomes d'antimatiere au CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1996-01-01

    In September 1995, Prof. Walter Oelert and an international team from J lich IKP-KFA, Erlangen-Nuernberg University, GSI Darmstadt and Genoa University succeeded for the first time in synthesising atoms of antimatter from their constituent antiparticles. Nine of these atoms were produced in collisions between antiprotons and xenon atoms over a period of three weeks. Each one remained in existence for about forty billionths of a second, travelled at nearly the speed of light over a path of ten metres and then annihilated with ordinary matter. The annihilation produced the signal which showed that the anti-atoms had been created.

  18. Intriguing aspects in baryon production at relativistic heavy-ion collider

    Indian Academy of Sciences (India)

    Huan Zhong Huang

    2003-05-01

    We review experimental results on baryon production at mid-rapidity in nucleus–nucleus collisions at RHIC. Outstanding physics issues include the mechanism for baryon–anti-baryon production from thermally equilibrated partons, the dynamics of baryon number transport and the evolution dynamics of baryons during hadronic expansion before the final freeze-out. We highlight recent measurements on the production of protons, lambdas and their anti-particles in terms of these physics issues. We propose a physical mechanism of topological baryon formation through gluon junction hadronization and future measurements, which can test this hypothesis experimentally.

  19. Essence of Special Relativity, Reduced Dirac Equation and Antigravity

    OpenAIRE

    Ni, Guang-Jiong; Chen, Suqing; Lou, Senyue; Xu, Jianjun

    2010-01-01

    The essence of special relativity is hiding in the equal existence of particle and antiparticle, which can be expressed by two discrete symmetries within one inertial frame --- the invariance under the (newly defined) space-time inversion (${\\bf x}\\to -{\\bf x},t\\to -t$), or equivalently, the invariance under a mass inversion ($m\\to -m$). The problems discussed are: the evolution of the $CPT$ invariance into a basic postulate, an unique solution to the original puzzle in Einstein-Podolsky-Rose...

  20. Antigravity and black holes

    CERN Document Server

    Hajdukovic, D

    2006-01-01

    We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.

  1. One century of cosmic rays – A particle physicist's view

    Directory of Open Access Journals (Sweden)

    Sutton Christine

    2015-01-01

    Full Text Available Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  2. Lifetime and mixing of B hadrons

    International Nuclear Information System (INIS)

    Experimental results concerning the lifetime and mixing of B hadrons are reviewed. The different techniques used to extract the inclusive B lifetime are discussed, and the results are combined to give an overall world average of τB=1.48±0.03 ps. Measurements of the exclusive B hadron lifetimes are described, and their individual world averages computed. The mixing of the B0 mesons to their antiparticles is described, and the time-integrated measurements of the probability of mixing are reviewed. Finally the first evidence for the time-dependent nature of B0B0-bar oscillation is presented. (author). 46 refs., 24 figs., 5 tabs

  3. Basic quantum theory and measurement from the viewpoint of local quantum physics

    International Nuclear Information System (INIS)

    Several aspects of the manifestation of the causality principle in LQP (local quantum physics) are reviewed or presented. Particular emphasis is given to those properties which are typical for LQP in the sense that they do go beyond the structure of general quantum theory and even escape the Lagrangian quantization methods of standard QFT. The most remarkable are those relating causality to the modular Tomita-Takesaki theory, since they bring in the basic concepts of antiparticles, charge superselections as well as internal and external (geometric and hidden) symmetries. (author)

  4. Probing the Origin of Neutrino Masses and Mixings via Doubly Charged Scalars: Complementarity of the Intensity and the Energy Frontiers

    CERN Document Server

    Geib, Tanja; Merle, Alexander; No, Jose Miguel; Panizzi, Luca

    2015-01-01

    We discuss how the intensity and the energy frontiers provide complementary constraints within a minimal model of neutrino mass involving just one new field beyond the Standard Model at accessible energy, namely a doubly charged scalar $S^{++}$ and its antiparticle $S^{--}$. In particular we focus on the complementarity between high-energy LHC searches and low-energy probes such as lepton flavor violation. Our setting is a prime example of how high- and low-energy physics can cross-fertilize each other.

  5. Physics of the universe

    CERN Document Server

    Sachs, Mendel

    2010-01-01

    This book presents a new approach to the subject of cosmology. It fully exploits Einstein's theory of general relativity. It is found that the most general formal expression of the theory replaces the (10-component) tensor formalism with a (16-component) quaternion formalism. This leads to a unified field theory, where one field incorporates gravitation and electromagnetism. The theory predicts an oscillating universe cosmology with a spiral configuration. Dark matter is explained in terms of a sea of particle-antiparticle pairs, each in a particular (derived) ground state. This leads to an ex

  6. Fermion particle production in semiclassical Boltzmann-Vlasov transport theory

    International Nuclear Information System (INIS)

    We present numerical solutions of the semiclassical Boltzmann-Vlasov equation for fermion particle-antiparticle production by strong electric fields in boost-invariant coordinates in (1+1) and (3+1) dimensional QED. We compare the Boltzmann-Vlasov results with those of recent quantum field theory calculations and find good agreement. We conclude that extending the Boltzmann-Vlasov approach to the case of QCD should allow us to do a thorough investigation of how backreaction affects recent results on the dependence of the transverse momentum distribution of quarks and antiquarks on a second Casimir invariant of color SU(3).

  7. Lorentz-violating spinor electrodynamics and Penning traps

    CERN Document Server

    Ding, Yunhua

    2016-01-01

    The prospects are explored for testing Lorentz- and CPT-violating quantum electrodynamics in experiments with Penning traps. We present the Lagrange density of Lorentz-violating spinor electrodynamics with operators of mass dimensions up to six, and we discuss some of its properties. The theory is used to derive Lorentz- and CPT-violating perturbative shifts of the energy levels of a particle confined to a Penning trap. Observable signals are discussed for trapped electrons, positrons, protons, and antiprotons. Existing experimental measurements on anomaly frequencies are used to extract new or improved bounds on numerous coefficients for Lorentz and CPT violation, using sidereal variations of observables and comparisons between particles and antiparticles.

  8. Strange Particle Production in pp Collisions at sqrt(s) = 0.9 and 7 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, Vardan [Yerevan Physics Inst. (Armenia); et al.

    2011-05-01

    The spectra of strange hadrons are measured in proton-proton collisions, recorded by the CMS experiment at the CERN LHC, at centre-of-mass energies of 0.9 and 7 TeV. The K0_s, Lambda, and Xi^- particles and their antiparticles are reconstructed from their decay topologies and the production rates are measured as functions of rapidity and transverse momentum. The results are compared to other experiments and to predictions of the PYTHIA Monte Carlo program. The transverse momentum distributions are found to differ substantially from the PYTHIA results and the production rates exceed the predictions by up to a factor of three.

  9. Search for pair production of vector-like T quarks in the lepton plus jets final state

    CERN Document Server

    CMS Collaboration

    2016-01-01

    We present a search for a massive vector-like quark T, with charge 2$e$/3, that is pair-produced together with its antiparticle. In 2015, proton-proton collisions were collected by the CMS experiment at the Large Hadron Collider at a center-of-mass energy of 13 TeV. We analyze 2.3 fb$^{-1}$ of integrated luminosity for evidence of T quark pair production, assuming the T quark is able to decay through three channels, bW, tZ, and tH. This search is performed in final states with one charged lepton and several jets.

  10. Is There Any Klein Paradox? Look at Graphene!

    CERN Document Server

    Dragoman, D

    2007-01-01

    It is demonstrated that both transmission and reflection coefficients associated to the Klein paradox at a step barrier are positive and less than unity, so that the particle-antiparticle pair creation mechanism commonly linked to this phenomenon is unnecessary. An experimental configuration using a graphene sheet is proposed to decide between the results obtained in this paper and the common Klein paradox theory, which imply negative transmission and higher-than-unity reflection coefficients. Graphene is a solid-state testing ground for quantum electrodynamics phenomena involving massless Dirac fermions.

  11. Probing the origin of neutrino masses and mixings via doubly charged scalars: Complementarity of the intensity and the energy frontiers

    Science.gov (United States)

    Geib, Tanja; King, Stephen F.; Merle, Alexander; No, Jose Miguel; Panizzi, Luca

    2016-04-01

    We discuss how the intensity and the energy frontiers provide complementary constraints within a minimal model of neutrino mass involving just one new field beyond the Standard Model at accessible energy, namely a doubly charged scalar S++ and its antiparticle S-- . In particular, we focus on the complementarity between high-energy LHC searches and low-energy probes such as lepton flavor violation. Our setting is a prime example of how high- and low-energy physics can cross-fertilize each other.

  12. Υ(1S)→γ+noninteracting particles

    International Nuclear Information System (INIS)

    We consider the decay of Υ(1S) particles produced at CESR into a photon which is observed by the CLEO detector plus particles which are not seen. These could be real particles which fall outside of our acceptance, or particles which are noninteracting. We report the results of our search fo the process Υ(1S)→γ+''unseen'' for photon energies >1 GeV, obtaining limits for the case where ''unseen'' is either a single particle or a particle-antiparticle pair. Our upper limits represent the highest sensitivity measurements for such decays to date

  13. CP violation

    CERN Document Server

    1989-01-01

    Contents: CP Phenomenology: Introduction to CP Violation (C Jarlskog); CP-Violation in the K 0 -K 0 -System (K Kleinknecht); The Quark Mixing Matrix, Charm Decays and B Decays (S Stone); The Question of CP Noninvariance - As Seen through the Eyes of Neutral Beauty (I I Bigi et al.); In Search of CP Noninvariance in Heavy Quark Systems (L-L Chau); CP Violation at High Energy e + e - Colliders (J Bernabéu & M B Gavela); CP Violation in the Standard Model with Four Families (A Datta & E A Paschos); CP Effects When Neutrinos are their Own Antiparticles (B Kayser); On Spontaneous CP Violation Trigg

  14. Die grosse Lamentei

    CERN Multimedia

    Weisskopf, Gertrude

    1964-01-01

    Because English and French are the official languages of CERN, and because the translation of every item in CERN COURIER from one language into the other already leads to sufficient trouble, many readers have unfortunately to be content with a journal that is not of their own tongue. As a very slight recompense for some of them, the following contribution, alluding to the litteral translation of the word ' antiparticle ', is included in its original German form ; others may like to amuse themselves by producing their own English or French versions.

  15. Identified hadron spectra from PHOBOS

    Science.gov (United States)

    Veres, Gábor I.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyslouch, B.; Zhang, J.

    2004-08-01

    Transverse momentum spectra of pions, kaons and protons, as well as antiparticle to particle ratios near mid-rapidity from d+Au collisions at \\sqrt{s_{{\\rm NN}}} = 200\\,{\\rm GeV} have been measured by the PHOBOS experiment at RHIC. The transverse momentum range of particle identification was extended to beyond 3 GeV/c using the TOF detector and a new trigger system. The pseudorapidity dependence of the nuclear modification factor for charged hadrons in d+Au collisions is presented.

  16. Mass, zero mass and ... nophysics

    CERN Document Server

    Saar, R

    2016-01-01

    In this paper we demonstrate that massless particles cannot be considered as limiting case of massive particles. Instead, the usual symmetry structure based on semisimple groups like $U(1)$, $SU(2)$ and $SU(3)$ has to be replaced by less usual solvable groups like the minimal nonabelian group ${\\rm sol}_2$. Starting from the proper orthochronous Lorentz group ${\\rm Lor}_{1,3}$ we extend Wigner's little group by an additional generator, obtaining the maximal solvable or Borel subgroup ${\\rm Bor}_{1,3}$ which is equivalent to the Kronecker sum of two copies of ${\\rm sol}_2$, telling something about the helicity of particle and antiparticle states.

  17. Multi-strange baryon production in pp collisions at $\\sqrt{s}$ = 7 TeV with ALICE

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Francesco; Blanco, F; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caballero Orduna, Diego; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carlin Filho, Nelson; Carminati, Federico; Carrillo Montoya, Camilo Andres; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Castillo Hernandez, Juan Francisco; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Kushal; Das, Indranil; Dash, Sadhana; Dash, Ajay Kumar; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; Delagrange, Hugues; Del Castillo Sanchez, Eduardo; Deloff, Andrzej; Demanov, Vyacheslav; De Marco, Nora; Denes, Ervin; De Pasquale, Salvatore; Deppman, Airton; D'Erasmo, Ginevra; de Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Di Bari, Domenico; Dietel, Thomas; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Roberta; Ferretti, Alessandro; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Costin; Grigoras, Alina Gabriela; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Han, Byounghee; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Pier Giorgio; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Vladimir; Ivanov, Marian; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jancurova, Lucia; Jang, Haeng Jin; Jangal, Swensy Gwladys; Janik, Rudolf; Janik, Malgorzata Anna; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kaidalov, Alexei; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalisky, Matus; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kanaki, Kalliopi; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Palash; Khan, Shuaib Ahmad; Khan, Mohisin Mohammed; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Taesoo; Kim, Beomkyu; Kim, Dong Jo; Kim, Se Yong; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Mimae; Kim, Minwoo; Kim, Seon Hee; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Vasily; Kushpil, Svetlana; Kvaerno, Henning; Kweon, Min Jung; Kwon, Youngil; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; La Pointe, Sarah Louise; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; La Rocca, Paola; Lazzeroni, Cristina; Lea, Ramona; Le Bornec, Yves; Lechman, Mateusz; Lee, Sung Chul; Lee, Ki Sang; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon, Hermes; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Ma, Ke; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Mohanty, Ajit Kumar; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Vladimir; Nikulin, Sergey; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Pal, S; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Pastircak, Blahoslav; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujol Teixido, Jordi; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Sudhir; Raniwala, Rashmi; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Pradip Kumar; Roy, Christelle Sophie; Rubio Montero, Antonio Juan; Rui, Rinaldo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca; Scott, Patrick Aaron; Segato, Gianfranco; Selioujenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Satish; Sharma, Natasha; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Myunggeun; Song, Jihye; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stan, Ionel; Stefanek, Grzegorz; Steinbeck, Timm Morten; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; Vande Vyvre, Pierre; van Leeuwen, Marco; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Leonid; Vinogradov, Yury; Vinogradov, Alexander; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; vrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Vladimir; Wagner, Boris; Wan, Renzhuo; Wang, Dong; Wang, Yifei; Wang, Yaping; Wang, Mengliang; Watanabe, Kengo; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilk, Alexander; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yang, Shiming; Yang, Hongyan; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Xiaoming; Zhang, Haitao; Zhou, You; Zhou, Daicui; Zhou, Fengchu; Zhu, Jianhui; Zhu, Xiangrong; Zhu, Jianlin; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo

    2012-01-01

    A measurement of the multi-strange Xi- and Omega- baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for proton-proton collisions at centre of mass energy of 7 TeV. The transverse momentum (pt) distributions were studied at mid-rapidity (|y| 6.0 GeV/c. We also illustrate the difference between the experimental data and model by comparing the corresponding ratios of (Omega-+Omega+)/(Xi-+Xi+) as a function of transverse mass.

  18. Strange Particle Production in pp collisions at $\\sqrt{s}$ = 0.9 and 7 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hartl, Christian; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kasieczka, Gregor; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Benucci, Leonardo; Cerny, Karel; De Wolf, Eddi A; Janssen, Xavier; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Beauceron, Stephanie; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Joris; Maes, Michael; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Adler, Volker; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; De Favereau De Jeneret, Jerome; Delaere, Christophe; Demin, Pavel; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Carvalho, Wagner; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Torres Da Silva De Araujo, Felipe; De Almeida Dias, Flavia; Ferreira Dias, Marco Andre; Tomei, Thiago; De Moraes Gregores, Eduardo; Da Cunha Marinho, Franciole; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vankov, Ivan; Dyulendarova, Milena; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Marinova, Evelina; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xu, Ming; Yang, Min; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhang, Linlin; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Mahmoud, Mohammed; Hektor, Andi; Kadastik, Mario; Kannike, Kristjan; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Klem, Jukka; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Beaudette, Florian; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Wyslouch, Bolek; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Besson, Auguste; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Falkiewicz, Anna; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Xiao, Hong; Megrelidze, Luka; Roinishvili, Vladimir; Lomidze, David; Anagnostou, Georgios; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Ata, Metin; Bender, Walter; Erdmann, Martin; Frangenheim, Jens; Hebbeker, Thomas; Hinzmann, Andreas; Hoepfner, Kerstin; Hof, Carsten; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Magass, Carsten; Masetti, Gianni; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Thomas, Maarten; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katkov, Igor; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Parenti, Andrea; Raspereza, Alexei; Raval, Amita; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Stein, Matthias; Tomaszewska, Justyna; Volyanskyy, Dmytro; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Kaschube, Kolja; Kaussen, Gordon; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schröder, Matthias; Schum, Torben; Schwandt, Joern; Srivastava, Ajay Kumar; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Wolf, Roger; Barth, Christian; Bauer, Julia; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heindl, Stefan Michael; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Piparo, Danilo; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Renz, Manuel; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Debreczeni, Gergely; Hajdu, Csaba; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Laszlo, Andras; Sikler, Ferenc; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jas Bir; Singh, Supreet Pal; Ahuja, Sudha; Bhattacharya, Satyaki; Choudhary, Brajesh C; Gupta, Pooja; Jain, Sandhya; Jain, Shilpi; Kumar, Ashok; Shivpuri, Ram Krishen; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kataria, Sushil Kumar; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Dimitrov, Anton; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Grandi, Claudio; Marcellini, Stefano; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Ghezzi, Alessio; Malberti, Martina; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Tancini, Valentina; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cimmino, Anna; De Cosa, Annapaola; De Gruttola, Michele; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Noli, Pasquale; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Conti, Enrico; De Mattia, Marco; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Giubilato, Piero; Gresele, Ambra; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Berzano, Umberto; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Santocchia, Attilio; Servoli, Leonello; Taroni, Silvia; Valdata, Marisa; Volpe, Roberta; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Sarkar, Subir; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Nourbakhsh, Shervin; Organtini, Giovanni; Palma, Alessandro; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Trocino, Daniele; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Son, Dohhee; Son, Dong-Chul; Kim, Jaeho; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Rhee, Han-Bum; Seo, Eunsung; Shin, Seungsu; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Lopez-Fernandez, Ricardo; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Allfrey, Philip; Krofcheck, David; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Sá Martins, Pedro; Musella, Pasquale; Nayak, Aruna; Ribeiro, Pedro Quinaz; Seixas, Joao; Silva, Pedro; Varela, Joao; Wöhri, Hermine Katharina; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Bondar, Nikolai; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Slabospitsky, Sergey; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chamizo Llatas, Maria; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Breuker, Horst; Brona, Grzegorz; Bunkowski, Karol; Camporesi, Tiziano; Cano, Eric; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Duarte Ramos, Fernando; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Gennai, Simone; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Henderson, Conor; Hesketh, Gavin; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lourenco, Carlos; Macpherson, Alick; Maki, Tuula; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Polese, Giovanni; Racz, Attila; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stöckli, Fabian; Stoye, Markus; Tropea, Paola; Tsirou, Andromachi; Tsyganov, Andrey; Veres, Gabor Istvan; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Starodumov, Andrei; Bortignon, Pierluigi; Caminada, Lea; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hervé, Alain; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Meridiani, Paolo; Milenovic, Predrag; Moortgat, Filip; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Stieger, Benjamin; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguiló, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Regenfus, Christian; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Chen, Wan-Ting; Dutta, Suchandra; Go, Apollo; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Ming-Hsiung; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Demir, Zahide; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Kayis Topaksu, Aysel; Nart, Alisah; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Halu, Arda; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bell, Peter; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Hansen, Maria; Hartley, Dominic; Heath, Greg P; Heath, Helen F; Huckvale, Benedickt; Jackson, James; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Ward, Simon; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Fulcher, Jonathan; Futyan, David; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Speer, Thomas; Tsang, Ka Vang; Borgia, Maria Assunta; Breedon, Richard; Calderon De La Barca Sanchez, Manuel; Cebra, Daniel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Salur, Sevil; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Luthra, Arun; Nguyen, Harold; Shen, Benjamin C; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Dusinberre, Elizabeth; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Muelmenstaedt, Johannes; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tu, Yanjun; Vartak, Adish; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Gataullin, Marat; Kcira, Dorian; Litvine, Vladimir; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Terentyev, Nikolay; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Das, Souvik; Eggert, Nicholas; Fields, Laura Johanna; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Kuznetsov, Valentin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Riley, Daniel; Ryd, Anders; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Demarteau, Marcel; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gunthoti, Kranti; Gutsche, Oliver; Hahn, Alan; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; James, Eric; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Khatiwada, Rakshya; Kilminster, Benjamin; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; McCauley, Thomas; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Popescu, Sorina; Pordes, Ruth; Prokofyev, Oleg; Saoulidou, Niki; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Goldberg, Sean; Kim, Bockjoo; Klimenko, Sergey; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Pakhotin, Yuriy; Prescott, Craig; Remington, Ronald; Schmitt, Michael; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Ceron, Cristobal; Gaultney, Vanessa; Kramer, Laird; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bandurin, Dmitry; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Quertenmont, Loic; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Ralich, Robert; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Garcia-Solis, Edmundo Javier; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Cankocak, Kerem; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Murray, Michael; Noonan, Daniel; Radicci, Valeria; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Sumorok, Konstanty; Sung, Kevin; Wenger, Edward Allen; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cole, Perrie; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Dudero, Phillip Russell; Franzoni, Giovanni; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Lundstedt, Carl; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Warchol, Jadwiga; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jones, John; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; Everett, Adam; Garfinkel, Arthur F; Gecse, Zoltan; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Jindal, Pratima; Parashar, Neeti; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Liu, Jinghua H; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Yan, Ming; Atramentov, Oleksiy; Barker, Anthony; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Asaadi, Jonathan; Eusebi, Ricardo; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Nguyen, Chi Nhan; Osipenkov, Ilya; Pivarski, James; Safonov, Alexei; Sengupta, Sinjini; Tatarinov, Aysen; Toback, David; Weinberger, Michael; Akchurin, Nural; Damgov, Jordan; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Buehler, Marc; Conetti, Sergio; Cox, Bradley; Francis, Brian; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Efron, Jonathan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc

    2011-01-01

    The spectra of strange hadrons are measured in proton-proton collisions, recorded by the CMS experiment at the CERN LHC, at centre-of-mass energies of 0.9 and 7 TeV. The K0_s, Lambda, and Xi^- particles and their antiparticles are reconstructed from their decay topologies and the production rates are measured as functions of rapidity and transverse momentum. The results are compared to other experiments and to predictions of the PYTHIA Monte Carlo program. The transverse momentum distributions are found to differ substantially from the PYTHIA results and the production rates exceed the predictions by up to a factor of three.

  19. Simulating net particle production and chiral magnetic current in a CP-odd domain

    CERN Document Server

    Fukushima, Kenji

    2015-01-01

    We elucidate the numerical formulation to simulate net production of particles and anomalous currents with CP-breaking background fields which cause an imbalance of particles over anti-particles. For a concrete demonstration we numerically impose pulsed electric and magnetic fields to observe that the dynamical chiral magnetic current follows together with the net particle production. The produced particle density is quantitatively consistent with the axial anomaly, while the chiral magnetic current is suppressed by a delay before the the onset of the current generation.

  20. Hyperon production in proton-nucleus collisions at a center-of-mass energy of √(sNN) = 41.6 GeV at HERA-B and design of silicon microstrip detectors for tracking at LHCb

    International Nuclear Information System (INIS)

    The topics of this thesis are the measurements of hyperon production in protonnucleus collisions at √(s)=41.6 GeV with the Hera-B detector located at DESY, Hamburg (Germany), and the design of silicon microstrip sensors for the LHCb experiment at CERN, Geneva (Switzerland). Λ, Ξ and Ω hyperons and their antiparticles were reconstructed from 113.5 . 106 inelastic collisions of protons with fixed carbon, titanium and tungsten targets. With these samples, antiparticle-to-particle ratios, cross sections integrated for the accessible kinematic region of Hera-B and single differential cross sections as function of transverse momentum, dσ/dpT2 (for Λ and Ξ) and rapidity, dσ/dy (for Λ only), have been been measured as well as the dependence of these quantities on the atomic number of the target nucleus, as parameterized using the Glauber model. The obtained ratios follow the same trend as found for the energy dependence of measurements from nucleus-nucleus collisions. Silicon microstrip sensors have been designed for the tracking system of the LHCb detector. Evaluating the performance in beam tests at CERN, the strip geometry and sensor thickness were varied optimizing for a large signal-to-noise ratio, a small number of read-out channels and a low occupancy. The detector is currently being built to be operational for first proton-proton collisions in autumn 2007. (orig.)

  1. Spacetime structure of massive Majorana particles and massive gravitino

    CERN Document Server

    Ahluwalia, D V

    2003-01-01

    The profound difference between Dirac and Majorana particles is traced back to the possibility of having physically different constructs in the (1/2, 0) 0 (0,1/2) representation space. Contrary to Dirac particles, Majorana-particle propagators are shown to differ from the simple linear gamma mu p submu, structure. Furthermore, neither Majorana particles, nor their antiparticles can be associated with a well defined arrow of time. The inevitable consequence of this peculiarity is the particle-antiparticle metamorphosis giving rise to neutrinoless double beta decay, on the one side, and enabling spin-1/2 fields to act as gauge fields, gauginos, on the other side. The second part of the lecture notes is devoted to massive gravitino. We argue that a spin measurement in the rest frame for an unpolarized ensemble of massive gravitino, associated with the spinor-vector [(1/2, 0) 0 (0,1/2)] 0 (1/2,1/2) representation space, would yield the results 3/2 with probability one half, and 1/2 with probability one half. The ...

  2. Golden Jubilee Photos: How slow can they go?

    CERN Multimedia

    2004-01-01

    A technician installs a magnet in CERN's Antimatter Decelerator (AD) ring in 1998.Antimatter isn't normally just sitting around, waiting to be studied. As far as scientists know, hardly any antiparticles—the mirror-image versions of regular particles, with the same mass but opposite electric charge—exist in the Universe. This absence of antimatter is somehow mysterious and motivates physicists to look for tiny differences between particles and antiparticles. One way to do this is by studying antimatter very precisely. The simplest antimatter atom, antihydrogen, is made from an antiproton and a positron (an anti-electron). The first nine atoms of antihydrogen emerged from particle collisions at CERN in 1995, but they moved at nearly the speed of light. To produce slow-moving antihydrogen atoms, better suited for precision studies, scientists have gone against the prevailing methods at CERN. Instead of smashing together highly-accelerated particles, they built the Antimatter Decelerator (AD) to put th...

  3. Production and ratio of $\\pi$, K, p and $\\Lambda$ in Pb + Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV

    CERN Document Server

    Zhang, S; Ma, Y G; Chen, J H; Zhong, C

    2013-01-01

    The production and ratio of particles ($\\pi$, K, p and $\\Lambda$) are studied in Pb + Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV based on a thermal equilibrium mechanism and blast-wave model. The kinetic freeze-out properties are discussed from transverse momentum spectra. The change of inverse slope of transverse momentum spectra for pion is investigated with resonance decay taken into account. The ratios of anti-particles to particles, protons to $\\pi$ and Kaon to $\\pi$ are discussed as a function of $p_{T}$ and it demonstrates that ratios of anti-particles to particles and Kaon to $\\pi$ have a good agreement with the data measured by the LHC-ALICE Collaboration. However, our p/$\\pi$ ratio is overestimated by a factor of 1.5 even though it is similar to other thermal model calculation results. It is found that the ratios of $p/\\pi$ and $K/\\pi$ are dominated by radial flow parameter $\\rho_0$ and affected by baryon chemical potential slightly. These results present a reasonable range of parameters at the che...

  4. Gravitationally Coupled Dirac Equation for Antimatter

    CERN Document Server

    Jentschura, U D

    2013-01-01

    The coupling of antimatter to gravity is of general interest because of conceivable cosmological consequences ("surprises") related to dark energy and the cosmological constant. Here, we revisit the derivation of the gravitationally coupled Dirac equation and find that the prefactor of a result given previously in [D.R. Brill and J.A. Wheeler, Rev. Mod. Phys., vol. 29, p. 465 (1957)] for the affine connection matrix is in need of a correction. We also discuss the conversion the curved-space Dirac equation from East-Coast to West-Coast conventions, in order to bring the gravitationally coupled Dirac equation to a form where it can easily be unified with the electromagnetic coupling as it is commonly used in modern particle physics calculations. The Dirac equation describes anti-particles as negative-energy states. We find a symmetry of the gravitationally coupled Dirac equation, which connects particle and antiparticle solutions for a general space-time metric of the Schwarzschild type and implies that particl...

  5. Analytic representation of the Dirac equation

    International Nuclear Information System (INIS)

    In this paper, we construct an analytical separation (diagonalization) of the full (minimal coupling) Dirac equation into particle and antiparticle components. The diagonalization is analytic in that it is achieved without transforming the wavefunctions, as is done by the Foldy-Wouthuysen method, and reveals the nonlocal time behaviour of the particle-antiparticle relationship. We then show explicitly that the Pauli equation is not completely valid for the study of the Dirac hydrogen atom problem in s-states (hyperfine splitting). We conclude that there are some open mathematical problems with any attempt to explicitly show that the Dirac equation is insufficient to explain the full hydrogen spectrum. If the perturbation method can be justified, our analysis suggests that the use of cut-offs in QED is already justified by the eigenvalue analysis that supports it. Using a new method, we are able to effect separation of variables for full coupling, solve the radial equation and provide graphs of the probability density function for the 2p- and 2s-states, and compare them with those of the Dirac-Coulomb case

  6. Analytic representation of the Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Tepper L [Department of Electrical and Computer Engineering, Howard University, Washington, DC 20059 (United States); Zachary, W W [Department of Electrical and Computer Engineering, Howard University, Washington, DC 20059 (United States); Alfred, Marcus [Computational Physics Laboratory, Howard University, Washington, DC 20059 (United States)

    2005-08-05

    In this paper, we construct an analytical separation (diagonalization) of the full (minimal coupling) Dirac equation into particle and antiparticle components. The diagonalization is analytic in that it is achieved without transforming the wavefunctions, as is done by the Foldy-Wouthuysen method, and reveals the nonlocal time behaviour of the particle-antiparticle relationship. We then show explicitly that the Pauli equation is not completely valid for the study of the Dirac hydrogen atom problem in s-states (hyperfine splitting). We conclude that there are some open mathematical problems with any attempt to explicitly show that the Dirac equation is insufficient to explain the full hydrogen spectrum. If the perturbation method can be justified, our analysis suggests that the use of cut-offs in QED is already justified by the eigenvalue analysis that supports it. Using a new method, we are able to effect separation of variables for full coupling, solve the radial equation and provide graphs of the probability density function for the 2p- and 2s-states, and compare them with those of the Dirac-Coulomb case.

  7. Analytic Representation of Relativistic Wave Equations I The Dirac Case

    CERN Document Server

    Tepper, L; Zachary, W W

    2003-01-01

    In this paper we construct an analytical separation (diagonalization) of the full (minimal coupling) Dirac equation into particle and antiparticle components. The diagonalization is analytic in that it is achieved without transforming the wave functions, as is done by the Foldy-Wouthuysen method, and reveals the nonlocal time behavior of the particle-antiparticle relationship. It is well known that the Foldy-Wouthuysen transformation leads to a diagonalization that is nonlocal in space. We interpret the zitterbewegung, and the result that a velocity measurement (of a Dirac particle) at any instant in time is +(-)c, as reflections of the fact that the Dirac equation makes a spatially extended particle appear as a point in the present by forcing it to oscillate between the past and future at speed c. This suggests that although the Dirac Hamiltonian and the square-root Hamiltonian, are mathematically, they are not physically, equivalent. Furthermore, we see that alt! ho! ugh the form of the Dirac equation serve...

  8. The particle production at the event horizon of a black hole as gravitational Fowler-Nordheim emission in uniformly accelerated frame, in the non-relativistic scenario

    Science.gov (United States)

    De, Sanchari; Ghosh, Sutapa; Chakrabarty, Somenath

    2015-11-01

    In the conventional scenario, the Hawking radiation is believed to be a tunneling process at the event horizon of the black hole. In the quantum field theoretic approach the Schwinger's mechanism is generally used to give an explanation of this tunneling process. It is the decay of quantum vacuum into particle anti-particle pairs near the black hole surface. However, in a reference frame undergoing a uniform accelerated motion in an otherwise flat Minkowski space-time geometry, in the non-relativistic approximation, the particle production near the event horizon of a black hole may be treated as a kind of Fowler-Nordheim field emission, which is the typical electron emission process from a metal surface under the action of an external electrostatic field. This type of emission from metal surface is allowed even at extremely low temperature. It has been noticed that in one-dimensional scenario, the Schrödinger equation satisfied by the created particle (anti-particle) near the event horizon, can be reduced to a differential form which is exactly identical with that obeyed by an electron immediately after the emission from the metal surface under the action of a strong electrostatic field. The mechanism of particle production near the event horizon of a black hole is therefore identified with Schwinger process in relativistic quantum field theory, whereas in the non-relativistic scenario it may be interpreted as Fowler-Nordheim emission process, when observed from a uniformly accelerated frame.

  9. True and false chirality, CP violation, and the breakdown of microscopic reversibility in chiral molecular and elementary particle processes

    International Nuclear Information System (INIS)

    The concept of chirality is extended to cover systems that exhibit enantiomorphism on account of motion. This is achieved by applying time reversal in addition to space inversion and leads to a more precise definition of a chiral system. Although spatial enantiomorphism is sufficient to guarantee chirality in a stationary system such as a finite helix, enantiomorphous systems are not necessarily chiral when motion is involved, which leads to the concept of true and false chirality associated with time-invariant and time-noninvariant enantiomorphism, respectively. Only a truly chiral influence can induce an enantiomeric excess in a reaction that has reached true thermodynamic equilibrium (i.e., when all possible interconversion pathways have equilibrated); however, false chirality can suffice in a reaction under kinetic control due to a breakdown of microscopic reversibility analogous to that observed in particle-antiparticle processes involving the neutral K-meason as a result of CP violation, with the apparently contradictory kinetic and thermodynamic aspects being reconciled by an appeal to unitarity. This reveals that CP violation is analogous to chemical catalysis since it affects the rates of certain particle-antiparticle interconversion pathways without affecting the initial and final particle energies and hence the equilibrium thermodynamics. Consideration of falsely chiral influences, including the open-quote ratchet effect close-quote arising from the associated breakdown in microscopic reversibility, greatly enlarges the range of possible chiral advantage factors in prebiotic chemical processes if far from equilibrium. copyright 1996 American Institute of Physics

  10. Does antimatter emit a new light?

    Science.gov (United States)

    Santilli, Ruggero Maria

    1997-08-01

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of “the new physics of antimatter” are pointed out.

  11. Anti-gravity: The key to 21st century physics

    International Nuclear Information System (INIS)

    The masses coupling constants and cosmological parameters obtained using our discrete and combinatorial physics based on discrimination between bit-strings indicate that we can achieve the unification of quantum mechanics with relativity which had become the goal of twentieth century physics. To broaden our case we show that limitations on measurement of the position and velocity of an individual massive particle observed in a colliding beam scattering experiment imply real, rational commutation relations between position and velocity. Prior to this limit being pushed down to quantum effects, the lower bound is set by the available technology, but is otherwise scale invariant. Replacing force by force per unit mass and force per unit charge allows us to take over the Feynman-Dyson proof of the Maxwell Equations and extend it to weak gravity. The crossing symmetry of the individual scattering processes when one or more particles are replaced by anti-particles predicts both Coulomb attraction (for charged particles) and a Newtonian repulsion between any particle and its anti-particle. Previous quantum results remain intact, and predict the expected relativistic fine structure and spin dependencies. Experimental confirmation of this anti-gravity prediction would inaugurate the physics of the twenty-first century

  12. Does antimatter emit a new light?

    International Nuclear Information System (INIS)

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out

  13. Does antimatter emit a new light?

    Energy Technology Data Exchange (ETDEWEB)

    Santilli, Ruggero Maria [Instituto per la Ricerca di Base (Italy)

    1997-08-15

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out.

  14. Antideuteron sensitivity for the GAPS experiment

    Science.gov (United States)

    Aramaki, T.; Hailey, C. J.; Boggs, S. E.; von Doetinchem, P.; Fuke, H.; Mognet, S. I.; Ong, R. A.; Perez, K.; Zweerink, J.

    2016-02-01

    The General Antiparticle Spectrometer (GAPS) is a novel approach for indirect dark matter searches that exploits cosmic antiparticles, especially antideuterons. The GAPS antideuteron measurement utilizes distinctive detection methods using atomic X-rays and charged particles from the decay of exotic atoms as well as the timing and stopping range of the incoming particle, which together provide excellent antideuteron identification. Prior to the future balloon experiment, an accelerator test and a prototype flight were successfully conducted in 2005 and 2012 respectively, in order to verify the GAPS detection concept. This paper describes how the sensitivity of GAPS to antideuterons was estimated using a Monte Carlo simulation along with the atomic cascade model and the Intra-Nuclear Cascade model. The sensitivity for the GAPS antideuteron search obtained using this method is 2.0 ×10-6 [m-2s-1sr-1(GeV/n)-1] for the proposed long duration balloon program (LDB, 35 days × 3 flights), indicating that GAPS has a strong potential to probe a wide variety of dark matter annihilation and decay models through antideuteron measurements. GAPS is proposed to fly from Antarctica in the austral summer of 2019-2020.

  15. Does antimatter emit a new light?

    International Nuclear Information System (INIS)

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particle sand antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus by passing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out. 16 refs

  16. A new ordering principle in quantum field theory and its consequences

    CERN Document Server

    Greben, Jan M

    2016-01-01

    The ad-hoc imposition of normal ordering on the Lagrangian, energy-momentum tensor and currents is a standard tool in quantum field theory (QFT) to eliminate infinite vacuum expectation values (v.e.v.) However, for fermionic expressions these infinite terms are due to anti-particles only. This exposes an asymmetry in standard QFT, which can be traced back to a bias towards particles in the Dirac bra-ket notation. To counter this bias a new ordering principle (called the $\\mathbb{R}$-product) is required which restores the symmetry (or rather duality) between particles and anti-particles and eliminates the infinite v.e.v. While this $\\mathbb{R}$-product was already used in a bound-state application, this paper aims to give it a more general foundation and analyze its overall impact in QFT. For boson fields the particle bias is hidden and the fields must first be expanded into bilinear particle-anti-particle fermion operators. This new representation also leads to vanishing v.e.v.'s and avoids some common techn...

