WorldWideScience

Sample records for antiparasitic peptide active

  1. Antiparasitic activity of the microalgae Cladophora crispata against ...

    African Journals Online (AJOL)

    ... albendazole activity, related to reduction in the number and weight of hydatid cyst as well as the obstruction of germinated layer which is responsible for proliferation of protoscolices. Keywords: Algae, Cladophora crispata, bioactive chemical compounds, antiparasitic activity, hydatid cysts. African Journal of Biotechnology ...

  2. Antiparasitic Activity of Sulfur- and Fluorine-Containing Bisphosphonates against Trypanosomatids and Apicomplexan Parasites

    Directory of Open Access Journals (Sweden)

    Tamila Galaka

    2017-01-01

    Full Text Available Based on crystallographic data of the complexes 2-alkyl(aminoethyl-1,1-bisphosphonates–Trypanosoma cruzi farnesyl diphosphate synthase, some linear 1,1-bisphosphonic acids and other closely related derivatives were designed, synthesized and biologically evaluated against T. cruzi, the responsible agent of Chagas disease and against Toxoplasma gondii, the etiologic agent of toxoplasmosis and also towards the target enzymes farnesyl pyrophosphate synthase of T. cruzi (TcFPPS and T gondii (TgFPPS, respectively. The isoprenoid-containing 1,1-bisphosphonates exhibited modest antiparasitic activity, whereas the linear α-fluoro-2-alkyl(aminoethyl-1,1-bisphosphonates were unexpectedly devoid of antiparasitic activity. In spite of not presenting efficient antiparasitic activity, these data turned out to be very important to establish a structural activity relationship.

  3. Antimicrobial, Anti-Inflammatory, Antiparasitic, and Cytotoxic Activities of Laennecia confusa

    Directory of Open Access Journals (Sweden)

    María G. Martínez Ruiz

    2012-01-01

    Full Text Available The current paper investigated the potential benefit of the traditional Mexican medicinal plant Laennecia confusa (Cronquist G. L. Nesom (Asteraceae. Fractions from the hexane, chloroform, methanol, and aqueous extracts were analyzed for antibacterial, antifungal, anti-inflammatory, and antiparasitic activities. The antimicrobial activity of the extracts and fractions was assessed on bacterial and fungal strains, in addition to the protozoa Leishmania donovani, using a microdilution assay. The propensity of the plant's compounds to produce adverse effects on human health was also evaluated using propidium iodine to identify damage to human macrophages. The anti-inflammatory activity of the extracts and fractions was investigated by measuring the secretion of interleukin-6. Chemical analyses demonstrated the presence of flavonoids, cyanogenic and cardiotonic glycosides, saponins, sesquiterpene lactones, and triterpenes in the chloroform extract. A number of extracts and fractions show antibacterial activity. Of particular interest is antibacterial activity against Staphylococcus aureus and its relative methicillin-resistant strain, MRSA. Hexanic and chloroformic fractions also exhibit antifungal activity and two extracts and the fraction CE 2 antiparasitic activity against Leishmania donovani. All bioactive extracts and fractions assayed were also found to be cytotoxic to macrophages. In addition, the hexane and methane extracts show anti-inflammatory activity by suppressing the secretion of interleukine-6.

  4. Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent.

    Directory of Open Access Journals (Sweden)

    Zahid Raja

    Full Text Available Antimicrobial peptides (AMPs are promising drugs to kill resistant pathogens. In contrast to bacteria, protozoan parasites, such as Leishmania, were little studied. Therefore, the antiparasitic mechanism of AMPs is still unclear. In this study, we sought to get further insight into this mechanism by focusing our attention on temporin-SHa (SHa, a small broad-spectrum AMP previously shown to be active against Leishmania infantum. To improve activity, we designed analogs of SHa and compared the antibacterial and antiparasitic mechanisms. [K3]SHa emerged as a highly potent compound active against a wide range of bacteria, yeasts/fungi, and trypanosomatids (Leishmania and Trypanosoma, with leishmanicidal intramacrophagic activity and efficiency toward antibiotic-resistant strains of S. aureus and antimony-resistant L. infantum. Multipassage resistance selection demonstrated that temporins-SH, particularly [K3]SHa, are not prone to induce resistance in Escherichia coli. Analysis of the mode of action revealed that bacterial and parasite killing occur through a similar membranolytic mechanism involving rapid membrane permeabilization and depolarization. This was confirmed by high-resolution imaging (atomic force microscopy and field emission gun-scanning electron microscopy. Multiple combined techniques (nuclear magnetic resonance, surface plasmon resonance, differential scanning calorimetry allowed us to detail peptide-membrane interactions. [K3]SHa was shown to interact selectively with anionic model membranes with a 4-fold higher affinity (KD = 3 x 10-8 M than SHa. The amphipathic α-helical peptide inserts in-plane in the hydrophobic lipid bilayer and disrupts the acyl chain packing via a detergent-like effect. Interestingly, cellular events, such as mitochondrial membrane depolarization or DNA fragmentation, were observed in L. infantum promastigotes after exposure to SHa and [K3]SHa at concentrations above IC50. Our results indicate that these

  5. Allicin and derivates are cysteine protease inhibitors with antiparasitic activity.

    Science.gov (United States)

    Waag, Thilo; Gelhaus, Christoph; Rath, Jennifer; Stich, August; Leippe, Matthias; Schirmeister, Tanja

    2010-09-15

    Allicin and derivatives thereof inhibit the CAC1 cysteine proteases falcipain 2, rhodesain, cathepsin B and L in the low micromolar range. The structure-activity relationship revealed that only derivatives with primary carbon atom in vicinity to the thiosulfinate sulfur atom attacked by the active-site Cys residue are active against the target enzymes. Some compounds also show potent antiparasitic activity against Plasmodium falciparum and Trypanosoma brucei brucei. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Antiparasitic activity in Asteraceae with special attention to ethnobotanical use by the tribes of Odisha, India

    Science.gov (United States)

    Panda, Sujogya Kumar; Luyten, Walter

    2018-01-01

    The purpose of this review is to survey the antiparasitic plants of the Asteraceae family and their applicability in the treatment of parasites. This review is divided into three major parts: (a) literature on traditional uses of Asteraceae plants for the treatment of parasites; (b) description of the major classes of chemical compounds from Asteraceae and their antiparasitic effects; and (c) antiparasitic activity with special reference to flavonoids and terpenoids. This review provides detailed information on the reported Asteraceae plant extracts found throughout the world and on isolated secondary metabolites that can inhibit protozoan parasites such as Plasmodium, Trypanosoma, Leishmania, and intestinal worms. Additionally, special attention is given to the Asteraceae plants of Odisha, used by the tribes of the area as antiparasitics. These plants are compared to the same plants used traditionally in other regions. Finally, we provide information on which plants identified in Odisha, India and related compounds show promise for the development of new drugs against parasitic diseases. For most of the plants discussed in this review, the active compounds still need to be isolated and tested further. PMID:29528842

  7. Antiparasitic activity in Asteraceae with special attention to ethnobotanical use by the tribes of Odisha, India

    Directory of Open Access Journals (Sweden)

    Panda Sujogya Kumar

    2018-01-01

    Full Text Available The purpose of this review is to survey the antiparasitic plants of the Asteraceae family and their applicability in the treatment of parasites. This review is divided into three major parts: (a literature on traditional uses of Asteraceae plants for the treatment of parasites; (b description of the major classes of chemical compounds from Asteraceae and their antiparasitic effects; and (c antiparasitic activity with special reference to flavonoids and terpenoids. This review provides detailed information on the reported Asteraceae plant extracts found throughout the world and on isolated secondary metabolites that can inhibit protozoan parasites such as Plasmodium, Trypanosoma, Leishmania, and intestinal worms. Additionally, special attention is given to the Asteraceae plants of Odisha, used by the tribes of the area as antiparasitics. These plants are compared to the same plants used traditionally in other regions. Finally, we provide information on which plants identified in Odisha, India and related compounds show promise for the development of new drugs against parasitic diseases. For most of the plants discussed in this review, the active compounds still need to be isolated and tested further.

  8. New alkenyl derivative from Piper malacophyllum and analogues: Antiparasitic activity against Trypanosoma cruzi and Leishmania infantum.

    Science.gov (United States)

    Varela, Marina T; Lima, Marta L; Galuppo, Mariana K; Tempone, Andre G; de Oliveira, Alberto; Lago, João Henrique G; Fernandes, João Paulo S

    2017-11-01

    Alkylphenols isolated from Piper malacophyllum (Piperaceae), gibbilimbols A and B, showed interesting activity against the parasites Trypanosoma cruzi and Leishmania infantum. In continuation to our previous work, a new natural product from the essential oil of the leaves of P. malacophyllum was isolated, the 5-[(3E)-oct-3-en-1-il]-1,3-benzodioxole, and also a new set of five compounds was prepared. The antiparasitic activity of the natural product was evaluated in vitro against these parasites, indicating potential against the promastigote/trypomastigote/amastigote forms (IC 50 32-83 μm) of the parasites and low toxicity (CC 50  > 200 μm) to mammalian cells. The results obtained to the synthetic compounds indicated that the new derivatives maintained the promising antiparasitic activity, but the cytotoxicity was considerably lowered. The amine derivative LINS03011 displayed the most potent IC 50 values (13.3 and 16.7 μm) against amastigotes of T. cruzi and L. infantum, respectively, indicating comparable activity to the phenolic prototype LINS03003, with threefold decreased (CC 50 73.5 μm) cytotoxicity, leading the selectivity index (SI) towards the parasites up to 24.5. In counterpart, LINS03011 has not shown membrane disruptor activity in SYTOX Green model. In summary, this new set showed the hydroxyl is not essential for the antiparasitic activity, and its substitution could decrease the toxicity to mammalian cells. © 2017 John Wiley & Sons A/S.

  9. Antimicrobial Activity of Lactoferrin-Related Peptides and Applications in Human and Veterinary Medicine

    Directory of Open Access Journals (Sweden)

    Natascia Bruni

    2016-06-01

    Full Text Available Antimicrobial peptides (AMPs represent a vast array of molecules produced by virtually all living organisms as natural barriers against infection. Among AMP sources, an interesting class regards the food-derived bioactive agents. The whey protein lactoferrin (Lf is an iron-binding glycoprotein that plays a significant role in the innate immune system, and is considered as an important host defense molecule. In search for novel antimicrobial agents, Lf offers a new source with potential pharmaceutical applications. The Lf-derived peptides Lf(1–11, lactoferricin (Lfcin and lactoferrampin exhibit interesting and more potent antimicrobial actions than intact protein. Particularly, Lfcin has demonstrated strong antibacterial, anti-fungal and antiparasitic activity with promising applications both in human and veterinary diseases (from ocular infections to osteo-articular, gastrointestinal and dermatological diseases.

  10. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  11. New Synthesis and Antiparasitic Activity of Model 5-Aryl-1-methyl-4-nitroimidazoles

    Directory of Open Access Journals (Sweden)

    Mustafa M. El-Abadelah

    2009-07-01

    Full Text Available A number of 5-aryl-1-methyl-4-nitroimidazoles 5a-f have been synthesized in good yields by the Suzuki coupling reaction between 5-chloro-1-methyl-4-nitroimidazole (3 and arylboronic acids 4a-f, aided by dichlorobis-(triphenylphosphinepalladium(II, K2CO3, and tetrabutylammonium bromide in water at 70-80 °C. Compounds 5a-f were characterized by elemental analysis, NMR and MS spectral data. On the basis of in vitro screening data, 5-(3-chlorophenyl-1-methyl-4-nitro-1H-imidazole (5fexhibited potent lethal activity against Entamoeba histolytica and Giardia intestinalis with IC50 = 1.47 µM/mL, a value lower by a factor of two than that of the standard drug, metronidazole. The boosted activity of 5f was not accompanied by any increased cytotoxicity.The rest of the series also exhibited potent antiparasitic activity with IC50 valuesin the 1.72-4.43 µM/mL range. The cytotoxicity of the derivatives 5c and 5e was increased compared to the precursor compound, metronidazole, although they remain non-cytotoxic at concentrations much higher than the antiparasitic concentration of the two derivatives.

  12. New synthesis and antiparasitic activity of model 5-aryl-1-methyl-4-nitroimidazoles.

    Science.gov (United States)

    Saadeh, Haythem A; Mosleh, Ibrahim M; El-Abadelah, Mustafa M

    2009-07-27

    A number of 5-aryl-1-methyl-4-nitroimidazoles 5a-f have been synthesized in good yields by the Suzuki coupling reaction between 5-chloro-1-methyl-4-nitroimidazole (3) and arylboronic acids 4a-f, aided by dichlorobis-(triphenylphosphine)palladium(II), K(2)CO(3, )and tetrabutylammonium bromide in water at 70-80 degrees C. Compounds 5a-f were characterized by elemental analysis, NMR and MS spectral data. On the basis of in vitro screening data, 5-(3-chlorophenyl)-1-methyl-4-nitro-1H-imidazole (5f) exhibited potent lethal activity against Entamoeba histolytica and Giardia intestinalis with IC(50) = 1.47 microM/mL, a value lower by a factor of two than that of the standard drug, metronidazole. The boosted activity of 5f was not accompanied by any increased cytotoxicity.The rest of the series also exhibited potent antiparasitic activity with IC(50 ) values in the 1.72-4.43 microM/mL range. The cytotoxicity of the derivatives 5c and 5e was increased compared to the precursor compound, metronidazole, although they remain non-cytotoxic at concentrations much higher than the antiparasitic concentration of the two derivatives.

  13. In-silico Leishmania Target Selectivity of Antiparasitic Terpenoids

    Directory of Open Access Journals (Sweden)

    Ifedayo Victor Ogungbe

    2013-07-01

    Full Text Available Neglected Tropical Diseases (NTDs, like leishmaniasis, are major causes of mortality in resource-limited countries. The mortality associated with these diseases is largely due to fragile healthcare systems, lack of access to medicines, and resistance by the parasites to the few available drugs. Many antiparasitic plant-derived isoprenoids have been reported, and many of them have good in vitro activity against various forms of Leishmania spp. In this work, potential Leishmania biochemical targets of antiparasitic isoprenoids were studied in silico. Antiparasitic monoterpenoids selectively docked to L. infantum nicotinamidase, L. major uridine diphosphate-glucose pyrophosphorylase and methionyl t-RNA synthetase. The two protein targets selectively targeted by germacranolide sesquiterpenoids were L. major methionyl t-RNA synthetase and dihydroorotate dehydrogenase. Diterpenoids generally favored docking to L. mexicana glycerol-3-phosphate dehydrogenase. Limonoids also showed some selectivity for L. mexicana glycerol-3-phosphate dehydrogenase and L. major dihydroorotate dehydrogenase while withanolides docked more selectively with L. major uridine diphosphate-glucose pyrophosphorylase. The selectivity of the different classes of antiparasitic compounds for the protein targets considered in this work can be explored in fragment- and/or structure-based drug design towards the development of leads for new antileishmanial drugs.

  14. Larrea tridentata: A novel source for anti-parasitic agents active against Entamoeba histolytica, Giardia lamblia and Naegleria fowleri.

    Directory of Open Access Journals (Sweden)

    Bharat Bashyal

    2017-08-01

    Full Text Available Protozoan parasites infect and kill millions of people worldwide every year, particularly in developing countries where access to clean fresh water is limited. Among the most common are intestinal parasites, including Giardia lamblia and Entamoeba histolytica. These parasites wreak havoc on the epithelium lining the small intestines (G. lamblia and colon (E. histolytica causing giardiasis and amebiasis, respectively. In addition, there are less common but far more deadly pathogens such as Naegleria fowleri that thrive in warm waters and infect the central nervous systems of their victims via the nasal passages. Despite their prevalence and associated high mortality rates, there remains an unmet need to identify more effective therapeutics for people infected with these opportunistic parasites. To address this unmet need, we have surveyed plants and traditional herbal medicines known throughout the world to identify novel antiparasitic agents with activity against G. lamblia, E. histolytica, and N. fowleri. Herein, we report Larrea tridentata, known as creosote bush, as a novel source for secondary metabolites that display antiparasitic activity against all three pathogens. This report also characterizes the lignan compound classes, nordihydroguairetic acid and demethoxyisoguaiacin, as novel antiparasitic lead agents to further develop more effective drug therapy options for millions of people worldwide.

  15. Larrea tridentata: A novel source for anti-parasitic agents active against Entamoeba histolytica, Giardia lamblia and Naegleria fowleri.

    Science.gov (United States)

    Bashyal, Bharat; Li, Linfeng; Bains, Trpta; Debnath, Anjan; LaBarbera, Daniel V

    2017-08-01

    Protozoan parasites infect and kill millions of people worldwide every year, particularly in developing countries where access to clean fresh water is limited. Among the most common are intestinal parasites, including Giardia lamblia and Entamoeba histolytica. These parasites wreak havoc on the epithelium lining the small intestines (G. lamblia) and colon (E. histolytica) causing giardiasis and amebiasis, respectively. In addition, there are less common but far more deadly pathogens such as Naegleria fowleri that thrive in warm waters and infect the central nervous systems of their victims via the nasal passages. Despite their prevalence and associated high mortality rates, there remains an unmet need to identify more effective therapeutics for people infected with these opportunistic parasites. To address this unmet need, we have surveyed plants and traditional herbal medicines known throughout the world to identify novel antiparasitic agents with activity against G. lamblia, E. histolytica, and N. fowleri. Herein, we report Larrea tridentata, known as creosote bush, as a novel source for secondary metabolites that display antiparasitic activity against all three pathogens. This report also characterizes the lignan compound classes, nordihydroguairetic acid and demethoxyisoguaiacin, as novel antiparasitic lead agents to further develop more effective drug therapy options for millions of people worldwide.

  16. Antiparasitic activity of menadione (vitamin K3) against Schistosoma mansoni in BABL/c mice.

    Science.gov (United States)

    Kapadia, Govind J; Soares, Ingrid A O; Rao, G Subba; Badoco, Fernanda R; Furtado, Ricardo A; Correa, Mariana B; Tavares, Denise C; Cunha, Wilson R; Magalhães, Lizandra G

    2017-03-01

    Schistosomiasis is one of the neglected tropical diseases affecting nearly quarter of a billion people in economically challenged tropical and subtropical countries of the world. Praziquantel (PZQ) is the only drug currently available to treat this parasitic disease in spite being ineffective against juvenile worms and concerns about developing resistance to treat reinfections. Our earlier in vitro viability studies demonstrated significant antiparasitic activity of menadione (MEN) (vitamin K 3 ) against Schistosoma mansoni adult worms. To gain insight into plausible mechanism of antischistosomal activity of MEN, its effect on superoxide anion levels in adult worms were studied in vitro which showed significant increases in both female and male worms. Further confirmation of the deleterious morphological changes in their teguments and organelles were obtained by ultrastructural analysis. Genotoxic and cytotoxic studies in male Swiss mice indicated that MEN was well tolerated at the oral dose of 500mg/kg using the criteria of MNPCE frequency and PCE/RBC ratio in the bone marrow of infected animals. The in vivo antiparasitic activity of MEN was conducted in female BALB/c mice infected with S. mansoni and significant reductions (P<0.001) in total worm burden were observed at single oral doses of 40 and 400mg/kg (48.57 and 61.90%, respectively). Additionally, MEN significantly reduced (P<0.001) the number of eggs in the liver of infected mice by 53.57 and 58.76%, respectively. Similarly, histological analysis of the livers showed a significant reduction (P<0.001) in the diameter of the granulomas. Since MEN is already in use globally as an over-the-counter drug for a variety of common ailments and a dietary supplement with a safety record in par with similar products when used in recommended doses, the above antiparasitic results which compare reasonably well with PZQ, make a compelling case for considering MEN to treat S. mansoni infection in humans. Copyright © 2016

  17. ANTIPARASITICAL PROTECTION IN SHEEP FARMS

    Directory of Open Access Journals (Sweden)

    DOINA ARDELEANU

    2008-10-01

    Full Text Available Through our researches were carried out at ICDCOC- Palas, Constantza, we proposed ourselves to establish the poly-parasitism structure on sheep, as well as elaborating efficientical methods for anti-parasitical prophylaxis and fighting in sheep populations and pasture sourfaces, in order to ensuring anti-parasitical protection in sheep exploitations The copro-parasitological examinations was carried ovoscopicaly (flotation - by Willis and Mc. Master methods; sediment – by polyvalent method and larvoscopicaly – by Baermann method. The parasitological examination of coprological smears which were harvested on sheep showed the presence of polyparasitism phenomenon with protozoans (coccidiae: Eimeria spp. and helmints (cestodae: Moniesia expansa; gastro-intestinal nemathodes: Trichostrongylus spp., Nematodirus spp., Strongyloides papillosus and pulmonary nemathodes: Müellerius capillaris, Protostrongylus rufescens, Dictyocaulus filaria. Also, we proposed ourselves to study the paresites and their intermediary stages on pastures which were exploited with sheep, comparatively with mowed pastures. In the ansamble of research activities a special place is occupied by testing differents methods, in order to prevention and fighting of parasitical infestations on sheep and pasture in sheep farms.

  18. Antiparasitic, Nematicidal and Antifouling Constituents from Juniperus Berries

    Science.gov (United States)

    A bioassay-guided fractionation of Juniperus procera berries yielded antiparasitic, nematicidal and antifouling constituents, including a wide range of known abietane, pimarane and labdane diterpenes. Among these, abieta-7,13-diene (1) demonstrated in vitro antimalarial activity against Plasmodium f...

  19. Antiparasitic bromotyrosine derivatives from the Caribbean marine Sponge Aiolochroia crassa

    International Nuclear Information System (INIS)

    Galeano, Elkin; Martinez, Alejandro; Thomas, Olivier P.; Robledo, Sara; Munoz, Diana

    2012-01-01

    Six bromotyrosine-derived compounds were isolated from the Caribbean marine sponge Aiolochroia crassa: 3-bromo-5-hydroxy Ο-methyltyrosine (1), 3-bromo-N,N,N-trimethyltyrosinium (2), 3-bromo-N,N,N,ο-tetramethyltyrosinium (3), 3,5-dibromo-N,N,Ntrimethyltyrosinium (4), 3,5-dibromo-N,N,N,O-tetramethyltyrosinium (5), and aeroplysinin-1 (6). Structural determination was performed using NMR, MS and comparison with literature data. All isolated compounds were screened for their in vitro activity against Leishmania panamensis, Plasmodium falciparum and Trypanosoma cruzi. Compound 4 showed selective antiparasitic activity against Leishmania and Plasmodium parasites. This is the first report of compounds 1, 4 and 5 in the sponge A. crassa and the first biological activity reports for compounds 2-4. This work shows that bromotyrosines are potential antiparasitic agents. (author)

  20. Cysteine proteases as potential antigens in antiparasitic DNA vaccines

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Buchmann, Kurt

    2011-01-01

    En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner.......En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner....

  1. Effect of BMAP-28 antimicrobial peptides on Leishmania major promastigote and amastigote growth: role of leishmanolysin in parasite survival.

    Directory of Open Access Journals (Sweden)

    Miriam A Lynn

    Full Text Available Protozoan parasites, such as Leishmania, still pose an enormous public health problem in many countries throughout the world. Current measures are outdated and have some associated drug resistance, prompting the search into novel therapies. Several innovative approaches are under investigation, including the utilization of host defence peptides (HDPs as emerging anti-parasitic therapies. HDPs are characterised by their small size, amphipathic nature and cationicity, which induce permeabilization of cell membranes, whilst modulating the immune response of the host. Recently, members of the cathelicidin family of HDPs have demonstrated significant antimicrobial activities against various parasites including Leishmania. The cathelicidin bovine myeloid antimicrobial peptide 28 (BMAP-28 has broad antimicrobial activities and confers protection in animal models of bacterial infection or sepsis. We tested the effectiveness of the use of BMAP-28 and two of its isomers the D-amino acid form (D-BMAP-28 and the retro-inverso form (RI-BMAP-28, as anti-leishmanial agents against the promastigote and amastigote intracellular Leishmania major lifecycle stages.An MTS viability assay was utilized to show the potent antiparasitic activity of BMAP-28 and its protease resistant isomers against L. major promastigotes in vitro. Cell membrane permeability assays, caspase 3/7, Tunel assays and morphologic studies suggested that this was a late stage apoptotic cell death with early osmotic cell lysis caused by the antimicrobial peptides. Furthermore, BMAP-28 and its isomers demonstrated anti-leishmanial activities against intracellular amastigotes within a macrophage infection model.Interestingly, D-BMAP-28 appears to be the most potent antiparasitic of the three isomers against wild type L. major promastigotes and amastigotes. These exciting results suggest that BMAP-28 and its protease resistant isomers have significant therapeutic potential as novel anti-leishmanials.

  2. Tulbaghia violacea and Allium ursinum Extracts Exhibit Anti-Parasitic and Antimicrobial Activities.

    Science.gov (United States)

    Krstin, Sonja; Sobeh, Mansour; Braun, Markus Santhosh; Wink, Michael

    2018-02-02

    Garlic has played an important role in culinary arts and remedies in the traditional medicine throughout human history. Parasitic infections represent a burden in the society of especially poor countries, causing more than 1 billion infections every year and leading to around one million deaths. In this study, we investigated the mode of anti-parasitic activity of "wild garlics" Tulbaghia violacea and Allium ursinum dichloromethane extracts against parasites Trypanosoma brucei brucei and Leishmania tarentolae with regard to their already known antimicrobial activity. We also evaluated their cytotoxic potential against human cells. Both extracts showed a relevant trypanocidal and leishmanicidal activity, although L. tarentolae was less sensitive. We determined that the probable mode of action of both extracts is the irreversible inhibition of the activity of Trypanosoma brucei trypanothione reductase enzyme. The extracts showed a mild cytotoxic activity against human keratinocytes. They also exhibited weak-in most cases comparable-antibacterial and antifungal activity. HPLC-MS/MS analysis showed that both extracts are abundant in sulfur compounds. Thus, for the first time, the ability of Allium ursinum and Tulbaghia violacea to kill Trypanosoma sp. and Leishmania sp. parasites, probably by binding to and inactivating sulfur-containing compounds essential for the survival of the parasite, is shown.

  3. Tulbaghia violacea and Allium ursinum Extracts Exhibit Anti-Parasitic and Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Sonja Krstin

    2018-02-01

    Full Text Available Garlic has played an important role in culinary arts and remedies in the traditional medicine throughout human history. Parasitic infections represent a burden in the society of especially poor countries, causing more than 1 billion infections every year and leading to around one million deaths. In this study, we investigated the mode of anti-parasitic activity of “wild garlics” Tulbaghia violacea and Allium ursinum dichloromethane extracts against parasites Trypanosoma brucei brucei and Leishmania tarentolae with regard to their already known antimicrobial activity. We also evaluated their cytotoxic potential against human cells. Both extracts showed a relevant trypanocidal and leishmanicidal activity, although L. tarentolae was less sensitive. We determined that the probable mode of action of both extracts is the irreversible inhibition of the activity of Trypanosoma brucei trypanothione reductase enzyme. The extracts showed a mild cytotoxic activity against human keratinocytes. They also exhibited weak—in most cases comparable—antibacterial and antifungal activity. HPLC-MS/MS analysis showed that both extracts are abundant in sulfur compounds. Thus, for the first time, the ability of Allium ursinum and Tulbaghia violacea to kill Trypanosoma sp. and Leishmania sp. parasites, probably by binding to and inactivating sulfur-containing compounds essential for the survival of the parasite, is shown.

  4. Medicinal Plants: A Source of Anti-Parasitic Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Michael Wink

    2012-10-01

    Full Text Available This review summarizes human infections caused by endoparasites, including protozoa, nematodes, trematodes, and cestodes, which affect more than 30% of the human population, and medicinal plants of potential use in their treatment. Because vaccinations do not work in most instances and the parasites have sometimes become resistant to the available synthetic therapeutics, it is important to search for alternative sources of anti-parasitic drugs. Plants produce a high diversity of secondary metabolites with interesting biological activities, such as cytotoxic, anti-parasitic and anti-microbial properties. These drugs often interfere with central targets in parasites, such as DNA (intercalation, alkylation, membrane integrity, microtubules and neuronal signal transduction. Plant extracts and isolated secondary metabolites which can inhibit protozoan parasites, such as Plasmodium, Trypanosoma, Leishmania, Trichomonas and intestinal worms are discussed. The identified plants and compounds offer a chance to develop new drugs against parasitic diseases. Most of them need to be tested in more detail, especially in animal models and if successful, in clinical trials.

  5. Antiparasitic activity of natural and semi-synthetic tirucallane triterpenoids from Schinus terebinthifolius (Anacardiaceae): structure/activity relationships.

    Science.gov (United States)

    Morais, Thiago R; da Costa-Silva, Thais A; Tempone, Andre G; Borborema, Samanta Etel T; Scotti, Marcus T; de Sousa, Raquel Maria F; Araujo, Ana Carolina C; de Oliveira, Alberto; de Morais, Sérgio Antônio L; Sartorelli, Patricia; Lago, João Henrique G

    2014-05-05

    Leishmaniasis and Chagas are diseases caused by parasitic protozoans that affect the poorest population in the World, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, the discovery of novel, safe and more efficacious drugs is essential. In this work, the in vitro antiparasitic activity and mammalian cytotoxicity of three natural tirucallane triterpenoids, isolated from leaves of Schinus terebinthifolius (Anacardiaceae), and nine semi-synthetic derivatives were investigated against Leishmania (L.) infantum and Trypanosoma cruzi. Trypomastigotes of T. cruzi were the most susceptible parasites and seven compounds demonstrated a trypanocidal activity with IC50 values in the range between 15 and 58 µg/mL. Four compounds demonstrated selectivity towards the intracellular amastigotes of Leishmania, with IC50 values in the range between 28 and 97 µg/mL. The complete characterization of triterpenoids was afforded after thorough analysis of nuclear magnetic resonance (NMR) data as well as electrospray ionization mass spectrometry (ESI-MS). Additionally, structure-activity relationships were performed using Decision Trees.

  6. Antiparasitic Activity of Natural and Semi-Synthetic Tirucallane Triterpenoids from Schinus terebinthifolius (Anacardiaceae: Structure/Activity Relationships

    Directory of Open Access Journals (Sweden)

    Thiago R. Morais

    2014-05-01

    Full Text Available Leishmaniasis and Chagas are diseases caused by parasitic protozoans that affect the poorest population in the World, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, the discovery of novel, safe and more efficacious drugs is essential. In this work, the in vitro antiparasitic activity and mammalian cytotoxicity of three natural tirucallane triterpenoids, isolated from leaves of Schinus terebinthifolius (Anacardiaceae, and nine semi-synthetic derivatives were investigated against Leishmania (L. infantum and Trypanosoma cruzi. Trypomastigotes of T. cruzi were the most susceptible parasites and seven compounds demonstrated a trypanocidal activity with IC50 values in the range between 15 and 58 µg/mL. Four compounds demonstrated selectivity towards the intracellular amastigotes of Leishmania, with IC50 values in the range between 28 and 97 µg/mL. The complete characterization of triterpenoids was afforded after thorough analysis of nuclear magnetic resonance (NMR data as well as electrospray ionization mass spectrometry (ESI-MS. Additionally, structure-activity relationships were performed using Decision Trees.

  7. Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors

    Directory of Open Access Journals (Sweden)

    Nir Qvit

    2016-04-01

    Full Text Available Parasitic diseases cause ∼500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase and TRACK (Trypanosoma receptor for activated C-kinase. We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase, may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs. Keywords: Chagas disease, Leishmaniasis, Peptide, LACK, TRACK, Scaffold protein

  8. Fragment-based screening in tandem with phenotypic screening provides novel antiparasitic hits.

    Science.gov (United States)

    Blaazer, Antoni R; Orrling, Kristina M; Shanmugham, Anitha; Jansen, Chimed; Maes, Louis; Edink, Ewald; Sterk, Geert Jan; Siderius, Marco; England, Paul; Bailey, David; de Esch, Iwan J P; Leurs, Rob

    2015-01-01

    Methods to discover biologically active small molecules include target-based and phenotypic screening approaches. One of the main difficulties in drug discovery is elucidating and exploiting the relationship between drug activity at the protein target and disease modification, a phenotypic endpoint. Fragment-based drug discovery is a target-based approach that typically involves the screening of a relatively small number of fragment-like (molecular weight <300) molecules that efficiently cover chemical space. Here, we report a fragment screening on TbrPDEB1, an essential cyclic nucleotide phosphodiesterase (PDE) from Trypanosoma brucei, and human PDE4D, an off-target, in a workflow in which fragment hits and a series of close analogs are subsequently screened for antiparasitic activity in a phenotypic panel. The phenotypic panel contained T. brucei, Trypanosoma cruzi, Leishmania infantum, and Plasmodium falciparum, the causative agents of human African trypanosomiasis (sleeping sickness), Chagas disease, leishmaniasis, and malaria, respectively, as well as MRC-5 human lung cells. This hybrid screening workflow has resulted in the discovery of various benzhydryl ethers with antiprotozoal activity and low toxicity, representing interesting starting points for further antiparasitic optimization. © 2014 Society for Laboratory Automation and Screening.

  9. Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following Infection with Dengue Virus.

    Directory of Open Access Journals (Sweden)

    Natthanej Luplertlop

    2011-01-01

    Full Text Available The ultimate stage of the transmission of Dengue Virus (DENV to man is strongly dependent on crosstalk between the virus and the immune system of its vector Aedes aegypti (Ae. aegypti. Infection of the mosquito's salivary glands by DENV is the final step prior to viral transmission. Therefore, in the present study, we have determined the modulatory effects of DENV infection on the immune response in this organ by carrying out a functional genomic analysis of uninfected salivary glands and salivary glands of female Ae. aegypti mosquitoes infected with DENV. We have shown that DENV infection of salivary glands strongly up-regulates the expression of genes that encode proteins involved in the vector's innate immune response, including the immune deficiency (IMD and Toll signalling pathways, and that it induces the expression of the gene encoding a putative anti-bacterial, cecropin-like, peptide (AAEL000598. Both the chemically synthesized non-cleaved, signal peptide-containing gene product of AAEL000598, and the cleaved, mature form, were found to exert, in addition to antibacterial activity, anti-DENV and anti-Chikungunya viral activity. However, in contrast to the mature form, the immature cecropin peptide was far more effective against Chikungunya virus (CHIKV and, furthermore, had strong anti-parasite activity as shown by its ability to kill Leishmania spp. Results from circular dichroism analysis showed that the immature form more readily adopts a helical conformation which would help it to cause membrane permeabilization, thus permitting its transfer across hydrophobic cell surfaces, which may explain the difference in the anti-pathogenic activity between the two forms. The present study underscores not only the importance of DENV-induced cecropin in the innate immune response of Ae. aegypti, but also emphasizes the broad-spectrum anti-pathogenic activity of the immature, signal peptide-containing form of this peptide.

  10. Isolation and identification of an antiparasitic triterpenoid estersaponin from the stem bark of Pittosporum mannii (Pittosporaceae

    Directory of Open Access Journals (Sweden)

    Kennedy D Nyongbela

    2013-10-01

    Full Text Available Objective: To screen for antiparasitic properties of Pittosporum mannii Hook (Pittosporaceae through in vitro bioassay tests and to identify the bioactive compound(s. Methods: The stem bark of Pittosporum mannii was harvested in Bali Nyonga in January 2007. The CH 2Cl2 and MeOH extracts were tested in vitro for antiparasitic activity. NF54 (an airport strain of unknown origin and sensitive to all known drugs and K1 (a clone originating from Thailand and resistant to chloroquine/pyrimethamine strains were used for the antiplasmodial screening while Leishmania donovani MHOM-ET-67/L82 was used for antileishmanial testing. 1H and 13C NMR spectra were recorded on a Bruker AMX-500 spectrometer using CDCl3 as solvent. EIMS were recorded on a double-focusing mass spectrometer (Varian MAT 311A while HREIMS were recorded on a JEOL HX 110 mass spectrometer. Results: The MeOH extract was active on both the chloroquine-resistant (K1 strain (IC50=4.3 μg/ mL and on the macrophages of Leishmania donovani (IC50=8.6 μg/mL. The CH2Cl2 extract was considered inactive on both parasites (IC50>5.0 μg/mL and 21.7 μg/mL respectively. Compound 1, a constituent that precipitated from the MeOH extract, showed pronounced activity on both Plasmodium falciparum and Leishmania donovani parasites (IC 50=1.02 and 1.80 μg/mL respectively with artemisinin and miltefosine included as reference drugs. Its structure was identified as 1-O-[apha-L-(Rhamnopyranosyl]-23-acetoxyimberbic acid 29-methyl ester, a pentacyclic triterpenoid estersaponin. Conclusions: The present study constitutes the first report on the antiparasitic activity of this plant and provides some support for the traditional use of the plant in the treatment of malaria. The plant has therefore been identified as a potential source for the discovery of antiparasitic lead compounds.

  11. In vitro and in vivo antiparasitic activity of Azadirachtin against Argulus spp. in Carassius auratus (Linn. 1758).

    Science.gov (United States)

    Kumar, Saurav; Raman, R P; Kumar, Kundan; Pandey, P K; Kumar, Neeraj; Mohanty, Snatashree; Kumar, Abhay

    2012-05-01

    Argulus is one of the most common and predominant ectoparasites which cause serious parasitic disease and is a potent carrier of viruses and bacteria in the ornamental fish industry. In recent years, organic (herbs)-based medicines are widely used to cure the disease, and neem (Sarbaroganibarini) medicine is very popular and effective throughout the world. The present study was conducted to find the effects of Azadirachtin against Argulus spp. on Carassius auratus under in vitro and in vivo conditions. The 96-h median lethal concentration (LC(50)) for Azadirachtin EC 25% against Carassius auratus was found to be 82.115 mg L(-1). The antiparasitic activity test under in vitro and in vivo was evaluated at 1 (T1), 5 (T2), 10 (T3), 15 (T4) and 20 mg L(-1) (T5) to treat Argulus for 3 h and 72 h, respectively. In vitro effect of Azadirachtin solution led to 100% mortality of Argulus at 20 and 15 mg L(-1) for 2.5 and 3 h, respectively. Whereas, under in vivo test, the 100% antiparasitic efficacy of Azadirachtin solution was found at 15 and 20 mg L(-1) for 72 and 48 h, respectively. The EC(50) for 48 h was 20 mg L(-1), and thus, therapeutic index is 4.10. The results provided evidence that Azadirachtin can be used as a potential agent for controlling Argulus.

  12. Chemical composition, immunostimulatory, cytotoxic and antiparasitic activities of the essential oil from Brazilian red propolis.

    Science.gov (United States)

    Sena-Lopes, Ângela; Bezerra, Francisco Silvestre Brilhante; das Neves, Raquel Nascimento; de Pinho, Rodrigo Barros; Silva, Mara Thais de Oliveira; Savegnago, Lucielli; Collares, Tiago; Seixas, Fabiana; Begnini, Karine; Henriques, João Antonio Pêgas; Ely, Mariana Roesch; Rufatto, Luciane C; Moura, Sidnei; Barcellos, Thiago; Padilha, Francine; Dellagostin, Odir; Borsuk, Sibele

    2018-01-01

    Most studies of Brazilian red propolis have explored the composition and biological properties of its ethanolic extracts. In this work, we chemically extracted and characterized the essential oil of Brazilian red propolis (EOP) and assessed its adjuvant, antiparasitic and cytotoxic activities. The chemical composition of EOP was analyzed using gas chromatography with mass spectrometry (GC-MS). EOP was tested for in vitro activity against Trichomonas vaginalis (ATCC 30236 isolate); trophozoites were treated with different concentrations of EOP (ranging from 25 to 500 μg/mL) in order to establish the MIC and IC50 values. A cytotoxicity assay was performed in CHO-K1 cells submitted to different EOP concentrations. BALB/c mice were used to test the adjuvant effect of EOP. The animals were divided in 3 groups and inoculated as follows: 0.4 ng/kg BW EOP (G1); 50 μg of rCP40 protein (G2); or a combination of 0.4 ng/kg BW EOP and 50 μg of rCP40 (G3). Total IgG, IgG1 and IgG2a levels were assessed by ELISA. The major constituent compounds of EOP were methyl eugenol (13.1%), (E)-β-farnesene (2.50%), and δ-amorphene (2.3%). Exposure to EOP inhibited the growth of T. vaginalis, with an IC50 value of 100 μg/mL of EOP. An EOP concentration of 500 μg/mL was able to kill 100% of the T. vaginalis trophozoites. The EOP kinetic growth curve showed a 36% decrease in trophozoite growth after a 12 h exposure to 500 μg/mL of EOP, while complete parasite death was induced at 24 h. With regard to CHO-K1 cells, the CC50 was 266 μg/mL, and 92% cytotoxicity was observed after exposure to 500 μg/mL of EOP. Otherwise, a concentration of 200 μg/mL of EOP was able to reduce parasite proliferation by 70% and was not cytotoxic to CHO-K1 cells. As an adjuvant, a synergistic effect was observed when EOP was combined with the rCP40 protein (G3) in comparison to the administration of each component alone (G1 and G2), resulting in higher concentrations of IgG, IgG1 and IgG2a. EOP is

  13. Chemical composition, immunostimulatory, cytotoxic and antiparasitic activities of the essential oil from Brazilian red propolis.

    Directory of Open Access Journals (Sweden)

    Ângela Sena-Lopes

    Full Text Available Most studies of Brazilian red propolis have explored the composition and biological properties of its ethanolic extracts. In this work, we chemically extracted and characterized the essential oil of Brazilian red propolis (EOP and assessed its adjuvant, antiparasitic and cytotoxic activities. The chemical composition of EOP was analyzed using gas chromatography with mass spectrometry (GC-MS. EOP was tested for in vitro activity against Trichomonas vaginalis (ATCC 30236 isolate; trophozoites were treated with different concentrations of EOP (ranging from 25 to 500 μg/mL in order to establish the MIC and IC50 values. A cytotoxicity assay was performed in CHO-K1 cells submitted to different EOP concentrations. BALB/c mice were used to test the adjuvant effect of EOP. The animals were divided in 3 groups and inoculated as follows: 0.4 ng/kg BW EOP (G1; 50 μg of rCP40 protein (G2; or a combination of 0.4 ng/kg BW EOP and 50 μg of rCP40 (G3. Total IgG, IgG1 and IgG2a levels were assessed by ELISA. The major constituent compounds of EOP were methyl eugenol (13.1%, (E-β-farnesene (2.50%, and δ-amorphene (2.3%. Exposure to EOP inhibited the growth of T. vaginalis, with an IC50 value of 100 μg/mL of EOP. An EOP concentration of 500 μg/mL was able to kill 100% of the T. vaginalis trophozoites. The EOP kinetic growth curve showed a 36% decrease in trophozoite growth after a 12 h exposure to 500 μg/mL of EOP, while complete parasite death was induced at 24 h. With regard to CHO-K1 cells, the CC50 was 266 μg/mL, and 92% cytotoxicity was observed after exposure to 500 μg/mL of EOP. Otherwise, a concentration of 200 μg/mL of EOP was able to reduce parasite proliferation by 70% and was not cytotoxic to CHO-K1 cells. As an adjuvant, a synergistic effect was observed when EOP was combined with the rCP40 protein (G3 in comparison to the administration of each component alone (G1 and G2, resulting in higher concentrations of IgG, IgG1 and IgG2a. EOP is

  14. Constructing bioactive peptides with pH-dependent activities.

    Science.gov (United States)

    Tu, Zhigang; Volk, Melanie; Shah, Khushali; Clerkin, Kevin; Liang, Jun F

    2009-08-01

    Many bioactive peptides are featured by their arginine and lysine rich contents. In this study, lysine and arginine residues in lytic peptides were selectively replaced by histidines. Although resulting histidine-containing lytic peptides had decreased activity, they did show pH-dependent cytotoxicity. The activity of the constructed histidine-containing lytic peptides increased 2-8 times as the solution pH changed from 7.4 to 5.5. More importantly, these histidine-containing peptides maintain the same cell killing mechanism as their parent peptides by causing cell lysis. Both the activity and pH-sensitivity of histidine-containing peptides are tunable by adjusting histidine substitution numbers and positions. This study has presented a general strategy to create bioactive peptides with desired pH-sensitivity to meet the needs of various applications such as cancer treatments.

  15. Anticancer activities of bovine and human lactoferricin-derived peptides.

    Science.gov (United States)

    Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J

    2017-02-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.

  16. Antiparasitic activity, histopathology and physiology of Colossoma macropomum (tambaqui) exposed to the essential oil of Lippia sidoides (Verbenaceae).

    Science.gov (United States)

    Soares, Bruna Viana; Neves, Lígia Rigôr; Ferreira, Drielly Oliveira; Oliveira, Marcos Sidney Brito; Chaves, Francisco Célio Maia; Chagas, Edsandra Campos; Gonçalves, Raissa Alves; Tavares-Dias, Marcos

    2017-01-30

    In vivo and in vitro antiparasitic activity of the essential oil of Lippia sidoides and blood and histological alterations were assessed in Colossoma macropomum (tambaqui). Essential oil concentrations of 10, 20, 40, 80, 160 and 320mg/L were assayed in vitro against monogenoideans Anacanthorus spathulatus, Notozothecium janauachensis and Mymarothecium boegeri from fish gills. Lippia sidoides essential oil concentrations of 320 and 160mg/L were 100% effective against monogenoideans in 10min and 1h of exposure, respectively. However, the effectiveness of 100% concentrations of 80mg/L and 40mg/L occurred in 3 and 6h, respectively. In the in vivo tests, juvenile fish were submitted to 60min of baths with 10mg/L and 15min of baths with 20mg/L of the essential oil of L. sidoides. These therapeutic baths were not efficient against Ichthyophthirius multifiliis, and monogenoideans present in the gills of C. macropomum. In addition, 10 and 20mg/L of the essential oil of L. sidoides caused an anesthetic effect on the fish and did not influence total glucose and protein plasma levels; however, it decreased the number of total erythrocytes in fish exposed to the higher concentration of this essential oil. Severe alterations and irreversible damage were observed in the fish gills just after L. sidoides essential oil baths and after 24h of recovery. The most recurrent lesions found were hyperplasia and fusion of the lamellar epithelium, vasodilation, detachment of the gill epithelium and lamellar aneurism, epithelial breakdown with hemorrhage, congestion, edema and necrosis, proliferation of the mucous cells and chloride cells and lamellar hypertrophy. Therefore, since the essential oil of L. sidoides has in vitro antiparasitic activity and low concentrations of it have shown toxic effects, the bioactive potential of its main chemical components should be investigated, as well as more efficient forms of its administration in therapeutic baths in order to eliminate fish parasites

  17. Fitness costs of animal medication: antiparasitic plant chemicals reduce fitness of monarch butterfly hosts.

    Science.gov (United States)

    Tao, Leiling; Hoang, Kevin M; Hunter, Mark D; de Roode, Jacobus C

    2016-09-01

    The emerging field of ecological immunology demonstrates that allocation by hosts to immune defence against parasites is constrained by the costs of those defences. However, the costs of non-immunological defences, which are important alternatives to canonical immune systems, are less well characterized. Estimating such costs is essential for our understanding of the ecology and evolution of alternative host defence strategies. Many animals have evolved medication behaviours, whereby they use antiparasitic compounds from their environment to protect themselves or their kin from parasitism. Documenting the costs of medication behaviours is complicated by natural variation in the medicinal components of diets and their covariance with other dietary components, such as macronutrients. In the current study, we explore the costs of the usage of antiparasitic compounds in monarch butterflies (Danaus plexippus), using natural variation in concentrations of antiparasitic compounds among plants. Upon infection by their specialist protozoan parasite Ophryocystis elektroscirrha, monarch butterflies can selectively oviposit on milkweed with high foliar concentrations of cardenolides, secondary chemicals that reduce parasite growth. Here, we show that these antiparasitic cardenolides can also impose significant costs on both uninfected and infected butterflies. Among eight milkweed species that vary substantially in their foliar cardenolide concentration and composition, we observed the opposing effects of cardenolides on monarch fitness traits. While high foliar cardenolide concentrations increased the tolerance of monarch butterflies to infection, they reduced the survival rate of caterpillars to adulthood. Additionally, although non-polar cardenolide compounds decreased the spore load of infected butterflies, they also reduced the life span of uninfected butterflies, resulting in a hump-shaped curve between cardenolide non-polarity and the life span of infected butterflies

  18. Antimicrobial and immunomodulatory activities of PR-39 derived peptides.

    Directory of Open Access Journals (Sweden)

    Edwin J A Veldhuizen

    Full Text Available The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics.

  19. Antimicrobial and Immunomodulatory Activities of PR-39 Derived Peptides

    Science.gov (United States)

    Veldhuizen, Edwin J. A.; Schneider, Viktoria A. F.; Agustiandari, Herfita; van Dijk, Albert; Tjeerdsma-van Bokhoven, Johanna L. M.; Bikker, Floris J.; Haagsman, Henk P.