  17. Elliptic flow of identified hadrons in Au+Au collisions at $\\sqrt{s_{NN}}=$ 7.7--62.4 GeV

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E; Averichev, G S; Balewski, J; Banerjee, A; Barnovska, Z; Beavis, D R; Bellwied, R; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bhattarai,; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bruna, E; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, P; Chwastowski, J; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks,; Ding, F; Dion, A; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Elnimr, M; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Fatemi, R; Fazio, S; Fedorisin, J; Fersch, R G; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Gliske, S; Grebenyuk, O G; Grosnick, D; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hajkova, O; Hamed, A; Han, L-X; Haque, R; Harris, J W; Hays-Wehle, J P; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jena, C; Judd, E G; Kabana, S; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Kikola, D P; Kiryluk, J; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Korsch, W; Kotchenda, L; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Lamont, M A C; Landgraf, J M; Landry, K D; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Leight, W; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lima, L M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Longacre, R S; Luo, X; Luszczak, A; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Mioduszewski, S; Mitrovski, M K; Mohammed, Y; Mohanty, B; Mondal, M M; Munhoz, M G; Mustafa, M K; Naglis, M; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nogach, L V; Novak, J; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Oliveira, R A N; Olson, D; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Plyku, D; Poljak, N; Porter, J; Poskanzer, A M; Powell, C B; Pruneau, C; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandacz, A; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, B; Schmitz, N; Schuster, T R; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shao, M; Sharma, B; Sharma, M; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; deSouza, U G; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; de Toledo, A Szanto; Takahashi, J; Tang, A H; Tang, Z; Tarini, L H; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, Q; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, N; Xu, Q H; Xu, W; Xu, Y; Xu, Z; Yan,; Yang, C; Yang, Y; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2013-01-01

    Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($\\pi^{\\pm}$, $K^{\\pm}$, $K_{s}^{0}$, $p$, $\\bar{p}$, $\\phi$, $\\Lambda$, $\\bar{\\Lambda}$, $\\Xi^{-}$, $\\bar{\\Xi}^{+}$, $\\Omega^{-}$, $\\bar{\\Omega}^{+}$) in Au+Au collisions at $\\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $\\sqrt{s_{NN}}$ (or increasing baryon chemical potential, $\\mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $\\sqrt{s_{NN}}=$ 200 GeV...

  18. Precision Measurement of Low-Energy Antiprotons with GAPS for Dark Matter and Primordial Black Hole Physics

    CERN Document Server

    Aramaki, T; von Doetinchem, P; Fuke, H; Hailey, C J; Mognet, S A I; Ong, R A; Perez, K M; Zweerink, J

    2014-01-01

    The general antiparticle spectrometer (GAPS) experiment is an indirect dark matter search focusing on antiparticles produced by WIMP annihilation and decay in the Galactic halo. In addition to the very powerful search channel provided by antideuterons, GAPS has a strong capability to measure low-energy antiprotons (0.07 $\\le$ E $\\le$ 0.25 GeV) as dark matter signatures. This is an especially effective means for probing light dark matter, whose existence has been hinted at in the direct dark matter searches, including the recent result from the CDMS-II experiment. While severely constrained by LUX and other direct dark matter searches, light dark matter candidates are still viable in an isospin- violating dark matter scenario and halo-independent analysis. Along with the excellent antideuteron sensitivity, GAPS will be able to detect an order of magnitude more low-energy antiprotons, compared to BESS and PAMELA, providing a precision measurement of low-energy antiproton flux and a unique channel for probing li...

  19. Hyperon production in proton-nucleus collisions at a center-of-mass energy of {radical}(s{sub NN}) = 41.6 GeV at HERA-B and design of silicon microstrip detectors for tracking at LHCb

    Energy Technology Data Exchange (ETDEWEB)

    Agari, Michaela

    2006-07-01

    The topics of this thesis are the measurements of hyperon production in protonnucleus collisions at {radical}(s)=41.6 GeV with the Hera-B detector located at DESY, Hamburg (Germany), and the design of silicon microstrip sensors for the LHCb experiment at CERN, Geneva (Switzerland). {lambda}, {xi} and {omega} hyperons and their antiparticles were reconstructed from 113.5 . 10{sup 6} inelastic collisions of protons with fixed carbon, titanium and tungsten targets. With these samples, antiparticle-to-particle ratios, cross sections integrated for the accessible kinematic region of Hera-B and single differential cross sections as function of transverse momentum, d{sigma}/dp{sub T}{sup 2} (for {lambda} and {xi}) and rapidity, d{sigma}/dy (for {lambda} only), have been been measured as well as the dependence of these quantities on the atomic number of the target nucleus, as parameterized using the Glauber model. The obtained ratios follow the same trend as found for the energy dependence of measurements from nucleus-nucleus collisions. Silicon microstrip sensors have been designed for the tracking system of the LHCb detector. Evaluating the performance in beam tests at CERN, the strip geometry and sensor thickness were varied optimizing for a large signal-to-noise ratio, a small number of read-out channels and a low occupancy. The detector is currently being built to be operational for first proton-proton collisions in autumn 2007. (orig.)

  20. Tests of CP Violation with $\\bar{K^0}$ and $ K^{0} $ at LEAR

    CERN Multimedia

    2002-01-01

    % PS195 Tests of CP Violation with &bar.K$^0$ and K$^0$ at LEAR \\\\ \\\\The aim of the experiment is to carry out precision tests of CP, T and CPT on the neutral kaon system through $ K ^0 - $\\bar{K}^0 $ interferometry using LEAR as an intense source. A beam of $ ~10^{6}~\\bar{p}$~events/second is brought to rest in a hydrogen target producing $ K ^0 $ and $ $\\bar{K}^0 $ events through the reaction channels : \\\\ \\\\ \\begin{center} $\\bar{p}p~~~~~\\rightarrow~~~~K^0~+~(K^-\\pi^+$) \\\\ \\\\~~~~~~~~$\\rightarrow~~~~\\bar{K}^0~+~(K^+\\pi^-$) \\end{center}\\\\ \\\\The neutral strange particles and their antiparticles are tagged by detecting in the magnetic field the sign of the accompanying charged kaons identified via Cerenkovs and scintillators. The experiment has the unique feature that the decays from particles and antiparticles are recorded under the same operating conditions using tracking chambers and a gas sampling electromagnetic calorimeter. The measured time-dependent $ K ^0 $-$ $\\bar{K}^0 $ asymmetries for non-lepton...

  1. Fermions in scalar Coulomb and Aharonov-Bohm potentials in 2+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Khalilov, V R; Lee, K E, E-mail: khalilov@phys.msu.ru [Faculty of Physics, Moscow State University, 119991 Moscow (Russian Federation)

    2011-05-20

    The quantum-mechanical problem of constructing the self-adjoint Hamiltonians is physically rigorously solved for a Dirac Hamiltonian with a Coulomb scalar potential and an Aharonov-Bohm potential in 2+1 dimensions by taking into account a fermion spin. It is found that the Dirac Hamiltonian on this background requires the additional specification of a one-parameter self-adjoint extension, which can be given in terms of the physically acceptable boundary conditions. We derive equations that determine the spectra of the self-adjoint radial Dirac Hamiltonians for various parameter values. We discuss the role of a particle spin as the physical reason of the existence of bound fermion states in a pure Aharonov-Bohm potential and show that the particle and antiparticle states with zero energy exist only owing to the interaction of the fermion spin magnetic moment with the magnetic field. The energy levels of particles and antiparticles are intersected what may signal on the instability of a quantum system.

  2. Mean-field effects on matter and antimatter elliptic flow

    International Nuclear Information System (INIS)

    We report our recent work on mean-field potential effects on the elliptic flows of matters and antimatters in heavy ion collisions leading to the production of a baryon-rich matter. Within the framework of a multiphase transport (AMPT) model that includes both initial partonic and final hadronic interactions, we have found that including mean-field potentials in the hadronic phase leads to a splitting of the elliptic flows of particles and their antiparticles, providing thus a plausible explanation of the different elliptic flows between p and anti-p, K+ and K-, and π+ and π- observed by the STAR Collaboration in the Beam Energy Scan (BES) program at the Relativistic Heavy Ion Collider (RHIC). Using a partonic transport model based on the Nambu-Jona-Lasinio (NJL) model, we have also studied the effect of scalar and vector mean fields on the elliptic flows of quarks and antiquarks in these collisions. Converting quarks and antiquarks at hadronization to hadrons via the quark coalescence model, we have found that the elliptic flow differences between particles and antiparticles also depend on the strength of the quark vector coupling in baryon-rich quark-gluon plasma, providing thus the possibility of extracting information on the latter's properties from the BES program at RHIC. (authors)

  3. General form of the covariant field equations of arbitrary spin and the relativistic canonical quantum mechanics

    CERN Document Server

    Simulik, V M

    2015-01-01

    The investigation of arXiv 1409.2766v2 [quant-ph] has been continued by the general form of the numerous equations with partial values of arbitrary spin, which were considered in above mentioned preprint. The general forms of quantum-mechanical and covariant equations for arbitrary spin together with the general description of the arbitrary spin field formalism are presented. The corresponding relativistic quantum mechanics of arbitrary spin is given as the system of axioms. Previously ignored partial example of the spin s=(0,0) particle-antiparticle doublet is considered. The partial example of spin s=(3/2,3/2) particle-antiparticle doublet is highlighted. The new 64 dimensional Clifford--Dirac algebra over the field of real numbers is suggested. The general operator, which transformed the relativistic canonical quantum mechanics of arbitrary spin into the locally covariant field theory, has been introduced. Moreover, the study of the place of the results given in arXiv 1409.2766v2 [quant-ph] among the resul...

  4. Hydrodynamics of the Physical Vacuum: II. Vorticity Dynamics

    Science.gov (United States)

    Sbitnev, Valeriy I.

    2016-03-01

    Physical vacuum is a special superfluid medium populated by enormous amount of virtual particle-antiparticle pairs. Its motion is described by the modified Navier-Stokes equation: (a) the pressure gradient divided by the mass density is replaced by the gradient from the quantum potential; (b) time-averaged the viscosity vanishes, but its variance is not zero. Vortex structures arising in this medium show infinitely long lifetime owing to zero average viscosity. The nonzero variance is conditioned by exchanging the vortex energy with zero-point vacuum fluctuations. The vortex has a non-zero core where the orbital speed vanishes. The speed reaches a maximal value on the core wall and further it decreases monotonically. The vortex trembles around some average value and possesses by infinite life time. The vortex ball resulting from topological transformation of the vortex ring is considered as a model of a particle with spin. Anomalous magnetic moment of electron is computed.

  5. Fundamental physics in particle traps

    International Nuclear Information System (INIS)

    The individual topics are covered by leading experts in the respective fields of research. Provides readers with present theory and experiments in this field. A useful reference for researchers. This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  6. Virtual gravitational dipoles: The key for the understanding of the Universe?

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2014-01-01

    Before the end of this decade, three competing experiments (ALPHA, AEGIS and GBAR) will discover if atoms of antihydrogen fall up or down. We wonder what the major changes in astrophysics and cosmology would be if it is experimentally confirmed that antimatter falls upwards. The key point is: If antiparticles have negative gravitational charge, the quantum vacuum, well established in the Standard Model of Particles and Fields, contains virtual gravitational dipoles. The main conclusions are: (1) the physical vacuum enriched with gravitational dipoles is compatible with a cyclic universe alternatively dominated by matter and antimatter, without initial singularity and without need for cosmic inflation; (2) the virtual dipoles might explain the phenomena usually attributed to dark matter and dark energy. While what we have presented is still far from a complete theory, hopefully it can stimulate a radically different and potentially important way of thinking.

  7. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  8. Estimation of Equivalent Sea Level Cosmic Ray Exposure for Low Background Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Austen T.; Orrell, John L.

    2012-08-25

    While scientists at CERN and other particle accelerators around the world explore the boundaries of high energy physics, the Majorana project investigates the other end of the spectrum with its extremely sensitive, low background, low energy detector. The MAJORANA DEMONSTRATOR aims to detect neutrinoless double beta decay (0νββ), a rare theoretical process in which two neutrons decay into two protons and two electrons, without the emission of the two antineutrinos that are a product of a normal double beta decay. This process is only possible if – and therefore a detection would prove — the neutrino is a Majorana particle, meaning that it is its own antiparticle [Aaselth et al. 2004] . The existence of such a decay would also disprove lepton conservation and give information about the neutrino's mass.

  9. Majorana Fermions and Topology in Superconductors

    Science.gov (United States)

    Sato, Masatoshi; Fujimoto, Satoshi

    2016-07-01

    Topological superconductors are novel classes of quantum condensed phases, characterized by topologically nontrivial structures of Cooper pairing states. On the surfaces of samples and in vortex cores of topological superconductors, Majorana fermions, which are particles identified with their own anti-particles, appear as Bogoliubov quasiparticles. The existence and stability of Majorana fermions are ensured by bulk topological invariants constrained by the symmetries of the systems. Majorana fermions in topological superconductors obey a new type of quantum statistics referred to as non-Abelian statistics, which is distinct from bose and fermi statistics, and can be utilized for application to topological quantum computation. Also, Majorana fermions give rise to various exotic phenomena such as "fractionalization", non-local correlation, and "teleportation". A pedagogical review of these subjects is presented. We also discuss interaction effects on topological classification of superconductors, and the basic properties of Weyl superconductors.

  10. Spectral study of the HESS J1745-290 gamma-ray source as dark matter signal

    International Nuclear Information System (INIS)

    We study the main spectral features of the gamma-ray fluxes observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source during the years 2004, 2005 and 2006. In particular, we show that these data are well fitted as the secondary gamma-rays photons generated from dark matter annihilating into Standard Model particles in combination with a simple power law background. We present explicit analyses for annihilation in a single standard model particle-antiparticle pair. In this case, the best fits are obtained for the uū and d d-bar quark channels and for the W+W− and ZZ gauge bosons, with background spectral index compatible with the Fermi-Large Area Telescope (LAT) data from the same region. The fits return a heavy WIMP, with a mass above ∼ 10 TeV, but well below the unitarity limit for thermal relic annihilation

  11. Effective WIMPs

    CERN Document Server

    Chang, Spencer; Hutchinson, Jeffrey; Luty, Markus

    2014-01-01

    The 'WIMP miracle' for the relic abundance of thermal dark matter motivates weak scale dark matter with renormalizable couplings to standard model particles. We study minimal models with such couplings that explain dark matter as a thermal relic. The models contain a singlet dark matter particle with cubic renormalizable couplings between standard model particles and 'partner' particles with the same gauge quantum numbers as the standard model particle. The dark matter has spin 0, 1/2, or 1, and may or may not be its own antiparticle. Each model has 3 parameters: the masses of the dark matter and standard model partners, and the cubic coupling. Requiring the correct relic abundance gives a 2-dimensional parameter space where collider and direct detection constraints can be directly compared. We focus on the case of dark matter interactions with colored particles. We find that collider and direct detection searches are remarkably complementary for these models. Direct detection limits for the cases where the d...

  12. Measurement of charm fragmentation ratios and fractions in photoproduction at HERA

    CERN Document Server

    Chekanov, S; Magill, S; Miglioranzi, S; Musgrave, B; Repond, J; Yoshida, R; Mattingly, M C K; Pavel, N; Yagues-Molina, A G; Antonioli, P; Bari, G; Basile, M; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Cara Romeo, G; Cifarelli, L; Cindolo, F; Contin, A; Corradi, M; De Pasquale, S; Giusti, P; Iacobucci, G; Margotti, A; Montanari, A; Nania, R; Palmonari, F; Pesci, A; Polini, A; Rinaldi, L; Sartorelli, G; Zichichi, A; Aghuzumtsyan, G; Bartsch, D; Brock, I; Goers, S; Hartmann, H; Hilger, E; Irrgang, P; Jakob, H P; Kind, O M; Meyer, U; Paul, E; Rautenberg, J; Renner, R; Wang, M; Wlasenko, M; Bailey, D S; Brook, N H; Cole, J E; Heath, G P; Namsoo, T; Robins, S; Capua, M; Fazio, S; Mastroberardino, A; Schioppa, M; Susinno, G; Tassi, E; Kim, J Y; Ma, K J; Helbich, M; Ning, Y; Ren, Z; Schmidke, W B; Sciulli, F; Chwastowski, J; Eskreys, Andrzej; Figiel, J; Galas, A; Gil, M; Olkiewicz, K; Stopa, P; Szuba, D; Zawiejski, L; Adamczyk, L; Bold, T; Grabowska-Bold, I; Kisielewska, D; Lukasik, J; Przybycien, M B; Suszycki, L; Szuba, J; Kotanski, A; Slominski, W; Adler, V; Behrens, U; Bloch, I; Borras, K; Drews, G; Fourletova, J; Geiser, A; Gladkov, D; Göttlicher, P; Gutsche, O; Haas, T; Hain, W; Horn, C; Kahle, B; Kötz, U; Kowalski, H; Kramberger, G; Lim, H; Löhr, B; Mankel, R; Melzer-Pellmann, I A; Nguyen, C N; Notz, D; Nuncio-Quiroz, A E; Raval, A; Santamarta, R; Schneekloth, U; Stadie, H; Stösslein, U; Wolf, G; Youngman, C; Zeuner, W; Schlenstedt, S; Barbagli, G; Gallo, E; Genta, C; Pelfer, P G; Bamberger, A; Benen, A; Karstens, F; Dobur, D; Vlasov, N N; Bussey, P J; Doyle, A T; Dunne, W; Ferrando, J; McKenzie, J H; Saxon, D H; Skillicorn, I O; Gialas, I; Carli, T; Gosau, T; Holm, U; Krumnack, N; Lohrmann, E; Milite, M; Salehi, H; Schleper, P; Schörner-Sadenius, T; Stonjek, S; Wichmann, K; Wick, K; Ziegler, A; Ziegler, Ar; Collins-Tooth, C; Foudas, C; Fry, C; Goncalo, R; Long, K R; Tapper, A D; Kataoka, M; Nagano, K; Tokushuku, K; Yamada, S; Yamazaki, Y; Barakbaev, A N; Boos, E G; Pokrovskiy, N S; Zhautykov, B O; Son, D; De Favereau, J; Piotrzkowski, K; Barreiro, F; Glasman, C; Jiménez, M; Labarga, L; Del Peso, J; Terron, J; Zambrana, M; Corriveau, F; Liu, C; Plamondon, M; Robichaud-Véronneau, A; Walsh, R; Zhou, C; Tsurugai, T; Antonov, A; Dolgoshein, B A; Rubinsky, I; Sosnovtsev, V V; Stifutkin, A; Suchkov, S; Dementiev, R K; Ermolov, P F; Gladilin, L K; Katkov, I I; Khein, L A; Korzhavina, I A; Kuzmin, V A; Levchenko, B B; Lukina, O Yu; Proskuryakov, A S; Shcheglova, L M; Zotkin, D S; Zotkin, S A; Abt, I; Büttner, C; Caldwell, A; Liu, X; Sutiak, J; Coppola, N; Grigorescu, G; Keramidas, A; Koffeman, E; Kooijman, P; Maddox, E; Tiecke, H G; Vázquez, M; Wiggers, L; Brümmer, N; Bylsma, B; Durkin, L S; Lee, A; Ling, T Y; Allfrey, P D; Bell, M A; Cooper-Sarkar, A M; Cottrell, A; Devenish, R C E; Foster, B; Gwenlan, C; Kohno, T; Korcsak-Gorzo, K; Patel, S; Roberfroid, V; Straub, P B; Walczak, R; Bellan, P M; Bertolin, A; Brugnera, R; Carlin, R; Ciesielski, R; Dal Corso, F; Dusini, S; Garfagnini, A; Limentani, S; Longhin, A; Stanco, L; Turcato, M; Heaphy, E A; Metlica, F; Oh, B Y; Whitmore, J J; Iga, Y; D'Agostini, G; Marini, G; Nigro, A; Hart, J C; Abramowicz, H; Gabareen, A; Kananov, S; Kreisel, A; Levy, A; Kuze, M; Kagawa, S; Tawara, T; Hamatsu, R; Kaji, H; Kitamura, S; Matsuzawa, K; Ota, O; Ri, Y D; Costa, M; Ferrero, M I; Monaco, V; Sacchi, R; Solano, A; Arneodo, M; Ruspa, M; Fourletov, S; Martin, J F; Butterworth, J M; Hall-Wilton, R; Jones, T W; Loizides, J H; Sutton, M R; Targett-Adams, C; Wing, M; Ciborowski, J; Grzelak, G; Kulinski, P; Luzniak, P; Malka, J; Nowak, R J; Pawlak, J M; Sztuk, J; Tymieniecka, T; Ukleja, A; Ukleja, J; Zarnecki, A F; Adamus, M; Plucinsky, P P; Eisenberg, Y; Hochman, D; Karshon, U; Lightwood, M S; Brownson, E; Danielson, T; Everett, A; Kcira, D; Lammers, S; Li, L; Reeder, D D; Rosin, M; Ryan, P; Savin, A A; Smith, W H; Dhawan, S; Bhadra, S; Catterall, C D; Cui, Y; Hartner, G; Menary, S; Noor, U; Soares, M; Standage, J; Whyte, J

    2005-01-01

    The production of D^*+, D^0, D^+, D_s^+ and Lambda_c^+ charm hadrons and their antiparticles in ep scattering at HERA was measured with the ZEUS detector using an integrated luminosity of 79 pb^-1. The measurement has been performed in the photoproduction regime with the exchanged-photon virtuality Q^2 3.8 GeV and pseudorapidity |eta(D, Lambda_c)| D, Lambda_c), were derived in the given kinematic range. The measured open-charm fragmentation fractions are consistent with previous results, although the measured f(c -> D^*+) is smaller and f(c -> Lambda_c^+) is larger than those obtained in e^+e^- annihilations. These results generally support the hypothesis that fragmentation proceeds independently of the hard sub-process.

  13. Status and perspectives of double beta decay searches

    International Nuclear Information System (INIS)

    Double beta decay is a very rare nuclear decay characterised by a change of 2 units the ordering number Z while leaving the mass number A constant. It can basically occur in two modes, with the emission of two electrons and two anti-neutrinos or the emission of two electrons only. The neutrinoless double beta decay of nuclei is not allowed in the Standard Model and is of outstanding importance for neutrino physics. It can only occur if a neutrino is its own antiparticle and if it has a non-vanishing rest mass. After a general introduction into double beta decay, the talk focusses on the current experimental searches and results and their implications for particle physics. An outlook towards future projects and the involved challenges is given. This includes a discussion on nuclear matrix elements and possible supporting experimental activities.

  14. Relativistic $\\langle \\sigma v_{\\text{rel}} \\rangle}$ in the calculation of relics abundances: a closer look

    CERN Document Server

    Cannoni, M

    2013-01-01

    After clarifying the relation between the invariant relativistic relative velocity $v_{\\texttt{r}}$, the M\\o{}ller velocity $\\bar{v}$, and the non-relativistic relative velocity $v_r$, the relativistic thermally averaged cross section times relative velocity $\\langle \\sigma v_\\texttt{rel}\\rangle$ that appears in the density evolution equation for thermal relics is reformulated only in terms the relativistic relative velocity $v_\\texttt{r}$. Considering the annihilation of dark matter into a particle-antiparticle pair $f\\bar{f}$, in the cases $m_f=0$, $m_f=m$ and $m_f \\gg m$, we find that the coefficients of the expansion of $\\langle \\sigma v_{\\texttt{r}}\\rangle$ in powers of the relative velocity admit an exact analytical representation in terms of the Meijer $G$ functions that can be reduced to combinations of modified Bessel functions of the second kind.

  15. The GERDA experiment on the 0nbb decay

    International Nuclear Information System (INIS)

    The Germanium Detector Array (GERDA) experiment searches for neutrinoless double beta decay of 76Ge, a test of whether neutrinos are identical with their anti-particles, i.e. of Majorana type, or distinct from them, i.e. of Dirac type. Neutrinoless double beta decay could not only establish the charge-conjugation character of neutrinos, but also place a limit on the effective neutrino mass and probe the neutrino mass hierarchy. Germanium crystals enriched in 76Ge, acting as source and detector, is submerged in an ultra-pure cryogenic liquid that serves as cooling medium and shields against radiation. This allows for a background reduction of up to two orders of magnitude better than earlier experiments. GERDA started the technical runs in 2010, with a pilot string of 3 non-enriched Ge detector. In 2011 measurements with enriched germanium detectors have been started: The results from the first years of data taking are presented.

  16. First results of neutrinoless double beta decay search with the GERmanium Detector Array "GERDA"

    Science.gov (United States)

    Janicskó Csáthy, József

    2014-06-01

    The study of neutrinoless double beta decay is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of the lepton number violating neutrinoless double beta decay would establish the Majorana nature of the neutrino. Until now neutrinoless double beta decay was not observed. The GERmanium Detector Array, GERDA is a double beta decay experiment located at the INFN Gran Sasso National Laboratory, Italy. GERDA operates bare Ge diodes enriched in 76Ge in liquid argon supplemented by a water shield. The exposure accumulated adds up to 21.6 kg· yr with a background level of 1.8 · 10-2 cts/(keV·kg·yr). The results of the Phase I of the experiment are presented and the preparation of the Phase II is briefly discussed.

  17. Dirac Hamiltonian and Reissner-Nordstrom Metric: Coulomb Interaction in Curved Space-Time

    CERN Document Server

    Noble, J H

    2016-01-01

    We investigate the spin-1/2 relativistic quantum dynamics in the curved space-time generated by a central massive charged object (black hole). This necessitates a study of the coupling of a Dirac particle to the Reissner-Nordstrom space-time geometry and the simultaneous covariant coupling to the central electrostatic field. The relativistic Dirac Hamiltonian for the Reissner-Nordstrom geometry is derived. A Foldy-Wouthuysen transformation reveals the presence of gravitational, and electro-gravitational spin-orbit coupling terms which generalize the Fokker precession terms found for the Dirac-Schwarzschild Hamiltonian, and other electro-gravitational correction terms to the potential proportional to alpha^n G, where alpha is the fine-structure constant, and G is the gravitational coupling constant. The particle-antiparticle symmetry found for the Dirac-Schwarzschild geometry (and for other geometries which do not include electromagnetic interactions) is shown to be explicitly broken due to the electrostatic c...

  18. Quantization of Complex Klein-Gordon Equation in Stochastic Variational Method

    CERN Document Server

    Koide, T

    2013-01-01

    We discuss the quantization of the complex Klein-Gordon equation in the framework of the stochastic variational method (SVM). In this scheme, the complete dynamics of the quantized field is described by a set of differential equations for the field configuration, which can be interpreted as the Euler (ideal fluid) equation in the functional space. In this formulation, the Fock state vector is given by the stationary solution of these differential equations and various results in the usual canonical quantization can be reproduced, including the effect of anti-particles. We further propose a systematic procedure to determine one parameter included in SVM which is, so far, given in an ad hoc manner so as to reproduce the Schroedinger equation.

  19. Toward a quantum theory of tachyon fields

    Science.gov (United States)

    Schwartz, Charles

    2016-03-01

    We construct momentum space expansions for the wave functions that solve the Klein-Gordon and Dirac equations for tachyons, recognizing that the mass shell for such fields is very different from what we are used to for ordinary (slower than light) particles. We find that we can postulate commutation or anticommutation rules for the operators that lead to physically sensible results: causality, for tachyon fields, means that there is no connection between space-time points separated by a timelike interval. Calculating the conserved charge and four-momentum for these fields allows us to interpret the number operators for particles and antiparticles in a consistent manner; and we see that helicity plays a critical role for the spinor field. Some questions about Lorentz invariance are addressed and some remain unresolved; and we show how to handle the group representation for tachyon spinors.

  20. On the density dependent hadron field theory at finite temperature and its thermodynamical consistency

    CERN Document Server

    Avancini, S S; Chiapparini, M; Peres-Menezes, D

    2004-01-01

    In this work we study in a formal way the density dependent hadron field theory at finite temperature for nuclear matter. The thermodynamical potential and related quantities, as energy density and pressure are derived in two different ways. We first obtain the thermodynamical potential from the grand partition function, where the Hamiltonian depends on the density operator and is truncated at first order. We then reobtain the thermodynamical potential by calculating explicitly the energy density in a Thomas-Fermi approximation and considering the entropy of a fermi gas. The distribution functions for particles and antiparticles are the output of the minimization of the thermodynamical potential. It is shown that in the mean field theory the thermodynamical consistency is achieved. The connection with effective chiral lagrangians with Brown-Rho scaling is discussed.

  1. Bit-string physics: A novel theory of everything

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1994-08-01

    We encode the quantum numbers of the standard model of quarks and leptons using constructed bitstrings of length 256. These label a grouting universe of bit-strings of growing length that eventually construct a finite and discrete space-time with reasonable cosmological properties. Coupling constants and mass ratios, computed from closure under XOR and a statistical hypothesis, using only {h_bar}, c and m{sub p} to fix our units of mass, length and time in terms of standard (meterkilogram-second) metrology, agree with the first four to seven significant figures of accepted experimental results. Finite and discrete conservation laws and commutation relations insure the essential characteristics of relativistic quantum mechanics, including particle-antiparticle pair creation. The correspondence limit in (free space) Maxwell electromagnetism and Einstein gravitation is consistent with the Feynman-Dyson-Tanimura ``proof.``

  2. Capacitor Discharge and Vacuum Resistance in Massless QED_2

    CERN Document Server

    Chu, Yi-Zen

    2010-01-01

    A charged parallel plate capacitor will create particle-antiparticle pairs by the Schwinger process and discharge over time. We consider the full quantum discharge process in 1+1 dimensions including backreaction, when the electric field interacts with massless charged fermions. We recover oscillatory features in the electric field observed in a semiclassical analysis and find that the amplitude of the oscillations falls off as t^{-1/2} and that stronger coupling implies slower decay. Remarkably, Ohm's law applies to the vacuum and we evaluate the quantum electrical conductivity of the vacuum to be 2e/\\pi^{1/2}, where e is the fermionic charge. Similarities and differences with black hole evaporation are mentioned.

  3. Quaternions and Lorentz transformations

    International Nuclear Information System (INIS)

    In the last years, it was argued by some authors that number systems with non-commutative multiplication laws can provide a deeper physical insight into many open theoretical problems. The generalization of the Lorentz group to transformations with faster-than-light speed parameters (the so-called 'extended theory of relativity') has shown itself - apart from the real existence of tachyons - to be a useful tool in order to deal, within a purely classical (i.e. relativistic but not quantum-mechanical) frame work, with antiparticles, discrete symmetries, CPT-covariance, and so on. Therefore, it seems worthwhile looking for possible connections between non-commutative number systems and 'superluminal' Lorentz transformations. In this paper, the author reviews how Lorentz transformations (both subluminal and superluminal) have been translated in quaterion language. Besides, some considerations are made on possible, further developments of the theory, according to the suggestions by the group properties of quaternionic (generalized) Lorentz transformations (QGLT). (Auth.)

  4. 6th Conference and Workshop on Strong and Electroweak Matter

    CERN Document Server

    Kainulainen, Kimmo; Kajantie, Keijo; Rummukainen, Kari; Strong and Electroweak Matter 2004; SEWM 2004

    2004-01-01

    This volume presents an authoritative review of the physics of strongly and electroweakly interacting elementary particle matter in extreme conditions that prevailed in the very early Universe, and which are being recreated in high energy physics laboratories today. Exciting, high-quality experimental results from RHIC collider at Brookhaven, collected since summer 2000, suggest that strongly interacting quark-gluon plasma has indeed been produced. The study of these phenomena will form an important part of theoretical particle and nuclear physics for years to come. Based on the discussions of more than a hundred experts at the Strong and Electroweak Matter 2004 Meeting, this volume contains an up-to-date overview of present ideas on QCD matter: quark-gluon plasma in heavy ion collisions, phase structure, kinetics, thermalization and transport properties. Also discussed are topics related to the cosmology of the early Universe, dark matter, inflation and creation of particle-antiparticle asymmetries. Both an...

  5. Bs semileptonic asymmetry at LHCb

    CERN Multimedia

    Dufour, Laurent

    2016-01-01

    When neutral $B^{0}_{s,d}$ mesons evolve in time they can change into their own antiparticles. In this mixing process CP symmetry is not necessarily conserved, as the probability for a $B^{0}$ meson to change into a $\\bar{B}^{0}$ meson can be different from the probability for the reverse process. The CP violation in the $B^{0}_{s}$ system as measured using semileptonic decays, defined as $a^{s}_{sl}$, is very small according to the Standard Model. However, earlier measurements of the semileptonic mixing asymmetry in both the $B_s^{0}$ and $B_d^{0}$ systems have shown a $3 \\sigma$ deviation with respect to the Standard Model value. A measurement of $a^{s}_{sl}$ performed using $1 \\text{fb}^{-1}$ of data collected at the LHCb detector is presented, together with an outlook to the updated $3 \\text{fb}^{-1}$ result.

  6. [Ettore Majorana's legacy: An historical analysis].

    Science.gov (United States)

    Klein, Etienne

    2013-01-01

    Since his mysterious disappearance in 1938, there have been many biographical accounts of Ettore Majorana's short life. Yet, his scientific work and his influence on the development of physics are often left in the background. The thrust of this article is precisely to shed light on them. In fact, some of Majorana's articles were only understood after World War II. Notably, this was the case of his last article. Written in 1937, it represents the best long-lasting contribution of Ettore Majorana to particle physics. He envisages, thanks to a new formalism, that neutrinos could be identical to their own antiparticles. The answer to this question posed by Majorana more than half a century ago may be found thanks to several experiments now carried out. It could give a lightning on the nature of dark matter and an explanation to the dominance of matter over antimatter in our universe. PMID:23636782

  7. Towards measurement of the W → τν cross section at √s = 7 TeV using the ATLAS detector

    CERN Document Server

    Meng, Zhaoxia

    2011-01-01

    The discovery of the neutron and the nuclear model based on the Rutherford scattering experiment leads to the conclusion that matter is constituted with fundamental particles. It was thought initially that they were only nucleus and electrons. However, with the development of particle accelerators, the fundamental structure of the matter is being explored through higher and higher energy particle beams. Now we know that the matter we know is composed of 28 elementary particles (including particles and anti-particles) interacting with each others through four fundamental forces. On the other hand, many theoretical models were established to explain the universe according to the experimental results. The standard model (SM) is found to be the most mature theory as it explains how the elementary particles interact with each others. However, it also has predicted the Higgs boson which has yet to be discovered. The Large Hadron Collider (LHC) has been built at the European laboratory for particle physics (CERN) wi...

  8. Dark Stars: D\\"od och \\AA teruppst\\aa ndelse

    CERN Document Server

    Spolyar, Douglas; Gondolo, Paolo; Aguirre, Anthony; Bodenheimer, Peter; Sellwood, Jeremy A; Yoshida, Naoki

    2009-01-01

    The first phase of stellar evolution in the history of the universe may be Dark Stars, powered by dark matter heating rather than by fusion. Weakly interacting massive particles, which are their own antiparticles, can annihilate and provide an important heat source for the first stars in the universe. This and the previous contribution present the story of Dark Stars. In this second part, we describe the structure of Dark Stars and predict that they are very massive ($\\sim 800 M_\\odot$), cool (6000 K), bright ($\\sim 10^6 L_\\odot$), long-lived ($\\sim 10^6$ years), and probable precursors to (otherwise unexplained) supermassive black holes. Later, once the initial dark matter fuel runs out and fusion sets in, dark matter annihilation can predominate again if the scattering cross section is strong enough, so that a Dark Star is born again.

  9. Dark Stars: Dark Matter in the First Stars leads to a New Phase of Stellar Evolution

    CERN Document Server

    Freese, Katherine; Aguirre, Anthony; Bodenheimer, Peter; Gondolo, Paolo; Sellwood, J A; Yoshida, Naoki

    2008-01-01

    The first phase of stellar evolution in the history of the universe may be Dark Stars, powered by dark matter heating rather than by fusion. Weakly interacting massive particles, which are their own antiparticles, can annihilate and provide an important heat source for the first stars in the the universe. This talk presents the story of these Dark Stars. We make predictions that the first stars are very massive ($\\sim 800 M_\\odot$), cool (6000 K), bright ($\\sim 10^6 L_\\odot$), long-lived ($\\sim 10^6$ years), and probable precursors to (otherwise unexplained) supermassive black holes. Later, once the initial DM fuel runs out and fusion sets in, DM annihilation can predominate again if the scattering cross section is strong enough, so that a Dark Star is born again.

  10. Concerning production and decay of mini black holes

    CERN Document Server

    Hajdukovic, D

    2007-01-01

    In the next few years, theories predicting possibility to create mini black holes will be tested at CERN. Either experimental verification or rejection of these theories is of great scientific importance. There is a large consensus that, if successfully created, these short living mini black holes will decay through thermal (Hawking's) radiation. In the present comment we point out, that under assumption of the gravitational repulsion between matter and antimatter (in short we call it antigravity), thermal radiation may be dominated by a non-thermal radiation (being the consequence of pair creation from the vacuum, by gravitational field, which in the case of antigravity, pushes particles and antiparticles in opposite directions). Thus, the eventual creation of mini black holes may turn to be an unexpected opportunity to test the existence of antigravity.

  11. Cosmic-ray Propagation and Interactions in the Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Andrew W.; /Garching, Max Planck Inst., MPE; Moskalenko, Igor V.; /Stanford U., HEPL /KIPAC, Menlo Park; Ptuskin, Vladimir S.; /Troitsk, IZMIRAN

    2007-01-22

    We survey the theory and experimental tests for the propagation of cosmic rays in the Galaxy up to energies of 10{sup 15} eV. A guide to the previous reviews and essential literature is given, followed by an exposition of basic principles. The basic ideas of cosmic-ray propagation are described, and the physical origin of its processes are explained. The various techniques for computing the observational consequences of the theory are described and contrasted. These include analytical and numerical techniques. We present the comparison of models with data including direct and indirect--especially gamma-ray--observations, and indicate what we can learn about cosmic-ray propagation. Some particular important topics including electrons and antiparticles are chosen for discussion.

  12. Asymmetric Dark Matter and Dark Radiation

    CERN Document Server

    Blennow, Mattias; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, pre...

  13. Inclusive production of K*(892) and Σ(1385) in anti pp interactions at 3.6 GeV/c and a test of factorization hypothesis

    International Nuclear Information System (INIS)

    We present a study of the inclusive production of K*(892) and Σ+(1385) + cc at 3.6 GeV/c from anti pp interactions. The sensitivity of the exposure is 35.4 events/μb. Longitudinal and transverse momentum distributions are presented. The indirect production of Ksub(s)0 from parent K* and that of Λ's from parent Σ(1385) are studied. The shape of the x distribution of Λ's for p → anti p Λ are calculated from p → p Λ and p → π Λ and compared with the experimental distributions. The difference of antiparticle production cross-section of Ksub(s)0 in the central region is compared with the expectation from Mueller-Regge formalism. (orig.)

  14. Measurement of the mass difference between top and antitop quarks

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2012-06-01

    A measurement of the mass difference between the top and the antitop quark (Delta m(t) = m(t) - m(anti-t)) is performed using events with a muon or an electron and at least four jets in the final state. The analysis is based on data collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.96 +/- 0.11 inverse femtobarns, and yields the value of Delta m(t) = -0.44 +/- 0.46 (stat) +/- 0.27 (syst) GeV. This result is consistent with equality of particle and antiparticle masses required by CPT invariance, and provides a significantly improved precision relative to existing measurements.

  15. Dirac fields in f(R)-gravity with torsion

    Science.gov (United States)

    Fabbri, Luca; Vignolo, Stefano

    2011-06-01

    We study f(R)-gravity with torsion in the presence of Dirac massive fields. Using the Bianchi identities, we formulate the conservation laws of the theory and we check the consistency with the matter field equations. Further, we decompose the field equations in torsionless and torsional terms: we show that the nonlinearity of the gravitational Lagrangian reduces to the presence of a scalar field that depends on the spinor field; this additional scalar field gives rise to an effective stress-energy tensor and plays the role of a scale factor modifying the normalization of Dirac fields. Problems for fermions regarding the positivity of energy and the particle-antiparticle duality are discussed.

  16. Physics of antihydrogen

    International Nuclear Information System (INIS)

    The CPT-transformation relates particles to antiparticles, atoms to antiatoms, elements to antielements, in general matter to antimatter. No CPT violation has yet been observed. The present-day theory of the universe states that during the Big Bang exactly the same amount of matter and antimatter was produced. Under such conditions and if both - matter and antimatter were subject to the same laws of physics - then the world would not exist. Why we owe our existence to a tiny residue of matter over antimatter is one of the exciting questions of physics. Two collaborations (ATHENA and ATRAP) at the antiproton decelerator (AD) of CERN want to test the CPT-invariance in high precision comparison of the antihydrogen and antihydrogen systems. Both working groups announced first results of the production of cold antihydrogen during the second half of 2002. (author)

  17. Induced fermionic current at finite temperature

    CERN Document Server

    de Mello, Eugênio R Bezerra; Mohammadi, Azadeh

    2015-01-01

    Here we analyze the finite temperature expectation values of the charge and current densities for a massive fermionic quantum field with nonzero chemical potential, $\\mu$, induced by a magnetic flux running along the axis of an idealized cosmic string. These densities are decomposed into the vacuum expectation values and contributions coming from the particles and antiparticles. Specifically the charge density is an even periodic function of the magnetic flux with the period equal to the quantum flux and an odd function of the chemical potential. The only nonzero component of the current density corresponds to the azimuthal current and it is an odd periodic function of the magnetic flux and an even function of the chemical potential. Both analyzed are developed for the cases where $|\\mu |$ is smaller than the mass of the field quanta, $m$.

  18. Induced fermionic current by a magnetic flux in a cosmic string spacetime at finite temperature

    Science.gov (United States)

    Bezerra de Mello, Eugênio R.; Saharian, Aram A.; Mohammadi, Azadeh

    2016-01-01

    Here we analyze the finite temperature expectation values of the charge and current densities for a massive fermionic quantum field with nonzero chemical potential μ, induced by a magnetic flux running along the axis of an idealized cosmic string. These densities are decomposed into the vacuum expectation values and contributions coming from the particles and antiparticles. Specifically the charge density is an even periodic function of the magnetic flux with the period equal to the quantum flux and an odd function of the chemical potential. The only nonzero component of the current density corresponds to the azimuthal current and it is an odd periodic function of the magnetic flux and an even function of the chemical potential. Both analyzed are developed for the cases where |μ| is smaller than the mass of the field quanta m.

  19. One-loop omega-potential of charged massive fields in a constant homogeneous magnetic field at high temperatures

    CERN Document Server

    Kalinichenko, I S

    2016-01-01

    The explicit expressions for the high-temperature expansions of the one-loop corrections to the omega-potential coming from the charged scalar and Dirac particles and, separately, from antiparticles in a constant homogeneous magnetic field are derived. The explicit expressions for the non-perturbative corrections to the effective action at finite temperature and density are obtained. The thermodynamic properties of a gas of charged scalars in a constant homogeneous magnetic field are analyzed in the one-loop approximation. It turns out that, in this approximation, the system suffers the first order phase transition from the diamagnetic to the superconducting state at sufficiently high densities. The improvement of the one-loop result by summing the ring diagrams is investigated. This improvement leads to a drastic change of the thermodynamic properties of the system. The gas of charged scalars passes to the ferromagnetic state in place of the superconducting one at high densities and sufficiently low temperat...

  20. Perspectives of dark matter searches with antideuterons

    International Nuclear Information System (INIS)

    The search for an excess of antideuterons in the cosmic rays flux has been proposed as a very promising channel for dark matter indirect detection, especially for WIMPs with a low or an intermediate mass. With the development of the AMS experiment and the proposal of a future dedicated experiment, i.e. the General Antiparticle Spectrometer (GAPS), there are exciting possibilities for a dark matter detection in the near future. We give an overview on the principal issues related both to the antideuterons production in dark matter annihilation reactions and to their propagation through the interstellar medium and the heliosphere, with a particular focus on the impact of various solar modulation models on the flux at Earth. Lastly, we provide an updated calculation of the reaching capabilities for current and future experiments compatible with the constraints on the dark matter annihilation cross-section imposed by the antiproton measurements of PAMELA

  1. Hydrodynamics of the Physical Vacuum: I. Scalar Quantum Sector

    Science.gov (United States)

    Sbitnev, Valeriy I.

    2016-05-01

    Physical vacuum is a special superfluid medium. Its motion is described by the Navier-Stokes equation having two slightly modified terms that relate to internal forces. They are the pressure gradient and the dissipation force because of viscosity. The modifications are as follows: (a) the pressure gradient contains an added term describing the pressure multiplied by the entropy gradient; (b) time-averaged viscosity is zero, but its variance is not zero. Owing to these modifications, the Navier-Stokes equation can be reduced to the Schrödinger equation describing behavior of a particle into the vacuum, which looks like a superfluid medium populated by enormous amount of virtual particle-antiparticle pairs.

  2. Bit-string physics: A novel theory of everything

    International Nuclear Information System (INIS)

    We encode the quantum numbers of the standard model of quarks and leptons using constructed bitstrings of length 256. These label a grouting universe of bit-strings of growing length that eventually construct a finite and discrete space-time with reasonable cosmological properties. Coupling constants and mass ratios, computed from closure under XOR and a statistical hypothesis, using only ℎ, c and mp to fix our units of mass, length and time in terms of standard (meterkilogram-second) metrology, agree with the first four to seven significant figures of accepted experimental results. Finite and discrete conservation laws and commutation relations insure the essential characteristics of relativistic quantum mechanics, including particle-antiparticle pair creation. The correspondence limit in (free space) Maxwell electromagnetism and Einstein gravitation is consistent with the Feynman-Dyson-Tanimura ''proof.''

  3. Measurement of the mass difference between top and antitop quarks

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Cerny, Karel; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Siguang; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Davids, Martina; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Fischer, David; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Habib, Shiraz; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Berger, Joram; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Saout, Christophe; Scheurer, Armin; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Krajczar, Krisztian; Radics, Balint; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Gasparini, Fabrizio; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Visca, Lorenzo; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Jo, Hyun Yong; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Seo, Eunsung; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Seixas, Joao; Varela, Joao; Vischia, Pietro; Belotelov, Ivan; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lenzi, Piergiulio; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Go, Apollo; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Muelmenstaedt, Johannes; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hahn, Alan; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Lincoln, Don; Lipton, Ron; Lueking, Lee; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Evdokimov, Olga; Garcia-Solis, Edmundo Javier; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Chung, Kwangzoo; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Lae, Chung Khim; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Radicci, Valeria; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Peterman, Alison; Rossato, Kenneth; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Warchol, Jadwiga; Wayne, Mitchell; Wolf, Matthias; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Korjenevski, Sergey; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Richards, Alan; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Engh, Daniel; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2012-01-01

    A measurement of the mass difference between the top and the antitop quark (Delta m(t) = m(t) - m(anti-t)) is performed using events with a muon or an electron and at least four jets in the final state. The analysis is based on data collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.96 +/- 0.11 inverse femtobarns, and yields the value of Delta m(t) = -0.44 +/- 0.46 (stat) +/- 0.27 (syst) GeV. This result is consistent with equality of particle and antiparticle masses required by CPT invariance, and provides a significantly improved precision relative to existing measurements.

  4. Packaged entanglement states and particle teleportation

    CERN Document Server

    Ma, Rongchao

    2015-01-01

    The entanglement states of particles are now widely used in quantum communication. However, these entanglement states usually relate to only one of the particles' physical quantities. Here we theoretically show that there exists a packaged entanglement state which encapsulates all the necessary physical quantities for completely identifying the particles. We first show that a particle-antiparticle pair can form a packaged entanglement state in which the particles are indeterminate. Thereafter, we gave a possible experimental scheme for testing the packaged entanglement state. Finally, we proposed a protocol for teleporting a particle to an arbitrarily large distance using the packaged entanglement states. These packaged entanglement states could be important for particle physics and be useful in matter teleportation, medicine, remote control, and energy transfer.

  5. Suppression of high transverse momentum D mesons in central Pb--Pb collisions at $\\sqrt{s_{NN}}=2.76$ TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Bottger, Stefan; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caballero Orduna, Diego; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Del Castillo Sanchez, Eduardo; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Fragkiadakis, Michail; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jancurova, Lucia; Jangal, Swensy Gwladys; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalisky, Matus; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kanaki, Kalliopi; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Minwoo; Kim, Se Yong; Kim, Seon Hee; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lechman, Mateusz; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Ajit Kumar; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, S; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujol Teixido, Jordi; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roukoutakis, Filimon; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selioujenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Sgura, Irene; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, catherine; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stefanini, Giorgio; Steinbeck, Timm Morten; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Tagridis, Christos; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Tosello, Flavio; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; vrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo

    2012-01-01

    The production of the prompt charm mesons $D^0$, $D^+$, $D^{*+}$, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the LHC, at a centre-of-mass energy $\\sqrt{s_{NN}}=2.76$ TeV per nucleon--nucleon collision. The $p_t$-differential production yields in the range $2

  6. Stability of relativistic Hartree states

    International Nuclear Information System (INIS)

    It is shown that the Hartree solution of a relativistic hamiltonian of the type considered by Walecka and collaborators is unstable with respect to particle-hole excitations responsible for fluctuations of the nucleon effective mass, unless the negative energy states (Dirac sea) are taken into account and the corresponding renormalization counter terms are properly treated. It is also shown that static properties as well as low frequency dynamical properties are not too much affected by vacuum polarization effects. However, renormalization is crucial for a correct description of high energy processes associated with the creation of scalar mesons or of particle-antiparticle pairs, even if the momentum transfer is small. Polarization effects lead to a reduction of the effective mass of the scalar meson in the medium. (author)

  7. Intrinsic CPT violation and decoherence for entangled neutral mesons

    CERN Document Server

    Bernabeu, J; Papavassiliou, J; Waldron-Lauda, A

    2006-01-01

    We present a combined treatment of quantum-gravity-induced effects and intrinsic CPT violation in entangled neutral-Kaon states. Our analysis takes into consideration two types of effects: first, those associated with the loss of particle-antiparticle identity, as a result of the ill-defined nature of the CPT operator, and second, effects due to the non-unitary evolution of the Kaons in the space-time foam. By studying a variety of phi-factory observables, involving identical as well as general final states, we derive analytical expressions, to leading order in the associated CPT violating parameters, for double-decay rates and their time-integrated counterparts. Our analysis shows that the various types of the aforementioned effects may be disentangled through judicious combinations of appropriate observables in a phi factory.

  8. Intrinsic CPT violation and decoherence for entangled neutral mesons

    International Nuclear Information System (INIS)

    We present a combined treatment of quantum-gravity-induced decoherence and intrinsic CPT violation in entangled neutral-kaon states. Our analysis takes into consideration two types of effects: first, those associated with the loss of particle-antiparticle identity, as a result of the ill-defined nature of the CPT operator, and second, effects due to the nonunitary evolution of the kaons in the space-time foam. By studying a variety of φ-factory observables, involving identical as well as general final states, we derive analytical expressions, to leading order in the associated CPT violating parameters, for double-decay rates and their time-integrated counterparts. Our analysis shows that the various types of the aforementioned effects may be disentangled through judicious combinations of appropriate observables in a φ factory

  9. Performance of the transition radiation detector of the PAMELA space mission

    CERN Document Server

    Ambriola, M

    2002-01-01

    The performance of the transition radiation detector (TRD) of the PAMELA telescope has been studied using beam test data and simulation tools. PAMELA is a satellite-borne magnetic spectrometer designed to measure particles and antiparticles spectra in cosmic rays. The particle identification at high energy will be achieved by combining the measurements by the TRD and a Si-W imaging calorimeter. The TRD is composed of 9 planes of straw tubes, interleaved with carbon fiber radiators. A prototype of the detector has been exposed to particle beams of electrons, pions and muons of various momenta at the CERN-PS and SPS accelerator facilities. In addition a dedicated Monte Carlo code has been developed to simulate the detector. Here we illustrate both simulation results and experimental data analysis procedures and we will discuss the estimated TRD performance. (15 refs).

  10. Nuclear dependence of charm production

    International Nuclear Information System (INIS)

    Using data taken by SELEX during the 1996-1997 fixed target run at Fermilab, we study the production of charmed hadrons on copper and carbon targets with Σ-, p, π-, and π+ beams. Parametrizing the dependence of the inclusive production cross section on the atomic number A as Aα, we determine α for D+, D0, Ds+, D+(2010), Λc+, and their respective anti-particles, as a function of their transverse momentum pt and scaled longitudinal momentum xF. Within our statistics there is no dependence of α on xF for any charm species for the interval 0.1 Fmeson=0.850±0.028. This is somewhat larger than the corresponding average αbaryon=0.755±0.016 for charm production by baryon beams (Σ-, p). (orig.)

  11. The dual behavior of quantum Fields and the big Bang

    CERN Document Server

    Matwi, Malik

    2016-01-01

    We modify the propagation for the quarks and gluons, with that we have finite results, without ultra violet divergence in perturbed interaction of the quarks and gluons, this makes it easily for the interaction renormalization, like the self energy. Then we search for a way to remove our modification, with fixing the Lagrange parameters. so we can ignore our modification. We relate the modification to interaction situation, this is, we need it only for interaction renormalization. we see for the free the modification is removed. then We try to give the modification terms modification physical aspects, for this we see the corresponding terms in the Lagrange. To do that we find the role of those terms in the Feynman diagrams, in self energies, quarks gluons vertex. We see we can relate the propagation modification to fields dual behavior, pairing particle with antiparticle appears as scalar particles with high mass. For the quarks we can interrupt these particles as pions.

  12. The discovery of geomagnetically trapped cosmic ray antiprotons

    CERN Document Server

    Adriani, O; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Borisov, S; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Consiglio, L; De Pascale, M P; De Santis, C; De Simone, N; Di Felice, V; Galper, A M; Gillard, W; Grishantseva, L; Jerse, G; Karelin, A V; Kheymits, M D; Koldashov, S V; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Mayorov, A G; Menn, W; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Nikonov, N; Osteria, G; Palma, F; Papini, P; Pearce, M; Picozza, P; Pizzolotto, C; Ricci, M; Ricciarini, S B; Rossetto, L; Sarkar, R; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G; Voronov, S A; Yurkin, Y T; Wu, J; Zampa, G; Zampa, N; Zverev, V G; 10.1088/2041-8205/736/1/L1

    2011-01-01

    The existence of a significant flux of antiprotons confined to Earth's magnetosphere has been considered in several theoretical works. These antiparticles are produced in nuclear interactions of energetic cosmic rays with the terrestrial atmosphere and accumulate in the geomagnetic field at altitudes of several hundred kilometers. A contribution from the decay of albedo antineutrons has been hypothesized in analogy to proton production by neutron decay, which constitutes the main source of trapped protons at energies above some tens of MeV. This Letter reports the discovery of an antiproton radiation belt around the Earth. The trapped antiproton energy spectrum in the South Atlantic Anomaly (SAA) region has been measured by the PAMELA experiment for the kinetic energy range 60--750 MeV. A measurement of the atmospheric sub-cutoff antiproton spectrum outside the radiation belts is also reported. PAMELA data show that the magnetospheric antiproton flux in the SAA exceeds the cosmic-ray antiproton flux by three ...

  13. Spin, localization and uncertainty of relativistic fermions

    CERN Document Server

    Céleri, Lucas C; Terno, Daniel R

    2016-01-01

    We describe relations between several relativistic spin observables and derive a Lorentz-invariant characteristic of a reduced spin density matrix. A relativistic position operator that satisfies all the properties of its non-relativistic analogue does not exist. Instead we propose two causality-preserving positive operator-valued measures (POVM) that are based on projections onto one-particle and antiparticle spaces, and on the normalized energy density. They predict identical expectation values for position. The variances differ by less than a quarter of the squared de Broglie wavelength and coincide in the non-relativistic limit. Since the resulting statistical moment operators are not canonical conjugates of momentum, the Heisenberg uncertainty relations need not hold. Indeed, the energy density POVM leads to a lower uncertainty. We reformulate the standard equations of the spin dynamics by explicitly considering the charge-independent acceleration, allowing a consistent treatment of backreaction and incl...

  14. Search for Pair Production of a Heavy Up-Type Quark Decaying to a W Boson and a b Quark in the lepton+jets Channel with the ATLAS Detector

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.

    2012-06-01

    A search is presented for production of a heavy up-type quark (t') together with its antiparticle, assuming subsequent decay to a W boson and a b quark, t't¯'→W+bW-b¯. The search is based on 1.04fb-1 of proton-proton collisions at s=7TeV collected by the ATLAS detector at the CERN Large Hadron Collider. Data are analyzed in the lepton+jets final state, characterized by a high transverse momentum isolated electron or muon, high missing transverse momentum, and at least three jets. No significant excess of events above the background expectation is observed. A 95% C.L. lower limit of 404 GeV is set for the mass of the t' quark.

  15. From God's particle to the world formula. Big Bang, Higgs, antimatter, and the mysterious shadow world

    International Nuclear Information System (INIS)

    Our knowledge about the elementary particles stands before a revolution: With the biggest machine of mankind the legendary Higgs boson was discovered - and for its prediction the Nobel prize awarded. Other researchers search for antiparticles from the universe and the shadow regime of the dark matter. What has be happened after the big bang? How the components of the universe have been arised? Of which consists the world - and why it exists at all? Science reporter and cosmology specialist Ruediger Vaas bends the bow from the smallest of all to the largest of all. He analyzes the actual state of knowledge and reports about the search for a ''world formula'', which explains, what holds the universe together in the innermost. A unique excursion to the fronts of research.

  16. Entanglement in Quantum Field Theory: particle mixing and oscillations

    International Nuclear Information System (INIS)

    The phenomena of particle mixing and flavor oscillations in elementary particle physics are associated with multi-mode entanglement of single-particle states. We show that, in the framework of quantum field theory, these phenomena exhibit a fine structure of quantum correlations, as multi-mode multi-particle entanglement appears. Indeed, the presence of anti-particles adds further degrees of freedom, thus providing nontrivial contributions both to flavor entanglement and, more generally, to multi-partite entanglement. By using the global entanglement measure, based on the linear entropies associated with all the possible bipartitions, we analyze the entanglement in the multiparticle states of two-flavor neutrinos and anti-neutrinos. A direct comparison with the instance of the quantum mechanical Pontecorvo single-particle states is also performed.

  17. Centrality dependence of high-$p_{\\rm T}$ D meson suppression in Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Zhang, Chunhui; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadlovska, Slavka; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Ferreira Natal Da Luz, Pedro Hugo; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Masui, Hiroshi; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2015-01-01

    The nuclear modification factor, $R_{\\rm AA}$, of the prompt charmed mesons ${\\rm D^0}$, ${\\rm D^+}$ and ${\\rm D^{*+}}$, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass energy $\\sqrt{s_{\\rm NN}} = 2.76$ TeV in two transverse momentum intervals, $5

  18. From God's particle to the world formula. Big Bang, Higgs, antimatter, and the mysterious shadow world; Vom Gottesteilchen zur Weltformel. Urknall, Higgs, Antimaterie und die raetselhafte Schattenwelt

    Energy Technology Data Exchange (ETDEWEB)

    Vaas, Ruediger

    2013-07-01

    Our knowledge about the elementary particles stands before a revolution: With the biggest machine of mankind the legendary Higgs boson was discovered - and for its prediction the Nobel prize awarded. Other researchers search for antiparticles from the universe and the shadow regime of the dark matter. What has be happened after the big bang? How the components of the universe have been arised? Of which consists the world - and why it exists at all? Science reporter and cosmology specialist Ruediger Vaas bends the bow from the smallest of all to the largest of all. He analyzes the actual state of knowledge and reports about the search for a ''world formula'', which explains, what holds the universe together in the innermost. A unique excursion to the fronts of research.

  19. Revolutions in twentieth-century physics

    CERN Document Server

    Griffiths, David J

    2013-01-01

    The conceptual changes brought by modern physics are important, radical and fascinating, yet they are only vaguely understood by people working outside the field. Exploring the four pillars of modern physics – relativity, quantum mechanics, elementary particles and cosmology – this clear and lively account will interest anyone who has wondered what Einstein, Bohr, Schrödinger and Heisenberg were really talking about. The book discusses quarks and leptons, antiparticles and Feynman diagrams, curved space-time, the Big Bang and the expanding Universe. Suitable for undergraduate students in non-science as well as science subjects, it uses problems and worked examples to help readers develop an understanding of what recent advances in physics actually mean.

  20. Elementary Particles and the Laws of Physics

    Science.gov (United States)

    Feynman, Richard P.; Weinberg, Steven

    1987-11-01

    Developing a theory that seamlessly combines relativity and quantum mechanics, the most important conceptual breakthroughs in twentieth century physics, has proved to be a difficult and ongoing challenge. This book details how two distinguished physicists and Nobel laureates have explored this theme in two lectures given in Cambridge, England, in 1986 to commemorate the famous British physicist Paul Dirac. Given for nonspecialists and undergraduates, the talks transcribed in Elementary Particles and the Laws of Physics focus on the fundamental problems of physics and the present state of our knowledge. Professor Feynman examines the nature of antiparticles, and in particular the relationship between quantum spin and statistics. Professor Weinberg speculates on how Einstein's theory of gravitation might be reconciled with quantum theory in the final law of physics. Highly accessible, deeply thought provoking, this book will appeal to all those interested in the development of modern physics.

  1. Search for high energy neutrinos from dark matter annihilation in the sun

    International Nuclear Information System (INIS)

    Recent theoretical studies have indicated that weakly interacting massive particles (WIMP'S) might be dark matter candidates explaining the missing mass problem. It is suggested that these WIMP's should be captured and accumulated in the Sun core and then annihilate with their anti-particles producing high energy neutrinos (≥1GeV). A search is made for high energy neutrinos from the Sun, based on the 2 different data samples, 342 fully-contained neutrino events (2.82 kton-yr exposure) and 120 neutrino-induced upward-going muons (165.3 m2.yr exposure) recorded by the KAMIOKANDE detector. No significant excess signal of high energy neutrinos has been observed from the direction of the Sun, which sets mass limits on some of the WIMP's as a dark matter candidate

  2. Measurement of charm fragmentation fractions in photoproduction at HERA

    International Nuclear Information System (INIS)

    The production of D0, D*+, D+, Ds+ and Λc+ charm hadrons and their antiparticles in ep scattering at HERA has been studied with the ZEUS detector, using a total integrated luminosity of 372 pb-1. The fractions of charm quarks hadronising into a particular charm hadron were derived. In addition, the ratio of neutral to charged D-meson production rates, the fraction of charged D mesons produced in a vector state, and the strangeness-suppression factor have been determined. The measurements have been performed in the photoproduction regime. The charm hadrons were reconstructed in the range of transverse momentum pT > 3.8GeV and pseudorapidity vertical stroke η vertical stroke +e- experiments. The data support the hypothesis that fragmentation is independent of the production process.

  3. Classical isodual theory of antimatter

    CERN Document Server

    Santilli, R M

    1997-01-01

    An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatments of matter and antimatter in due time, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with expected images at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is anti-automorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also anti-automorphic, yet it is applicable beginning at the classical level and then persists at the quantum level. As part of our study, we present novel anti-isomorphic isodual images of the Galilean, special and general relativities and show the compatibility of their representation of antimatter with all available classical experi...

  4. Status of the NA57 experiment at CERN SPS

    CERN Document Server

    Manzari, V; Badalà, A; Barbera, R; Bloodworth, Ian J; Bruno, G; Caliandro, R; Campbell, M; Cantatore, E; Carena, W; Carrer, N; De Haas, A P; Di Bari, D; Di Liberto, S; Divià, R; Elia, D; Evans, D; Fanebust, K; Fayazzadeh, F; Fedorisin, J; Feofilov, G A; Fini, R A; Ftácnik, J; Ghidini, B; Grella, G; Gulino, M; Helstrup, H; Henriquez, M; Holme, A K; Jacholkowski, A; Jones, G T; Jovanovic, P; Jusko, A; Kamermans, R; Kinson, J B; Klempt, W; Knudson, K; Kolojvari, A A; Kondratev, V A; Králik, I; Kuijer, P; Lenti, V; Lietava, R; Løvhøiden, G; Lupták, M; Manzari, V; Martinská, G; Mazzoni, M A; Meddi, F; Michalon, A; Michalon-Mentzer, M E; Morando, M; Muigg, D; Nappi, E; Navach, F; Norman, P I; Palmeri, A; Pappalardo, G S; Pastircák, B; Pisút, J; Pisútová, N; Posa, F; Quercigh, Emanuele; Riggi, F; Röhrich, D; Romano, G; Safarík, K; Sándor, L; Schillings, E; Segato, G F; Sené, M; Sené, R; Snoeys, W; Staroba, P; Thompson, M; Tulina, T A; Turrisi, R; Tveter, T S; Urbán, J; Valiev, F F; Van den Brink, A; Van de Ven, P; Van de Vyvre, P; van Eijndhoven, N; Vannucci, Luigi; Vascotto, Alessandro; Vik, T; Villalobos Baillie, O; Vinogradov, I; Virgili, T; Votruba, M F; Vrláková, J; Závada, P

    2001-01-01

    The NA57 experiment aims to investigate the production of strange and multi-strange particles in nucleus-nucleus collisions at CERN SPS. NA57 has been specifically designed to extend the study of Lambda , Xi and Omega as well as the K/sub s//sup 0/ (and their antiparticles) production pattern in ultra-relativistic nuclear collisions, as a function of the centre-of-mass energy and in a wider centrality range than its predecessor WA97. In this paper we recall the main features of the NA57 set-up and we report on the status of the processing and analysis of data samples collected in 1998 with a lead beam at 158 A GeV c/sup -1/ and in 1999 with lead and proton beams at 40 A GeV c /sup -1/. (6 refs).

  5. Jeans instability and anti-screening in gravitational-antigravitational model of Universe

    CERN Document Server

    Gribov, I

    2014-01-01

    The hypothesis of antigravitational interaction of elementary particles and antiparticles is considered on the basis of the simple two-component hydrodynamic model with gravitational repulsion and attraction. It is shown increasing of the Jeans instability rate, the presence of antiscreening and the dominative role of the gravitational repulsion as a possible mechanism for spatial separation of matter and antimatter in Universe, as well as the observable acceleration of the far galaxies. The sound wave is found for the two-component gravitational-antigravitational system, which starts for k = 0 in the case of annihilation neglecting. The suggested approach permits to reestablish the idea about baryon symmetry of Universe, causing its steady flatness of the large scale and accelerated Universe expansion.

  6. Tachyons And Modern Physics

    Directory of Open Access Journals (Sweden)

    Francisco Martnez Flores

    2015-08-01

    Full Text Available ABSTRACT We have carried out an exhaustive analysis of the scope of Relativity showing that it is possible to couple it with Quantum Theory but not with Classical Mechanics In order to do that we have introduced the concept of electromagnetic and virtual mass to all particles subjected to Quantum Field Theory radically different from the real or inertial mass included in Newtonian Dynamics which turns out the adequate status to understand quantum phenomena without resorting to explanations difficult to admit. In that line we have considered the particles so-called Tachyon for which we made a reformulation of the relativistic equation avoiding the space-like or negative interval non-causal thus it has been demonstrated its identification with antiparticles on account of the peculiar behavior of energy and momentum regarding the particles and photons.

  7. Big Bang Day: 5 Particles - 4. The Neutrino

    CERN Multimedia

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". It's the most populous particle in the universe. Millions of these subatomic particles are passing through each one of us. With no charge and virtually no mass they can penetrate vast thicknesses of matter without any interaction - indeed the sun emits huge numbers that pass through earth at the speed of light. Neutrinos are similar to the more familiar electron, with one crucial difference: neutrinos do not carry electric charge. As a result they're extremely difficult to detect . But like HG Wells' invisible man they can give themselves away by bumping into things at high energy and detectors hidden in mines are exploiting this to observe these rare interactions.

  8. Measurement of D*± meson produciton in e±p scattering at low Q2

    International Nuclear Information System (INIS)

    The production of D*±(2010) mesons in e±p scattering in the range of exchanged photon virtuality 0.0522 has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb-1. The decay channels D*+→D0π+ with D0→K-π+ and corresponding antiparticle decay were used to identify D* mesons and the ZEUS beampipe calorimeter was used to identify the scattered electron. Differential D* cross sections as functions of Q2, inelasticity, y, transverse momentum of the D* meson, pT(D*), and pseudorapidity of the D* meson, η(D*), have been measured in the kinematic region 0.02T(D*)*) vertical stroke <1.5. The measured differential cross sections are in agreement with two different NLO QCD calculations. The cross sections are also compared to previous ZEUS measurements in the photoproduction and DIS regimes. (orig.)

  9. New ideas about unified field theory

    International Nuclear Information System (INIS)

    An outline of the physical concepts evolution is given from the ancient philosophers to the present time. With qualitative explanations about the meaning of the theories that is the milestones of these concepts evolution, it mentions the ideas which lead the studies to the conception of a unified field theory. Chronologically, it has brief information about the ideas of Laplace (mechanical determinism), Maxwell (the field concept), Einsten (the space-time structure), Heisenberg and Schroedinger (the quantum mechanics), Dirac (the relativistic quantum and the antiparticles), Gell-Mann (the quarks), Weinberg-Salam (Weak interactions and eletromagnetic unification), H. Georgi and S. Glashon (strong interactions plus Weinberg-Salam), Kaluza-Klein (a fifth space-time coordinate), and Zumino-Weiss (supersymmetry and supergravity). (G.D.F.)

  10. The thermal evolution of universe: standard model

    International Nuclear Information System (INIS)

    A description of the dynamical evolution of the Universe following a model based on the theory of General Relativity is made. The model admits the Cosmological principle,the principle of Equivalence and the Robertson-Walker metric (of which an original derivation is presented). In this model, the universe is considered as a perfect fluid, ideal and symmetric relatively to the number of particles and antiparticles. The thermodynamic relations deriving from these hypothesis are derived, and from them the several eras of the thermal evolution of the universe are established. Finally, the problems arising from certain specific predictions of the model are studied, and the predictions of the abundances of the elements according to nucleosynthesis and the actual behavior of the universe are analysed in detail. (author)

  11. Nothing From Everything- A Unified Theory

    Science.gov (United States)

    Mehra, Vijay Kumar

    2016-07-01

    Nothing From Everything-A Unified Theory is a philosophical insight into principles of nature through principle of complementary spontaneity and principle of vertical continuity. This work is intended to explain various cosmological phenomena in light of behaviour of particles in range of their respective and relative speed of light. This theory explains creation of Universe from nothing or zero spacetime through scalar energy field collapsing into Higgs field resulting into giving mass to various particles. The energy particles taking origin from nothing while moving away from zero space-time would create space-time of their own order because energy/matter needs space to exist. The particles while moving away from zero space-time would end up in breaking symmetry of matter/energy at their mass infinity (highest possible mass of any particle, which is function of speed of spin). This break in symmetry would lead to curving of particles upon themselves and hence would lead to creation of antiparticles going back in time towards zero spacetime. Therefore the Universe could have been created by alternate layers of particles and antiparticles and also alternate layers of matter and antimatter with decelerating speed of light, which would lead to creation a closed and flat Universe. With increase in mass of Universe (creation of more and more Universe's matter from nothing), the gravitational force of Universe is bound to increase and hence with quantum by quantum increase in gravity, it would apply brakes on relative speed of photon/light out of its reference frame or designated space and hence speed of photon would decrease. If closed and flat Universe was created with decelerating speed of light, then such Universe is bound to contract back with accelerating speed of light which would have inverse impact on gravitational constant across various spacetime zones of Universe. And hence mass bodies would drift away spontaneously purely on basis and proportional to

  12. Recent results on CP violation from the CPLEAR experiment

    International Nuclear Information System (INIS)

    The CPLEAR experiment is aiming at precise CP violation tests using initially pure K0- and anti K0 beams from the intense source provided by the annihilation of the LEAR vector p-beam in hydrogen. The strangeness tagging efficiency and the systematic errors have been studied and found to be in agreement with the design specifications. The measurement of the differential time asymmetry of the π+ π- decays allowed the direct observation of differences in the decay rates of particles and antiparticles. The CP violating parameters were determined as vertical stroke η±vertical stroke = (2.32 ± 0.14).10-3 and φ± = 42.3 ± 4.4 . First results in the reconstruction and analysis of the neutral kaon decays into two neutral pions and the Ke3 decay are presented. (orig.)

  13. First determination of CP violation parameters from K0-anti K0 decay asymmetry

    International Nuclear Information System (INIS)

    We report the first determination of CP violation parameters from particle-antiparticle asymmetry in the decay of neutral kaons into two charged pions. Observation of such an asymmetry is direct proof of CP violation. A fit to the asymmetry enabled a determination of the parameter η+- to be made, yielding the result vertical strokeη+-vertical stroke=[2.32±0.14(stat.)±0.03(syst.)]x10-3 and φ+-=42.3deg±4.4deg(stat.)±0.4deg(syst.), with an additional uncertainty of ±1.0deg due to the error on the present published value of Δm, the KL0-KS0 mass difference. The magnitudes of both statistical and systematic errors will be significantly reduced in the future. (orig.)

  14. On the 1D Coulomb Klein-Gordon equation

    International Nuclear Information System (INIS)

    For a single particle of mass m experiencing the potential -α/vertical bar x vertical bar, the 1D Klein-Gordon equation is mathematically underdefined even when α 2 the ground-state energy E decreases through zero, and soon after that mR reaches a finite critical value below which E becomes complex, signalling a breakdown of the single-particle theory. At this critical point of the curve E(mR) the Klein-Gordon norm changes sign: the curve has a lower branch describing a bound antiparticle state, with positive energy -E, which exists for mR between the critical and some higher value where E reaches -m. Though apparently unanticipated in this context, similar scenarios are in fact familiar for strong short-range potentials (1D or 3D), and also for strong 3D Coulomb potentials with α of order unity

  15. The rise and fall of the fifth force discovery, pursuit, and justification in modern physics

    CERN Document Server

    Franklin, Allan

    2016-01-01

    This book provides the reader with a detailed and captivating account of the story where, for the first time, physicists ventured into proposing a new force of nature beyond the four known ones - the electromagnetic, weak and strong forces, and gravitation - based entirely on the reanalysis of existing experimental data. Back in 1986, Ephraim Fischbach, Sam Aronson, Carrick Talmadge and their collaborators proposed a modification of Newton’s Law of universal gravitation. Underlying this proposal were three tantalizing pieces of evidence: 1) an energy dependence of the CP (particle-antiparticle and reflection symmetry) parameters, 2) differences between the measurements of G, the universal gravitational constant, in laboratories and in mineshafts, and 3) a reanalysis of the Eötvos experiment, which had previously been used to show that the gravitational mass of an object and its inertia mass were equal to approximately one part in a billion. The reanalysis revealed that, contrary to Galileo’s position, th...

  16. Erratum for "Nucleosynthesis constraints on active-sterile.."

    CERN Document Server

    Semikoz, V B; De Valencia, U

    1996-01-01

    The magnetization asymmetry given in eq. 3.6 of the above paper (ref. [1], hep-ph/9402332) has a wrong relative sign between particle and anti-particle contributions. Here we present the derivation of the correct sign and its implications for the limits derived in [1]. This sign has also been recently derived in a paper by Elmfors, Grasso and Raffelt, CERN-TH/96-88 [hep-ph/9605250] (ref. [2]) using a different method. While the sign error in [1] does affect the nucleosynthesis bounds derived in [1], we would like to stress that, in contrast to the criticism made in [2], it does not affect in any way the conclusions reached in subsequent papers in S. Pastor, V. B. Semikoz, J. W. F. Valle, Phys.Lett.B369 (1996) 301 and Astropart. Phys. 3 (1995) 87.

  17. Fermion production in a magnetic field in a de Sitter Universe

    CERN Document Server

    Crucean, Cosmin

    2016-01-01

    The process of fermion production in the field of a magnetic dipole on a de Sitter expanding universe is analyzed. The amplitude and probability for production of massive fermions are obtained using the exact solution of the Dirac equation written in the momentum-helicity basis. We found that the most probable transitions are those that generate the fermion pair perpendicular to the direction of the magnetic field. The behavior of the probability is graphically studied for large/small values of the expansion factor, and a detailed analysis of the probability in terms of the angle between the momenta vectors of the particle and antiparticle is performed. The phenomenon of fermion production is significant only at large expansion which corresponds to the conditions from the early Universe. When the expansion factor vanishes we recover the Minkowski limit where this process is forbidden by the simultaneous energy-momentum conservation.

  18. Study of the decay asymmetry parameter and CP violation parameter in the Lambda(c)+ ---> Lambda pi+ decay

    Energy Technology Data Exchange (ETDEWEB)

    Link, J.M.; Yager, P.M.; /UC, Davis; Anjos, J.C.; Bediaga, I.; Castromonte, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; /Rio de Janeiro, CBPF; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; /CINVESTAV, IPN; Agostino, L.; Cinquini, L.; Cumalat,; /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN,

    2005-09-01

    Using data from the FOCUS (E831) experiment at Fermilab, we present a new measurement of the weak decay-asymmetry parameter a{sub {Lambda}{sub c}} in {Lambda}{sub c}{sup +} {yields} {Lambda}{pi}{sup +} decay. Comparing particle with antiparticle decays, we obtain the first measurement of the CP violation parameter {Alpha} {triple_bond} a{sub {Lambda}{sub c}} + a{sub {ovr {Lambda}{sub c}}}/a{sub {Lambda}{sub c}} - a{sub {ovr {Lambda}{sub c}}}. We obtain a{sub {Lambda}{sub c}} = -0.78 {+-} 0.16 {+-} 0.13 and {Alpha} = -0.07 {+-} 0.19 {+-} 0.12 where errors are statistical and systematic.

  19. Fermion Condensation and Gapped Domain Walls in Topological Orders

    CERN Document Server

    Wan, Yidun

    2016-01-01

    We propose the concept of fermion condensation in bosonic topological orders in two spatial dimensions. Fermion condensation can be realized as gapped domain walls between bosonic and fermionic topological orders, which are thought of as a real-space phase transitions from bosonic to fermionic topological orders. This generalizes the previous idea of understanding boson condensation as gapped domain walls between bosonic topological orders. We show that generic fermion condensation obeys a Hierarchy Principle by which it can be decomposed into a boson condensation followed by a minimal fermion condensation, which involves a single self-fermion that is its own anti-particle and has unit quantum dimension. We then develop the rules of minimal fermion condensation, which together with the known rules of boson condensation, provides a full set of rules of fermion condensation. Our studies point to an exact mapping between the Hilbert spaces of a bosonic topological order and a fermionic topological order that sha...

  20. Solar modulations by the regular heliospheric electromagnetic field

    CERN Document Server

    Lipari, Paolo

    2014-01-01

    The standard way to model the cosmic ray solar modulations is via the Parker equation, that is as the effect of diffusion in the turbulent magnetic of an expanding solar wind. Calculations performed with this method that do not include a description of the regular magnetic field in the heliosphere predict, in disagreement with the observations, equal modulations for particles and antiparticles. The effects of the regular heliospheric field, that break the the particle/anti-particle symmetry, have been included in the Parker equation adding convection terms associated to the magnetic drift velocity of charged particles moving in non--homogeneous magnetic field. In this work we take a completely different approach and study the propagation of charged particles in the heliosphere assuming only the presence of the regular magnetic field, and completely neglecting the random component. Assuming that the field is purely magnetic in the wind frame, one can deduce the existence of a large scale electric field, that r...

  1. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    Science.gov (United States)

    Bellini, F.

    2012-11-01

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0νββ), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0νββ search will be given as well as an overview of present status and future perpectives of experiments.

  2. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma I-00185 (Italy) and INFN - Sezione di Roma, Roma I-00185 (Italy)

    2012-11-20

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0{nu}{beta}{beta}), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0{nu}{beta}{beta} search will be given as well as an overview of present status and future perpectives of experiments.