    2014-01-01

    The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal) amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics. PMID:24755622

  20. Anti-parasitic effects of plant secondary metabolites on swine nematodes

    DEFF Research Database (Denmark)

    Williams, A.R.; Pena-Espinoza, Miguel Angel; Fryganas, Christos

    Organic production presents challenges to animal health and productivity. In organic pig production, animals must have access to outdoor pastures which increases exposure to gastrointestinal parasites. Moreover, the routine use of synthetic anti-parasitic drugs is not allowed. Thus, novel parasite...

  1. Antiparasitic bromotyrosine derivatives from the marine sponge Verongula rigida.

    Science.gov (United States)

    Galeano, Elkin; Thomas, Olivier P; Robledo, Sara; Munoz, Diana; Martinez, Alejandro

    2011-01-01

    Nine bromotyrosine-derived compounds were isolated from the Caribbean marine sponge Verongula rigida. Two of them, aeroplysinin-1 (1) and dihydroxyaerothionin (2), are known compounds for this species, and the other seven are unknown compounds for this species, namely: 3,5-dibromo-N,N,N-trimethyltyraminium (3), 3,5-dibromo-N,N,N, O-tetramethyltyraminium (4), purealidin R (5), 19-deoxyfistularin 3 (6), purealidin B (7), 11-hydroxyaerothionin (8) and fistularin-3 (9). Structural determination of the isolated compounds was performed using one- and two-dimensional NMR, MS and other spectroscopy data. All isolated compounds were screened for their in vitro activity against three parasitic protozoa: Leishmania panamensis, Plasmodium falciparum and Trypanosoma cruzi. Compounds 7 and 8 showed selective antiparasitic activity at 10 and 5 μM against Leishmania and Plasmodium parasites, respectively. Cytotoxicity of these compounds on a human promonocytic cell line was also assessed.

  2. A novel chimeric peptide with antimicrobial activity.

    Science.gov (United States)

    Alaybeyoglu, Begum; Akbulut, Berna Sariyar; Ozkirimli, Elif

    2015-04-01

    Beta-lactamase-mediated bacterial drug resistance exacerbates the prognosis of infectious diseases, which are sometimes treated with co-administration of beta-lactam type antibiotics and beta-lactamase inhibitors. Antimicrobial peptides are promising broad-spectrum alternatives to conventional antibiotics in this era of evolving bacterial resistance. Peptides based on the Ala46-Tyr51 beta-hairpin loop of beta-lactamase inhibitory protein (BLIP) have been previously shown to inhibit beta-lactamase. Here, our goal was to modify this peptide for improved beta-lactamase inhibition and cellular uptake. Motivated by the cell-penetrating pVEC sequence, which includes a hydrophobic stretch at its N-terminus, our approach involved the addition of LLIIL residues to the inhibitory peptide N-terminus to facilitate uptake. Activity measurements of the peptide based on the 45-53 loop of BLIP for enhanced inhibition verified that the peptide was a competitive beta-lactamase inhibitor with a K(i) value of 58 μM. Incubation of beta-lactam-resistant cells with peptide decreased the number of viable cells, while it had no effect on beta-lactamase-free cells, indicating that this peptide had antimicrobial activity via beta-lactamase inhibition. To elucidate the molecular mechanism by which this peptide moves across the membrane, steered molecular dynamics simulations were carried out. We propose that addition of hydrophobic residues to the N-terminus of the peptide affords a promising strategy in the design of novel antimicrobial peptides not only against beta-lactamase but also for other intracellular targets. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  3. Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar; Gollapalli, Deviprasad R.; Cuny, Gregory D.; Joachimiak, Andrzej; Hedstrom, Lizbeth

    2015-04-21

    Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment ofCryptosporidiuminfections. Here, the structure ofC. parvumIMPDH (CpIMPDH) in complex with inosine 5'-monophosphate (IMP) and P131, an inhibitor within vivoanticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO2moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategy for the further optimization ofC. parvuminhibitors for both antiparasitic and antibacterial applications.

  4. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES FROM CHICKENS THROMBOCYTES].

    Science.gov (United States)

    Sycheva, M V; Vasilchenko, A S; Rogozhin, E A; Pashkova, T M; Popova, L P; Kartashova, O L

    2016-01-01

    Isolation and study of biological activity of antimicrobial peptides from chickens thrombocytes. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect--by using fluorescent spectroscopy method with DNA-tropic dyes. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.

  5. Epimerization-free C-terminal peptide activation, elongation and cyclization

    NARCIS (Netherlands)

    Popović, S.

    2015-01-01

    C-terminal peptide activation and cyclization reactions are generally accompanied with epimerization (partial loss of C‐terminal stereointegrity). Therefore, the focus of this thesis was to develop epimerization-free methods for C-terminal peptide activation to enable C-terminal peptide elongation

  6. Structure-activity relationships of an antimicrobial peptide plantaricin s from two-peptide class IIb bacteriocins.

    Science.gov (United States)

    Soliman, Wael; Wang, Liru; Bhattacharjee, Subir; Kaur, Kamaljit

    2011-04-14

    Class IIb bacteriocins are ribosomally synthesized antimicrobial peptides comprising two different peptides synergistically acting in equal amounts for optimal potency. In this study, we demonstrate for the first time potent (nanomolar) antimicrobial activity of a representative class IIb bacteriocin, plantaricin S (Pls), against four pathogenic gram-positive bacteria, including Listeria monocytogenes. The structure-activity relationships for Pls were studied using activity assays, circular dichroism (CD), and molecular dynamics (MD) simulations. The two Pls peptides and five Pls derived fragments were synthesized. The CD spectra of the Pls and selected fragments revealed helical conformations in aqueous 2,2,2-trifluoroethanol. The MD simulations showed that when the two Pls peptides are in antiparallel orientation, the helical regions interact and align, mediated by strong attraction between conserved GxxxG/AxxxA motifs. The results strongly correlate with the antimicrobial activity suggesting that helix-helix alignment of the two Pls peptides and interaction between the conserved motifs are crucial for interaction with the target cell membrane.

  7. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E. (Univ. of California, Berkeley (USA))

    1990-08-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a {beta}-turn and an {alpha}-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the {alpha}-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences.

  8. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    International Nuclear Information System (INIS)

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E.

    1990-01-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a β-turn and an α-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the α-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences

  9. Marine Peptides and Their Anti-Infective Activities

    Directory of Open Access Journals (Sweden)

    Hee Kyoung Kang

    2015-01-01

    Full Text Available Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish from 2006 to the present.

  10. Antibacterial activity in bovine lactoferrin-derived peptides.

    Science.gov (United States)

    Hoek, K S; Milne, J M; Grieve, P A; Dionysius, D A; Smith, R

    1997-01-01

    Several peptides sharing high sequence homology with lactoferricin B (Lf-cin B) were generated from bovine lactoferrin (Lf) with recombinant chymosin. Two peptides were copurified, one identical to Lf-cin B and another differing from Lf-cin B by the inclusion of a C-terminal alanine (lactoferricin). Two other peptides were copurified from chymosin-hydrolyzed Lf, one differing from Lf-cin B by the inclusion of C-terminal alanyl-leucine and the other being a heterodimer linked by a disulfide bond. These peptides were isolated in a single step from chymosin-hydrolyzed Lf by membrane ion-exchange chromatography and were purified by reverse-phase high-pressure liquid chromatography (HPLC). They were characterized by N-terminal Edman sequencing, mass spectrometry, and antibacterial activity determination. Pure lactoferricin, prepared from pepsin-hydrolyzed Lf, was purified by standard chromatography techniques. This peptide was analyzed against a number of gram-positive and gram-negative bacteria before and after reduction of its disulfide bond or cleavage after its single methionine residue and was found to inhibit the growth of all the test bacteria at a concentration of 8 microM or less. Subfragments of lactoferricin were isolated from reduced and cleaved peptide by reverse-phase HPLC. Subfragment 1 (residues 1 to 10) was active against most of the test microorganisms at concentrations of 10 to 50 microM. Subfragment 2 (residues 11 to 26) was active against only a few microorganisms at concentrations up to 100 microM. These antibacterial studies indicate that the activity of lactoferricin is mainly, but not wholly, due to its N-terminal region. PMID:8980754

  11. Antiparasitic activity of the microalgae Cladophora crispata against ...

    African Journals Online (AJOL)

    SAM

    2014-07-23

    Jul 23, 2014 ... Water samples were collected from river in the northern of Basrah, and cultured in chu-10 medium. ... substances belong to groups of alkaloids, peptides, tannins .... (ethanol absolute with 2% acetic acid) for 24 h in a continuous extraction by soxhlet ..... methanol extracts of brown algae Ishige okamurae, F.

  12. Machine learning-enabled discovery and design of membrane-active peptides.

    Science.gov (United States)

    Lee, Ernest Y; Wong, Gerard C L; Ferguson, Andrew L

    2017-07-08

    Antimicrobial peptides are a class of membrane-active peptides that form a critical component of innate host immunity and possess a diversity of sequence and structure. Machine learning approaches have been profitably employed to efficiently screen sequence space and guide experiment towards promising candidates with high putative activity. In this mini-review, we provide an introduction to antimicrobial peptides and summarize recent advances in machine learning-enabled antimicrobial peptide discovery and design with a focus on a recent work Lee et al. Proc. Natl. Acad. Sci. USA 2016;113(48):13588-13593. This study reports the development of a support vector machine classifier to aid in the design of membrane active peptides. We use this model to discover membrane activity as a multiplexed function in diverse peptide families and provide interpretable understanding of the physicochemical properties and mechanisms governing membrane activity. Experimental validation of the classifier reveals it to have learned membrane activity as a unifying signature of antimicrobial peptides with diverse modes of action. Some of the discriminating rules by which it performs classification are in line with existing "human learned" understanding, but it also unveils new previously unknown determinants and multidimensional couplings governing membrane activity. Integrating machine learning with targeted experimentation can guide both antimicrobial peptide discovery and design and new understanding of the properties and mechanisms underpinning their modes of action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Prediction of antibacterial activity from physicochemical properties of antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Manuel N Melo

    Full Text Available Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM, which conciliates the two types of observations.

  14. Killing of trypanosomatid parasites by a modified bovine host defense peptide, BMAP-18.

    Directory of Open Access Journals (Sweden)

    Lee R Haines

    Full Text Available BACKGROUND: Tropical diseases caused by parasites continue to cause socioeconomic devastation that reverberates worldwide. There is a growing need for new control measures for many of these diseases due to increasing drug resistance exhibited by the parasites and problems with drug toxicity. One new approach is to apply host defense peptides (HDP; formerly called antimicrobial peptides to disease control, either to treat infected hosts, or to prevent disease transmission by interfering with parasites in their insect vectors. A potent anti-parasite effector is bovine myeloid antimicrobial peptide-27 (BMAP-27, a member of the cathelicidin family. Although BMAP-27 is a potent inhibitor of microbial growth, at higher concentrations it also exhibits cytotoxicity to mammalian cells. We tested the anti-parasite activity of BMAP-18, a truncated peptide that lacks the hydrophobic C-terminal sequence of the BMAP-27 parent molecule, an alteration that confers reduced toxicity to mammalian cells. METHODOLOGY/PRINCIPAL FINDINGS: BMAP-18 showed strong growth inhibitory activity against several species and life cycle stages of African trypanosomes, fish trypanosomes and Leishmania parasites in vitro. When compared to native BMAP-27, the truncated BMAP-18 peptide showed reduced cytotoxicity on a wide variety of mammalian and insect cells and on Sodalis glossindius, a bacterial symbiont of the tsetse vector. The fluorescent stain rhodamine 123 was used in immunofluorescence microscopy and flow cytometry experiments to show that BMAP-18 at low concentrations rapidly disrupted mitochondrial potential without obvious alteration of parasite plasma membranes, thus inducing death by apoptosis. Scanning electron microscopy revealed that higher concentrations of BMAP-18 induced membrane lesions in the parasites as early as 15 minutes after exposure, thus killing them by necrosis. In addition to direct killing of parasites, BMAP-18 was shown to inhibit LPS

  15. Bicyclic peptide inhibitor of urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Roodbeen, Renée; Jensen, Berit Paaske; Jiang, Longguang

    2013-01-01

    The development of protease inhibitors for pharmacological intervention has taken a new turn with the use of peptide-based inhibitors. Here, we report the rational design of bicyclic peptide inhibitors of the serine protease urokinase-type plasminogen activator (uPA), based on the established...... investigated the solution structures of the bicyclic peptide by NMR spectroscopy to map possible conformations. An X-ray structure of the bicyclic-peptide-uPA complex confirmed an interaction similar to that for the previous upain-1/upain-2-uPA complexes. These physical studies of the peptide...

  16. Structure-activity relationship of CART peptide fragments

    Czech Academy of Sciences Publication Activity Database

    Maletínská, Lenka; Maixnerová, Jana; Hlaváček, Jan; Blokešová, Darja; Elbert, Tomáš; Šanda, Miloslav; Slaninová, Jiřina; Železná, Blanka

    2007-01-01

    Roč. 88, č. 4 (2007), s. 565 ISSN 0006-3525. [American Peptide Society Symposium /20./. 26.06.2007-30.06.2007, Montreal] Institutional research plan: CEZ:AV0Z40550506 Keywords : cocaine and amphetamine regulated transcript peptide * structure * activity Subject RIV: CE - Biochemistry

  17. Antioxidant Activity of Purified Active Peptide Derived from Spirulina platensis Enzymatic Hydrolysates

    OpenAIRE

    Nur Maulida Safitri; Endang Yuli Herawati; Jue Liang Hsu

    2017-01-01

    The aim of this study is to isolate the antioxidative peptide from Spirulina platensis. Peptide was obtained by proteolytic digestion, ultrafiltration, fractionation by RP-HPLC, identified by LC-MS/MS—MASCOT Distiller and measured its antioxidant activity by DPPH (2.2-Diphenyl-1-picrylhydrazyl) assay. Results showed that thermolysin was the most effective enzyme to digest this algae. The active peptide Phe-Ser-Glu-Ser-Ser-Ala-Pro-Glu-Gln-His-Tyr (m/z 1281.51) was identified and synthetized, w...

  18. Lessons from the History of Ivermectin and Other Antiparasitic Agents.

    Science.gov (United States)

    Campbell, William C

    2016-01-01

    The twentieth century's arsenal of chemical anthelmintics brought manifold improvement in human health and, more abundantly, in animal health. The benefits were not only in health per se but also in agricultural economics, livestock management, and the overall production of food and fiber to support expanding human populations. Nevertheless, there remains (due in large part to drug resistance and paucity of available vaccines) a great need for new means of controlling disease caused by parasitic worms. Prudence should persuade us to look to our past for lessons that might help in our quest for new drugs. The lessons suggested here derive from the history of ivermectin and other anthelmintics. They deal with the means of finding substances with useful antiparasitic activity and with alternative approaches to drug discovery.

  19. Activity of synthetic peptides against Chlamydia.

    Science.gov (United States)

    Donati, Manuela; Cenacchi, Giovanna; Biondi, Roberta; Papa, Valentina; Borel, Nicole; Vecchio Nepita, Edoardo; Magnino, Simone; Pasquinelli, Gianandrea; Levi, Aurora; Franco, Octavio L

    2017-11-01

    The in vitro activity of six synthetic peptides against 36 strains of Chlamydia from different origins was investigated. Clavanin MO (CMO) proved to be the most active peptide, reducing the inclusion number of all Chlamydia strains from eight different species tested by ≥50% at 10 µg mL -1 . Mastoparan L showed an equal activity against C. trachomatis, C. pneumoniae, C. suis, and C. muridarum, but did not exert any inhibitory effect against C. psittaci, C. pecorum, C. abortus, and C. avium even at 80 µg mL -1 . These data suggest that CMO could be a promising compound in the prevention and treatment of chlamydial infections. © 2017 Wiley Periodicals, Inc.

  20. Peptide-Based Selective Inhibitors of Matrix Metalloproteinase-Mediated Activities

    Directory of Open Access Journals (Sweden)

    Margaret W. Ndinguri

    2012-11-01

    Full Text Available The matrix metalloproteinases (MMPs exhibit a broad array of activities, some catalytic and some non-catalytic in nature. An overall lack of selectivity has rendered small molecule, active site targeted MMP inhibitors problematic in execution. Inhibitors that favor few or individual members of the MMP family often take advantage of interactions outside the enzyme active site. We presently focus on peptide-based MMP inhibitors and probes that do not incorporate conventional Zn2+ binding groups. In some cases, these inhibitors and probes function by binding only secondary binding sites (exosites, while others bind both exosites and the active site. A myriad of MMP mediated-activities beyond selective catalysis can be inhibited by peptides, particularly cell adhesion, proliferation, motility, and invasion. Selective MMP binding peptides comprise highly customizable, unique imaging agents. Areas of needed improvement for MMP targeting peptides include binding affinity and stability.

  1. Effect of Anti-Parasite Chemotherapeutic Agents on Immune Reactions.

    Science.gov (United States)

    1980-08-01

    observations). Similar effects of a number of other alkylating agents have been noticed (9, and personal observa- tions). Similarly, corticosteroids inhibit...Wellham, L. L., and Sigel, M. M. Ef- fect of anti-cancer chemotherapeutic agents on immune reactions of mice. I. Comparison of two nitrosoureas . J...7 D-Ri138 852 EFFECT OF ANTI-PARASITE CHEMOTHERAPEUTIC AGENTS ON i/i IMMUNE REACTIONS(U) SOUTH CAROLINA UNIV COLUMBIA DEPT OF MICROBIOLOGY AND

  2. Investigating anti-parasitic effects of plant secondary metabolites: effects on swine nematodes

    DEFF Research Database (Denmark)

    Williams, Andrew; Pena-Espinoza, Miguel Angel; Fryganas, Christos

    2014-01-01

    Organic and outdoor animal production presents challenges to animal health and productivity. In organic pig production, animals must have access to outdoor pastures which increases exposure to pathogens such as gastrointestinal nematodes. Moreover, the routine use of synthetic anti-parasitic drugs...

  3. Membrane interactions and biological activity of antimicrobial peptides from Australian scorpion.

    Science.gov (United States)

    Luna-Ramírez, Karen; Sani, Marc-Antoine; Silva-Sanchez, Jesus; Jiménez-Vargas, Juana María; Reyna-Flores, Fernando; Winkel, Kenneth D; Wright, Christine E; Possani, Lourival D; Separovic, Frances

    2014-09-01

    UyCT peptides are antimicrobial peptides isolated from the venom of the Australian scorpion. The activity of the UyCT peptides against Gram positive and Gram negative bacteria and red blood cells was determined. The membrane interactions of these peptides were evaluated by dye release (DR) of the fluorophore calcein from liposomes and isothermal titration calorimetry (ITC); and their secondary structure was determined by circular dichroism (CD). Three different lipid systems were used to mimic red blood cells, Escherichia coli and Staphylococcus aureus membranes. UyCT peptides exhibited broad spectrum antimicrobial activity with low MIC for S. aureus and multi-drug resistant Gram negative strains. Peptide combinations showed some synergy enhancing their potency but not hemolytic activity. The UyCT peptides adopted a helical structure in lipid environments and DR results confirmed that the mechanism of action is by disrupting the membrane. ITC data indicated that UyCT peptides preferred prokaryotic rather than eukaryotic membranes. The overall results suggest that UyCT peptides could be pharmaceutical leads for the treatment of Gram negative multiresistant bacterial infections, especially against Acinetobacter baumanni, and candidates for peptidomimetics to enhance their potency and minimize hemolysis. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. © 2013.

  4. Antiparasitic herbs used in west regions ofIlam province located in west of Iran

    Directory of Open Access Journals (Sweden)

    Mahmoud Bahmani

    2014-09-01

    Full Text Available Objective: To identify antiparasitic medicinal plants used by people in southern regions of Ilam province in Iran. Methods: This study was carried out using questionnaire and interview method between February 2012 and April 2013 and also by means of public resources. Along with distributing questionnaires herbarium specimens of each plant were collected and then their genus and species were determined in the Natural Resources Research Center of Ilam province. Results: A total of 19 medicinal plants used as antiparasitic plants belonged to 14 families were identified in southern regions of Ilam province. Majority of antiparasite herbs were related to Compositeae (11%, Rosaceae (11%, Solanaceae (11%, Liliaceae (11%, and Asteraceae (11% families. Aerial parts with 28% were the most plant organs used for the treatment of parasitic diseases. Results of this study showed that infusion with 83% is the most popular form of herbal medications in southern regions of Ilam province. Conclusions: The report of medicinal plants belonged to northern regions of this province may provide necessary condition for researchers to identify effective substances and to study the clinical effects claimed for these plants and their effective substances on different parasitic diseases while traditional effects of these plants are documented.

  5. Toxicity of Biologically Active Peptides and Future Safety Aspects: An Update.

    Science.gov (United States)

    Khan, Fazlullah; Niaz, Kamal; Abdollahi, Mohammad

    2018-02-18

    Peptides are fragments of proteins with significant biological activities. These peptides are encoded in the protein sequence. Initially, such peptides are inactive in their parental form, unless proteolytic enzymes are released. These peptides then exhibit various functions and play a therapeutic role in the body. Besides the therapeutic and physiological activities of peptides, the main purpose of this study was to highlight the safety aspects of peptides. We performed an organized search of available literature using PubMed, Google Scholar, Medline, EMBASE, Reaxys and Scopus databases. All the relevant citations including research and review articles about the toxicity of biologically active peptides were evaluated and gathered in this study. Biological peptides are widely used in the daily routine ranging from food production to the cosmetics industry and also they have a beneficial role in the treatment and prevention of different diseases. These peptides are manufactured by both chemical and biotechnological techniques, which show negligible toxicity, however, some naturally occurring peptides and enzymes may induce high toxicity. Depending upon the demand and expected use in the food or pharmaceutical industry, we need different approaches to acertain the safety of these peptides preferentially through in silico methods. Intestinal wall disruption, erythrocytes and lymphocytes toxicity, free radical production, enzymopathic and immunopathic tissue damage and cytotoxicity due to the consumption of peptides are the main problems in the biological system that lead to various complicated disorders. Therefore, before considering biologically active peptides for food production and for therapeutic purpose, it is first necessary to evaluate the immunogenicity and toxicities of peptides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Radiometallating antibodies and biologically active peptides

    International Nuclear Information System (INIS)

    Mercer-Smith, J.A.; Roberts, J.C.; Lewis, D.; Newmyer, S.L.; Schulte, L.D.; Burns, T.P.; Mixon, P.L.; Jeffery, A.L.; Schreyer, S.A.; Cole, D.A.; Figard, S.D.; Lennon, V.A.; Hayashi, M.; Lavallee, D.K.

    1990-01-01

    We have developed methods to radiolabel large molecules, using porphyrins as bifunctional chelating agents for radiometals. The porphyrins are substituted with an N-benzyl group to activate them for radiometallation under mild reaction conditions. Porphyrins that have on functional group for covalent attachment to other molecules cannot cause crosslinking. We have examined the labeling chemistry for antibodies, and we have also developed methods to label smaller biologically active molecules, such as autoantigenic peptides. The autoantigenic peptides, fragments of the acetylcholine receptor, are under investigation for myasthenia gravis research. The methods of covalent attachment of these bifunctional chelating agents to large molecules and the radiometallation chemistry will be discussed

  7. Anticancer activities of bovine and human lactoferricin-derived peptides

    NARCIS (Netherlands)

    Arias, M.; Hilchie, A.L.; Haney, E.F.; Bolscher, J.G.M.; Hyndman, M.E.; Hancock, R.E.W.; Vogel, H.J.

    2017-01-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits

  8. Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae.

    Science.gov (United States)

    Krstin, Sonja; Sobeh, Mansour; Braun, Markus Santhosh; Wink, Michael

    2018-04-21

    Background: Garlics and onions have been used for the treatment of diseases caused by parasites and microbes since ancient times. Trypanosomiasis and leishmaniasis are a concern in many areas of the world, especially in poor countries. Methods: Trypanosoma brucei brucei and Leishmania tarentolae were used to investigate the anti-parasitic effects of dichloromethane extracts of Allium sativum (garlic) and Allium cepa (onion) bulbs. As a confirmation of known antimicrobial activities, they were studied against a selection of G-negative, G-positive bacteria and two fungi. Chemical analyses were performed using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (LC-ESI-MS/MS). Results: Chemical analyses confirmed the abundance of several sulfur secondary metabolites in garlic and one (zwiebelane) in the onion extract. Both extracts killed both types of parasites efficiently and inhibited the Trypanosoma brucei trypanothione reductase irreversibly. In addition, garlic extract decreased the mitochondrial membrane potential in trypanosomes. Garlic killed the fungi C. albicans and C. parapsilosis more effectively than the positive control. The combinations of garlic and onion with common trypanocidal and leishmanicidal drugs resulted in a synergistic or additive effect in 50% of cases. Conclusion: The mechanism for biological activity of garlic and onion appears to be related to the amount and the profile of sulfur-containing compounds. It is most likely that vital substances inside the parasitic cell, like trypanothione reductase, are inhibited through disulfide bond formation between SH groups of vital redox compounds and sulfur-containing secondary metabolites.

  9. Intervention with Serine Protease Activity with Small Peptides

    DEFF Research Database (Denmark)

    Xu, Peng

    2015-01-01

    Serine proteases perform proteolytic reactions in many physiological and metabolic processes and have been certified as targets for therapeutics. Small peptides can be used as potent antagonists to target serine proteases and intervene with their activities. Urokinase-type plasminogen activator (u......PA) plays an important role in plasminogen activation system, which has many physiological and pathological functions and is closely associated with the metastasis of tumor cells. Based on a mono-cyclic peptidic inhibitor of murine uPA (muPA), mupain-1, which was screened out from a phage-display library...... before, we elucidated the binding and inhibitory mechanism by using multiple techniques, like X-ray crystallography, site-directed mutagenesis, isothermal titration calorimetry and surface plasmon resonance analysis. By studying the peptide-enzyme interaction, we discovered an unusual inhibitor...

  10. Studies on lactoferricin-derived Escherichia coli membrane-active peptides reveal differences in the mechanism of N-acylated versus nonacylated peptides.

    Science.gov (United States)

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-06-17

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis.

  11. Studies on Lactoferricin-derived Escherichia coli Membrane-active Peptides Reveal Differences in the Mechanism of N-Acylated Versus Nonacylated Peptides*

    Science.gov (United States)

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E.; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-01-01

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of Gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis. PMID:21515687

  12. Peptides with Dual Antimicrobial and Anticancer Activities

    Science.gov (United States)

    Felício, Mário R.; Silva, Osmar N.; Gonçalves, Sônia; Santos, Nuno C.; Franco, Octávio L.

    2017-02-01

    In recent years, the number of people suffering from cancer and multi-resistant infections has increased, such that both diseases are already seen as current and future major causes of death. Moreover, chronic infections are one of the main causes of cancer, due to the instability in the immune system that allows cancer cells to proliferate. Likewise, the physical debility associated with cancer or with anticancer therapy itself often paves the way for opportunistic infections. It is urgent to develop new therapeutic methods, with higher efficiency and lower side effects. Antimicrobial peptides (AMPs) are found in the innate immune system of a wide range of organisms. Identified as the most promising alternative to conventional molecules used nowadays against infections, some of them have been shown to have dual activity, both as antimicrobial and anticancer peptides (ACPs). Highly cationic and amphipathic, they have demonstrated efficacy against both conditions, with the number of nature-driven or synthetically designed peptides increasing year by year. With similar properties, AMPs that can also act as ACPs are viewed as future chemotherapeutic drugs, with the advantage of low propensity to resistance, which started this paradigm in the pharmaceutical market. These peptides have already been described as molecules presenting killing mechanisms at the membrane level, but also acting towards intracellular targets, which increases their success comparatively to specific one-target drugs. This review will approach the desirable characteristics of small peptides that demonstrated dual activity against microbial infections and cancer, as well as the peptides engaged in clinical trials.

  13. Marine Peptides and Their Anti-Infective Activities

    OpenAIRE

    Kang, Hee Kyoung; Seo, Chang Ho; Park, Yoonkyung

    2015-01-01

    Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal,...

  14. Antioxidant Activity of Purified Active Peptide Derived from Spirulina platensis Enzymatic Hydrolysates

    Directory of Open Access Journals (Sweden)

    Nur Maulida Safitri

    2017-08-01

    Full Text Available The aim of this study is to isolate the antioxidative peptide from Spirulina platensis. Peptide was obtained by proteolytic digestion, ultrafiltration, fractionation by RP-HPLC, identified by LC-MS/MS—MASCOT Distiller and measured its antioxidant activity by DPPH (2.2-Diphenyl-1-picrylhydrazyl assay. Results showed that thermolysin was the most effective enzyme to digest this algae. The active peptide Phe-Ser-Glu-Ser-Ser-Ala-Pro-Glu-Gln-His-Tyr (m/z 1281.51 was identified and synthetized, which exhibited 45.98 ± 1.7% at concentration 128.15 µg/mL. Therefore, S. platensis is indicated as a potential therapeutic source for combating oxidative stress.

  15. Biologically Active and Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    Carlos E. Salas

    2015-01-01

    Full Text Available Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  16. Biologically Active and Antimicrobial Peptides from Plants

    Science.gov (United States)

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  17. The role of formyl peptide receptors for immunomodulatory activities of antimicrobial peptides and peptidomimetics

    DEFF Research Database (Denmark)

    Skovbakke, Sarah Line; Holdfeldt, André; Forsman, Huamei

    2018-01-01

    In recent years, the therapeutic potential of antimicrobial peptides (AMPs) as immunomodulators has become generally accepted. Nevertheless, only very few AMP-based compounds have progressed into clinical trials. This paradox may be explained by the fact, that some of the intrinsic properties...... displaying analogous immunomodulatory activity profiles. Neutrophils play key roles in host defense as major effector cells in clearance of pathogens by phagocytosis and by regulating other processes of innate immunity as well as promotion of resolution of inflammation. Several aspects of these effects...... are correlated to their expression of formyl peptide receptors (FPRs) that have been shown to be targets of both natural and synthetic antimicrobial peptides. In the present review recent findings highlighting the role of FPRs in mediating immunomodulatory activities of natural and synthetic AMPs as well...

  18. Elaboration of natural polyfunctional preparations with antiparasitic and biostimulating properties for plant growing.

    Science.gov (United States)

    Iutynska, G O

    2012-01-01

    Producer of macrolide antibiotic avermectin Streptomyces avermitilis UCM Ac-2179 has been isolated from Ukrainian chernozem soil, its biosynthetic activity has been increased by the traditional selection and chemical mutagenesis methods. Streptomyces avermitilis UCM Ac-2179 synthesizes avermectin with the content of anti-parasitic B-components more than 40%. Addition of exogenous Na-pyruvate (1.5 mg/L) in cultural medium promotes a 2.5-fold augmentation of the avermectin synthesis. The preparation Avercom has been obtained by the method of ethanol extraction from the producer biomass. This preparation includes antibiotic avermectin and other biologically active substances: free amino acids, lipids, phytohormones. Avercom has high nematicidic activity and raises plant resistance to fungal and viral diseases. On the base of Avercom and plant growth regulators the complex preparations Actinolan and Ascoldia have been elaborated. The effectiveness of the biopreparations as nematicidic and plantstimulating means under experimental and industrial conditions was confirmed.

  19. Peptides of the constant region of antibodies display fungicidal activity.

    Directory of Open Access Journals (Sweden)

    Luciano Polonelli

    Full Text Available Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA of antibodies (Fc-peptides exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents.

  20. Peptides of the Constant Region of Antibodies Display Fungicidal Activity

    Science.gov (United States)

    Polonelli, Luciano; Ciociola, Tecla; Magliani, Walter; Zanello, Pier Paolo; D'Adda, Tiziana; Galati, Serena; De Bernardis, Flavia; Arancia, Silvia; Gabrielli, Elena; Pericolini, Eva; Vecchiarelli, Anna; Arruda, Denise C.; Pinto, Marcia R.; Travassos, Luiz R.; Pertinhez, Thelma A.; Spisni, Alberto; Conti, Stefania

    2012-01-01

    Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents. PMID:22470523

  1. Structure-activity relationship of crustacean peptide hormones.

    Science.gov (United States)

    Katayama, Hidekazu

    2016-01-01

    In crustaceans, various physiological events, such as molting, vitellogenesis, and sex differentiation, are regulated by peptide hormones. To understanding the functional sites of these hormones, many structure-activity relationship (SAR) studies have been published. In this review, the author focuses the SAR of crustacean hyperglycemic hormone-family peptides and androgenic gland hormone and describes the detailed results of our and other research groups. The future perspectives will be also discussed.

  2. Determination of antioxidant activity of bioactive peptide fractions obtained from yogurt.

    Science.gov (United States)

    Aloğlu, H Sanlıdere; Oner, Z

    2011-11-01

    In this study, physicochemical and microbiological properties of traditional and commercial yogurt samples were determined during 4 wk of storage. Proteolytic activity, which occurs during the storage period of yogurt samples, was also determined. Peptide fractions obtained from yogurts were investigated and the effect of proteolysis on peptide release during storage was determined. The antioxidant activities of peptides released from yogurt water-soluble extracts (WSE) and from HPLC fractions were determined by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. The antioxidant activity of WSE from traditional yogurt was greater than that of WSE from commercial yogurts. In analysis by the ABTS method, mean values increased from 7.697 to 8.739 mM Trolox/g in commercial yogurts, and from 10.115 to 13.182 mM Trolox/g in traditional yogurts during storage. Antioxidant activities of peptides released from HPLC fractions of selected yogurt samples increased 10 to 200 times. In all yogurt samples, the greatest antioxidant activity was shown in the F2 fraction. After further fractionation of yogurt samples, the fractions coded as F2.2, F2.3, F4.3, and F4.4 had the highest antioxidant activity values. Total antioxidant activity of yogurts was low but after purification of peptides by fractionation in HPLC, peptide fractions with high antioxidant activity were obtained. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Antimicrobial activity of GN peptides and their mode of action

    DEFF Research Database (Denmark)

    Mojsoska, Biljana; Nielsen, Hanne Mørck; Jenssen, Håvard

    2016-01-01

    peptides due to their characteristics as naturally derived compounds with antimicrobial activity. In this study, we aimed at characterizing the mechanism of action of a small set of in silico optimized peptides. Following determination of peptide activity against E. coli, S. aureus, and P. aeruginosa......Increasing prevalence of bacteria that carries resistance towards conventional antibiotics has prompted the investigation into new compounds for bacterial intervention to ensure efficient infection control in the future. One group of potential lead structures for antibiotics is antimicrobial...

  4. Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Gloria Volohonsky

    2017-01-01

    Full Text Available Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1 is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites.

  5. Synthesis of deuterium and tritium labelled m-aminolevamisole and levamisole. [Antiparasitic agents

    Energy Technology Data Exchange (ETDEWEB)

    Sangster, N.C. (Sydney Univ. (Australia). Dept. of Veterinary Pathology); Lacey, E. (Commonwealth Scientific and Industrial Research Organization, Glebe (Australia). McMaster Lab.); Than, C.; Long, M.A. (New South Wales Univ., Kensington (Australia). School of Chemistry)

    1989-09-01

    Levamisole (LEV) is a widely used anti-parasitic agent. In order to characterise the biochemical pharmacology of LEF in parasitic nematodes, ({sup 3}H)LEV and a more active analogue ({sup 3}H)m-aminolevamisole (MAL) have been prepared. Labelling was accomplished by tritiated water exchange of MAL under acid conditions. Multiple site labelling was achieved in the positions ortho and para to the amino group of MAL. Tritiation of MAL HCl in ({sup 3}H){sub 2}O was achieved at 103{sup o}C for 23 h. Crude ({sup 3}H)MAL was diazotised and deaminated to effect the synthesis of ({sup 3}H)LEV. Products of both reactions were purified by preparative h.p.l.c. and characterised by h.p.l.c., t.l.c. and mass spectrometry. (Radiochemical yield was about 15% and purity >90%.) Specific activities of 39 Ci/mmol for ({sup 3}H)MAL and 37 Ci/mmol for ({sup 3}H)LEV were obtained. (author).

  6. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin.

    Science.gov (United States)

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Mörgelin, Matthias; Albiger, Barbara; Malmsten, Martin; Schmidtchen, Artur

    2011-06-01

    Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.

  7. Selectivity in the potentiation of antibacterial activity of α-peptide/β-peptoid peptidomimetics and antimicrobial peptides by human blood plasma

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line; Knapp, Kolja M.; Franzyk, Henrik

    2013-01-01

    Antimicrobial peptides (AMPs) are promising leads for novel antibiotics; however, their activity is often compromised under physiological conditions. The purpose of this study was to determine the activity of alpha-peptide/beta-peptoid peptidomimetics and AMPs against Escherichia coli and Staphyl......Antimicrobial peptides (AMPs) are promising leads for novel antibiotics; however, their activity is often compromised under physiological conditions. The purpose of this study was to determine the activity of alpha-peptide/beta-peptoid peptidomimetics and AMPs against Escherichia coli...... and Staphylococcus aureus in the presence of human blood-derived matrices and immune effectors. The minimum inhibitory concentration (MIC) of two peptidomimetics against E. coli decreased by up to one order of magnitude when determined in 50% blood plasma as compared to MHB media. The MIC of a membrane-active AMP......, LL-I/3, also decreased, whereas two intracellularly acting AMPs were not potentiated by plasma. Blood serum had no effect on activity against E. coli and neither matrix had an effect on activity against S. aureus. Unexpectedly, physiological concentrations of human serum albumin did not influence...

  8. Fungicidal activity of peptides encoded by immunoglobulin genes

    OpenAIRE

    Polonelli, Luciano; Ciociola, Tecla; Sperind?, Martina; Giovati, Laura; D?Adda, Tiziana; Galati, Serena; Travassos, Luiz R.; Magliani, Walter; Conti, Stefania

    2017-01-01

    Evidence from previous works disclosed the antimicrobial, antiviral, anti-tumour and/or immunomodulatory activity exerted, through different mechanisms of action, by peptides expressed in the complementarity-determining regions or even in the constant region of antibodies, independently from their specificity and isotype. Presently, we report the selection, from available databases, of peptide sequences encoded by immunoglobulin genes for the evaluation of their potential biological activitie...

  9. Glycotriazole-peptides derived from the peptide HSP1: synergistic effect of triazole and saccharide rings on the antifungal activity.

    Science.gov (United States)

    Junior, Eduardo F C; Guimarães, Carlos F R C; Franco, Lucas L; Alves, Ricardo J; Kato, Kelly C; Martins, Helen R; de Souza Filho, José D; Bemquerer, Marcelo P; Munhoz, Victor H O; Resende, Jarbas M; Verly, Rodrigo M

    2017-08-01

    This work proposes a strategy that uses solid-phase peptide synthesis associated with copper(I)-catalyzed azide alkyne cycloaddition reaction to promote the glycosylation of an antimicrobial peptide (HSP1) containing a carboxyamidated C-terminus (HSP1-NH 2 ). Two glycotriazole-peptides, namely [p-Glc-trz-G 1 ]HSP1-NH 2 and [p-GlcNAc-trz-G 1 ]HSP1-NH 2 , were prepared using per-O-acetylated azide derivatives of glucose and N-acetylglucosamine in the presence of copper(II) sulfate pentahydrate (CuSO 4 ·5H 2 O) and sodium ascorbate as a reducing agent. In order to investigate the synergistic action of the carbohydrate motif linked to the triazole-peptide structure, a triazole derivative [trz-G 1 ]HSP1-NH 2 was also prepared. A set of biophysical approaches such as DLS, Zeta Potential, SPR and carboxyfluorescein leakage from phospholipid vesicles confirmed higher membrane disruption and lytic activities as well as stronger peptide-LUVs interactions for the glycotriazole-peptides when compared to HSP1-NH 2 and to its triazole derivative, which is in accordance with the performed biological assays: whereas HSP1-NH 2 presents relatively low and [trz-G 1 ]HSP1-NH 2 just moderate fungicidal activity, the glycotriazole-peptides are significantly more effective antifungal agents. In addition, the glycotriazole-peptides and the triazole derivative present strong inhibition effects on ergosterol biosynthesis in Candida albicans, when compared to HSP1-NH 2 alone. In conclusion, the increased fungicidal activity of the glycotriazole-peptides seems to be the result of (A) more pronounced membrane-disruptive properties, which is related to the presence of a saccharide ring, together with (B) the inhibition of ergosterol biosynthesis, which seems to be related to the presence of both the monosaccharide and the triazole rings.

  10. Alkanediamide-Linked Bisbenzamidines Are Promising Antiparasitic Agents

    Directory of Open Access Journals (Sweden)

    Jean J. Vanden Eynde

    2016-04-01

    Full Text Available A series of 15 alkanediamide-linked bisbenzamidines and related analogs was synthesized and tested in vitro against two Trypanosoma brucei (T.b. subspecies: T.b. brucei and T.b. rhodesiense, Trypanosoma cruzi, Leishmania donovani and two Plasmodium falciparum subspecies: a chloroquine-sensitive strain (NF54 and a chloroquine-resistant strain (K1. The in vitro cytotoxicity was determined against rat myoblast cells (L6. Seven compounds (5, 6, 10, 11, 12, 14, 15 showed high potency against both strains of T. brucei and P. falciparum with the inhibitory concentrations for 50% (IC50 in the nanomolar range (IC50 = 1–96 nM. None of the tested derivatives was significantly active against T. cruzi or L. donovani. Three of the more potent compounds (5, 6, 11 were evaluated in vivo in mice infected with the drug-sensitive (Lab 110 EATRO and KETRI 2002 or drug-resistant (KETRI 2538 and KETRI 1992 clinical isolates of T. brucei. Compounds 5 and 6 were highly effective in curing mice infected with the drug-sensitive strains, including a drug-resistant strain KETRI 2538, but were ineffective against KETRI 1992. Thermal melting of DNA and molecular modeling studies indicate AT-rich DNA sequences as possible binding sites for these compounds. Several of the tested compounds are suitable leads for the development of improved antiparasitic agents.

  11. The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.

    Science.gov (United States)

    Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R

    2016-05-01

    The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.

  12. Anticancer Activity of Bacterial Proteins and Peptides.

    Science.gov (United States)

    Karpiński, Tomasz M; Adamczak, Artur

    2018-04-30

    Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.

  13. Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity.

    Science.gov (United States)

    Kim, Young-Min; Kim, Nam-Hong; Lee, Jong-Wan; Jang, Jin-Sun; Park, Yung-Hoon; Park, Seong-Cheol; Jang, Mi-Kyeong

    2015-07-31

    An antimicrobial peptide (AMP), Hn-Mc, was designed by combining the N-terminus of HPA3NT3 and the C-terminus of melittin. This chimeric AMP exhibited potent antibacterial activity with low minimal inhibitory concentrations (MICs), ranging from 1 to 2 μM against four drug-susceptible bacteria and ten drug-resistant bacteria. Moreover, the hemolysis and cytotoxicity was reduced significantly compared to those of the parent peptides, highlighting its high cell selectivity. The morphological changes in the giant unilamellar vesicles and bacterial cell surfaces caused by the Hn-Mc peptide suggested that it killed the microbial cells by damaging the membrane envelope. An in vivo study also demonstrated the antibacterial activity of the Hn-Mc peptide in a mouse model infected with drug-resistant bacteria. In addition, the chimeric peptide inhibited the expression of lipopolysaccharide (LPS)-induced cytokines in RAW 264.7 cells by preventing the interaction between LPS and Toll-like receptors. These results suggest that this chimeric peptide is an antimicrobial and anti-inflammatory candidate as a pharmaceutic agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.

    Science.gov (United States)

    Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2012-06-01

    Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Orally active-targeted drug delivery systems for proteins and peptides.

    Science.gov (United States)

    Li, Xiuying; Yu, Miaorong; Fan, Weiwei; Gan, Yong; Hovgaard, Lars; Yang, Mingshi

    2014-09-01

    In the past decade, extensive efforts have been devoted to designing 'active targeted' drug delivery systems (ATDDS) to improve oral absorption of proteins and peptides. Such ATDDS enhance cellular internalization and permeability of proteins and peptides via molecular recognition processes such as ligand-receptor or antigen-antibody interaction, and thus enhance drug absorption. This review focuses on recent advances with orally ATDDS, including ligand-protein conjugates, recombinant ligand-protein fusion proteins and ligand-modified carriers. In addition to traditional intestinal active transport systems of substrates and their corresponding receptors, transporters and carriers, new targets such as intercellular adhesion molecule-1 and β-integrin are also discussed. ATDDS can improve oral absorption of proteins and peptides. However, currently, no clinical studies on ATDDS for proteins and peptides are underway, perhaps due to the complexity and limited knowledge of transport mechanisms. Therefore, more research is warranted to optimize ATDDS efficiency.

  16. Quantitative Structure-Activity Relationships and Docking Studies of Calcitonin Gene-Related Peptide Antagonists

    DEFF Research Database (Denmark)

    Jenssen, Håvard; Mehrabian, Mohadeseh; Kyani, Anahita

    2012-01-01

    Defining the role of calcitonin gene-related peptide in migraine pathogenesis could lead to the application of calcitonin gene-related peptide antagonists as novel migraine therapeutics. In this work, quantitative structure-activity relationship modeling of biological activities of a large range...... of calcitonin gene-related peptide antagonists was performed using a panel of physicochemical descriptors. The computational studies evaluated different variable selection techniques and demonstrated shuffling stepwise multiple linear regression to be superior over genetic algorithm-multiple linear regression....... The linear quantitative structure-activity relationship model revealed better statistical parameters of cross-validation in comparison with the non-linear support vector regression technique. Implementing only five peptide descriptors into this linear quantitative structure-activity relationship model...

  17. The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species.

    Science.gov (United States)

    Zhao, Yuefang; Niu, Congwei; Wen, Xin; Xi, Zhen

    2013-04-15

    Acetohydroxyacid synthases (AHASs), which catalyze the first step in the biosynthesis of branched-chain amino acids, are composed of a catalytic subunit (CSU) and a regulatory subunit (RSU). The CSU harbors the catalytic site, and the RSU is responsible for the activation and feedback regulation of the CSU. Previous results from Chipman and co-workers and our lab have shown that heterologous activation can be achieved among isozymes of Escherichia coli AHAS. It would be interesting to find the minimum peptide of ilvH (the RSU of E. coli AHAS III) that could activate other E. coli CSUs, or even those of ## species. In this paper, C-terminal, N-terminal, and C- and N-terminal truncation mutants of ilvH were constructed. The minimum peptide to activate ilvI (the CSU of E. coli AHAS III) was found to be ΔN 14-ΔC 89. Moreover, this peptide could not only activate its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana plumbaginifolia. However, this peptide totally lost its ability for feedback regulation by valine, thus suggesting different elements for enzymatic activation and feedback regulation. Additionally, the apparent dissociation constant (Kd ) of ΔN 14-ΔC 89 when binding CSUs of different species was found to be 9.3-66.5 μM by using microscale thermophoresis. The ability of this peptide to activate different CSUs does not correlate well with its binding ability (Kd ) to these CSUs, thus implying that key interactions by specific residues is more important than binding ability in promoting enzymatic reactions. The high sequence similarity of the peptide ΔN 14-ΔC 89 to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    Science.gov (United States)

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Irradiation-attenuated anti-parasite vaccines in ruminants. Present status and future prospects

    International Nuclear Information System (INIS)

    Taylor, M.G.

    1981-01-01

    The only commercially available irradiated anti-parasite vaccine is Dictol, the anti-Dictyocaulus viviparus vaccine, which is still being widely used in cattle 20 years after its introduction. Several other similar helminth vaccines which showed promise early in their development or use have now been abandoned for reasons both scientific and commercial. Nevertheless, there is still active interest in the development of irradiated vaccines for fascioliasis and schistosomiasis, as recent field trials have shown that irradiated metacercarial and schistosomular vaccines are effective against F. hepatica and S. bovis in cattle. There are no commercially available irradiated vaccines against protozoal diseases. Although experiments showed that irradiated vaccines were effective against Babesia bigemina and Theileria parva in cattle, interest in these has waned as other forms of live vaccines have been introduced. Vaccination against African trypanosomiasis remains an intractable problem, because of the multiplicity of naturally occurring antigenically distinct strains. (author)

  20. The effectiveness of empirical anti-parasitic treatment in returning travellers with persistent abdominal symptoms.

    Science.gov (United States)

    Nissan, Batel; Lachish, Tamar; Schwartz, Eli

    2018-01-01

    Persistent abdominal symptoms (PAS) are common among returning-travellers. In the absence of sensitive tests to identify intestinal parasites, gastrointestinal (GI) symptoms often remain a diagnostic challenge. In this study we examined the effectiveness of empirical anti-parasitic treatment in returning-travellers with PAS despite no positive stool-test. A retrospective study among returning travellers who approached the clinic between the years 2014 and 2016 with GI complaints without a positive stool-test. The empirical treatment included broad-spectrum anti-parasitic agents-oral Tinidazole and Albendazole. A follow-up questionnaire was performed at least 6 months post-treatment. A total of 102 patients responded the questionnaire-50% women; average age 31.14 (±12.20) years. The average duration of complaints before treatment was 16.52 (±30.06) months. Common GI symptoms included abdominal pain (83.3%) and diarrhoea (78.4%); 67.6% of the patients complained of extreme fatigue. Overall, 69% of the patients reported an improvement in GI symptoms, 37% of them reported full recovery within a few weeks post-treatment. Furthermore, there was an improvement in the energy level and general well-being in 68% and 70% of the patients, respectively. Only 33% of the patients reported minor side effects related to the treatment. The improvement in GI symptoms, energy level and general well-being shortly after anti-parasitic treatment justifies this empirical approach in returning-travellers with PAS despite negative stool-tests. The association between fatigue and PAS post-travel and the improvement in both as a response to treatment defines fatigue as part of a new syndrome-'Post-travel fatigue and abdominal symptoms'. © International Society of Travel Medicine, 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  1. Dual anti-inflammatory and anti-parasitic action of topical ivermectin 1% in papulopustular rosacea.