  3. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    International Nuclear Information System (INIS)

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0νββ), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0νββ search will be given as well as an overview of present status and future perpectives of experiments.

  4. Magnetic sublevel population in 1s-2p excitation of helium by fast electrons and protons

    International Nuclear Information System (INIS)

    We report experimental and theoretical results for the magnetic sublevel population of the helium atom in collisions with fast (vi=3-9 au) electrons and protons. Cross sections for excitation of magnetic sublevels with M=0 and ±1 have been obtained using polarization measurements of emitted radiation in combination with differential cross sections. Calculations have been carried out using the expansion of the transition amplitude in the Born series over the projectile-target interaction through the second order. Results of calculations are in agreement with experimental data. We find that the particle-antiparticle Z± difference exceeds the statistical error of measurement up to collision velocities vi∼6 au for excitation of sublevels with M=0. (author)

  5. Electroweak baryogenesis: concrete in a SUSY model with a gauge singlet

    Energy Technology Data Exchange (ETDEWEB)

    Huber, S.J. E-mail: shuber@udel.edu; Schmidt, M.G. E-mail: m.g.schmidt@thphys.uni-heidelberg.de

    2001-07-09

    SUSY models with a gauge singlet easily allow for a strong first order electroweak phase transition (EWPT) if the vevs of the singlet and Higgs fields are of comparable size. We discuss the profile of the stationary expanding bubble wall and CP-violation in the effective potential, in particular transitional CP-violation inside the bubble wall during the EWPT. The dispersion relations for charginos contain CP-violating terms in the WKB approximation. These enter as source terms in the Boltzmann equations for the (particle-antiparticle) chemical potentials and fuel the creation of a baryon asymmetry through the weak sphaleron in the hot phase. This is worked out for concrete parameters.

  6. Fundamental physics in particle traps

    Energy Technology Data Exchange (ETDEWEB)

    Quint, Wolfgang; Vogel, Manuel (eds.) [GSI Helmholtz-Zentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2014-03-01

    The individual topics are covered by leading experts in the respective fields of research. Provides readers with present theory and experiments in this field. A useful reference for researchers. This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  7. A constraint on antigravity of antimatter from precision spectroscopy of simple atoms

    CERN Document Server

    Karshenboim, Savely G

    2008-01-01

    Consideration of antigravity for antiparticles is an attractive target for various experimental projects. There are a number of theoretical arguments against it but it is not quite clear what kind of experimental data and theoretical suggestions are involved. In this paper we present straightforward arguments against a possibility of antigravity based on a few simple theoretical suggestions and some experimental data. The data are: astrophysical data on rotation of the Solar System in respect to the center of our galaxy and precision spectroscopy data on hydrogen and positronium. The theoretical suggestions for the case of absence of the gravitational field are: equality of electron and positron mass and equality of proton and positron charge. We also assume that QED is correct at the level of accuracy where it is clearly confirmed experimentally.

  8. A new insight into the negative-mass paradox of gravity and the accelerating universe

    CERN Document Server

    Ni, G J

    2003-01-01

    The discovery of acceleration of the universe expansion in recent astrophysics research prompts the author to propose that the Newton's gravitation law can be generalized to accommodate the antimatter: While the force between matters(antimatters) is attractive, the force between matter and antimatter is a repulsive one. A paradox of negative-mass in gravity versus a basic symmetry (m-->-m) based on quantum mechanics is discussed in sufficient detail so that the new postulate could be established quite naturally. Corresponding modification of the theory of general relativity is also suggested. If we believe in the symmetry of particle and antiparticle as well as the antigravity between them, it might be possible to consider a new scenario of the expansion of universe which might provide some new insight into the interpretation of cosmological phenomena including the accelerating universe observed.

  9. Matter Under Extreme Conditions: The Early Years

    CERN Document Server

    Keeler, R Norris

    2010-01-01

    Extreme conditions in natural flows are examined, starting with a turbulent big bang. A hydro-gravitational-dynamics cosmology model is adopted. Planck-Kerr turbulence instability causes Planck-particle turbulent combustion. Inertial-vortex forces induce a non-turbulent kinetic energy cascade to Planck-Kolmogorov scales where vorticity is produced, overcoming 10^113 Pa Planck-Fortov pressures. The spinning, expanding fireball has a slight deficit of Planck antiparticles. Space and mass-energy powered by gluon viscous stresses expand exponentially at speeds >10^25 c. Turbulent temperature and spin fluctuations fossilize at scales larger than ct, where c is light speed and t is time. Because “dark-energy” antigravity forces vanish when inflation ceases, and because turbulence produces entropy, the universe is closed and will collapse and rebound. Density and spin fossils of big bang turbulent mixing trigger structure formation in the plasma epoch. Fragmenting protosuperclustervoids and protoclustervoi...

  10. ANTIHYDROGEN PRODUCTION AND PRECISION SPECTROSCOPY WITH ATHENA/AD-1

    Energy Technology Data Exchange (ETDEWEB)

    M. HOLZSCHEITER; C. AMSLER; ET AL

    2000-11-01

    CPT invariance is a fundamental property of quantum field theories in flat space-time. Principal consequences include the predictions that particles and their antiparticles have equal masses and lifetimes, and equal and opposite electric charges and magnetic moments. It also follows that the fine structure, hyperfine structure, and Lamb shifts of matter and antimatter bound systems should be identical. It is proposed to generate new stringent tests of CPT using precision spectroscopy on antihydrogen atoms. An experiment to produce antihydrogen at rest has been approved for running at the Antiproton Decelerator (AD) at CERN. We describe the fundamental features of this experiment and the experimental approach to the first phase of the program, the formation and identification of low energy antihydrogen.

  11. Discrete anti-gravity

    International Nuclear Information System (INIS)

    Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces ''fields'' with the relativistic Wheeler-Feynman ''action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will ''fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs

  12. A constraint on antigravity of antimatter from precision spectroscopy of simple atoms

    Science.gov (United States)

    Karshenboim, S. G.

    2009-10-01

    Consideration of antigravity for antiparticles is an attractive target for various experimental projects. There are a number of theoretical arguments against it but it is not quite clear what kind of experimental data and theoretical suggestions are involved. In this paper we present straightforward arguments against a possibility of antigravity based on a few simple theoretical suggestions and some experimental data. The data are: astrophysical data on rotation of the Solar System in respect to the center of our galaxy and precision spectroscopy data on hydrogen and positronium. The theoretical suggestions for the case of absence of the gravitational field are: equality of electron and positron mass and equality of proton and positron charge. We also assume that QED is correct at the level of accuracy where it is clearly confirmed experimentally.

  13. Zero-point energy of vacuum fluctuation as a candidate for dark energy versus a new conjecture of antigravity based on the modified Einstein field equation in general relativity

    CERN Document Server

    Ni, G

    2005-01-01

    In order to clarify why the zero-point energy associated with the vacuum fluctuations cannot be a candidate for the dark energy in the universe, a comparison with the Casimir effect is analyzed in some detail. A principle of epistemology is stressed that it is meaningless to talk about an absolute (isolated) thing. A relative thing can only be observed when it is changing with respect to other things. Then a new conjecture of antigravity --the repulsive force between matter and antimatter derived from the modified Einstein field equation in general relativity-- is proposed. this is due to the particle-antiparticle symmetry based on a new understanding about the essence of special relativity. Its possible consequences in the theory of cosmology are discussed briefly, including a new explanation for the accelerating universe and gamma-ray-bursts.

  14. Upgrading KamLAND-Zen for improved sensitivity to neutrinoless double-beta decay

    Science.gov (United States)

    Krupczak, Emmett; KamLAND-Zen Collaboration

    2015-10-01

    KamLAND is a 1 kton liquid scintillator antineutrino detector located underground in Kamioka, Japan. The KamLAND-Zen experiment began in 2011, using KamLAND to search for neutrinoless double-beta decay (0 νββ). This process, if observed, would indicate that neutrinos are their own antiparticle and thus are Majorana fermions, a discovery that could help explain the matter-antimatter discrepancy in our universe. Currently, KamLAND-Zen is one of the most sensitive experiments to 0 νββ . In order to improve upon the present limits for 0 νββ , KamLAND is undergoing a series of upgrades to reduce background. This includes the construction of a new inner nylon chamber (``mini-balloon''). The current results and design considerations for the mini-balloon will be discussed.

  15. Chemical Potentials of Quarks Extracted from Particle Transverse Momentum Distributions in Heavy Ion Collisions at RHIC Energies

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2014-01-01

    Full Text Available In the framework of a multisource thermal model, the transverse momentum distributions of charged particles produced in nucleus-nucleus (A-A and deuteron-nucleus (d-A collisions at relativistic heavy ion collider (RHIC energies are investigated by a two-component revised Boltzmann distribution. The calculated results are in agreement with the PHENIX experimental data. It is found that the source temperature increases obviously with increase of the particle mass and incident energy, but it does not show an obvious change with the collision centrality. Then, the values of chemical potentials for up, down, and strange quarks can be obtained from the antiparticle to particle yield ratios in a wide transverse momentum range. The relationship between the chemical potentials of quarks and the transverse momentum with different centralities is investigated, too.

  16. Supersymmetry in Quantum Theory Over a Galois Field

    CERN Document Server

    Lev, F M

    2002-01-01

    As shown in our previous papers (hep-th/0209001 and reference therein), quantum theory based on a Galois field (GFQT) possesses a new symmetry between particles and antiparticles, which has no analog in the standard approach. In the present paper it is shown that this symmetry (called the AB one) is also compatible with supersymmetry. We believe this is a strong argument in favor of our assumption that the AB symmetry is a fundamental symmetry in the GFQT (and in nature if it is described by quantum theory over a Galois field). We also consider operatorial formulations of space inversion and X inversion in the GFQT. It is shown in particular that the well known fact, that the parity of bosons is real and the parity of fermions is imaginary, is a simple consequence of the AB symmetry.

  17. Scalar Charged Particle in Presence of Magnetic and Aharonov–Bohm Fields Plus Scalar–Vector Killingbeck Potentials

    International Nuclear Information System (INIS)

    The generalized form of Killingbeck potential is an attractive Coulomb term plus a linear term and a harmonic oscillator term, i.e. −a/r + br + λr2, which has a useful application in quarkonium spectroscopy. The ground state energy with the corresponding wave function are obtained for any arbitrary m-state in two-dimensional Klein–Gordon equation with equal mixture of scalar–vector Killingbeck potentials in the presence of constant magnetic and singular Ahoronov–Bohm flux fields perpendicular to the plane where the interacting charged particle is confined. The analytical exact iteration method is used in our solution. We obtain the energy eigensolutions for particle and antiparticle corresponding to S(r) = V(r) and S(r) = −V(r) cases, respectively. Some special cases like the Coulomb, harmonic oscillator potentials and the nonrelativistic limits are found in presence and absence of external fields. (author)

  18. Landau Levels of Majorana Fermions in a Spin Liquid.

    Science.gov (United States)

    Rachel, Stephan; Fritz, Lars; Vojta, Matthias

    2016-04-22

    Majorana fermions, originally proposed as elementary particles acting as their own antiparticles, can be realized in condensed-matter systems as emergent quasiparticles, a situation often accompanied by topological order. Here we propose a physical system which realizes Landau levels-highly degenerate single-particle states usually resulting from an orbital magnetic field acting on charged particles-for Majorana fermions. This is achieved in a variant of a quantum spin system due to Kitaev which is distorted by triaxial strain. This strained Kitaev model displays a spin-liquid phase with charge-neutral Majorana-fermion excitations whose spectrum corresponds to that of Landau levels, here arising from a tailored pseudomagnetic field. We show that measuring the dynamic spin susceptibility reveals the Landau-level structure by a remarkable mechanism of probe-induced bound-state formation. PMID:27152821

  19. Low-dimensional approach to pair production in an oscillating electric field: Application to bandgap graphene layers

    CERN Document Server

    Akal, Ibrahim; Müller, Carsten; Villalba-Chávez, Selym

    2016-01-01

    The production of particle-antiparticle pairs from the quantum field theoretic ground state in the presence of an external electric field is studied. Starting with the quantum kinetic Boltzmann-Vlasov equation in four-dimensional spacetime, we obtain the corresponding equations in lower dimensionalities by way of spatial compactification. Our outcomes in $2+1$-dimensions are applied to bandgap graphene layers, where the charge carriers have the particular property of behaving like light massive Dirac fermions. We calculate the single-particle distribution function for the case of an electric field oscillating in time and show that the creation of particle-hole pairs in this condensed matter system closely resembles electron-positron pair production by the Schwinger effect.

  20. Kinetics of Vacuum Pair Creation in Strong Electromagnetic Fields

    CERN Document Server

    Tarakanov, A V; Smolyansky, S A; Schmidt, S M; Vinnik, D V

    2002-01-01

    We study vacuum particle - antiparticle pair production under action of a strong time dependent space homogeneous electric field at the presence of a constant magnetic field. The kinetic equation for fermions and bosons was derived in the framework of the Schwinger mechanism of vacuum tunnelling. We show the enhancement of pair production for fermions (suppression for bosons) with the increasing of the magnetic field as in the case of the constant electromagnetic field. We have constructed closed set of equations, which can be applied to some actual problems with manifestation of strong electromagnetic fields, e.g., it is essential in the framework of the Fluxe Tube Model of Quark- Gluon Plasma generation; for describing some cosmological objects and especially because of the planned experiments on creation of subcritical fields in the X- Free Electron Laser pulses.

  1. Plasmas the first state of matter

    CERN Document Server

    Krishan, Vinod

    2014-01-01

    Most astronomers believe that the universe began about 15 billion years ago when an explosion led to its expansion and cooling. The present state of the universe compels us to believe that the universe was extremely hot and dense in its infancy. In the beginning there was intense radiation. The photons produced equal amounts of matter and antimatter and a plasma soup of particles and antiparticles was present. Plasma is the first state of matter from which all the other states originated. This book discusses the diversity of cosmic and terrestrial plasmas found in the early universe, galactic and intergalactic media, stellar atmospheres, interstellar spaces, the solar system and the Earth's ionosphere, and their observability with the most recent telescopes such as the Chandra X-ray telescope and gamma ray telescopes. It deals with different ways of creating plasmas such as thermal, pressure and radiative ionization for laboratory and cosmic plasmas.

  2. Measurement of D*± production in deep inelastic e±p scattering at HERA

    International Nuclear Information System (INIS)

    Inclusive production of D*± (2010) mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.9 pb-1. The decay channel D*+ → D0π+ with D0 → K-π+ and corresponding antiparticle decay were used to identify D* mesons. Differential D* cross sections with 1.5 2 2 and 0.02 T(D*) *) vertical stroke T(D*) and η(D*) in order to determine the open-charm contribution, F2cc(x,Q2), to the proton structure function, F2. Since, at low Q2, the uncertainties of the data are comparable to those from the QCD fit, the measured differential cross sections in y and Q2 should be used in future fits to constrain the gluon density. (orig.)

  3. Production and detection of cold antihydrogen atoms

    CERN Document Server

    Amoretti, M; Bonomi, G; Bouchta, A; Bowe, P; Carraro, C; Cesar, C L; Charlton, M; Collier, M; Doser, Michael; Filippini, V; Fine, K S; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Holzscheiter, M H; Jørgensen, L V; Lagomarsino, V; Landua, Rolf; Landua, Rolf; Lindelöf, D; Lodi-Rizzini, E; Macri, M; Madsen, N; Manuzio, G; Marchesotti, M; Montagna, P; Pruys, H S; Regenfus, C; Riedler, P; Rochet, J; Rotondi, A; Rouleau, G; Testera, G; Van der Werf, D P; Variola, A; Watson, T L; CERN. Geneva

    2002-01-01

    A theoretical underpinning of the standard model of fundamental particles and interactions is CPT invariance, which requires that the laws of physics be invariant under the combined discrete operations of charge conjugation, parity and time reversal. Antimatter, the existence of which was predicted by Dirac, can be used to test the CPT theorem experimental investigations involving comparisons of particles with antiparticles are numerous. Cold atoms and anti-atoms, such as hydrogen and anti-hydrogen, could form the basis of a new precise test, as CPT invariance implies that they must have the same spectrum. Observations of antihydrogen in small quantities and at high energies have been reported at the European Organization for Nuclear Research (CERN) and at Fermilab, but were not suited to precision comparison measurements. Here we demonstrate the production of antihydrogen atoms at very low energy by mixing trapped antiprotons and positrons in a cryogenic environment. The neutral anti-atoms have been detected...

  4. Touch BASE

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In a recent Nature article (see here), the BASE collaboration reported the most precise comparison of the charge-to-mass ratio of the proton to its antimatter equivalent, the antiproton. This result is just the beginning and many more challenges lie ahead.   CERN's AD Hall, where the BASE experiment is set-up. The Baryon Antibaryon Symmetry Experiment (BASE) was approved in June 2013 and was ready to take data in August 2014. During these 14 months, the BASE collaboration worked hard to set up its four cryogenic Penning traps, which are the heart of the whole experiment. As their name indicates, these magnetic devices are used to trap antiparticles – antiprotons coming from the Antiproton Decelerator – and particles of matter – negative hydrogen ions produced in the system by interaction with a degrader that slows the antiprotons down, allowing scientists to perform their measurements. “We had very little time to set up the wh...

  5. Toward a Quantum Theory of Tachyon Fields

    CERN Document Server

    Schwartz, Charles

    2016-01-01

    We construct momentum space expansions for the wave functions that solve the Klein-Gordon and Dirac equations for tachyons, recognizing that the mass shell for such fields is very different from what we are used to for ordinary (slower than light) particles. We find that we can postulate commutation or anticommutation rules for the operators that lead to physically sensible results: causality, for tachyon fields, means that there is no connection between spacetime points separated by a timelike interval. Calculating the conserved charge and 4-momentum for these fields allows us to interpret the number operators for particles and antiparticles in a consistent manner; and we see that helicity plays a critical role for the spinor field. Some questions about Lorentz invariance are addressed and some remain unresolved; and we show how to handle the group representation for tachyon spinors.

  6. Centrality dependence of identified particles in relativistic heavy ion collisions at sqrt(s)= 7.7-62.4 GeV

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Bai, X; Bairathi, V; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandenburg, D; Brandin, A V; Bunzarov, I; Butterworth, J; Caines, H; Calder{ó}n~de~la~Barca~S{á}nchez, M; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Chisman, O; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, H Z; Huang, B; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jia, J; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, W; Li, C; Li, Z M; Li, Y; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, R; Ma, L; Ma, Y G; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Sharma, M K; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, N; Smirnov, D; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, X; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, N; Szelezniak, M A; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A; Thaeder, J; Thomas, J H; Timmins, A R; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, F; Wang, J S; Wang, Y; Wang, G; Wang, H; Webb, J C; Webb, G; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu,; Wu, Y F; Xiao, Z G; Xie, W; Xin, K; Xu, N; Xu, Q H; Xu, Z; Xu, Y F; Xu, H; Yang, C; Yang, Y; Yang, S; Yang, Q; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I -K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, Z; Zhang, S; Zhang, J; Zhang, Y; Zhang, J B; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2016-01-01

    Elliptic flow (v_{2}) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at sqrt{s_{NN}}= 7.7-62.4 GeV are presented for three centrality classes. The centrality dependence and the data at sqrt{s_{NN}}= 14.5 GeV are new. Except at the lowest beam energies we observe a similar relative v_{2} baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v_{2} for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with AMPT calculations and fit with a Blast Wave model.

  7. Fundamental physics in particle traps

    CERN Document Server

    Vogel, Manuel

    2014-01-01

    This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  8. Status of cosmic-ray antideuteron searches

    CERN Document Server

    von Doetinchem, P; Boggs, S; Bufalino, S; Dal, L; Donato, F; Fornengo, N; Fuke, H; Grefe, M; Hailey, C; Hamilton, B; Ibarra, A; Mitchell, J; Mognet, I; Ong, R A; Pereira, R; Perez, K; Putze, A; Raklev, A; Salati, P; Sasaki, M; Tarle, G; Urbano, A; Vittino, A; Wild, S; Xue, W; Yoshimura, K

    2015-01-01

    The precise measurement of cosmic-ray antiparticles serves as important means for identifying the nature of dark matter. Recent years showed that identifying the nature of dark matter with cosmic-ray positrons and higher energy antiprotons is difficult, and has lead to a significantly increased interest in cosmic-ray antideuteron searches. Antideuterons may also be generated in dark matter annihilations or decays, offering a potential breakthrough in unexplored phase space for dark matter. Low-energy antideuterons are an important approach because the flux from dark matter interactions exceeds the background flux by more than two orders of magnitude in the low-energy range for a wide variety of models. This review is based on the "dbar14 - dedicated cosmic-ray antideuteron workshop", which brought together theorists and experimentalists in the field to discuss the current status, perspectives, and challenges for cosmic-ray antideuteron searches and discusses the motivation for antideuteron searches, the theor...

  9. Puzzling antimatter

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    For many years, the absence of antimatter in the Universe has tantalised particle physicists and cosmologists: while the Big Bang should have created equal amounts of matter and antimatter, we do not observe any primordial antimatter today. Where has it gone? The LHC experiments have the potential to unveil natural processes that could hold the key to solving this paradox.   Every time that matter is created from pure energy, equal amounts of particles and antiparticles are generated. Conversely, when matter and antimatter meet, they annihilate and produce light. Antimatter is produced routinely when cosmic rays hit the Earth's atmosphere, and the annihilations of matter and antimatter are observed during physics experiments in particle accelerators. If the Universe contained antimatter regions, we would be able to observe intense fluxes of photons at the boundaries of the matter/antimatter regions. “Experiments measuring the diffuse gamma-ray background in the Universe would be able...

  10. 1\\/2,1\\/2 Representation space An ab initio construct

    CERN Document Server

    Ahluwalia, D V

    2001-01-01

    A careful ab initio construction of the finite-mass (1/2,1/2) representation space of the Lorentz group reveals it to be a spin-parity multiplet. In general, it does not lend itself to a single-spin interpretation. We find that (1/2,1/2) representation space for massive particles naturally bifurcates into a triplet and a singlet of opposite relative intrinsic parties. The text-book separation into spin one and spin zero states occurs only for certain limited kinematical settings. We construct a wave equation for the (1/2,1/2) multiplet, and show that the particles and antiparticles in this representation space do not carry a definite spin but only a definite relative intrinsic parity. In general, both spin one and spin zero are covariantly inseparable inhabitants of massive vector fields. This last observation suggests that scalar particles, such as the Higgs, may be intrinsic part of massive vector gauge fields.

  11. How to recover casuality for tachyons even in macrophysics

    International Nuclear Information System (INIS)

    The postulate that negative energy particles do not exist (travelling forward in time) leads automatically to the ''re-interpretation principle'' by Stueckelberg and Feynman. It has already been shown that such a ''principle'', assumed as the third postulate of special relativity, ensures the validity of the law of (retarded) casuality both in standard relativity and in (extended) relativity with tachyons and with superluminal inertial frames. Our third postulate, moreover, alloys to one predict antiparticle existence in a purely relativistic context. The paper shown that the third postulate is sufficient to implement the law of casuality even in macrophysics, when usual macro-objects interact with micro-tachyons and macro-tachyons. To that aim, some tachyon kinematics is further developed, which can be useful even in understanding elementary particle interactions (and may be hadron structure). Many other related problems are discussed

  12. Optical lattice quantum simulator for QED in strong external fields: spontaneous pair creation and the Sauter-Schwinger effect

    CERN Document Server

    Szpak, Nikodem

    2011-01-01

    Spontaneous creation of electron-positron pairs out of the vacuum due to a strong electric field is a spectacular manifestation of the relativistic energy-momentum relation for the Dirac fermions. This fundamental prediction of Quantum Electrodynamics (QED) has not yet been confirmed experimentally as the generation of a sufficiently strong electric field extending over a large enough space-time volume still presents a challenge. Surprisingly, distant areas of physics may help us to circumvent this difficulty. In condensed matter and solid state physics (areas commonly considered as low energy physics), one usually deals with quasi-particles instead of real electrons and positrons. Since their mass gap can often be freely tuned, it is much easier to create these light quasi-particles by an analogue of the Sauter-Schwinger effect. This motivates our proposal of a quantum simulator in which excitations of ultra-cold atoms moving in a bichromatic optical lattice represent particles and antiparticles (holes) sati...

  13. Statistical thermodynamics in relativistic particle and ion physics: Canonical or grand canonical

    International Nuclear Information System (INIS)

    We consider relativistic statistical thermodynamics of an ideal Boltzmann gas consisting of the particles K, Λ, A, Σ and their antiparticles. Baryon number (B) and strangeness (S) are conserved. While any relativistic gas is necessarily grand canonical with respect to particle numbers, conservation laws can be treated canonically or grand canonically. We construct the partition function for canonical BxS conservation and compare it with the grand canonical one. It is found that the grand canonical partition function is equivalent to a large B approximation of the canonical one. The relative difference between canonical and grand canonical quantities seems to decrease like const/B (two numerical examples) and from this a simple thumb rule for computing canonical quantities from grand canonical ones is guessed. For precise calculations, an integral representation is given. (orig.)

  14. Low-dimensional approach to pair production in an oscillating electric field: Application to bandgap graphene layers

    Science.gov (United States)

    Akal, I.; Egger, R.; Müller, C.; Villalba-Chávez, S.

    2016-06-01

    The production of particle-antiparticle pairs from the quantum field theoretic ground state in the presence of an external electric field is studied. Starting with the quantum-kinetic Boltzmann-Vlasov equation in four-dimensional spacetime, we obtain the corresponding equations in lower dimensionalities by way of spatial compactification. Our outcomes in 2 +1 dimensions are applied to bandgap graphene layers, where the charge carriers have the particular property of behaving like light massive Dirac fermions. We calculate the single-particle distribution function for the case of an electric field oscillating in time and show that the creation of particle-hole pairs in this condensed matter system closely resembles electron-positron pair production by the Schwinger effect.

  15. Spinor structure and internal symmetries

    CERN Document Server

    Varlamov, V V

    2014-01-01

    Space-time and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries $P$, $T$ and their combination $PT$ are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation $C$ is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation $C$ allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Quotient representations of the Lorentz group and their possible relations with $P$- and $CP$-violations are considered. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A ce...

  16. CPT groups of spinor fields in de Sitter and anti-de Sitter spaces

    CERN Document Server

    Varlamov, V V

    2014-01-01

    CPT groups for spinor fields in de Sitter and anti-de Sitter spaces are defined in the framework of automorphism groups of Clifford algebras. It is shown that de Sitter spaces with mutually opposite signatures correspond to Clifford algebras with different algebraic structure that induces an essential difference of CPT groups associated with these spaces. CPT groups for charged particles are considered with respect to phase factors on the various spinor spaces related with real subalgebras of the simple Clifford algebra over the complex field (Dirac algebra). It is shown that CPT groups for neutral particles which admit particle-antiparticle interchange and CPT groups for truly neutral particles are described within semisimple Clifford algebras with quaternionic and real division rings, respectively. A difference between bosonic and fermionic CPT groups is discussed.

  17. A wave equation including leptons and quarks for the standard model of quantum physics in Clifford Algebra

    CERN Document Server

    Daviau, Claude

    2014-01-01

    A wave equation with mass term is studied for all particles and antiparticles of the first generation: electron and its neutrino, positron and antineutrino, quarks $u$ and $d$ with three states of color and antiquarks $\\overline{u}$ and $\\overline{d}$. This wave equation is form invariant under the $Cl_3^*$ group generalizing the relativistic invariance. It is gauge invariant under the $U(1)\\times SU(2) \\times SU(3)$ group of the standard model of quantum physics. The wave is a function of space and time with value in the Clifford algebra $Cl_{1,5}$. All features of the standard model, charge conjugation, color, left waves, Lagrangian formalism, are linked to the geometry of this extended space-time.

  18. A Wave Equation including Leptons and Quarks for the Standard Model of Quantum Physics in Clifford Algebra

    Science.gov (United States)

    Daviau, Claude; Bertrand, Jacques

    A wave equation with mass term is studied for all particles and antiparticles of the first generation: electron and its neutrino, positron and antineutrino, quarks $u$ and $d$ with three states of color and antiquarks $\\overline{u}$ and $\\overline{d}$. This wave equation is form invariant under the $Cl_3^*$ group generalizing the relativistic invariance. It is gauge invariant under the $U(1)\\times SU(2) \\times SU(3)$ group of the standard model of quantum physics. The wave is a function of space and time with value in the Clifford algebra $Cl_{1,5}$. All features of the standard model, charge conjugation, color, left waves, Lagrangian formalism, are linked to the geometry of this extended space-time.

  19. Elementary particle states based on the Clifford algebra C7

    International Nuclear Information System (INIS)

    The lepton isodoublet (e-,νsub(e)), the ''bare'' nucleon is isodoublet (n,p), and their antiparticles are shown to constitute a basis of the irreducible representation of the Clifford algebra C7. The excited states of these doublets, i.e., (μ-,νsub(μ)), (tau-,νsub(tau)),..., and (s0,c+),(b0,t+) are generated by the products (e-,νsub(e))sup(x)a and (n,p)sup(x)a, where a is identical to 2sup(-1/2)(e-e+ + νsub(e)ν-barsub(e)) has the same quantum numbers as the photon state. The bare baryons s,c,b,t carry the strangeness, charm, bottom, and top quantum numbers. These lepton and bare baryon states are in one-to-one correspondence with the integrally charged colored Han-Nambu quarks, and generate all the observed su(3) and su(4) hadron multiplets. (author)

  20. Measurement of $D*{+-}$ meson production in ep scattering at low $Q^{2}$

    CERN Document Server

    Chekanov, S; Abt, I; Adamczyk, L; Adamus, M; Adler, V; Allfrey, P D; Antonelli, S; Antonioli, P; Antonov, A; Arneodo, M; Bamberger, A; Barakbaev, A N; Barbagli, G; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Behrens, U; Bell, M A; Bellagamba, L; Bellan, P; Bertolin, A; Bhadra, S; Bindi, M; Bloch, I; Blohm, C; Bold, T; Bonato, A; Boos, E G; Borras, K; Boscherini, D; Boutle, S K; Brock, I; Brook, N H; Brownson, E; Brugnera, R; Bruni, A; Bruni, G; Brzozowska, B; Brümmer, N; Bussey, P J; Butterworth, J M; Bylsma, B; Büttner, C; Caldwell, A; Capua, M; Carlin, R; Catterall, C D; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, L; Cindolo, F; Cole, J E; Contin, A; Cooper-Sarkar, A M; Coppola, N; Corradi, M; Corriveau, F; Cottrell, A; Cui, Y; D'Agostini, G; Dal Corso, F; Danielson, T; De Favereau, J; De Pasquale, S; Del Peso, J; Dementiev, R K; Derrick, M; Devenish, R C E; Dobur, D; Dolgoshein, B A; Dossanov, A; Doyle, A T; Dunne, W; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, A; Estrada; Everett, A; Fazio, S; Ferrando, J; Ferrero, M I; Figiel, J; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fry, C; Gabareen, A; Galas, A; Gallo, E; Garfagnini, A; Geiser, A; Gialas, I; Gil, M; Giller, I; Gladilin, L K; Gladkov, D; Glasman, C; Goers, S; Gosau, T; Grabowska-Bold, I; Gregor, I; Grigorescu, G; Grzelak, G; Gwenlan, C; Göttlicher, P; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hart, J C; Hartmann, H; Hartner, G; Heath, G P; Hilger, E; Hochman, D; Holm, U; Hori, R; Horn, C; Iacobucci, G; Ibrahim, Z A; Iga, Y; Ingbir, R; Irrgang, P; Jakob, H P; Jechow, M; Jiménez, M; Jones, T W; Jüngst, M; Kagawa, S; Kahle, B; Kaji, H; Kamaluddin, B; Kananov, S; Karshon, U; Karstens, F; Kataoka, M; Katkov, I I; Kcira, D; Keramidas, A; Khein, L A; Kim, J Y; Kind, O M; Kisielewska, D; Kitamura, S; Klanner, R; Klein, U; Koffeman, E; Kollar, D; Kooijman, P; Korcsak-Gorzo, K; Korzhavina, I A; Kotanski, A; Kowalski, H; Kulinski, P; Kuze, M; Kuzmin, V A; Kötz, U; Labarga, L; Lee, A; Levchenko, B B; Levy, A; Limentani, S; Ling, T Y; Liu, C; Lobodzinska, E; Lohmann, W; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukasik, J; Lukina, O Yu; Luzniak, P; Löhr, B; Ma, K J; Magill, S; Malka, J; Mankel, R; Margotti, A; Marini, G; Martin, J F; Mastroberardino, A; Matsumoto, T; Mattingly, M C K; Melzer-Pellmann, I A; Menary, S; Miglioranzi, S; Monaco, V; Montanari, A; Morris, J D; Musgrave, B; Nagano, K; Namsoo, T; Nania, R; Nicholass, D; Nigro, A; Ning, Y; Noor, U; Notz, D; Nowak, R J; Nuncio-Quiroz, A E; Oh, B Y; Okazaki, N; Olkiewicz, K; Ota, O; Patel, S; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Proskuryakov, A S; Przybycien, M; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Ri, Y D; Rinaldi, L; Roberfroid, V; Robertson, A; Ron, E; Rosin, M; Rubinsky, I; Ruspa, M; Ryan, P; Sacchi, R; Salehi, H; Samson, U; Santamarta, R; Sartorelli, G; Savin, A A; Saxon, D H; Schioppa, M; Schlenstedt, S; Schleper, P; Schmidke, W B; Schneekloth, U; Schonberg, V; Schörner-Sadenius, T; Sciulli, F; Shcheglova, L M; Shehzadi, R; Shimizu, S; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V; Spiridonov, A; Stadie, H; Stanco, L; Standage, J; Stifutkin, A; Stopa, P; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutiak, J; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tapper, A D; Targett-Adams, C; Tassi, E; Tawara, T; Terron, J; Theedt, T; Tiecke, H; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Uribe-, C; Vlasov, N N; Vázquez, M; Walczak, R; Walsh, R; Wan-Abdullah, W A T; Whitmore, J J; Whyte, J; Wichmann, K; Wick, K; Wiggers, L; Wing, M; Wlasenko, M; Wolf, G; Wolfe, H; Wrona, K; Yagues-Molina, A G; Yamada, S; Yamazaki, Y; Yoshida, R; Youngman, C; Zambrana, M; Zarnecki, A F; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zhou, C; Zichichi, A; Zotkin, D S; Zotkin, S A

    2007-01-01

    The production of D*+-(2010) mesons in ep scattering in the range of exchanged photon virtuality 0.05 D0 pi+ with D0 -> K- pi+ and corresponding antiparticle decay were used to identify D* mesons and the ZEUS beampipe calorimeter was used to identify the scattered electron. Differential D* cross sections as functions of Q^2, inelasticity, y, transverse momentum of the D* meson, p_T(D*), and pseudorapidity of the D* meson, eta(D*), have been measured in the kinematic region 0.02 < y < 0.85, 1.5 < p_T(D*) < 9.0 GeV and |eta(D*)| < 1.5. The measured differential cross sections are in agreement with two different NLO QCD calculations. The cross sections are also compared to previous ZEUS measurements in the photoproduction and DIS regimes.

  1. Trapped antihydrogen

    CERN Document Server

    Andresen, G B; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2010-01-01

    Antimatter was first predicted in 1931, by Dirac. Work with highenergy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature’s fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 1014 for the frequency of the 1s-to-2s transition), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational be...

  2. D0-D-bar0 mixing and CP violation from focus experiment

    International Nuclear Information System (INIS)

    Measurement results on D0-D-bar0 mixing and CP violation are presented. FOCUS is the fixed target experiment at Fermilab and results are based on a high statistics photo-produced charm sample collected during 96-97 run. We reconstructed more than 1 million charmed particles and compared the lifetimes of two D0 meson decays to K-π+ and K-K+. We obtained a mixing parameter, ycp, is (3.42±1.39±0.74)%. We also searched CP asymmetries in D+→K-K+π+, D0→K-K+ and D0→π-π+ decay modes. We did not see any evidence of CP violation by comparing the decay rates for particle and antiparticle. (author)

  3. Finite temperature bosonic charge and current densities in compactified cosmic string spacetime

    CERN Document Server

    Mohammadi, Azadeh

    2015-01-01

    In this paper we study the expectation values of the induced charge and current densities for a massive bosonic field with nonzero chemical potential in the geometry of a higher dimensional compactified cosmic string with magnetic fluxes, along the string core and also enclosed by the compactified direction, in thermal equilibrium at finite temperature $T$. These densities are calculated by decomposing them into the vacuum expectation values and finite temperature contributions coming from the particles and antiparticles. The only nonzero components correspond to the charge, azimuthal and axial current densities. By using the Abel-Plana formula, we decompose the components of the densities into the part induced by the cosmic string and the one by the compactification. The charge density is an odd function of the chemical potential and even periodic function of the magnetic flux with a period equal to the quantum flux. Moreover, the azimuthal (axial) current density is an even function of the chemical potentia...

  4. Finite temperature fermionic charge and current densities induced by a cosmic string with magnetic flux

    CERN Document Server

    Mohammadi, A; Saharian, A A

    2014-01-01

    We investigate the finite temperature expectation values of the charge and current densities for a massive fermionic field with nonzero chemical potential, $\\mu$, in the geometry of a straight cosmic string with a magnetic flux running along its axis. These densities are decomposed into the vacuum expectation values and contributions coming from the particles and antiparticles. The charge density is an even periodic function of the magnetic flux with the period equal to the quantum flux and an odd function of the chemical potential. The only nonzero component of the current density corresponds to the azimuthal current. The latter is an odd periodic function of the magnetic flux and an even function of the chemical potential. At high temperatures, the parts in the charge density and azimuthal current induced by the planar angle deficit and magnetic flux are exponentially small. The asymptotic behavior at low temperatures crucially depends whether the value $|\\mu|$ is larger or smaller than the mass of the fiel...

  5. Investigation of Neutrino Properties with Bolometric Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Karsten M [University of Wisconsin & Yale University

    2014-11-01

    Neutrino mass and mixing are amongst the major discoveries of the past decade. The particle nature of neutrinos and the hierarchy of mass eigenstates, however, are unknown. Neutrinoless double beta-decay (0νββ) is the only known mechanism to test whether neutrinos are their own antiparticles. The observation of 0νββ would imply lepton number violation and show that neutrinos have Majorana mass. This report describes research activities performed at the University of Wisconsin in 2011-2014 aimed at the search for 0νββ with CUORE-0 and CUORE with the goal of exploring the inverted mass hierarchy region and probing an effective neutrino mass of ~40- 120 meV.

  6. The Acceleration and Storage of Radioactive Ions for a Beta-Beam Facility

    CERN Document Server

    Lindroos, M; Napoly, O; Payet, J; Benedikt, Michael; Butler, P; Garoby, R; Hancock, S; Köster, U; Lindroos, M; Magistris, M; Nilsson, T; Wenander, F; Blondel, A; Gilardoni, S S; Boine-Frankenheim, O; Franzke, B; Höllinger, R; Steck, Markus; Spiller, P J; Weick, H; Burguet, J; Gómez-Cadenas, J J; Hernández, P; Laune, B; Müller, A; Sortais, P; Villari, A C C; Volpe, C; Facco, A; Mezzetto, Mauro; Palladino, V; Pisent, A; Zucchelli, P; Delbar, T; Ryckewaert, G; Chartier, M; Prior, C; Reistad, D; Baartman, R A; Jansson, A

    2004-01-01

    The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to as high Lorentz  as 150. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility.