    Science.gov (United States)

    Schaller, M; Gonser, L; Belge, K; Braunsdorf, C; Nordin, R; Scheu, A; Borelli, C

    2017-11-01

    Recently, therapy of rosacea with inflammatory lesions (papulopustular) has improved substantially with the approval of topical ivermectin 1% cream. It is assumed to have a dual mode of action with anti-inflammatory capacities and anti-parasitic effects against Demodex, which however has not yet been demonstrated in vivo. To find scientific rationale for the dual anti-inflammatory and anti-parasitic mode of action of topical ivermectin 1% cream in patients with rosacea. A monocentric pilot study was performed including 20 caucasion patients with moderate to severe rosacea, as assessed by investigator global assessment (IGA score ≥3) and a Demodex density ≥15/cm 2 . Patients were treated with topical ivermectin 1% cream once daily (Soolantra ® ) for ≥12 weeks. The density of Demodex mites was assessed with skin surface biopsies. Expression of inflammatory and immune markers was evaluated with RT-PCR and by immunofluorescence staining. The mean density of mites was significantly decreased at week 6 and week 12 (P < 0.001). The gene expression levels of IL-8, LL-37, HBD3, TLR4 and TNF-α were downregulated at both time points. Reductions in gene expression were significant for LL-37, HBD3 and TNF-α at both follow-up time points and at week 12 for TLR4 (all P < 0.05). Reduced LL-37 expression (P < 0.05) and IL-8 expression were confirmed on the protein level by immunofluorescence staining. All patients improved clinically, and 16 of 20 patients reached therapeutic success defined as IGA score ≤1. Topical ivermectin 1% cream acts by a dual, anti-inflammatory and anti-parasitic mode of action against rosacea by killing Demodex spp. in vivo, in addition to significantly improving clinical signs and symptoms in the skin. © 2017 European Academy of Dermatology and Venereology.

  2. Synthesis and antioxidant activity of peptide-based ebselen analogues.

    Science.gov (United States)

    Satheeshkumar, Kandhan; Mugesh, Govindasamy

    2011-04-18

    A series of di- and tripeptide-based ebselen analogues has been synthesized. The compounds were characterized by (1)H, (13)C, and (77)Se NMR spectroscopy and mass spectral techniques. The glutathione peroxidase (GPx)-like antioxidant activity has been studied by using H(2)O(2) , tert-butyl hydroperoxide (tBuOOH), and cumene hydroperoxide (Cum-OOH) as substrates, and glutathione (GSH) as a cosubstrate. Although all the peptide-based compounds have a selenazole ring similar to that of ebselen, the GPx activity of these compounds highly depends on the nature of the peptide moiety attached to the nitrogen atom of the selenazole ring. It was observed that the introduction of a phenylalanine (Phe) amino acid residue in the N-terminal reduces the activity in all three peroxide systems. On the other hand, the introduction of aliphatic amino acid residues such as valine (Val) significantly enhances the GPx activity of the ebselen analogues. The difference in the catalytic activity of dipeptide-based ebselen derivatives can be ascribed mainly to the change in the reactivity of these compounds toward GSH and peroxide. Although the presence of the Val-Ala-CO(2) Me moiety facilitates the formation of a catalytically active selenol species, the reaction of ebselen analogues that has a Phe-Ile-CO(2) Me residue with GSH does not generate the corresponding selenol. To understand the antioxidant activity of the peptide-based ebselen analogues in the absence of GSH, these compounds were studied for their ability to inhibit peroxynitrite (PN)-mediated nitration of bovine serum albumin (BSA) and oxidation of dihydrorhodamine 123. In contrast to the GPx activity, the PN-scavenging activity of the Phe-based peptide analogues was found to be comparable to that of the Val-based compounds. However, the introduction of an additional Phe residue to the ebselen analogue that had a Val-Ala dipeptide significantly reduced the potency of the parent compound in PN-mediated nitration. Copyright

  3. Peptides actively transported across the tympanic membrane: Functional and structural properties.

    Directory of Open Access Journals (Sweden)

    Arwa Kurabi

    Full Text Available Otitis media (OM is the most common infectious disease of children under six, causing more antibiotic prescriptions and surgical procedures than any other pediatric condition. By screening a bacteriophage (phage library genetically engineered to express random peptides on their surfaces, we discovered unique peptides that actively transport phage particles across the intact tympanic membrane (TM and into the middle ear (ME. Herein our goals were to characterize the physiochemical peptide features that may underlie trans-TM phage transport; assess morphological and functional effects of phage peptides on the ME and inner ear (IE; and determine whether peptide-bearing phage transmigrate from the ME into the IE. Incubation of five peptide-bearing phage on the TM for over 4hrs resulted in demonstrably superior transport of one peptide, in level and in exponential increase over time. This suggests a preferred peptide motif for TM active transport. Functional and structural comparisons revealed unique features of this peptide: These include a central lysine residue, isoelectric point of 0.0 at physiological pH and a hydrophobic C-terminus. When the optimal peptide was applied to the TM independent of phage, similar transport was observed, indicating that integration into phage is not required. When 109 particles of the four different trans-TM phage were applied directly into the ME, no morphological effects were detected in the ME or IE when compared to saline or wild-type (WT phage controls. Comparable, reversible hearing loss was observed for saline controls, WT phage and trans-TM peptide phage, suggesting a mild conductive hearing loss due to ME fluid. Perilymph titers after ME incubation established that few copies of trans-TM peptide phage crossed into the IE. The results suggest that, within the parameters tested, trans-TM peptides are safe and could be used as potential agents for noninvasive delivery of drugs, particles and gene therapy

  4. Improved proteolytic stability and potent activity against Leishmania infantum trypanothione reductase of α/β-peptide foldamers conjugated to cell-penetrating peptides.

    Science.gov (United States)

    de Lucio, Héctor; Gamo, Ana María; Ruiz-Santaquiteria, Marta; de Castro, Sonia; Sánchez-Murcia, Pedro A; Toro, Miguel A; Gutiérrez, Kilian Jesús; Gago, Federico; Jiménez-Ruiz, Antonio; Camarasa, María-José; Velázquez, Sonsoles

    2017-11-10

    The objective of the current study was to enhance the proteolytic stability of peptide-based inhibitors that target critical protein-protein interactions at the dimerization interface of Leishmania infantum trypanothione reductase (Li-TryR) using a backbone modification strategy. To achieve this goal we carried out the synthesis, proteolytic stability studies and biological evaluation of a small library of α/β 3 -peptide foldamers of different length (from 9-mers to 13-mers) and different α→β substitution patterns related to prototype linear α-peptides. We show that several 13-residue α/β 3 -peptide foldamers retain inhibitory potency against the enzyme (in both activity and dimerization assays) while they are far less susceptible to proteolytic degradation than an analogous α-peptide. The strong dependence of the binding affinities for Li-TryR on the length of the α,β-peptides is supported by theoretical calculations on conformational ensembles of the resulting complexes. The conjugation of the most proteolytically stable α/β-peptide with oligoarginines results in a molecule with potent activity against L. infantum promastigotes and amastigotes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Sex peptides and MIPs can activate the same G protein-coupled receptor.

    Science.gov (United States)

    Vandersmissen, Hans Peter; Nachman, Ronald J; Vanden Broeck, Jozef

    2013-07-01

    In many animal species, copulation elicits a number of physiological and behavioral changes in the female partner. In Drosophila melanogaster, the main molecular effector of these physiological responses has been identified as sex peptide (SP). The sex peptide receptor (SPR) has been characterized and recently, its activation by Drosophila myoinhibiting peptides (MIPs)-in addition to SP-has been demonstrated. The myoinhibiting peptides are members of a conserved peptide family, also known as B-type allatostatins, which generally feature the C-terminal motif -WX6Wamide. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Isolation of biologically active peptides from the venom of Japanese carpenter bee, Xylocopa appendiculata.

    Science.gov (United States)

    Kawakami, Hiroko; Goto, Shin G; Murata, Kazuya; Matsuda, Hideaki; Shigeri, Yasushi; Imura, Tomohiro; Inagaki, Hidetoshi; Shinada, Tetsuro

    2017-01-01

    Mass spectrometry-guided venom peptide profiling is a powerful tool to explore novel substances from venomous animals in a highly sensitive manner. In this study, this peptide profiling approach is successfully applied to explore the venom peptides of a Japanese solitary carpenter bee, Xylocopa appendiculata (Hymenoptera: Apoidea: Apidae: Anthophila: Xylocopinae: Xylocopini). Although interesting biological effects of the crude venom of carpenter bees have been reported, the structure and biological function of the venom peptides have not been elucidated yet. The venom peptide profiling of the crude venom of X. appendiculata was performed by matrix-assisted laser desorption/ionization-time of flight mass spectroscopy. The venom was purified by a reverse-phase HPLC. The purified peptides were subjected to the Edman degradation, MS/MS analysis, and/or molecular cloning methods for peptide sequencing. Biological and functional characterization was performed by circular dichroism analysis, liposome leakage assay, and antimicrobial, histamine releasing and hemolytic activity tests. Three novel peptides with m / z 16508, 1939.3, and 1900.3 were isolated from the venom of X. appendiculata . The peptide with m / z 16508 was characterized as a secretory phospholipase A 2 (PLA 2 ) homolog in which the characteristic cysteine residues as well as the active site residues found in bee PLA 2 s are highly conserved. Two novel peptides with m/z 1939.3 and m/z 1900.3 were named as Xac-1 and Xac-2, respectively. These peptides are found to be amphiphilic and displayed antimicrobial and hemolytic activities. The potency was almost the same as that of mastoparan isolated from the wasp venom. We found three novel biologically active peptides in the venom of X. appendiculata and analyzed their molecular functions, and compared their sequential homology to discuss their molecular diversity. Highly sensitive mass analysis plays an important role in this study.

  7. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8.

    Science.gov (United States)

    Wang, Xu; Zhou, Bihong; Hu, Weike; Zhao, Qing; Lin, Zhanglin

    2015-06-16

    In the last few decades, several groups have observed that proteins expressed as inclusion bodies (IBs) in bacteria could still be biologically active when terminally fused to an appropriate aggregation-prone partner such as pyruvate oxidase from Paenibacillus polymyxa (PoxB). More recently, we have demonstrated that three amphipathic self-assembling peptides, an alpha helical peptide 18A, a beta-strand peptide ELK16, and a surfactant-like peptide L6KD, have properties that induce target proteins into active IBs. We have developed an efficient protein expression and purification approach for these active IBs by introducing a self-cleavable intein molecule. In this study, the self-assembling peptide GFIL8 (GFILGFIL) with only hydrophobic residues was analyzed, and this peptide effectively induced the formation of cytoplasmic IBs in Escherichia coli when terminally attached to lipase A and amadoriase II. The protein aggregates in cells were confirmed by transmission electron microscopy analysis and retained ~50% of their specific activities relative to the native counterparts. We constructed an expression and separation coupled tag (ESCT) by incorporating an intein molecule, the Mxe GyrA intein. Soluble target proteins were successfully released from active IBs upon cleavage of the intein between the GFIL8 tag and the target protein, which was mediated by dithiothreitol. A variant of GFIL8, GFIL16 (GFILGFILGFILGFIL), improved the ESCT scheme by efficiently eliminating interference from the soluble intein-GFIL8 molecule. The yields of target proteins at the laboratory scale were 3.0-7.5 μg/mg wet cell pellet, which is comparable to the yields from similar ESCT constructs using 18A, ELK16, or the elastin-like peptide tag scheme. The all-hydrophobic self-assembling peptide GFIL8 induced the formation of active IBs in E. coli when terminally attached to target proteins. GFIL8 and its variant GFIL16 can act as a "pull-down" tag to produce purified soluble proteins with

  8. Bioorthogonal Diversification of Peptides through Selective Ruthenium(II)-Catalyzed C-H Activation.

    Science.gov (United States)

    Schischko, Alexandra; Ren, Hongjun; Kaplaneris, Nikolaos; Ackermann, Lutz

    2017-02-01

    Methods for the chemoselective modification of amino acids and peptides are powerful techniques in biomolecular chemistry. Among other applications, they enable the total synthesis of artificial peptides. In recent years, significant momentum has been gained by exploiting palladium-catalyzed cross-coupling for peptide modification. Despite major advances, the prefunctionalization elements on the coupling partners translate into undesired byproduct formation and lengthy synthetic operations. In sharp contrast, we herein illustrate the unprecedented use of versatile ruthenium(II)carboxylate catalysis for the step-economical late-stage diversification of α- and β-amino acids, as well as peptides, through chemo-selective C-H arylation under racemization-free reaction conditions. The ligand-accelerated C-H activation strategy proved water-tolerant and set the stage for direct fluorescence labelling as well as various modes of peptide ligation with excellent levels of positional selectivity in a bioorthogonal fashion. The synthetic utility of our approach is further demonstrated by twofold C-H arylations for the complexity-increasing assembly of artificial peptides within a multicatalytic C-H activation manifold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Small surfactant-like peptides can drive soluble proteins into active aggregates

    Directory of Open Access Journals (Sweden)

    Zhou Bihong

    2012-01-01

    Full Text Available Abstract Background Inactive protein inclusion bodies occur commonly in Escherichia coli (E. coli cells expressing heterologous proteins. Previously several independent groups have found that active protein aggregates or pseudo inclusion bodies can be induced by a fusion partner such as a cellulose binding domain from Clostridium cellulovorans (CBDclos when expressed in E. coli. More recently we further showed that a short amphipathic helical octadecapeptide 18A (EWLKAFYEKVLEKLKELF and a short beta structure peptide ELK16 (LELELKLKLELELKLK have a similar property. Results In this work, we explored a third type of peptides, surfactant-like peptides, for performing such a "pulling-down" function. One or more of three such peptides (L6KD, L6K2, DKL6 were fused to the carboxyl termini of model proteins including Aspergillus fumigatus amadoriase II (AMA, all three peptides were used, Bacillus subtilis lipase A (LipA, only L6KD was used, hereinafter the same, Bacillus pumilus xylosidase (XynB, and green fluorescent protein (GFP, and expressed in E. coli. All fusions were found to predominantly accumulate in the insoluble fractions, with specific activities ranging from 25% to 92% of the native counterparts. Transmission electron microscopic (TEM and confocal fluorescence microscopic analyses confirmed the formation of protein aggregates in the cell. Furthermore, binding assays with amyloid-specific dyes (thioflavin T and Cong red to the AMA-L6KD aggregate and the TEM analysis of the aggregate following digestion with protease K suggested that the AMA-L6KD aggregate may contain structures reminiscent of amyloids, including a fibril-like structure core. Conclusions This study shows that the surfactant-like peptides L6KD and it derivatives can act as a pull-down handler for converting soluble proteins into active aggregates, much like 18A and ELK16. These peptide-mediated protein aggregations might have important implications for protein aggregation in

  10. Antihypertensive activity of peptides identified in the in vitro gastrointestinal digest of pork meat.

    Science.gov (United States)

    Escudero, Elizabeth; Toldrá, Fidel; Sentandreu, Miguel Angel; Nishimura, Hitoshi; Arihara, Keizo

    2012-07-01

    This study investigated the in vivo antihypertensive activity of three novel peptides identified in the in vitro digest of pork meat. These peptides were RPR, KAPVA and PTPVP and all of them showed significant antihypertensive activity after oral administration to spontaneously hypertensive rats, RPR being the peptide with the greatest in vivo activity. To our knowledge, this is the first report showing the in vivo antihypertensive action of the three peptides from nebulin (RPR) and titin (KAPVA and PTPVP), thus confirming their reported in vitro angiotensin I-converting enzyme (ACE) inhibitory activity. These findings suggest that pork meat could constitute a source of bioactive constituents that could be utilized in functional foods or nutraceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The Potential Use of Natural and Structural Analogues of Antimicrobial Peptides in the Fight against Neglected Tropical Diseases

    Directory of Open Access Journals (Sweden)

    Lewies Angélique

    2015-08-01

    Full Text Available Recently, research into the development of new antimicrobial agents has been driven by the increase in resistance to traditional antibiotics and Emerging Infectious Diseases. Antimicrobial peptides (AMPs are promising candidates as alternatives to current antibiotics in the treatment and prevention of microbial infections. AMPs are produced by all known living species, displaying direct antimicrobial killing activity and playing an important role in innate immunity. To date, more than 2000 AMPs have been discovered and many of these exhibit broad-spectrum antibacterial, antiviral and anti-parasitic activity. Neglected tropical diseases (NTDs are caused by a variety of pathogens and are particularly wide-spread in low-income and developing regions of the world. Alternative, cost effective treatments are desperately needed to effectively battle these medically diverse diseases. AMPs have been shown to be effective against a variety of NTDs, including African trypanosomes, leishmaniosis and Chagas disease, trachoma and leprosy. In this review, the potential of selected AMPs to successfully treat a variety of NTD infections will be critically evaluated.

  12. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    Science.gov (United States)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  13. Antiparasitic antibodies occur with similar frequency in patients with clinically established multiple sclerosis with or without oligoclonal bands in the cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Fabiana Cruz Gomes da Fonseca-Papavero

    2013-08-01

    Full Text Available The "hygiene hypothesis" postulates an inverse relationship between the prevalence of parasitic infections and the frequency of multiple sclerosis (MS. Objective: It was to study whether antibodies against parasites could be demonstrated more frequently in blood serum from MS patients with oligoclonal bands (OCB than from MS patients without OCB. Methods: We studied serum samples from 164 patients who had previously been analyzed to investigate OCB. Parasitic antibodies were studied through unidimensional electrophoresis of proteins on polyacrylamide gel against Taenia antigens, searching for antiparasitic specific low molecular weight antibodies and also for antiparasitic nonspecific high molecular weight antibodies. Results: Two of the 103 patients with no evidence of OCB had antibodies of low molecular weight and 59 of them had antibodies of high molecular weight. Of the 61 patients with evidence of OCB, one showed antibodies of low molecular weight and 16 showed antibodies of high molecular weight. Conclusion: Antiparasitic antibodies are detected with similar frequency in MS patients with OCB and in MS patients without OCB.

  14. In vitro production and antifungal activity of peptide ABP-dHC-cecropin A.

    Science.gov (United States)

    Zhang, Jiaxin; Movahedi, Ali; Xu, Junjie; Wang, Mengyang; Wu, Xiaolong; Xu, Chen; Yin, Tongming; Zhuge, Qiang

    2015-04-10

    The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, testing of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve expression of this peptide in E. coli, ABP-dHC-cecropin A was cloned into a pSUMO vector and transformed into E. coli, resulting in the production of a pSUMO-ABP-dHC-cecropin A fusion protein. The soluble form of this protein was then purified by Ni-IDA chromatography, yielding a total of 496-mg protein per liter of fermentation culture. The SUMO-ABP-dHC-cecropin A fusion protein was then cleaved using a SUMO protease and re-purified by Ni-IDA chromatography, yielding a total of 158-mg recombinant ABP-dHC-cecropin A per liter of fermentation culture at a purity of ≥94%, the highest yield reported to date. Antifungal activity assays performed using this purified recombinant peptide revealed strong antifungal activity against both Candida albicans and Neurospora crassa, as well as Rhizopus, Fusarium, Alternaria, and Mucor species. Combined with previous analyses demonstrating strong antibacterial activity against a number of important bacterial pathogens, these results confirm the use of ABP-dHC-cecropin A as a broad-spectrum antimicrobial peptide, with significant therapeutic potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Antioxidant activity of yoghurt peptides: Part 2 – Characterisationof peptide fractions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Baron, Caroline; Nielsen, Nina Skall

    2010-01-01

    the peptides identified contained at least one proline residue. Some of the identified peptides included the hydrophobic amino acid residues Val or Leu at the N-terminus and Pro, His or Tyr in the amino acid sequence, which is characteristic of antioxidant peptides. In addition, the yoghurt contained...

  16. New Milk Protein-Derived Peptides with Potential Antimicrobial Activity: An Approach Based on Bioinformatic Studies

    Directory of Open Access Journals (Sweden)

    Bartłomiej Dziuba

    2014-08-01

    Full Text Available New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM, random forest (RF, artificial neural networks (ANN and discriminant analysis (DA available in the Collection of Anti-Microbial Peptides (CAMP database. Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins.

  17. Designed beta-boomerang antiendotoxic and antimicrobial peptides: structures and activities in lipopolysaccharide.

    Science.gov (United States)

    Bhunia, Anirban; Mohanram, Harini; Domadia, Prerna N; Torres, Jaume; Bhattacharjya, Surajit

    2009-08-14

    Lipopolysaccharide (LPS), an integral part of the outer membrane of Gram-negative bacteria, is involved in a variety of biological processes including inflammation, septic shock, and resistance to host-defense molecules. LPS also provides an environment for folding of outer membrane proteins. In this work, we describe the structure-activity correlation of a series of 12-residue peptides in LPS. NMR structures of the peptides derived in complex with LPS reveal boomerang-like beta-strand conformations that are stabilized by intimate packing between the two aromatic residues located at the 4 and 9 positions. This structural feature renders these peptides with a high ability to neutralize endotoxicity, >80% at 10 nM concentration, of LPS. Replacements of these aromatic residues either with Ala or with Leu destabilizes the boomerang structure with the concomitant loss of antiendotoxic and antimicrobial activities. Furthermore, the aromatic packing stabilizing the beta-boomerang structure in LPS is found to be maintained even in a truncated octapeptide, defining a structured LPS binding motif. The mode of action of the active designed peptides correlates well with their ability to perturb LPS micelle structures. Fourier transform infrared spectroscopy studies of the peptides delineate beta-type conformations and immobilization of phosphate head groups of LPS. Trp fluorescence studies demonstrated selective interactions with LPS and the depth of insertion into the LPS bilayer. Our results demonstrate the requirement of LPS-specific structures of peptides for endotoxin neutralizations. In addition, we propose that structures of these peptides may be employed to design proteins for the outer membrane.

  18. In vitro susceptibility of nematophagous fungi to antiparasitic drugs: interactions and implications for biological control

    Directory of Open Access Journals (Sweden)

    J. N. Vieira

    Full Text Available Abstract The fast anthelmintic resistance development has shown a limited efficiency in the control of animal’s endoparasitosis and has promoted research using alternative control methods. The use of chemicals in animal anthelmintic treatment, in association with nematophagous fungi used for biological control, is a strategy that has proven to be effective in reducing the nematode population density in farm animals. This study aims to verify the in vitro susceptibility of the nematophagous fungi Arthrobotrys oligospora, Duddingtonia flagrans and Paecilomyces lilacinus against the antiparasitic drugs albendazole, thiabendazole, ivermectin, levamisole and closantel by using the Minimum Inhibitory Concentration (MIC. MICs ranged between 4.0 and 0.031 µg/mL for albendazole, thiabendazole and ivermectin, between 0.937 and 0.117 µg/mL for levamisole, and between 0.625 and 0.034 µg/mL for closantel. The results showed that all antiparasitic drugs had an in vitro inhibitory effect on nematophagous fungi, which could compromise their action as agents of biological control. D. flagrans was the most susceptible species to all drugs.

  19. Enhancement of anti-tumor activity of hybrid peptide in conjugation with carboxymethyl dextran via disulfide linkers.

    Science.gov (United States)

    Gaowa, Arong; Horibe, Tomohisa; Kohno, Masayuki; Tabata, Yasuhiko; Harada, Hiroshi; Hiraoka, Masahiro; Kawakami, Koji

    2015-05-01

    To improve the anti-tumor activity of EGFR2R-lytic hybrid peptide, we prepared peptide-modified dextran conjugates with the disulfide bonds between thiolated carboxymethyl dextran (CMD-Cys) and cysteine-conjugated peptide (EGFR2R-lytic-Cys). In vitro release studies showed that the peptide was released from the CMD-s-s-peptide conjugate in a concentration-dependent manner in the presence of glutathione (GSH, 2μM-2mM). The CMD-s-s-peptide conjugate exhibited a similar cytotoxic activity with free peptide alone against human pancreatic cancer BxPC-3 cells in vitro. Furthermore, it was shown that the CMD-s-s-peptide conjugates were highly accumulated in tumor tissue in a mouse xenograft model using BxPC-3 cells, and the anti-tumor activity of the conjugate was more effective than that of the free peptide. In addition, the plasma concentrations of peptide were moderately increased and the elimination half-life of the peptide was prolonged after intravenous injection of CMD-s-s-peptide conjugates. These results demonstrated that the conjugate based on thiolated CMD polymer would be potentially useful carriers for the sustained release of the hybrid peptide in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity

    Science.gov (United States)

    Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel

    2016-02-01

    Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo.

  1. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species

    Directory of Open Access Journals (Sweden)

    Namrata Raman

    2015-08-01

    Full Text Available Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics.

  2. Anti-dengue virus serotype 2 activity and mode of action of a novel peptide.

    Science.gov (United States)

    Chew, M-F; Tham, H-W; Rajik, M; Sharifah, S H

    2015-10-01

    To identify a novel antiviral peptide against dengue virus serotype 2 (DENV-2) by screening a phage display peptide library and to evaluate its in vitro antiviral activity and mode of action. A phage display peptide library was biopanned against purified DENV-2 and resulted in the identification and selection of a peptide (peptide gg-ww) for further investigation. ELISA was performed, and peptide gg-ww was shown to possess the highest binding affinity against DENV-2. Thus, peptide gg-ww was synthesized for cytotoxicity and antiviral assays. Virus plaque reduction assay, real-time PCR and immunofluorescence assay were used to investigate the inhibitory effect of peptide gg-ww on DENV-2 infection in Vero cells. Three different assays (pre-, simultaneous and post-treatments assays) were performed to investigate the peptide's mode of action. Results indicated that peptide gg-ww possessed strong antiviral activity with a ~96% inhibition rate, which was achieved at 250 μmol l(-1) . Viral replication was inhibited during a simultaneous treatment assay, indicating that the entry of the virus was impeded by this peptide. Peptide gg-ww displayed antiviral action against DENV-2 by targeting an early stage of viral replication (i.e. during viral entry). Peptide gg-ww may represent a new therapeutic candidate for the treatment of DENV infections and is a potential candidate to be developed as a peptide drug. © 2015 The Society for Applied Microbiology.

  3. Bodipy-VAD-Fmk, a useful tool to study yeast peptide N-glycanase activity

    NARCIS (Netherlands)

    Witte, Martin D.; Descals, Carlos V.; Lavoir, Sebastiaan V.P. de; Florea, Bogdan I.; Marel, Gijsbert A. van der; Overkleeft, Herman S.

    2007-01-01

    In this paper the development of a fluorescent activity based probe, Bodipy-VAD-Fmk, for visualization of yeast peptide N-glycanase is described. The activity based probe is used to assess the efficacy of known and new chitobiose-based electrophilic traps to bind yeast peptide N-glycanase.

  4. Integrin Targeting and Toxicological Assessment of Peptide-Conjugated Liposome Delivery Systems to Activated Endothelial Cells

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Villadsen, Klaus; Østrem, Ragnhild Garborg

    2017-01-01

    constructed with the aim of targeting integrins (i.e. vitronectin and/or fibronectin receptors) on activated endothelial cells. The peptide-conjugated liposomes induced only cytotoxicity at the highest concentration in non-activated or activated endothelial cells, as well as in co-culture of endothelial cells...... and macrophages. There was unaltered secretion of cytokines following exposure of peptide-conjugated liposomes to endothelial cells, indicating that the materials were not inflammogenic. Liposomes with a peptide targeting the fibronectin receptor (integrin α5β1) were more effective in targeting of activated....... Therefore, this study demonstrates the feasibility of constructing a peptide-conjugated cationic liposome, which displays targeting to activated endothelial cells at concentrations that are not cytotoxic or inflammogenic to the cells....

  5. Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt.

    Science.gov (United States)

    Sah, B N P; Vasiljevic, T; McKechnie, S; Donkor, O N

    2014-08-01

    Search for bioactive peptides is intensifying because of the risks associated with the use of synthetic therapeutics, thus peptide liberation by lactic acid bacteria and probiotics has received a great focus. However, proteolytic capacity of these bacteria is strain specific. The study was conducted to establish proteolytic activity of Lactobacillus acidophilus (ATCC® 4356™), Lactobacillus casei (ATCC® 393™) and Lactobacillus paracasei subsp. paracasei (ATCC® BAA52™) in yogurt. Crude peptides were separated by high-speed centrifugation and tested for antioxidant and antimutagenic activities. The degree of proteolysis highly correlated with these bioactivities, and its value (11.91%) for samples containing all the cultures was double that of the control. Liberated peptides showed high radical scavenging activities with 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), IC50 1.51 and 1.63mg/ml, respectively and strong antimutagenicity (26.35%). These probiotics enhanced the generation of bioactive peptides and could possibly be commercially applied in new products, or production of novel anticancer peptides. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  6. Molecular Design, Structures, and Activity of Antimicrobial Peptide-Mimetic Polymers

    Science.gov (United States)

    Takahashi, Haruko; Palermo, Edmund F.; Yasuhara, Kazuma; Caputo, Gregory A.

    2014-01-01

    There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications. PMID:23832766

  7. Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk

    International Nuclear Information System (INIS)

    Sun, Yazhou; Zhou, Yahui; Liu, Xiao; Zhang, Fan; Yan, Linping; Chen, Ling; Wang, Xing; Ruan, Hongjie; Ji, Chenbo; Cui, Xianwei; Wang, Jiaqin

    2017-01-01

    Human milk has always been considered an ideal source of elemental nutrients to both preterm and full term infants in order to optimally develop the infant's tissues and organs. Recently, hundreds of endogenous milk peptides were identified in human milk. These peptides exhibited angiotensin-converting enzyme inhibition, immunomodulation, or antimicrobial activity. Here, we report the antimicrobial activity and mechanism of a novel type of human antimicrobial peptide (AMP), termed PDC213 (peptide derived from β-Casein 213-226 aa). PDC213 is an endogenous peptide and is present at higher levels in preterm milk than in full term milk. The inhibitory concentration curve and disk diffusion tests showed that PDC213 had obvious antimicrobial against S. aureus and Y. enterocolitica, the common nosocomial pathogens in neonatal intensive care units (NICUs). Fluorescent dye methods, electron microscopy experiments and DNA-binding activity assays further indicated that PDC213 can permeabilize bacterial membranes and cell walls rather than bind intracellular DNA to kill bacteria. Together, our results suggest that PDC213 is a novel type of AMP that warrants further investigation. - Highlights: • PDC213 is an endogenous peptide presenting higher levels in preterm milk. • PDC213 showed obvious antimicrobial against S. aereus and Y. enterocolitica. • PDC213 can permeabilize bacterial membranes and cell walls to kill bacterias. • PDC213 is a novel type of antimicrobial peptides worthy further investigation.

  8. Antimalarial Activity of Ultra-Short Peptides

    Directory of Open Access Journals (Sweden)

    María Yolanda Rios

    2009-12-01

    Full Text Available Ultra-short peptides 1-9 were designed and synthesized with phenylalanine, ornithine and proline amino acid residues and their effect on antimalarial activity was analyzed. On the basis of the IC50 data for these compounds, the effects of nature, polarity, and amino acid sequence on Plasmodium berghei schizont cultures were analyzed too. Tetrapeptides Phe-Orn-Phe-Orn (4 and Lys-Phe-Phe-Orn (5 showed a very important activity with IC50 values of 3.31 and 2.57 μM, respectively. These two tetrapeptides are candidates for subsequent in vivo assays and SARS investigations.

  9. Atrial natriuretic peptide and feeding activity patterns in rats

    Directory of Open Access Journals (Sweden)

    Oliveira M.H.A.

    1997-01-01

    Full Text Available This review presents historical data about atrial natriuretic peptide (ANP from its discovery as an atrial natriuretic factor (ANF to its role as an atrial natriuretic hormone (ANH. As a hormone, ANP can interact with the hypothalamic-pituitary-adrenal axis (HPA-A and is related to feeding activity patterns in the rat. Food restriction proved to be an interesting model to investigate this relationship. The role of ANP must be understood within a context of peripheral and central interactions involving different peptides and pathways

  10. Recommended administered activities for {sup 68}Ga-labelled peptides in paediatric nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Machado, J.S.; Beykan, S.; Lassmann, M. [University Hospital Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Herrmann, K. [University Hospital Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States)

    2016-10-15

    The aim of this study was to establish a method for determining administered activities for {sup 68}Ga-labelled peptides. Dose calculations were based on the weight-independent effective dose model proposed by the EANM paediatric dosage card for use in paediatric nuclear medicine. Previously published time-integrated activity coefficients for {sup 68}Ga-DOTATATE, {sup 68}Ga-DOTATOC and {sup 68}Ga-pentixafor were used to calculate age-independent effective doses. Consequently, the corresponding weight-dependent effective dose coefficients were rescaled according to the formalism of the EANM dosage card to determine the radiopharmaceutical class of {sup 68}Ga-labelled peptides (''multiples'') and to calculate the baseline activities based on an upper limit for administered activity (185 MBq) in an adult. All calculated normalization factors suggest that the {sup 68}Ga-labelled peptides are class ''B'' radiopharmaceuticals. The baseline activity for all compounds is 12.8 MBq. In analogy to {sup 18}F-fluoride, we recommend a minimum activity of 14 MBq. For paediatric nuclear medicine applications involving {sup 68}Ga-labelled peptides, we suggest determining administered activities based on the formalism proposed in this work. The corresponding effective doses from these procedures will remain age-independent. (orig.)

  11. Proteolytic Activity of Prostate-Specific Antigen (PSA) towards Protein Substrates and Effect of Peptides Stimulating PSA Activity

    Science.gov (United States)

    Mattsson, Johanna M.; Ravela, Suvi; Hekim, Can; Jonsson, Magnus; Malm, Johan; Närvänen, Ale; Stenman, Ulf-Håkan; Koistinen, Hannu

    2014-01-01

    Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA. PMID:25237904

  12. Vasoactive intestinal peptide and electrical activity influence neuronal survival

    International Nuclear Information System (INIS)

    Brenneman, D.E.; Eiden, L.E.

    1986-01-01

    Blockage of electrical activity in dissociated spinal cord cultures results in a significant loss of neurons during a critical period in development. Decreases in neuronal cell numbers and 125 I-labeled tetanus toxin fixation produced by electrical blockage with tetrodotoxin (TTX) were prevented by addition of vasoactive intestinal peptide (VIP) to the nutrient medium. The most effective concentration of VIP was 0.1 nM. At higher concentrations, the survival-enhancing effect of VIP on TTX-treated cultures was attenuated. Addition of the peptide alone had no significant effect on neuronal cell counts or tetanus toxin fixation. With the same experimental conditions, two closely related peptides, PHI-27 (peptide, histidyl-isoleucine amide) and secretin, were found not to increase the number of neurons in TTX-treated cultures. Interference with VIP action by VIP antiserum resulted in neuronal losses that were not significantly different from those observed after TTX treatment. These data indicate that under conditions of electrical blockade a neurotrophic action of VIP on neuronal survival can be demonstrated

  13. Antimicrobial activity of the indolicidin-derived novel synthetic peptide In-58.

    Science.gov (United States)

    Vasilchenko, A S; Vasilchenko, A V; Pashkova, T M; Smirnova, M P; Kolodkin, N I; Manukhov, I V; Zavilgelsky, G B; Sizova, E A; Kartashova, O L; Simbirtsev, A S; Rogozhin, E A; Duskaev, G K; Sycheva, M V

    2017-12-01

    Natural peptides with antimicrobial activity are extremely diverse, and peptide synthesis technologies make it possible to significantly improve their properties for specific tasks. Here, we investigate the biological properties of the natural peptide indolicidin and the indolicidin-derived novel synthetic peptide In-58. In-58 was generated by replacing all tryptophan residues on phenylalanine in D-configuration; the α-amino group in the main chain also was modified by unsaturated fatty acid. Compared with indolicidin, In-58 is more bactericidal, more resistant to proteinase K, and less toxic to mammalian cells. Using molecular physics approaches, we characterized the action of In-58 on bacterial cells at the cellular level. Also, we have found that studied peptides damage bacterial membranes. Using the Escherichia coli luminescent biosensor strain MG1655 (pcolD'::lux), we investigated the action of indolicidin and In-58 at the subcellular level. At subinhibitory concentrations, indolicidin and In-58 induced an SOS response. Our data suggest that indolicidin damages the DNA, but bacterial membrane perturbation is its principal mode of action. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  14. Volatile oils of Chinese crude medicines exhibit antiparasitic activity against human Demodex with no adverse effects in vivo.

    Science.gov (United States)

    Liu, Ji-Xin; Sun, Yan-Hong; Li, Chao-Pin

    2015-04-01

    Demodex is a type of permanent obligatory parasite, which can be found on the human body surface. Currently, drugs targeting Demodex usually result in adverse effects and have a poor therapeutic effect. Thus, the aim of the present study was to investigate the use of Chinese crude medicine volatile oils for targeting and inhibiting Demodex in vitro . The volatile oils of six Chinese crude medicines were investigated, including clove, orange fruit, Manchurian wildginger, cinnamon bark, Rhizome Alpiniae Officinarum and pricklyash peel, which were extracted using a distillation method. The exercise status of Demodex folliculorum and Demodex brevis and the antiparasitic effects of the volatile oils against the two species were observed using microscopy. A skin irritation test was used to examine the irritation intensity of the volatile oils. In addition, an acute toxicity test was utilized to observe the toxicity effects of the volatile oils on the skin. Xin Fumanling ointment was employed as a positive control to identify the therapeutic effects of the volatile oils. The results indicated that all six volatile oils were able to kill Demodex efficiently. In particular, the clove volatile oil was effective in inducing optimized anti- Demodex activity. The lethal times of the volatile oils were significantly decreased compared with the Xin Fumanling ointment (Poil did not trigger any irritation (0.2 and 0.3 points for intact and scratched skin, respectively), and had a safety equal to that of distilled water. There were not any adverse effects observed following application of the clove volatile oil on the intact or scratched skin. In conclusion, the volatile oils of Chinese crude medicines, particularly that of clove, demonstrated an evident anti- Demodex activity and were able to kill Demodex effectively and safely in vivo .

  15. Mapping membrane activity in undiscovered peptide sequence space using machine learning.

    Science.gov (United States)

    Lee, Ernest Y; Fulan, Benjamin M; Wong, Gerard C L; Ferguson, Andrew L

    2016-11-29

    There are some ∼1,100 known antimicrobial peptides (AMPs), which permeabilize microbial membranes but have diverse sequences. Here, we develop a support vector machine (SVM)-based classifier to investigate ⍺-helical AMPs and the interrelated nature of their functional commonality and sequence homology. SVM is used to search the undiscovered peptide sequence space and identify Pareto-optimal candidates that simultaneously maximize the distance σ from the SVM hyperplane (thus maximize its "antimicrobialness") and its ⍺-helicity, but minimize mutational distance to known AMPs. By calibrating SVM machine learning results with killing assays and small-angle X-ray scattering (SAXS), we find that the SVM metric σ correlates not with a peptide's minimum inhibitory concentration (MIC), but rather its ability to generate negative Gaussian membrane curvature. This surprising result provides a topological basis for membrane activity common to AMPs. Moreover, we highlight an important distinction between the maximal recognizability of a sequence to a trained AMP classifier (its ability to generate membrane curvature) and its maximal antimicrobial efficacy. As mutational distances are increased from known AMPs, we find AMP-like sequences that are increasingly difficult for nature to discover via simple mutation. Using the sequence map as a discovery tool, we find a unexpectedly diverse taxonomy of sequences that are just as membrane-active as known AMPs, but with a broad range of primary functions distinct from AMP functions, including endogenous neuropeptides, viral fusion proteins, topogenic peptides, and amyloids. The SVM classifier is useful as a general detector of membrane activity in peptide sequences.

  16. Antibody constant region peptides can display immunomodulatory activity through activation of the Dectin-1 signalling pathway.

    Directory of Open Access Journals (Sweden)

    Elena Gabrielli

    Full Text Available We previously reported that a synthetic peptide with sequence identical to a CDR of a mouse monoclonal antibody specific for difucosyl human blood group A exerted an immunomodulatory activity on murine macrophages. It was therapeutic against systemic candidiasis without possessing direct candidacidal properties. Here we demonstrate that a selected peptide, N10K, putatively deriving from the enzymatic cleavage of the constant region (Fc of human IgG(1, is able to induce IL-6 secretion and pIkB-α activation. More importantly, it causes an up-regulation of Dectin-1 expression. This leads to an increased activation of β-glucan-induced pSyk, CARD9 and pIkB-α, and an increase in the production of pro-inflammatory cytokines such as IL-6, IL-12, IL-1β and TNF-α. The increased activation of this pathway coincides with an augmented phagocytosis of non opsonized Candida albicans cells by monocytes. The findings suggest that some Fc-peptides, potentially deriving from the proteolysis of immunoglobulins, may cause an unexpected immunoregulation in a way reminiscent of innate immunity molecules.

  17. Stepwise-activable multifunctional peptide-guided prodrug micelles for cancerous cells intracellular drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing, E-mail: zhangjing@zjut.edu.cn; Li, Mengfei [Zhejiang University of Technology, College of Materials Science and Engineering (China); Yuan, Zhefan [Zhejiang University, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering (China); Wu, Dan; Chen, Jia-da; Feng, Jie, E-mail: fengjie@zjut.edu.cn [Zhejiang University of Technology, College of Materials Science and Engineering (China)

    2016-10-15

    A novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for cancerous cells intracellular drug release. Deca-lysine sequence (K{sub 10}), a type of cell-penetrating peptide, was synthesized and terminated with azido-glycine. Then a new kind of molecule, alkyne modified doxorubicin (DOX) connecting through disulfide bond (DOX-SS-alkyne), was synthesized. After coupling via Cu-catalyzed azide–alkyne cycloaddition (CuAAC) click chemistry reaction, reduction-sensitive peptide-guided prodrug was obtained. Due to the amphiphilic property of the prodrug, it can assemble to form micelles. To prevent the nanocarriers from unspecific cellular uptake, the prodrug micelles were subsequently modified with 2,3-dimethyl maleic anhydride to obtain MPPM with a negatively charged outer shell. In vitro studies showed that MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would be activated by charge reversal of the micelles via hydrolysis of acid-labile β-carboxylic amides and regeneration of K{sub 10}, which enabled efficient internalization of MPPM by tumor cells as well as following glutathione- and protease-induced drug release inside the cancerous cells. Furthermore, since the guide peptide sequences can be accurately designed and synthesized, it can be easily changed for various functions, such as targeting peptide, apoptotic peptide, even aptamers, only need to be terminated with azido-glycine. This method can be used as a template for reduction-sensitive peptide-guided prodrug for cancer therapy.Graphical abstractA novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for selective drug delivery in cancerous cells. MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would

  18. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    Directory of Open Access Journals (Sweden)

    Laura Montesinos

    Full Text Available Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.

  19. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions

    DEFF Research Database (Denmark)

    Farvin Habebullah, Sabeena; Andersen, Lisa Lystbæk; Otte, Jeanette

    2016-01-01

    This study aimed to characterise peptide fractions (>5 kDa, 3–5 kDa and fractions were dominated by Ala, Gly, Glu and Ser. The total amino acid composition had high proportions of Lys, Ala...... and Glu. The 3–5 kDa and fractions were further fractionated by size exclusion chromatography. All sub-fractions showed high Fe2+ chelating activity. The DPPH radical-scavenging activity of the 3–5 kDa fraction was exerted mainly by one sub-fraction dominated by peptides with masses below 600 Da....... The DPPH radical-scavenging activity of the fraction was exerted by sub-fractions with low molecular weight. The highest reducing power was found in a sub-fraction containing peptides rich in Arg, Tyr and Phe. Both free amino acids and low molecular weight peptides thus seemed to contribute...

  20. Activity of antimicrobial peptide mimetics in the oral cavity: II. Activity against periopathogenic biofilms and anti-inflammatory activity

    Science.gov (United States)

    Hua, J; Scott, R.W.; Diamond, G

    2011-01-01

    Whereas periodontal disease is ultimately of bacterial etiology, from multispecies biofilms of gram-negative anaerobic microorganisms, much of the deleterious effects are caused by the resultant epithelial inflammatory response. Hence, development of a treatment that combines anti-biofilm antibiotic activity with anti-inflammatory activity would be of great utility. Antimicrobial peptides (AMPs) such as defensins are naturally occurring peptides that exhibit broad-spectrum activity as well as a variety of immunomodulatory activities. Furthermore, bacteria do not readily develop resistance to these agents. However, clinical studies have suggested that they do not represent optimal candidates for exogenous therapeutic agents. Small-molecule mimetics of these AMPs exhibit similar activities to the parent peptides, in addition to having low toxicity, high stability and low cost. To determine whether AMP mimetics have the potential for treatment of periodontal disease, we examined the activity of one mimetic, mPE, against biofilm cultures of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Metabolic assays as well as culture and biomass measurement assays demonstrated that mPE exhibits potent activity against biofilm cultures of both species. Furthermore, as little as 2 µg ml−1 mPE was sufficient to inhibit interleukin-1β-induced secretion of interleukin-8 in both gingival epithelial cells and THP-1 cells. This anti-inflammatory activity is associated with a reduction in activation of nuclear factor-κB, suggesting that mPE can act both as an anti-biofilm agent in an anaerobic environment and as an anti-inflammatory agent in infected tissues. PMID:21040516

  1. Proteolytic activity of prostate-specific antigen (PSA towards protein substrates and effect of peptides stimulating PSA activity.

    Directory of Open Access Journals (Sweden)

    Johanna M Mattsson

    Full Text Available Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3 exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.

  2. Gliadin peptides induce tissue transglutaminase activation and ER-stress through Ca2+ mobilization in Caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Ivana Caputo

    Full Text Available BACKGROUND: Celiac disease (CD is an intestinal inflammatory condition that develops in genetically susceptible individuals after exposure to dietary wheat gliadin. The role of post-translational modifications of gliadin catalyzed by tissue transglutaminase (tTG seems to play a crucial role in CD. However, it remains to be established how and where tTG is activated in vivo. We have investigated whether gliadin peptides modulate intracellular Ca(2+ homeostasis and tTG activity. METHODS/PRINCIPAL FINDINGS: We studied Ca(2+ homeostasis in Caco-2 cells by single cell microfluorimetry. Under our conditions, A-gliadin peptides 31-43 and 57-68 rapidly mobilized Ca(2+ from intracellular stores. Specifically, peptide 31-43 mobilized Ca(2+ from the endoplasmic reticulum (ER and mitochondria, whereas peptide 57-68 mobilized Ca(2+ only from mitochondria. We also found that gliadin peptide-induced Ca(2+ mobilization activates the enzymatic function of intracellular tTG as revealed by in situ tTG activity using the tTG substrate pentylamine-biotin. Moreover, we demonstrate that peptide 31-43, but not peptide 57-68, induces an increase of tTG expression. Finally, we monitored the expression of glucose-regulated protein-78 and of CCAAT/enhancer binding protein-homologous protein, which are two biochemical markers of ER-stress, by real-time RT-PCR and western blot. We found that chronic administration of peptide 31-43, but not of peptide 57-68, induces the expression of both genes. CONCLUSIONS: By inducing Ca(2+ mobilization from the ER, peptide 31-43 could promote an ER-stress pathway that may be relevant in CD pathogenesis. Furthermore, peptides 31-43 and 57-68, by activating intracellular tTG, could alter inflammatory key regulators, and induce deamidation of immunogenic peptides and gliadin-tTG crosslinking in enterocytes and specialized antigen-presenting cells.

  3. Chimerization of lactoferricin and lactoferrampin peptides strongly potentiates the killing activity against Candida albicans.

    Science.gov (United States)

    Bolscher, Jan; Nazmi, Kamran; van Marle, Jan; van 't Hof, Wim; Veerman, Enno

    2012-06-01

    Bovine lactoferrin harbors 2 antimicrobial sequences (LFcin and LFampin), situated in close proximity in the N1-domain. To mimic their semi parallel configuration we have synthesized a chimeric peptide (LFchimera) in which these sequences are linked in a head-to-head fashion to the α- and ε-amino group, respectively, of a single lysine. In line with previously described bactericidal effects, this peptide was also a stronger candidacidal agent than the antimicrobial peptides LFcin17-30 and LFampin265-284, or a combination of these 2. Conditions that strongly reduced the candidacidal activities of LFcin17-30 and LFampin265-284, such as high ionic strength and energy depletion, had little influence on the activity of LFchimera. Freeze-fracture electron microscopy showed that LFchimera severely affected the membrane morphology, resulting in disintegration of the membrane bilayer and in an efflux of small and high molecular weight molecules such as ATP and proteins. The differential effects displayed by the chimeric peptide and a mixture of its constituent peptides clearly demonstrate the synergistic effect of linking these peptides in a fashion that allows a similar spatial arrangement as in the parent protein, suggesting that in bovine lactoferrrin the corresponding fragments act in concert in its candidacidal activity.

  4. Design and biological activity of β-sheet breaker peptide conjugates

    International Nuclear Information System (INIS)

    Rocha, Sandra; Cardoso, Isabel; Boerner, Hans; Pereira, Maria Carmo; Saraiva, Maria Joao; Coelho, Manuel

    2009-01-01

    The sequence LPFFD (iAβ 5 ) prevents amyloid-β peptide (Aβ) fibrillogenesis and neurotoxicity, hallmarks of Alzheimer's disease (AD), as previously demonstrated. In this study iAβ 5 was covalently linked to poly(ethylene glycol) (PEG) and the activity of conjugates was assessed and compared to the activity of the peptide alone by in vitro studies. The conjugates were characterized by MALDI-TOF. Competition binding assays established that conjugates retained the ability to bind Aβ with similar strength as iAβ 5 . Transmission electron microscopy analysis showed that iAβ 5 conjugates inhibited amyloid fibril formation, which is in agreement with binding properties observed for the conjugates towards Aβ. The conjugates were also able to prevent amyloid-induced cell death, as evaluated by activation of caspase 3. These results demonstrated that the biological activity of iAβ 5 is not affected by the pegylation process.

  5. Antimicrobial, antiparasitic and anticancer properties of Hibiscus sabdariffa (L.) and its phytochemicals: in vitro and in vivo studies.

    Science.gov (United States)

    Hassan, Sherif T S; Berchová, Kateřina; Šudomová, Miroslava

    In the last few decades, Hibiscus sabdariffa L. (Malvaceae; H. sabdariffa) has gained much attention in research field because of its potentially useful bioactivity as well as a great safety and tolerability. For decades, microbial, parasitic and cancer diseases remain a serious threat to human health and animals as well. To treat such diseases, a search for new sources such as plants that provide various bioactive compounds useful in the treatment of several physiological conditions is urgently needed, since most of the drugs currently used in the therapy have several undesirable side effects, toxicity, and drug resistance. In this paper, we aim to present an updated overview of in vitro and in vivo studies that show the significant therapeutic properties of the crude extracts and phytochemicals derived from H. sabdariffa as antimicrobial, antiparasitic, and anticancer agents. The future directions of the use of H. sabdariffa in clinical trials will be discussed. Hibiscus sabdariffa L. antimicrobial agents cancer preventive agents antiparasitic drugs natural products.

  6. Pituitary adenylate cyclase activating peptide (PACAP participates in adipogenesis by activating ERK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Tatjana Arsenijevic

    Full Text Available Pituitary adenylate cyclase activating peptide (PACAP belongs to the secretin/glucagon/vasoactive intestinal peptide (VIP family. Its action can be mediated by three different receptor subtypes: PAC1, which has exclusive affinity for PACAP, and VPAC1 and VPAC2 which have equal affinity for PACAP and VIP. We showed that all three receptors are expressed in 3T3-L1 cells throughout their differentiation into adipocytes. We established the activity of these receptors by cAMP accumulation upon induction by PACAP. Together with insulin and dexamethasone, PACAP induced adipogenesis in 3T3-L1 cell line. PACAP increased cAMP production within 15 min upon stimulation and targeted the expression and phosphorylation of MAPK (ERK1/2, strengthened by the ERK1/2 phosphorylation being partially or completely abolished by different combinations of PACAP receptors antagonists. We therefore speculate that ERK1/2 activation is crucial for the activation of CCAAT/enhancer- binding protein β (C/EBPβ.

  7. Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites.

    Science.gov (United States)

    Gomes, Eldon C Q; Godinho, Valéria M; Silva, Débora A S; de Paula, Maria T R; Vitoreli, Gislaine A; Zani, Carlos L; Alves, Tânia M A; Junior, Policarpo A S; Murta, Silvane M F; Barbosa, Emerson C; Oliveira, Jaquelline G; Oliveira, Fabio S; Carvalho, Camila R; Ferreira, Mariana C; Rosa, Carlos A; Rosa, Luiz H

    2018-05-01

    Molecular biology techniques were used to identify 218 fungi from soil samples collected from four islands of Antarctica. These consisted of 22 taxa of 15 different genera belonging to the Zygomycota, Ascomycota, and Basidiomycota. Mortierella, Antarctomyces, Pseudogymnoascus, and Penicillium were the most frequently isolated genera and Penicillium tardochrysogenum, Penicillium verrucosus, Goffeauzyma gilvescens, and Mortierella sp. 2 the most abundant taxa. All fungal isolates were cultivated using solid-state fermentation to obtain their crude extracts. Pseudogymnoascus destructans, Mortierella parvispora, and Penicillium chrysogenum displayed antiparasitic activities, whilst extracts of P. destructans, Mortierella amoeboidea, Mortierella sp. 3, and P. tardochrysogenum showed herbicidal activities. Reported as pathogenic for bats, different isolates of P. destructans exhibited trypanocidal activities and herbicidal activity, and may be a source of bioactive molecules to be considered for chemotherapy against neglected tropical diseases. The abundant presence of P. destructans in soils of the four islands gives evidence supporting that soils in the Antarctic Peninsula constitute a natural source of strains of this genus, including some P. destructans strains that are phylogenetically close to those that infect bats in North America and Europe/Palearctic Asia.

  8. Structure-activity relationship of Trp-containing analogs of the antimicrobial peptide gomesin.

    Science.gov (United States)

    Domingues, Tatiana M; Buri, Marcus V; Daffre, Sirlei; Campana, Patricia T; Riske, Karin A; Miranda, Antonio

    2014-06-01

    Gomesin (Gm) has a broad antimicrobial activity making it of great interest for development of drugs. In this study, we analyzed three Gm analogs, [Trp(1) ]-Gm, [Trp(7) ]-Gm, and [Trp(9) ]-Gm, in an attempt to gain insight into the contributions of different regions of the peptide sequence to its activity. The incorporation of the tryptophan residue in different positions has no effect on the antimicrobial and hemolytic activities of the Gm analogs in relation to Gm. Spectroscopic studies (circular dichroism, fluorescence and absorbance) of Gm and its analogs were performed in the presence of SDS, below and above its critical micelle concentration (CMC) (~8 mM), in order to monitor structural changes induced by the interaction with this anionic surfactant (0-15 mM). Interestingly, we found that the analogs interact more strongly with SDS at low concentrations (0.3-6.0 mM) than close to or above its CMC. This suggests that SDS monomers are able to cover the whole peptide, forming large detergent-peptide aggregates. On the other hand, the peptides interact differently with SDS micelles, inserting partially into the micelle core. Among the peptides, Trp in position 1 becomes more motionally-restricted in the presence of SDS, probably because this residue is located at the N-terminal region, which presents higher conformational freedom to interact stronger with SDS molecules. Trp residues in positions 7 and 9, close to and in the region of the turn of the molecule, respectively, induced a more constrained structure and the compounds cannot insert deeper into the micelle core or be completely buried by SDS monomers. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  9. Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides

    Science.gov (United States)

    van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J. A.; Tjeerdsma-van Bokhoven, Hanne L. M.; de Zoete, Marcel R.; Bikker, Floris J.; Haagsman, Henk P.

    2016-01-01

    Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives. PMID:26848845

  10. Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides.

    Directory of Open Access Journals (Sweden)

    Albert van Dijk

    Full Text Available Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11 we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS. N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives.

  11. Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation.

    Science.gov (United States)

    Ngo, Dai-Hung; Ryu, BoMi; Kim, Se-Kwon

    2014-01-15

    Skin gelatin of skate (Okamejei kenojei) was hydrolyzed using Alcalase, flavourzyme, Neutrase and protamex. It was found that the Alcalase hydrolysate exhibited the highest angiotensin-I converting enzyme (ACE) inhibitory activity. Then, Alcalase hydrolysate was further hydrolyzed with protease and separated by an ultrafiltration membrane system. Finally, two peptides responsible for ACE inhibitory activity were identified to be MVGSAPGVL (829Da) and LGPLGHQ (720Da), with IC50 values of 3.09 and 4.22μM, respectively. Moreover, the free radical-scavenging activity of the purified peptides was determined in human endothelial cells. In addition, the antioxidative mechanism of the purified peptides was evaluated by protein and gene expression levels of antioxidant enzymes. The current study demonstrated that the peptides derived from skate skin gelatin could be used in the food industry as functional ingredients with potent antihypertensive and antioxidant benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    Science.gov (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  13. Natriuretic peptides stimulate the cardiac sodium pump via NPR-C-coupled NOS activation

    DEFF Research Database (Denmark)

    William, M.; Hamilton, E.J.; Garcia, A.

    2008-01-01

    Natriuretic peptides (NPs) and their receptors (NPRs) are expressed in the heart, but their effects on myocyte function are poorly understood. Because NPRs are coupled to synthesis of cGMP, an activator of the sarcolemmal Na(+)-K(+) pump, we examined whether atrial natriuretic peptide (ANP) regul...

  14. Antioxidant, ACE-Inhibitory and antibacterial activities of Kluyveromyces marxianus protein hydrolysates and their peptide fractions

    Directory of Open Access Journals (Sweden)

    Mahta Mirzaeia

    2016-07-01

    Full Text Available Background: There has been evidence that proteins are potentially excellent source of antioxidants, antihypertensive and antimicrobial peptides, and that enzymatic hydrolysis is an effective method to release these peptides from protein molecules. The functional properties of protein hydrolysates depends on the protein substrate, the specificity of the enzymes, the conditions used during proteolysis, degree of hydrolysis, and the nature of peptides released including molecular weight, amino acid composition, and hydrophobicity. Context and purpose of this study: The biomass of Kluyveromyces marxianus was considered as a source of ACE inhibitory, antioxidant and antimicrobial peptides. Results: Autolysis and enzymatic hydrolysis were completed respectively, after 96 h and 5 h. Overall, trypsin (18.52% DH and chymotrypsin (21.59% DH treatments were successful in releasing antioxidant and ACE inhibitory peptides. Autolysate sample (39.51% DH demonstrated poor antioxidant and ACE inhibitory activity compared to trypsin and chymotrypsin hydrolysates. The chymotrypsin 3-5 kDa (301.6±22.81 μM TE/mg protein and trypsin < 3 kDa (280.16±39.16 μM TE/mg protein permeate peptide fractions showed the highest DPPH radical scavenging activity. The trypsin <3 kDa permeate peptide fraction showed the highest ABTS radical scavenging (1691.1±48.68 μM TE/mg protein and ACE inhibitory (IC50=0.03±0.001 mg/mL activities. The fraction (MW=5-10 kD obtained after autolysis treatment showed antibacterial activity against St. aureus and Lis. monocytogenes in well diffusion screening. The minimum inhibitory concentration (MIC value was 13.3 mg/mLagainst St. aureus and Lis. monocytogenes calculated by turbidimetric assay and it showed bactericidal activity against St. aureus at 21.3 mg/mL protein concentration. Conclusions: Altogether, the results of this study reveal that K. marxianus proteins contain specific peptides in their sequences which can be released by

  15. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  16. Novel haemoglobin-derived antimicrobial peptides from chicken (Gallus gallus) blood: purification, structural aspects and biological activity.

    Science.gov (United States)

    Vasilchenko, A S; Rogozhin, E A; Vasilchenko, A V; Kartashova, O L; Sycheva, M V

    2016-12-01

    To purify and characterize antimicrobial peptides derived from the acid extract of Gallus gallus blood cells. Two polypeptides (i.e. CHb-1 and CHb-2) with antibacterial activity were detected in the acidic extract of blood cells from chicken (G. gallus). The isolated peptides that possessed a potent antibacterial activity were purified using a two-step chromatography procedure that involved solid-phase extraction of a total protein/peptide extract followed by thin fractionation by reversed-phase high performance liquid chromatography (RP-HPLC). The molecular masses of the purified peptides were similar and were 4824·4 and 4825·2 Da, which have been measured by matrix-assisted laser desorption/ionization mass spectrometry (MALDI TOF MS). Their amino acid sequences were determined by Edman degradation and showed that the peptides were fully identical to the two fragments of G. gallus α-haemoglobin localized into different subunits (A and D respectively). The peptides were active in micromolar concentrations against Gram-negative Escherichia coli K12 TG1. Using the 1-N-phenylnaphthylamine, the FITC-dextran labelled probes and the live/dead staining allowed to show the hemocidin mode of action and estimate the pore size. In this study, for the first time, α-haemoglobin from chicken (G. gallus) has been investigated as a donor of the two high homologous native peptide fragments that possess potent antibacterial activity in vitro. These are membrane-active peptides and their mechanism of action against E. coli involves a toroidal pore formation. The obtained results expand the perception of the role of haemoglobin in a living system, describing it as a source of multifunction substances. Additionally, the data presented in this paper may contribute to the development of new, cost-effective, antimicrobial agents. © 2016 The Society for Applied Microbiology.

  17. Lactoferrin-derived Peptides Active towards Influenza: Identification of Three Potent Tetrapeptide Inhibitors.

    Science.gov (United States)

    Scala, Maria Carmina; Sala, Marina; Pietrantoni, Agostina; Spensiero, Antonia; Di Micco, Simone; Agamennone, Mariangela; Bertamino, Alessia; Novellino, Ettore; Bifulco, Giuseppe; Gomez-Monterrey, Isabel M; Superti, Fabiana; Campiglia, Pietro

    2017-09-06

    Bovine lactoferrin is a biglobular multifunctional iron binding glycoprotein that plays an important role in innate immunity against infections. We have previously demonstrated that selected peptides from bovine lactoferrin C-lobe are able to prevent both Influenza virus hemagglutination and cell infection. To deeper investigate the ability of lactoferrin derived peptides to inhibit Influenza virus infection, in this study we identified new bovine lactoferrin C-lobe derived sequences and corresponding synthetic peptides were synthesized and assayed to check their ability to prevent viral hemagglutination and infection. We identified three tetrapeptides endowed with broad anti-Influenza activity and able to inhibit viral infection in a concentration range femto- to picomolar. Our data indicate that these peptides may constitute a non-toxic tool for potential applications as anti-Influenza therapeutics.

  18. Prokaryotic Selectivity, Anti-endotoxic Activity and Protease Stability of Diastereomeric and Enantiomeric Analogs of Human Antimicrobial Peptide LL-37

    International Nuclear Information System (INIS)

    Nan, Yong Hai; Lee, Bongju; Shin, Song Yub

    2012-01-01

    LL-37 is the only antimicrobial peptide (AMP) of the human cathelicidin family. In addition to potent antimicrobial activity, LL-37 is known to have the potential to inhibit lipolysaccharide (LPS)-induced endotoxic effects. To provide the stability to proteolytic digestion and increase prokaryotic selectivity and/or anti-endotoxic activity of two Lys/Trp-substituted 19-meric anti-microbial peptides (a4-W1 and a4-W2) designed from IG-19 (residues 13-31 of LL-37), we synthesized the diastereomeric peptides (a4-W1-D and a4-W2-D) with D-amino acid substitution at positions 3, 7, 10, 13 and 17 of a4-W1 and a4-W2, respectively and the enantiomeric peptides (a4-W1-E and a4-W2-E) composed D-amino acids. The diastereomeric peptides exhibited the best prokaryotic selectivity and effective protease stability, but no or less anti-endotoxic activity. In contrast, the enantiomeric peptides had not only prokaryotic selectivity and anti-endotoxic activity but also protease stability. Our results suggest that the hydrophobicity and α-helicity of the peptide is important for anti-endotoxic activity. In particular, the enantiomeric peptides showed potent anti-endotoxic and LPS-neutralizing activities comparable to that of LL-37. Taken together, both a4-W1-E and a4-W2-E holds promise as a template for the development of peptide antibiotics for the treatment of endotoxic shock and sepsis

  19. Prokaryotic Selectivity, Anti-endotoxic Activity and Protease Stability of Diastereomeric and Enantiomeric Analogs of Human Antimicrobial Peptide LL-37

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Yong Hai; Lee, Bongju; Shin, Song Yub [Chosun Univ., Gwangju (Korea, Republic of)

    2012-09-15

    LL-37 is the only antimicrobial peptide (AMP) of the human cathelicidin family. In addition to potent antimicrobial activity, LL-37 is known to have the potential to inhibit lipolysaccharide (LPS)-induced endotoxic effects. To provide the stability to proteolytic digestion and increase prokaryotic selectivity and/or anti-endotoxic activity of two Lys/Trp-substituted 19-meric anti-microbial peptides (a4-W1 and a4-W2) designed from IG-19 (residues 13-31 of LL-37), we synthesized the diastereomeric peptides (a4-W1-D and a4-W2-D) with D-amino acid substitution at positions 3, 7, 10, 13 and 17 of a4-W1 and a4-W2, respectively and the enantiomeric peptides (a4-W1-E and a4-W2-E) composed D-amino acids. The diastereomeric peptides exhibited the best prokaryotic selectivity and effective protease stability, but no or less anti-endotoxic activity. In contrast, the enantiomeric peptides had not only prokaryotic selectivity and anti-endotoxic activity but also protease stability. Our results suggest that the hydrophobicity and α-helicity of the peptide is important for anti-endotoxic activity. In particular, the enantiomeric peptides showed potent anti-endotoxic and LPS-neutralizing activities comparable to that of LL-37. Taken together, both a4-W1-E and a4-W2-E holds promise as a template for the development of peptide antibiotics for the treatment of endotoxic shock and sepsis.

  20. A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone.

    Science.gov (United States)

    Pruitt, Rory N; Joe, Anna; Zhang, Weiguo; Feng, Wei; Stewart, Valley; Schwessinger, Benjamin; Dinneny, José R; Ronald, Pamela C

    2017-07-01

    The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated peptide named RaxX, which shares similarity to peptides in the PSY (plant peptide containing sulfated tyrosine) family. We hypothesize that RaxX mimics the growth-stimulating activity of PSY peptides. Root length was measured in Arabidopsis and rice treated with synthetic RaxX peptides. We also used comparative genomic analyses and reactive oxygen species burst assays to evaluate the activity of RaxX and PSY peptides. Here we found that a synthetic sulfated RaxX derivative comprising 13 residues (RaxX13-sY), highly conserved between RaxX and PSY, induces root growth in Arabidopsis and rice in a manner similar to that triggered by PSY. We identified residues that are required for activation of immunity mediated by the rice XA21 receptor but that are not essential for root growth induced by PSY. Finally, we showed that a Xanthomonas strain lacking raxX is impaired in virulence. These findings suggest that RaxX serves as a molecular mimic of PSY peptides to facilitate Xoo infection and that XA21 has evolved the ability to recognize and respond specifically to the microbial form of the peptide. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.

  1. Antibacterial activity of novel cationic peptides against clinical isolates of multi-drug resistant Staphylococcus pseudintermedius from infected dogs.

    Directory of Open Access Journals (Sweden)

    Mohamed F Mohamed

    Full Text Available Staphylococcus pseudintermedius is a major cause of skin and soft tissue infections in companion animals and has zoonotic potential. Additionally, methicillin-resistant S. pseudintermedius (MRSP has emerged with resistance to virtually all classes of antimicrobials. Thus, novel treatment options with new modes of action are required. Here, we investigated the antimicrobial activity of six synthetic short peptides against clinical isolates of methicillin-susceptible and MRSP isolated from infected dogs. All six peptides demonstrated potent anti-staphylococcal activity regardless of existing resistance phenotype. The most effective peptides were RRIKA (with modified C terminus to increase amphipathicity and hydrophobicity and WR-12 (α-helical peptide consisting exclusively of arginine and tryptophan with minimum inhibitory concentration50 (MIC50 of 1 µM and MIC90 of 2 µM. RR (short anti-inflammatory peptide and IK8 "D isoform" demonstrated good antimicrobial activity with MIC50 of 4 µM and MIC90 of 8 µM. Penetratin and (KFF3K (two cell penetrating peptides were the least effective with MIC50 of 8 µM and MIC90 of 16 µM. Killing kinetics revealed a major advantage of peptides over conventional antibiotics, demonstrating potent bactericidal activity within minutes. Studies with propidium iodide and transmission electron microscopy revealed that peptides damaged the bacterial membrane leading to leakage of cytoplasmic contents and consequently, cell death. A potent synergistic increase in the antibacterial effect of the cell penetrating peptide (KFF3K was noticed when combined with other peptides and with antibiotics. In addition, all peptides displayed synergistic interactions when combined together. Furthermore, peptides demonstrated good therapeutic indices with minimal toxicity toward mammalian cells. Resistance to peptides did not evolve after 10 passages of S. pseudintermedius at sub-inhibitory concentration. However, the MICs of amikacin

  2. Fluorescent turn-on determination of the activity of peptidases using peptide templated gold nanoclusters

    International Nuclear Information System (INIS)

    Luo, Junjun; Wang, Liqiang; Zeng, Ke; Shen, Congcong; Qian, Pin; Yang, Minghui; Rasooly, Avraham; Qu, Fengli

    2016-01-01

    The fluorescence intensity of gold nanoclusters (AuNCs) is inversely related to the length of a peptide immobilized on its surface. This finding has been exploited to design a turn-on fluorescent method for the determination of the activity of peptidase. The β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) was chosen as a model peptidase. BACE1 cleaves the peptide substrates on AuNCs, and the fluorescence intensity of the AuNCs (at exCitation/emission wavelengths of 320/405 nm) carrying the rest of the cleaved peptide is significantly higher than that of the AuNCs with uncleaved peptide. Transmission electron microscopy revealed a decrease in the size of the AuNCs which is assumed cause fluorescence enhancement. The assay was applied to the determination of BACE1 activity in spiked cell lysates, and recoveries were between 96.9 and 104.0 %. (author)

  3. Protocols to test the activity of antimicrobial peptides against the honey bee pathogen Paenibacillus larvae.

    Science.gov (United States)

    Khilnani, Jasmin C; Wing, Helen J

    2015-10-01

    Paenibacillus larvae is the causal agent of the honey bee disease American Foulbrood. Two enhanced protocols that allow the activity of antimicrobial peptides to be tested against P. larvae are presented. Proof of principle experiments demonstrate that the honey bee antimicrobial peptide defensin 1 is active in both assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia.

    Science.gov (United States)

    Delgado, R; Carlin, A; Airaghi, L; Demitri, M T; Meda, L; Galimberti, D; Baron, P; Lipton, J M; Catania, A

    1998-06-01

    Inflammatory processes contribute to neurodegenerative disease, stroke, encephalitis, and other central nervous system (CNS) disorders. Activated microglia are a source of cytokines and other inflammatory agents within the CNS and it is therefore important to control glial function in order to preserve neural cells. Melanocortin peptides are pro-opiomelanocortin-derived amino acid sequences that include alpha-melanocyte-stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH). These peptides have potent and broad anti-inflammatory effects. We tested effects of alpha-MSH (1-13), alpha-MSH (11-13), and ACTH (1-24) on production of tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) in a cultured murine microglial cell line (N9) stimulated with lipopolysaccharide (LPS) plus interferon gamma (IFN-gamma). Melanocortin peptides inhibited production of these cytokines and NO in a concentration-related fashion, probably by increasing intracellular cAMP. When stimulated with LPS + IFN-gamma, microglia increased release of alpha-MSH. Production of TNF-alpha, IL-6, and NO was greater in activated microglia after innmunoneutralization of endogenous alpha-MSH. The results suggest that alpha-MSH is an autocrine factor in microglia. Because melanocortin peptides inhibit production of pro-inflammatory mediators by activated microglia they might be useful in treatment of inflammatory/degenerative brain disorders.

  5. Antioxidant activity of a novel synthetic hexa-peptide derived from an enzymatic hydrolysate of duck skin by-products.

    Science.gov (United States)

    Lee, Seung-Jae; Cheong, Sun Hee; Kim, Yon-Suk; Hwang, Jin-Woo; Kwon, Hyuck-Ju; Kang, Seo-Hee; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2013-12-01

    A peptide was synthesized on the basis of our previous study from solid phase peptide synthesis using ASP48S (Peptron Inc.) and identified by the reverse phase high-performance liquid chromatography (HPLC) using a Vydac Everest C18 column. The molecular mass of the peptide found to be 693.90 Da, and the amino acid sequences of the peptide was Trp-Tyr-Pro-Ala-Ala-Pro. The purpose of this study was to evaluate antioxidant effects of the peptide by electron spin resonance (ESR) spectrometer, and on t-BHP-induced liver cells damage in Chang cells. The antioxidative activity of the peptide was evaluated by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, alkyl and superoxide radical scavenging activity using an ESR spectrometer. The half maximal inhibitory concentration (IC50) value of the peptide for hydroxyl, DPPH, alkyl, and superoxide radical scavenging activity were 45.2, 18.5, 31.5, and 33.4 μM, respectively. In addition, the peptide inhibited productions of cell death against t-BHP-induced liver cell damage in Chang cells. It was presumed to be peptide involved in regulating the apoptosis-related gene expression in the cell environment. The present results indicate that the peptide substantially contributes to antioxidative properties in liver cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Cellular localization of peptide hydrolases in chicken embryo tissues and influence of gamma irradiation on their activity

    Energy Technology Data Exchange (ETDEWEB)

    Khristov, D; Marinopolski, G

    1975-01-01

    Studied was the influence of chicken embryo irradiation at 600 R and 1000 R gamma rays on the activity of tissue peptide hydrolases in mitochondrial-lysosomal, microsomal and supernatant (cell hyaloplasm) cell fractions. The investigation was performed 50 to 168 hours post irradiation. The wole tissue (of the whole embryo) was examined following irradiation of 4-day-old embryos whose liver, muscle and brain tissues were post irradiation examined on day 12 and 16 of incubation. Prior to treatment, the tissues were threfold rinsed with sucrose solution to eliminate proeinase inhibitors. Lysosome membranes were destroyed by adding 0.5 % desoxycholate. It was found that: Peptide hydrolase activity of mitochondrial-lysosomal cell fractions of tissues of whole 6-day chicken embryos is 4-5 times as high as that of cell hyaloplasm. Peptide hydrolase activity of mitochondrial-lysosomal fractions of liver tissues decreases on day 18 and 19 post incubation, while the same fraction of muscle and brain tissues shows high activity. Peptide hydrolase activity of microsomal fraction and of cell hyaloplasm rises during embryonal development and exceeds the activity of liver tissue mitochondrial fraction. Peptide hydrolase activity of mitochondrial-lysosomal fraction of tissue of whole 6-day-old embryos 50 hours post irradiation is higher than the activity of non-irradiated embryos. Later the activity of this fraction diminishes and on the 168 hr post irradiation it drops below the normal. Microsomal fraction and cell hyaloplasm activity likewise show deviation from the norm. Peptide hydrolase activity of mitochondrial-lysosomal fraction of liver, muscle and brain tissue of 14 and 18-day-old embryos is higher than the control 50 hours post irradiation and then declines. The activity of mitochondrial-lysosomal fraction of embryo brain tissue changes most strikingly on irradiation, while other brain cell fractions change less compared with liver and muscle fractions.

  7. Cellular localization of peptide hydrolases in chicken embryo tissues and influence of gamma irradiation on their activity

    International Nuclear Information System (INIS)

    Khristov, D.; Marinopolski, G.

    1975-01-01

    Studied was the influence of chicken embryo irradiation at 600 R and 1000 R gamma rays on the activity of tissue peptide hydrolases in mitochondrial-lysosomal, microsomal and supernatant (cell hyaloplasm) cell fractions. The investigation was performed 50 to 168 hours post irradiation. The wole tissue (of the whole embryo) was examined following irradiation of 4-day-old embryos whose liver, muscle and brain tissues were post irradiation examined on day 12 and 16 of incubation. Prior to treatment, the tissues were threfold rinsed with sucrose solution to eliminate proeinase inhibitors. Lysosome membranes were destroyed by adding 0.5 % desoxycholate. It was found that: Peptide hydrolase activity of mitochondrial-lysosomal cell fractions of tissues of whole 6-day chicken embryos is 4-5 times as high as that of cell hyaloplasm. Peptide hydrolase activity of mitochondrial-lysosomal fractions of liver tissues decreases on day 18 and 19 post incubation, while the same fraction of muscle and brain tissues shows high activity. Peptide hydrolase activity of microsomal fraction and of cell hyaloplasm rises during embryonal development and exceeds the activity of liver tissue mitochondrial fraction. Peptide hydrolase activity of mitochondrial-lysosomal fraction of tissue of whole 6-day-old embryos 50 hours post irradiation is higher than the activity of non-irradiated embryos. Later the activity of this fraction diminishes and on the 168 hr post irradiation it drops below the normal. Microsomal fraction and cell hyaloplasm activity likewise show deviation from the norm. Peptide hydrolase activity of mitochondrial-lysosomal fraction of liver, muscle and brain tissue of 14 and 18-day-old embryos is higher than the control 50 hours post irradiation and then declines. The activity of mitochondrial-lysosomal fraction of embryo brain tissue changes most strikingly on irradiation, while other brain cell fractions change less compared with liver and muscle fractions

  8. β-Boomerang Antimicrobial and Antiendotoxic Peptides: Lipidation and Disulfide Bond Effects on Activity and Structure.

    Science.gov (United States)

    Mohanram, Harini; Bhattacharjya, Surajit

    2014-04-21

    Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS)-mediated inflammations are among some of the most  prominent health issues globally. Antimicrobial peptides (AMPs) are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules.

  9. β-Boomerang Antimicrobial and Antiendotoxic Peptides: Lipidation and Disulfide Bond Effects on Activity and Structure

    Directory of Open Access Journals (Sweden)

    Harini Mohanram

    2014-04-01

    Full Text Available Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS-mediated inflammations are among some of the most  prominent health issues globally. Antimicrobial peptides (AMPs are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules.

  10. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger.

    Science.gov (United States)

    Oude Blenke, E; Sleszynska, M; Evers, M J W; Storm, G; Martin, N I; Mastrobattista, E

    2017-02-15

    Endosomolytic peptides are often coupled to drug delivery systems to enhance endosomal escape, which is crucial for the delivery of macromolecular drugs that are vulnerable to degradation in the endolysosomal pathway. Melittin is a 26 amino acid peptide derived from bee venom that has a very high membranolytic activity. However, such lytic peptides also impose a significant safety risk when applied in vivo as they often have similar activity against red blood cells and other nontarget cell membranes. Our aim is to control the membrane-disrupting capacity of these peptides in time and space by physically constraining them to a nanocarrier surface in such a way that they only become activated when delivered inside acidic endosomes. To this end, a variety of chemical approaches for the coupling of lytic peptides to liposomes via functionalized PEG-lipids were explored, including maleimide-thiol chemistry, click-chemistry, and aldehyde-hydrazide chemistry. The latter enables reversible conjugation via a hydrazone bond, allowing for release of the peptide under endosomal conditions. By carefully choosing the conjugation site and by using a pH activated analog of the melittin peptide, lytic activity toward a model membrane is completely inhibited at physiological pH. At endosomal pH the activity is restored by hydrolysis of the acid-labile hydrazone bond, releasing the peptide in its most active, free form. Furthermore, using an analogue containing a nonhydrolyzable bond as a control, it was shown that the activity observed can be completely attributed to release of the peptide, validating dynamic covalent conjugation as a suitable strategy to maintain safety during circulation.

  11. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms.

    Science.gov (United States)

    Sánchez-Gómez, Susana; Ferrer-Espada, Raquel; Stewart, Philip S; Pitts, Betsey; Lohner, Karl; Martínez de Tejada, Guillermo

    2015-07-07

    Infections by Pseudomonas aeruginosa constitute a serious health threat because this pathogen -particularly when it forms biofilms - can acquire resistance to the majority of conventional antibiotics. This study evaluated the antimicrobial activity of synthetic peptides based on LF11, an 11-mer peptide derived from human lactoferricin against P. aeruginosa planktonic and biofilm-forming cells. We included in this analysis selected N-acylated derivatives of the peptides to analyze the effect of acylation in antimicrobial activity. To assess the efficacy of compounds against planktonic bacteria, microdilution assays to determine the minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill studies were conducted. The anti-biofilm activity of the agents was assessed on biofilms grown under static (on microplates) and dynamic (in a CDC-reactor) flow regimes. The antimicrobial activity of lipopeptides differed from that of non-acylated peptides in their killing mechanisms on planktonic and biofilm-forming cells. Thus, acylation enhanced the bactericidal activity of the parental peptides and resulted in lipopeptides that were uniformly bactericidal at their MIC. In contrast, acylation of the most potent anti-biofilm peptides resulted in compounds with lower anti-biofilm activity. Both peptides and lipopeptides displayed very rapid killing kinetics and all of them required less than 21 min to reduce 1,000 times the viability of planktonic cells when tested at 2 times their MBC. The peptides, LF11-215 (FWRIRIRR) and LF11-227 (FWRRFWRR), displayed the most potent anti-biofilm activity causing a 10,000 fold reduction in cell viability after 1 h of treatment at 10 times their MIC. At that concentration, these two compounds exhibited low citotoxicity on human cells. In addition to its bactericidal activity, LF11-227 removed more that 50 % of the biofilm mass in independent assays. Peptide LF11-215 and two of the shortest and least

  12. Influence of Dimerization of Lipopeptide Laur-Orn-Orn-Cys-NH2 and an N-terminal Peptide of Human Lactoferricin on Biological Activity.

    Science.gov (United States)

    Kamysz, Elżbieta; Sikorska, Emilia; Dawgul, Małgorzata; Tyszkowski, Rafał; Kamysz, Wojciech

    Lactoferrin (LF) is a naturally occurring antimicrobial peptide that is cleaved by pepsin to lactoferricin (LFcin). LFcin has an enhanced antimicrobial activity as compared to that of LF. Recently several hetero- and homodimeric antimicrobial peptides stabilized by a single disulfide bond linking linear polypeptide chains have been discovered. We have demonstrated that the S-S bond heterodimerization of lipopeptide Laur-Orn-Orn-Cys-NH 2 (peptide III) and the synthetic N -terminal peptide of human lactoferricin (peptide I) yields a dimer (peptide V), which is almost as microbiologically active as the more active monomer and at the same time it is much less toxic. Furthermore, it has been found that the S-S bond homodimerization of both peptide I and peptide III did not affect antimicrobial and haemolytic activity of the compounds. The homo- and heterodimerization of peptides I and III resulted in either reduction or loss of antifungal activity. This work suggests that heterodimerization of antimicrobial lipopeptides via intermolecular disulfide bond might be a powerful modification deserving consideration in the design of antimicrobial peptides.

  13. Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J. D.; Gårdsvoll, H.; Ploug, M.

    2005-01-01

    Presently different opinions exist as to the degree of scrambling of amide hydrogens in gaseous protonated peptides and proteins upon collisional activation in tandem mass spectrometry experiments. This unsettled controversy is not trivial, since only a very low degree of scrambling is tolerable...... if collision-induced dissociation (CID) should provide reliable site-specific information from (1)H/(2)H exchange experiments. We have explored a series of unique, regioselectively deuterium-labeled peptides as model systems to probe for intramolecular amide hydrogen migration under low-energy collisional...... are protected against exchange with the solvent, while the amide hydrogens of the nonbinding sequences exchange rapidly with the solvent. We have utilized such long-lived complexes to generate peptides labeled with deuterium in either the binding or nonbinding region, and the expected regioselectivity...

  14. Antibacterial activity of a newly developed peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hang eYang

    2015-12-01

    Full Text Available The global emergence of multidrug-resistant (MDR bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA was constructed by fusing the cecropin A peptide residues 1–8 (KWKLFKKI with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid could enhance the antibacterial activity of PlyA against stationary phase cells. Finally, no antibacterial activity of PlyA could be observed in some bio-matrices, such as culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified lysin with significant antibacterial activity against both logarithmic (without OMPs and stationary phase (with OMPs A. baumannii and P. aeruginosa cells in buffer, but further optimization is needed to achieve broad activity in diverse bio-matrices.

  15. Active immunizations with peptide-DC vaccines and passive transfer with antibodies protect neutropenic mice against disseminated candidiasis.

    Science.gov (United States)

    Xin, Hong

    2016-01-04

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Active Immunizations with Peptide-DC Vaccines and Passive Transfer with Antibodies Protect Neutropenic Mice against Disseminated Candidiasis

    Science.gov (United States)

    Xin, Hong

    2015-01-01

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. PMID:26620842

  17. Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities.

    Science.gov (United States)

    Lee, Kwang Sik; Kim, Bo Yeon; Yoon, Hyung Joo; Choi, Yong Soo; Jin, Byung Rae

    2016-10-01

    Bee venom contains a variety of peptide constituents that have various biological, toxicological, and pharmacological actions. However, the biological actions of secapin, a venom peptide in bee venom, remain largely unknown. Here, we provide the evidence that Asiatic honeybee (Apis cerana) secapin (AcSecapin-1) exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. The recombinant mature AcSecapin-1 peptide was expressed in baculovirus-infected insect cells. AcSecapin-1 functions as a serine protease inhibitor-like peptide that has inhibitory effects against plasmin, elastases, microbial serine proteases, trypsin, and chymotrypsin. Consistent with these functions, AcSecapin-1 inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products, thus indicating the role of AcSecapin-1 as an anti-fibrinolytic agent. AcSecapin-1 also inhibited both human neutrophil and porcine pancreatic elastases. Furthermore, AcSecapin-1 bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi and gram-positive and gram-negative bacteria. Taken together, our data demonstrated that the bee venom peptide secapin has multifunctional roles as an anti-fibrinolytic agent during fibrinolysis and an anti-microbial agent in the innate immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Driving engineering of novel antimicrobial peptides from simulations of peptide-micelle interactions

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Langham, Allison A; Kaznessis, Yiannis N

    2006-01-01

    Simulations of antimicrobial peptides in membrane mimics can provide the high resolution, atomistic picture that is necessary to decipher which sequence and structure components are responsible for activity and toxicity. With such detailed insight, engineering new sequences that are active but non...... peptides and their interaction with membrane mimics. In this article, we discuss the promise and the challenges of widely used models and detail our recent work on peptide-micelle simulations as an attractive alternative to peptide-bilayer simulations. We detail our results with two large structural...... classes of peptides, helical and beta-sheet and demonstrate how simulations can assist in engineering of novel antimicrobials with therapeutic potential....

  19. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A

    2014-04-18

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  20. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A; Kunze, Angelika; Carlsson, Nils; Altgä rde, Noomi; Svedhem, Sofia; Nordé n, Bengt

    2014-01-01

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  1. Self-assembled peptides for coating of active sulfur nanoparticles in lithium–sulfur battery

    International Nuclear Information System (INIS)

    Jewel, Yead; Yoo, Kisoo; Liu, Jin; Dutta, Prashanta

    2016-01-01

    Development of lithium–sulfur (Li–S) battery is hindered by poor cyclability due to the loss of sulfur, although Li–S battery can provide high energy density. Coating of sulfur nanoparticles can help maintain active sulfur in the cathode of Li–S battery, and hence increase the cyclability. Among myriad of coating materials, synthetic peptides are very attractive because of their spontaneous self-assembly as well as electrical conductive characteristics. In this study, we explored the use of various synthetic peptides as a coating material for sulfur nanoparticles. Atomistic simulations were carried out to identify optimal peptide structure and density for coating sulfur nanoparticles. Three different peptide models, poly-proline, poly(leucine–lysine) and poly-histidine, are selected for this study based on their peptide–peptide and peptide-sulfur interactions. Simulation results show that both poly-proline and poly(leucine–lysine) can form self-assembled coating on sulfur nanoparticles (2–20 nm) in pyrrolidinone, a commonly used solvent for cathode slurry. We also studied the structural integrity of these synthetic peptides in organic [dioxolane (DOL) and dimethoxyethane (DME)] electrolyte used in Li–S battery. Both peptides show stable structures in organic electrolyte (DOL/DME) used in Li–S battery. Furthermore, the dissolution of sulfur molecules in organic electrolyte is investigated in the absence and presence of these peptide coatings. It was found that only poly(leucine–lysine)-based peptide can most effectively suppress the sulfur loss in electrolyte, suggesting its potential applications in Li–S battery as a coating material.Graphical abstract

  2. Antibacterial and anti-inflammatory activity of a temporin B peptide analogue on an in vitro model of cystic fibrosis.

    Science.gov (United States)

    Bezzerri, Valentino; Avitabile, Concetta; Dechecchi, Maria Cristina; Lampronti, Ilaria; Borgatti, Monica; Montagner, Giulia; Cabrini, Giulio; Gambari, Roberto; Romanelli, Alessandra

    2014-10-01

    Natural peptides with antimicrobial properties are deeply investigated as tools to fight bacteria resistant to common antibiotics. Small peptides, as those belonging to the temporin family, are very attractive because their activity can easily be tuned after small modification to their primary sequence. Structure-activity studies previously reported by us allowed the identification of one peptide, analogue of temporin B, TB_KKG6A, showing, unlike temporin B, antimicrobial activity against both Gram-positive and Gram-negative bacteria. In this paper, we investigated the antimicrobial and anti-inflammatory activity of the peptide TB_KKG6A against Pseudomonas aeruginosa. Interestingly, we found that the peptide exhibits antimicrobial activity at low concentrations, being able to downregulate the pro-inflammatory chemokines and cytokines interleukin (IL)-8, IL-1β, IL-6 and tumor necrosis factor-α produced downstream infected human bronchial epithelial cells. Experiments were carried out also with temporin B, which was found to show pro-inflammatory activity. Details on the interaction between TB_KKG6A and the P. aeruginosa LPS were obtained by circular dichroism and fluorescence studies. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  3. Comparative analysis of internalisation, haemolytic, cytotoxic and antibacterial effect of membrane-active cationic peptides: aspects of experimental setup.

    Science.gov (United States)

    Horváti, Kata; Bacsa, Bernadett; Mlinkó, Tamás; Szabó, Nóra; Hudecz, Ferenc; Zsila, Ferenc; Bősze, Szilvia

    2017-06-01

    Cationic peptides proved fundamental importance as pharmaceutical agents and/or drug carrier moieties functioning in cellular processes. The comparison of the in vitro activity of these peptides is an experimental challenge and a combination of different methods, such as cytotoxicity, internalisation rate, haemolytic and antibacterial effect, is necessary. At the same time, several issues need to be addressed as the assay conditions have a great influence on the measured biological effects and the experimental setup needs to be optimised. Therefore, critical comparison of results from different assays using representative examples of cell penetrating and antimicrobial peptides was performed and optimal test conditions were suggested. Our main goal was to identify carrier peptides for drug delivery systems of antimicrobial drug candidates. Based on the results of internalisation, haemolytic, cytotoxic and antibacterial activity assays, a classification of cationic peptides is advocated. We found eight promising carrier peptides with good penetration ability of which Penetratin, Tat, Buforin and Dhvar4 peptides showed low adverse haemolytic effect. Penetratin, Transportan, Dhvar4 and the hybrid CM15 peptide had the most potent antibacterial activity on Streptococcus pneumoniae (MIC lower than 1.2 μM) and Transportan was effective against Mycobacterium tuberculosis as well. The most selective peptide was the Penetratin, where the effective antimicrobial concentration on pneumococcus was more than 250 times lower than the HC 50 value. Therefore, these peptides and their analogues will be further investigated as drug delivery systems for antimicrobial agents.

  4. Antiviral activity of the EB peptide against zoonotic poxviruses

    Directory of Open Access Journals (Sweden)

    Altmann Sharon E

    2012-01-01

    Full Text Available Abstract Background The EB peptide is a 20-mer that was previously shown to have broad spectrum in vitro activity against several unrelated viruses, including highly pathogenic avian influenza, herpes simplex virus type I, and vaccinia, the prototypic orthopoxvirus. To expand on this work, we evaluated EB for in vitro activity against the zoonotic orthopoxviruses cowpox and monkeypox and for in vivo activity in mice against vaccinia and cowpox. Findings In yield reduction assays, EB had an EC50 of 26.7 μM against cowpox and 4.4 μM against monkeypox. The EC50 for plaque reduction was 26.3 μM against cowpox and 48.6 μM against monkeypox. A scrambled peptide had no inhibitory activity against either virus. EB inhibited cowpox in vitro by disrupting virus entry, as evidenced by a reduction of the release of virus cores into the cytoplasm. Monkeypox was also inhibited in vitro by EB, but at the attachment stage of infection. EB showed protective activity in mice infected intranasally with vaccinia when co-administered with the virus, but had no effect when administered prophylactically one day prior to infection or therapeutically one day post-infection. EB had no in vivo activity against cowpox in mice. Conclusions While EB did demonstrate some in vivo efficacy against vaccinia in mice, the limited conditions under which it was effective against vaccinia and lack of activity against cowpox suggest EB may be more useful for studying orthopoxvirus entry and attachment in vitro than as a therapeutic against orthopoxviruses in vivo.

  5. Antagonistic Activity of Lactobacillus plantarum C11: Two New Two-Peptide Bacteriocins, Plantaricins EF and JK, and the Induction Factor Plantaricin A

    Science.gov (United States)

    Anderssen, Erlend L.; Diep, Dzung Bao; Nes, Ingolf F.; Eijsink, Vincent G. H.; Nissen-Meyer, Jon

    1998-01-01

    Six bacteriocinlike peptides (plantaricin A [PlnA], PlnE, PlnF, PlnJ, PlnK, and PlnN) produced by Lactobacillus plantarum C11 were detected by amino acid sequencing and mass spectrometry. Since purification to homogeneity was problematic, all six peptides were obtained by solid-phase peptide synthesis and were tested for bacteriocin activity. It was found that L. plantarum C11 produces two two-peptide bacteriocins (PlnEF and PlnJK); a strain-specific antagonistic activity was detected at nanomolar concentrations when PlnE and PlnF were combined and when PlnJ and PlnK were combined. Complementary peptides were at least 103 times more active when they were combined than when they were present individually, and optimal activity was obtained when the complementary peptides were present in approximately equal amounts. The interaction between complementary peptides was specific, since neither PlnE nor PlnF could complement PlnJ or PlnK, and none of these peptides could complement the peptides constituting the two-peptide bacteriocin lactococcin G. Interestingly, PlnA, which acts as an extracellular signal (pheromone) that triggers bacteriocin production, also possessed a strain-specific antagonistic activity. No bacteriocin activity could be detected for PlnN. PMID:9603847

  6. Structural basis for the enhanced activity of cyclic antimicrobial peptides : The case of BPC194

    NARCIS (Netherlands)

    Mika, Jacek T.; Moiset, Gemma; Cirac, Anna D.; Feliu, Lidia; Bardaji, Eduard; Planas, Marta; Sengupta, Durba; Marrink, Siewert J.; Poolman, Bert

    We report the molecular basis for the differences in activity of cyclic and linear antimicrobial peptides. We iteratively performed atomistic molecular dynamics simulations and biophysical measurements to probe the interaction of a cyclic antimicrobial peptide and its inactive linear analogue with

  7. Effective modification of cell death-inducing intracellular peptides by means of a photo-cleavable peptide array-based screening system.

    Science.gov (United States)

    Kozaki, Ikko; Shimizu, Kazunori; Honda, Hiroyuki

    2017-08-01

    Intracellular functional peptides that play a significant role inside cells have been receiving a lot of attention as regulators of cellular activity. Previously, we proposed a novel screening system for intracellular functional peptides; it combined a photo-cleavable peptide array system with cell-penetrating peptides (CPPs). Various peptides can be delivered into cells and intracellular functions of the peptides can be assayed by means of our system. The aim of the present study was to demonstrate that the proposed screening system can be used for assessing the intracellular activity of peptides. The cell death-inducing peptide (LNLISKLF) identified in a mitochondria-targeting domain (MTD) of the Noxa protein served as an original peptide sequence for screening of peptides with higher activity via modification of the peptide sequence. We obtained 4 peptides with higher activity, in which we substituted serine (S) at the fifth position with phenylalanine (F), valine (V), tryptophan (W), or tyrosine (Y). During analysis of the mechanism of action, the modified peptides induced an increase in intracellular calcium concentration, which was caused by the treatment with the original peptide. Higher capacity for cell death induction by the modified peptides may be caused by increased hydrophobicity or an increased number of aromatic residues. Thus, the present work suggests that the intracellular activity of peptides can be assessed using the proposed screening system. It could be used for identifying intracellular functional peptides with higher activity through comprehensive screening. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Purification and use of E. coli peptide deformylase for peptide deprotection in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia; Sonke, Theo; Quaedflieg, Peter J.; Janssen, Dick B.