  7. The Acceleration and Storage of Radioactive Ions for a Neutrino Factory

    CERN Document Server

    Autin, Bruno; Hancock, S; Haseroth, H; Jansson, A; Köster, U; Lindroos, M; Russenschuck, Stephan; Wenander, F; Grieser, M

    2003-01-01

    The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for 6He and 60 for 18Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.

  8. Lorentz invariant CPT breaking in the Dirac equation

    CERN Document Server

    Fujikawa, Kazuo

    2016-01-01

    If one modifies the Dirac equation in momentum space to $[\\gamma^{\\mu}p_{\\mu}-m-\\Delta m(\\theta(p_{0})-\\theta(-p_{0})) \\theta(p_{\\mu}^{2})]\\psi(p)=0$, the symmetry of positive and negative energy eigenvalues is lifted by $m\\pm \\Delta m$ for a small $\\Delta m$. The mass degeneracy of the particle and antiparticle is thus lifted in a Lorentz invariant manner since the combinations $\\theta(\\pm p_{0})\\theta(p_{\\mu}^{2})$ with step functions are manifestly Lorentz invariant. We explain an explicit construction of this CPT breaking term in coordinate space, which is Lorentz invariant but non-local at a distance scale of the Planck length. The application of this Lorentz invariant CPT breaking mechanism to the possible mass splitting of the neutrino and antineutrino in the Standard Model is briefly discussed.

  9. Carriers and sideband pairs and their analogues in physics and Biology

    Science.gov (United States)

    Goldman, Stanford

    1982-09-01

    This is a further development of the author's paper “A Unified Theory of Biology and Physics.” It is found that male and female in biology, as well as particle and antiparticle in physics, are analogues of symmetrical sideband pairs in communication theory. This gives a new point of view from which to investigate the significance and characteristics of these different paired entities. These findings are intimately related to the fact that there are two transform domains of representation of entities in all the cases involved. They are the somatic and the genetic domains in biology, the configuration domain and the domain of conserved observables in physics, and the time and frequency domains in communication.

  10. Scaling Properties of Hyperon Production in Au+Au Collisions at sqrt(s_NN) = 200 GeV

    CERN Document Server

    Adams, J; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Bezverkhny, B I; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, C O; Blyth, S L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Choi, H A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; De Moura, M M; Dedovich, T G; De Phillips, M; Derevshchikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta-Majumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Ghazikhanian, V; Ghosh, P; González, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D P; Guertin, S M; Guimaraes, K S F F; Guo, Y; Gupta, N; Gutíerrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Krämer, M; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; La Pointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C H; Lehocka, S; Le Vine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnik, Yu M; Meschanin, A; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnár, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M V; Potrebenikova, E V; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimansky, S S; ESichtermann; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sørensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Suaide, A A P; Sugarbaker, E R; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T J; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van, G; Buren; Van der Kolk, N; Van Leeuwen, M; Van der Molen, A M; Varma, R; Vasilevski, I M; Vasilev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2006-01-01

    We present the scaling properties of Lambda, Xi, Omega and their anti-particles produced at mid-rapidity in Au+Au collisions at RHIC at sqrt(s_NN) = 200 GeV. The yield of multi-strange baryons per participant nucleon increases from peripheral to central collisions more rapidly than the Lambda yield, which appears to correspond to an increasing strange quark density of matter produced. The value of the strange phase space occupancy factor gamma_s, obtained from a thermal model fit to the data, approaches unity for the most central collisions. We also show that the nuclear modification factors, R_CP, of Lambda and Xi are consistent with each other and with that of protons in the transverse momentum range 2.0 < p_T < 5.0 GeV/c. This scaling behaviour is consistent with a scenario of hadron formation from constituent quark degrees of freedom through quark recombination or coalescence.

  11. The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Aguayo, Estanislao; Avignone, Frank T.; Barabash, Alexander S.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; O' Shaughnessy, C.; Overman, Nicole R.; Phillips, David; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Steele, David; Strain, J.; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Williams, T.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-06-01

    The MAJORANA DEMONSTRATOR will search for the neutrinoless double-beta (ββ(0ν)) decay of the isotope 76Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The DEMONSTRATOR is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the DEMONSTRATOR and the details of its design.

  12. The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Aguayo, Estanislao; Avignone, III, F. T.; Barabash, A.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; O' Shaughnessy, Mark D.; Overman, Nicole R.; Phillips, David; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Steele, David; Strain, J.; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Williams, T.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-01-01

    The Majorana Demonstrator will search for the neutrinoless double-beta (ββ (0ν)) decay of the isotope 76Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. TheDemonstrator is being assembled at the 4850-foot level of the SanfordUnderground Research Facility in Lead, SouthDakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the Demonstrator and the details of its design.

  13. THE MAJORANA DEMONSTRATOR: OVERVIEW AND STATUS UPDATE

    Energy Technology Data Exchange (ETDEWEB)

    Keeter, K.; Abgrall, N.; Aguayo, Estanislao; Avignone, F. T.; Barabash, Alexander; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Cuesta, C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, Matthew P.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Kidd, M. F.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; O' Shaughnessy, Mark D.; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Soin, Aleksandr; Strain, J.; Suriano, Anne-Marie; Swift, Gary; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2013-04-12

    The MAJORANA DEMONSTRATOR is being constructed at the Sanford Underground Research Facility (SURF) in Lead, SD by the MAJORANA Collaboration to demonstrate the feasibility of a tonne-scale neutrinoless double beta decay experiment based on 76Ge. The observation of neutrinoless double beta decay would indicate that neutrinos can serve as their own antiparticles, thus proving neutrinos to be Majorana particles, and would give information on neutrino masses. Attaining sensitivities for neutrino masses in the inverted hierarchy region requires large tonne-scale detectors with extremely low backgrounds. The DEMONSTRATOR project will show that sufficiently low backgrounds are achievable. A brief description of the detector and a status update on the construction will be given, including the work done at BHSU on acid-etching of Pb shielding bricks.

  14. Quantum theory of relativistic charged particles in external fields

    International Nuclear Information System (INIS)

    A study was made on external field theories in which the quantized field corresponds to relativistic elementary particles with non-zero rest mass. These particles are assumed to be charged, thus they have distinct antiparticles. The thesis consists of two parts. The first tries to accommodate the general features of theories of relativistic charged particles in external fields. Spin and dynamics in particular are not specified. In the second part, the results are applied to charged spin-1/2 and spin-0 particles, the dynamics of which are given by the Dirac resp. Klein-Gordon equation. The greater emphasis is on external fields which are rapidly decreasing, infinitely differentiable functions of space-time, but also considers time-independent fields. External fields, other than electromagnetic fields are also considered, e.g. scalar fields

  15. Annihilating Asymmetric Dark Matter

    CERN Document Server

    Bell, Nicole F; Shoemaker, Ian M

    2014-01-01

    The relic abundance of particle and antiparticle dark matter (DM) need not be vastly different in thermal asymmetric dark matter (ADM) models. By considering the effect of a primordial asymmetry on the thermal Boltzmann evolution of coupled DM and anti-DM, we derive the requisite annihilation cross section. This is used in conjunction with CMB and Fermi-LAT gamma-ray data to impose a limit on the number density of anti-DM particles surviving thermal freeze-out. When the extended gamma-ray emission from the Galactic Center is reanalyzed in a thermal ADM framework, we find that annihilation into $\\tau$ leptons prefer anti-DM number densities 1-4$\\%$ that of DM while the $b$-quark channel prefers 50-100$\\%$.

  16. Big Bang Day: 5 Particles - 1. The Electron

    CERN Multimedia

    Simon Singh

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 1. The Electron Just over a century ago, British physicist J.J. Thompson experimenting with electric currents and charged particles inside empty glass tubes, showed that atoms are divisible into indivisible elementary particles. But how could atoms be built up of these so called "corpuscles"? An exciting 30 year race ensued, to grasp the planetary model of the atom with its orbiting electrons, and the view inside the atom was born. Whilst the number of electrons around the nucleus of an atom determines their the chemistry of all elements, the power of electrons themselves have been harnessed for everyday use: electron beams for welding,cathode ray tubes and radiation therapy.

  17. (Anti-)matter and hyper-matter production at the LHC with ALICE

    International Nuclear Information System (INIS)

    ALICE is the experiment at the CERN LHC dedicated to the investigation of high energy nucleus–nucleus collisions. Its excellent particle identification capabilities allow for the measurement of rarely produced particles, like hypernuclei and light nuclei (and their anti-particles). We present here results from Pb–Pb collisions at a center of mass energy of √sNN = 2.76 TeV per nucleon-nucleon pair. In particular the measurement of 3He-bar and 4He-bar is discussed. In addition the reconstruction of (anti-)hypertritons via their mesonic decay ((3)/Λ H → 3He + π) is presented. Searches for even lighter hypermatter states, i.e. ΛΛ (also known as H-Dibaryon) and Λn bound states, are dicussed. The results are compared with thermal model predictions

  18. Prospects for measuring the Bs0-anti Bs0 mixing ratio χs

    International Nuclear Information System (INIS)

    We review and update results bearing on the phenomena of particle-antiparticle mixing in the neutral beauty meson sector. Our main focus is on the mixing ratio xs, defined as xs = (ΔM)/Γ, relevant for B0s-anti B0s mixing. We present theoretical estimates of this quantity in the standard model and find that xs=0(10), which makes time-dependent oscillation measurements mandatory. We also discuss estimates of xs in a number of extensions of the standard model, some of which admit smaller values of xs. Present and future experimental facilities where such measurements can be undertaken are reviewed on a case to case basis. These include the high luminosity LEP option, asymmetric threshold B-factories, the ep-collider HERA, and hadron colliders, such as the Fermilab Tevatron, LHC and SSC. (orig.)

  19. 1992 HEPAP subpanel on the US Program of High Energy Physics Research

    International Nuclear Information System (INIS)

    High energy physics seeks an understanding of the fundamental structure of matter and the laws that govern all physical phenomena. The US high energy physics community has many scientific opportunities before it. Discovering the top quark, exploring the origin of particle-antiparticle asymmetry, and elucidating the Higgs mechanism, the source of mass, are some of the most notable. We were charged with laying out programs for US high energy physics through this decade that would accord with three specific budgetary guidelines for the period FY 1994--FY 1997. This report details the scientific, technical, and resource issues involved, recommends a program for each guideline, and discusses the implications of each program. In all our plans we consider construction of the SSC to have the highest priority in the US particle physics program and to be absolutely essential for continued progress in our field into the 21st century

  20. Search for Pair Production of a Heavy Up-Type Quark Decaying to a W Boson and a b Quark in the lepton+jets Channel with the ATLAS Detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert

    2012-01-01

    A search is presented for production of a heavy up-type quark (t') together with its antiparticle, assuming subsequent decay to a W boson and a b quark, t't'bar -> W+b W-bbar. The search is based on 1.04 fb^-1 of proton-proton collisions at sqrt(s) = 7 TeV collected by the ATLAS detector at the CERN Large Hadron Collider. Data are analyzed in the lepton+jets final state, characterized by a high transverse momentum isolated electron or muon, high missing transverse momentum and at least three jets. No significant excess of events above the background expectation is observed. A 95% C.L. lower limit is set at m(t') > 404 GeV.

  1. Status and perspectives of double beta decay searches

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, Kai [Inst. fuer Kern- und Teilchenphysik, TU Dresden (Germany)

    2011-07-01

    Double beta decay is a very rare nuclear decay characterised by a change of 2 units the ordering number Z while leaving the mass number A constant. It can basically occur in two modes, with the emission of two electrons and two anti-neutrinos or the emission of two electrons only. The neutrinoless double beta decay of nuclei is not allowed in the Standard Model and is of outstanding importance for neutrino physics. It can only occur if a neutrino is its own antiparticle and if it has a non-vanishing rest mass. After a general introduction into double beta decay, the talk focusses on the current experimental searches and results and their implications for particle physics. An outlook towards future projects and the involved challenges is given. This includes a discussion on nuclear matrix elements and possible supporting experimental activities.

  2. Overview of results from PHOBOS experiment at RHIC

    Science.gov (United States)

    Olszewski, Andrzej; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D. J.; Holzman, B.; Hollis, R. S.; Hoyński, R.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michaowski, J.; Mignerey, A. C.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J. L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysouch, B.

    2002-07-01

    An overview of results for interactions of Au+Au ions at centre-of-mass energies of √sNN = 56, 130 and 200 GeV obtained by the PHOBOS collaboration at RHIC is given. Measurements of primary charged particle density near mid-rapidity indicate that particle production grows logarithmically with collision energy and faster than linearly with the number of interacting nucleons. Elliptic flow is found to be much stronger at RHIC than at SPS energy. The effect is strongest in peripheral events and decreases for more central collisions and emission angles |η| > 1. The measured anti-particle to particle ratios of production rates for pions, kaons and protons in central Au+Au interactions at √sNN = 130 GeV are compatible with the statistical model of particle production, showing an increasingly baryon-free region in mid-rapidity with the increase of collision energy.

  3. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    CERN Document Server

    Bellucci, S; Bragança, E; Saharian, A A

    2016-01-01

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even funct...

  4. Derivation of the Planck mass from gravitational polarization of the quantum vacuum

    Science.gov (United States)

    Tajmar, Martin

    2012-09-01

    The Planck units were originally derived from a dimensional analysis without a deeper understanding of their meaning. It was later believed that these units may provide a link between quantum theory and gravity in a yet to be developed theory of quantum gravity. I propose a model where the Planck units appear naturally by assuming that the quantum vacuum can be gravitationally polarized based on recent work on the gravitational properties of anti-particles. In order to match the observed values, we arrive at Planck particle/anti-particle pairs (micro black holes) with Planck masses that define the gravitational constant in vacuum through gravitational polarization. This gives the Planck mass a new important interpretation as indeed linking quantum fluctuations to gravity by defining the gravitational constant. In addition, a better understanding of why the Planck length is usually associated as the smallest length in nature can be illustrated from another perspective.

  5. Derivation of the Planck Mass from Gravitational Polarization of the Quantum Vacuum

    CERN Document Server

    Tajmar, M

    2012-01-01

    The Planck units were originally derived from a dimensional analysis without a deeper understanding of their meaning. It was later believed that these units may provide a link between quantum theory and gravity in a yet to be developed theory of quantum gravity. I propose a model where the Planck units appear naturally by assuming that the quantum vacuum can be gravitationally polarized based on recent work on the gravitational properties of anti-particles. In order to match the observed values, we arrive at Planck particle/anti-particle pairs (micro black holes) with Planck masses that define the gravitational constant in vacuum through gravitational polarization. This gives the Planck mass a new important interpretation as indeed linking quantum fluctuations to gravity by defining the gravitational constant. In addition, a better understanding of why the Planck length is usually associated as the smallest length in nature can be illustrated from another perspective.

  6. Chemical Potentials of Quarks Extracted from Particle Transverse Momentum Distributions in Heavy Ion Collisions at RHIC Energies

    International Nuclear Information System (INIS)

    In the framework of a multisource thermal model, the transverse momentum distributions of charged particles produced in nucleus-nucleus (A-A) and deuteron-nucleus (d-A) collisions at relativistic heavy ion collider (RHIC) energies are investigated by a two-component revised Boltzmann distribution. The calculated results are in agreement with the PHENIX experimental data. It is found that the source temperature increases obviously with increase of the particle mass and incident energy, but it does not show an obvious change with the collision centrality. Then, the values of chemical potentials for up, down, and strange quarks can be obtained from the antiparticle to particle yield ratios in a wide transverse momentum range. The relationship between the chemical potentials of quarks and the transverse momentum with different centralities is investigated, too

  7. Simulating net particle production and chiral magnetic current in a C P -odd domain

    Science.gov (United States)

    Fukushima, Kenji

    2015-09-01

    To address a question of whether the chiral magnetic current is a static polarization or a genuine flow of charged particles, we elucidate the numerical formulation to simulate the net production of right-handed particles and anomalous currents with C P -breaking background fields which cause an imbalance between particles and antiparticles. For a concrete demonstration we numerically impose pulsed electric and magnetic fields to confirm our answer to the question that the produced net particles flow in the dynamical chiral magnetic effect. The rate for the particle production and the chiral magnetic current generation is quantitatively consistent with the axial anomaly, while they appear with a finite response time. We emphasize the importance to quantify the response time that would suppress observable effects of the anomalous current.

  8. Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium

    Energy Technology Data Exchange (ETDEWEB)

    Hayrapetyan, A.G., E-mail: armen@physi.uni-heidelberg.de [Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg (Germany); Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Grigoryan, K.K.; Petrosyan, R.G. [Yerevan State University, 1 Alex Manoogian Str., 0025 Yerevan (Armenia); Fritzsche, S. [Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany); Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-06-15

    The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period τ is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the sound wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods τ between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.

  9. Some aspects of hadron-hadron collisions in high energy interactions (Bs mixing oscillations in semileptonic decay at D0 experiment)

    Energy Technology Data Exchange (ETDEWEB)

    Naimuddin, Md.; /Delhi U.

    2006-09-01

    In this thesis, we report the study on one such particle called the B{sub s}{sup 0} meson made up of a bottom and a strange quark. B{sub s}{sup 0} mesons are currently produced in a great numbers only at the Tevatron and we report a study done to measure the mixing parameter {Delta}m{sub s} between the B{sub s}{sup 0} meson and its anti-particle {bar B}{sub s}{sup 0}. Mixing is the ability of a very few neutral mesons to change from their particle to their antiparticle and vice versa. Until recently there existed only a lower limit on this measurement, here we report an upper bound and a most probable value for the mixing parameter. In the following chapter, we discuss the theoretical motivation behind this study. The measurement technique and the different factors that effect the measurement are also given. In Chapter 3, we provide an overview of the experimental setup needed to perform the study. In Chapter 4, we present a new initial state flavor tagging algorithm using electrons and measurement of the B{sub d}{sup 0} mixing parameter {Delta}m{sub d} with the new technique. Details of the combined initial state tagging used in the B{sub s}{sup 0} mixing study are also given. A detailed description of the B{sub s}{sup 0} mixing analysis and the results are covered in Chapter 5. And finally the results from all the three channels and a bound on the mixing parameter are presented in Chapter 6.

  10. D-meson production by muons in the COMPASS experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Zvyagin, Alexander

    2011-01-21

    One of the physics goals of the COMPASS experiment at CERN was to measure the contribution of gluons to the nucleon spin. To achieve this, it was proposed to scatter polarized 160 GeV/c muons on a polarized deuteron target and to detect D mesons in the final state. The underlying process in this D meson production is supposed to be the Photon-Gluon Fusion (PGF), where a virtual photon emitted by the muon interacts with a gluon from the target nucleon, producing a charm-anticharm quark pair. Fragmentation of a charm (anticharm) quark leads with high probability to the creation of a D{sup 0} or D{sup *} meson, which COMPASS detects via the D{sup 0}{yields}K{pi} and D{sup *}{yields}D{sup 0}{pi}{yields}K{pi}{pi} decay modes. From the longitudinal cross section spin asymmetries of the D meson production and theoretical predictions for the PGF cross section, the gluon contribution to the nucleon spin has been measured by the COMPASS experiment. The results presented in the thesis are the following. Based on data from the year 2004 a total visible cross section of 1.8{+-}0.4 nb, for the D{sup *} meson production, has been measured, with the error being dominated by systematic effects. It is validated that the D mesons are indeed produced through the PGF process, by comparison of measured D meson kinematic distributions to the ones predicted by a theory (AROMA generator). A good agreement was found for the distribution shapes, which confirms that PGF plays a major role. However, a 20% difference was found in the number of produced D{sup 0} and D{sup 0} mesons (and for the D{sup *+} and D{sup *-} mesons as well) which is significantly larger than predicted by AROMA. Kinematic distributions of D{sup 0} and D{sup *} mesons were compared with the background and also with the nearby K{sup *}{sub 2}(1430){sup 0} resonance, using all longitudinal data taken in 2002-2006. The particle-antiparticle asymmetry has been studied as a function of several kinematic variables. The 20

  11. The Dirac field in the electromagnetic potential of a charged string

    International Nuclear Information System (INIS)

    According to the theory of Quantum Electrodynamics (QED) the vacuum state will change in the presence of very strong electromagnetic fields. If the external field (in the simplest case purely electrostatic) exceeds a certain critical value the creation of electron-positron pairs will ensue, resulting the the formation of a charged vacuum. This process is characterized by the emergence of electron states with a binding energy larger than twice the electron rest mass. The effect up to now usually was studied for spherically symmetric systems, in particular for the Coulomb potential of a heavy nucleus. In the present thesis we investigate, how this phenomenon changes when passing from spherical to cylindrical geometry. For this, we derive the solutions of the Dirac equation for electrons in the electrostatic potential of a long, thin charged cylinder (a ''charged string'') and study the ensuing supercritical effects. Since the logarithmic potential of an infinitely long string rises indefinitely with growing distance, all electron states should be supercritical (i.e., electrons should be able to tunnel through the particle-antiparticle gap of the Dirac equation). Therefore on may expect that the central charge will surround itself with an oppositely charged sheath of vacuum electrons, leading to neutralization of the string. To develop a quantitative description of this process, we investigate the solutions of the Poisson equation and the Dirac equation in cylindrical symmetry. In the first step a series expansion of the electrostatic potential in the central plane of a homogeneously charge cylinder of finite length and finite radius is derived. Subsequently, we employ the tetrad (vierbein) formalism to separate the Dirac equation in cylindrical coordinates. The resulting radial Dirac equation is transformed to Schroedinger type. The bound states are evaluated using the method of uniform approximation (a version of the WKB approximation). We study the dependence of

  12. Single atom tagging and the quest for Majorana Neutrinos

    Science.gov (United States)

    Gratta, Giorgio

    2015-05-01

    Elementary spin 1/2 particles (fermions) are generally described by a 4-component Dirac wavefunction. However Nature only needs to work this way for charged particles, where particles and antiparticles are distinguished by the charge state. A simpler 2-component Majorana wavefunction can be used to describe neutral spin 1/2 particles, in which case the particle-antiparticle and spin symmetries are related to each other. And indeed, Majorana particles have recently emerged in the condensed matter of topological materials. Within the Standard Model of elementary particle physics the neutrino is the only possible candidate for a Majorana particle. Dirac and Majorana behavior is only discernable for particles of finite mass, since in the massless case two of the Dirac states are impossible to reach. The recent discovery of finite neutrino masses has opened the question of whether neutrinos are elementary Majorana particles. In the affirmative case a new nuclear decay, the neutrinoless double-beta decay, is possible, albeit with a half-life that becomes infinite as the mass goes to zero. Present searches for neutrinoless double-beta decay have given negative results, with 90% CL half-lives in excess of 1025 yrs. The next generation of experiments will use tons of a specific isotope and search for a few nuclear decays in years of data. The challenge is, of course, to distinguish such decays from the unavoidable background due to trace amounts of natural radioactivity. In the nEXO project we will use tons of the isotope 136Xe , liquefied, in a Time Projection Chamber. In addition to more conventional (and essential) methods to suppress backgrounds, the nEXO collaboration is developing several techniques to recover and spectroscopically identify single atoms of the decay daughter, 136Ba, of the double-beta decay of 136Xe. These techniques can take advantage of ultrasensitive detection methods of atomic physics for a second phase of the nEXO program, with goals of improving

  13. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, M J

    2008-09-24

    Neutrinoless double beta decay (0{nu}DBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0{nu}DBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0{nu}DBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0{nu}DBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0{nu}DBD of {sup 130}Te with a ton-scale array of unenriched TeO{sub 2} bolometers. By increasing mass and decreasing the background for 0{nu}DBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10{sup -6}. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0{nu}DBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by ({alpha},n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used

  14. How did matter gain the upper hand over antimatter?

    International Nuclear Information System (INIS)

    Antimatter exists. We routinely make it in laboratories. For every familiar particle type we find a matching antiparticle with opposite charge, but exactly the same mass. For example, a positron with positive charge has the same mass as an electron; an antiproton with negative charge has the same mass as a proton. Antimatter occurs naturally all over the universe wherever high-energy particles collide. The laws of physics for antimatter are very, very similar to those for antimatter--so far we know only one tiny difference in them, a detail of the weak interactions of quarks that earned Makoto Kobayashi and Toshihide Maskawa a share of the 2008 Nobel Prize for Physics. Our understanding of the early Universe also tells us that after inflation ended equal amounts of matter and antimatter were produced. Today there's a lot of matter in the universe, but very little antimatter. This leaves a big question for cosmology. How did matter gain the upper hand over antimatter? It's a question at the root of our existence. Without this excess, there would be no stars, no Earth, and no us. When a particle meets its antiparticle, they annihilate each other in a flash of radiation. This process removed all the antimatter and most of the matter as the universe expanded and cooled. All that's left today is the excess amount of matter when destruction began to dominate over production. To get from equality to inequality for matter and antimatter requires a difference in the laws of physics between them and some special situation where it affects the balance between them. But, when we try to use the tiny difference we know about between quark and antiquark weak interactions to generate the imbalance, it doesn't work. We find a way that it can indeed give a small excess of matter over antimatter, but not nearly enough to give us all the matter we see in our universe. We can patch up the theory by adding unknown particles to it to make a scenario that works. Indeed we can do that in

  15. Turning the proton inside out

    International Nuclear Information System (INIS)

    In Germany's national accelerator laboratory in Hamburg, DESY, a new machine called HERA, the Hadron Electron Ring Accelerator, is now ready, and the detectors lie in wait to capture the particles produced in the collisions of high-energy protons and electrons. The machine presents particle physicists with a new type of tool to investigate the subatomic world. Accelerators, which take beams of subatomic particles to very high energies, are a vital component of research in particle physics. The collisions of energetic particles with other particles can produce new, short-lived forms of matter, which are important to our understanding of fundamental subatomic processes. The best way to exploit the energy of the collisions is to allow two particle beams to collide head on. Hera is a particle collider, but with a difference. In the past, most particle colliders have been based on a beam of particles and a beam of antiparticles, which have been the same mass as particles but opposite electrical charge. This means that the two beams can travel in opposite directions around a single ring-shaped accelerator. The new approach with HERA is to collide two beams of quite different particles-electron and protons, in order to explore the internal structure of the proton. (Author)

  16. Decoherence, determinism and chaos

    International Nuclear Information System (INIS)

    The author claims by now to have made his case that modern work on fractals and chaos theory has already removed the presumption that classical physics is 'deterministic'. Further, he claims that in so far as classical relativistic field theory (i.e. electromagnetism and gravitation) are scale invariant, they are self-consistent only if the idea of 'test-particle' is introduced from outside the theory. Einstein spent the last years of his life trying to use singularities in the metric as 'particles' or to get them out of the non-linearities in a grand unified theory -- in vain. So classical physics in this sense cannot be the fundamental theory. However, the author claims to have shown that if he introduces a 'scale invariance bounded from below' by measurement accuracy, then Tanimura's generalization of the Feynman proof as reconstructed by Dyson allows him to make a consistent classical theory for decoherent sources sinks. Restoring coherence to classical physics via relativistic action-at-a distance is left as a task for the future. Relativistic quantum mechanics, properly reconstructed from a finite and discrete basis, emerges in much better shape. The concept of 'particles has to be replaced by NO-YES particulate events, and particle-antiparticle pair creation and annihilation properly formulated

  17. B{sup 0}{sub s} - B-bar{sup 0}{sub s} mesons oscillations temporal dependence in the Delphi experiment; Etude de la dependance temporelle des oscillations des mesons B{sup 0}{sub s} -B-bar{sup 0}{sub s} dans l`experience Delphi

    Energy Technology Data Exchange (ETDEWEB)

    Ripp-Baudot, I.

    1996-05-09

    B{sup 0}{sub s} oscillations have been studied in the DELPHI experiment. The B{sup 0}{sub s} oscillation frequency is related to the abs(V{sub ts}) Cabibbo-Kobayashi-Maskawa matrix element and its measurement constitutes a test of the standard model. Furthermore it provides the ratio abs(V{sub td}/V{sub ts}) with reduced theoretical uncertainties when combined with the measurement of the B{sup 0}{sub d} oscillation frequency. The value of this ratio constraints the phase of CP violation in the standard model. The analysis consists in reconstructing semi-exclusively B{sup 0}{sub s} mesons in D{sub s} and D{sub s} -leptons channels, using 3.2 millions of Z decaying into hadrons, collected by DELPHI from 1991 to 1994 at LEP. The nature of particle or anti-particle of the B{sup 0}{sub s} at production time is tagged by a jet charge method, that has been optimized to the semi-exclusive case. The nature at decay time, the oscillation frequency is determined by adjusting the oscillation curve with a likelihood method. (author). 83 refs., 115 figs., 35 tabs.

  18. Astrometric detection of gravitational effects of quantum vacuum

    Science.gov (United States)

    Vecchiato, Alberto; Gai, Mario; Hajdukovic, Dragan

    2015-08-01

    In a series of recent papers it was suggested that the pairs of virtual particles-antiparticles composing the Quantum Vacuum (QV) can behave like gravitational dipoles with both attractive and repulsive interaction. If verified, this hypothesis would give raise to a series of gravitational effects at different scale length not yet considered in current gravity theories, and it may support galactic and cosmological models alternative to those involving Dark Matter and Dark Energy.Within the boundaries of the Solar System, the most promising targets for testing the gravitational QV conjecture are the binary trans-neptunian objects (TNOs). The gravitational action of the QV, in fact, would manifest itself as an external force inducing an anomalous precession, i.e. an excess shift of the longitude of the pericenter in the orbit of the TNO satellite which, e.g., for the UX25 candidate and under reasonable working hypothesis, was estimated to be about 0.23 arcsec per orbit.In this work we analyze in some detail the feasibility of testing the gravitational QV hypothesis estimating the above effect with ground-based and spaceborne astrometric observations. Several observing scenarios are explored here, including those using conventional and adaptive optics telescopes from ground, some spaceborne telescopes, and by exploring a list of possible candidates.

  19. On the Instability of Global de Sitter Space to Particle Creation

    CERN Document Server

    Anderson, Paul R

    2013-01-01

    We show that global de Sitter space is unstable to particle creation, even for a massive free field theory with no self-interactions. The O(4,1) de Sitter invariant state is a definite phase coherent superposition of particle and anti-particle solutions in both the asymptotic past and future, and therefore is not a true vacuum state. In the closely related case of particle creation by a constant, uniform electric field, a time symmetric state analogous to the de Sitter invariant one is constructed, which is also not a stable vacuum state. We provide the general framework necessary to describe the particle creation process, the mean particle number, and dynamical quantities such as the energy-momentum tensor and current of the created particles in both the de Sitter and electric field backgrounds in real time, establishing the connection to kinetic theory. We compute the energy-momentum tensor for adiabatic vacuum states in de Sitter space initialized at early times in global S^3 sections, and show that partic...

  20. Detecting Asymmetric Dark Matter in the Sun with Neutrinos

    CERN Document Server

    Murase, Kohta

    2016-01-01

    Dark Matter (DM) may have a relic density that is in part determined by a particle/antiparticle asymmetry, much like baryons. If this is the case, it can accumulate in stars like the Sun to sizable number densities and annihilate to Standard Model (SM) particles including neutrinos. We show that the combination of neutrino telescope and direct detection data can be used in conjunction to determine or constrain the DM asymmetry from data. Depending on the DM mass, the current neutrino data from Super-K and IceCube give powerful constraints on asymmetric DM unless its fractional asymmetry is $\\lesssim 10^{-2}$. Future neutrino telescopes and detectors like Hyper-K and KM3NeT can search for the resulting signal of high-energy neutrinos from the center of the Sun. The observation of such a flux yields information on both the DM-nucleus cross section but also on the relative abundances of DM and anti-DM.

  1. Matter-antimatter asymmetry and dark matter from torsion

    CERN Document Server

    Poplawski, Nikodem J

    2011-01-01

    We propose a simple scenario which explains the observed matter-antimatter imbalance and the origin of dark matter in the Universe. We use the Einstein-Cartan-Sciama-Kibble theory of gravity which naturally extends general relativity to include the intrinsic spin of matter. The torsion of spacetime generates in the Dirac equation the Hehl-Datta term which is cubic in spinor fields. We show that under the charge-conjugation transformation this term changes sign relative to the mass term. A Dirac spinor and its charge-conjugate therefore satisfy different field equations. Fermions in the presence of torsion have higher energy levels than antifermions, which leads to their decay asymmetry. Such a difference is significant only at extremely high densities that existed in the very early Universe. We propose that this difference caused a mechanism, according to which heavy fermions existing in such a Universe and carrying the baryon number decayed mostly to normal matter, whereas their antiparticles decayed mostly ...

  2. Matter-antimatter asymmetry and dark matter from torsion

    Science.gov (United States)

    Popławski, Nikodem J.

    2011-04-01

    We propose a simple scenario which explains the observed matter-antimatter imbalance and the origin of dark matter in the Universe. We use the Einstein-Cartan-Sciama-Kibble theory of gravity which naturally extends general relativity to include the intrinsic spin of matter. Spacetime torsion produced by spin generates, in the classical Dirac equation, the Hehl-Datta term which is cubic in spinor fields. We show that under a charge-conjugation transformation this term changes sign relative to the mass term. A classical Dirac spinor and its charge conjugate therefore satisfy different field equations. Fermions in the presence of torsion have higher energy levels than antifermions, which leads to their decay asymmetry. Such a difference is significant only at extremely high densities that existed in the very early Universe. We propose that this difference caused a mechanism, according to which heavy fermions existing in such a Universe and carrying the baryon number decayed mostly to normal matter, whereas their antiparticles decayed mostly to hidden antimatter which forms dark matter. The conserved total baryon number of the Universe remained zero.

  3. Relativistic off-mass-shell and off-energy-shell scattering theories: an application of the rotation and Lorentz groups

    International Nuclear Information System (INIS)

    A relativistic, phenomenological scattering theory for particles with arbitrary spin is presented, and the relation between off-mass-shell and off-energy-shell theories is discussed. The theory is formulated from the Hilbert-space representation of particles with spin in relativistic quantum mechanics. This topic is reviewed in a basis-independent manner by appealing to the properties of the rotation and Lorentz groups and their representations. Spin is discussed and a set of basis state vectors for the single-particle Hilbert space is derived from this perspective. Two- and three-particle Hilbert-space bases are then constructed, and angular momentum is discussed. The z-circumflex and helicity bases are presented as examples of the general procedure. These foundations allow the on-shell scattering amplitude to be defined. The space-inversion and time-reversal properties of this amplitude suggest that a new scattering function be defined such that a continuation of that function to negative energies can be considered. Antiparticle scattering events are associated with the continued function, and the CPT theorem arises as a natural consequence of this association. Moreover, these considerations lead to the definition of an off-mass-shell scattering function. The resulting off-mass-shell scattering theory has a number of very appealing properties. The off-energy-shell theory is dependent on fewer variables than the off-mass-shell theory, and is more susceptible to a phenomenological treatment

  4. Feasibility for EGRET detection of antimatter concentrations in the universe

    Science.gov (United States)

    Hartman, R. C.

    1990-01-01

    Although the Grand Unified Theories of elementary particle dynamics have to some extent reduced the aesthetic attraction of matter-antimatter symmetry in the Universe, the idea is still not ruled out. Although first introduced by Alfven (1965), most of the theoretical development related to gamma-ray astronomy was carried out by Stecker, who has proposed (Stecker, Morgan, and Bredekamp, 1971) matter-antimatter annihilation extending back to large redshifts as a possible explanation of the apparently extragalactic diffuse gamma radiation. Other candidate explanations were also proposed, such as superposition of extragalactic discrete sources. Clearly, the existence of significant amounts of antimatter in the universe would be of great cosmological importance; its detection, however, is not simple. Since the photon is its own antiparticle, it carries no signature identifying whether it originated in a matter or an antimatter process; even aggregates of photons (spectra) are expected to be identical from matter and antimatter processes. The only likely indicator of the presence of concentrations of antimatter is evidence of its annihilation with normal matter, assuming there is some region of contact or overlap. The EGRET (Energetic Gamma-Ray Experimental Telescope) on the Gamma Ray Observatory, with a substantial increase in sensitivity compared with earlier high energy gamma ray telescopes, may be able to address this issue. The feasibility of using EGRET in such a search for antimatter annihilation in the Universe is considered.

  5. The MAJORANA DEMONSTRATOR: Progress towards showing the feasibility of a tonne-scale 76Ge neutrinoless double-beta decay experiment

    CERN Document Server

    Finnerty, P; Amman, M; Avignone., F T; Barabash, A S; Barton, P J; Beene, J R; Bertrand, F E; Boswell, M; Brudanin, V; Busch, M; Chan, Y -D; Christofferson, C D; Collar, J I; Combs, D C; Cooper, R J; Detwiler, J A; Doe, P J; Efremenko, Yu; Egorov, V; Ejiri, H; Elliott, S R; Esterline, J; Fast, J E; Fields, N; Fraenkle, F M; Galindo-Uribarri, A; Gehman, V M; Giovanetti, G K; Green, M P; Guiseppe, V E; Gusey, K; Hallin, A L; Hazama, R; Henning, R; Hoppe, E W; Horton, M; Howard, S; Howe, M A; Johnson, R A; Keeter, K J; Kidd, M F; Knecht, A; Kochetov, O; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; Leviner, L E; Loach, J C; Luke, P N; MacMullin, S; Marino, M G; Martin, R D; Merriman, J H; Miller, M L; Mizouni, L; Nomachi, M; Orrell, J L; Overman, N R; Perumpilly, G; Phillips., D G; Poon, A W P; Radford, D C; Rielage, K; Robertson, R G H; Ronquest, M C; Schubert, A G; Shima, T; Shirchenko, M; Snavely, K J; Steele, D; Strain, J; Timkin, V; Tornow, W; Varner, R L; Vetter, K; Vorren, K; Wilkerson, J F; Yakushev, E; Yaver, H; Young, A R; Yumatov., C-H Yu and V

    2012-01-01

    The MAJORANA DEMONSTRATOR will search for the neutrinoless double-beta decay of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The DEMONSTRATOR is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a low-background environment and surrounded by passive and active shielding. The goals for the DEMONSTRATOR are: demonstrating a background rate less than 3 t$^{-1}$ y$^{-1}$ in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of neutrinoless double-beta decay [H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, Mod. Ph...

  6. Calibration of new flavor tagging algorithms using Bs oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Mack, Philipp; /Karlsruhe U., EKP

    2007-07-01

    Over the past decades the current theoretical description, the Standard Model of elementary particle physics, was solidified by many measurements as the basic theory describing fundamental particles and their interactions. It is extremely successful in explaining the high-precision data collected by experiments so far. The Standard Model includes several intrinsic parameters which have to be measured in experiments. Independent analyses of different physical processes can constrain those parameters. By combining those measurements physicists might be sensitive to physics beyond the Standard Model. If they are inconsistent it allows to get a hint on the theory that might supersede the Standard Model. The goal of the analysis presented in this thesis is to measure some of these parameters in the B{sub s} meson system. The B{sub s} meson, consisting of an anti-b and s quark, is not a pure mass eigenstate, thus allowing a B{sub s} meson to oscillate into its antiparticle via weak interacting processes. This is a general feature of any neutral meson. The history of meson mixing measurements is more then 50 years old. It was first observed in the kaon system. The oscillation in the B{sub d} system was measured very precisely by the B factories, whereas the oscillation frequency of the Bs was measured with more than 5{sigma} significance last year by CDF and first evidence for mixing in the D0 system was presented only this year.