    Peptide deformylases (PDFs) catalyze the removal of the formyl group from the N-terminal methionine residue in nascent polypeptide chains in prokaryotes. Its deformylation activity makes PDF an attractive candidate for the biocatalytic deprotection of formylated peptides that are used in

  9. Enhanced EGFR Targeting Activity of Plasmonic Nanostructures with Engineered GE11 Peptide.

    Science.gov (United States)

    Biscaglia, Francesca; Rajendran, Senthilkumar; Conflitti, Paolo; Benna, Clara; Sommaggio, Roberta; Litti, Lucio; Mocellin, Simone; Bocchinfuso, Gianfranco; Rosato, Antonio; Palleschi, Antonio; Nitti, Donato; Gobbo, Marina; Meneghetti, Moreno

    2017-12-01

    Plasmonic nanostructures show important properties for biotechnological applications, but they have to be guided on the target for exploiting their potentialities. Antibodies are the natural molecules for targeting. However, their possible adverse immunogenic activity and their cost have suggested finding other valid substitutes. Small molecules like peptides can be an alternative source of targeting agents, even if, as single molecules, their binding affinity is usually not very good. GE11 is a small dodecapeptide with specific binding to the epidermal growth factor receptor (EGFR) and low immunogenicity. The present work shows that thousands of polyethylene glycol (PEG) chains modified with lysines and functionalized with GE11 on clusters of naked gold nanoparticles, obtained by laser ablation in water, achieves a better targeting activity than that recorded with nanoparticles decorated with the specific anti-EGFR antibody Cetuximab (C225). The insertion of the cationic spacer between the polymeric part of the ligand and the targeting peptide allows for a proper presentation of GE11 on the surface of the nanosystems. Surface enhanced resonance Raman scattering signals of the plasmonic gold nanoparticles are used for quantifying the targeting activity. Molecular dynamic calculations suggest that subtle differences in the exposition of the peptide on the PEG sea are important for the targeting activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Identification of Peptides in Flowers of Sambucus nigra with Antimicrobial Activity against Aquaculture Pathogens.

    Science.gov (United States)

    Álvarez, Claudio Andrés; Barriga, Andrés; Albericio, Fernando; Romero, María Soledad; Guzmán, Fanny

    2018-04-27

    The elder ( Sambucus spp.) tree has a number of uses in traditional medicine. Previous studies have demonstrated the antimicrobial properties of elderberry liquid extract against human pathogenic bacteria and also influenza viruses. These properties have been mainly attributed to phenolic compounds. However, other plant defense molecules, such as antimicrobial peptides (AMPs), may be present. Here, we studied peptide extracts from flowers of Sambucus nigra L. The mass spectrometry analyses determined peptides of 3 to 3.6 kDa, among them, cysteine-rich peptides were identified with antimicrobial activity against various Gram-negative bacteria, including recurrent pathogens of Chilean aquaculture. In addition, membrane blebbing on the bacterial surface after exposure to the cyclotide was visualized by SEM microscopy and SYTOX Green permeabilization assay showed the ability to disrupt the bacterial membrane. We postulate that these peptides exert their action by destroying the bacterial membrane.

  11. Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry

    International Nuclear Information System (INIS)

    Laskin, Julia; Futrell, Jean H.

    2003-01-01

    In the last decade characterization of complex molecules, particularly biomolecules became a focus of both fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) for obtaining structural information for complex molecules. . Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions a single energetic collision is sufficient to dissociate the ion but this is not the case for complex molecules. For large ions two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First the center-of-mass collision energy?the absolute upper limit of energy transfer in a collision process?decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently most practical MS/MS experiments with complex ions involve multiple collision activation (MCA-CID), multi-photon activation or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides with emphasis on experiments carried out using Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions

  12. 'Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry'

    International Nuclear Information System (INIS)

    Laskin, Julia; Futrell, Jean H.

    2003-01-01

    In the last decade characterization of complex molecules, particularly biomolecules became a focus of both fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) for obtaining structural information for complex molecules. . Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions a single energetic collision is sufficient to dissociate the ion but this is not the case for complex molecules. For large ions two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First the center-of-mass collision energy?the absolute upper limit of energy transfer in a collision process?decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently most practical MS/MS experiments with complex ions involve multiple collision activation (MCA-CID), multi-photon activation or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides with emphasis on experiments carried out using Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions

  13. Computer-Aided Design of Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Hancock, Robert E.W.; Jenssen, Håvard

    2010-01-01

    in antimicrobial activity. Consequently, the majority of peptides put into clinical trials have failed at some point, underlining the importance of a thorough peptide optimization. An important tool in peptide design and optimization is quantitative structure-activity relationship (QSAR) analysis, correlating...... chemical parameters with biological activities of the peptide, using statistical methods. In this review we will discuss two different in silico strategies of computer-aided antibacterial peptide design, a linear correlation model build as an extension of traditional principal component analysis (PCA......) and a non-linear artificial neural network model. Studies on structurally diverse peptides, have concluded that the PCA derived model are able to guide the antibacterial peptide design in a meaningful way, however requiring rather a high homology between the peptides in the test-set and the in silico...

  14. Biological activities of Curcuma longa L.

    Directory of Open Access Journals (Sweden)

    Araújo CAC

    2001-01-01

    Full Text Available There are several data in the literature indicating a great variety of pharmacological activities of Curcuma longa L. (Zingiberaceae, which exhibit anti-inflammatory, anti-human immunodeficiency virus, anti-bacteria, antioxidant effects and nematocidal activities. Curcumin is a major component in Curcuma longa L., being responsible for its biological actions. Other extracts of this plant has been showing potency too. In vitro, curcumin exhibits anti-parasitic, antispasmodic, anti-inflammatory and gastrointestinal effects; and also inhibits carcinogenesis and cancer growth. In vivo, there are experiments showing the anti-parasitic, anti-inflammatory potency of curcumin and extracts of C. longa L. by parenteral and oral application in animal models. In this present work we make an overview of the pharmacological activities of C. longa L., showing its importance.

  15. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Zhou Bihong

    2011-02-01

    Full Text Available Abstract Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D. As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might

  16. Chicken cathelicidin-2-derived peptides with enhanced immunomodulatory and antibacterial activities against biological warfare agents

    NARCIS (Netherlands)

    Molhoek, E.M.; Dijk, A. van; Veldhuizen, E.J.A.; Dijk-Knijnenburg, H.; Mars-Groenendijk, R.H.; Boele, L.C.L.; Kaman-van Zanten, W.E.; Haagsman, H.P.; Bikker, F.J.

    2010-01-01

    Host defence peptides (HDPs) are considered to be excellent candidates for the development of novel therapeutic agents. Recently, it was demonstrated that the peptide C1-15, an N-terminal segment of chicken HDP cathelicidin-2, exhibits potent antibacterial activity while lacking cytotoxicity towards

  17. Neurospora tryptophan synthase: N-terminal analysis and the sequence of the pyridoxal phosphate active site peptide

    International Nuclear Information System (INIS)

    Pratt, M.L.; Hsu, P.Y.; DeMoss, J.A.

    1986-01-01

    Tryptophan synthase (TS), which catalyzes the final step of tryptophan biosynthesis, is a multifunctional protein requiring pyridoxal phosphate (B6P) for two of its three distinct enzyme activities. TS from Neurospora has a blocked N-terminal, is a homodimer of 150 KDa and binds one mole of B6P per mole of subunit. The authors shown the N-terminal residue to be acyl-serine. The B6P-active site of holoenzyme was labelled by reduction of the B6P-Schiff base with [ 3 H]-NaBH 4 , and resulted in a proportionate loss of activity in the two B6P-requiring reactions. SDS-polyacrylamide gel electrophoresis of CNBr-generated peptides showed the labelled, active site peptide to be 6 KDa. The sequence of this peptide, purified to apparent homogeneity by a combination of C-18 reversed phase and TSK gel filtration HPLC is: gly-arg-pro-gly-gln-leu-his-lys-ala-glu-arg-leu-thr-glu-tyr-ala-gly-gly-ala-gln-ile-xxx-leu-lys-arg-glu-asp-leu-asn-his-xxx-gly-xxx-his-/sub ***/-ile-asn-asn-ala-leu. Although four residues (xxx, /sub ***/) are unidentified, this peptide is minimally 78% homologous with the corresponding peptide from yeast TS, in which residue (/sub ***/) is the lysine that binds B6P

  18. Combined antiparasitic and anti-inflammatory effects of the natural polyphenol curcumin on turbot scuticociliatosis.

    Science.gov (United States)

    Mallo, N; DeFelipe, A P; Folgueira, I; Sueiro, R A; Lamas, J; Leiro, J M

    2017-02-01

    The histiophagous scuticociliate Philasterides dicentrarchi is the aetiological agent of scuticociliatosis, a parasitic disease of farmed turbot. Curcumin, a polyphenol from Curcuma longa (turmeric), is known to have antioxidant and anti-inflammatory properties. We investigated the in vitro effects of curcumin on the growth of P. dicentrarchi and on the production of pro-inflammatory cytokines in turbot leucocytes activated by parasite cysteine proteases. At 100 μm, curcumin had a cytotoxic effect and completely inhibited the growth of the parasite. At 50 μm, curcumin inhibited the protease activity of the parasite and expression of genes encoding two virulence-associated proteases: leishmanolysin-like peptidase and cathepsin L-like. At concentrations between 25 and 50 μm, curcumin inhibited the expression of S-adenosyl-L-homocysteine hydrolase, an enzyme involved in the biosynthesis of the amino acids methionine and cysteine. At 100 μm, curcumin inhibited the expression of the cytokines tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) produced in turbot leucocytes activated by parasite proteases. Results show that curcumin has a dual effect on scuticociliatosis: an antiparasitic effect on the catabolism and anabolism of ciliate proteins, and an anti-inflammatory effect that inhibits the production of proinflammatory cytokines in the host. The present findings suggest the potential usefulness of this polyphenol in treating scuticociliatosis. © 2016 John Wiley & Sons Ltd.

  19. Analysis of the antimicrobial activities of a chemokine-derived peptide (CDAP-4) on Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Martinez-Becerra, Francisco; Silva, Daniel-Adriano; Dominguez-Ramirez, Lenin; Mendoza-Hernandez, Guillermo; Lopez-Vidal, Yolanda; Soldevila, Gloria; Garcia-Zepeda, Eduardo A.

    2007-01-01

    Chemokines are key molecules involved in the control of leukocyte trafficking. Recently, a novel function as antimicrobial proteins has been described. CCL13 is the only member of the MCP chemokine subfamily displaying antimicrobial activity. To determine Key residues involved in its antimicrobial activity, CCL13 derived peptides were synthesized and tested against several bacterial strains, including Pseudomonas aeruginosa. One of these peptides, corresponding to the C-terminal region of CCL13 (CDAP-4) displayed good antimicrobial activity. Electron microscopy studies revealed remarkable morphological changes after CDAP-4 treatment. By computer modeling, CDAP-4 in α helical configuration generated a positive electrostatic potential that extended beyond the surface of the molecule. This feature is similar to other antimicrobial peptides. Altogether, these findings indicate that the antimicrobial activity was displayed by CCL13 resides to some extent at the C-terminal region. Furthermore, CDAP-4 could be considered a good antimicrobial candidate with a potential use against pathogens including P. aeruginosa

  20. Aqueous Extract of Chrysanthemum morifolium Enhances the Antimelanogenic and Antioxidative Activities of the Mixture of Soy Peptide and Collagen Peptide

    Directory of Open Access Journals (Sweden)

    Min Gui

    2014-07-01

    Full Text Available The possible synergistic effect between the aqueous extract of Chrysanthemum morifolium (菊花 Jú Huā (AECM and the peptide mixture (PM containing soy peptide and collagen peptide was investigated in an ultraviolet (UV irradiation–induced skin damage mouse model. The irradiated mice were treated with the PM or PM+AECM (containing PM and AECM, respectively. Both PM and PM+AECM groups displayed an apparent photoprotective effect on the UV-irradiated skin damage of mice. Histological evaluation demonstrated that the epidermal hyperplasia and melanocytes in the basal epidermal layer of the UV-irradiated skin in mice decreased when treated with either PM or PM+AECM. Further study showed that soy peptide, collagen peptide, and AECM also inhibited the activities of mushroom tyrosinase with IC50 values of 82.3, 28.2, and 1.6 μg/ml, respectively. Additionally, PM+AECM reduced melanogenesis by 46.2% at the concentration of 10 mg/ml in B16 mouse melanoma cells. Meanwhile, the UV-induced increase of antioxidative indicators, including glutathione peroxidase (GSH-Px, superoxide dismutase (SOD, and malondialdehyde (MDA, was reduced significantly after treatment with 1.83 g/kg/dbw of PM+AECM. This evidence supported the synergistic antioxidative effect of AECM with PM. These results demonstrated that oral intake of PM and AECM had synergistic antimelanogenic and antioxidative effects in UV-irradiated mice.

  1. The membranotropic activity of N-terminal peptides from the pore ...

    Indian Academy of Sciences (India)

    The membranotropic activity of N-terminal peptides from the pore-forming proteins sticholysin I and II is modulated by hydrophobic and electrostatic interactions ... Center for Protein Studies, Biology Faculty, University of Havana, Havana, Cuba; Department of Applied Physics, Institute of Physics, University of São Paulo, São ...

  2. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212.

    Science.gov (United States)

    León-Calvijo, María A; Leal-Castro, Aura L; Almanzar-Reina, Giovanni A; Rosas-Pérez, Jaiver E; García-Castañeda, Javier E; Rivera-Monroy, Zuly J

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4-33 μM) and E. faecalis (MIC 10-33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.

  3. Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212

    Directory of Open Access Journals (Sweden)

    María A. León-Calvijo

    2015-01-01

    Full Text Available Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i the incorporation of unnatural amino acids in the sequence, the (ii reduction or (iii elongation of the peptide chain length, and (iv synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR and I.4 ((RRWQWR4K2Ahx2C2 exhibit bigger or similar activity against E. coli (MIC 4–33 μM and E. faecalis (MIC 10–33 μM when they were compared with lactoferricin protein (LF and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE. It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.

  4. Structural changes of the ligand and of the receptor alters the receptor preference for neutrophil activating peptides starting with a 3 formylmethionyl group

    DEFF Research Database (Denmark)

    Forsman, Huamei; Winther, Malene; Gabl, Michael

    2015-01-01

    Pathogenic Staphylococcus aureus strains produce N-formylmethionyl containing peptides, of which the tetrapeptide fMIFL is a potent activator of the neutrophil formyl peptide receptor 1 (FPR1) and the PSMα2 peptide is a potent activator of the closely related FPR2. Variants derived from these two...... peptide activators were used to disclose the structural determinants for receptor interaction. Removal of five amino acids from the C-terminus of PSMα2 gave rise to a peptide that had lost the receptor-independent neutrophil permeabilizing effect, whereas neutrophil activation capacity as well as its...... preference for FPR2 was retained. Shorter peptides, PSMα21–10 and PSMα21–5, activate neutrophils, but the receptor preference for these peptides was switched to FPR1. The fMIFL-PSM5–16 peptide, in which the N-terminus of PSMα21–16 was replaced by the sequence fMIFL, was a dual agonist for FPR1/FPR2, whereas...

  5. Antimicrobial activity predictors benchmarking analysis using shuffled and designed synthetic peptides.

    Science.gov (United States)

    Porto, William F; Pires, Állan S; Franco, Octavio L

    2017-08-07

    The antimicrobial activity prediction tools aim to help the novel antimicrobial peptides (AMP) sequences discovery, utilizing machine learning methods. Such approaches have gained increasing importance in the generation of novel synthetic peptides by means of rational design techniques. This study focused on predictive ability of such approaches to determine the antimicrobial sequence activities, which were previously characterized at the protein level by in vitro studies. Using four web servers and one standalone software, we evaluated 78 sequences generated by the so-called linguistic model, being 40 designed and 38 shuffled sequences, with ∼60 and ∼25% of identity to AMPs, respectively. The ab initio molecular modelling of such sequences indicated that the structure does not affect the predictions, as both sets present similar structures. Overall, the systems failed on predicting shuffled versions of designed peptides, as they are identical in AMPs composition, which implies in accuracies below 30%. The prediction accuracy is negatively affected by the low specificity of all systems here evaluated, as they, on the other hand, reached 100% of sensitivity. Our results suggest that complementary approaches with high specificity, not necessarily high accuracy, should be developed to be used together with the current systems, overcoming their limitations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    International Nuclear Information System (INIS)

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-01-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs

  7. Collisional activation by MALDI tandem time-of-flight mass spectrometry induces intramolecular migration of amide hydrogens in protonated peptides

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J D; Bache, Nicolai; Roepstorff, Peter

    2005-01-01

    of doubly protonated peptides that the original regioselective deuterium pattern of these peptides is completely erased (Jørgensen, T. J. D., Gårdsvoll, H., Ploug, M., and Roepstorff, P. (2005) Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J. Am. Chem. Soc...... randomization among all exchangeable sites (i.e. all N- and O-linked hydrogens) also occurs upon high energy collisional activation of singly protonated peptides. This intense proton/deuteron traffic precludes the use of MALDI tandem time-of-flight mass spectrometry to obtain reliable information...

  8. Origin of anti-tumor activity of the cysteine-containing GO peptides and further optimization of their cytotoxic properties

    Science.gov (United States)

    Tyuryaeva, Irina I.; Lyublinskaya, Olga G.; Podkorytov, Ivan S.; Skrynnikov, Nikolai R.

    2017-01-01

    Antitumor GO peptides have been designed as dimerization inhibitors of prominent oncoprotein mucin 1. In this study we demonstrate that activity of GO peptides is independent of the level of cellular expression of mucin 1. Furthermore, these peptides prove to be broadly cytotoxic, causing cell death also in normal cells such as dermal fibroblasts and endometrial mesenchymal stem cells. To explore molecular mechanism of their cytotoxicity, we have designed and tested a number of new peptide sequences containing the key CxC or CxxC motifs. Of note, these sequences bear no similarity to mucin 1 except that they also contain a pair of proximal cysteines. Several of the new peptides turned out to be significantly more potent than their GO prototypes. The results suggest that cytotoxicity of these peptides stems from their (moderate) activity as disulfide oxidoreductases. It is expected that such peptides, which we have termed DO peptides, are involved in disulfide-dithiol exchange reaction, resulting in formation of adventitious disulfide bridges in cell proteins. In turn, this leads to a partial loss of protein function and rapid onset of apoptosis. We anticipate that coupling DO sequences with tumor-homing transduction domains can create a potentially valuable new class of tumoricidal peptides.

  9. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  10. Antiviral activity of a Bacillus sp: P34 peptide against pathogenic viruses of domestic animals

    Directory of Open Access Journals (Sweden)

    Débora Scopel e Silva

    2014-09-01

    Full Text Available P34 is an antimicrobial peptide produced by a Bacillus sp. strain isolated from the intestinal contents of a fish in the Brazilian Amazon basin with reported antibacterial activity. The aim of this work was to evaluate the peptide P34 for its in vitro antiviral properties against canine adenovirus type 2 (CAV-2, canine coronavirus (CCoV, canine distemper virus (CDV, canine parvovirus type 2 (CPV-2, equine arteritis virus (EAV, equine influenza virus (EIV, feline calicivirus (FCV and feline herpesvirus type 1 (FHV-1. The results showed that the peptide P34 exhibited antiviral activity against EAV and FHV-1. The peptide P34 inhibited the replication of EAV by 99.9% and FHV-1 by 94.4%. Virucidal activity was detected only against EAV. When P34 and EAV were incubated for 6 h at 37 °C the viral titer reduced from 10(4.5 TCID50 to 10(2.75 TCID50, showing a percent of inhibition of 98.6%. In conclusion, our results demonstrated that P34 inhibited EAV and FHV-1 replication in infected cell cultures and it showed virucidal activity against EAV. Since there is documented resistance to the current drugs used against herpesviruses and there is no treatment for equine viral arteritis, it is advisable to search for new antiviral compounds to overcome these infections.

  11. Identification of antihyperuricemic peptides in the proteolytic digest of shark cartilage water extract using in vivo activity-guided fractionation.

    Science.gov (United States)

    Murota, Itsuki; Taguchi, Satoko; Sato, Nobuyuki; Park, Eun Young; Nakamura, Yasushi; Sato, Kenji

    2014-03-19

    A peptide that exerts antihyperuricemic activity after oral administration was identified from a microbial protease (alcalase) digest of the water extract of shark cartilage by in vivo activity-guided fractionation, using oxonate-induced hyperuricemic rats. Water extract of shark cartilage was first fractionated by preparative ampholine-free isoelectric focusing, followed by preparative reversed-phase liquid chromatography. The antihyperuricemic activity of the alcalse digests of the obtained fractions was evaluated using an animal model. Alcalase digests of the basic and hydrophobic fractions exerted antihyperuricemic activity. A total of 18 peptides were identified in the alcalase digest of the final active fraction. These peptides were chemically synthesized and evaluated for antihyperuricemic activity. Tyr-Leu-Asp-Asn-Tyr and Ser-Pro-Pro-Tyr-Trp-Pro-Tyr lowered the serum uric acid level via intravenous injection at 5 mg/kg of body weight. Furthermore, orally administered Tyr-Leu-Asp-Asn-Tyr showed antihyperuricemic activity. Therefore, these peptides are at least partially responsible for the antihyperuricemic activity of the alcalase digest of shark cartilage.

  12. Increased Staphylococcus-killing activity of an antimicrobial peptide, lactoferricin B, with minocycline and monoacylglycerol.

    Science.gov (United States)

    Wakabayashi, Hiroyuki; Teraguchi, Susumu; Tamura, Yoshitaka

    2002-10-01

    This study aimed to find antibiotics or other compounds that could increase the antimicrobial activity of an antimicrobial peptide, lactoferricin B (LFcin B), against Staphylococcus aureus, including antibiotic-resistant strains. Among conventional antibiotics, minocycline increased the bactericidal activity of LFcin B against S. aureus, but methicillin, ceftizoxime, and sulfamethoxazole-trimethoprim did not have such an effect. The combination of minocycline and LFcin B had synergistic effects against three antibiotic-resistant strains of S. aureus, according to result of checkerboard analysis. Screening of 33 compounds, including acids and salts, alcohols, amino acids, proteins and peptides, sugar, and lipids, showed that medium-chain monoacylglycerols increased the bactericidal activity of LFcin B against three S. aureus strains. The short-term killing test in water and the killing curve test in growing cultures showed that a combination of LFcin B and monolaurin (a monoacylglycerol with a 12-carbon acyl chain) killed S. aureus more rapidly than either agent alone. These findings may be helpful in the application of antimicrobial peptides in medical or other situations.

  13. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923

    Directory of Open Access Journals (Sweden)

    Nataly de Jesús Huertas

    2017-06-01

    Full Text Available Peptides derived from LfcinB were designed and synthesized, and their antibacterial activity was tested against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Specifically, a peptide library was constructed by systemically removing the flanking residues (N or C-terminal of Lfcin 17–31 (17FKCRRWQWRMKKLGA31, maintaining in all peptides the 20RRWQWR25 sequence that corresponds to the minimal antimicrobial motif. For this research, also included were (i a peptide containing an Ala instead of Cys ([Ala19]-LfcinB 17–31 and (ii polyvalent peptides containing the RRWQWR sequence and a non-natural amino acid (aminocaproic acid. We established that the lineal peptides LfcinB 17–25 and LfcinB 17–26 exhibited the greatest activity against E. coli ATCC 25922 and S. aureus ATCC 25923, respectively. On the other hand, polyvalent peptides, a dimer and a tetramer, exhibited the greatest antibacterial activity, indicating that multiple copies of the sequence increase the activity. Our results suggest that the dimeric and tetrameric sequence forms potentiate the antibacterial activity of lineal sequences that have exhibited moderate antibacterial activity.

  14. Helical 1:1 α/Sulfono-γ-AA Heterogeneous Peptides with Antibacterial Activity

    Energy Technology Data Exchange (ETDEWEB)

    She, Fengyu; Nimmagadda, Alekhya; Teng, Peng; Su, Ma; Zuo, Xiaobing; Cai, Jianfeng

    2016-05-09

    As one of the greatest threats facing in 21st century, antibiotic resistance is now a major public health concern. Host-defense peptides (HDPs) offer an alternative approach to combat emerging multidrug-resistant bacteria. It is known that helical HDPs such as magainin 2 and its analogs adopt cationic amphipathic conformations upon interaction with bacterial membranes, leading to membrane disruption and subsequent bacterial cell death. We have previously shown that amphipathic sulfono-γ-AApeptides could mimic magainin 2 and exhibit bactericidal activity. In this article, we demonstrate for the first time that amphipathic helical 1:1 α/sulfono-γ-AA heterogeneous peptides, in which regular amino acids and sulfono-γ-AApeptide building blocks are alternatively present in a 1:1 pattern, display potent antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. Small Angle X-ray Scattering (SAXS) suggests that the lead sequences adopt defined helical structures. The subsequent studies including 2 fluorescence microscopy and time-kill experiments indicate that these hybrid peptides exert antimicrobial activity by mimicking the mechanism of HDPs. Our findings may lead to the development of HDP-mimicking antimicrobial peptidomimetics that combat drug-resistant bacterial pathogens. In addition, our results also demonstrate the effective design of a new class of helical foldamer, which could be employed to interrogate other important biological targets such as protein-protein interactions in the future.

  15. Endogenous collagen peptide activation of CD1d-restricted NKT cells ameliorates tissue-specific inflammation in mice

    DEFF Research Database (Denmark)

    Liu, Yawei; Teige, Anna; Mondoc, Emma

    2011-01-01

    NKT cells in the mouse recognize antigen in the context of the MHC class I-like molecule CD1d and play an important role in peripheral tolerance and protection against autoimmune and other diseases. NKT cells are usually activated by CD1d-presented lipid antigens. However, peptide recognition...... in the context of CD1 has also been documented, although no self-peptide ligands have been reported to date. Here, we have identified an endogenous peptide that is presented by CD1d to activate mouse NKT cells. This peptide, the immunodominant epitope from mouse collagen type II (mCII707-721), was not associated...... with either MHC class I or II. Activation of CD1d-restricted mCII707-721-specific NKT cells was induced via TCR signaling and classical costimulation. In addition, mCII707-721-specific NKT cells induced T cell death through Fas/FasL, in an IL-17A-independent fashion. Moreover, mCII707-721-specific NKT cells...

  16. Structure–activity relationships of the human prothrombin kringle-2 peptide derivative NSA9: anti-proliferative activity and cellular internalization

    OpenAIRE

    Hwang, Hyun Sook; Kim, Dong Won; Kim, Soung Soo

    2006-01-01

    The human prothrombin kringle-2 protein inhibits angiogenesis and LLC (Lewis lung carcinoma) growth and metastasis in mice. Additionally, the NSA9 peptide (NSAVQLVEN) derived from human prothrombin kringle-2 has been reported to inhibit the proliferation of BCE (bovine capillary endothelial) cells and CAM (chorioallantoic membrane) angiogenesis. In the present study, we examined the structure–activity relationships of the NSA9 peptide in inhibiting the proliferation of endothelial cells lines...

  17. Effect of a Fusion Peptide by Covalent Conjugation of a Mitochondrial Cell-Penetrating Peptide and a Glutathione Analog Peptide

    Directory of Open Access Journals (Sweden)

    Carmine Pasquale Cerrato

    2017-06-01

    Full Text Available Previously, we designed and synthesized a library of mitochondrial antioxidative cell-penetrating peptides (mtCPPs superior to the parent peptide, SS31, to protect mitochondria from oxidative damage. A library of antioxidative glutathione analogs called glutathione peptides (UPFs, exceptional in hydroxyl radical elimination compared with glutathione, were also designed and synthesized. Here, a follow-up study is described, investigating the effects of the most promising members from both libraries on reactive oxidative species scavenging ability. None of the peptides influenced cell viability at the concentrations used. Fluorescence microscopy studies showed that the fluorescein-mtCPP1-UPF25 (mtgCPP internalized into cells, and spectrofluorometric analysis determined the presence and extent of peptide into different cell compartments. mtgCPP has superior antioxidative activity compared with mtCPP1 and UPF25 against H2O2 insult, preventing ROS formation by 2- and 3-fold, respectively. Moreover, we neither observed effects on mitochondrial membrane potential nor production of ATP. These data indicate that mtgCPP is targeting mitochondria, protecting them from oxidative damage, while also being present in the cytosol. Our hypothesis is based on a synergistic effect resulting from the fused peptide. The mitochondrial peptide segment is targeting mitochondria, whereas the glutathione analog peptide segment is active in the cytosol, resulting in increased scavenging ability.

  18. Identification of constrained peptides that bind to and preferentially inhibit the activity of the hepatitis C viral RNA-dependent RNA polymerase

    International Nuclear Information System (INIS)

    Amin, Anthony; Zaccardi, Joe; Mullen, Stanley; Olland, Stephane; Orlowski, Mark; Feld, Boris; Labonte, Patrick; Mak, Paul

    2003-01-01

    A class of disulfide constrained peptides containing a core motif FPWG was identified from a screen of phage displayed library using the HCV RNA-dependent RNA polymerase (NS5B) as a bait. Surface plasmon resonance studies showed that three highly purified synthetic constrained peptides bound to immobilized NS5B with estimated K d values ranging from 30 to 60 μM. In addition, these peptides inhibited the NS5B activity in vitro with IC 50 ranging from 6 to 48 μM, whereas in contrast they had no inhibitory effect on the enzymatic activities of calf thymus polymerase α, human polymerase β, RSV polymerase, and HIV reverse transcriptase in vitro. Two peptides demonstrated conformation-dependent inhibition since their synthetic linear versions were not inhibitory in the NS5B assay. A constrained peptide with the minimum core motif FPWG retained selective inhibition of NS5B activity with an IC 50 of 50 μM. Alanine scan analyses of a representative constrained peptide, FPWGNTW, indicated that residues F1 and W7 were critical for the inhibitory effect of this peptide, although residues P2 and N5 had some measurable inhibitory effect as well. Further analyses of the mechanism of inhibition indicated that these peptides inhibited the formation of preelongation complexes required for the elongation reaction. However, once the preelongation complex was formed, its activity was refractory to peptide inhibition. Furthermore, the constrained peptide FPWGNTW inhibited de novo initiated RNA synthesis by NS5B from a poly(rC) template. These data indicate that the peptides confer selective inhibition of NS5B activity by binding to the enzyme and perturbing an early step preceding the processive elongation step of RNA synthesis

  19. Bilayer lipid composition modulates the activity of dermaseptins, polycationic antimicrobial peptides.

    Science.gov (United States)

    Duclohier, Hervé

    2006-05-01

    The primary targets of defense peptides are plasma membranes, and the induced irreversible depolarization is sufficient to exert antimicrobial activity although secondary modes of action might be at work. Channels or pores underlying membrane permeabilization are usually quite large with single-channel conductances two orders of magnitude higher than those exhibited by physiological channels involved, e.g., in excitability. Accordingly, the ion specificity and selectivity are quite low. Whereas, e.g., peptaibols favor cation transport, polycationic or basic peptides tend to form anion-specific pores. With dermaseptin B2, a 33 residue long and mostly alpha-helical peptide isolated from the skin of the South American frog Phyllomedusa bicolor, we found that the ion specificity of its pores induced in bilayers is modulated by phospholipid-charged headgroups. This suggests mixed lipid-peptide pore lining instead of the more classical barrel-stave model. Macroscopic conductance is nearly voltage independent, and concentration dependence suggests that the pores are mainly formed by dermaseptin tetramers. The two most probable single-channel events are well resolved at 200 and 500 pS (in 150 mM NaCl) with occasional other equally spaced higher or lower levels. In contrast to previous molecular dynamics previsions, this study demonstrates that dermaseptins are able to form pores, although a related analog (B6) failed to induce any significant conductance. Finally, the model of the pore we present accounts for phospholipid headgroups intercalated between peptide helices lining the pore and for one of the most probable single-channel conductance.

  20. Cysteine Cathepsins in the secretory vesicle produce active peptides: Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer's disease.

    Science.gov (United States)

    Hook, Vivian; Funkelstein, Lydiane; Wegrzyn, Jill; Bark, Steven; Kindy, Mark; Hook, Gregory

    2012-01-01

    Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles functions as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β- amyloid (Aβ) peptides that accumulate in Alzheimer's disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrast with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin functions. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Activity of Genital Tract Secretions and Synthetic Antimicrobial Peptides against Group B Streptococcus.

    Science.gov (United States)

    Agarwal, Nidhi; Buckley, Niall; Nakra, Natasha; Gialanella, Philip; Yuan, Weirong; Ghartey, Jeny P

    2015-12-01

    Genital tract secretions inhibit Escherichia coli (E. coli) through antimicrobial peptides (AMP) secreted by the host and vaginal microbiota. However, there are limited data against group B Streptococcus (GBS). Group B Streptococcus were incubated with cervico-vaginal lavage (CVL) samples from healthy non-pregnant women (n = 12) or synthetic AMP and monitored for bacterial growth using a turbidimetric approach. E. coli inhibitory activity was determined by a colony-forming unit assay. None of the CVL samples inhibited GBS. The human neutrophil peptide-1 and human defensin 5 inhibited GBS growth by ≥80% at concentrations ≥20 μg/mL and ≥50 μg/mL, respectively, while human beta-defensin 2 and LL-37 did not inhibit at highest concentration tested (100 μg/mL). In contrast, all AMP inhibited E. coli. Antimicrobial peptides may protect against E. coli colonization but have more limited activity against GBS. Future studies will focus on augmenting host defense with specific AMP to prevent genitourinary infection with these pathogenic organisms. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity.

    Science.gov (United States)

    Lai, Alex L; Park, Heather; White, Judith M; Tamm, Lukas K

    2006-03-03

    The fusion peptide of influenza hemagglutinin is crucial for cell entry of this virus. Previous studies showed that this peptide adopts a boomerang-shaped structure in lipid model membranes at the pH of membrane fusion. To examine the role of the boomerang in fusion, we changed several residues proposed to stabilize the kink in this structure and measured fusion. Among these, mutants E11A and W14A expressed hemagglutinins with hemifusion and no fusion activities, and F9A and N12A had no effect on fusion, respectively. Binding enthalpies and free energies of mutant peptides to model membranes and their ability to perturb lipid bilayer structures correlated well with the fusion activities of the parent full-length molecules. The structure of W14A determined by NMR and site-directed spin labeling features a flexible kink that points out of the membrane, in sharp contrast to the more ordered boomerang of the wild-type, which points into the membrane. A specific fixed angle boomerang structure is thus required to support membrane fusion.

  3. Peptide Integrated Optics.

    Science.gov (United States)

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Marine-Derived Bioactive Peptides with Pharmacological Activities- A Review

    Directory of Open Access Journals (Sweden)

    Sana Rabiei

    2017-10-01

    Full Text Available Some nutritional factors are related to chronic disease. In response to increased concern regarding nutrition and health, the functional and nutraceuticals food markets have been developed. During food digestion, proteins are hydrolyzed and a wide range of peptides are formed. Some of these peptides have special structures which permit them to confer particular biological functions. Marine animals which involve more than half of the world biological varieties are a wide source of bioactive proteins and peptides. Marine derived peptides show various physiologic functions such as anti-oxidant, antimicrobial, anti-cancer, Angiotensin1-Converting Enzyme (ACE glucosidase and a-amylase inhibitory effects in vitro. Before application of marine bioactive peptides as nutraceuticals or functional food ingredients, their efficacy should be approved through pre-clinical animal and then clinical studies. The aim of this study was to review the studies conducted on the pharmacological effect of marine bioactive peptides in animal models and humans.

  5. Application of Asian pumpkin (Cucurbita ficifolia) serine proteinase for production of biologically active peptides from casein.

    Science.gov (United States)

    Dąbrowska, Anna; Szołtysik, Marek; Babij, Konrad; Pokora, Marta; Zambrowicz, Aleksandra; Chrzanowska, Józefa

    2013-01-01

    The main objective of this study was to determine potential application of a serine proteinase derived from Asian pumpkin for obtaining biologically active peptides from casein. The course of casein hydrolysis by three doses of the enzyme (50, 150, 300 U/mg of protein) was monitored for 24 hours by the determinations of: hydrolysis degree DH (%), free amino group content (μmole Gly/g), RP HPLC peptide profiles and by polyacrylamide gel electrophoresis. In all hydrolyzates analyzed antioxidant activities were determined using three tests: the ability to reduce iron ions in FRAP test, the ability to scavenge free radicals in DPPH test, and Fe(2+) chelating activity. The antimicrobial activity of obtained peptide fractions was determined as the ability to inhibit the growth of Escherichia coli, Bacillus cereus and Pseudomonas fluorescens in a diffusion plate test. The deepest degradation, expressed as the DH [%] and the free amino group content (67% and 7528 µmole Gly/mg, respectively), was noted in samples hydrolyzed with 300 U/ml of enzyme for 24 hours, while in other samples the determined values were about three and two times lower. The results were in agreement with the peptide profiles obtained by RP HPLC. The highest antioxidative activities determined in all tests were seen for the casein hydrolysate obtained with 300 U/mg protein of serine proteinase after 24 h of reaction (2.15 µM Trolox/mg, 96.15 µg Fe(3+)/mg, 814.97 µg Fe(2+)/mg). Antimicrobial activity was presented in three preparations. In other samples no antimicrobial activity was detected.

  6. Evaluation of dermal wound healing activity of synthetic peptide SVVYGLR.

    Science.gov (United States)

    Uchinaka, Ayako; Kawaguchi, Naomasa; Ban, Tsuyoshi; Hamada, Yoshinosuke; Mori, Seiji; Maeno, Yoshitaka; Sawa, Yoshiki; Nagata, Kohzo; Yamamoto, Hirofumi

    2017-09-23

    SVVYGLR peptide (SV peptide) is a 7-amino-acid sequence with angiogenic properties that is derived from osteopontin in the extracellular matrix and promotes differentiation of fibroblasts to myofibroblast-like cells and the production of collagen type Ⅲ by cardiac fibroblasts. However, the effects of SV peptide on dermal cells and tissue are unknown. In this study, we evaluated the effects of this peptide in a rat model of dermal wound healing. The synthetic SV peptide was added to dermal fibroblasts or keratinocytes, and their cellular motility was evaluated. In an in vivo wound healing exeriment, male rats aged 8 weeks were randomly assigned to the SV peptide treatment, non-treated control, or phosphate-buffered saline (PBS) groups. Wound healing was assessed by its repair rate and histological features. Scratch assay and cell migration assays using the Chemotaxicell method showed that SV peptide significantly promoted the cell migration in both fibroblasts and keratinocytes. In contrast the proliferation potency of these cells was not affected by SV peptide. In the rat model, wound healing progressed faster in the SV peptide-treated group than in the control and PBS groups. The histopathological analyses showed that the SV peptide treatment stimulated the migration of fibroblasts to the wound area and increased the number of myofibroblasts. Immunohistochemical staining showed a marked increase of von Willebland factor-positive neomicrovessels in the SV peptide-treated group. In conclusion, SV peptide has a beneficial function to promote wound healing by stimulating granulation via stimulating angiogenesis, cell migration, and the myofibroblastic differentiation of fibroblasts. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Development of an analytical methodology for the determination of the antiparasitic drug toltrazuril and its two metabolites in surface water, soil and animal manure

    DEFF Research Database (Denmark)

    Olsen, Jesper; Björklund, Erland; Krogh, Kristine A

    2012-01-01

    This paper presents the development, optimization and validation of a LC-MS/MS methodology to determine the antiparasitic veterinary drug toltrazuril and its two main metabolites, toltrazuril sulfoxide and toltrazuril sulfone, in environmental surface water, soil and animal manure. Using solid...... phase extraction and selective pressurized liquid extraction with integrated clean-up, the analytical method allows for the determination of these compounds down to 0.06-0.13 ng L(-1) in water, 0.01-0.03 ng g(-1)dw in soil and 0.22-0.51 ng g(-1) dw in manure. The deuterated analog of toltrazuril...... was used as internal standard, and ensured method accuracy in the range 96-123% for water and 77-110% for soil samples. The developed method can also be applied to simultaneously determine steroid hormones in the solid samples. The antiparasitic drug and its metabolites were found in manure and soil up...

  8. G-Quadruplex Identification in the Genome of Protozoan Parasites Points to Naphthalene Diimide Ligands as New Antiparasitic Agents.

    Science.gov (United States)

    Belmonte-Reche, Efres; Martínez-García, Marta; Guédin, Aurore; Zuffo, Michela; Arévalo-Ruiz, Matilde; Doria, Filippo; Campos-Salinas, Jenny; Maynadier, Marjorie; López-Rubio, José Juan; Freccero, Mauro; Mergny, Jean-Louis; Pérez-Victoria, José María; Morales, Juan Carlos

    2018-02-08

    G-quadruplexes (G4) are DNA secondary structures that take part in the regulation of gene expression. Putative G4 forming sequences (PQS) have been reported in mammals, yeast, bacteria, and viruses. Here, we present PQS searches on the genomes of T. brucei, L. major, and P. falciparum. We found telomeric sequences and new PQS motifs. Biophysical experiments showed that EBR1, a 29 nucleotide long highly repeated PQS in T. brucei, forms a stable G4 structure. G4 ligands based on carbohydrate conjugated naphthalene diimides (carb-NDIs) that bind G4's including hTel could bind EBR1 with selectivity versus dsDNA. These ligands showed important antiparasitic activity. IC 50 values were in the nanomolar range against T. brucei with high selectivity against MRC-5 human cells. Confocal microscopy confirmed these ligands localize in the nucleus and kinetoplast of T. brucei suggesting they can reach their potential G4 targets. Cytotoxicity and zebrafish toxicity studies revealed sugar conjugation reduces intrinsic toxicity of NDIs.

  9. Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules.

    Science.gov (United States)

    Binkowski, Brock F; Miller, Russell A; Belshaw, Peter J

    2005-07-01

    We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.

  10. Endogenous collagen peptide activation of CD1d-restricted NKT cells ameliorates tissue-specific inflammation in mice.

    Science.gov (United States)

    Liu, Yawei; Teige, Anna; Mondoc, Emma; Ibrahim, Saleh; Holmdahl, Rikard; Issazadeh-Navikas, Shohreh

    2011-01-01

    NKT cells in the mouse recognize antigen in the context of the MHC class I-like molecule CD1d and play an important role in peripheral tolerance and protection against autoimmune and other diseases. NKT cells are usually activated by CD1d-presented lipid antigens. However, peptide recognition in the context of CD1 has also been documented, although no self-peptide ligands have been reported to date. Here, we have identified an endogenous peptide that is presented by CD1d to activate mouse NKT cells. This peptide, the immunodominant epitope from mouse collagen type II (mCII707-721), was not associated with either MHC class I or II. Activation of CD1d-restricted mCII707-721-specific NKT cells was induced via TCR signaling and classical costimulation. In addition, mCII707-721-specific NKT cells induced T cell death through Fas/FasL, in an IL-17A-independent fashion. Moreover, mCII707-721-specific NKT cells suppressed a range of in vivo inflammatory conditions, including delayed-type hypersensitivity, antigen-induced airway inflammation, collagen-induced arthritis, and EAE, which were all ameliorated by mCII707-721 vaccination. The findings presented here offer new insight into the intrinsic roles of NKT cells in health and disease. Given the results, endogenous collagen peptide activators of NKT cells may offer promise as novel therapeutics in tissue-specific autoimmune and inflammatory diseases.

  11. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials.

    Science.gov (United States)

    Palchesko, Rachelle N; Buckholtz, Gavin A; Romeo, Jared D; Gawalt, Ellen S

    2014-07-01

    Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Analogues of the Frog-skin Antimicrobial Peptide Temporin 1Tb Exhibit a Wider Spectrum of Activity and a Stronger Antibiofilm Potential as Compared to the Parental Peptide

    Science.gov (United States)

    Grassi, Lucia; Maisetta, Giuseppantonio; Maccari, Giuseppe; Esin, Semih; Batoni, Giovanna

    2017-04-01

    The frog skin-derived peptide Temporin 1Tb (TB) has gained increasing attention as novel antimicrobial agent for the treatment of antibiotic-resistant and/or biofilm-mediated infections. Nevertheless, such a peptide possesses a preferential spectrum of action against Gram-positive bacteria. In order to improve the therapeutic potential of TB, the present study evaluated the antibacterial and antibiofilm activities of two TB analogues against medically relevant bacterial species. Of the two analogues, TB_KKG6A has been previously described in the literature, while TB_L1FK is a new analogue designed by us through statistical-based computational strategies. Both TB analogues displayed a faster and stronger bactericidal activity than the parental peptide, especially against Gram-negative bacteria in planktonic form. Differently from the parental peptide, TB_KKG6A and TB_L1FK were able to inhibit the formation of Staphylococcus aureus biofilms by more than 50% at 12 μM, while only TB_KKG6A prevented the formation of Pseudomonas aeruginosa biofilms at 24 μM. A marked antibiofilm activity against preformed biofilms of both bacterial species was observed for the two TB analogues when used in combination with EDTA. Analysis of synergism at the cellular level suggested that the antibiofilm activity exerted by the peptide-EDTA combinations against mature biofilms might be due mainly to a disaggregating effect on the extracellular matrix in the case of S. aureus, and to a direct activity on biofilm-embedded cells in the case of P. aeruginosa. Both analogues displayed a low hemolytic effect at the active concentrations and, overall, TB_L1FK resulted less cytotoxic towards mammalian cells. Collectively, the results obtained demonstrated that subtle changes in the primary sequence of TB may provide TB analogues that, used alone or in combination with adjuvant molecules such as EDTA, exhibit promising features against both planktonic and biofilm cells of medically relevant

  13. Membrane-Active Epithelial Keratin 6A Fragments (KAMPs) Are Unique Human Antimicrobial Peptides with a Non-αβ Structure

    Science.gov (United States)

    Lee, Judy T. Y.; Wang, Guangshun; Tam, Yu Tong; Tam, Connie

    2016-01-01

    Antibiotic resistance is a pressing global health problem that threatens millions of lives each year. Natural antimicrobial peptides and their synthetic derivatives, including peptoids and peptidomimetics, are promising candidates as novel antibiotics. Recently, the C-terminal glycine-rich fragments of human epithelial keratin 6A were found to have bactericidal and cytoprotective activities. Here, we used an improved 2-dimensional NMR method coupled with a new protocol for structural refinement by low temperature simulated annealing to characterize the solution structure of these kerain-derived antimicrobial peptides (KAMPs). Two specific KAMPs in complex with membrane mimicking sodium dodecyl sulfate (SDS) micelles displayed amphipathic conformations with only local bends and turns, and a central 10-residue glycine-rich hydrophobic strip that is central to bactericidal activity. To our knowledge, this is the first report of non-αβ structure for human antimicrobial peptides. Direct observation of Staphylococcus aureus and Pseudomonas aeruginosa by scanning and transmission electron microscopy showed that KAMPs deformed bacterial cell envelopes and induced pore formation. Notably, in competitive binding experiments, KAMPs demonstrated binding affinities to LPS and LTA that did not correlate with their bactericidal activities, suggesting peptide-LPS and peptide-LTA interactions are less important in their mechanisms of action. Moreover, immunoprecipitation of KAMPs-bacterial factor complexes indicated that membrane surface lipoprotein SlyB and intracellular machineries NQR sodium pump and ribosomes are potential molecular targets for the peptides. Results of this study improve our understanding of the bactericidal function of epithelial cytokeratin fragments, and highlight an unexplored class of human antimicrobial peptides, which may serve as non-αβ peptide scaffolds for the design of novel peptide-based antibiotics. PMID:27891122

  14. Membrane-Active Epithelial Keratin 6A Fragments (KAMPs Are Unique Human Antimicrobial Peptides with a Non-αβ Structure

    Directory of Open Access Journals (Sweden)

    Judy Tsz Ying Lee

    2016-11-01

    Full Text Available Antibiotic resistance is a pressing global health problem that threatens millions of lives each year. Natural antimicrobial peptides and their synthetic derivatives, including peptoids and peptidomimetics, are promising candidates as novel antibiotics. Recently, the C-terminal glycine-rich fragments of human epithelial keratin 6A were found to have bactericidal and cytoprotective activities. Here, we used an improved 2-dimensional NMR method coupled with a new protocol for structural refinement by low temperature simulated annealing to characterize the solution structure of these kerain-derived antimicrobial peptides (KAMPs. Two specific KAMPs in complex with membrane mimicking sodium dodecyl sulfate (SDS micelles displayed amphipathic conformations with only local bends and turns, and a central 10-residue glycine-rich hydrophobic strip that is central to bactericidal activity. To our knowledge, this is the first report of non-αβ structure for human antimicrobial peptides. Direct observation of Staphylococcus aureus and Pseudomonas aeruginosa by scanning and transmission electron microscopy showed that KAMPs deformed bacterial cell envelopes and induced pore formation. Notably, in competitive binding experiments, KAMPs demonstrated binding affinities to LPS and LTA that did not correlate with their bactericidal activities, suggesting peptide-LPS and peptide-LTA interactions are less important in their mechanisms of action. Moreover, immunoprecipitation of KAMPs-bacterial factor complexes indicated that membrane surface lipoprotein SlyB and intracellular machineries NQR sodium pump and ribosomes are potential molecular targets for the peptides. Results of this study improve our understanding of the bactericidal function of epithelial cytokeratin fragments, and highlight an unexplored class of human antimicrobial peptides, which may serve as non-αβ peptide scaffolds for the design of novel peptide-based antibiotics.

  15. Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides.

    Science.gov (United States)

    Bolscher, Jan G M; Adão, Regina; Nazmi, Kamran; van den Keybus, Petra A M; van 't Hof, Wim; Nieuw Amerongen, Arie V; Bastos, Margarida; Veerman, Enno C I

    2009-01-01

    The innate immunity factor lactoferrin harbours two antimicrobial moieties, lactoferricin and lactoferrampin, situated in close proximity in the N1 domain of the molecule. Most likely they cooperate in many of the beneficial activities of lactoferrin. To investigate whether chimerization of both peptides forms a functional unit we designed a chimerical structure containing lactoferricin amino acids 17-30 and lactoferrampin amino acids 265-284. The bactericidal activity of this LFchimera was found to be drastically stronger than that of the constituent peptides, as was demonstrated by the need for lower dose, shorter incubation time and less ionic strength dependency. Likewise, strongly enhanced interaction with negatively charged model membranes was found for the LFchimera relative to the constituent peptides. Thus, chimerization of the two antimicrobial peptides resembling their structural orientation in the native molecule strikingly improves their biological activity.

  16. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment.

    OpenAIRE

    Yamauchi, K; Tomita, M; Giehl, T J; Ellison, R T

    1993-01-01

    Although the antimicrobial activity of lactoferrin has been well described, its mechanism of action has been poorly characterized. Recent work has indicated that in addition to binding iron, human lactoferrin damages the outer membrane of gram-negative bacteria. In this study, we determined whether bovine lactoferrin and a pepsin-derived bovine lactoferrin peptide (lactoferricin) fragment have similar activities. We found that both 20 microM bovine lactoferrin and 20 microM lactoferricin rele...

  17. Differential activity of innate defense antimicrobial peptides against Nocardia species.

    Science.gov (United States)

    Rieg, Siegbert; Meier, Benjamin; Fähnrich, Eva; Huth, Anja; Wagner, Dirk; Kern, Winfried V; Kalbacher, Hubert

    2010-02-23

    Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs) in innate defense against Nocardia, the activity of human alpha-defensins human neutrophil peptides (HNPs) 1-3, human beta-defensin (hBD)-3 and cathelicidin LL-37 as well as bovine beta-defensins lingual and tracheal antimicrobial peptides (LAP, TAP) and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human alpha-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  18. Differential activity of innate defense antimicrobial peptides against Nocardia species

    Directory of Open Access Journals (Sweden)

    Wagner Dirk

    2010-02-01

    Full Text Available Abstract Background Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs in innate defense against Nocardia, the activity of human α-defensins human neutrophil peptides (HNPs 1-3, human β-defensin (hBD-3 and cathelicidin LL-37 as well as bovine β-defensins lingual and tracheal antimicrobial peptides (LAP, TAP and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Results Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human α-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Conclusion Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  19. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the circulation after sumatriptan

    DEFF Research Database (Denmark)

    Hansen, Jakob Møller; Fahrenkrug, Jan; Petersen, Jesper Troensegaard

    2013-01-01

    The origin of migraine pain is still elusive, but increasingly researchers focus on the neuropeptides in the perivascular space of cranial vessels as important mediators of nociceptive input during migraine attacks. The parasympathetic neurotransmitters, pituitary adenylate cyclase activating...... peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) may be released from parasympathetic fibres and activate sensory nerve fibres during migraine attacks. Triptans are effective and well tolerated in acute migraine management but the exact mechanism of action is still debated. Triptans might...

  20. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  1. The order of expression is a key factor in the production of active transglutaminase in Escherichia coli by co-expression with its pro-peptide

    Directory of Open Access Journals (Sweden)

    Liu Song

    2011-12-01

    Full Text Available Abstract Background Streptomyces transglutaminase (TGase is naturally synthesized as zymogen (pro-TGase, which is then processed to produce active enzyme by the removal of its N-terminal pro-peptide. This pro-peptide is found to be essential for overexpression of soluble TGase in E. coli. However, expression of pro-TGase by E. coli requires protease-mediated activation in vitro. In this study, we developed a novel co- expression method for the direct production of active TGase in E. coli. Results A TGase from S. hygroscopicus was expressed in E. coli only after fusing with the pelB signal peptide, but fusion with the signal peptide induced insoluble enzyme. Therefore, alternative protocol was designed by co-expressing the TGase and its pro-peptide as independent polypeptides under a single T7 promoter using vector pET-22b(+. Although the pro-peptide was co-expressed, the TGase fused without the signal peptide was undetectable in both soluble and insoluble fractions of the recombinant cells. Similarly, when both genes were expressed in the order of the TGase and the pro-peptide, the solubility of TGase fused with the signal peptide was not improved by the co-expression with its pro-peptide. Interestingly, active TGase was only produced by the cells in which the pro-peptide and the TGase were fused with the signal peptide and sequentially expressed. The purified recombinant and native TGase shared the similar catalytic properties. Conclusions Our results indicated that the pro-peptide can assist correct folding of the TGase inter-molecularly in E. coli, and expression of pro-peptide prior to that of TGase was essential for the production of active TGase. The co-expression strategy based on optimizing the order of gene expression could be useful for the expression of other functional proteins that are synthesized as a precursor.

  2. A 4'-phosphopantetheinyl transferase mediates non-ribosomal peptide synthetase activation in Aspergillus fumigatus.

    Science.gov (United States)

    Neville, Claire; Murphy, Alan; Kavanagh, Kevin; Doyle, Sean

    2005-04-01

    Aspergillus fumigatus is a significant human pathogen. Non-ribosomal peptide (NRP) synthesis is thought to be responsible for a significant proportion of toxin and siderophore production in the organism. Furthermore, it has been shown that 4'-phosphopantetheinylation is required for the activation of key enzymes involved in non-ribosomal peptide synthesis in other species. Here we report the cloning, recombinant expression and functional characterisation of a 4'-phosphopantetheinyl transferase from A. fumigatus and the identification of an atypical NRP synthetase (Afpes1), spanning 14.3 kb. Phylogenetic analysis has shown that the NRP synthetase exhibits greatest identity to NRP synthetases from Metarhizium anisolpiae (PesA) and Alternaria brassicae (AbrePsy1). Northern hybridisation and RT-PCR analysis have confirmed that both genes are expressed in A. fumigatus. A 120 kDa fragment of the A. fumigatus NRP synthetase, containing a putative thiolation domain, was cloned and expressed in the baculovirus expression system. Detection of a 4'-phosphopantetheinylated peptide (SFSAMK) from this protein, by MALDI-TOF mass spectrometric analysis after coincubation of the 4'-phosphopantetheinyl transferase with the recombinant NRP synthetase fragment and acetyl CoA, confirms that it is competent to play a role in NRP synthetase activation in A. fumigatus. The 4'-phosphopantetheinyl transferase also activates, by 4'-phosphopantetheinylation, recombinant alpha-aminoadipate reductase (Lys2p) from Candida albicans, a key enzyme involved in lysine biosynthesis.

  3. Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils.

    Directory of Open Access Journals (Sweden)

    Heike L Rittner

    2009-04-01

    Full Text Available In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR and/or toll like receptor (TLR agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively. Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, beta-endorphin antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim

  4. Antitumor activity of novel chimeric peptides derived from cyclinD/CDK4 and the protein transduction domain 4.

    Science.gov (United States)

    Wang, Haili; Chen, Xi; Chen, Yanping; Sun, Lei; Li, Guodong; Zhai, Mingxia; Zhai, Wenjie; Kang, Qiaozhen; Gao, Yanfeng; Qi, Yuanming

    2013-02-01

    CyclinD1/CDK4 and cyclinD3/CDK4 complexes are key regulators of the cell progression and therefore constitute promising targets for the design of anticancer agents. In the present study, the key peptide motifs were selected from these two complexes. Chimeric peptides with these peptides conjugated to the protein transduction domain 4 (PTD4) were designed and synthesized. The chimeric peptides, PTD4-D1, PTD4-D3, PTD4-K4 exhibited significant anti-proliferation effects on cancer cell lines. These peptides could compete with the cyclinD/CDK4 complex and induce the G1/S phase arrest and apoptosis of cancer cells. In the tumor challenge experiment, these peptides showed potent antitumor effects with no significant side effects. Our results suggested that these peptides could be served as novel leading compounds with potent antitumor activity.

  5. Reduced ability of C-type natriuretic peptide (CNP) to activate natriuretic peptide receptor B (NPR-B) causes dwarfism in lbab−/− mice

    Science.gov (United States)

    Yoder, Andrea R.; Kruse, Andrew C.; Earhart, Cathleen A.; Ohlendorf, Douglas H.; Potter, Lincoln R.

    2015-01-01

    C-type natriuretic peptide (CNP) stimulates endochondrial ossification by activating the transmembrane guanylyl cyclase, natriuretic peptide receptor-B (NPR-B). Recently, a spontaneous autosomal recessive mutation that causes severe dwarfism in mice was identified. The mutant, called long bone abnormality (lbab), contains a single point mutation that converts an arginine to a glycine in a conserved coding region of the CNP gene, but how this mutation affects CNP activity has not been reported. Here, we determined that thirty to greater than one hundred-fold more CNPlbab was required to activate NPR-B as compared to wild-type CNP in whole cell cGMP elevation and membrane guanylyl cyclase assays. The reduced ability of CNPlbab to activate NPR-B was explained, at least in part, by decreased binding since ten-fold more CNPlbab than wild-type CNP was required to compete with [125I][Tyr0]CNP for receptor binding. Molecular modeling suggested that the conserved arginine is critical for binding to an equally conserved acidic pocket in NPR-B. These results indicate that reduced binding to and activation of NPR-B causes dwarfism in lbab−/− mice. PMID:18554750

  6. A heterodimer comprised of two bovine lactoferrin antimicrobial peptides exhibits powerful bactericidal activity against Burkholderia pseudomallei.

    Science.gov (United States)

    Puknun, Aekkalak; Bolscher, Jan G M; Nazmi, Kamran; Veerman, Enno C I; Tungpradabkul, Sumalee; Wongratanacheewin, Surasakdi; Kanthawong, Sakawrat; Taweechaisupapong, Suwimol

    2013-07-01

    Melioidosis is a severe infectious disease that is endemic in Southeast Asia and Northern Australia. Burkholderia pseudomallei, the causative agent of this disease, has developed resistance to an increasing list of antibiotics, demanding a search for novel agents. Lactoferricin and lactoferrampin are two antimicrobial domains of lactoferrin with a broad spectrum of antimicrobial activity. A hybrid peptide (LFchimera) containing lactoferrampin (LFampin265-284) and a part of lactoferricin (LFcin17-30) has strikingly higher antimicrobial activities compared to the individual peptides. In this study, the antimicrobial activities of this chimeric construct (LFchimera1), as well as of another one containing LFcin17-30 and LFampin268-284, a shorter fragment of LFampin265-284 (LFchimera2), and the constituent peptides were tested against 7 isolates of B. pseudomallei and compared to the preferential antibiotic ceftazidime (CAZ). All isolates including B. pseudomallei 979b shown to be resistant to CAZ, at a density of 10(5) CFU/ml, could be killed by 5-10 μM of LFchimera1 within 2 h, while the other peptides as well as the antibiotic CAZ only inhibited the B. pseudomallei strains resulting in an overgrowth in 24 h. These data indicate that LFchimera1 could be considered for development of therapeutic agents against B. pseudomallei.

  7. Protein-only, antimicrobial peptide-containing recombinant nanoparticles with inherent built-in antibacterial activity.

    Science.gov (United States)

    Serna, Naroa; Sánchez-García, Laura; Sánchez-Chardi, Alejandro; Unzueta, Ugutz; Roldán, Mónica; Mangues, Ramón; Vázquez, Esther; Villaverde, Antonio

    2017-09-15

    The emergence of bacterial antibiotic resistances is a serious concern in human and animal health. In this context, naturally occurring cationic antimicrobial peptides (AMPs) might play a main role in a next generation of drugs against bacterial infections. Taking an innovative approach to design self-organizing functional proteins, we have generated here protein-only nanoparticles with intrinsic AMP microbicide activity. Using a recombinant version of the GWH1 antimicrobial peptide as building block, these materials show a wide antibacterial activity spectrum in absence of detectable toxicity on mammalian cells. The GWH1-based nanoparticles combine clinically appealing properties of nanoscale materials with full biocompatibility, structural and functional plasticity and biological efficacy exhibited by proteins. Because of the largely implemented biological fabrication of recombinant protein drugs, the protein-based platform presented here represents a novel and scalable strategy in antimicrobial drug design, that by solving some of the limitations of AMPs offers a promising alternative to conventional antibiotics. The low molecular weight antimicrobial peptide GWH1 has been engineered to oligomerize as self-assembling protein-only nanoparticles of around 50nm. In this form, the peptide exhibits potent and broad antibacterial activities against both Gram-positive and Gram-negative bacteria, without any harmful effect over mammalian cells. As a solid proof-of-concept, this finding strongly supports the design and biofabrication of nanoscale antimicrobial materials with in-built functionalities. The protein-based homogeneous composition offer advantages over alternative materials explored as antimicrobial agents, regarding biocompatibility, biodegradability and environmental suitability. Beyond the described prototype, this transversal engineering concept has wide applicability in the design of novel nanomedicines for advanced treatments of bacterial infections

  8. Antagonistic Activities of Novel Peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum.

    Science.gov (United States)

    Kim, Young Gwon; Kang, Hee Kyoung; Kwon, Kee-Deok; Seo, Chang Ho; Lee, Hyang Burm; Park, Yoonkyung

    2015-12-09

    Bacillus species have recently drawn attention due to their potential use in the biological control of fungal diseases. This paper reports on the antifungal activity of novel peptides isolated from Bacillus amyloliquefaciens PT14. Reverse-phase high-performance liquid chromatography revealed that B. amyloliquefaciens PT14 produces five peptides (PT14-1, -2, -3, -4a, and -4b) that exhibit antifungal activity but are inactive against bacterial strains. In particular, PT14-3 and PT14-4a showed broad-spectrum antifungal activity against Fusarium solani and Fusarium oxysporum. The PT14-4a N-terminal amino acid sequence was identified through Edman degradation, and a BLAST homology analysis showed it not to be identical to any other protein or peptide. PT14-4a displayed strong fungicidal activity with minimal inhibitory concentrations of 3.12 mg/L (F. solani) and 6.25 mg/L (F. oxysporum), inducing severe morphological deformation in the conidia and hyphae. On the other hand, PT14-4a had no detectable hemolytic activity. This suggests PT14-4a has the potential to serve as an antifungal agent in clinical therapeutic and crop-protection applications.

  9. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases.

    Science.gov (United States)

    Ryder, Kate; Bekhit, Alaa El-Din; McConnell, Michelle; Carne, Alan

    2016-10-01

    Five commercially available food-grade microbial protease preparations were evaluated for their ability to hydrolyse meat myofibrillar and connective tissue protein extracts to produce bioactive peptides. A bacterial-derived protease (HT) extensively hydrolysed both meat protein extracts, producing peptide hydrolysates with significant in vitro antioxidant and ACE inhibitor activities. The hydrolysates retained bioactivity after simulated gastrointestinal hydrolysis challenge. Gel permeation chromatography sub-fractionation of the crude protein hydrolysates showed that the smaller peptide fractions exhibited the highest antioxidant and ACE inhibitor activities. OFFGEL electrophoresis of the small peptides of both hydrolysates showed that low isoelectric point peptides had antioxidant activity; however, no consistent relationship was observed between isoelectric point and ACE inhibition. Cell-based assays indicated that the hydrolysates present no significant cytotoxicity towards Vero cells. The results indicate that HT protease hydrolysis of meat myofibrillar and connective tissue protein extracts produces bioactive peptides that are non-cytotoxic, should be stable in the gastrointestinal tract and may contain novel bioactive peptide sequences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A synthetic peptide blocking TRPV1 activation inhibits UV-induced skin responses.

    Science.gov (United States)

    Kang, So Min; Han, Sangbum; Oh, Jang-Hee; Lee, Young Mee; Park, Chi-Hyun; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-10-01

    Transient receptor potential type 1 (TRPV1) can be activated by ultraviolet (UV) irradiation, and mediates UV-induced matrix metalloproteinase (MMP)-1 and proinflammatory cytokines in keratinocytes. Various chemicals and compounds targeting TRPV1 activation have been developed, but are not in clinical use mostly due to their safety issues. We aimed to develop a novel TRPV1-targeting peptide to inhibit UV-induced responses in human skin. We designed and generated a novel TRPV1 inhibitory peptide (TIP) which mimics the specific site in TRPV1 (aa 701-709: Gln-Arg-Ala-Ile-Thr-Ile-Leu-Asp-Thr, QRAITILDT), Thr 705 , and tested its efficacy of blocking UV-induced responses in HaCaT, mouse, and human skin. TIP effectively inhibited capsaicin-induced calcium influx and TRPV1 activation. Treatment of HaCaT with TIP prevented UV-induced increases of MMP-1 and pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α. In mouse skin in vivo, TIP inhibited UV-induced skin thickening and prevented UV-induced expression of MMP-13 and MMP-9. Moreover, TIP attenuated UV-induced erythema and the expression of MMP-1, MMP-2, IL-6, and IL-8 in human skin in vivo. The novel synthetic peptide targeting TRPV1 can ameliorate UV-induced skin responses in vitro and in vivo, providing a promising therapeutic approach against UV-induced inflammation and photoaging. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  11. Anti-Biofilm and Immunomodulatory Activities of Peptides That Inhibit Biofilms Formed by Pathogens Isolated from Cystic Fibrosis Patients

    Directory of Open Access Journals (Sweden)

    César de la Fuente-Núñez

    2014-10-01

    Full Text Available Cystic fibrosis (CF patients often acquire chronic respiratory tract infections due to Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc species. In the CF lung, these bacteria grow as multicellular aggregates termed biofilms. Biofilms demonstrate increased (adaptive resistance to conventional antibiotics, and there are currently no available biofilm-specific therapies. Using plastic adherent, hydroxyapatite and flow cell biofilm models coupled with confocal and scanning electron microscopy, it was demonstrated that an anti-biofilm peptide 1018 prevented biofilm formation, eradicated mature biofilms and killed biofilms formed by a wide range of P. aeruginosa and B. cenocepacia clinical isolates. New peptide derivatives were designed that, compared to their parent peptide 1018, showed similar or decreased anti-biofilm activity against P. aeruginosa biofilms, but increased activity against biofilms formed by the Gram-positive bacterium methicillin resistant Staphylococcus aureus. In addition, some of these new peptide derivatives retained the immunomodulatory activity of 1018 since they induced the production of the chemokine monocyte chemotactic protein-1 (MCP-1 and suppressed lipopolysaccharide-mediated tumor necrosis factor-α (TNF-α production by human peripheral blood mononuclear cells (PBMC and were non-toxic towards these cells. Peptide 1018 and its derivatives provide promising leads for the treatment of chronic biofilm infections and hyperinflammatory lung disease in CF patients.

  12. Alanine scan of the peptide antibiotic feglymycin: assessment of amino acid side chains contributing to antimicrobial activity.

    Science.gov (United States)

    Hänchen, Anne; Rausch, Saskia; Landmann, Benjamin; Toti, Luigi; Nusser, Antje; Süssmuth, Roderich D

    2013-03-18

    The antibiotic feglymycin is a linear 13-mer peptide synthesized by the bacterium Streptomyces sp. DSM 11171. It mainly consists of the nonproteinogenic amino acids 4-hydroxyphenylglycine and 3,5-dihydroxyphenylglycine. An alanine scan of feglymycin was performed by solution-phase peptide synthesis in order to assess the significance of individual amino acid side chains for biological activity. Hence, 13 peptides were synthesized from di- and tripeptide building blocks, and subsequently tested for antibacterial activity against Staphylococcus aureus strains. Furthermore we tested the inhibition of peptidoglycan biosynthesis enzymes MurA and MurC, which are inhibited by feglymycin. Whereas the antibacterial activity is significantly based on the three amino acids D-Hpg1, L-Hpg5, and L-Phe12, the inhibitory activity against MurA and MurC depends mainly on L-Asp13. The difference in the position dependence for antibacterial activity and enzyme inhibition suggests multiple molecular targets in the modes of action of feglymycin. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Antiparasitic effects induced by polyclonal IgY antibodies anti-phospholipase A2 from Bothrops pauloensis venom.

    Science.gov (United States)

    Borges, Isabela Pacheco; Silva, Mariana Ferreira; Santiago, Fernanda Maria; de Faria, Lucas Silva; Júnior, Álvaro Ferreira; da Silva, Rafaela José; Costa, Mônica Soares; de Freitas, Vitor; Yoneyama, Kelly Aparecida Geraldo; Ferro, Eloísa Amália Vieira; Lopes, Daiana Silva; Rodrigues, Renata Santos; de Melo Rodrigues, Veridiana

    2018-06-01

    Activities of phospholipases (PLAs) have been linked to pathogenesis in various microorganisms, and implicated in cell invasion and so the interest in these enzymes as potential targets that could contribute to the control of parasite survival and proliferation. Chicken eggs immunized with BnSP-7, a Lys49 phospholipase A 2 (PLA 2 ) homologue from Bothrops pauloensis snake venom, represent an excellent source of polyclonal antibodies with potential inhibitory activity on parasite PLA s. Herein, we report the production, characterization and anti-parasitic effect of IgY antibodies from egg yolks of hens immunized with BnSP-7. Produced antibodies presented increasing avidity and affinity for antigenic toxin epitopes throughout immunization, attaining a plateau after 4weeks. Pooled egg yolks-purified anti-BnSP-7 IgY antibodies were able to specifically recognize different PLA 2 s from Bothrops pauloensis and Bothrops jararacussu venom. Antibodies also neutralized BnSP-7 cytotoxic activity in C2C12 cells. Also, the antibodies recognized targets in Leishmania (Leishmania) amazonensis and Toxoplasma gondii extracts by ELISA and immunofluorescence assays. Anti-BnSP-7 IgY antibodies were cytotoxic to T. gondii tachyzoite and L. (L.) amazonensis promastigotes, and were able to decrease proliferation of both parasites treated before infection. These data suggest that the anti-BnSP-7 IgY is an important tool for discovering new parasite targets and blocking parasitic effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. C-peptide increases Na,K-ATPase expression via PKC- and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells.

    Directory of Open Access Journals (Sweden)

    Dana Galuska

    Full Text Available Replacement of proinsulin C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, conditions which are associated with a decrease in Na,K-ATPase activity. We determined the molecular mechanism by which long term exposure to C-peptide stimulates Na,K-ATPase expression and activity in primary human renal tubular cells (HRTC in control and hyperglycemic conditions.HRTC were cultured from the outer cortex obtained from patients undergoing elective nephrectomy. Ouabain-sensitive rubidium ((86Rb(+ uptake and Na,K-ATPase activity were determined. Abundance of Na,K-ATPase was determined by Western blotting in intact cells or isolated basolateral membranes (BLM. DNA binding activity was determined by electrical mobility shift assay (EMSA. Culturing of HRTCs for 5 days with 1 nM, but not 10 nM of human C-peptide leads to increase in Na,K-ATPase α(1-subunit protein expression, accompanied with increase in (86Rb(+ uptake, both in normal- and hyperglycemic conditions. Na,K-ATPase α(1-subunit expression and Na,K-ATPase activity were reduced in BLM isolated from cells cultured in presence of high glucose. Exposure to1 nM, but not 10 nM of C-peptide increased PKCε phosphorylation as well as phosphorylation and abundance of nuclear ERK1/2 regardless of glucose concentration. Exposure to 1 nM of C-peptide increased DNA binding activity of transcription factor ZEB (AREB6, concomitant with Na,K-ATPase α(1-subunit mRNA expression. Effects of 1 nM C-peptide on Na,K-ATPase α(1-subunit expression and/or ZEB DNA binding activity in HRTC were abolished by incubation with PKC or MEK1/2 inhibitors and ZEB siRNA silencing.Despite activation of ERK1/2 and PKC by hyperglycemia, a distinct pool of PKCs and ERK1/2 is involved in regulation of Na,K-ATPase expression and activity by C-peptide. Most likely C-peptide stimulates sodium pump expression via activation of ZEB, a transcription factor that has not been previously implicated in C-peptide

  15. Lipid raft-like liposomes used for targeted delivery of a chimeric entry-inhibitor peptide with anti-HIV-1 activity.

    Science.gov (United States)

    Gómara, María José; Pérez-Pomeda, Ignacio; Gatell, José María; Sánchez-Merino, Victor; Yuste, Eloisa; Haro, Isabel

    2017-02-01

    The work reports the design and synthesis of a chimeric peptide that is composed of the peptide sequences of two entry inhibitors which target different sites of HIV-1 gp41. The chimeric peptide offers the advantage of targeting two gp41 regions simultaneously: the fusion peptide and the loop both of which are membrane active and participate in the membrane fusion process. We therefore use lipid raft-like liposomes as a tool to specifically direct the chimeric inhibitor peptide to the membrane domains where the HIV-1 envelope protein is located. Moreover, the liposomes that mimic the viral membrane composition protect the chimeric peptide against proteolytic digestion thereby increasing the stability of the peptide. The described liposome preparations are suitable nanosystems for managing hydrophobic entry-inhibitor peptides as putative therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Peptide aldehyde inhibitors of bacterial peptide deformylases.

    Science.gov (United States)

    Durand, D J; Gordon Green, B; O'Connell, J F; Grant, S K

    1999-07-15

    Bacterial peptide deformylases (PDF, EC 3.5.1.27) are metalloenzymes that cleave the N-formyl groups from N-blocked methionine polypeptides. Peptide aldehydes containing a methional or norleucinal inhibited recombinant peptide deformylase from gram-negative Escherichia coli and gram-positive Bacillus subtilis. The most potent inhibitor was calpeptin, N-CBZ-Leu-norleucinal, which was a competitive inhibitor of the zinc-containing metalloenzymes, E. coli and B. subtilis PDF with Ki values of 26.0 and 55.6 microM, respectively. Cobalt-substituted E. coli and B. subtilis deformylases were also inhibited by these aldehydes with Ki values for calpeptin of 9.5 and 12.4 microM, respectively. Distinct spectral changes were observed upon binding of calpeptin to the Co(II)-deformylases, consistent with the noncovalent binding of the inhibitor rather than the formation of a covalent complex. In contrast, the chelator 1,10-phenanthroline caused the time-dependent inhibition of B. subtilis Co(II)-PDF activity with the loss of the active site metal. The fact that calpeptin was nearly equipotent against deformylases from both gram-negative and gram-positive bacterial sources lends further support to the idea that a single deformylase inhibitor might have broad-spectrum antibacterial activity. Copyright 1999 Academic Press.

  17. Efficacy of antibacterial peptides against peptide-resistant MRSA is restored by permeabilisation of bacteria membranes

    Directory of Open Access Journals (Sweden)

    Joshua Thomas Ravensdale

    2016-11-01

    Full Text Available Clinical application of antimicrobial peptides, as with conventional antibiotics, may be compromised by the development of bacterial resistance. This study investigated antimicrobial peptide resistance in methicillin resistant Staphylococcus aureus, including aspects related to the resilience of the resistant bacteria towards the peptides, the stability of resistance when selection pressures are removed, and whether resistance can be overcome by using the peptides with other membrane-permeabilising agents. Genotypically variant strains of S. aureus became equally resistant to the antibacterial peptides melittin and bac8c when grown in sub-lethal concentrations. Subculture of a melittin-resistant strain without melittin for 8 days lowered the minimal lethal concentration of the peptide from 170 µg ml-1 to 30 g ml-1. Growth for 24 h in 12 g ml-1 melittin restored the MLC to 100 g ml-1. Flow cytometry analysis of cationic fluorophore binding to melittin-naïve and melittin-resistant bacteria revealed that resistance coincided with decreased binding of cationic molecules, suggesting a reduction in nett negative charge on the membrane. Melittin was haemolytic at low concentrations but the truncated analogue of melittin, mel12-26, was confirmed to lack haemolytic activity. Although a previous report found that mel12-26 retained full bactericidal activity, we found it to lack significant activity when added to culture medium. However, electroporation in the presence of 50 µg ml-1 of mel12-26, killed 99.3% of the bacteria. Similarly, using a low concentration of the non-ionic detergent Triton X-100 to permeabilize bacteria to mel12-26 markedly increased its bactericidal activity. The observation that bactericidal activity of the non-membranolytic peptide mel12-26 was enhanced when the bacterial membrane was permeablised by detergents or electroporation, suggests that its principal mechanism in reducing bacterial survival may be through

  18. The effects of sex and neonatal stress on pituitary adenylate cyclase-activating peptide expression.

    Science.gov (United States)

    Mosca, E V; Rousseau, J P; Gulemetova, R; Kinkead, R; Wilson, R J A

    2015-02-01

    What is the central question of this study? Does sex or neonatal stress affect the expression of pituitary adenylate cyclase-activating peptide or its receptors? What is the main finding and its importance? Neonatal-maternal separation stress has little long-lasting effect on the expression of pituitary adenylate cyclase-activating peptide or its receptors, but sex differences exist in these genes between males and females at baseline. Sex differences in classic stress hormones have been studied in depth, but pituitary adenylate cyclase-activating peptide (PACAP), recently identified as playing a critical role in the stress axes, has not. Here we studied whether baseline levels of PACAP differ between sexes in various stress-related tissues and whether neonatal-maternal separation stress has a sex-dependent effect on PACAP gene expression in stress pathways. Using quantitative RT-PCR, we found sex differences in PACAP and PACAP receptor gene expression in several respiratory and/or stress-related tissues, while neonatal-maternal separation stress did little to affect PACAP signalling in adult animals. We propose that sex differences in PACAP expression are likely to contribute to differences between males and females in responses to stress. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  19. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens.

    Science.gov (United States)

    Hu, Fengjiao; Wu, Qiaoxing; Song, Shuang; She, Ruiping; Zhao, Yue; Yang, Yifei; Zhang, Meikun; Du, Fang; Soomro, Majid Hussain; Shi, Ruihan

    2016-12-05

    Hemoglobin is a rich source of biological peptides. As a byproduct and even wastewater of poultry-slaughtering facilities, chicken blood is one of the most abundant source of hemoglobin. In this study, the chicken hemoglobin antimicrobial peptides (CHAP) were isolated and the antimicrobial and bactericidal activities were tested by the agarose diffusion assay, minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, and time-dependent inhibitory and bactericidal assays. The results demonstrated that CHAP had potent and rapid antimicrobial activity against 19 bacterial strains, including 9 multidrug-resistant bacterial strains. Bacterial biofilm and NaCl permeability assays, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were further performed to detect the mechanism of its antimicrobial effect. Additionally, CHAP showed low hemolytic activity, embryo toxicity, and high stability in different temperatures and animal plasma. CHAP may have great potential for expanding production and development value in animal medication, the breeding industry and environment protection.

  20. Designing anticancer peptides by constructive machine learning.

    Science.gov (United States)

    Grisoni, Francesca; Neuhaus, Claudia; Gabernet, Gisela; Müller, Alex; Hiss, Jan; Schneider, Gisbert

    2018-04-21

    Constructive machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a generative model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on alpha-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    International Nuclear Information System (INIS)

    Vegt, Erik; Eek, Annemarie; Oyen, Wim J.G.; Gotthardt, Martin; Boerman, Otto C.; Jong, Marion de

    2010-01-01

    In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of 111 In-albumin, 111 In-minigastrin, 111 In-exendin and 111 In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide was determined. FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of 111 In-albumin, 111 In-exendin and 111 In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide 6), was selected for in vivo testing. In rats, 5 mg of peptide 6 very efficiently inhibited the renal uptake of 111 In-minigastrin, by 88%. Uptake of 111 In-exendin and 111 In-octreotide was reduced by 26 and 33%, respectively. The albumin-derived peptide 6 efficiently inhibited the renal reabsorption of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide and is a promising candidate for kidney protection in PRRT. (orig.)

  2. Directed evolution of an LBP/CD14 inhibitory peptide and its anti-endotoxin activity.

    Directory of Open Access Journals (Sweden)

    Li Fang

    Full Text Available BACKGROUND: LPS-binding protein (LBP and its ligand CD14 are located upstream of the signaling pathway for LPS-induced inflammation. Blocking LBP and CD14 binding might prevent LPS-induced inflammation. In previous studies, we obtained a peptide analog (MP12 for the LBP/CD14 binding site and showed that this peptide analog had anti-endotoxin activity. In this study, we used in vitro directed evolution for this peptide analog to improve its in vivo and in vitro anti-endotoxin activity. METHODS: We used error-prone PCR (ep-PCR and induced mutations in the C-terminus of LBP and attached the PCR products to T7 phages to establish a mutant phage display library. The positive clones that competed with LBP for CD14 binding was obtained by screening. We used both in vivo and in vitro experiments to compare the anti-endotoxin activities of a polypeptide designated P1 contained in a positive clone and MP12. RESULTS: 11 positive clones were obtained from among target phages. Sequencing showed that 9 positive clones had a threonine (T to methionine (M mutation in amino acid 287 of LBP. Compared to polypeptide MP12, polypeptide P1 significantly inhibited LPS-induced TNF-α expression and NF-κB activity in U937 cells (P<0.05. Compared to MP12, P1 significantly improved arterial oxygen pressure, an oxygenation index, and lung pathology scores in LPS-induced ARDS rats (P<0.05. CONCLUSION: By in vitro directed evolution of peptide analogs for the LBP/CD14 binding site, we established a new polypeptide (P1 with a threonine (T-to-methionine (M mutation in amino acid 287 of LBP. This polypeptide had high anti-endotoxin activity in vitro and in vivo, which suggested that amino acid 287 in the C-terminus of LBP may play an important role in LBP binding with CD14.

  3. Two Novel Bioactive Peptides from Antarctic Krill with Dual Angiotensin Converting Enzyme and Dipeptidyl Peptidase IV Inhibitory Activities.

    Science.gov (United States)

    Ji, Wei; Zhang, Chaohua; Ji, Hongwu

    2017-07-01

    Inhibition of dipeptidyl peptidase IV (DPP-IV) and angiotensin converting enzyme (ACE) are considered useful in managing 2 often associated conditions: diabetes and hypertension. In this study, corolase PP was used to hydrolyze Antarctic krill protein. The hydrolysate (AKH) was isolated by ultrafiltration and purified by size-exclusion chromatography, ion exchange chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC) sequentially. The in vitro inhibitory activities of all AKHs and several fractions obtained against ACE and DPP-IV were assessed. Two peptides, purified with dual-strength inhibitory activity against ACE and DPP-IV, were identified by TOF-MS/MS. Results indicated that not all fractions exhibited dual inhibitory activities of ACE and DPP-IV. The purified peptide Lys-Val-Glu-Pro-Leu-Pro had half-maximal inhibitory concentrations (IC 50 ) of 0.93±0.05 and 0.73±0.04 mg/mL against ACE and DPP-IV, respectively. The other peptide Pro-Ala-Leu had IC 50 values of 0.64±0.05 and 0.88±0.03 mg/mL against ACE and DPP-IV, respectively. This study firstly reported the sequences of dual bioactive peptides from Antarctic krill proteins, further provided new insights into the bioactive peptides responsible for the ACE and DPP-IV inhibitory activities from the Antarctic krill protein hydrolysate to manage hypertension and diabetes. © 2017 Institute of Food Technologists®.

  4. Two novel cyclic peptides are key components of the antimicrobial activity of the Greenlandic isolate Pseudomonas sp. In5

    DEFF Research Database (Denmark)

    Hennessy, Rosanna Catherine; Phippen, Christopher; Nielsen, Kristian F.

    suppressive soil, Pseudomonas sp. In5 is therefore a promising potential biocontrol agent with potent activity against plant pathogens. Studies to date have shown nunamycin and nunapeptin as key components underpinning this antimicrobial activity. Current research is focussed on unravelling the regulation...... and antimicrobial mode of action of both peptides. Functional characterisation of the LuxR-type regulatory gene nunF by targeted knock-out and complementation resulted in the loss and gain of both antimicrobial activity and peptide synthesis respectively. Located downstream of the nunamycin biosynthetic genes, nun......F shows homology to syrF from P. syringae pv. syringae involved in the regulation of the antifungal peptide syringomycin. These results show that nunF is a key component of antimicrobial activity and synthesis of nunamycin and nunapeptin....

  5. Label-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates

    Directory of Open Access Journals (Sweden)

    Cai-Xia Zhuo

    2016-11-01

    Full Text Available Trypsin is important during the regulation of pancreatic exocrine function. The detection of trypsin activity is currently limited because of the need for the substrate to be labeled with a fluorescent tag. A label-free fluorescent method has been developed to monitor trypsin activity. The designed peptide probe consists of six arginine molecules and a cysteine terminus and can be conjugated to DNA-stabilized silver nanoclusters (DNA-AgNCs by Ag-S bonding to enhance fluorescence. The peptide probe can also be adsorbed to the surface of graphene oxide (GO, thus resulting in the fluorescence quenching of DNA-AgNCs-peptide conjugate because of Förster resonance energy transfer. Once trypsin had degraded the peptide probe into amino acid residues, the DNA-AgNCs were released from the surface of GO, and the enhanced fluorescence of DNA-AgNCs was restored. Trypsin can be determined with a linear range of 0.0–50.0 ng/mL with a concentration as low as 1 ng/mL. This label-free method is simple and sensitive and has been successfully used for the determination of trypsin in serum. The method can also be modified to detect other proteases.

  6. Pepsin Digested Oat Bran Proteins: Separation, Antioxidant Activity, and Identification of New Peptides

    Directory of Open Access Journals (Sweden)

    Ariane Vanvi

    2016-01-01

    Full Text Available The aim of this study was to determine pepsin hydrolysis conditions to produce digested oat bran proteins with higher radical scavenging activities and separate and identify peptides. Isolated proteins were then digested with different concentrations of pepsin and incubation times. Hydrolysates produced with 1 : 30 enzyme substrate (E/S ratio and 2 h possessed the highest peroxyl radical scavenging activity, 608 ± 17 µM TE/g (compared to 456–474 µM TE/g for other digests, and was therefore subsequently fractionated into eight fractions (F1–F8 by high performance liquid chromatography (HPLC. F1 and F2 had little activity because of their low protein contents. Activities of F3–F8 were 447–874 µM TE/g, 20–36%, and 10–14% in the peroxyl, superoxide anion, and hydroxyl radical tests, respectively. Liquid chromatography-tandem mass spectrometry (LC-MS/MS was used to identify a total of fifty peptides that may have contributed to the activity of F3, a fraction that better scavenged radicals.

  7. Hydrogen atom scrambling in selectively labeled anionic peptides upon collisional activation by MALDI tandem time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Bache, Nicolai; Rand, Kasper Dyrberg; Roepstorff, Peter

    2008-01-01

    have now measured the level of hydrogen scrambling in a deprotonated, selectively labeled peptide using MALDI tandem time-of-flight mass spectrometry. Our results conclusively show that hydrogen scrambling is prevalent in the deprotonated peptide upon collisional activation. The amide hydrogens ((1)H....../(2)H) have migrated extensively in the anionic peptide, thereby erasing the original regioselective deuteration pattern obtained in solution....

  8. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    Science.gov (United States)

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Mechanism of action and in vitro activity of short hybrid antimicrobial peptide PV3 against Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Memariani, Hamed; Shahbazzadeh, Delavar; Sabatier, Jean-Marc; Memariani, Mojtaba; Karbalaeimahdi, Ali; Bagheri, Kamran Pooshang

    2016-01-01

    Antimicrobial peptides are attractive candidates for developing novel therapeutic agents, since they are lethal to a broad spectrum of pathogens and have a unique low tendency for resistance development. In this study, mechanism of action and in vitro anti-pseudomonal activity of previously designed short hybrid antimicrobial peptide PV3 were investigated. Compared to ceftazidime, PV3 had not only higher antibacterial activity but also faster bactericidal activity. PV3 reduced biofilm biomass and viability of biofilm embedded bacteria in a concentration-dependent manner. Although the antimicrobial activity of PV3 was reduced in Mueller-Hinton broth (MHB) containing human serum, it was still active enough to eradication of bacteria at low concentrations. Compared with standard condition (MHB only), there was no significant decrease in antibacterial activity of PV3 against P. aeruginosa strains under 150 mM NaCl (p = 0.615) and 1 mM MgCl 2 (p = 0.3466). Fluorescence microscopy and field emission scanning electron microscopy further indicated that PV3 killed bacteria by disrupting the cell membrane. Since PV3 has potent anti-pseudomonal activity and has little cytotoxicity in vitro, it seems plausible that the peptide should be further investigated with animal studies to support future pharmacological formulations and potential topical applications. - Highlights: • PV3 killed Pseudomonas aeruginosa by membrane-disrupting mechanism. • PV3 reduced biofilm biomass and viability of biofilm embedded bacteria in a concentration-dependent manner. • Short hybrid antimicrobial peptide PV3 exhibited higher and faster bactericidal activity comparing to ceftazidime.

  10. Structure-activity study of macropin, a novel antimicrobial peptide from the venom of solitary bee Macropis fulvipes (Hymenoptera: Melittidae).

    Science.gov (United States)

    Monincová, Lenka; Veverka, Václav; Slaninová, Jiřina; Buděšínský, Miloš; Fučík, Vladimír; Bednárová, Lucie; Straka, Jakub; Ceřovský, Václav

    2014-06-01

    A novel antimicrobial peptide, designated macropin (MAC-1) with sequence Gly-Phe-Gly-Met-Ala-Leu-Lys-Leu-Leu-Lys-Lys-Val-Leu-NH2 , was isolated from the venom of the solitary bee Macropis fulvipes. MAC-1 exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria, antifungal activity, and moderate hemolytic activity against human red blood cells. A series of macropin analogs were prepared to further evaluate the effect of structural alterations on antimicrobial and hemolytic activities and stability in human serum. The antimicrobial activities of several analogs against pathogenic Pseudomonas aeruginosa were significantly increased while their toxicity against human red blood cells was decreased. The activity enhancement is related to the introduction of either l- or d-lysine in selected positions. Furthermore, all-d analog and analogs with d-amino acid residues introduced at the N-terminal part of the peptide chain exhibited better serum stability than did natural macropin. Data obtained by CD spectroscopy suggest a propensity of the peptide to adopt an amphipathic α-helical secondary structure in the presence of trifluoroethanol or membrane-mimicking sodium dodecyl sulfate. In addition, the study elucidates the structure-activity relationship for the effect of d-amino acid substitutions in MAC-1 using NMR spectroscopy. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  11. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076.

    Science.gov (United States)

    Huertas Méndez, Nataly De Jesús; Vargas Casanova, Yerly; Gómez Chimbi, Anyelith Katherine; Hernández, Edith; Leal Castro, Aura Lucia; Melo Diaz, Javier Mauricio; Rivera Monroy, Zuly Jenny; García Castañeda, Javier Eduardo

    2017-03-12

    Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B-containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli .

  12. Structure-activity relationships of the antimicrobial peptide arasin 1 - and mode of action studies of the N-terminal, proline-rich region.

    Directory of Open Access Journals (Sweden)

    Victoria S Paulsen

    Full Text Available Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH(2 terminus of the peptide and the fragment arasin 1(1-23 was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1-23 were shown to be non-toxic to human red blood cells and arasin 1(1-23 was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1-23 was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC, arasin 1(1-23 was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1-23 has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1-23 involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC.

  13. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials

    Science.gov (United States)

    Lee, Ted T.; García, José R.; Paez, Julieta I.; Singh, Ankur; Phelps, Edward A.; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; Del Campo, Aránzazu; García, Andrés J.

    2015-03-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.

  14. Chemical Synthesis and In Vitro Evaluation of a Phage Display-Derived Peptide Active against Infectious Salmon Anemia Virus.

    Science.gov (United States)

    Ojeda, Nicolás; Cárdenas, Constanza; Guzmán, Fanny; Marshall, Sergio H

    2016-04-01

    Infectious salmon anemia virus (ISAV) is the etiological agent of the disease by the same name and causes major losses in the salmon industry worldwide. Epizootic ISAV outbreaks have occurred in Norway and, to a lesser degree, in Canada. In 2007, an ISAV outbreak in Chile destroyed most of the seasonal production and endangered the entire Chilean salmon industry. None of the existing prophylactic approaches have demonstrated efficacy in providing absolute protection from or even a palliative effect on ISAV proliferation. Sanitary control measures for ISAV, based on molecular epidemiology data, have proven insufficient, mainly due to high salmon culture densities and a constant presence of a nonpathogenic strain of the virus. This report describes an alternative treatment approach based on interfering peptides selected from a phage display library. The screening of a phage display heptapeptide library resulted in the selection of a novel peptide with significant in vitro antiviral activity against ISAV. This peptide specifically interacted with the viral hemagglutinin-esterase protein, thereby impairing virus binding, with plaque reduction assays showing a significant reduction in viral yields. The identified peptide acts at micromolar concentrations against at least two different pathogenic strains of the virus, without detectable cytotoxic effects on the tested fish cells. Therefore, antiviral peptides represent a novel alternative for controlling ISAV and, potentially, other fish pathogens. Identifying novel methods for the efficient control of infectious diseases is imperative for the future of global aquaculture. The present study used a phage display heptapeptide library to identify a peptide with interfering activity against a key protein of the infectious salmon anemia virus (ISAV). A piscine orthomyxovirus, ISAV is a continuous threat to the commercial sustainability of cultured salmon production worldwide. The complex epidemiological strategy of this

  15. Down-regulation of histamine-induced endothelial cell activation as potential anti-atherosclerotic activity of peptides from Spirulina maxima.

    Science.gov (United States)

    Vo, Thanh-Sang; Kim, Se-Kwon

    2013-10-09

    Histamine, a potent inflammatory mediator, has been known to cause the pathogenesis of atherosclerosis. In this sense, two bioactive peptides P1 (LDAVNR; 686Da) and P2 (MMLDF; 655Da) purified from gastric enzymatic hydrolysate of Spirulina maxima were examined for their protective effects against early atherosclerotic responses induced by histamine in EA.hy926 endothelial cells. Interestingly, both P1 and P2 exhibited inhibitory activities on the production and expression of IL-6 and MCP-1. Furthermore, P1 and P2 inhibited the production of adhesion molecules including P-selectin and E-selectin, and thus reducing in vitro cell adhesion of monocyte onto endothelial cells. In addition, the production of intracellular reactive oxygen species was observed to reduce in the presence of P1 or P2. Notably, the inhibitory activities of P1 and P2 were found due to down-regulating Egr-1 expression via histamine receptor and PKCδ-dependent MAPKs activation pathway. These results suggest that peptides P1 and P2 from S. maxima are effective to suppress histamine-induced endothelial cell activation that may contribute to the prevention of early atherosclerosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design.

    Science.gov (United States)

    Kato, Ryuji; Kaga, Chiaki; Kunimatsu, Mitoshi; Kobayashi, Takeshi; Honda, Hiroyuki

    2006-06-01

    Peptide array, the designable peptide library covalently synthesized on cellulose support, was applied to assay peptide-cell interaction, between solid-bound peptides and anchorage-dependant cells, to study objective peptide design. As a model case, cell-adhesive peptides that could enhance cell growth as tissue engineering scaffold material, was studied. On the peptide array, the relative cell-adhesion ratio of NIH/3T3 cells was 2.5-fold higher on the RGDS (Arg-Gly-Asp-Ser) peptide spot as compared to the spot with no peptide, thus indicating integrin-mediated peptide-cell interaction. Such strong cell adhesion mediated by the RGDS peptide was easily disrupted by single residue substitution on the peptide array, thus indicating that the sequence recognition accuracy of cells was strictly conserved in our optimized scheme. The observed cellular morphological extension with active actin stress-fiber on the RGD motif-containing peptide supported our strategy that peptide array-based interaction assay of solid-bound peptide and anchorage-dependant cells (PIASPAC) could provide quantitative data on biological peptide-cell interaction. The analysis of 180 peptides obtained from fibronectin type III domain (no. 1447-1629) yielded 18 novel cell-adhesive peptides without the RGD motif. Taken together with the novel candidates, representative rules of ineffective amino acid usage were obtained from non-effective candidate sequences for the effective designing of cell-adhesive peptides. On comparing the amino acid usage of the top 20 and last 20 peptides from the 180 peptides, the following four brief design rules were indicated: (i) Arg or Lys of positively charged amino acids (except His) could enhance cell adhesion, (ii) small hydrophilic amino acids are favored in cell-adhesion peptides, (iii) negatively charged amino acids and small amino acids (except Gly) could reduce cell adhesion, and (iv) Cys and Met could be excluded from the sequence combination since they have

  17. Novel Naja atra cardiotoxin 1 (CTX-1 derived antimicrobial peptides with broad spectrum activity.

    Directory of Open Access Journals (Sweden)

    Andrea Sala

    Full Text Available Naja atra subsp. atra cardiotoxin 1 (CTX-1, produced by Chinese cobra snakes, belonging to Elapidae family, is included in the three-finger toxin family and exerts high cytotoxicity and antimicrobial activity too. Using as template mainly the tip and the subsequent β-strand of the first "finger" of this toxin, different sequences of 20 amino acids linear peptides have been designed in order to avoid toxic effects but to maintain or even strengthen the partial antimicrobial activity already seen for the complete toxin. As a result, the sequence NCP-0 (Naja Cardiotoxin Peptide-0 was designed as ancestor and subsequently 4 other variant sequences of NCP-0 were developed. These synthesized variant sequences have shown microbicidal activity towards a panel of reference and field strains of Gram-positive and Gram-negative bacteria. The sequence named NCP-3, and its variants NCP-3a and NCP-3b, have shown the best antimicrobial activity, together with low cytotoxicity against eukaryotic cells and low hemolytic activity. Bactericidal activity has been demonstrated by minimum bactericidal concentration (MBC assay at values below 10 μg/ml for most of the tested bacterial strains. This potent antimicrobial activity was confirmed even for unicellular fungi Candida albicans, Candida glabrata and Malassezia pachydermatis (MBC 50-6.3 μg/ml, and against the fast-growing mycobacteria Mycobacterium smegmatis and Mycobacterium fortuitum. Moreover, NCP-3 has shown virucidal activity on Bovine Herpesvirus 1 (BoHV1 belonging to Herpesviridae family. The bactericidal activity is maintained even in a high salt concentration medium (125 and 250 mM NaCl and phosphate buffer with 20% Mueller Hinton (MH medium against E. coli, methicillin resistant Staphylococcus aureus (MRSA and Pseudomonas aeruginosa reference strains. Considering these in vitro obtained data, the search for active sequences within proteins presenting an intrinsic microbicidal activity could provide a

  18. Cardioprotective peptides from marine sources.

    Science.gov (United States)

    Harnedy, Padraigín A; FitzGerald, Richard J

    2013-05-01

    Elevated blood pressure or hypertension is one of the fastest growing health problems worldwide. Although the etiology of essential hypertension has a genetic component, dietary factors play an important role. With the high costs and adverse side-effects associated with synthetic antihypertensive drugs and the awareness of the link between diet and health there has been increased focus on identification of food components that may contribute to cardiovascular health. In recent years special interest has been paid to the cardioprotective activity of peptides derived from food proteins including marine proteins. These peptides are latent within the sequence of the parent protein and only become active when released by proteolytic digestion during gastrointestinal digestion or through food processing. Current data on antihypertensive activity of marine-derived protein hydrolysates/peptides in animal and human studies is reviewed herein. Furthermore, products containing protein hydrolysates/peptides from marine origin with antihypertensive effects are discussed.