  7. Measurement of D*+- production in deep inelastic ep scattering at HERA

    CERN Document Server

    Chekanov, S; Krakauer, D A; Loizides, J H; Magill, S; Musgrave, B; Repond, J; Yoshida, R; Mattingly, M C K; Antonioli, P; Bari, G; Basile, M; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Cara Romeo, G; Cifarelli, Luisa; Cindolo, F; Contin, A; Corradi, M; De Pasquale, S; Giusti, P; Iacobucci, G; Margotti, A; Montanari, A; Nania, R; Palmonari, F; Pesci, A; Sartorelli, G; Zichichi, A; Aghuzumtsyan, G; Bartsch, D; Brock, I; Goers, S; Hartmann, H; Hilger, E; Irrgang, P; Jakob, H P; Kappes, A; Katz, U F; Kind, O; Meyer, U; Paul, E; Rautenberg, J; Renner, R; Stifutkin, A; Tandler, J; Voss, K C; Wang, M; Weber, A; Bailey, D S; Brook, N H; Cole, J E; Foster, B; Heath, G P; Heath, H F; Robins, S; Rodrigues, E; Scott, J; Tapper, R J; Wing, M; Capua, M; Mastroberardino, A; Schioppa, M; Susinno, G; Kim, J Y; Kim, Y K; Lee, J H; Lim, I T; Pac, M Y; Caldwell, A; Helbich, M; Liu, X; Mellado, B; Ning, Y; Paganis, S; Ren, Z; Schmidke, W B; Sciulli, F; Chwastowski, J; Eskreys, Andrzej; Figiel, J; Kiewicz, K; Stopa, P; Zawiejski, L; Adamczyk, L; Bold, T; Grabowska-Bold, I; Kisielewska, D; Kowal, A M; Kowal, M; Kowalski, T; Przybycien, M B; Suszycki, L; Szuba, D; Szuba, J; Kotanski, A; Slominski, W; Bauerdick, L A T; Behrens, U; Bloch, I; Borras, K; Chiochia, V; Dannheim, D; Drews, G; Fourletova, J; Fricke, U; Geiser, A; Göttlicher, P; Gutsche, O; Haas, T; Hain, W; Hartner, G F; Hillert, S; Kahle, B; Kötz, U; Kowalski, H; Kramberger, G; Labes, H; Lelas, D; Löhr, B; Mankel, R; Melzer-Pellmann, I A; Nguyen, C N; Notz, D; Nuncio-Quiroz, A E; Petrucci, M C; Polini, A; Raval, A; Rurua, L; Schneekloth, U; Stoesslein, U; Wolf, G; Youngman, C; Zeuner, W; Schlenstedt, S; Barbagli, G; Gallo, E; Genta, C; Pelfer, P G; Bamberger, A; Benen, A; Coppola, N; Bell, M; Bussey, P J; Doyle, A T; Hamilton, J; Hanlon, S; Lee, S W; Lupi, A; Saxon, D H; Skillicorn, I O; Gialas, I; Bodmann, B; Carli, T; Holm, U; Klimek, K; Krumnack, N; Lohrmann, E; Milite, M; Salehi, H; Schleper, P; Stonjek, S; Wick, K; Ziegler, A; Collins-Tooth, C; Foudas, C; Goncalo, R; Long, K R; Tapper, A D; Cloth, P; Filges, D; Nagano, K; Tokushuku, K; Yamada, S; Kataoka, Y Yamazaki M; Barakbaev, A N; Boos, E G; Pokrovskiy, N S; Zhautykov, B O; Lim, H; Son, D; Barreiro, F; Glasman, C; González, O; Labarga, L; Del Peso, J; Tassi, E; Terron, J; Vázquez, M; Barbi, M; Corriveau, F; Gliga, S; Lainesse, J; Padhi, S; Stairs, D G; Walsh, R; Tsurugai, T; Antonov, A; Danilov, P; Dolgoshein, B A; Gladkov, D; Sosnovtsev, V V; Suchkov, S; Dementiev, R K; Ermolov, P F; Golubkov, Yu A; Katkov, I I; Khein, L A; Korzhav--, I A; Kuzmin, V A; Levchenko, B B; Lukina, O Yu; Proskuryakov, A S; Shcheglova, L M; Vlasov, N N; Zotkin, S A; Grijpink, S; Koffeman, E; Kooijman, P; Maddox, E; Pellegrino, A; Schagen, S; Tiecke, H G; Velthuis, J J; Wiggers, L; De Wolf, E; Brümmer, N; Bylsma, B; Durkin, L S; Ling, T Y; Cooper-Sarkar, A M; Cottrell, A; Devenish, R C E; Ferrando, J; Grzelak, G; Gwenlan, C; Patel, S; Sutton, M R; Walczak, R; Bertolin, A; Brugnera, R; Carlin, R; Dal Corso, F; Dusini, S; Garfagnini, A; Limentani, S; Longhin, A; Parenti, A; Posocco, M; Stanco, L; Turcato, M; Heaphy, E A; Metlica, F; Oh, B Y; Whitmore, J J; Iga, Y; D'Agostini, Giulio; Marini, G; Nigro, A; Hart, J C; McCubbin, N A; Heusch, C A; Park, I H; Pavel, N; Abramowicz, H; Gabareen, A; Kananov, S; Kreisel, A; Levy, A; Kuze, M; Abe, T; Fusayasu, T; Kagawa, S; Kohno, T; Tawara, T; Yamashita, T; Hamatsu, R; Hirose, T; Inuzuka, M; Kaji, H; Kitamura, S; Matsuzawa, K; Nishimura, T; Arneodo, M; Ferrero, M I; Monaco, V; Ruspa, M; Sacchi, R; Solano, A; Koop, T; Levman, G M; Martin, J F; Mirea, A; Butterworth, J M; Hall-Wilton, R; Jones, T W; Lightwood, M S; Targett-Adams, C; Ciborowski, J; Ciesielski, R; Luzniak, P; Nowak, R J; Pawlak, J M; Sztuk, J; Tymieniecka, T; Ukleja, A; Ukleja, J; Adamus, M; Plucinsky, P P; Eisenberg, Y; Gladilin, L K; Hochman, D; Riveline, U Karshon M; Kcira, D; Lammers, S; Li, L; Reeder, D D; Rosin, M; Savin, A A; Smith, W H; Dhawan, S; Straub, P B; Bhadra, S; Catterall, C D; Fourletov, S; Hartner, G; Menary, S R; Soares, M; Standage, J

    2004-01-01

    Inclusive production of $D^*(2010)$ mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.9 pb$^{-1}$. The decay channel $D^{* +}\\to D^0 \\pi^+ $ with $D^0\\to K^-\\pi^+$ and corresponding antiparticle decay were used to identify $D^*$ mesons. Differential $D^*$ cross sections with $1.5

  8. Foldy–Wouthuysen transformation, scalar potentials and gravity

    International Nuclear Information System (INIS)

    We show that care is required in formulating the nonrelativistic limit of generalized Dirac Hamiltonians which describe particles and antiparticles interacting with static electric and/or gravitational fields. The Dirac–Coulomb and the Dirac–Schwarzschild Hamiltonians, and the corrections to the Dirac equation in a non-inertial frame, according to general relativity, are used as example cases in order to investigate the unitarity of the standard and ‘chiral’ approaches to the Foldy–Wouthuysen transformation, and spurious parity-breaking terms. Indeed, we find that parity-violating terms can be generated by unitary pseudo-scalar transformations (‘chiral’ Foldy–Wouthuysen transformations). Despite their interesting algebraic properties, we find that ‘chiral’ Foldy–Wouthuysen transformations change fundamental symmetry properties of the Hamiltonian and do not conserve the physical interpretation of the operators. Supplementing the discussion, we calculate the leading terms in the Foldy–Wouthuysen transformation of the Dirac Hamiltonian with a scalar potential (of the 1/r-form and of the confining radially symmetric linear form), and obtain compact expressions for the leading higher-order corrections to the Dirac Hamiltonian in a non-inertial rotating reference frame (‘Mashhoon term’). (paper)

  9. Positron spectroscopy and its applications

    International Nuclear Information System (INIS)

    Positrons are the antiparticles of electrons, and their mass is m (the stationary mass of an electron) and their charge is e (the charge of an electron is -e). Accordingly, in principle only by reversing the polarity of measuring systems, the positron version of the analysis methods utilizing electrons becomes feasible, such as low energy positron diffraction (LEPD), reflection high energy positron diffraction (RHEPD) and transmission positron microscope (TPM), and except the problem of beam intensity, there are much merits than electrons. Positrons are the stable particles that do not have peculiar life similarly to electrons, but since matters are composed of electrons and atomic nuclei in this world, the pair annihilation with electrons occurs. At the time of pair annihilation, gamma-ray is emitted, and this gamma-ray transmits the information on the life of positrons. The individual character and possibility of positrons as a physical property probe, the interaction of positrons with matters, the sources of positrons, the analysis method utilizing positrons, the concrete examples of utilizing positron beam and the future perspective of positron utilization as probes are reported. (K.I.) 83 refs

  10. Commissioning of GERDA

    International Nuclear Information System (INIS)

    The study of neutrinoless double beta decay (DBD) is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of neutrinoless DBD would not only establish the Majorana nature of the neutrino but also represent a determination of its effective mass if the nuclear matrix element is given. So far, the most sensitive results have been obtained with Ge-76, and the group of Klapdor-Kleingrothaus has made a claim of discovery. Future experiments have to reduce radioactive backgrounds to increase the sensitivity. The GERmanium Detector Array, GERDA, is a new DBD experiment which is currently being commissioned at the INFN Gran Sasso National Laboratory, Italy. It is implementing a new shielding concept by operating bare Ge diodes - enriched in Ge-76 - in high purity liquid argon supplemented by a water shield. The aim of GERDA is to verify or refute the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than recent experiments. The paper discusses the commissioning of GERDA and present first results from a technical run with a string of three natural Ge diodes.

  11. The GERDA experiment on 0νββ decay

    International Nuclear Information System (INIS)

    The Gerda (Germanium Detector Array) collaboration searches for the neutrinoless double beta decay (0νββ) of 76Ge. The existence of this decay would give rise to the assumption that the neutrino is a Majorana particle, i.e. its own antiparticle. A measured half-life could be used to determine the effective neutrino mass and hence resolve the neutrino mass hierarchy problem. Germanium diodes, isotopically enriched in 76Ge, are used as both source and detector. Due to the low rate of this decay (T1/2>1025 y), the experimental background must be reduced to a level of 10-2counts/(kg y keV) or better in the region around Qββ. To minimize background from cosmogenically produced secondary particles, a low Z shielding is employed. Thus, the naked diodes are operated in a liquid argon cryostat, which is surrounded by a water tank acting as both passive shield and active muon Cherenkov veto. Gerda started the commissioning runs in 2010 and in November 2011, the first phase of data taking with enriched detectors has begun. In this talk, the first year of the experiment is summarized.

  12. Search for neutrinoless double beta decay of Ge-76 with the GERmanium Detector Array '' GERDA ''

    International Nuclear Information System (INIS)

    The study of neutrinoless double beta decay (DBD) is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of neutrinoless DBD would not only establish the Majorana nature of the neutrino but also represent a determination of its effective mass if the nuclear matrix element is given. So far, the most sensitive results have been obtained with Ge-76, and the group of Klapdor-Kleingrothaus has made a claim of discovery. Future experiments have to reduce radioactive backgrounds to increase the sensitivity. '' GERDA '' is a new double beta-decay experiment which is currently under construction in the INFN Gran Sasso National Laboratory, Italy. It is implementing a new shielding concept by operating bare Ge diodes - enriched in Ge-76 - in high purity liquid argon supplemented by a water shield. The aim of '' GERDA '' is to verify or refute the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than recent experiments, increasing the sensitive mass and reaching exposure of 100 kg yr. It be will discuss design, physics reach, and status of construction of '' GERDA '', and present results from various R efforts including long term stability of bare Ge diodes in cryogenic liquids, material screening, cryostat performance, detector segmentation, cryogenic precision electronics, safety aspects, and Monte Carlo simulations. (author)

  13. Search for Neutrinoless Double Beta Decay of 76Ge with the GERmanium Detector Array "gerda"

    Science.gov (United States)

    Garfagnini, Alberto

    2011-10-01

    The study of neutrinoless double beta decay (DBD) is the only presently known approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of neutrinoless DBD would not only establish the Majorana nature of the neutrino but also represent a determination of its effective mass if the nuclear matrix element is given. So far, the most sensitive results have been obtained with 76Ge, and the group of Klapdor-Kleingrothaus has made a claim of discovery. Future experiments have to reduce radioactive backgrounds to increase the sensitivity. GERDA is a new DBD experiment which is currently under construction in the INFN Gran Sasso National Laboratory, Italy. It is implementing a new shielding concept by operating bare Ge diodes - enriched in 76Ge - in high purity liquid argon supplemented by a water shield. The aim of GERDA is to scrutinize the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than recent experiments, increasing the sensitive mass and reaching an exposure of 100 kg yr. The paper will discuss design, physics reach, and status of construction of GERDA.

  14. Big break for charge symmetry

    CERN Document Server

    Miller, G A

    2003-01-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...

  15. Flavor mixing

    International Nuclear Information System (INIS)

    Recently, some researchers have been talking about the so-called 'fifth force'. This name suggests that four forces are already known to exist, which are generally called the strong, electromagnetic, weak, and gravitational interactions. However, the standard model of particle physics tells a different story; they are the gauge interactions, Yukawa interactions, Higgs interactions, and gravity. Of the first three, only the gauge interactions have been verified experimentally. However, the other two are truly necessary ingredients of the standard model to make it work. The present report discusses such matters as Kobayashi-Maskawa matrix, KM matrix elements, CP violation, particle antiparticle mixing, flavor-charging neutral current decays, generation crossover, FCNC decay, and lepton flavor mixing. It is concluded that the Kobayashi-Maskawa scheme for the quark mixing is in good shape. So far five out of nine matrix elements are experimentally determined. Nonzero value of the sixth matrix element Kub is essential for the KM scenario of CP violation. The observed large B-B-bar mixing suggests a heavy top quark. A lot of work is still needed towards the understanding of 'flavor'. (N.K.)

  16. A new “culprit” for matter-antimatter asymmetry

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    In our matter-dominated Universe, the observation of new processes showing matter-antimatter asymmetry allows scientists to test their theories and, possibly, to explore new territories. The LHCb collaboration has recently observed matter-antimatter asymmetries in the decays of the B0s meson, which thus becomes the fourth particle known to present such behaviour.   The VELO detector: a crucial element for particle identifiation in LHCb. Almost all physics processes known to scientists show perfect symmetry if a particle is interchanged with its antiparticle (C symmetry), and then if left and right are swapped (P symmetry). So it becomes very hard to explain why the Universe itself does not conform to this symmetry and, instead, shows a huge preference for matter. Processes that violate this symmetry are rare and of great interest to scientists. Violation of the CP symmetry in neutral kaons was first observed by Nobel Prize Laureates James Cronin and Val Fitch in the 1960s. About 40 years la...

  17. Measurement of charm fragmentation fractions in photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max-Planck-Institute for Physics, Munich (Germany); Abt, I. [Max-Planck-Institute for Physics, Muinch (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science] [and others; Collaboration: ZEUS Collaboration

    2013-06-15

    The production of D{sup 0}, D{sup *+}, D{sup +}, D{sub s}{sup +} and {Lambda}{sub c}{sup +} charm hadrons and their antiparticles in ep scattering at HERA has been studied with the ZEUS detector, using a total integrated luminosity of 372 pb{sup -1}. The fractions of charm quarks hadronising into a particular charm hadron were derived. In addition, the ratio of neutral to charged D-meson production rates, the fraction of charged D mesons produced in a vector state, and the strangeness-suppression factor have been determined. The measurements have been performed in the photoproduction regime. The charm hadrons were reconstructed in the range of transverse momentum p{sub T} > 3.8GeV and pseudorapidity vertical stroke {eta} vertical stroke <1.6. The charm fragmentation fractions are compared to previous results from HERA and from e{sup +}e{sup -} experiments. The data support the hypothesis that fragmentation is independent of the production process.

  18. Do we live in the universe successively dominated by matter and antimatter?

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2011-01-01

    We wonder if a cyclic universe may be dominated alternatively by matter and antimatter. Such a scenario demands a mechanism for transformation of matter to antimatter (or antimatter to matter) during the final stage of a big crunch. By giving an example, we have shown that in principle such a mechanism is possible. Our mechanism is based on a hypothetical repulsion between matter and antimatter, existing at least deep inside the horizon of a black hole. When universe is reduced to a supermassive black hole of a small size, a very strong field of the conjectured force might create (through a Schwinger type mechanism) particle-antiparticle pairs from the quantum vacuum. The amount of antimatter created from the vacuum is equal to the decrease of mass of the black hole and violently repelled from it. When the size of the black hole is sufficiently small, the creation of antimatter may become so fast, that matter of our Universe might be transformed to antimatter in a fraction of second. Such a fast conversion of...

  19. Particle hunters

    International Nuclear Information System (INIS)

    This century has been the century of atom constituents and of elementary particles. The electron was discovered at the very end of last century and now we are waiting for the experimental confirmation of the existence of Higgs boson. The discovery of neutrons in 1932 let out the existence of 2 new forces: the strong interaction that counterbalances the repulsive Coulomb force between protons inside the nucleus and the weak interaction that triggers the decay of the neutron. Another milestone in particle physics was the replacement of hadrons (more than 100 particles) by their constituents: a mere mix of 3 quarks and their antiparticles. The standard model was introduced in 1919 by H.Weyl, who later made it suitable for electromagnetism. This model was generalized in 1953 and in 1973-1975 it was proving fundamental for all the interactions but gravitation. Today theoretical speculations attempting to unify gravitation to the other interactions are made, they are based on super-cord and super-membrane models. The authors describe the progress of physics through this century. (A.C.)

  20. Design report on PF injector linac upgrade for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Isamu; Anami, Shozo; Enomoto, Atsushi; Fukuda, Shigeki; Kobayashi, Hitoshi; Nakahara, Kazuo [eds.

    1966-03-01

    The purpose of the B Factory project is to verify the physical problem `Is there difference in the physical laws of particle world and anti-particle world?` The outline of the KEK B Factory project (KEKB) is explained. The condition of injection corresponding to the KEKB, the increase of the energy of the PF injector and the augmentation of positron beam intensity for the KEKB, the guideline for, the most important problems of and the schedule of energy augmentation are described. Buildings and utilities, various problems related to large current electron beam acceleration, the generation of positrons, the examination of acceleration method, beam transport system, acceleration unit, vacuum system, high frequency source, the high frequency phase control between beam and acceleration high frequency wave, electron beam injection system, trigger system, beam monitors, the precision alignment of acceleration tube, electromagnets and beam monitors, the extension of control system, rise and adjustment, and radiation safety and the application related to radiation are described. Efforts are exerted for the development of klystron, the capability of high frequency power compression system, and the withstanding to pressure of acceleration tube. (K.I.)

  1. Probing the QCD matter close to the phase transition with net-particle fluctuations measured by ALICE at the LHC

    International Nuclear Information System (INIS)

    An event-by-event asymmetry in the number of particles and anti-particles produced at mid-rapidity in heavy-ion collisions can be related to fluctuations of the conserved quantities such as baryon number or charge in the strongly coupled quark-gluon plasma. Lattice calculations suggest that higher moments of the net-proton and the net-charge distributions are sensitive to the thermodynamic susceptibilities of the system. The status of the event-by-event net-proton distribution and its higher moments measurement, taking the reconstruction efficiency into account, is presented for Pb-Pb collisions at √(sNN)=2.76 TeV using the tracking and particle identification of the Time Projection Chamber of the ALICE apparatus at the LHC. Different methods are compared, and limits arising for the experimental data are shown. Furthermore, results from net-charge fluctuations measured by the ALICE collaboration, their higher moments, and a comparison to the theoretical predictions is presented.

  2. Cumulants of Net-Proton, Net-Kaon and Net-Charge Multiplicity Distributions in Au+Au Collisions at RHIC BES Energies from UrQMD Model

    CERN Document Server

    Xu, Ji; Liu, Feng; Luo, Xiaofeng

    2016-01-01

    Fluctuations of conserved quantities are sensitive observables to probe the signature of QCD phase transition and critical point in heavy-ion collisions. With the UrQMD model, we have studied the centrality and energy dependence of various order cumulants and cumulant ratios (up to fourth order) of net-proton,net-charge and net-kaon multiplicity distributions in Au+Au collisions at $\\sqrt{s_{NN}}$= 7.7, 11.5, 19.6, 27, 39, 62.4, 200 GeV. The model results show that the production mechanism of the particles and anti-particles have significant impacts on the cumulants of net-particles multiplicity distributions and show strong energy dependence. We also made comparisons between model calculations and experimental data measured in the first phase of the beam energy scan (BES) program by the STAR experiment at RHIC. The comparisons indicate that the baryon conservation effect strongly suppress the cumulants of net-proton distributions at low energies and the non-monotonic energy dependence for the net-proton {\\KV...

  3. Microscopic wormholes and the geometry of entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Francisco S.N. [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Lisbon (Portugal); Olmo, Gonzalo J. [Centro Mixto Universidad de Valencia-CSIC, Universidad de Valencia, Departamento de Fisica Teorica y IFIC, Valencia (Spain); Rubiera-Garcia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil)

    2014-06-15

    It has recently been suggested that Einstein-Rosen (ER) bridges can be interpreted as maximally entangled states of two black holes that form a complex Einstein-Podolsky-Rosen (EPR) pair. This relationship has been dubbed as the ER = EPR correlation. In this work, we consider the latter conjecture in the context of quadratic Palatini theory. An important result, which stems from the underlying assumptions as regards the geometry on which the theory is constructed, is the fact that all the charged solutions of the quadratic Palatini theory possess a wormhole structure. Our results show that spacetime may have a foam like microstructure with wormholes generated by fluctuations of the quantum vacuum. This involves the spontaneous creation/annihilation of entangled particle-antiparticle pairs, existing in a maximally entangled state connected by a nontraversable wormhole. Since the particles are produced from the vacuum and therefore exist in a singlet state, they are necessarily entangled with one another. This gives further support to the ER = EPR claim. (orig.)

  4. Effective theory of a doubly charged singlet scalar: complementarity of neutrino physics and the LHC

    CERN Document Server

    King, Stephen F; Panizzi, Luca

    2014-01-01

    We consider a rather minimal extension of the Standard Model involving just one extra particle, namely a single $SU(2)_L$ singlet scalar $S^{++}$ and its antiparticle $S^{--}$. We propose a model independent effective operator, which yields an effective coupling of $S^{\\pm \\pm}$ to pairs of same sign weak gauge bosons, $W^{\\pm} W^{\\pm}$. We also allow tree-level couplings of $S^{\\pm \\pm}$ to pairs of same sign right-handed charged leptons $l^{\\pm}_Rl'^{\\pm}_R$ of the same or different flavour. We calculate explicitly the resulting two-loop diagrams in the effective theory responsible for neutrino mass and mixing. We propose sets of benchmark points for various $S^{\\pm \\pm}$ masses and couplings which can yield successful neutrino masses and mixing, consistent with limits on charged lepton flavour violation (LFV) and neutrinoless double beta decay. We discuss the prospects for $S^{\\pm \\pm}$ discovery at the LHC, for these benchmark points, including single and pair production and decay into same sign leptons p...

  5. Open bottom mesons in hot asymmetric hadronic medium

    CERN Document Server

    Pathak, Divakar

    2014-01-01

    The in-medium masses and optical potentials of $B$ and ${\\bar B}$ mesons are studied in an isospin asymmetric, strange, hot and dense hadronic environment using a chiral effective model. The chiral $SU(3)$ model originally designed for the light quark sector, is generalized to include the heavy quark sector ($c$ and $b$) to derive the interactions of the $B$ and $\\bar B$ mesons with the light hadrons. Due to large mass of bottom quark, we use only the empirical form of these interactions for the desired purpose, while treating the bottom degrees of freedom to be frozen in the medium. Hence, all medium effects are due to the in-medium interaction of the light quark content of these open-bottom mesons. Both $B$ and $\\bar B$ mesons are found to experience net attractive interactions in the medium, leading to lowering of their masses in the medium. The mass degeneracy of particles and antiparticles, ($B^+$, $B^-$) as well as ($B^0$, ${\\bar B}^0$), is observed to be broken in the medium, due to equal and opposite ...

  6. Search for pair-produced vector-like quarks of charge -1/3 decaying to bH using boosted Higgs jet-tagging in pp collisions at sqrt(s) = 8 TeV

    CERN Document Server

    CMS Collaboration

    2014-01-01

    A search is performed for the pair-production of a heavy vector-like quark ${\\rm b'}$ of charge $-1/3$ and its anti-particle, using data collected by the CMS experiment, from the LHC pp collisions at centre-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 19.7 fb$^{-1}$. We search for the ${\\rm b'}$ quark decaying to a Higgs-boson and a b quark, assuming a branching ratio of 100$\\%$, in a final state containing a fat jet to reconstruct the boosted Higgs boson and one or more b-tagged jets. The multijets background is evaluated entirely from the data while the t$\\overline{\\rm t}$+jets background is obtained from simulations. In the absence of a signal excess significantly above the estimated background, we place a limit on the ${\\rm b'}$ quark-antiquark pair-production cross section and hence on the ${\\rm b'}$ quark mass. We exclude ${\\rm b'}$ quarks for masses below 846 GeV at 95$\\%$ confidence level, while the expected limit is 811 GeV.

  7. The Littlest Higgs Model with T-Parity Facing CP-Violation in B_s - anti-B_s Mixing

    CERN Document Server

    Blanke, Monika; Recksiegel, Stefan; Tarantino, Cecilia

    2008-01-01

    The non-minimal flavour violating interactions of mirror quarks and new heavy gauge bosons in the Littlest Higgs model with T-parity (LHT) give rise to naturally large CP-violating effects in the B_s system. In view of a large new CP phase in B_s - anti-B_s mixing hinted by the CDF and D0 data and the recent UTfit analysis, we update our 2006 analysis of particle-antiparticle mixing and rare K and B decays in the LHT model, using the most recent values of a number of input parameters and performing a more careful error analysis. We find that the CP-asymmetry S_{psi phi} can easily reach values ~ 0.15-0.20, compared to the SM value ~ 0.04, while higher values are rather unlikely though not excluded. Large enhancements are also possible in the branching ratios for K_L -> pi0 nu anti-nu, K+ -> pi+ nu anti-nu and K_L -> pi0 l+ l- with much more modest effects in B_{s,d} -> mu+ mu-. We perform a detailed study of correlations between the latter decays and S_{psi phi} as well as of the correlation between S_{psi ph...

  8. ALPHA freezes antiprotons

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Laboratories like CERN can routinely produce many different types of antiparticles. In 1995, the PS210 experiment formed the first antihydrogen atoms and a few years later, in 2002, ATRAP and ATHENA were already able to produce several thousand of them. However, no experiment in the world has succeeded in ‘trapping’ these anti-atoms in order to study them. This is the goal of the ALPHA experiment, which has recently managed to cool down the antiprotons to just a few Kelvin. This represents a major step towards trapping the anti-atom, thus opening a new avenue into the investigation of antimatter properties.   Members of the ALPHA collaboration working on the apparatus in the Antiproton Decelerator experimental hall at CERN. Just like the atom, the anti-atom is neutral. Unlike the atom, the anti-atom is made up of antiprotons (as opposed to protons in the atom) and positrons (as opposed to electrons). In order to thoroughly study the properties of the anti-atoms, scien...

  9. Nuclear dependence of charm production

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Covarrubias, A.; Engelfried, J.; Amaro-Reyes, J.; Estrada, N.; Flores-Castillo, A.; Lopez-Hinojosa, G.; Morelos, A.; Sanchez-Lopez, J.L.; Torres, I.; Vazquez-Jauregui, E. [Univ. Autonoma de San Luis Potosi, Inst. de Fisica, San Luis Potosi (Mexico); Akgun, U.; Ayan, A.S.; Kaya, M.; McCliment, E.; Newsom, C.; Onel, Y.; Ozkorucuklu, S. [Univ. of Iowa, Iowa City, IA (United States); Alkhazov, G.; Atamantchouk, A.G.; Bondar, N.F.; Golovtsov, V.L.; Kim, V.T.; Kochenda, L.M.; Krivshich, A.G.; Maleev, V.P.; Neoustroev, P.V.; Razmyslovich, B.V.; Stepanov, V.; Svoiski, M.; Uvarov, L.N.; Vorobyov, A.A. [Petersburg Nuclear Physics Inst., St. Petersburg (Russian Federation); Balatz, M.Y.; Davidenko, G.V.; Dolgolenko, A.G.; Dzyubenko, G.B.; Evdokimov, A.V.; Kubantsev, M.A.; Larin, I.; Matveev, V.; Nilov, A.P.; Prutskoi, V.A.; Sitnikov, A.I.; Verebryusov, V.S.; Vishnyakov, V.E. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); Cooper, P.S.; Kilmer, J.; Lach, J.; Stutte, L. [Fermi National Accelerator Lab., Batavia, IL (United States); Dauwe, L.J. [Univ. of Michigan-Flint, Flint, MI (United States); Dersch, U.; Eschrich, I.; Konorov, I.; Krueger, H.; Simon, J.; Vorwalter, K. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany); Edelstein, R.; Jun, S.Y.; Mao, D.; Mathew, P.; Mattson, M.; Procario, M.; Russ, J. [Carnegie-Mellon Univ., Pittsburgh, PA (United States); Emediato, L.; Escobar, C.O.; Gouffon, P.; Lungov, T.; Srivastava, M.; Zukanovich-Funchal, R. [Univ. of Sao Paulo, Sao Paulo (Brazil); Endler, A.M.F. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro (Brazil); Filimonov, I.S.; Leikin, E.M.; Nemitkin, A.V.; Rud, V.I. [Moscow State Univ., Moscow (Russian Federation); Garcia, F.G. [Fermi National Accelerator Lab., Batavia, IL (United States); Univ. of Sao Paulo, Sao Paulo (Brazil); Guelmez, E. [Bogazici Univ., Bebek, Istanbul (Turkey); Iori, M. [Univ. of Rome La Sapienza (Italy); INFN, Rome (Italy)] [and others

    2009-12-15

    Using data taken by SELEX during the 1996-1997 fixed target run at Fermilab, we study the production of charmed hadrons on copper and carbon targets with {sigma}{sup -}, p, {pi}{sup -}, and {pi}{sup +} beams. Parametrizing the dependence of the inclusive production cross section on the atomic number A as A{sup {alpha}}, we determine {alpha} for D{sup +}, D{sup 0}, D{sub s}{sup +}, D{sup +}(2010), {lambda}{sub c}{sup +}, and their respective anti-particles, as a function of their transverse momentum p{sub t} and scaled longitudinal momentum x{sub F}. Within our statistics there is no dependence of {alpha} on x{sub F} for any charm species for the interval 0.1

  10. B0s - B-bar0s mesons oscillations temporal dependence in the Delphi experiment

    International Nuclear Information System (INIS)

    B0s oscillations have been studied in the DELPHI experiment. The B0s oscillation frequency is related to the abs(Vts) Cabibbo-Kobayashi-Maskawa matrix element and its measurement constitutes a test of the standard model. Furthermore it provides the ratio abs(Vtd/Vts) with reduced theoretical uncertainties when combined with the measurement of the B0d oscillation frequency. The value of this ratio constraints the phase of CP violation in the standard model. The analysis consists in reconstructing semi-exclusively B0s mesons in Ds and Ds -leptons channels, using 3.2 millions of Z decaying into hadrons, collected by DELPHI from 1991 to 1994 at LEP. The nature of particle or anti-particle of the B0s at production time is tagged by a jet charge method, that has been optimized to the semi-exclusive case. The nature at decay time, the oscillation frequency is determined by adjusting the oscillation curve with a likelihood method. (author). 83 refs., 115 figs., 35 tabs

  11. Supersymmetry of In-group and "Out-group" Particles and Some Strange Phenomena

    Institute of Scientific and Technical Information of China (English)

    Jiao Shanqing; Gong Zizheng; Xu Diyu; Jiang Guangzuo

    2006-01-01

    The symmetry of the in-group particles, which are of three-generation fermions, and the "out-group" ones, which are not admitted by three-generation fermions, is discussed. It was found that the "out-group" antiparticles of Bose type, which came into being because of CP (charge Conjugation-Parity conservation) violation in the early universe and became heavier due to the phase transformation from low temperature to high temperature, are the supersymmetric companions of the in-group particles of Fermi type. The ratio of the number density of photons to that of protons calculated with Planck distribution method is about 0.61×1010, which is close to the observed value (about 1010) available in literature. A theoretical analysis of the structure of a photon suggests that the photon has a quark-gluon structure, which is consistent with the experimental result reported in literature. As the lightest particle in the supersymmetric companions, the calculated mass of a neutralino is 320 GeV. The so-called "vast area of desert" in mass scale appears to be the supersymmetry area of the three-generation particles, and "neutralinos" are the source of the moving of galaxies and the dark matter of non-baryons.

  12. The PAMELA experiment on satellite and its capability in cosmic rays measurements

    CERN Document Server

    Adriani, O; Barbarino, G C; Barbier, L M; Bartalucci, S; Bazilevskaja, G; Bellotti, R; Bertazzoni, S; Bidoli, V; Boezio, M; Bogomolov, E A; Bonechi, L; Bonvicini, V; Boscherini, M; Bravar, U; Cafagna, F; Campana, D; Carlson, Per J; Casolino, M; Castellano, M; Castellini, G; Christian, E R; Ciacio, F; Circella, M; D'Alessandro, R; De Marzo, C N; De Pascale, M P; Finetti, N; Furano, G; Gabbanini, A; Galper, A M; Giglietto, N; Grandi, M; Grigorieva, A; Guarino, F; Hof, M; Koldashov, S V; Korotkov, M G; Krizmanic, J F; Krutkov, S; Lund, J; Marangelli, B; Marino, L; Menn, W; Mikhailov, V V; Mirizzi, N; Mitchell, J W; Mocchiutti, E; Moiseev, A A; Morselli, A; Mukhametshin, R; Ormes, J F; Osteria, G; Ozerov, J V; Papini, P; Pearce, M; Perego, A; Piccardi, S; Picozza, P; Ricci, M; Salsano, A; Schiavon, Paolo; Scian, G; Simon, M; Sparvoli, R; Spataro, B; Spillantini, P; Spinelli, P; Stephens, S A; Stochaj, S J; Stozhkov, Yu I; Straulino, S; Streitmatter, R E; Taccetti, F; Tesi, M; Vacchi, A; Vannuccini, E; Vasiljev, G; Vignoli, V; Voronov, S A; Yurkin, Y; Zampa, G; Zampa, N

    2002-01-01

    The PAMELA equipment will be assembled in 2001 and installed on board the Russian satellite Resurs. PAMELA is conceived mainly to study the antiproton and positron fluxes in cosmic rays up to high energy (190 GeV for p-bar and 270 GeV for e sup +) and to search antinuclei, up to 30 GeV/n, with a sensitivity of 10 sup - sup 7 in the He-bar/He ratio. The PAMELA telescope consists of: a magnetic spectrometer made up of a permanent magnet system equipped with double sided microstrip silicon detectors; a transition radiation detector made up of active layers of proportional straw tubes interleaved with carbon fibre radiators; and a silicon-tungsten imaging calorimeter made up of layers of tungsten absorbers and silicon detector planes. A time-of-flight system and anti-coincidence counters complete the PAMELA equipment. In the past years, tests have been done on each subdetector of PAMELA; the main results are presented and their implications on the anti-particles identification capability in cosmic rays are discus...

  13. Antimatter and Matter Production in Heavy Ion Collisions at CERN (The NEWMASS Experiment NA52)

    CERN Document Server

    Ambrosini, G; Baglin, C; Beck, H P; Borer, K; Bussière, A; Elsener, K; Gorodetzky, P; Guillaud, J P; Hess, P O; Kabana, S; Klingenberg, R; Lehmann, G; Lindén, T; Lohmann, K D; Mommsen, R K; Moser, U; Pretzl, Klaus P; Schacher, J; Spiwoks, R; Stoffel, F; Tuominiemi, Jorma; Weber, M; Gorodetzky, Ph.

    2000-01-01

    Besides the dedicated search for strangelets NA52 measures light (anti)particle and (anti)nuclei production over a wide range of rapidity. Compared to previous runs the statistics has been increased in the 1998 run by more than one order of magnitude for negatively charged objects at different spectrometer rigidities. Together with previous data taking at a rigidity of -20 GeV/c we obtained 10^6 antiprotons 10^3 antideuterons and two antihelium3 without centrality requirements. We measured nuclei and antinuclei (p,d,antiprotons, antideuterons) near midrapidity covering an impact parameter range of b=2-12 fm. Our results strongly indicate that nuclei and antinuclei are mainly produced via the coalescence mechanism. However the centrality dependence of the antibaryon to baryon ratios show that antibaryons are diminished due to annihilation and breakup reactions in the hadron dense environment. The volume of the particle source extracted from coalescence models agrees with results from pion interferometry for an...

  14. Limit on B$^{0}_{s}$ oscillation using a jet charge method

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cassel, David G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Mattison, T S; Meinhard, H; Minten, Adolf G; Miquel, R; Moffeit, K; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schwarz, A; Settles, Ronald; Seywerd, H C J; Stierlin, U; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Duarte, H; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Si Mohand, D; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1995-01-01

    A lower limit is set on the B_{s}^{0} meson oscillation parameter \\Delta m_{s} using data collected from 1991 to 1994 by the ALEPH detector. Events with a high transverse momentum lepton and a reconstructed secondary vertex are used. The high transverse momentum leptons are produced mainly by b hadron decays, and the sign of the lepton indicates the particle/antiparticle final state in decays of neutral B mesons. The initial state is determined by a jet charge technique using both sides of the event. A maximum likelihood method is used to set a lower limit of \\, \\Delta m_{s}. The 95\\% confidence level lower limit on \\Delta m_s ranges between 5.2 and 6.5(\\hbar/c^{2})~ps^{-1} when the fraction of b quarks from Z^0 decays that form B_{s}^{0} mesons is varied from 8\\% to 16\\%. Assuming that the B_{s}^{0} fraction is 12\\%, the lower limit would be \\Delta m_{s} > 6.1(\\hbar/c^{2})~ps^{-1} at 95\\% confidence level. For x_s = \\Delta m_s \\, \\tau_{B_s}, this limit also gives x_s > 8.8 using the B_{s}^{0} lifetime of \\ta...

  15. The Majorana Demonstrator: A Search for Neutrinoless Double-beta Decay of 76Ge

    CERN Document Server

    Xu, W; Avignone, F T; Barabash, A S; Bertrand, F E; Brudanin, V; Busch, M; Buuck, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Cuesta, C; Detwiler, J A; Efremenko, Yu; Ejiri, H; Elliott, S R; Galindo-Uribarri, A; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guinn, I; Guiseppe, V E; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; MacMullin, J; Martin, R D; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Overman, N R; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Ronquest, M C; Shanks, B; Shirchenko, M; Snyder, N; Suriano, A M; Tedeschi, D; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Yakushev, E; Yu, C-H; Yumatov, V

    2015-01-01

    Neutrinoless double-beta decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the Majorana Demonstrator, a 40-kg modular germanium detector array, to search for the Neutrinoless double-beta decay of 76Ge and to demonstrate a background rate at or below 3 counts/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for 76Ge Neutrinoless double-beta decay. In this paper, we discuss the physics of neutrinoless double beta decay and...

  16. Unique Fock quantization of a massive fermion field in a cosmological scenario

    Science.gov (United States)

    Cortez, Jerónimo; Elizaga Navascués, Beatriz; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.; Velhinho, José M.

    2016-04-01

    It is well known that the Fock quantization of field theories in general spacetimes suffers from an infinite ambiguity, owing to the inequivalent possibilities in the selection of a representation of the canonical commutation or anticommutation relations, but also owing to the freedom in the choice of variables to describe the field among all those related by linear time-dependent transformations, including the dependence through functions of the background. In this work we remove this ambiguity (up to unitary equivalence) in the case of a massive Dirac free field propagating in a spacetime with homogeneous and isotropic spatial sections of spherical topology. Two physically reasonable conditions are imposed in order to arrive at this result: (a) The invariance of the vacuum under the spatial isometries of the background, and (b) the unitary implementability of the dynamical evolution that dictates the Dirac equation. We characterize the Fock quantizations with a nontrivial fermion dynamics that satisfy these two conditions. Then, we provide a complete proof of the unitary equivalence of the representations in this class under very mild requirements on the time variation of the background, once a criterion to discern between particles and antiparticles has been set.

  17. Measurement of D$^+_s$ production and nuclear modification factor in Pb–Pb collisions at $\\sqrt{s_{\\rm NN}} = 2.76$ TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasar, Cigdem; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-01

    The production of prompt D$^+_s$ mesons was measured for the first time in collisions of heavy nuclei with the ALICE detector at the LHC. The analysis was performed on a data sample of Pb–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision of $\\sqrt{s_{\\rm NN}} = 2.76$ TeV in two different centrality classes, namely 0–10\\% and 20–50\\%. D$^+_s$ mesons and their antiparticles were reconstructed at mid-rapidity from their hadronic decay channel D$^+_s \\rightarrow \\phi\\pi^+$, with $\\phi\\rightarrow {\\rm K}^−{\\rm K}^+$, in the transverse momentum intervals $4 < p_{\\rm T} < 12$ GeV/$c$ and $6 < p_{\\rm T} < 12$ GeV/c for the 0–10\\% and 20–50\\% centrality classes, respectively. The nuclear modification factor $R_{\\rm AA}$ was computed by comparing the $p_{\\rm T}$-differential production yields in Pb–Pb collisions to those in proton–proton (pp) collisions at the same energy. This pp reference was obtained using the cross section measured at $\\sqrt{s} = 7$ TeV and scaled ...

  18. Something new about the neutrino?

    International Nuclear Information System (INIS)

    Since 1990 the experiment ''Heidelberg-Moscow'' in the Grand Sasso tunnel has been studying 76Ge nuclei in order to detect double beta decay without emission of neutrinos. This kind of decay is not allowed by the standard model and has never been detected, this decay in which the anti-neutrino emitted by a beta-minus decay of a neutron is absorbed by another neutron triggering its decay, is characterized by: n → p+ + e- + ν-bar and ν + n → p+ + e-, the balance equation is then: 2n → 2p+ + 2e-. This decay implies that the neutrino and its anti-particle are the same particle. The analysis of experimental data recorded from 1996 to 2000 could show, if the results are confirmed, that this decay mode is possible. In that case, the determination of the neutrino mass based on the measurement of the decay half-life (1.5*1025 years) gives 0.39 eV. (A.C.)

  19. Electric charge catalysis by magnetic fields and isospin chemical potential

    CERN Document Server

    Bruckmann, F; Sulejmanpasic, T

    2013-01-01

    We describe a generic mechanism by which a system of Dirac fermions which carry an additional quantum number (isospin) acquires electric charge when the system is subject to an isospin chemical potential and a superposition of a normal magnetic field and a magnetic field which distinguishes the isospin. A nontrivial feature of fermions in the background of such gauge fields is that the electric charge appears due to nonzero isospin chemical potential and vice versa. The charge is accumulated since the degeneracies of occupied lowest Landau levels for particles of positive isospin and anti-particles of negative isospin are different. We discuss two physical systems where this phenomenon can be realized. One is monolayer graphene where the isospin is associated with two valleys in the Brillouin zone and the strain-induced pseudo-magnetic field acts differently on charge carriers in different valleys. Another is hot QCD, for which the role of isospin is played by the color of quarks. In the latter case the descr...

  20. The SuperNEMO tracking detector

    CERN Document Server

    Cascella, M

    2015-01-01

    The SuperNEMO detector will search for neutrinoless double beta decay at the Modane Underground Laboratory on the French-Italian border. This decay mode, if observed, would be proof that the neutrino is its own antiparticle, would constitute evidence for total lepton number violation, and could allow a measurement of the absolute neutrino mass. The SuperNEMO experiment is designed to reach a half-life sensitivity of $10^{26}$ years corresponding to an effective Majorana neutrino mass of $50-100~$meV. The SuperNEMO detector design allows complete topological reconstruction of the double beta decay event enabling excellent levels of background rejection. In the event of a discovery, such topological measurements will be vital in determining the nature of the lepton number violating process. This reconstruction will be performed by a gaseous tracking detector, consisting of 2034 drift cells per module operated in Geiger mode. The tracker of the Demonstrator Module is currently under construction in the UK. This ...

  1. Interpretation of the cosmic ray positron and antiproton fluxes

    CERN Document Server

    Lipari, Paolo

    2016-01-01

    The spectral shape of cosmic ray positrons and antiprotons has been accurately measured in the broad kinetic energy range 1-350 GeV. In the higher part of this range (E > 30 GeV) the e+ and pbar are both well described by power laws with spectral indices gamma[e+] = 2.77 +-0.02 and gamma[pbar] = 2.78 +- 0.04 that are approximately equal to each other and to the spectral index of protons. In the same energy range the positron/antiproton flux ratio has the approximately constant value 2.04+-0.04, that is consistent with being equal to the ratio e_/pbar calculated for the conventional mechanism of production, where the antiparticles are created as secondaries in the inelastic interactions of primary cosmic rays with interstellar gas. The positron/antiproton ratio at lower energy is significantly higher (reaching the approximate value e+/pbar = 100 for E around 1 GeV), but in the entire energy range 1-350 GeV, the flux ratio is consistent with being equal to ratio of the production rates in the conventional mecha...

  2. Observer dependence of bubble nucleation and Schwinger pair production

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Kanno, Sugumi; Vilenkin, Alexander [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155 (United States); Sasaki, Misao [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Soda, Jiro, E-mail: jaume.garriga@ub.edu, E-mail: sugumi@cosmos.phy.tufts.edu, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: jiro@tap.scphys.kyoto-u.ac.jp, E-mail: vilenkin@cosmos.phy.tufts.edu [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2012-12-01

    Pair production in a constant electric field is closely analogous to bubble nucleation in a false vacuum. The classical trajectories of the pairs are Lorentz invariant, but it appears that this invariance should be broken by the nucleation process. Here, we use a model detector, consisting of other particles interacting with the pairs, to investigate how pair production is seen by different Lorentzian observers. We focus on the idealized situation where a constant external electric field is present for an infinitely long time, and we consider the in-vacuum state for a charged scalar field that describes the nucleating pairs. The in-vacuum is defined in terms of modes which are positive frequency in the remote past. Even though the construction uses a particular reference frame and a gauge where the vector potential is time dependent, we show explicitly that the resulting quantum state is Lorentz invariant. We then introduce a ''detector'' particle which interacts with the nucleated pairs, and show that all Lorentzian observers will see the particles and antiparticles nucleating preferentially at rest in the detector's rest frame. Similar conclusions are expected to apply to bubble nucleation in a sufficiently long lived vacuum. We also comment on certain unphysical aspects of the Lorentz invariant in-vacuum, associated with the fact that it contains an infinite density of particles. This can be easily remedied by considering Lorentz breaking initial conditions.

  3. Noncommutative Geometry and the standard model with neutrino mixing

    CERN Document Server

    Connes, A

    2006-01-01

    We show that allowing the metric dimension of a space to be independent of its KO-dimension and turning the finite noncommutative geometry F-- whose product with classical 4-dimensional space-time gives the standard model coupled with gravity--into a space of KO-dimension 6 by changing the grading on the antiparticle sector into its opposite, allows to solve three problems of the previous noncommutative geometry interpretation of the standard model of particle physics: The finite geometry F is no longer put in "by hand" but a conceptual understanding of its structure and a classification of its metrics is given. The fermion doubling problem in the fermionic part of the action is resolved. The spectral action of our joint work with Chamseddine now automatically generates the full standard model coupled with gravity with neutrino mixing and see-saw mechanism for neutrino masses. The predictions of the Weinberg angle and the Higgs scattering parameter at unification scale are the same as in our joint work but we...

  4. Asymmetric condensed dark matter

    Science.gov (United States)

    Aguirre, Anthony; Diez-Tejedor, Alberto

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  5. Development and operation of tracking detectors in silicon technology for the LHCb upgrade

    CERN Document Server

    Rodriguez Perez, Pablo; Adeva, Bernardo

    The LHCb experiment is one of the four main experiments at the Large Hadron Collider (LHC) at CERN. It uses the energy density provided by the LHC to attempt to probe asymmetries between particles and antiparticles that can not be explained by the Standard Model, and thus provide evidence that would allow us to build a new model of fundamental physics. This thesis covers the author's work in the Silicon Tracker $(\\textit{ST})$ and VErtex LOcator $(\\textit{VELO})$ detectors of the LHCb experiment. The thesis explains the installation and commissioning of the $ST$, as well as the development of the slow control for the detector. The $ST$ is a silicon micro-strip detector which provides precise momentum measurements of ionizing particles coming from the collisions. The $ST$consists of two sub-detectors: the Tracker Turicensis $ (TT)$, located upstream of the 4 Tm dipole magnet covering the full acceptance of the experiment, and the Inner Tracker $(IT)$, which covers the region of highest particle density closest...

  6. A model-theory for tachyons in two dimensions

    International Nuclear Information System (INIS)

    The subject of Tachyons, even if still speculative, may deserve some attention for reasons that can be divided into a few categories, two of which are preliminarily mentioned right now; (i) the larger scheme that one tries to build up in order to incorporate space-like objects in the relativistic theories can allow a better understanding of many aspects of the ordinary relativistic physics, even if Tachyons would not exist in our cosmos as 'asymptotically free' objects; (ii) Superluminal classical objects can have a role in elementary particle interactions (and perhaps even in astrophysics); and it might be tempting to verify how far one can go in reproducing the quantum-like behaviour at a classical level just by taking account of the possible existence of faster-than-light classical particles. This article is divided in two parts, the first one having nothing to do with tachyons. In fact, to prepare the ground, in Part I (Sect. 2) it is merely shown that Special Relativity - even without tachyons - can be given a form such to describe both particles and anti-particles. The plan of Part II is confined only to a 'model-theory' of Tachyons in two dimensions, for the reasons stated in Sect. 3. (Author)

  7. Planck focal plane instruments: advanced modelization and combined analysis

    CERN Document Server

    Zonca, Andrea

    2012-01-01

    This thesis is the result of my work as research fellow at IASF-MI, Milan section of the Istituto di Astrofisica Spaziale e Fisica Cosmica, part of INAF, Istituto Nazionale di Astrofisica. This work started in January 2006 in the context of the PhD school program in Astrophysics held at the Physics Department of Universita' degli Studi di Milano under the supervision of Aniello Mennella. The main topic of my work is the software modelling of the Low Frequency Instrument (LFI) radiometers. The LFI is one of the two instruments on-board the European Space Agency Planck Mission for high precision measurements of the anisotropies of the Cosmic Microwave Background (CMB). I was also selected to participate at the International Doctorate in Antiparticles Physics, IDAPP. IDAPP is funded by the Italian Ministry of University and Research (MIUR) and coordinated by Giovanni Fiorentini (Universita' di Ferrara) with the objective of supporting the growing collaboration between the Astrophysics and Particles Physics commu...

  8. Application of high quality antiproton beam to study charmonium and exotics above DD-bar threshold

    International Nuclear Information System (INIS)

    The spectroscopy of charmonium and exotic states with hidden charm is discussed. It is a good testing tool for theories of strong interactions including QCD in both perturbative and non-perturbative regime, lattice QCD, potential models and phenomenological models. An elaborated analysis of charmonium and charmed hybrid spectrum is given, and attempts to interpret recent experimental data in the above DD-bar threshold region are considered. Experiments using antiproton beam take advantage of the intensive production of particle-antiparticle pairs in antiproton-proton annihilations. Experimental data from different collaboration are analyzed with special attention given to new states with hidden charm that were discovered recently. Some of these states can be interpreted as higher-laying S, P and D wave charmonium states. But much more data on different decay modes are needed before firmer conclusions can be made. These data can be derived directly from the experiments using high quality antiproton beam with momentum up to 15 GeV/c. (authors)

  9. On the origin of matter in the universe. Pt. 2

    International Nuclear Information System (INIS)

    The present paper represents a completion of a foregoing work (Schaefer and Dehnen, 1977), in which the continuous particle-antiparticle creation out of the vacuum is calculated in consequence of the vacuumfluctuations of the quantized Dirac field embedded in the expanding Robertson-Walker metric with spherical 3-dimensional space. Starting from the particle creation rate per volume element, which is determined by the square of the Hubble-parameter and of the rest mass of the created particles only, it is possible to extend the considerations of the preceding paper to the open Universes with flat and hyperbolic 3-dimensional space. The solutions of the cosmological differential equations of Einstein's theory of gravitation are discussed, in which the created particles represent the main matter of the Universe and determine its expansion in particular, we find in the case of the flat 3-dimensional space a special solution starting with the expansion from the empty Minkowski spacetime, so that all matter in the Universe would be produced by the expansion itself. The comparison of our results (including those for the spherical space presented in the preceding paper) with the observations shows agreement with the observational data, whereby the existence of intergalactic matter is suggested. However, a decision for a certain model is not possible today. (orig.)

  10. Relevance of baryon-antibaryon decays of Bd0, anti Bd0 in tests of CP violation

    International Nuclear Information System (INIS)

    The decays of the type Bd0, anti Bd0→panti p, Λanti Λ, ΛC+anti ΛC+, into a spin 1/2 baryon and its antiparticle proceed in both the S-wave (parity conversing) and the P-wave (parity violating), and the final state is not an eigenstate of CP. Generalizing the type of tests of CP violation first proposed by Sanda et al., the CP violating asymmetries are proportional to ΓS-ΓP. We compute the parity conserving and the parity violating amplitudes within a pole model. The ratio ΓS/ΓP is of O(1) for panti p, but we find the selection rule ΓS=0 for Λanti Λ, and ΓP≤ΓS for ΛC+anti ΛC+. For the modes panti p and Λanti Λ, where the detection efficiency is large, we estimate the number of Bd0, anti Bd0 pairs needed to observe the CP asymmetries at the 3σ level to be of the order 1010. (orig.)

  11. Academic Training: Neutrino Physics, Present and Future

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29, 30 November, 1st December, from 11:00 to 12:00 - TH Auditorium, bldg 4 - 3 - 006 Neutrino Physics, Present and Future B. KAYSER / Fermilab, USA Our understanding of neutrinos has been revolutionized by the discovery that they have nonzero masses and very large mixing. We will explain the phenomenology of massive neutrinos, including neutrino oscillation in vacuum and in matter, and the physics of neutrinos that are their own antiparticles. We will review the evidence for neutrino masses and mixing, and summarize what has been learned about the neutrinos so far. Identifying the very interesting open questions raised by the discovery of neutrino mass, we will discuss how these questions may be answered through future experiments. Finally, we will consider the possibility that CP violation by neutrinos is the key to understanding the matter-antimatter asymmetry of the universe, and discuss the see-saw theory of why neutrino masses are so tiny....

  12. Academic Training: Neutrino Physics, Present and Future

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29, 30 November, 1st December, from 11:00 to 12:00 - TH Auditorium, bldg 4 - 3 - 006 Neutrino Physics, Present and Future B. KAYSER, Fermilab, USA Our understanding of neutrinos has been revolutionized by the discovery that they have nonzero masses and very large mixing. We will explain the phenomenology of massive neutrinos, including neutrino oscillation in vacuum and in matter, and the physics of neutrinos that are their own antiparticles. We will review the evidence for neutrino masses and mixing, and summarize what has been learned about the neutrinos so far. Identifying the very interesting open questions raised by the discovery of neutrino mass, we will discuss how these questions may be answered through future experiments. Finally, we will consider the possibility that CP violation by neutrinos is the key to understanding the matter-antimatter asymmetry of the universe, and discuss the see-saw theory of why neutrino masses are so tiny....

  13. SUMMER STUDENT LECTURE PROGRAMME

    CERN Multimedia

    Academic Training; Tel. 73127

    2001-01-01

    Main Auditorium bldg. 500 Date Time Lecturer Title Monday 23 July 9:15 10:15 11:15 A. Pich R. Jacobsen / LBLN, Berkeley (USA) T. Cass / CERN Particle Physics: the Standard Model (6/8) From Raw Data to Physics Results (1/3) Computing at CERN (1/3) Tuesday 24 July 9:15 10:15 11:15 A. Pich R. Jacobsen / LBLN, Berkeley (USA) T. Cass / CERN Particle Physics: the Standard Model (7/8) From Raw Data to Physics Results (2/3) Computing at CERN (2/3) Wednesday 25 July 9:15 10:15 11:15 A. Pich R. Jacobsen / LBLN, Berkeley (USA) A. Pich and R. Jacobsen J. Tuckmantel / CERN Particle Physics: the Standard Model (8/8) From Raw Data to Physics Results (3/3) Discussion Session Superconducting cavities Thursday 26 July 9:15 10:15 11:15 T. Nakada / CERN P. Wells / CERN T. Cass / CERN Violation of Particle Anti-particle Symmetry (1/3) LEP Physics (1/4) Computing at CERN (3/3) Friday 27July 9:15 10:15 11:15 T. Nakada / CERN P. Wells / CERN T. Nakada; T. Cass T. Nakada in main auditorium T. Cass in TH auditorium Violati...

  14. Search for violations of Lorentz invariance and $CPT$ symmetry in $B^0_{(s)}$ mixing

    CERN Document Server

    Aaij, Roel; Adeva, Bernardo; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio

    2016-01-01

    Violations of $ CPT$ symmetry and Lorentz invariance are searched for by studying interference effects in $ B^0$ mixing and in $ B^0_s$ mixing. Samples of $ B^0\\to J/\\psi K^0_{\\mathrm{S}}$ and $ B^0_s\\to J/\\psi K^+ K^-$ decays are recorded by the LHCb detector in proton--proton collisions at centre-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb$^{-1}$. No periodic variations of the particle-antiparticle mass differences are found, consistent with Lorentz invariance and $ CPT$ symmetry. Results are expressed in terms of the Standard Model Extension parameter $\\Delta a_{\\mu}$ with precisions of $ \\mathcal{O}(10^{-15})$ and $ \\mathcal{O}(10^{-14})$ GeV for the $ B^0$ and $ B^0_s$ systems, respectively. With no assumption on Lorentz (non-)invariance, the $ CPT$-violating parameter $z$ in the $ B^0_s$ system is measured for the first time and found to be $ \\mathcal{R}e(z) = -0.022 \\pm 0.033 \\pm 0.005$ and $ \\mathcal{I}m(z) = 0.004 \\pm 0.011\\pm 0.002$, where the first uncertainti...

  15. Search for Violations of Lorentz Invariance and CPT Symmetry in B_{(s)}^{0} Mixing.

    Science.gov (United States)

    Aaij, R; Abellán Beteta, C; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hongming, L; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A

    2016-06-17

    Violations of CPT symmetry and Lorentz invariance are searched for by studying interference effects in B^{0} mixing and in B_{s}^{0} mixing. Samples of B^{0}→J/ψK_{S}^{0} and B_{s}^{0}→J/ψK^{+}K^{-} decays are recorded by the LHCb detector in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3  fb^{-1}. No periodic variations of the particle-antiparticle mass differences are found, consistent with Lorentz invariance and CPT symmetry. Results are expressed in terms of the standard model extension parameter Δa_{μ} with precisions of O(10^{-15}) and O(10^{-14})  GeV for the B^{0} and B_{s}^{0} systems, respectively. With no assumption on Lorentz (non)invariance, the CPT-violating parameter z in the B_{s}^{0} system is measured for the first time and found to be Re(z)=-0.022±0.033±0.005 and Im(z)=0.004±0.011±0.002, where the first uncertainties are statistical and the second systematic. PMID:27367382

  16. Finite temperature bosonic charge and current densities in compactified cosmic string spacetime

    Science.gov (United States)

    Mohammadi, A.; Bezerra de Mello, E. R.

    2016-06-01

    In this paper, we study the expectation values of the induced charge and current densities for a massive bosonic field with nonzero chemical potential in the geometry of a higher-dimensional compactified cosmic string with magnetic fluxes along the string core and also enclosed by the compactified direction in thermal equilibrium at finite temperature T . These densities are calculated by decomposing them into the vacuum expectation values and finite temperature contributions coming from the particles and antiparticles. The only nonzero components correspond to the charge, azimuthal, and axial current densities. By using the Abel-Plana formula, we decompose the components of the densities into the part induced by the cosmic string and the one by the compactification. The charge density is an odd function of the chemical potential and even periodic function of the magnetic flux with a period equal to the quantum flux. Moreover, the azimuthal (axial) current density is an even function of the chemical potential and an odd (even) periodic function of the magnetic flux with the same period. In this paper, our main concern is the thermal effect on the charge and current densities, including some limiting cases, the low- and high-temperature approximations. We show that in all cases, the temperature enhances the induced densities.

  17. CMB Constraints On The Thermal WIMP Annihilation Cross Section

    CERN Document Server

    Steigman, Gary

    2015-01-01

    A thermal relic, often referred to as a weakly interacting massive particle (WIMP),is a particle produced during the early evolution of the Universe whose relic abundance (e.g., at present) depends only on its mass and its thermally averaged annihilation cross section (annihilation rate factor) sigma*v_ann. Late time WIMP annihilation has the potential to affect the cosmic microwave background (CMB) power spectrum. Current observational constraints on the absence of such effects provide bounds on the mass and the annihilation cross section of relic particles that may, but need not be dark matter candidates. For a WIMP that is a dark matter candidate, the CMB constraint sets an upper bound to the annihilation cross section, leading to a lower bound to their mass that depends on whether or not the WIMP is its own antiparticle. For a self-conjugate WIMP, m_min = 50f GeV, where f is an electromagnetic energy efficiency factor. For a non self-conjugate WIMP, the minimum mass is a factor of two larger. For a WIMP t...

  18. The standard model of particle physics - From the electron to the Higgs boson

    International Nuclear Information System (INIS)

    This bibliographical note presents the content and proposes the table of content of a book which gives a historical review of the development of the standard model of particle physics which supposes that any matter is made of quarks and leptons (1/2 spin point particles). The chapters address particle physics and the concept of matter, the early stages of the modern matter atomic theory, the photon, photon-related discoveries between 1985 and 1902, the discovery of the electron, radioactivity and radiations, the discovery of the proton by Rutherford, antiparticles, cosmic rays and the discovery of the positron, the Compton effect, the spin, the wave-particle duality, quantum electrodynamics, Fermi theory of β radioactivity, the discovery of the neutron, the Yukawa theory, strangeness, Yang and Mills theory and gauge theories, quarks, full formulation of the weak interaction and the discovery of W and Z bosons, discovery of the tau lepton, quantum chromodynamics, discovery of the massive neutrinos, the Brout-Englert-Higgs mechanism, the four interactions, the standard model and its limitations

  19. Photoproduction of charmed mesons: study of charmed mesons decays involving two charged kaons in the final state

    International Nuclear Information System (INIS)

    We present a study of charmed mesons decays involving two charged kaons in the final state. The experimental results are obtained from the data of the CERN NA14/2 experiment in a photon beam of mean energy 90 GeV. The main component of the apparatus is a silicon vertex detector made of an active target and a telescope of microstrips planes, the high spatial resolution of which allows to separate vertices and to measure the charmed mesons distance of flight. An electromagnetic calorimeter enables us to search for decay modes involving a π0. We have observed the charmed mesons D0, D+, Ds+ and their antiparticles in six different decay modes, two of which are new: Φπ+ π- and Φπ+π0. The results obtained on branching ratios are in agreement with theoretical predictions except those on the Φπ+π0 mode for which the predictions on the resonant mode Φp+ are not reproduced by the data

  20. Converting of Matter to Nuclear Energy by AB-Generator

    Directory of Open Access Journals (Sweden)

    Alexander Bolonkin

    2009-01-01

    Full Text Available Problem statement: Researcher offered a new nuclear generator which allowed to convert any matter to nuclear energy in accordance with Einstein equation E = mc2. The method was based upon tapping the energy potential of a Micro Black Hole (MBH and Hawking radiation created by this MBH. Researcher did not meet the idea and its research in literature to develop the method for getting a cheap energy. Approach: As is well-known, vacuum continuously produced virtual pairs of particles and antiparticles, in particular, photons and anti-photons. MBH event horizon allowed separating them. Anti-photons can be moved to MBH and be annihilated, decreasing mass of MBH, resulting photons leave the MBH neighborhood as Hawking radiation. The offered nuclear generator (named by Researcher as AB-generator utilized Hawking radiation and injected the matter into MBH and kept MBH in a stable state with near-constant mass. Results: AB-generator can be produced gigantic energy outputs and should be cheaper than a conventional electric station by a factor of hundreds of times. One also may be used in aerospace as a photon rocket or as a power source for many vehicles. Conclusion: Many scientists expect Large Hadron Collider at CERN may be produced one MBH every second. A technology to capture them may be developed; than they may be used for the AB-generator.

  1. Approximate k-state solutions to the Dirac-Yukawa problem based on the spin and pseudospin symmetry

    CERN Document Server

    Ikhdair, Sameer M

    2012-01-01

    Using an approximation scheme to deal with the centrifugal (pseudo-centrifugal) term, we solve the Dirac equation with the screened Coulomb (Yukawa) potential for any arbitrary spin-orbit quantum number {\\kappa}. Based on the spin and pseudospin symmetry, analytic bound state energy spectrum formulas and their corresponding upper- and lower-spinor components of two Dirac particles are obtained using a shortcut of the Nikiforov-Uvarov method. We find a wide range of permissible values for the spin symmetry constant C_{s} from the valence energy spectrum of particle and also for pseudospin symmetry constant C_{ps} from the hole energy spectrum of antiparticle. Further, we show that the present potential interaction becomes less (more) attractive for a long (short) range screening parameter {\\alpha}. To remove the degeneracies in energy levels we consider the spin and pseudospin solution of Dirac equation for Yukawa potential plus a centrifugal-like term. A few special cases such as the exact spin (pseudospin) s...

  2. A Simple Holographic Superconductor with Momentum Relaxation

    CERN Document Server

    Kim, Keun-Young; Park, Miok

    2015-01-01

    We study a holographic superconductor model with momentum relaxation due to massless scalar fields linear to spatial coordinates($\\psi_I = \\beta \\delta_{Ii} x^i$), where $\\beta$ is the strength of momentum relaxation. In addition to the original superconductor induced by the chemical potential($\\mu$) at $\\beta=0$, there exists a new type of superconductor induced by $\\beta$ even at $\\mu=0$. It may imply a new `pairing' mechanism of particles and antiparticles interacting with $\\beta$, which may be interpreted as `impurity'. Two parameters $\\mu$ and $\\beta$ compete in forming superconducting phase. As a result, the critical temperature behaves differently depending on $\\beta/\\mu$. It decreases when $\\beta/\\mu$ is small and increases when $\\beta/\\mu$ is large, which is a novel feature compared to other models. After analysing ground states and phase diagrams for various $\\beta/\\mu$, we study optical electric($\\sigma$), thermoelectric($\\alpha$), and thermal($\\bar{\\kappa}$) conductivities. When the system undergo...

  3. Limit on B0s oscillation using a jet charge method

    Science.gov (United States)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Cassel, D. G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Engelhardt, A.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Knobloch, J.; Lehraus, I.; Markou, C.; Martin, E. B.; Mato, P.; Mattison, T.; Meinhard, H.; Minten, A.; Miquel, R.; Moffeit, K.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Dorris, S. J.; Halley, A. W.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Morton, W. T.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; Wanke, R.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Thulasidas, M.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schwarz, A.; Settles, R.; Seywerd, H.; Stierlin, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Mir, Ll. M.; Perrodo, P.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1995-02-01

    A lower limit is set on the Bs0 meson oscillation parameter Δms using data collected from 1991 to 1994 by the ALEPH detector. Events with a high transverse momentum lepton and a reconstructed secondary vertex are used. The high transverse momentum leptons are produced mainly by b hadron decays, and the sign of the lepton indicates the particle/antiparticle final state in decays of neutral B mesons. The initial state is determined by a jet charge technique using both sides of the event. A maximum likelihood method is used to set a lower limit of Δms. The 95% confidence level lower limit on Δms ranges between 5.2 and 6.5 {( h̷}/{c 2) } ps -1 when the fraction of b quarks from Z 0 decays that form Bs0 messons is varied from 8% to 16%. Assuming that the B0s fraction is 12%, the lower limit would be Δm s > 6.1( {h̷}/{c 2}) ps -1 at 95% confidence level. For xs = ΔmsτBs, this limit also gives xs > 8.8 using the B0s lifetime of τBs = 1.55 ± 0.11 ps and shifting the central value of τBs down by 1σ.

  4. Is our world simple?

    International Nuclear Information System (INIS)

    Grand unified models try to unify the electroweak interaction of Glashow, Salam, and Weinberg and the strong interaction of the nuclear forces (quantum-chromodynamics) into a single force. These models predict that the neutrino is identical to its antiparticle (Majorana-neutrino), that the neutrino has a mass, and that a small, right-handed, weak interaction also exists. This allows double neutrinoless beta-decay, which is forbidden in the standard model. Thus, double beta-decay without the emission of neutrinos would falsify the standard model and strongly support grand unified models. This neutrinoless double beta-decay has not yet been found but lower limits of the half-life of nuclei against the double neutrinoless beta-decay (about 1024 years) allow to give upper limits of the neutrino mass and of the right-handedness of the weak interaction. The conditions for such limits are reliable nuclear structure calculations which are available for about 2 to 3 years. (orig.)

  5. Relativistic hadrodynamics with field-strength dependent coupling of the scalar fields in Hartree and Hartree-Fock approximation

    International Nuclear Information System (INIS)

    In this thesis in the framework of our model of the field-strength dependent coupling the properties of infinitely extended, homogeneous, static, spin- and isospin-saturated nuclear matter are studied. Thereby we use the Hartree-Mean-Field and the Hartree-Fock approximation, whereby the influence of the antiparticle states in the Fermi sea is neglected. In chapter 2 the Lagrangian density basing to our model is fixed. Starting from the Walecka model we modify in the Lagrangian density the Linear coupling of the scalar field to the scalar density as follows gSφanti ψψ→gSf(φ) anti ψψ. In chapter 3 we fix three different functions f(φ). For these three cases and for the Walecka model with f(φ)=φ nuclear-matter calculations are performed. In chapter 4 for the Hartree-Fock calculations, but also very especially regarding the molecular-dynamics calculations, the properties of the Dirac spinors in the plane-wave representation are intensively studied. (orig.)

  6. BCS–BEC crossover and stability in a Nambu–Jona-Lasinio model with diquark–diquark repulsion

    International Nuclear Information System (INIS)

    We investigate the equation of state (EoS) along the BCS–BEC crossover for a quark system described by a Nambu–Jona-Lasinio model with multi-fermion interactions. Together with attractive channels for particle–antiparticle (GS) and particle–particle (GD) interactions, a multi-fermion channel with coupling λ that accounts for the diquark–diquark repulsion is also considered. The chiral and diquark condensates are found in the mean-field approximation for different values of the coupling constants. The parameter values where the BCS–BEC crossover can take place are found, and the EoS is used to identify the stability region where the BEC regime has positive pressure. We discuss how the particle density and the repulsive diquark–diquark interaction affect the stability window in the GS–GD plane and find the profile of the pressure versus the density for various values of λ and GD. The effects of λ and GD in the BCS–BEC crossover tend to compensate each other, allowing for a feasible region of densities where the crossover can occur with positive pressure. These results, although mainly qualitative, should serve as a preliminary step in the microscopic analysis required to determine the feasibility of the BCS–BEC crossover and its realization in more realistic models of dense QCD that can be relevant for applications to neutron stars

  7. Matter Under Extreme Conditions: The Early Years

    Science.gov (United States)

    Keeler, R. Norris; Gibson, Carl H.

    2012-03-01

    Extreme conditions in natural flows are examined, starting with a turbulent big bang. A hydro-gravitational-dynamics cosmology model is adopted. Planck-Kerr turbulence instability causes Planck-particle turbulent combustion. Inertial-vortex forces induce a non-turbulent ki- netic energy cascade to Planck-Kolmogorov scales where vorticity is produced, overcoming 10113 Pa Planck-Fortov pressures. The spinning, expanding fireball has a slight deficit of Planck antiparticles. Space and mass-energy powered by gluon viscous stresses expand exponentially at speeds >1025 c. Turbulent temperature and spin fluctuations fossilize at scales larger than ct, where c is light speed and t is time. Because "dark-energy" antigravity forces vanish when infla- tion ceases, and because turbulence produces entropy, the universe is closed and will collapse and rebound. Density and spin fossils of big bang turbulent mixing trigger structure formation in the plasma epoch. Fragmenting protosuperclustervoids and protoclustervoids produce weak tur- bulence until the plasma-gas transition give chains of protogalaxies with the morphology of tur- bulence. Chain galaxy clusters observed at large redshifts ~8.6 support this interpretation. Pro- togalaxies fragment into clumps, each with a trillion Earth-mass H-He gas planets. These make stars, supernovae, the first chemicals, the first oceans and the first life soon after the cosmologi- cal event.

  8. The Majorana Demonstrator: Progress towards showing the feasibility of a 76Ge neutrinoless double-beta decay experiment

    Energy Technology Data Exchange (ETDEWEB)

    Finnerty, P.; Aguayo, Estanislao; Amman, M.; Avignone, Frank T.; Barabash, Alexander S.; Barton, P. J.; Beene, Jim; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, P. J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Fraenkle, Florian; Galindo-Uribarri, A.; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; Looker, Q.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Perumpilly, Gopakumar; Phillips, David; Poon, Alan; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Yakushev, E.; Yaver, Harold; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-03-24

    The Majorana Demonstrator will search for the neutrinoless double-beta decay (0*) of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The Demonstrator is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a lowbackground environment and surrounded by passive and active shielding. The goals for the Demonstrator are: demonstrating a background rate less than 3 counts tonne -1 year-1 in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of 0; and performing a direct search for lightWIMPs (3-10 GeV/c2).

  9. Search for Majorana fermions in topological superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei; Shi, Xiaoyan; Hawkins, Samuel D.; Klem, John Frederick

    2014-10-01

    The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).

  10. Positron Interactions with Atoms and Ions

    Science.gov (United States)

    Bhatia, Anand K.

    2012-01-01

    Dirac, in 1928, combining the ideas of quantum mechanics and the ideas of relativity invented the well-known relativistic wave equation. In his formulation, he predicted an antiparticle of the electron of spin n-bar/2. He thought that this particle must be a proton. Dirac published his interpretation in a paper 'A theory of electrons and protons.' It was shown later by the mathematician Hermann Weyl that the Dirac theory was completely symmetric between negative and positive particles and the positive particle must have the same mass as that of the electron. In his J. Robert Oppenheimer Memorial Prize Acceptance Speech, Dirac notes that 'Blackett was really the first person to obtain hard evidence for the existence of a positron but he was afraid to publish it. He wanted confirmation, he was really over cautious.' Positron, produced by the collision of cosmic rays in a cloud chamber, was detected experimentally by Anderson in 1932. His paper was published in Physical Review in 1933. The concept of the positron and its detection were the important discoveries of the 20th century. I have tried to discuss various processes involving interactions of positrons with atoms and ions. This includes scattering, bound states and resonances. It has not been possible to include the enormous work which has been carried out during the last 40 or 50 years in theory and measurements.

  11. Dynamical generation of a composite quark-lepton symmetry

    International Nuclear Information System (INIS)

    We demonstrate the possibility that a basic [SU(2)]sup(N) symmetry of N subconstituents, which describes particle and antiparticle transitions, generates at most an ''effective'' SO(2N) symmetry and at least an ''effective'' SU(N) x U(1) symmetry of composite quarks and leptons whose states are specified by the N different kinds of subconstituents. The generators of the ''effective'' symmetry, are identified by the correct algebraic properties specific to SO(2N) of composite operators constructed from the [SU(2)]sup(N)-operators acting on the composite quark-lepton states. The composite quarks and leptons are found to respect SO(4) x SO(6) or SU(2)sub(L) x U(1)sub(R) x SU(3)sub(c) x U(1)sub(B-L) according to a new selection rule, which are generated by the bilinear products of the raising and lowering operators of [SU(2)]5. This construction of the SO(4) x SO(6) generators allows us to uniquely define the five quantum numbers of that symmetry even at the subconstituent level. The full SO(10) generators can be also constructed; however, one needs a newly arranged [SU(2)]5 symmetry only defined at the composite level, the generators of which turn out to be at most N body operators of the original [SU(2)]5. (author)

  12. Transverse momentum dependence of D-meson production in Pb–Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasar, Cigdem; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-01

    The production of prompt charmed mesons D$^0$, D$^+$ and D$^{*+}$, and their antiparticles, was measured with the ALICE detector in Pb–Pb collisions at the centre-of-mass energy per nucleon pair, $\\sqrt{s_{\\rm NN}}$ of 2.76 TeV. The production yields for rapidity $|y| < 0.5$ are presented as a function of transverse momentum, $p_{\\rm T}$, in the interval 1–36 GeV/$c$ for the centrality class 0–10\\% and in the interval 1–16 GeV/$c$ for the centrality class 30–50\\%. The nuclear modification factor $R_{\\rm AA}$ was computed using a proton–proton reference at $\\sqrt{s}=2.76$ TeV, based on measurements at $\\sqrt{s}=7$ TeV and on theoretical calculations. A maximum suppression by a factor of 5–6 with respect to binary-scaled pp yields is observed for the most central collisions at $p_{\\rm T}$ of about 10 GeV/$c$. A suppression of a factor of about 2–3 persists at the highest $p_{\\rm T}$ covered by the measurements. At low $p_{\\rm T}$ (1–3 GeV/$c$), the $R_{\\rm AA}$ has large uncertainties that ...

  13. Complex Vector Formalism of Harmonic Oscillator in Geometric Algebra: Particle Mass, Spin and Dynamics in Complex Vector Space

    Science.gov (United States)

    Muralidhar, K.

    2014-03-01

    Elementary particles are considered as local oscillators under the influence of zeropoint fields. Such oscillatory behavior of the particles leads to the deviations in their path of motion. The oscillations of the particle in general may be considered as complex rotations in complex vector space. The local particle harmonic oscillator is analyzed in the complex vector formalism considering the algebra of complex vectors. The particle spin is viewed as zeropoint angular momentum represented by a bivector. It has been shown that the particle spin plays an important role in the kinematical intrinsic or local motion of the particle. From the complex vector formalism of harmonic oscillator, for the first time, a relation between mass and bivector spin has been derived in the form . Where, is the angular velocity bivector of complex rotations, is the velocity of light. The unit vector acts as an operator on the idempotents and to give the eigen values The constant represents two fold nature of the equation corresponding to particle and antiparticle states. Further the above relation shows that the mass of the particle may be interpreted as a local spatial complex rotation in the rest frame. This gives an insight into the nature of fundamental particles. When a particle is observed from an arbitrary frame of reference, it has been shown that the spatial complex rotation dictates the relativistic particle motion. The mathematical structure of complex vectors in space and spacetime is developed.