  19. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  20. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  1. Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS.

    Science.gov (United States)

    Hage, Christoph; Ihling, Christian H; Götze, Michael; Schäfer, Mathias; Sinz, Andrea

    2017-01-01

    We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS 3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.

  2. Antioxidant and Anti-Inflammatory Activities of Hydrolysates and Peptide Fractions Obtained by Enzymatic Hydrolysis of Selected Heat-Treated Edible Insects.

    Science.gov (United States)

    Zielińska, Ewelina; Baraniak, Barbara; Karaś, Monika

    2017-09-02

    This study investigated the effect of heat treatment of edible insects on antioxidant and anti-inflammatory activities of peptides obtained by in vitro gastrointestinal digestion and absorption process thereof. The antioxidant potential of edible insect hydrolysates was determined as free radical-scavenging activity, ion chelating activity, and reducing power, whereas the anti-inflammatory activity was expressed as lipoxygenase and cyclooxygenase-2 inhibitory activity. The highest antiradical activity against DPPH • (2,2-diphenyl-1-picrylhydrazyl radical) was noted for a peptide fraction from baked cricket Gryllodes sigillatus hydrolysate (IC 50 value 10.9 µg/mL) and that against ABTS •+ (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical) was the highest for raw mealworm Tenebrio molitor hydrolysate (inhibitory concentration (IC 50 value) 5.3 µg/mL). The peptides obtained from boiled locust Schistocerca gregaria hydrolysate showed the highest Fe 2+ chelation ability (IC 50 value 2.57 µg/mL); furthermore, the highest reducing power was observed for raw G. sigillatus hydrolysate (0.771). The peptide fraction from a protein preparation from the locust S. gregaria exhibited the most significant lipoxygenase and cyclooxygenase-2 inhibitory activity (IC 50 value 3.13 µg/mL and 5.05 µg/mL, respectively).

  3. In vivo evaluation of antiparasitic effects of Artemisia abrotanum and Salvia officinalis extracts on Syphacia obvelata, Aspiculoris tetrapetra and Hymenolepis nana parasites

    Directory of Open Access Journals (Sweden)

    Mahdi Amirmohammadi

    2014-02-01

    Full Text Available Objective: To evaluate the effects of Salvia officinalis and Artemisia abrotanum extracts against digestive system parasites of mice. Methods: The ethanol extract was prepared and dissolved in distilled water. The mebendazole was used as positive control and distilled water as negative control. After counting eggs per gram feces, infected mice with 16 eggs per gram feces contained two to three parasites of Syphacia obvelata, Aspicoloris terepetra and Hymenolipis nana designated in 4 groups. The first group was given extracts of Artemisia (150 mg/kg, the second group was given Salvia extract (150 mg/kg, the third group was given mebendazole (10 mg/kg and finally the fourth group was given distilled water (2 mL/kg. Results: The ethanol extracts of Artemisia and Salvia plants reduced the number of parasite eggs per gram of feces. Results showed significant reduction (P-value<0.001 in the number of eggs excreted by Hymenolepis nana, Aspiculuris tetraptera, Syphacia obvelata in mice. Conclusions: These results revealed that antiparasitic effects of Artemisia and Salvia are reasonable and these two plants might be used as antiparasitic natural products.

  4. Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity.

    Science.gov (United States)

    Almahboub, Sarah A; Narancic, Tanja; Devocelle, Marc; Kenny, Shane T; Palmer-Brown, William; Murphy, Cormac; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E

    2018-01-01

    Terminal modification of peptides is frequently used to improve their hydrophobicity. While N-terminal modification with fatty acids (lipidation) has been reported previously, C-terminal lipidation is limited as it requires the use of linkers. Here we report the use of a biocatalyst for the production of an unnatural fatty amino acid, (S)-2-aminooctanoic acid (2-AOA) with enantiomeric excess > 98% ee and the subsequent use of 2-AOA to modify and improve the activity of an antimicrobial peptide. A transaminase originating from Chromobacterium violaceum was employed with a conversion efficiency 52-80% depending on the ratio of amino group donor to acceptor. 2-AOA is a fatty acid with amino functionality, which allowed direct C- and N-terminal conjugation respectively to an antimicrobial peptide (AMP) derived from lactoferricin B. The antibacterial activity of the modified peptides was improved by up to 16-fold. Furthermore, minimal inhibitory concentrations (MIC) of C-terminally modified peptide were always lower than N-terminally conjugated peptides. The C-terminally modified peptide exhibited MIC values of 25 μg/ml for Escherichia coli, 50 μg/ml for Bacillus subtilis, 100 μg/ml for Salmonella typhimurium, 200 μg/ml for Pseudomonas aeruginosa and 400 μg/ml for Staphylococcus aureus. The C-terminally modified peptide was the only peptide tested that showed complete inhibition of growth of S. aureus.

  5. Acyclic peptides incorporating the d-Phe-2-Abz turn motif: Investigations on antimicrobial activity and propensity to adopt β-hairpin conformations.

    Science.gov (United States)

    Cameron, Alan J; Varnava, Kyriakos G; Edwards, Patrick J B; Harjes, Elena; Sarojini, Vijayalekshmi

    2018-06-14

    Three linear peptides incorporating d-Phe-2-Abz as the turn motif are reported. Peptide 1, a hydrophobic β-hairpin, served as a proof of principle for the design strategy with both NMR and CD spectra strongly suggesting a β-hairpin conformation. Peptides 2 and 3, designed as amphipathic antimicrobials, exhibited broad spectrum antimicrobial activity, with potency in the nanomolar range against Staphylococcus aureus. Both compounds possess a high degree of selectivity, proving non-haemolytic at concentrations 500 to 800 times higher than their respective minimal inhibitory concentrations (MICs) against S. aureus. Peptide 2 induced cell membrane and cell wall disintegration in both S. aureus and Pseudomonas aeruginosa as observed by transmission electron microscopy. Peptide 2 also demonstrated moderate antifungal activity against Candida albicans with an MIC of 50 μM. Synergism was observed with sub-MIC levels of amphotericin B (AmB), leading to nanomolar MICs against C. albicans for peptide 2. Based on circular dichroism spectra, both peptides 2 and 3 appear to exist as a mixture of conformers with the β-hairpin as a minor conformer in aqueous solution, and a slight increase in hairpin population in 50% trifluoroethanol, which was more pronounced for peptide 3. NMR spectra of peptide 2 in a 1:1 CD 3 CN/H 2 O mixture and 30 mM deuterated sodium dodecyl sulfate showed evidence of an extended backbone conformation of the β-strand residues. However, inter-strand rotating frame Overhauser effects (ROE) could not be detected and a loosely defined divergent hairpin structure resulted from ROE structure calculation in CD 3 CN/H 2 O. The loosely defined hairpin conformation is most likely a result of the electrostatic repulsions between cationic strand residues which also probably contribute towards maintaining low haemolytic activity. Copyright © 2018 European Peptide Society and John Wiley & Sons, Ltd.

  6. A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity.

    Directory of Open Access Journals (Sweden)

    Patricia Martorell

    Full Text Available BACKGROUND: Cocoa and cocoa-based products contain different compounds with beneficial properties for human health. Polyphenols are the most frequently studied, and display antioxidant properties. Moreover, protein content is a very interesting source of antioxidant bioactive peptides, which can be used therapeutically for the prevention of age-related diseases. METHODOLOGY/PRINCIPAL FINDINGS: A bioactive peptide, 13L (DNYDNSAGKWWVT, was obtained from a hydrolyzed cocoa by-product by chromatography. The in vitro inhibition of prolyl endopeptidase (PEP was used as screening method to select the suitable fraction for peptide identification. Functional analysis of 13L peptide was achieved using the transgenic Caenorhabditis elegans strain CL4176 expressing the human Aβ₁₋₄₂ peptide as a pre-clinical in vivo model for Alzheimer's disease. Among the peptides isolated, peptide 13L (1 µg/mL showed the highest antioxidant activity (P≤0.001 in the wild-type strain (N2. Furthermore, 13L produced a significant delay in body paralysis in strain CL4176, especially in the 24-47 h period after Aβ₁₋₄₂ peptide induction (P≤0.0001. This observation is in accordance with the reduction of Aβ deposits in CL4176 by western blot. Finally, transcriptomic analysis in wild-type nematodes treated with 13L revealed modulation of the proteosomal and synaptic functions as the main metabolic targets of the peptide. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the cocoa 13L peptide has antioxidant activity and may reduce Aβ deposition in a C. elegans model of Alzheimer's disease; and therefore has a putative therapeutic potential for prevention of age-related diseases. Further studies in murine models and humans will be essential to analyze the effectiveness of the 13L peptide in higher animals.

  7. Peptides in melanoma therapy.

    Science.gov (United States)

    Mocellin, Simone

    2012-01-01

    Peptides derived from tumor associated antigens can be utilized to elicit a therapeutically effective immune response against melanoma in experimental models. However, patient vaccination with peptides - although it is often followed by the induction of melanoma- specific T lymphocytes - is rarely associated with tumor response of clinical relevance. In this review I summarize the principles of peptide design as well as the results so far obtained in the clinical setting while treating cutaneous melanoma by means of this active immunotherapy strategy. I also discuss some immunological and methodological issues that might be helpful for the successful development of peptide-based vaccines.

  8. Antiproliferative Activity of Egg Yolk Peptides in Human Colon Cancer Cells.

    Science.gov (United States)

    Yousr, Marwa N; Aloqbi, Akram A; Omar, Ulfat M; Howell, Nazlin K

    2017-01-01

    Egg yolk peptides were successfully prepared from egg yolk protein by-products after lecithin extraction. Defatted egg yolk protein was hydrolyzed with pepsin and pancreatin and purified by gel filtration to produce egg yolk gel filtration fraction (EYGF-33) with antiproliferative activity. The highlight of this study was that the peptide EYGF-33 (1.0 mg/ml) significantly inhibits cell viability of colon cancer cells (Caco-2) with no inhibitory effects on the viability of human colon epithelial normal cells (HCEC) after 48 h. Reduced cell viability can be explained by cell cycle arrest in the S-phase in which DNA replication normally takes place. EYGF-33 significantly enhanced the production of superoxide anions in the mitochondria of Caco-2 cells; this could activate a mitochondrial apoptotic pathway leading to typical Poly Adenosine diphosphate-ribose polymerase (PARP) cleavage as observed in the Western blot result. The induction of apoptotic cell death by EYGF-33 was supported by the externalization of phosphatidylserine (PS). However, further elucidation of the mechanism of EYGF-33-mediated apoptosis would provide further support for its use as a potential therapeutic and chemopreventive agent.

  9. The Activation Effect of Hainantoxin-I, a Peptide Toxin from the Chinese Spider, Ornithoctonus hainana, on Intermediate-Conductance Ca2+-Activated K+ Channels

    Directory of Open Access Journals (Sweden)

    Pengfei Huang

    2014-08-01

    Full Text Available Intermediate-conductance Ca2+-activated K+ (IK channels are calcium/calmodulin-regulated voltage-independent K+ channels. Activation of IK currents is important in vessel and respiratory tissues, rendering the channels potential drug targets. A variety of small organic molecules have been synthesized and found to be potent activators of IK channels. However, the poor selectivity of these molecules limits their therapeutic value. Venom-derived peptides usually block their targets with high specificity. Therefore, we searched for novel peptide activators of IK channels by testing a series of toxins from spiders. Using electrophysiological experiments, we identified hainantoxin-I (HNTX-I as an IK-channel activator. HNTX-I has little effect on voltage-gated Na+ and Ca2+ channels from rat dorsal root ganglion neurons and on the heterologous expression of voltage-gated rapidly activating delayed rectifier K+ channels (human ether-à-go-go-related gene; human ERG in HEK293T cells. Only 35.2% ± 0.4% of the currents were activated in SK channels, and there was no effect on BK channels. We demonstrated that HNTX-I was not a phrenic nerve conduction blocker or acutely toxic. This is believed to be the first report of a peptide activator effect on IK channels. Our study suggests that the activity and selectivity of HNTX-I on IK channels make HNTX-I a promising template for designing new drugs for cardiovascular diseases.

  10. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076

    Directory of Open Access Journals (Sweden)

    Nataly De Jesús Huertas Méndez

    2017-03-01

    Full Text Available Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B–containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR2K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli.

  11. Diminished Antimicrobial Peptide and Antifungal Antibiotic Activities against Candida albicans in Denture Adhesive

    Directory of Open Access Journals (Sweden)

    Amber M. Bates

    2017-02-01

    Full Text Available The underlying causes of denture stomatitis may be related to the long-term use of adhesives, which may predispose individuals to oral candidiasis. In this study, we hypothesize that antimicrobial peptides and antifungal antibiotics have diminished anti-Candida activities in denture adhesive. To show this, nine antimicrobial peptides and five antifungal antibiotics with and without 1.0% denture adhesive were incubated with Candida albicans strains ATCC 64124 and HMV4C in radial diffusion assays. In gels with 1.0% adhesive, HNP-1, HBD2, HBD3, IP-10, LL37 (only one strain, histatin 5 (only one strain, lactoferricin B, and SMAP28 showed diminished activity against C. albicans. In gels with 1.0% adhesive, amphotericin B and chlorhexidine dihydrochloride were active against both strains of C. albicans. These results suggest that denture adhesive may inactivate innate immune mediators in the oral cavity increasing the risk of C. albicans infections, but inclusion of antifungal antibiotics to denture adhesive may aid in prevention or treatment of Candida infections and denture stomatitis.

  12. GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview

    Directory of Open Access Journals (Sweden)

    Ida Genta

    2017-12-01

    Full Text Available A lot of solid tumors are characterized by uncontrolled signal transduction triggered by receptors related to cellular growth. The targeting of these cell receptors with antitumor drugs is essential to improve chemotherapy efficacy. This can be achieved by conjugation of an active targeting agent to the polymer portion of a colloidal drug delivery system loaded with an antitumor drug. The goal of this minireview is to report and discuss some recent results in epidermal growth factor receptor targeting by the GE11 peptide combined with colloidal drug delivery systems as smart carriers for antitumor drugs. The minireview chapters will focus on explaining and discussing: (i Epidermal growth factor receptor (EGFR structures and functions; (ii GE11 structure and biologic activity; (iii examples of GE11 conjugation and GE11-conjugated drug delivery systems. The rationale is to contribute in gathering information on the topic of active targeting to tumors. A case study is introduced, involving research on tumor cell targeting by the GE11 peptide combined with polymer nanoparticles.

  13. Polycyclic Polyprenylated Acylphloroglucinols: An Emerging Class of Non-Peptide-Based MRSA- and VRE-Active Antibiotics.

    Science.gov (United States)

    Guttroff, Claudia; Baykal, Aslihan; Wang, Huanhuan; Popella, Peter; Kraus, Frank; Biber, Nicole; Krauss, Sophia; Götz, Friedrich; Plietker, Bernd

    2017-12-11

    In the past 20 years, peptide-based antibiotics, such as vancomycin, teicoplanin, and daptomycin, have often been considered as second-line antibiotics. However, in recent years, an increasing number of reports on vancomycin resistance in pathogens appeared, which forces researchers to find novel lead structures for potent new antibiotics. Herein, we report the total synthesis of a defined endo-type B PPAP library and their antibiotic activity against multiresistant S. aureus and various vancomycin-resistant Enterococci. Four new compounds that combine high activities and low cytotoxicity were identified, indicating that the PPAP core might become a new non-peptide-based lead structure in antibiotic research. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Comparative analysis of selected methods for the assessment of antimicrobial and membrane-permeabilizing activity: a case study for lactoferricin derived peptides

    Directory of Open Access Journals (Sweden)

    Lohner Karl

    2008-11-01

    Full Text Available Abstract Background Growing concerns about bacterial resistance to antibiotics have prompted the development of alternative therapies like those based on cationic antimicrobial peptides (APs. These compounds not only are bactericidal by themselves but also enhance the activity of antibiotics. Studies focused on the systematic characterization of APs are hampered by the lack of standard guidelines for testing these compounds. We investigated whether the information provided by methods commonly used for the biological characterization of APs is comparable, as it is often assumed. For this purpose, we determined the bacteriostatic, bactericidal, and permeability-increasing activity of synthetic peptides (n = 57; 9–13 amino acid residues in length analogous to the lipopolysaccharide-binding region of human lactoferricin by a number of the most frequently used methods and carried out a comparative analysis. Results While the minimum inhibitory concentration determined by an automated turbidimetry-based system (Bioscreen or by conventional broth microdilution methods did not differ significantly, bactericidal activity measured under static conditions in a low-ionic strength solvent resulted in a vast overestimation of antimicrobial activity. Under these conditions the degree of antagonism between the peptides and the divalent cations differed greatly depending on the bacterial strain tested. In contrast, the bioactivity of peptides was not affected by the type of plasticware (polypropylene vs. polystyrene. Susceptibility testing of APs using cation adjusted Mueller-Hinton was the most stringent screening method, although it may overlook potentially interesting peptides. Permeability assays based on sensitization to hydrophobic antibiotics provided overall information analogous – though not quantitatively comparable- to that of tests based on the uptake of hydrophobic fluorescent probes. Conclusion We demonstrate that subtle changes in methods for

  15. Antimicrobial Peptides: An Introduction.

    Science.gov (United States)

    Haney, Evan F; Mansour, Sarah C; Hancock, Robert E W

    2017-01-01

    The "golden era" of antibiotic discovery has long passed, but the need for new antibiotics has never been greater due to the emerging threat of antibiotic resistance. This urgency to develop new antibiotics has motivated researchers to find new methods to combat pathogenic microorganisms resulting in a surge of research focused around antimicrobial peptides (AMPs; also termed host defense peptides) and their potential as therapeutics. During the past few decades, more than 2000 AMPs have been identified from a diverse range of organisms (animals, fungi, plants, and bacteria). While these AMPs share a number of common features and a limited number of structural motifs; their sequences, activities, and targets differ considerably. In addition to their antimicrobial effects, AMPs can also exhibit immunomodulatory, anti-biofilm, and anticancer activities. These diverse functions have spurred tremendous interest in research aimed at understanding the activity of AMPs, and various protocols have been described to assess different aspects of AMP function including screening and evaluating the activities of natural and synthetic AMPs, measuring interactions with membranes, optimizing peptide function, and scaling up peptide production. Here, we provide a general overview of AMPs and introduce some of the methodologies that have been used to advance AMP research.

  16. Antiparasitic effect of the Psidium guajava L. (guava) and Psidium brownianum MART. EX DC. (araçá-de-veado) extracts.

    Science.gov (United States)

    Machado, Antonio J T; Santos, Antonia T L; Martins, Gioconda M A B; Cruz, Rafael P; Costa, Maria do S; Campina, Fábia F; Freitas, Maria A; Bezerra, Camila F; Leal, Antonio L A B; Carneiro, Joara N P; Coronel, Cathia; Rolón, Miriam; Gómez, Celeste V; Coutinho, Henrique D M; Morais-Braga, Maria F B

    2018-03-13

    In the search for new therapeutic agents against neglected diseases, both aqueous and hydroethanolic extracts from Psidium guajava L. and P. brownianum Mart ex DC leaves were investigated regarding their antiparasitic effect and cytotoxic potential. The extracts were tested at three concentrations (250, 500 and 1000 μg/mL) against Trypanosoma cruzi epimastigote forms (Chagas, 1909), Leishmania braziliensis (Vianna, 1911) and L. infantum promastigotes forms (Nicolle, 1908), as well as against fibroblasts. P. guajava showed no activity against T. cruzi forms, while the hydroethanolic (PBHE), aqueous by decoction (PBAED) and aqueous by infusion (PBAEI) P. browninaum extracts were responsible, respectively, for inhibiting 100, 100 and 92.68% of T. cruzi epimastigote growth at the 1000 μg/mL concentration. The P. brownianum hydroethanolic extract (PBHE) at the highest concentration caused 58.46% death in L. braziliensis, thus demonstrating moderate activity, however when tested against L. infantum, the PBHE inhibited their growth by 37.16%, revealing its low activity. As for the cytotoxicity assays, the P. brownianum aqueous extract by decoction (PBAED) obtained the highest death percentage when compared to the others, causing 90.85% fibroblast mortality at the 1000 μg/mL concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. N-Acylated and d Enantiomer Derivatives of a Nonamer Core Peptide of Lactoferricin B Showing Improved Antimicrobial Activity

    OpenAIRE

    Wakabayashi, Hiroyuki; Matsumoto, Hiroshi; Hashimoto, Koichi; Teraguchi, Susumu; Takase, Mitsunori; Hayasawa, Hirotoshi

    1999-01-01

    N-acylated or d enantiomer peptide derivatives based on the sequence RRWQWRMKK in lactoferricin B demonstrated antimicrobial activities greater than those of lactoferricin B against bacteria and fungi. The most potent peptide, conjugated with an 11-carbon-chain acyl group, showed two to eight times lower MIC than lactoferricin B.

  18. N-Acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity.

    Science.gov (United States)

    Wakabayashi, H; Matsumoto, H; Hashimoto, K; Teraguchi, S; Takase, M; Hayasawa, H

    1999-05-01

    N-acylated or D enantiomer peptide derivatives based on the sequence RRWQWRMKK in lactoferricin B demonstrated antimicrobial activities greater than those of lactoferricin B against bacteria and fungi. The most potent peptide, conjugated with an 11-carbon-chain acyl group, showed two to eight times lower MIC than lactoferricin B.

  19. Analysis of whey protein hydrolysates: peptide profile and ACE inhibitory activity

    Directory of Open Access Journals (Sweden)

    Marialice Pinto Coelho Silvestre

    2012-12-01

    Full Text Available The aim of this study was to prepare enzymatic hydrolysates from whey protein concentrate with a nutritionally adequate peptide profile and the ability to inhibit angiotensin-converting enzyme (ACE activity. The effects of the type of enzyme used (pancreatin or papain, the enzyme:substrate ratio (E:S ratio=0.5:100, 1:100, 2:100 and 3:100 and the use of ultrafiltration (UF were investigated. The fractionation of peptides was performed by size-exclusion-HPLC, and the quantification of the components of the chromatographic fractions was carried out by a rapid Corrected Fraction Area method. The ACE inhibitory activity (ACE-IA was determined by Reverse Phase-HPLC. All parameters tested affected both the peptide profile and the ACE-IA. The best peptide profile was achieved for the hydrolysates obtained with papain, whereas pancreatin was more advantageous in terms of ACE-IA. The beneficial effect of using a lower E:S ratio on the peptide profile and ACE-IA was observed for both enzymes depending on the conditions used to prepare the hydrolysates. The beneficial effect of not using UF on the peptide profile was observed in some cases for pancreatin and papain. However, the absence of UF yielded greater ACE-IA only when using papain.O objetivo deste estudo foi preparar hidrolisados enzimáticos do concentrado proteico do soro de leite com perfil peptídico nutricionalmente adequado e com capacidade para inibir a atividade da enzima conversora da angiotensina (ECA. Os efeitos do tipo de enzima usado (pancreatina ou papaína, da relação enzima:substrato (E:S=0,5:100, 1:100, 2:100 e 3:100 e do uso da ultrafiltração (UF foram investigados. O fracionamento dos peptídeos foi feito por CLAE de exclusão molecular e a quantificação dos componentes das frações cromatográficas foi realizada pelo método da Área Corrigida da Fração. A atividade inibitória da ECA (AI-ECA foi determinada por CLAE de fase reversa. Todos os parâmetros testados afetaram

  20. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.

    Science.gov (United States)

    Gandhi, Akanksha; Shah, Nagendra P

    2014-12-01

    The present investigation examined the effects of supplementation of milk peptide fractions produced by enzymatic hydrolysis on the fermentation of reconstituted skim milk (RSM). Changes in pH, cell growth, proteolytic activity, and angiotensin-converting enzyme (ACE)-inhibitory activity were monitored during fermentation of RSM by pure cultures of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus. The study showed that supplementation with peptide fractions of different molecular weights did not significantly affect the bacterial growth in RSM. All bacteria showed an increased proteolytic activity in RSM supplemented with large peptides (>10 kDa), and L. helveticus in general exhibited the highest proteolytic activity among the bacteria studied. The ACE-inhibitory activity was observed to be the maximum in RSM supplemented with larger peptides (>10 kDa) for all bacteria. The results suggest that proteolysis by bacteria leads to increased production of ACE-inhibitory peptides compared to the supplemented peptides produced by enzymatic hydrolysis.

  1. Antibacterial activity of novel peptide derived from Cry1Ab16 toxin and development of LbL films for foodborne pathogens control

    International Nuclear Information System (INIS)

    Plácido, Alexandra; Bragança, Idalina; Marani, Mariela; Rodrigues de Araujo, Alyne; Vasconcelos, Andreanne Gomes; Batziou, Krystallenia; Domingues, Valentina F.

    2017-01-01

    Escherichia coli is one of the most common etiological agents of diarrhea in developing countries. The appearance of resistant E. coli prevents treatment of these infections. Biotechnological products incorporating antimicrobial peptides are currently being considered in applications to prevent intestinal infections by these bacteria. The aim of this study was to evaluate the antibacterial activity of the peptide PcL342-354C, which is derived from the toxin Cry1Ab16 from Bacillus thuringiensis, against E. coli strains. We also report the preparation, characterization and evaluation of the antibacterial activity of LbL films containing PcL342-354C. The results showed that the PcL342-354C peptide inhibited the growth of different strains of E. coli with minimal inhibitory concentration ranging from 15.62–31.25 μg/mL and minimal bactericidal concentration was 250 μg/mL, indicating a potential antibacterial activity. The morphology of an ITO/Cashew gum/PcL342-354C film was analysed using atomic force microscopy which showed an increase of roughness due to the increase in the number of layers. The LbL films showed significant antibacterial activity against E. coli NCTC 9001 in both conditions tested (10 and 20 bilayers). Our results indicate that the peptide exhibits an antibacterial potential that can be tapped to develop biomaterials with antibacterial activity for use against foodborne pathogens. - Highlights: • The PcL342–354C peptide inhibited the growth of E. coli. • The peptide can be simply incorporated into edible films combined with cashew gum. • LbL films incorporating the peptide have antibacterial activity against E. coli. • The PcL342–354C exhibits an antibacterial potential that can be tapped to develop biomaterials.

  2. Antibacterial activity of novel peptide derived from Cry1Ab16 toxin and development of LbL films for foodborne pathogens control

    Energy Technology Data Exchange (ETDEWEB)

    Plácido, Alexandra, E-mail: alexandra.placido@gmail.com [REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, ISEP, Instituto Politécnico do Porto, Porto (Portugal); Bragança, Idalina, E-mail: linab_20@hotmail.com [REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, ISEP, Instituto Politécnico do Porto, Porto (Portugal); Marani, Mariela, E-mail: mmarani@cenpat-conicet.gob.ar [IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Chubut (Argentina); Rodrigues de Araujo, Alyne, E-mail: alyne_biomed@hotmail.com [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba, PI (Brazil); Vasconcelos, Andreanne Gomes, E-mail: andreannegv@gmail.com [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba, PI (Brazil); Batziou, Krystallenia, E-mail: batkrysta@gmail.com [REQUIMTE/UCIBIO, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto (Portugal); Domingues, Valentina F., E-mail: vfd@isep.ipp.pt [REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, ISEP, Instituto Politécnico do Porto, Porto (Portugal); and others

    2017-06-01

    Escherichia coli is one of the most common etiological agents of diarrhea in developing countries. The appearance of resistant E. coli prevents treatment of these infections. Biotechnological products incorporating antimicrobial peptides are currently being considered in applications to prevent intestinal infections by these bacteria. The aim of this study was to evaluate the antibacterial activity of the peptide PcL342-354C, which is derived from the toxin Cry1Ab16 from Bacillus thuringiensis, against E. coli strains. We also report the preparation, characterization and evaluation of the antibacterial activity of LbL films containing PcL342-354C. The results showed that the PcL342-354C peptide inhibited the growth of different strains of E. coli with minimal inhibitory concentration ranging from 15.62–31.25 μg/mL and minimal bactericidal concentration was 250 μg/mL, indicating a potential antibacterial activity. The morphology of an ITO/Cashew gum/PcL342-354C film was analysed using atomic force microscopy which showed an increase of roughness due to the increase in the number of layers. The LbL films showed significant antibacterial activity against E. coli NCTC 9001 in both conditions tested (10 and 20 bilayers). Our results indicate that the peptide exhibits an antibacterial potential that can be tapped to develop biomaterials with antibacterial activity for use against foodborne pathogens. - Highlights: • The PcL342–354C peptide inhibited the growth of E. coli. • The peptide can be simply incorporated into edible films combined with cashew gum. • LbL films incorporating the peptide have antibacterial activity against E. coli. • The PcL342–354C exhibits an antibacterial potential that can be tapped to develop biomaterials.

  3. Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain

    Directory of Open Access Journals (Sweden)

    Cowburn David

    2011-05-01

    Full Text Available Abstract Background The C-terminal domain (CTD of HIV-1 capsid (CA, like full-length CA, forms dimers in solution and CTD dimerization is a major driving force in Gag assembly and maturation. Mutations of the residues at the CTD dimer interface impair virus assembly and render the virus non-infectious. Therefore, the CTD represents a potential target for designing anti-HIV-1 drugs. Results Due to the pivotal role of the dimer interface, we reasoned that peptides from the α-helical region of the dimer interface might be effective as decoys to prevent CTD dimer formation. However, these small peptides do not have any structure in solution and they do not penetrate cells. Therefore, we used the hydrocarbon stapling technique to stabilize the α-helical structure and confirmed by confocal microscopy that this modification also made these peptides cell-penetrating. We also confirmed by using isothermal titration calorimetry (ITC, sedimentation equilibrium and NMR that these peptides indeed disrupt dimer formation. In in vitro assembly assays, the peptides inhibited mature-like virus particle formation and specifically inhibited HIV-1 production in cell-based assays. These peptides also showed potent antiviral activity against a large panel of laboratory-adapted and primary isolates, including viral strains resistant to inhibitors of reverse transcriptase and protease. Conclusions These preliminary data serve as the foundation for designing small, stable, α-helical peptides and small-molecule inhibitors targeted against the CTD dimer interface. The observation that relatively weak CA binders, such as NYAD-201 and NYAD-202, showed specificity and are able to disrupt the CTD dimer is encouraging for further exploration of a much broader class of antiviral compounds targeting CA. We cannot exclude the possibility that the CA-based peptides described here could elicit additional effects on virus replication not directly linked to their ability to bind

  4. The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells

    Science.gov (United States)

    2009-01-01

    Background Cationic antimicrobial peptides (CAPs) with antitumor activity constitute a promising group of novel anticancer agents. These peptides induce lysis of cancer cells through interactions with the plasma membrane. It is not known which cancer cell membrane components influence their susceptibility to CAPs. We have previously shown that CAPs interact with the two glycosaminoglycans (GAGs), heparan sulfate (HS) and chondroitin sulfate (CS), which are present on the surface of most cells. The purpose of this study was to investigate the role of the two GAGs in the cytotoxic activity of CAPs. Methods Various cell lines, expressing different levels of cell surface GAGs, were exposed to bovine lactoferricin (LfcinB) and the designer peptide, KW5. The cytotoxic effect of the peptides was investigated by use of the colorimetric MTT viability assay. The cytotoxic effect on wild type CHO cells, expressing normal amounts of GAGs on the cell surface, and the mutant pgsA-745, that has no expression of GAGs on the cell surface, was also investigated. Results We show that cells not expressing HS were more susceptible to CAPs than cells expressing HS at the cell surface. Further, exogenously added heparin inhibited the cytotoxic effect of the peptides. Chondroitin sulfate had no effect on the cytotoxic activity of KW5 and only minor effects on LfcinB cytotoxicity. Conclusion Our results show for the first time that negatively charged molecules at the surface of cancer cells inhibit the cytotoxic activity of CAPs. Our results indicate that HS at the surface of cancer cells sequesters CAPs away from the phospholipid bilayer and thereby impede their ability to induce cytolysis. PMID:19527490

  5. A Diverse Family of Host-Defense Peptides (Piscidins Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes.

    Directory of Open Access Journals (Sweden)

    Scott A Salger

    Full Text Available Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis. In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3 show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7 primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5 have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture.

  6. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes.

    Science.gov (United States)

    Salger, Scott A; Cassady, Katherine R; Reading, Benjamin J; Noga, Edward J

    2016-01-01

    Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture.

  7. The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells

    Directory of Open Access Journals (Sweden)

    Rekdal Øystein

    2009-06-01

    Full Text Available Abstract Background Cationic antimicrobial peptides (CAPs with antitumor activity constitute a promising group of novel anticancer agents. These peptides induce lysis of cancer cells through interactions with the plasma membrane. It is not known which cancer cell membrane components influence their susceptibility to CAPs. We have previously shown that CAPs interact with the two glycosaminoglycans (GAGs, heparan sulfate (HS and chondroitin sulfate (CS, which are present on the surface of most cells. The purpose of this study was to investigate the role of the two GAGs in the cytotoxic activity of CAPs. Methods Various cell lines, expressing different levels of cell surface GAGs, were exposed to bovine lactoferricin (LfcinB and the designer peptide, KW5. The cytotoxic effect of the peptides was investigated by use of the colorimetric MTT viability assay. The cytotoxic effect on wild type CHO cells, expressing normal amounts of GAGs on the cell surface, and the mutant pgsA-745, that has no expression of GAGs on the cell surface, was also investigated. Results We show that cells not expressing HS were more susceptible to CAPs than cells expressing HS at the cell surface. Further, exogenously added heparin inhibited the cytotoxic effect of the peptides. Chondroitin sulfate had no effect on the cytotoxic activity of KW5 and only minor effects on LfcinB cytotoxicity. Conclusion Our results show for the first time that negatively charged molecules at the surface of cancer cells inhibit the cytotoxic activity of CAPs. Our results indicate that HS at the surface of cancer cells sequesters CAPs away from the phospholipid bilayer and thereby impede their ability to induce cytolysis.

  8. The C-terminus of the B-chain of human insulin-like peptide 5 is critical for cognate RXFP4 receptor activity.

    Science.gov (United States)

    Patil, Nitin A; Bathgate, Ross A D; Kocan, Martina; Ang, Sheng Yu; Tailhades, Julien; Separovic, Frances; Summers, Roger; Grosse, Johannes; Hughes, Richard A; Wade, John D; Hossain, Mohammed Akhter

    2016-04-01

    Insulin-like peptide 5 (INSL5) is an orexigenic peptide hormone belonging to the relaxin family of peptides. It is expressed primarily in the L-cells of the colon and has a postulated key role in regulating food intake. Its G protein-coupled receptor, RXFP4, is a potential drug target for treating obesity and anorexia. We studied the effect of modification of the C-terminus of the A and B-chains of human INSL5 on RXFP4 binding and activation. Three variants of human INSL5 were prepared using solid phase peptide synthesis and subsequent sequential regioselective disulfide bond formation. The peptides were synthesized as C-terminal acids (both A- and B-chains with free C-termini, i.e., the native form), amides (both chains as the C-terminal amide) and one analog with the C-terminus of its A-chain as the amide and the C-terminus of the B-chain as the acid. The results showed that C-terminus of the B-chain is more important than that of the A-chain for RXFP4 binding and activity. Amidation of the A-chain C-terminus does not have any effect on the INSL5 activity. The difference in RXFP4 binding and activation between the three peptides is believed to be due to electrostatic interaction of the free carboxylate of INSL5 with a positively charged residue (s), either situated within the INSL5 molecule itself or in the receptor extracellular loops.

  9. Synthesis of peptide .alpha.-thioesters

    Science.gov (United States)

    Camarero, Julio A [Livermore, CA; Mitchell, Alexander R [Livermore, CA; De Yoreo, James J [Clayton, CA

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  10. A biomimetic collagen derived peptide exhibits anti-angiogenic activity in triple negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Elena V Rosca

    Full Text Available We investigated the application of a mimetic 20 amino acid peptide derived from type IV collagen for treatment of breast cancer. We showed that the peptide induced a decrease of proliferation, adhesion, and migration of endothelial and tumor cells in vitro. We also observed an inhibition of triple negative MDA-MB-231 xenograft growth by 75% relative to control when administered intraperitoneally for 27 days at 10 mg/kg. We monitored in vivo the changes in vascular properties throughout the treatment using MRI and found that the vascular volume and permeability surface area product decreased significantly. The treatment also resulted in an increase of caspase-3 activity and in a reduction of microvascular density. The multiple mode of action of this peptide, i.e., anti-angiogenic, and anti-tumorigenic, makes it a viable candidate as a therapeutic agent as a monotherapy or in combination with other compounds.

  11. Oostatic peptides containing d-amino acids: synthesis, oostatic activity, degradation, accumulation in ovaries and NMR study

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Jan; Tykva, Richard; Holík, Josef; Bennettová, Blanka; Buděšínský, Miloš; Vlasáková, Věra; Černý, Bohuslav; Slaninová, Jiřina

    2012-01-01

    Roč. 42, č. 5 (2012), s. 1715-1725 ISSN 0939-4451 R&D Projects: GA ČR GA203/06/1272 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511; CEZ:AV0Z50070508 Keywords : D-amino acids * oostatic peptide synthesis * H-3 labeling * oostatic activity in Neobellieria bullata * H-3 incorporation * Peptide degradation * NMR study Subject RIV: CC - Organic Chemistry Impact factor: 3.914, year: 2012

  12. Antimicrobial Peptides in Reptiles

    Science.gov (United States)

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  13. Developing a capillary electrophoresis based method for dynamically monitoring enzyme cleavage activity using quantum dots-peptide assembly.

    Science.gov (United States)

    Wang, Jianhao; Fan, Jie; Liu, Li; Ding, Shumin; Liu, Xiaoqian; Wang, Jianpeng; Gao, Liqian; Chattopadhaya, Souvik; Miao, Peng; Xia, Jiang; Qiu, Lin; Jiang, Pengju

    2017-10-01

    Herein, a novel assay has been developed for monitoring PreScission protease (His-PSP) mediated enzyme cleavage of ATTO 590 labeled peptide substrate (ATTO-LEV). This novel method is based on combining the use of capillary electrophoresis and fluorescence detection (CE-FL) to dynamically monitor the enzyme cleavage activity. A multivalent peptide substrate was first constructed by immobilizing His-tagged ATTO 590 labeled peptide substrate (ATTO-LEVH6) onto the surface of CdSe/ZnS quantum dots (QDs). Once successfully immobilized, the novel multivalent peptide substrate resulted in the Förster resonance energy transfer (FRET) from QDs to ATTO 590. The ATTO-LEVH6-QD assembly was then incubated with His-PSP to study the proteolytic cleavage of surface bound ATTO-LEVH6 by CE-FL. Our data suggests that PreScission-mediated proteolytic cleavage is enzyme concentration- and incubation time-dependent. By combining capillary electrophoresis, QDs and FRET, our study herein not only provides a new method for the detection and dynamically monitoring of PSP enzyme cleavage activity, but also can be extended to the detection of many other enzymes and proteases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Influência do grupo genético, condição sexual e tratamento antiparasitário nas medidas de área de olho do lombo e espessura de gordura in vivo e na carcaça de bovinos de corte Influence of breed, gender condition, and anti-parasitic treatment on the measurements of in vivo rib eye area and fat thickness and on the carcass of beef cattle

    Directory of Open Access Journals (Sweden)

    R.M.K. Pinheiro

    2009-06-01

    Full Text Available Foram estudados 48 bovinos machos oriundos de inseminação artificial, criados em pasto, sendo 24 (12 Nelore e 12 F1 ½ Red Angus-Nelore tratados com antiparasitários alopáticos e 24 (mesmo número de puros e cruzados tratados com o antiparasitário bioterápico Fator C&MC. Os animais foram desmamados aos oito meses, metade de cada subgrupo genético (6 foi castrado aos 13 meses e todos abatidos aos 32 meses, com o objetivo de verificar a influência do tratamento antiparasitário, do grupo genético e da condição sexual sobre as medidas de área de olho de lombo (AOL e espessura de gordura de lombo (EGL. Usaram-se medidas de ultrassonografia no animal vivo (AOLU e EGLU e na carcaça, plástico quadriculado e paquímetro (AOLC e EGLC. Os animais F1, os inteiros e os tratados com alopatia apresentaram peso vivo maior quando comparados aos Nelores, castrados e tratados com bioterápicos. Não houve diferença da AOLU e AOLC entre os grupos genéticos. EGLC foi mais alta nos cruzados. Os animais inteiros apresentaram AOLU e AOLC maiores que os castrados, e EGLU e EGLC menores. Foram altamente significativos os coeficientes de correlação entre as medidas por ultrassom e na carcaça para área de olho de lombo (0,87 e espessura de gordura do lombo (0,95.Forty-eight male bovines, products of artificial insemination and raised on pasture, were studied, being 24 (12 Nelore, 12 F1 ½ Nelore ½ Red Angus treated with allopathic antiparasitic drugs and 24 (same number of pure and crossbred treated with a biotherapic antiparasitic drug Factor C&MC. Animals were weaned at eight months of age and half of each genetic subgroup (six was castrated at 13 months of age. All animals were slaughtered at 32 months of age, in an attempt to evaluate the influence of antiparasitic treatment, genetic group, and gender condition in the measurements of rib eye area (AOL and fat thickness (EGL of loin. Measurements of ultrasonography were used for live animals (AOLU

  15. D-BMAP18 antimicrobial peptide is active in vitro, resists to pulmonary proteases but loses its activity in a murine model of Pseudomonas aeruginosa lung infection.

    Science.gov (United States)

    Mardirossian, Mario; Pompilio, Arianna; Degasperi, Margherita; Runti, Giulia; Pacor, Sabrina; Di Bonaventura, Giovanni; Scocchi, Marco

    2017-06-01

    The spread of antibiotic resistant-pathogens is driving the search for new antimicrobial compounds. Pulmonary infections experienced by cystic fibrosis patients are a dramatic example of this health-care emergency. Antimicrobial peptides could answer the need for new antibiotics but translating them from basic research to the clinic is a challenge. We have previously evaluated the potential of the small membranolytic peptide BMAP-18 to treat CF-related infections, discovering that while this molecule had a good activity in vitro it was not active in vivo because of its rapid degradation by pulmonary proteases. In this study, we synthesized and tested the proteases-resistant all-D enantiomer. In spite of a good antimicrobial activity against Pseudomonas aeruginosa and Stenotrophomonas maltophilia clinical isolates and of a tolerable cytotoxicity in vitro, D-BMAP18 was ineffective to treat P. aeruginosa pulmonary infection in mice, in comparison to tobramycin. We observed that different factors other than peptide degradation hampered its efficacy for pulmonary application. These results indicate that D-BMAP18 needs further optimization before being suitable for clinical application and this approach may represent a guide for optimization of other anti-infective peptides eligible for the treatment of pulmonary infections.

  16. Structure Elucidation and Activity of Kolossin A, the D-/L-Pentadecapeptide Product of a Giant Nonribosomal Peptide Synthetase.

    Science.gov (United States)

    Bode, Helge B; Brachmann, Alexander O; Jadhav, Kirtikumar B; Seyfarth, Lydia; Dauth, Christina; Fuchs, Sebastian W; Kaiser, Marcel; Waterfield, Nick R; Sack, Holger; Heinemann, Stefan H; Arndt, Hans-Dieter

    2015-08-24

    The largest continuous bacterial nonribosomal peptide synthetase discovered so far is described. It consists of 15 consecutive modules arising from an uninterrupted, fully functional gene in the entomopathogenic bacterium Photorhabdus luminescens. The identification of its cryptic biosynthesis product was achieved by using a combination of genome analysis, promoter exchange, isotopic labeling experiments, and total synthesis of a focused collection of peptide candidates. Although it belongs to the growing class of D-/ L-peptide natural products, the encoded metabolite kolossin A was found to be largely devoid of antibiotic activity and is likely involved in interspecies communication. A stereoisomer of this peculiar natural product displayed high activity against Trypanosoma brucei rhodesiense, a recalcitrant parasite that causes the deadly disease African sleeping sickness. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of Jatropha curcas Peptide Fractions on the Angiotensin I-Converting Enzyme Inhibitory Activity

    Science.gov (United States)

    Segura-Campos, Maira R.; Peralta-González, Fanny; Castellanos-Ruelas, Arturo; Chel-Guerrero, Luis A.; Betancur-Ancona, David A.

    2013-01-01

    Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE) plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%). Hydrophobic residues contributed substantially to the peptides' inhibitory potency. The 5–10 and Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry. PMID:24224169

  18. Alterations in brain Protein Kinase A activity and reversal of morphine tolerance by two fragments of native Protein Kinase A inhibitor peptide (PKI).

    Science.gov (United States)

    Dalton, George D; Smith, Forrest L; Smith, Paul A; Dewey, William L

    2005-04-01

    Two peptide fragments of native Protein Kinase A inhibitor (PKI), PKI-(6-22)-amide and PKI-(Myr-14-22)-amide, significantly reversed low-level morphine antinociceptive tolerance in mice. The inhibition of Protein Kinase A (PKA) activity by both peptide fragments was then measured in specific brain regions (thalamus, periaqueductal gray (PAG), and medulla) and in lumbar spinal cord (LSC), which in previous studies have been shown to play a role in morphine-induced analgesia. In drug naive animals, cytosolic PKA activity was greater than particulate PKA activity in each region, while cytosolic and particulate PKA activities were greater in thalamus and PAG compared to medulla and LSC. The addition of both peptides to homogenates from each region completely abolished cytosolic and particulate PKA activities in vitro. Following injection into the lateral ventricle of the brain of drug naive mice and morphine-tolerant mice, both peptides inhibited PKA activity in the cytosolic, but not the particulate fraction of LSC. In addition, cytosolic and particulate PKA activities were inhibited by both peptides in thalamus. These results demonstrate that the inhibition of PKA reverses morphine tolerance. Moreover, the inhibition of PKA activity in specific brain regions and LSC from morphine-tolerant mice by PKI analogs administered i.c.v. is evidence that PKA plays a role in morphine tolerance.

  19. B7H6-derived peptides trigger TNF-α-dependent immunostimulatory activity of lymphocytic NK92-MI cells.

    Science.gov (United States)

    Phillips, Mariana; Romeo, Francesca; Bitsaktsis, Constantine; Sabatino, David

    2016-09-01

    The rise of biologics that can stimulate immune responses towards the eradication of tumors has led to the evolution of cancer-based immunotherapy. Representatively, B7H6 has been recently identified as a protein ligand on tumor cells that binds specifically to the NKp30 receptor and triggers NK cell-derived cytokine production, which ultimately leads to tumor cell lysis and death. In an effort to develop effective immunotherapy approaches, the rational design of a novel class of immunostimulatory peptides (IPs) derived from the binding interface of B7H6:NKp30 is described in this study. The IPs comprised the B7H6 active site sequence for NKp30 binding and immunostimulatory activity. An aminohexanoic acid linker was also introduced at the N-terminus of the peptides for FITC-labeling by Fmoc-solid phase peptide synthesis. The peptides were characterized by LCMS to confirm identities and purities >95%. The secondary structures of the peptides were examined by CD spectroscopy in H2 O, PBS and a H2 O:TFE mixture which demonstrated versatile peptide structures which transitioned from random coil (H2 O) to α-helical (PBS) and turn-type (H2 O:TFE) conformations. Their biological properties were then evaluated by flow cytometry, enzyme-linked immunosorbent assays (ELISAs), and cell death assays. The occupancy of the synthetic peptides to a human NK cell line demonstrated comparable binding relative to the natural NKp30 ligand, B7H6, and the human anti-NKp30 monoclonal antibody (mAb), in a concentration dependent manner. A competitive binding assay between the human anti-NKp30 mAb or B7H6, and the synthetic peptides, demonstrated partial displacement of the ligands upon anti-NKp30 mAb treatment, suggesting NKp30 receptor specificities by the synthetic peptides. Moreover, the immunostimulatory activity of B7H6 was demonstrated by the secretion of the pro-inflammatory cytokines tumor necrosis factor-alfa (TNF-α) and interferon gamma (IFN-γ) by the human NK cell line. The

  20. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    Science.gov (United States)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  1. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  2. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning?