  14. A first look at Au + Au collisions at RHIC energies using the PHOBOS detector

    Indian Academy of Sciences (India)

    Birger Back; M D Baker; D S Barton; R R Betts; R Bindel; A Budzanowski; W Busza; A Carroll; J Corbo; M P Decowski; E Garcia; N George; K Gulbrandsen; S Gushue; C Halliwell; J Hamblen; G A Heintzelman; C Henderson; D Hicks; D J Hofman; R Hollis; R Holyńiski; B Holzman; A Iordanova; E Johnson; J L Kane; J Katzy; N Khan; W Kucewicz; P Kulinich; C M Kuo; W T Lin; S Manly; D McLeod; J Michalowski; A C Mignerey; J Mülmenstädt; R Nouicer; A Olszewski; R Pak; I C Park; H Pernegger; M Rafelski; M Rbeiz; C Reed; L P Remsberg; M Reuter; C Roland; G Roland; L Rosenberg; J Sagerer; P Sarin; P Sawicki; W Skulski; S G Steadman; P Steinberg; G S F Stephans; M Stodulski; A Sukhanov; J-L Tang; R Teng; A Trzupek; C Vale; G J van Nieuwenhuizen; R Verdier; B Wadsworth; F L H Wolfs; B Wosiek; K Woźniak; A H Wuosmaa; B Wyslouch

    2003-05-01

    The PHOBOS detector has been used to study Au + Au collisions at $\\sqrt{S_{NN}}=56$, 130, and 200 GeV. Several global observables have been measured and the results are compared with theoretical models. These observables include the charged-particle multiplicity measured as a function of beam energy, pseudo-rapidity, and centrality of the collision. A unique feature of the PHOBOS detector is its almost complete angular coverage such that these quantities can be studied over a pseudo-rapidity interval of ||≤ 5.4. This allows for an almost complete integration of the total charged particle yield, which is found to be about $N^{\\text{tot}}_{\\text{ch}}=4500± 470$ at $\\sqrt{S_{NN}}=130$ GeV and $N^{\\text{tot}}_{\\text{ch}}=5300± 530$ at $\\sqrt{S_{NN}}$ GeV. The ratio of anti-particles to particles emitted in the mid-rapidity region has also been measured using the PHOBOS magnetic spectrometer. Of particular interest is the ratio of anti-protons to protons in the mid-rapidity region, which was found to be $\\overline{p}/p= 0.6± 0.04$(stat) ± 0.06(syst) at $\\sqrt{S_{NN}}=130$ GeV. This high value suggests that an almost baryon-free region has been produced in the collisions.

  15. NA48: Wiring up for Change

    CERN Multimedia

    2001-01-01

    The NA48 Collaboration is rebuilding its drift chambers ready for the experiment to start up again this coming July. An intricate task involving the soldering of over 24,000 wires! The future of the NA48 experiment is coming right down to the wire, that is, the wires which the Collaboration is installing in the clean room of Hall 887 on the Prévessin site. Six days a week, technicians are working in shifts to rebuild the experiment's drift chambers. The original chambers were damaged when a section of a vacuum tube imploded at the end of 1999. A year ago, CERN gave the green light for this essential part of the spectrometer to be rebuilt, so the NA48 experiment, which studies CP violation (see box), still has a bright future ahead of it. Three years of data-taking ahead The NA48 experiment aims to penetrate the secrets of CP (Charge Parity) violation. Charge and parity are two parameters which distinguish a particle from an antiparticle. In other words, an electron possesses a negative electric ...

  16. Probing the non-locality of Majorana fermions via quantum correlations

    Science.gov (United States)

    Li, Jun; Yu, Ting; Lin, Hai-Qing; You, J. Q.

    2014-05-01

    Majorana fermions (MFs) are exotic particles that are their own anti-particles. Recently, the search for the MFs occurring as quasi-particle excitations in solid-state systems has attracted widespread interest, because of their fundamental importance in fundamental physics and potential applications in topological quantum computation based on solid-state devices. Here we study the quantum correlations between two spatially separate quantum dots induced by a pair of MFs emerging at the two ends of a semiconductor nanowire, in order to develop a new method for probing the MFs. We find that without the tunnel coupling between these paired MFs, quantum entanglement cannot be induced from an unentangled (i.e., product) state, but quantum discord is observed due to the intrinsic nonlocal correlations of the paired MFs. This finding reveals that quantum discord can indeed demonstrate the intrinsic non-locality of the MFs formed in the nanowire. Also, quantum discord can be employed to discriminate the MFs from the regular fermions. Furthermore, we propose an experimental setup to measure the onset of quantum discord due to the nonlocal correlations. Our approach provides a new, and experimentally accessible, method to study the Majorana bound states by probing their intrinsic non-locality signature.

  17. Search for pair production of heavy top-like quarks decaying to a high-$p_T$ W boson and a b quark in the lepton plus jets final state at $\\sqrt{s}$=7 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet

    2013-01-01

    A search is presented for production of a heavy up-type quark (t') together with its antiparticle, assuming a significant branching ratio for subsequent decay into a W boson and a b quark. The search is based on 4.7 fb$^{-1}$ of pp collisions at $\\sqrt{s}$=7 TeV recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. Data are analyzed in the lepton+jets final state, characterized by a high-transverse-momentum isolated electron or muon, large missing transverse momentum and at least three jets. The analysis strategy relies on the substantial boost of the W bosons in the t't'bar signal when mt'>=400 GeV. No significant excess of events above the Standard Model expectation is observed and the result of the search is interpreted in the context of fourth-generation and vector-like quark models. Under the assumption of a branching ratio BR(t'->Wb)=1, a fourth-generation t' quark with mass lower than 656 GeV is excluded at 95% confidence level. In addition, in light of the recent discovery of a n...

  18. Production of doubly heavy-flavored hadrons at e+e- colliders

    Science.gov (United States)

    Zheng, Xu-Chang; Chang, Chao-Hsi; Pan, Zan

    2016-02-01

    Production of the doubly heavy-flavored hadrons (Bc meson, doubly heavy baryons Ξc c , Ξb c , Ξb b , their excited states, and antiparticles of them as well) at e+e- colliders is investigated under two different approaches: LO (leading-order QCD complete calculation) and LL (leading-logarithm fragmentation calculation). The results for the production obtained by the LO and LL approaches, including the angle distributions of the produced hadrons with unpolarized and polarized incoming beams, the behaviors on the energy fraction of the produced doubly heavy-flavored hadron, and comparisons of results between the two approaches, are presented in tables and figures. Thus, characteristics of the production and uncertainties of the approaches are shown precisely, and it is concluded that only if the colliders run at the energies around the Z pole (which may be called the Z factories) and the luminosity of the colliders is as high as possible is the study of the doubly heavy-flavored hadrons completely accessible.

  19. Chiral magnetic effect in ZrTe5

    Science.gov (United States)

    Li, Qiang; Kharzeev, Dmitri E.; Zhang, Cheng; Huang, Yuan; Pletikosić, I.; Fedorov, A. V.; Zhong, R. D.; Schneeloch, J. A.; Gu, G. D.; Valla, T.

    2016-06-01

    The chiral magnetic effect is the generation of an electric current induced by chirality imbalance in the presence of a magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions (massless spin 1/2 particles with a definite projection of spin on momentum)--a remarkable phenomenon arising from a collective motion of particles and antiparticles in the Dirac sea. The recent discovery of Dirac semimetals with chiral quasiparticles opens a fascinating possibility to study this phenomenon in condensed matter experiments. Here we report on the measurement of magnetotransport in zirconium pentatelluride, ZrTe5, that provides strong evidence for the chiral magnetic effect. Our angle-resolved photoemission spectroscopy experiments show that this material’s electronic structure is consistent with a three-dimensional Dirac semimetal. We observe a large negative magnetoresistance when the magnetic field is parallel with the current. The measured quadratic field dependence of the magnetoconductance is a clear indication of the chiral magnetic effect. The observed phenomenon stems from the effective transmutation of a Dirac semimetal into a Weyl semimetal induced by parallel electric and magnetic fields that represent a topologically non-trivial gauge field background. We expect that the chiral magnetic effect may emerge in a wide class of materials that are near the transition between the trivial and topological insulators.

  20. Theoretical high energy physics: Progress report for the period May 1, 1986-April 30, 1987

    International Nuclear Information System (INIS)

    Work is reported in the area of implementing QCD with dynamical fermions on a lattice parallel processor. Work on lattice gauge theory is reported, particularly the construction and use of high speed parallel computers for the Monte Carlo simulation of lattice quantum chromodynamics. Other work includes research on the long-range forces that arise from multi-photon exchange between diverse systems, and particle-antiparticle oscillations. Also reported is work on composite-Higgs models, composite fermion models, calculating corrections propagators in near-constant background fields, and calculating gluon scattering amplitudes using techniques derived from string theory. Soliton stars, black holes, and Hawking radiation were studied. An analytic expression was found for an inclusive two minijet cross section at collider energies in QCD. The very early stage of an ultra-relativistic heavy ion collision was studied. Research on glueball masses in QCD, the first Chern number of the normal bundle of work surface of a string, and computation of the rate of baryogenesis via processes involving homotopically nontrivial paths on configuration space is also reported. Problems arising from the application of high energy physics to the study of cosmology are also studied

  1. Lepton-Flavored Asymmetric Dark Matter and Interference in Direct Detection

    CERN Document Server

    Hamze, Ali; Koeller, Jason; Trendafilova, Cynthia; Yu, Jiang-Hao

    2014-01-01

    In flavored dark matter models, dark matter can scatter off of nuclei through Higgs and photon exchange, both of which can arise from renormalizable interactions and individually lead to strong constraints from direct detection. While these two interaction channels can destructively interfere in the scattering amplitude, for a thermal relic with equal abundances for the dark matter particle and its antiparticle, this produces no effect on the total event rate. Focusing on lepton-flavored dark matter, we show that it is quite natural for dark matter to have become asymmetric during high-scale leptogenesis, and that in this case the direct detection bounds can be significantly weakened due to interference. We quantify this by mapping out and comparing the regions of parameter space that are excluded by direct detection for the symmetric and asymmetric cases of lepton-flavored dark matter. In particular, we show that the entire parameter region is ruled out for symmetric dark matter, while large portions of para...

  2. A Measurement of Atomic X-ray Yields in Exotic Atoms and Implications for an Antideuteron-Based Dark Matter Search

    CERN Document Server

    Aramaki, T; Craig, W W; Fabris, L; Gahbauer, F; Hailey, C J; Koglin, J E; Madden, N; Mori, K; Yu, H T; Ziock, K P

    2013-01-01

    The General AntiParticle Spectrometer (GAPS) is a novel approach for indirect dark matter searches that exploits cosmic antideuterons. GAPS utilizes a distinctive detection method using atomic X-rays and charged particles from the exotic atom as well as the timing, stopping range and dE/dX energy deposit of the incoming particle, which provides excellent antideuteron identification. Prior to the future balloon experiment, an accelerator test was conducted in 2004 and 2005 at KEK, Japan, in order to precisely measure the X-ray yields of antiprotonic exotic atoms formed with different target materials. The X-ray yields of the exotic atoms with Al and S targets were obtained as $\\sim$ 75%, which are higher than were previously assumed in. A simple, but comprehensive cascade model has been developed not only to evaluate the measurement results but also to predict the X-ray yields of the exotic atoms formed with any materials in the GAPS instrument. The cascade model is extendable to any kind of exotic atom (any n...

  3. Multi-strange baryon production in pp collisions at √(s)=7 TeV with ALICE

    International Nuclear Information System (INIS)

    A measurement of the multi-strange Ξ- and Ω- baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for inelastic proton-proton collisions at a centre-of-mass energy of 7 TeV. The transverse momentum (pT) distributions were studied at mid-rapidity (|y|T- and Ξ¯+ baryons, and in the range of 0.8T- and Ω¯+. Baryons and antibaryons were measured as separate particles and we find that the baryon to antibaryon ratio of both particle species is consistent with unity over the entire range of the measurement. The statistical precision of the current data has allowed us to measure a difference between the mean pT of Ξ- (Ξ¯+) and Ω- (Ω¯+). Particle yields, mean pT, and the spectra in the intermediate pT range are not well described by the PYTHIA Perugia 2011 tune Monte Carlo event generator, which has been tuned to reproduce the early LHC data. The discrepancy is largest for Ω-(Ω¯+). This PYTHIA tune approaches the pT spectra of Ξ- and Ξ¯+ baryons below pT- and Ξ¯+ spectra above pT>6.0 GeV/c. We also illustrate the difference between the experimental data and model by comparing the corresponding ratios of (Ω-+Ω¯+)/(Ξ-+Ξ¯+) as a function of transverse mass.

  4. Status and Results from the EXO Collaboration

    Directory of Open Access Journals (Sweden)

    Albert Joshua

    2014-03-01

    Full Text Available The Enriched Xenon Observatory (EXO is an experimental program searching for neutrinoless double-beta decay using 136Xe. Such a search can shed light on the Majorana nature of the neutrino (whether the neutrino is its own anti-particle, the absolute mass scale of neutrinos, and beyond standard model processes that violate lepton number conservation. The first phase of the experiment, EXO-200, uses 200 kg of xenon with 80% enrichment in 136Xe in a single-phase liquid xenon time projection chamber (TPC. The double-beta decay of xenon is detected in the ultra-low background TPC by collecting both the scintillation light and the ionization charge. The detector has been taking low background physics data with enriched xenon at the Waste Isolation Pilot Plant (WIPP in New Mexico since early May 2011. The results produced from the collaboration include the first observation of two-neutrino double-beta decay of 136Xe, and a neutrinoless double-beta decay search result that places one of the most stringent limits on the effective Majorana neutrino mass. Building on the success of EXO-200, the collaboration is performing feasibility studies and R&D work for a future multi-tonne scale experiment named nEXO. During the talk, I will discuss the latest results from EXO-200 and prospects of neutrinoless double-beta decay search with both EXO-200 and nEXO.

  5. Cumulants of net-proton, net-kaon, and net-charge multiplicity distributions in Au + Au collisions at √{sN N}=7.7 , 11.5, 19.6, 27, 39, 62.4, and 200 GeV within the UrQMD model

    Science.gov (United States)

    Xu, Ji; Yu, Shili; Liu, Feng; Luo, Xiaofeng

    2016-08-01

    Fluctuations of conserved quantities are sensitive observables to probe the signature of QCD phase transition and critical point in heavy-ion collisions. With the UrQMD model, we have studied the centrality and energy dependence of various order cumulants and cumulant ratios (up to fourth order) of net-proton, net-charge, and net-kaon multiplicity distributions in Au+Au collisions at √{sN N}=7.7 , 11.5, 19.6, 27, 39, 62.4, 200 GeV. The model results show that the production mechanism of the particles and antiparticles has significant impact on the cumulants of net-particles multiplicity distributions and shows strong energy dependence. We also made comparisons between model calculations and experimental data measured in the first phase of the beam energy scan (BES) program by the STAR experiment at the BNL Relativistic Heavy Ion Collider. The comparisons indicate that the baryon conservation effect strongly suppresses the cumulants of net-proton distributions at low energies and the nonmonotonic energy dependence for the net-proton κ σ2 at the most central Au+Au collisions measured by the STAR experiment cannot be described by the UrQMD model. Since there has been no physics of QCD phase transition and QCD critical point implemented in the UrQMD, the model results provide us baselines and qualitative estimates about the noncritical background contributions to the fluctuations observables in heavy-ion collisions.

  6. A word from Lyn Evans:
    A sprint to the finish

    CERN Multimedia

    2008-01-01

    Most people consider that the starting point for the LHC was a meeting organised by the European Committee for Future Accelerators in Lausanne in March 1984, even though quite a few of us at CERN had already begun work on the design in 1981. Since that time this truly unique machine has moved from a dream to a reality. With its ‘two in one’ magnet structure cooled by superfluid helium for operation at 1.9 K, the LHC is like no other particle collider. In a very real sense, the LHC is its own prototype. Other colliders have either consisted of two rings to accelerate and store two beams of particles, as in the Intersecting Storage Rings (ISR) here at CERN, or they have stored particles and their antiparticles travelling in opposite directions with a single ring, as we did with the Large Electron-Positron (LEP) collider. In addition, the LHC is the first accelerator in which the superconducting magnets have been cooled as low as 1...

  7. Supplemental figure: Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at $\\mathbf{\\sqrt{{\\textit s}_{\\rm NN}}}$ = 2.76 TeV

    CERN Document Server

    2015-01-01

    This note provides a supplemental figure for data on ``Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions $\\mathbf{\\sqrt{{\\textit s}_{\\rm NN}}}$ = 2.76~TeV" published in \\href{http://www.sciencedirect.com/science/article/pii/S037026931300004X}{Phys.\\ Lett.\\ B {\\bf 719}, 18 (2013)}, \\href{http://arxiv.org/abs/1205.5761}{arXiv:1205.5761}. The figure~(\\ref{fig:v2_pid}) presents the $v_2$ of charged pions and protons (particles and anti-particles are not distinguished in this analysis) from the event plane method as a function of transverse momentum for different centrality classes as reported in Fig. 5 of the \\href{http://www.sciencedirect.com/science/article/pii/S037026931300004X}{publication}. The proton $v_2$ is higher than that of pions out to $\\pt=8$~GeV/$c$ where the uncertainties become large.

  8. Measurement of the lifetime difference and cp-violating phase in B_s -> J/psi phi decays

    Energy Technology Data Exchange (ETDEWEB)

    Milnik, Michael; /Karlsruhe U., EKP

    2007-11-01

    Over the past decades the current theoretical description, the Standard Model of elementary particle physics, was solidified by many measurements as the basic theory describing fundamental particles and their interactions. It is extremely successful in explaining the high-precision data collected by experiments so far. The Standard Model includes several intrinsic parameters which have to be measured in experiments. Independent analyses of different physical processes can constrain those parameters. By combining those measurements physicists might be sensitive to physics beyond the Standard Model. If they are inconsistent it allows to get a hint on the theory that might supersede the Standard Model. The goal of the analysis presented in this thesis is to measure some of these parameters in the B{sub s} meson system. The B{sub s} meson, consisting of an anti-b and s quark, is not a pure mass eigenstate, thus allowing a B{sub s} meson to oscillate into its antiparticle via weak interacting processes. This is a general feature of any neutral meson. The history of meson mixing measurements is more then 50 years old. It was first observed in the kaon system. The oscillation in the B{sub d} system was measured very precisely by the B factories, whereas the oscillation frequency of the B{sub s} was measured with more than 5{sigma} significance last year by CDF and first evidence for mixing in the D0 system was presented only this year.

  9. Measurement of CP violation in B0→J/ψK0S decays with the LHCb experiment

    International Nuclear Information System (INIS)

    This thesis presents the LHCb measurement of CP violation in decays of neutral B0 mesons and their anti-particles into the J/ψK0S final state. The interference of the B0- anti B0 mixing with the decay into the common final state leads to a decay time dependent decay rate asymmetry between B0 and anti B0 mesons. The CP observables, SJ/ψK0S and CJ/ψK0S, allow for a determination of the CKM angle β, which is one of the most precisely measured CP parameters of the Standard Model. Thus, B0→J/ψK0S represents an excellent reference channel for decay time dependent CP measurements at LHCb. The analysis is performed with a dataset that corresponds to 1 fb-1 of pp collisions collected at a centre-of-mass energy of 7 TeV by the LHCb experiment at CERN. Using an unbinned maximum likelihood fit, the CP observables are measured as SJψK0S=0.73±0.07(stat.)±0.04(syst.) and CJ/ψK0S=0.03±0.09(stat.)±0.01(syst.), leading to the world's best measurement of these observables at a hadron collider. Furthermore, these results are consistent with the averages of previous measurements and within expectations from the Standard Model.

  10. Université de Genève | Séminaire de physique corpusculaire | 8 May

    CERN Multimedia

    2013-01-01

    The PAMELA mission: more than six years of Cosmic Rays investigation, Dr Francesco Cafagna, Bari University and INFN.   Wednesday 8 May, 11:15 am Science III, Auditoire 1S081 30, quai Ernest-Ansermet, 1211 Genève 4 Abstract: The PAMELA mission major scientific objective is the measurements of Cosmic Rays energy spectra, with special focus on the antiparticles, i.e. antiprotons and positrons, ones. The PAMELA apparatus is a satellite borne magnetic spectrometer and comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, and shower tail catcher scintillator. It has been more than six years that the PAMELA mission is taking data in space, on board of the russian satellite Resurs-DK. Important results have been obtained on the positron and antiproton abundance and spectra. Moreover new results have been obtained on the composition of the charged cosmic radiation that challenge our current und...

  11. On the Time Dependence of Adiabatic Particle Number

    CERN Document Server

    Dabrowski, Robert

    2016-01-01

    We consider quantum field theoretic systems subject to a time-dependent perturbation, and discuss the question of defining a time dependent particle number not just at asymptotic early and late times, but also during the perturbation. Naively, this is not a well-defined notion for such a non-equilibrium process, as the particle number at intermediate times depends on a basis choice of reference states with respect to which particles and anti-particles are defined, even though the final late-time particle number is independent of this basis choice. The basis choice is associated with a particular truncation of the adiabatic expansion. The adiabatic expansion is divergent, and we show that if this divergent expansion is truncated at its optimal order, a universal time dependence is obtained, confirming a general result of Dingle and Berry. This optimally truncated particle number provides a clear picture of quantum interference effects for perturbations with non-trivial temporal sub-structure. We illustrate the...

  12. Energy Band Model Based on Effective Mass Approximation

    CERN Document Server

    Ariel, Viktor

    2012-01-01

    In this work, we demonstrate an alternative method of deriving the energy band model using a definition of the effective mass and experimentally observed dependence of mass on energy. We use the model of the particle effective mass and extend it to anti-particles and particles with zero rest mass. As an example, we assume an often observed linear dependence of mass on energy and derive a generalized non-parabolic energy-momentum relation. The resulting non-parabolicity leads to velocity saturation at high particle energies. We apply the energy band model to free relativistic particles and carriers in solid state materials and obtain commonly used dispersion relations and experimentally confirmed effective masses. We apply the model to zero rest mass particles in graphene and propose using the definition of the effective mass for photons. Therefore, it appears that the new energy band model based on the effective mass approximation can be applied to the description of relativistic particles and carriers in sol...

  13. The development of primordial black holes and a possibility of the black-holes dominant era

    International Nuclear Information System (INIS)

    The equation, describing primordial black-holes (PBH) with small masses in a media with high density and temperature is suggested. Its solution for a single PBH-mass in an early stage of the universe is increasing when the temperature of the media is greater than PBH-temperature, and then descreasing due to the Hawking evaporation. The case of a great number of PBH with equal and extremely large masses is examined. We suggest that the evaporation process is symmetric with respect to particle-antiparticle creation and mainly baryons existed in the very beginning of the universe. Only one parameter zeta = N0 (2PI0)sup(-3/2) (where N0 is the PBH number in a3 volume and PI0 = d(a2/2)/dt| sub(t→0)) describes all the functions of time: PBH-mass m(t), the PBH average energy density, the rate of the cosmic expansion and the ratio of baryons to radiation densities α(t). Case of zeta -8 that only small PBH with maximum masses of order of 102 gr were existing and they died before t sub(fin) -- 10-23 s. The process of collision of black holes is hot studied here. Case of any other PBH-masses destribution only decreases the values of m sub(max) and t sub(fin) if the final baryon-radiation ratio is fixed. (auth.)

  14. Spinor Structure and Internal Symmetries

    Science.gov (United States)

    Varlamov, V. V.

    2015-10-01

    Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.

  15. Study of multi-strange baryon production with ALICE at the LHC energies

    CERN Document Server

    Colella, Domenico

    This thesis reports on the measurement of the multi-strange baryon production in lead-lead (Pb-Pb) and proton-proton (pp) collisions at the centre-of-mass energy of 2.76 TeV per nucleon pair using the ALICE detector. The cascade identification technique, based on the topological reconstruction of weak decays into charged particles only is very effective thanks to the excellent particle identification and tracking capability of the ALICE central barrel detectors. The comparison of the transverse momentum (p$_T$) spectra for the $\\Xi^{-}$ and $\\Omega^{-}$ (and corresponding anti-particle) in Pb-Pb collisions with expectations from recent hydro models confirms the importance of an hydrodynamical approach in the description of the created system evolution. In addition, recent PYTHIA tunes results to underestimate the yields for the cascades in pp collisions. The measurements of the strangeness enhancement, one of the predicted signatures of the QGP formation, for the $\\Xi$ and $\\Omega$ at the LHC energy have been...

  16. High-precision comparison of the antiproton-to-proton charge-to-mass ratio

    CERN Document Server

    Ulmer, S; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-01-01

    Invariance under the charge, parity, time-reversal (CPT) transformation$^{1}$ is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry—that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime—although it is model dependent$^{2}$. A number of high-precision CPT and Lorentz invariance tests—using a co-magnetometer, a torsion pendulum and a maser, among others—have been performed$^{3}$, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available$^{4, 5, 6, 7, 8}$. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H$^−$) carried out in a Penning trap system. From 13,000 frequency measurements we compare th...

  17. ALICE’s wonderland reveals the heaviest antimatter ever observed

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Producing and observing antiparticles is part of everyday life for many physics laboratories around the world, including CERN. However, recreating and observing the anti-nuclei of complex atoms is a much more difficult task. Analysing data collected in a run of just one month, ALICE has recently found evidence of the formation of four anti-nuclei of Helium 4, the heaviest antimatter ever created in a laboratory.   The STAR experiment at RHIC came first and published the result in March: they presented evidence of 18 anti-nuclei of Helium 4 collected over several years of data taking. “ALICE came second but it's amazing to see how fast the results came,” exclaims Paolo Giubellino, the experiment’s spokesperson. “We were able to confirm the observation of 4He anti-nuclei with data collected in November 2010.” Scientists agree on the fact that antimatter was created in the Big Bang together with matter. However, today we do not observe antimatter outsid...

  18. Scientific and educational programs. Annual report, 1980-1982

    International Nuclear Information System (INIS)

    It is possible to construct models in which all of the known baryons and mesons are bound states of five quarks and their antiparticles. Yet, despite intensive searches, present evidence is that these constituents are rarely, if ever, to be found freely in nature. Research in the physics laboratory is principally directed toward experiments which can provide new data relevant to a clearer understanding of this fundamental puzzle. Evidence from this laboratory and from others strongly supports a new theory of the forces which bind the quarks to form the observed hadrons and mesons; the theory is usually called Quantum Chromodynamics (QCD). The quantum of this force is called the gluon. This theory now forms the conceptual framework which we are testing by experiment. The experiments which are carried out make use of appropriate high energy accelerator facilities in the United States and in Europe. The design, construction and testing of detection apparatus, as well as the analysis of the data, are carried out in the University laboratory. Close liaison with the high energy theoretical laboratory is maintained through seminars and personal consultation. These research programs are reported

  19. Search for Violations of Lorentz Invariance and C P T Symmetry in B(s) 0 Mixing

    Science.gov (United States)

    Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hongming, L.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusardi, N.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Niess, V.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valat, S.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhong, L.; Zhukov, V.; Zucchelli, S.; LHCb Collaboration

    2016-06-01

    Violations of C P T symmetry and Lorentz invariance are searched for by studying interference effects in B0 mixing and in Bs0 mixing. Samples of B0→J /ψ KS0 and Bs0→J /ψ K+K- decays are recorded by the LHCb detector in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb-1 . No periodic variations of the particle-antiparticle mass differences are found, consistent with Lorentz invariance and C P T symmetry. Results are expressed in terms of the standard model extension parameter Δ aμ with precisions of O (10-15) and O (10-14) GeV for the B0 and Bs0 systems, respectively. With no assumption on Lorentz (non)invariance, the C P T -violating parameter z in the Bs0 system is measured for the first time and found to be R e (z ) =-0.022 ±0.033 ±0.005 and I m (z ) =0.004 ±0.011 ±0.002 , where the first uncertainties are statistical and the second systematic.

  20. Compact directed percolation with movable partial reflectors

    Science.gov (United States)

    Dickman, Ronald; ben-Avraham, Daniel

    2002-09-01

    We study a version of compact directed percolation (CDP) in one dimension in which occupation of a site for the first time requires that a 'mine' or an antiparticle be eliminated. This process is analogous to the variant of directed percolation with a long-time memory, proposed by Grassberger et al (1997 Phys. Rev. E 55 2488) in order to understand spreading at a critical point involving an infinite number of absorbing configurations. The problem is equivalent to that of a pair of random walkers in the presence of movable partial reflectors. The walkers, which are unbiased, start one lattice spacing apart and annihilate on their first contact. Each time one of the walkers tries to visit a new site, it is reflected (with probability r) back to its previous position, while the reflector is simultaneously pushed one step away from the walker. Iteration of the discrete-time evolution equation for the probability distribution yields the survival probability S(t). We find that S(t) ~ t-δ, with δ varying continuously between 1/2 and 1.160 as the reflection probability varies between 0 and 1.

  1. Towards Nuclear Physics of OHe Dark Matter

    CERN Document Server

    Khlopov, Maxim Yu; Soldatov, Evgeny Yu

    2011-01-01

    The nonbaryonic dark matter of the Universe can consist of new stable charged particles, bound in heavy "atoms" by ordinary Coulomb interaction. If stable particles $O^{--}$ with charge -2 are in excess over their antiparticles (with charge +2), the primordial helium, formed in Big Bang Nucleosynthesis, captures all $O^{--}$ in neutral "atoms" of O-helium (OHe). Interaction with nuclei plays crucial role in the cosmological evolution of OHe and in the effects of these dark atoms as nuclear interacting dark matter. Slowed down in terrestrial matter OHe atoms cause negligible effects of nuclear recoil in underground detectors, but can experience radiative capture by nuclei. Local concentration of OHe in the matter of detectors is rapidly adjusted to the incoming flux of cosmic OHe and possess annual modulation due to Earth's orbital motion around the Sun. The potential of OHe-nucleus interaction is determined by polarization of OHe by the Coulomb and nuclear force of the approaching nucleus. Stark-like effect b...

  2. The nucleon-nucleon interaction in the framework of the boson exchange model

    International Nuclear Information System (INIS)

    The aim of this thesis was the description of the nucleon-nucleon interaction in a microscopically founded model. For this the description of the 2-nucleon problem by an interacting 2-nucleon-pion system was presented. The starting point of our description was a relativistic eigenvalue equation for the system of mesons and two baryons. The interaction of the baryons with the mesons was described by interaction Hamiltonians. By the elimination of antinucleon states by means of a unitary tansformation (Foldy-Wouthuysen transformation) the interaction Hamiltonians for nucleons could be generated for the field-theoretical Lagrangian densities. The Hamiltonians for resonant baryon states were obtained by means of a simplified procedure from the corresponding Lagrangian densities. Because the determination of Lagrangian densities is not unique, for the pion-nucleon coupling two alternative Lagrangian densities were allowed. For the interaction of positive-energy nucleonic states these two coupling yield nearly equal results; the production or annihilation of negative-energy nucleon states (antiparticles) the predictions however are very different. (orig./HSI)

  3. Are electrons oscillating photons, oscillating "vacuum," or something else? The 2015 panel discussion

    Science.gov (United States)

    Akins, Charles G.; Gauthier, Richard; Kracklauer, A. F.; Macken, John A.; Meulenberg, Andrew; Rangacharyulu, Chary; Roychoudhuri, Chandrasekhar; van der Mark, Martin B.; Williamson, John G.

    2015-09-01

    Platform: What physical attributes separate EM waves, of the enormous band of radio to visible to x-ray, from the high energy narrow band of gamma-ray? From radio to visible to x-ray, telescopes are designed based upon the optical imaging theory; which is an extension of the Huygens-Fresnel diffraction integral. Do we understand the physical properties of gamma rays that defy us to manipulate them similarly? One demonstrated unique property of gamma rays is that they can be converted to elementary particles (electron and positron pair); or a particle-antiparticle pair can be converted into gamma rays. Thus, EM waves and elementary particles, being inter-convertible; we cannot expect to understand the deeper nature of light without succeeding to find structural inter-relationship between photons and particles. This topic is directly relevant to develop a deeper understanding of the nature of light; which will, in turn, help our engineers to invent better optical instruments.

  4. The BALLOON-borne and PAMELA experiments for the study of the antimatter component in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Spillantini, Piero E-mail: piero.spillantini@fi.infn.it

    2004-01-01

    The PAMELA experiment is based on a satellite-borne equipment actually in the final integration phase. It will be installed on board of the Russian satellite Resurs DK1 and launched in a quasi-polar orbit from the Baikonur cosmodrom at the beginning of next year. PAMELA will measure the antiproton and positron fluxes in cosmic rays with high statistics and in a large energy range (80 MeV-190 GeV for antiprotons and 50 MeV-270 GeV for positrons), extending to never investigated energies the measurements of several balloon borne experiments performed by the same PAMELA collaboration in last decade. This will make achievable sensitive tests of cosmic ray propagation models in the Galaxy and the search, in an energy range never investigated before, of possible structures in the fluxes. These structures, related to the presence of primary antiparticle sources, could be signals of 'new physics', connected with open problems like dark matter existence and matter/antimatter symmetry in the Universe. The detector consists of a very precise magnetic spectrometer, several scintillation counter hodoscopes to measure the energy losses and times of flight, and a high granularity and deep Si-W calorimeter, augmented by a very compact transition radiation detector and a He3 neutron detector hodoscope, and protected around and on the top by an anticoincidence system.

  5. Inclusive search for a vector-like T quark with charge 2/3 in pp collisions at $\\sqrt{s}$=8 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Kim, Tae Jeong; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Tikvica, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Florent, Alice; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Geiser, Achim; Grebenyuk, Anastasia; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Krämer, Mira; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Stein, Matthias; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Enderle, Holger; Erfle, Joachim; Garutti, Erika; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Goebel, Kristin; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hartmann, Frank; Hauth, Thomas; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Martschei, Daniel; Mozer, Matthias Ulrich; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Ntomari, Eleni; Topsis-giotis, Iasonas; Gouskos, Loukas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Mittal, Monika; Nishu, Nishu; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Saxena, Pooja; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Singh, Anil; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Musenich, Riccardo; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Triossi, Andrea; Vanini, Sara; Ventura, Sandro; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kim, Tae Yeon; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Karavakis, Edward; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Reece, William; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Ronga, Frederic Jean; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tauscher, Ludwig; Theofilatos, Konstantinos; Treille, Daniel; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Chiochia, Vincenzo; De Cosa, Annapaola; Favaro, Carlotta; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Wilken, Rachel; Asavapibhop, Burin; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Karapinar, Guler; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Ilic, Jelena; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Miceli, Tia; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Schlein, Peter; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Shrinivas, Amithabh; Sturdy, Jared; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Kovalskyi, Dmytro; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Campagnari, Claudio; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Kcira, Dorian; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Ratnikova, Natalia; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Cremaldi, Lucien Marcus; Kroeger, Rob; Oliveros, Sandra; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Wan, Zongru; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H

    2014-01-01

    A search is performed for a massive new vector-like quark T, with charge 2/3, that is pair produced together with its antiparticle in proton-proton collisions. The data were collected by the CMS experiment at the Large Hadron Collider in 2012 at sqrt(s) = 8 TeV and correspond to an integrated luminosity of 19.5 inverse femtobarns. The T quark is assumed to decay into three different final states, bW, tZ, and tH. The search is carried out using events with at least one isolated lepton. No deviations from standard model expectations are observed, and lower limits are set on the T quark mass at 95% confidence level. The lower limit lies between 687 and 782 GeV for all possible values of the branching fractions into the three different final states assuming strong production. These limits are the most stringent constraints to date on the existence of such a quark.

  6. Asymmetric capture of Dirac dark matter by the Sun

    International Nuclear Information System (INIS)

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models

  7. Complexity in quantum field theory and physics beyond the standard model

    International Nuclear Information System (INIS)

    Complex quantum field theory (abbreviated c-QFT) is introduced in this paper as an alternative framework for the description of physics beyond the energy range of the standard model. The mathematics of c-QFT is based on fractal differential operators that generalize the momentum operators of conventional quantum field theory (QFT). The underlying premise of our approach is that c-QFT contains the right analytical tools for dealing with the asymptotic regime of QFT. Canonical quantization of c-QFT leads to the following findings: (i) the Fock space of c-QFT includes fractional numbers of particles and antiparticles per state (ii) c-QFT represents a generalization of topological field theory and (iii) classical limit of c-QFT is equivalent to field theory in curved space-time. The first finding provides a field-theoretic motivation for the transfinite discretization approach of El-Naschie's ε (∞) theory. The second and third findings suggest the dynamic unification of boson and fermion fields as particles with fractional spin, as well as the close connection between spin and space-time topology beyond the conventional physics of the standard model

  8. Big Bang Day: 5 Particles - 2. The Quark

    CERN Multimedia

    Franck Close

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 2. The Quark "Three Quarks for Master Mark! Sure he hasn't got much of a bark." James Joyce's Finnegans Wake left its mark on modern physics when physicist Murray Gell Mann proposed this name for a group of hypothetical subatomic particles that were revealed in 1960 as the fundamental units of matter. Basic particles it seems are made up of even more basic units called quarks that make up 99.9% of visible material in the universe.. But why do we know so little about them? Quarks have never been seen as free particles but instead, inextricably bound together by the Strong Force that in turn holds the atomic nucleus together. This is the hardest of Nature's fundamental forces to crack, but recent theoretical advances, mean that the properties of the quark are at last being revealed.

  9. Decoherence, determinism and chaos

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1994-01-01

    The author claims by now to have made his case that modern work on fractals and chaos theory has already removed the presumption that classical physics is `deterministic`. Further, he claims that in so far as classical relativistic field theory (i.e. electromagnetism and gravitation) are scale invariant, they are self-consistent only if the idea of `test-particle` is introduced from outside the theory. Einstein spent the last years of his life trying to use singularities in the metric as `particles` or to get them out of the non-linearities in a grand unified theory -- in vain. So classical physics in this sense cannot be the fundamental theory. However, the author claims to have shown that if he introduces a `scale invariance bounded from below` by measurement accuracy, then Tanimura`s generalization of the Feynman proof as reconstructed by Dyson allows him to make a consistent classical theory for decoherent sources sinks. Restoring coherence to classical physics via relativistic action-at-a distance is left as a task for the future. Relativistic quantum mechanics, properly reconstructed from a finite and discrete basis, emerges in much better shape. The concept of `particles has to be replaced by NO-YES particulate events, and particle-antiparticle pair creation and annihilation properly formulated.

  10. Neutron-Induced Partial Cross-Section Measurements on ^76Ge Motivated by The Majorana Project 0νββ Decay Search

    Science.gov (United States)

    Hilderbrand, S.; Kwan, E.; Angell, C.; Fallin, B.; Howell, C. R.; Hutcheson, A.; Karwowski, H. J.; Kelley, J. H.; Tonchev, A. P.; Tornow, W.; Masters, D. B.; Pedroni, R. S.; Weisel, G. J.

    2007-10-01

    The goal of the Majorana Collaboration is to study 0νββ in order to verify that the neutrino is its own anti-particle; and if so, what is the mass ofthe electron neutrino. Observation of a sharp peak at the ββ endpoint energy will confirm 0νββ as a decay mode, and determination of the partial width will determine the matrix element which depends directly on the electron neutrino mass. In order to observe and verify the existence of 0νββ, it is important to reduce intrinsic, extrinsic,& cosmogenic backgrounds. The Majorana Project will operate with HPGe detectors deep underground to achieve a low-background environment. Recent advances in signal processing and detector design have also enabled scientists to further understand background sources. γ-ray spectra from the interaction of pulsed mono-energetic neutrons with ^76Ge were measured at TUNL using segmented HPGe clover detectors. The neutron-induced pa