    Science.gov (United States)

    Lee, Ernest Y; Lee, Michelle W; Fulan, Benjamin M; Ferguson, Andrew L; Wong, Gerard C L

    2017-12-06

    Antimicrobial peptides (AMPs) are a diverse class of well-studied membrane-permeating peptides with important functions in innate host defense. In this short review, we provide a historical overview of AMPs, summarize previous applications of machine learning to AMPs, and discuss the results of our studies in the context of the latest AMP literature. Much work has been recently done in leveraging computational tools to design new AMP candidates with high therapeutic efficacies for drug-resistant infections. We show that machine learning on AMPs can be used to identify essential physico-chemical determinants of AMP functionality, and identify and design peptide sequences to generate membrane curvature. In a broader scope, we discuss the implications of our findings for the discovery of membrane-active peptides in general, and uncovering membrane activity in new and existing peptide taxonomies.

  3. Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains.

    Science.gov (United States)

    Ebner, Jennifer; Aşçı Arslan, Ayşe; Fedorova, Maria; Hoffmann, Ralf; Küçükçetin, Ahmet; Pischetsrieder, Monika

    2015-03-18

    Kefir has a long tradition in human nutrition due to its presupposed health promoting effects. To investigate the potential contribution of bioactive peptides to the physiological effects of kefir, comprehensive analysis of the peptide profile was performed by nano-ESI-LTQ-Orbitrap MS coupled to nano-ultrahigh-performance liquid chromatography. Thus, 257 peptides were identified, mainly released from β-casein, followed by αS1-, κ-, and αS2-casein. Most (236) peptides were uniquely detected in kefir, but not in raw milk indicating that the fermentation step does not only increase the proteolytic activity 1.7- to 2.4-fold compared to unfermented milk, but also alters the composition of the peptide fraction. The influence of the microflora was determined by analyzing kefir produced from traditional kefir grains or commercial starter culture. Kefir from starter culture featured 230 peptide sequences and showed a significantly, 1.4-fold higher proteolytic activity than kefir from kefir grains with 127 peptides. A match of 97 peptides in both varieties indicates the presence of a typical kefir peptide profile that is not influenced by the individual composition of the microflora. Sixteen of the newly identified peptides were previously described as bioactive, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, immunomodulating, opioid, mineral binding, antioxidant, and antithrombotic effects. The present study describes a comprehensive peptide profile of kefir comprising 257 sequences. The peptide list was used to identify 16 bioactive peptides with ACE-inhibitory, antioxidant, antithrombotic, mineral binding, antimicrobial, immunomodulating and opioid activity in kefir. Furthermore, it was shown that a majority of the kefir peptides were not endogenously present in the raw material milk, but were released from milk caseins by proteases of the microbiota and are therefore specific for the product. Consequently, the proteolytic activity and the

  4. Evidência da ação antiparasitária da azitromicina na infecção experimental de camundongos pelo Plasmodium berghei

    Directory of Open Access Journals (Sweden)

    Gakiya Erika

    2001-01-01

    Full Text Available A azitromicina debelou a infecção experimental de camundongos pelo Plasmodium berghei quando administrada, pela via oral e durante 28 dias, na dose de 100mg/kg, iniciada no mesmo dia em que os animais foram infectados. Mediante uso de 10mg/kg houve insucesso. Os resultados obtidos suscitam investigações complementares sobre a referida atividade antiparasitária desse medicamento.

  5. Screening And Optimizing Antimicrobial Peptides By Using SPOT-Synthesis

    Science.gov (United States)

    López-Pérez, Paula M.; Grimsey, Elizabeth; Bourne, Luc; Mikut, Ralf; Hilpert, Kai

    2017-04-01

    Peptide arrays on cellulose are a powerful tool to investigate peptide interactions with a number of different molecules, for examples antibodies, receptors or enzymes. Such peptide arrays can also be used to study interactions with whole cells. In this review, we focus on the interaction of small antimicrobial peptides with bacteria. Antimicrobial peptides (AMPs) can kill multidrug-resistant (MDR) human pathogenic bacteria and therefore could be next generation antibiotics targeting MDR bacteria. We describe the screen and the result of different optimization strategies of peptides cleaved from the membrane. In addition, screening of antibacterial activity of peptides that are tethered to the surface is discussed. Surface-active peptides can be used to protect surfaces from bacterial infections, for example implants.

  6. Antimicrobial peptides design by evolutionary multiobjective optimization.

    Directory of Open Access Journals (Sweden)

    Giuseppe Maccari

    Full Text Available Antimicrobial peptides (AMPs are an abundant and wide class of molecules produced by many tissues and cell types in a variety of mammals, plant and animal species. Linear alpha-helical antimicrobial peptides are among the most widespread membrane-disruptive AMPs in nature, representing a particularly successful structural arrangement in innate defense. Recently, AMPs have received increasing attention as potential therapeutic agents, owing to their broad activity spectrum and their reduced tendency to induce resistance. The introduction of non-natural amino acids will be a key requisite in order to contrast host resistance and increase compound's life. In this work, the possibility to design novel AMP sequences with non-natural amino acids was achieved through a flexible computational approach, based on chemophysical profiles of peptide sequences. Quantitative structure-activity relationship (QSAR descriptors were employed to code each peptide and train two statistical models in order to account for structural and functional properties of alpha-helical amphipathic AMPs. These models were then used as fitness functions for a multi-objective evolutional algorithm, together with a set of constraints for the design of a series of candidate AMPs. Two ab-initio natural peptides were synthesized and experimentally validated for antimicrobial activity, together with a series of control peptides. Furthermore, a well-known Cecropin-Mellitin alpha helical antimicrobial hybrid (CM18 was optimized by shortening its amino acid sequence while maintaining its activity and a peptide with non-natural amino acids was designed and tested, demonstrating the higher activity achievable with artificial residues.

  7. Impact of microencapsulated peptidase (Aspergillus oryzae) on cheddar cheese proteolysis and its biologically active peptide profile.

    Science.gov (United States)

    Seneweera, Saman; Kailasapathy, Kaila

    2011-07-01

    We investigated the delivery of calcium-alginate encapsulated peptidase (Flavourzyme(®), Aspergillus oryzae) on proteolysis of Cheddar cheese. Physical and chemical characteristics such as moisture, pH and fat content were measured, and no differences were found between control and experimental cheese at day 0. SDS-PAGE analysis clearly showed that proteolysis of α and k casein was significantly accelerated after three months of maturity in the experimental cheese. A large number of low molecular weight peptides were found in the water soluble fraction of the experimental cheeses and some of these peptides were new. N-terminal amino acid sequence analysis identified these as P(1), Leu-Thu-Glu; P(3), Asp-Val-Pro-Ser-Glu) and relatively abundant stable peptides P(2), P(4), Arg-Pro-Lys-His-Pro-Ile; P(5), Arg-Pro-Lys-His-Pro-Ile-Lys and P(6). These peptides were mainly originated from αs1-CN and β-CN. Three of the identified peptides (P(1), P(2), P(3) and P(4)) are known to biologically active and P(1) and P(3) were only present in experimental cheese suggesting that experimental cheese has improved health benefits.

  8. Nematode Peptides with host-directed anti-inflammatory activity rescue Caenorhabditis elegans from a Burkholderia pseudomallei infection

    Directory of Open Access Journals (Sweden)

    Mei-Perng Lim

    2016-09-01

    Full Text Available Burkholderia pseudomallei, the causative agent of melioidosis, is among a growing number of bacterial pathogens that are increasingly antibiotic resistant. Antimicrobial peptides (AMPs have been investigated as an alternative approach to treat microbial infections, as generally, there is a lower likelihood that a pathogen will develop resistance to AMPs. In this study, 36 candidate Caenorhabditis elegans genes that encode secreted peptides of <150 amino acids and previously shown to be overexpressed during infection by B. pseudomallei were identified from the expression profile of infected nematodes. RNA interference (RNAi-based knockdown of 12/34 peptide-encoding genes resulted in enhanced nematode susceptibility to B. pseudomallei without affecting worm fitness. A microdilution test demonstrated that two peptides, NLP-31 and Y43C5A.3, exhibited anti-B. pseudomallei activity in a dose dependent manner on different pathogens. Time kill analysis proposed that these peptides were bacteriostatic against B. pseudomallei at concentrations up to 8× MIC90. The SYTOX green assay demonstrated that NLP-31 and Y43C5A.3 did not disrupt the B. pseudomallei membrane. Instead, gel retardation assays revealed that both peptides were able to bind to DNA and interfere with bacterial viability. In parallel, microscopic examination showed induction of cellular filamentation, a hallmark of DNA synthesis inhibition, of NLP-31 and Y43C5A.3 treated cells. In addition, the peptides also regulated the expression of inflammatory cytokines in B. pseudomallei infected macrophage cells. Collectively, these findings demonstrate the potential of NLP-31 and Y43C5A.3 as anti-B. pseudomallei peptides based on their function as immune modulators.

  9. Bioactive Peptides from Angelica sinensis Protein Hydrolyzate Delay Senescence in Caenorhabditis elegans through Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Qiangqiang Wang

    2016-01-01

    Full Text Available Since excessive reactive oxygen species (ROS is known to be associated with aging and age-related diseases, strategies modulating ROS level and antioxidant defense systems may contribute to the delay of senescence. Here we show that the protein hydrolyzate from Angelica sinensis was capable of increasing oxidative survival of the model animal Caenorhabditis elegans intoxicated by paraquat. The hydrolyzate was then fractionated by ultrafiltration, and the antioxidant fraction (<3 kDa was purified by gel filtration to obtain the antioxidant A. sinensis peptides (AsiPeps, which were mostly composed of peptides with <20 amino acid residues. Further studies demonstrate that AsiPeps were able to reduce the endogenous ROS level, increase the activities of the antioxidant enzymes superoxide dismutase and catalase, and decrease the content of the lipid peroxidation product malondialdehyde in nematodes treated with paraquat or undergoing senescence. AsiPeps were also shown to reduce age pigments accumulation and extend lifespan but did not affect the food-intake behavior of the nematodes. Taken together, our results demonstrate that A. sinensis peptides (AsiPeps are able to delay aging process in C. elegans through antioxidant activities independent of dietary restriction.

  10. Immunoregulatory activities of human immunodeficiency virus (HIV) proteins: Effect of HIV recombinant and synthetic peptides on immunoglobulin synthesis and proliferative responses by normal lymphocytes

    International Nuclear Information System (INIS)

    Nair, M.P.N.; Pottathil, R.; Heimer, E.P.; Schwartz, S.A.

    1988-01-01

    Recombinant and synthetic peptides corresponding to envelope proteins of the human immunodeficiency virus (HIV) were examined for their effects on the activities of lymphocytes from normal donors in vitro. Although lymphocytes cultured with env-gag peptides produced significant amounts of IgG, addition of env-gag peptides to a pokeweed mitogen-induced B-cell activation system resulted in suppression of immunoglobulin synthesis by normal lymphocytes. Recombinant antigens, env-gag and env-80 dihydrofolate reductase (DHFR), produced a substantial proliferative response by peripheral blood mononuclear cells (PBMC) as determined by [ 3 H]thymidine incorporation. PBMC precultured with HIV synthetic peptide env 578-608 also manifested significant proliferative responses as compared to control cultures. CD3 + lymphocytes precultured with recombinant HIV antigens, env-gag and env-80 DHFR, and synthetic HIV peptide, env 487-511, showed moderate but significant proliferative responses. Both recombinant antigens and synthetic peptides also produced a dose-dependent stimulatory effect on proliferation by CD3 - lymphocytes. These studies demonstrate that recombinant and synthetic peptides of the HIV genome express immunoregulatory T- and B-cell epitopes. Identification of unique HIV epitopes with immunogenic and immunoregulatory activities is necessary for the development of an effective vaccine against HIV infection

  11. Targeting of gelatinase activity with a radiolabeled cyclic HWGF peptide

    International Nuclear Information System (INIS)

    Kuhnast, B.; Bodenstein, C.; Haubner, R.; Wester, H.J.; Senekowitsch-Schmidtke, R.; Schwaiger, M.; Weber, W.A.

    2004-01-01

    Matrix metalloproteinases (MMPs) are a family of proteinases that play an important role in cancer as well as in numerous diseases. In this article, we describe the labeling of a phage display selected cyclic decapeptide containing the HWGF (histidine-tryptophane-glycine-phenylalanine) sequence to target MMP-2 and MMP-9. To evaluate the ability of this labeled peptide to monitor non invasively MMP-2 and MMP-9 activity, in vitro studies, biodistribution, competition studies and plasma metabolites analyses in Lewis Lung cancer tumor bearing mice were performed

  12. De-novo design of antimicrobial peptides for plant protection.

    Directory of Open Access Journals (Sweden)

    Benjamin Zeitler

    Full Text Available This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of "healthy" food, these peptides might serve as templates for novel antibacterial and antifungal agents.

  13. Blocking the RecA activity and SOS-response in bacteria with a short α-helical peptide.

    Science.gov (United States)

    Yakimov, Alexander; Pobegalov, Georgii; Bakhlanova, Irina; Khodorkovskii, Mikhail; Petukhov, Michael; Baitin, Dmitry

    2017-09-19

    The RecX protein, a very active natural RecA protein inhibitor, can completely disassemble RecA filaments at nanomolar concentrations that are two to three orders of magnitude lower than that of RecA protein. Based on the structure of RecX protein complex with the presynaptic RecA filament, we designed a short first in class α-helical peptide that both inhibits RecA protein activities in vitro and blocks the bacterial SOS-response in vivo. The peptide was designed using SEQOPT, a novel method for global sequence optimization of protein α-helices. SEQOPT produces artificial peptide sequences containing only 20 natural amino acids with the maximum possible conformational stability at a given pH, ionic strength, temperature, peptide solubility. It also accounts for restrictions due to known amino acid residues involved in stabilization of protein complexes under consideration. The results indicate that a few key intermolecular interactions inside the RecA protein presynaptic complex are enough to reproduce the main features of the RecX protein mechanism of action. Since the SOS-response provides a major mechanism of bacterial adaptation to antibiotics, these results open new ways for the development of antibiotic co-therapy that would not cause bacterial resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Novel peptide-based platform for the dual presentation of biologically active peptide motifs on biomaterials.

    Science.gov (United States)

    Mas-Moruno, Carlos; Fraioli, Roberta; Albericio, Fernando; Manero, José María; Gil, F Javier

    2014-05-14

    Biofunctionalization of metallic materials with cell adhesive molecules derived from the extracellular matrix is a feasible approach to improve cell-material interactions and enhance the biointegration of implant materials (e.g., osseointegration of bone implants). However, classical biomimetic strategies may prove insufficient to elicit complex and multiple biological signals required in the processes of tissue regeneration. Thus, newer strategies are focusing on installing multifunctionality on biomaterials. In this work, we introduce a novel peptide-based divalent platform with the capacity to simultaneously present distinct bioactive peptide motifs in a chemically controlled fashion. As a proof of concept, the integrin-binding sequences RGD and PHSRN were selected and introduced in the platform. The biofunctionalization of titanium with this platform showed a positive trend towards increased numbers of cell attachment, and statistically higher values of spreading and proliferation of osteoblast-like cells compared to control noncoated samples. Moreover, it displayed statistically comparable or improved cell responses compared to samples coated with the single peptides or with an equimolar mixture of the two motifs. Osteoblast-like cells produced higher levels of alkaline phosphatase on surfaces functionalized with the platform than on control titanium; however, these values were not statistically significant. This study demonstrates that these peptidic structures are versatile tools to convey multiple biofunctionality to biomaterials in a chemically defined manner.

  15. Killing of Mycobacterium avium by lactoferricin peptides: improved activity of arginine- and D-amino-acid-containing molecules.

    Science.gov (United States)

    Silva, Tânia; Magalhães, Bárbara; Maia, Sílvia; Gomes, Paula; Nazmi, Kamran; Bolscher, Jan G M; Rodrigues, Pedro N; Bastos, Margarida; Gomes, Maria Salomé

    2014-06-01

    Mycobacterium avium causes respiratory disease in susceptible individuals, as well as disseminated infections in immunocompromised hosts, being an important cause of morbidity and mortality among these populations. Current therapies consist of a combination of antibiotics taken for at least 6 months, with no more than 60% overall clinical success. Furthermore, mycobacterial antibiotic resistance is increasing worldwide, urging the need to develop novel classes of antimicrobial drugs. One potential and interesting alternative strategy is the use of antimicrobial peptides (AMP). These are present in almost all living organisms as part of their immune system, acting as a first barrier against invading pathogens. In this context, we investigated the effect of several lactoferrin-derived AMP against M. avium. Short peptide sequences from both human and bovine lactoferricins, namely, hLFcin1-11 and LFcin17-30, as well as variants obtained by specific amino acid substitutions, were evaluated. All tested peptides significantly inhibited the axenic growth of M. avium, the bovine peptides being more active than the human. Arginine residues were found to be crucial for the display of antimycobacterial activity, whereas the all-d-amino-acid analogue of the bovine sequence displayed the highest mycobactericidal activity. These findings reveal the promising potential of lactoferricins against mycobacteria, thus opening the way for further research on their development and use as a new weapon against mycobacterial infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Human Vitronectin-Derived Peptide Covalently Grafted onto Titanium Surface Improves Osteogenic Activity: A Pilot In Vivo Study on Rabbits.

    Science.gov (United States)

    Cacchioli, Antonio; Ravanetti, Francesca; Bagno, Andrea; Dettin, Monica; Gabbi, Carlo

    2009-10-01

    Peptide and protein exploitation for the biochemical functionalization of biomaterial surfaces allowed fabricating biomimetic devices able to evoke and promote specific and advantageous cell functions in vitro and in vivo. In particular, cell adhesion improvement to support the osseointegration of implantable devices has been thoroughly investigated. This study was aimed at checking the biological activity of the (351-359) human vitronectin precursor (HVP) sequence, mapped on the human vitronectin protein; the peptide was covalently linked to the surface of titanium cylinders, surgically inserted in the femurs of New Zealand white rabbits and analyzed at short experimental time points (4, 9, and 16 days after surgery). To assess the osteogenic activity of the peptide, three vital fluorochromic bone markers were used (calcein green, xylenol orange, and calcein blue) to stain the areas of newly grown bone. Static and dynamic histomorphometric parameters were measured at the bone-implant interface and at different distances from the surface. The biological role of the (351-359)HVP sequence was checked by comparing peptide-grafted samples and controls, analyzing how and how much its effects change with time across the bone regions surrounding the implant surface. The results obtained reveal a major activity of the investigated peptide 4 days after surgery, within the bone region closest to the implant surface, and larger bone to implant contact 9 and 16 days after surgery. Thus, improved primary fixation of endosseous devices can be foreseen, resulting in an increased osteointegration.

  17. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Shiraishi, Takehiko; Zachar, Vladimir

    2008-01-01

    Conjugation to cationic cell penetrating peptides (such as Tat, Penetratin, or oligo arginines) efficiently improves the cellular uptake of large hydrophilic molecules such as oligonucleotides and peptide nucleic acids, but the cellular uptake is predominantly via an unproductive endosomal pathway...... for future in vivo applications. We find that simply conjugating a lipid domain (fatty acid) to the cationic peptide (a CatLip conjugate) increases the biological effect of the corresponding PNA (CatLip) conjugates in a luciferase cellular antisense assay up to 2 orders of magnitude. The effect increases...... with increasing length of the fatty acid (C8-C16) but in parallel also results in increased cellular toxicity, with decanoic acid being optimal. Furthermore, the relative enhancement is significantly higher for Tat peptide compared to oligoarginine. Confocal microscopy and chloroquine enhancement indicates...

  18. Steric effects in peptide and protein exchange with activated disulfides.

    Science.gov (United States)

    Kerr, Jason; Schlosser, Jessica L; Griffin, Donald R; Wong, Darice Y; Kasko, Andrea M

    2013-08-12

    Disulfide exchange is an important bioconjugation tool, enabling chemical modification of peptides and proteins containing free cysteines. We previously reported the synthesis of a macromer bearing an activated disulfide and its incorporation into hydrogels. Despite their ability to diffuse freely into hydrogels, larger proteins were unable to undergo in-gel disulfide exchange. In order to understand this phenomenon, we synthesized four different activated disulfide-bearing model compounds (Mn = 300 Da to 10 kDa) and quantified their rate of disulfide exchange with a small peptide (glutathione), a moderate-sized protein (β-lactoglobulin), and a large protein (bovine serum albumin) in four different pH solutions (6.0, 7.0, 7.4, and 8.0) to mimic biological systems. Rate constants of exchange depend significantly on the size and accessibility of the thiolate. pH also significantly affects the rate of reaction, with the faster reactions occurring at higher pH. Surprisingly, little difference in exchange rates is seen between macromolecular disulfides of varying size (Mn = 2 kDa - 10 kDa), although all undergo exchange more slowly than their small molecule analogue (MW = 300 g/mol). The maximum exchange efficiencies (% disulfides exchanged after 24 h) are not siginificantly affected by thiol size or pH, but somewhat affected by disulfide size. Therefore, while all three factors investigated (pH, disulfide size, and thiolate size) can influence the exchange kinetics and extent of reaction, the size of the thiolate and its accessibility plays the most significant role.

  19. Structure, synthesis, and activity of dermaseptin b, a novel vertebrate defensive peptide from frog skin: relationship with adenoregulin.

    Science.gov (United States)

    Mor, A; Amiche, M; Nicolas, P

    1994-05-31

    A novel antimicrobial peptide, designated dermaseptin b, was isolated from the skin of the arboreal frog Phyllomedusa bicolor. This 27-residue peptide amide is basic, containing 3 lysine residues that punctuate an alternating hydrophobic and hydrophilic sequence. In helix-inducing solvent, dermaseptin b adopts an amphipathic alpha-helical conformation that most closely resembles class L amphipathic helixes, with all lysine residues on the polar face of the helix. The peptide exhibits growth inhibition activity in vitro against a broad spectrum of pathogenic microorganisms including yeast and bacteria as well as various filamentous fungi that are responsible for severe opportunistic infections accompanying acquired immunodeficiency syndrome and the use of immunosuppressive agents. Maximized pairwise sequence alignment of dermaseptin b and dermaseptin s, a 34-residue antimicrobial peptide previously isolated from Phyllomedusa sauvagii, reveals 81% amino acid identity. No other significant similarity was found between dermaseptin b and any prokaryotic or eukaryotic protein, but similarity was found with adenoregulin (38% amino acid postional identity), a 33-residue peptide that enhances binding of agonists to the A1 adenosine receptor. The synthetic replicates of dermaseptin b and adenoregulin displayed similar but nonidentical spectra of antimicrobial activity, and both peptides were devoid of lytic effect on mammalian cells. Accordingly, the observation that adenoregulin enhances binding of agonists to the adenosine receptor may in fact be a consequence of its ability to alter the structure of biological membranes and to produce signal transduction via interactions with the lipid bilayer, bypassing cell surface receptor interactions.

  20. A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase.

    Science.gov (United States)

    Blank, V C; Bertucci, L; Furmento, V A; Peña, C; Marino, V J; Roguin, L P

    2013-06-10

    We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells. Copyright © 2013 Elsevier Inc

  1. The antiparasitic isoxazoline A1443 is a potent blocker of insect ligand-gated chloride channels.

    Science.gov (United States)

    Ozoe, Yoshihisa; Asahi, Miho; Ozoe, Fumiyo; Nakahira, Kunimitsu; Mita, Takeshi

    2010-01-01

    A structurally unique isoxazoline class compound, A1443, exhibits antiparasitic activity against cat fleas and dog ticks comparable to that of the commercial ectoparasiticide fipronil. This isoxazoline compound inhibits specific binding of the gamma-aminobutyric acid (GABA) receptor channel blocker [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB) to housefly-head membranes, with an IC(50) value of 455pM. In contrast, the IC(50) value in rat-brain membranes is>10muM. To study the mode of action of this isoxazoline, we utilized MdGBCl and MdGluCl cDNAs, which encode the subunits of housefly GABA- and glutamate-gated chloride channels, respectively. Two-electrode voltage clamp electrophysiology was used to confirm that A1443 blocks GABA- and glutamate-induced chloride currents in Xenopus oocytes expressing MdGBCl or MdGluCl channels, with IC(50) values of 5.32 and 79.9 nM, respectively. Blockade by A1443 was observed in A2'S-MdGBCl and S2'A-MdGluCl mutant channels at levels similar to those of the respective wild-types, and houseflies expressing A2'S-MdGBCl channels were as susceptible to A1443 as standard houseflies. These findings indicate that A1443 is a novel and specific blocker of insect ligand-gated chloride channels. Copyright 2009 Elsevier Inc. All rights reserved.

  2. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin

    International Nuclear Information System (INIS)

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng; Hwang, Jae Sam; Seok, Heon; Choi, Hyemin; Lee, Dong Gun; Kim, Jae Il; Kim, Ho

    2014-01-01

    Highlights: • 11-mer peptide Lumbricusin, a defensin like peptide, is isolated from earthworm. • We here demonstrated that Lumbricusin has neurotropic and neuroprotective effects. • p27 degradation by Lumbricusin mediates effects of Lumbricusin on neuronal cells. - Abstract: We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH 2 -RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27 Kip1 protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27 Kip1 significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27 Kip1 degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin

  3. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of); Hwang, Jae Sam [Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707 (Korea, Republic of); Seok, Heon [Department of Biomedical Engineering, Jungwon University, Goesan, Chungcheongbukdo 367-700 (Korea, Republic of); Choi, Hyemin; Lee, Dong Gun [School of Life Sciences, KNU Creative Bioresearch Group (BK21 Plus Program), College of Natural Sciences, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu 702-701 (Korea, Republic of); Kim, Jae Il [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, Ho, E-mail: hokim@daejin.ac.kr [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of)

    2014-06-06

    Highlights: • 11-mer peptide Lumbricusin, a defensin like peptide, is isolated from earthworm. • We here demonstrated that Lumbricusin has neurotropic and neuroprotective effects. • p27 degradation by Lumbricusin mediates effects of Lumbricusin on neuronal cells. - Abstract: We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH{sub 2}-RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27{sup Kip1} protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27{sup Kip1} significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27{sup Kip1} degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin.

  4. New Potent Membrane-Targeting Antibacterial Peptides from Viral Capsid Proteins

    Science.gov (United States)

    Dias, Susana A.; Freire, João M.; Pérez-Peinado, Clara; Domingues, Marco M.; Gaspar, Diana; Vale, Nuno; Gomes, Paula; Andreu, David; Henriques, Sónia T.; Castanho, Miguel A. R. B.; Veiga, Ana S.

    2017-01-01

    The increasing prevalence of multidrug-resistant bacteria urges the development of new antibacterial agents. With a broad spectrum activity, antimicrobial peptides have been considered potential antibacterial drug leads. Using bioinformatic tools we have previously shown that viral structural proteins are a rich source for new bioactive peptide sequences, namely antimicrobial and cell-penetrating peptides. Here, we test the efficacy and mechanism of action of the most promising peptides among those previously identified against both Gram-positive and Gram-negative bacteria. Two cell-penetrating peptides, vCPP 0769 and vCPP 2319, have high antibacterial activity against Staphylococcus aureus, MRSA, Escherichia coli, and Pseudomonas aeruginosa, being thus multifunctional. The antibacterial mechanism of action of the two most active viral protein-derived peptides, vAMP 059 and vCPP 2319, was studied in detail. Both peptides act on both Gram-positive S. aureus and Gram-negative P. aeruginosa, with bacterial cell death occurring within minutes. Also, these peptides cause bacterial membrane permeabilization and damage of the bacterial envelope of P. aeruginosa cells. Overall, the results show that structural viral proteins are an abundant source for membrane-active peptides sequences with strong antibacterial properties. PMID:28522994

  5. Antimicrobial Peptides for Therapeutic Applications: A Review

    Directory of Open Access Journals (Sweden)

    Tsogbadrakh Mishig-Ochir

    2012-10-01

    Full Text Available Antimicrobial peptides (AMPs have been considered as potential therapeutic sources of future antibiotics because of their broad-spectrum activities and different mechanisms of action compared to conventional antibiotics. Although AMPs possess considerable benefits as new generation antibiotics, their clinical and commercial development still have some limitations, such as potential toxicity, susceptibility to proteases, and high cost of peptide production. In order to overcome those obstacles, extensive efforts have been carried out. For instance, unusual amino acids or peptido-mimetics are introduced to avoid the proteolytic degradation and the design of short peptides retaining antimicrobial activities is proposed as a solution for the cost issue. In this review, we focus on small peptides, especially those with less than twelve amino acids, and provide an overview of the relationships between their three-dimensional structures and antimicrobial activities. The efforts to develop highly active AMPs with shorter sequences are also described.

  6. What peptides these deltorphins be.

    Science.gov (United States)

    Lazarus, L H; Bryant, S D; Cooper, P S; Salvadori, S

    1999-02-01

    The deltorphins are a class of highly selective delta-opioid heptapeptides from the skin of the Amazonian frogs Phyllomedusa sauvagei and P. bicolor. The first of these fascinating peptides came to light in 1987 by cloning of the cDNA of from frog skins, while the other members of this family were identified either by cDNA or isolation of the peptides. The distinctive feature of deltorphins is the presence of a naturally occurring D-enantiomer at the second position in their common N-terminal sequence, Tyr-D-Xaa-Phe, comparable to dermorphin, which is the prototype of a group of mu-selective opioids from the same source. The D-amino acid and the anionic residues, either Glu or Asp, as well as their unique amino acid compositions are responsible for the remarkable biostability, high delta-receptor affinity, bioactivity and peptide conformation. This review summarizes a decade of research from many laboratories that defined which residues and substituents in the deltorphins interact with the delta-receptor and characterized pharmacological and physiological activities in vitro and in vivo. It begins with a historical description of the topic and presents general schema for the synthesis of peptide analogues of deltorphins A, B and C as a means to document the methods employed in producing a myriad of analogues. Structure activity studies of the peptides and their pharmacological activities in vitro are detailed in abundantly tabulated data. A brief compendium of the current level of knowledge of the delta-receptor assists the reader to appreciate the rationale for the design of these analogues. Discussion of the conformation of these peptides addresses how structure leads to further hypotheses regarding ligand receptor interaction. The review ends with a broad discussion of the potential applications of these peptides in clinical and therapeutic settings.

  7. A Novel Apolipoprotein C-II Mimetic Peptide That Activates Lipoprotein Lipase and Decreases Serum Triglycerides in Apolipoprotein E–Knockout Mice

    Science.gov (United States)

    Sakurai, Toshihiro; Sakurai-Ikuta, Akiko; Sviridov, Denis; Freeman, Lita; Ahsan, Lusana; Remaley, Alan T.

    2015-01-01

    Apolipoprotein A-I (apoA-I) mimetic peptides are currently being developed as possible new agents for the treatment of cardiovascular disease based on their ability to promote cholesterol efflux and their other beneficial antiatherogenic properties. Many of these peptides, however, have been reported to cause transient hypertriglyceridemia due to inhibition of lipolysis by lipoprotein lipase (LPL). We describe a novel bihelical amphipathic peptide (C-II-a) that contains an amphipathic helix (18A) for binding to lipoproteins and stimulating cholesterol efflux as well as a motif based on the last helix of apolipoprotein C-II (apoC-II) that activates lipolysis by LPL. The C-II-a peptide promoted cholesterol efflux from ATP-binding cassette transporter ABCA1-transfected BHK cells similar to apoA-I mimetic peptides. Furthermore, it was shown in vitro to be comparable to the full-length apoC-II protein in activating lipolysis by LPL. When added to serum from a patient with apoC-II deficiency, it restored normal levels of LPL-induced lipolysis and also enhanced lipolysis in serum from patients with type IV and V hypertriglyceridemia. Intravenous injection of C-II-a (30 mg/kg) in apolipoprotein E–knockout mice resulted in a significant reduction of plasma cholesterol and triglycerides of 38 ± 6% and 85 ± 7%, respectively, at 4 hours. When coinjected with the 5A peptide (60 mg/kg), the C-II-a (30 mg/kg) peptide was found to completely block the hypertriglyceridemic effect of the 5A peptide in C57Bl/6 mice. In summary, C-II-a is a novel peptide based on apoC-II, which promotes cholesterol efflux and lipolysis and may therefore be useful for the treatment of apoC-II deficiency and other forms of hypertriglyceridemia. PMID:25395590

  8. Dual function of a bee (Apis cerana) inhibitor cysteine knot peptide that acts as an antifungal peptide and insecticidal venom toxin.

    Science.gov (United States)

    Park, Hee Geun; Kyung, Seung Su; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Kwon, Hyung Wook; Je, Yeon Ho; Jin, Byung Rae

    2014-12-01

    Inhibitor cysteine knot (ICK) peptides exhibit ion channel blocking, insecticidal, and antimicrobial activities, but currently, no functional roles for bee-derived ICK peptides have been identified. In this study, a bee (Apis cerana) ICK peptide (AcICK) that acts as an antifungal peptide and as an insecticidal venom toxin was identified. AcICK contains an ICK fold that is expressed in the epidermis, fat body, or venom gland and is present as a 6.6-kDa peptide in bee venom. Recombinant AcICK peptide (expressed in baculovirus-infected insect cells) bound directly to Beauveria bassiana and Fusarium graminearum, but not to Escherichia coli or Bacillus thuringiensis. Consistent with these findings, AcICK showed antifungal activity, indicating that AcICK acts as an antifungal peptide. Furthermore, AcICK expression is induced in the fat body and epidermis after injection with B. bassiana. These results provide insight into the role of AcICK during the innate immune response following fungal infection. Additionally, we show that AcICK has insecticidal activity. Our results demonstrate a functional role for AcICK in bees: AcICK acts as an antifungal peptide in innate immune reactions in the body and as an insecticidal toxin in venom. The finding that the AcICK peptide functions with different mechanisms of action in the body and in venom highlights the two-pronged strategy that is possible with the bee ICK peptide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Alarin but not its alternative-splicing form, GALP (Galanin-like peptide) has antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Akihiro, E-mail: a-wada@nagasaki-u.ac.jp [Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan); Wong, Pooi-Fong [Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Hojo, Hironobu [Department of Applied Biochemistry, Institute of Glycoscience, Tokai University, Kanagawa 2591292 (Japan); Hasegawa, Makoto [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga 5260829 (Japan); Ichinose, Akitoyo [Electron Microscopy Shop Central Laboratory, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan); Llanes, Rafael [Institute Pedro Kouri, Havana (Cuba); Kubo, Yoshinao [Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 8528523 (Japan); Senba, Masachika [Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan); Ichinose, Yoshio [Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan)

    2013-05-03

    Highlights: • Alarin inhibits the growth of E. coli but not S. aureus. • Alarin’s potency is comparable to LL-37 in inhibiting the growth of E. coli. • Alarin can cause bacterial membrane blebbing. • Alalin does not induce hemolysis on erythrocytes. -- Abstract: Alarin is an alternative-splicing form of GALP (galanin-like peptide). It shares only 5 conserved amino acids at the N-terminal region with GALP which is involved in a diverse range of normal brain functions. This study seeks to investigate whether alarin has additional functions due to its differences from GALP. Here, we have shown using a radial diffusion assay that alarin but not GALP inhibited the growth of Escherichia coli (strain ML-35). The conserved N-terminal region, however, remained essential for the antimicrobial activity of alarin as truncated peptides showed reduced killing effect. Moreover, alarin inhibited the growth of E. coli in a similar potency as human cathelicidin LL-37, a well-studied antimicrobial peptide. Electron microscopy further showed that alarin induced bacterial membrane blebbing but unlike LL-37, it did not cause hemolysis of erythrocytes. In addition, alarin is only active against the gram-negative bacteria, E. coli but not the gram-positive bacteria, Staphylococcus aureus. Thus, these data suggest that alarin has potentials as an antimicrobial and should be considered for the development in human therapeutics.

  10. Enhanced efficacy (intrinsic activity) of cyclic opioid peptide analogs at the μ-receptor

    International Nuclear Information System (INIS)

    Schiller, P.W.; Lemieux, C.; Nguyen, T.M.D.; Maziak, L.A.

    1986-01-01

    Side-chain to end group cyclized enkephalin analogs (e.g. H-Tyr-cyclo[-D-Lys-Gly-Phe-Leu-] and cyclic opioid peptide analogs obtained through covalent linkage of two side-chains (e.g. H-Tyr-D-Cys-Gly-Phe-Cys-NH 2 or H-Tyr-D-Lys-Gly-Phe-Glu-NH 3 ) were tested in the μ-receptor-representative guinea pig ileum (GPI) bioassay and in a binding assay based on displacement of the μ-ligand [ 3 H]DAGO from rat brain membranes. The cyclic analogs were 5 to 70 times more potent in the GPI assay than in the binding assay, whereas linear analogs showed equal potency in the two assays. These results suggest that the efficacy (intrinsic activity) of cyclic opioid peptide analogs at the μ-receptor is increased as a consequence of the conformation constraint imposed through ring closure. This effect was most pronounced in analogs containing a long hydrophobic sidechain as part of the ring structure in the 2-position of the peptide sequence. Further experimental evidence ruled out the possibilities that these potency discrepancies may be due to differences in enzymatic degradation, dissimilar exposure of the receptors in their lipid environment or interaction with different receptor types in the two assay systems. It can be hypothesized that the semi-rigid cyclic analogs may induce a more productive conformational change in the receptor protein than the linear peptides

  11. A general strategy to endow natural fusion-protein-derived peptides with potent antiviral activity.

    Directory of Open Access Journals (Sweden)

    Antonello Pessi

    Full Text Available Fusion between the viral and target cell membranes is an obligatory step for the infectivity of all enveloped virus, and blocking this process is a clinically validated therapeutic strategy.Viral fusion is driven by specialized proteins which, although specific to each virus, act through a common mechanism, the formation of a complex between two heptad repeat (HR regions. The HR regions are initially separated in an intermediate termed "prehairpin", which bridges the viral and cell membranes, and then fold onto each other to form a 6-helical bundle (6HB, driving the two membranes to fuse. HR-derived peptides can inhibit viral infectivity by binding to the prehairpin intermediate and preventing its transition to the 6HB.The antiviral activity of HR-derived peptides differs considerably among enveloped viruses. For weak inhibitors, potency can be increased by peptide engineering strategies, but sequence-specific optimization is time-consuming. In seeking ways to increase potency without changing the native sequence, we previously reported that attachment to the HR peptide of a cholesterol group ("cholesterol-tagging" dramatically increases its antiviral potency, and simultaneously increases its half-life in vivo. We show here that antiviral potency may be increased by combining cholesterol-tagging with dimerization of the HR-derived sequence, using as examples human parainfluenza virus, Nipah virus, and HIV-1. Together, cholesterol-tagging and dimerization may represent strategies to boost HR peptide potency to levels that in some cases may be compatible with in vivo use, possibly contributing to emergency responses to outbreaks of existing or novel viruses.

  12. Assessing the usefulness of mineral licks containing herbal extracts with anti-parasitic properties for the control of gastrointestinal helminths in grazing sheep – a field trial

    Directory of Open Access Journals (Sweden)

    Nosal P.

    2016-06-01

    Full Text Available One of the alternative methods of parasite control, of particular importance in sustainable farming, is the use of medicinal plants. The specific aim of the present field trial was to assess the anti-parasitic effects of herbal extracts contained in a commercially available lick formulation for sheep. At the outset of this study conducted during the grazing season, all animals were de-wormed and then randomly assigned to one of the two separately kept groups (treatment and control, each consisting of 25 animals (11 ewes and 14 lambs. The treatment group received mineral licks containing the extracts of the plants with anti-parasitic properties, while control animals received standard mineral licks ad libitum. Rectal fecal samples were collected monthly from all animals for the McMaster analyses. There were no significant differences in the prevalence and intensity of helminth infections between the treatment and control groups. Thus, we were not able to ascertain the efficacy of the commercial herbal de-wormer tested for the control of gastrointestinal helminths in grazing ewes and their lambs.

  13. Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides.

    Science.gov (United States)

    Liu, Yifan; Han, Feifei; Xie, Yonggang; Wang, Yizhen

    2011-12-01

    Lactoferricin B (LfcinB), a 25 residue peptide derived from the N-terminal of bovine lactoferrin (bLF), causes depolarization of the cytoplasmic membrane in susceptible bacteria. Its mechanism of action, however, still needs to be elucidated. In the present study, synthetic LfcinB (without a disulfide bridge) and LfcinB (C-C; with a disulfide bridge) as well as three derivatives with 15-, 11- and 9-residue peptides were prepared to investigate their antimicrobial nature and mechanisms. The antimicrobial properties were measured via minimum inhibitory concentration (MIC) determinations, killing kinetics assays and synergy testing, and hemolytic activities were assessed by hemoglobin release. Finally, the morphology of peptide-treated bacteria was determined by atomic force microscopy (AFM). We found that there was no difference in MICs between LfcinB and LfcinB (C-C). Among the derivatives, only LfcinB15 maintained nearly the same level as LfcinB, in the MIC range of 16-128 μg/ml, and the MICs of LfcinB11 (64-256 μg/ml) were 4 times more than LfcinB, while LfcinB9 exhibited the lowest antimicrobial activity. When treated at MIC for 1 h, many blebs were formed and holes of various sizes appeared on the cell surface, but the cell still maintained its integrity. This suggested that LfcinB had a major permeability effect on the cytoplasmic membrane of both Gram-positive and Gram-negative bacteria, which also indicated it may be a possible intracellular target. Among the tested antibiotics, aureomycin increased the bactericidal activity of LfcinB against E. coli, S. aureus and P. aeruginosa, but neomycin did not have such an effect. We also found that the combination of cecropin A and LfcinB had synergistic effects against E. coli.

  14. Iodinated derivatives of vasoactive intestinal peptide (VIP), PHI and PHM: purification, chemical characterization and biological activity

    International Nuclear Information System (INIS)

    McMaster, D.; Suzuki, Y.; Rorstad, O.; Lederis, K.

    1987-01-01

    The iodination of vasoactive intestinal peptide (VIP) was studied, using a variety of enzymatic and chemical iodination methods. Reversed phase high performance liquid chromatography (HPLC) was used to purify the reaction products. The lactoperoxidase-glucose oxidase method gave excellent results in terms of reproducibility, iodine incorporation, and yield of the non-oxidized products [Tyr(I)10]VIP and [Tyr(I)22]VIP, and was used to prepare both 125 I and 127 I labelled derivatives. In both cases, direct application to HPLC and a single column system were used. Although the oxidized peptides [Tyr(I)10,Met(O)17]VIP and [Tyr(I)22,Met(O)17]VIP could be generated to varying degrees directly by iodination of VIP, these were most conveniently prepared by iodination of [Met(O)17]VIP. Iodinated derivatives of the homologous peptides PHI and PHM were likewise prepared by rapid, one-step HPLC procedures. The site and degree of iodination were determined by HPLC peptide mapping of tryptic digests and amino acid analyses, and in the case of [Tyr(I)10]VIP also by sequencing. The vasorelaxant activities of the iodinated peptides in bovine cerebral artery preparations did not differ significantly from those of the corresponding noniodinated peptides, with the exception of [Tyr(I)10,Met(O)17]VIP and [Tyr(I)22,Met(O)17]VIP which, unlike [Met(O)17]VIP itself, had slightly lower potency than VIP

  15. Designing and Producing Modified, New-to-Nature Peptides with Antimicrobial Activity by Use of a Combination of Various Lantibiotic Modification Enzymes

    NARCIS (Netherlands)

    van Heel, Auke J.; Mu, Dongdong; Montalban-Lopez, Manuel; Hendriks, Djoke; Kuipers, Oscar P.

    Lanthipeptides are peptides that contain several post-translationally modified amino acid residues and commonly show considerable antimicrobial activity. After translation, the amino acid residues of these peptides are modified by a distinct set of modification enzymes. This process results in

  16. Constraining cyclic peptides to mimic protein structure motifs

    DEFF Research Database (Denmark)

    Hill, Timothy A.; Shepherd, Nicholas E.; Diness, Frederik

    2014-01-01

    peptides can have protein-like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three-dimensional structures of strand, turn or helical segments of peptides...... and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic pepti-domimetics that refine peptide structure and confer biological properties....

  17. Ibandronate metal complexes: solution behavior and antiparasitic activity.

    Science.gov (United States)

    Demoro, Bruno; Rostán, Santiago; Moncada, Mauricio; Li, Zhu-Hong; Docampo, Roberto; Olea Azar, Claudio; Maya, Juan Diego; Torres, Julia; Gambino, Dinorah; Otero, Lucía

    2018-03-01

    To face the high costs of developing new drugs, researchers in both industry and academy are looking for ways to repurpose old drugs for new uses. In this sense, bisphosphonates that are clinically used for bone diseases have been studied as agents against Trypanosoma cruzi, causative parasite of Chagas disease. In this work, the development of first row transition metal complexes (M = Co 2+ , Mn 2+ , Ni 2+ ) with the bisphosphonate ibandronate (iba, H 4 iba representing the neutral form) is presented. The in-solution behavior of the systems containing iba and the selected 3d metal ions was studied by potentiometry. Mononuclear complexes [M(H x iba)] (2-x)- (x = 0-3) and [M(Hiba) 2 ] 4- together with the formation of the neutral polynuclear species [M 2 iba] and [M 3 (Hiba) 2 ] were detected for all studied systems. In the solid state, complexes of the formula [M 3 (Hiba) 2 (H 2 O) 4 ]·6H 2 O were obtained and characterized. All obtained complexes, forming [M(Hiba)] - species under the conditions of the biological studies, were more active against the amastigote form of T. cruzi than the free iba, showing no toxicity in mammalian Vero cells. In addition, the same complexes were selective inhibitors of the parasitic farnesyl diphosphate synthase (FPPS) enzyme showing poor inhibition of the human one. However, the increase of the anti-T. cruzi activity upon coordination could not be explained neither through the inhibition of TcFPPS nor through the inhibition of TcSPPS (T. cruzi solanesyl-diphosphate synthase). The ability of the obtained metal complexes of catalyzing the generation of free radical species in the parasite could explain the observed anti-T. cruzi activity.

  18. N-terminal amphipathic helix as a trigger of hemolytic activity in antimicrobial peptides: a case study in latarcins.

    Science.gov (United States)

    Polyansky, Anton A; Vassilevski, Alexander A; Volynsky, Pavel E; Vorontsova, Olga V; Samsonova, Olga V; Egorova, Natalya S; Krylov, Nicolay A; Feofanov, Alexei V; Arseniev, Alexander S; Grishin, Eugene V; Efremov, Roman G

    2009-07-21

    In silico structural analyses of sets of alpha-helical antimicrobial peptides (AMPs) are performed. Differences between hemolytic and non-hemolytic AMPs are revealed in organization of their N-terminal region. A parameter related to hydrophobicity of the N-terminal part is proposed as a measure of the peptide propensity to exhibit hemolytic and other unwanted cytotoxic activities. Based on the information acquired, a rational approach for selective removal of these properties in AMPs is suggested. A proof of concept is gained through engineering specific mutations that resulted in elimination of the hemolytic activity of AMPs (latarcins) while leaving the beneficial antimicrobial effect intact.

  19. Perspective of Use of Antiviral Peptides against Influenza Virus

    Directory of Open Access Journals (Sweden)

    Sylvie Skalickova

    2015-10-01

    Full Text Available The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20th century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides.

  20. Elucidation of the Signal Transduction Pathways Activated by the Plant Natriuretic Peptide AtPNP-A

    KAUST Repository

    Turek, Ilona

    2014-01-01

    Plant natriuretic peptides (PNPs) comprise a novel class of hormones that share some sequence similarity in the active site with their animal analogues that function as regulators of salt and water balance. A PNP present in Arabidopsis thaliana (At

  1. Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery.

    Science.gov (United States)

    Wada, Shun-Ichi; Takesada, Anna; Nagamura, Yurie; Sogabe, Eri; Ohki, Rieko; Hayashi, Junsuke; Urata, Hidehito

    2017-12-15

    The conjugation of Aib-containing amphipathic helical peptide with cyclo(-Arg-Gly-Asp-d-Phe-Cys-) (cRGDfC) at the C-terminus of the helix peptide (PI) has been reported to be useful for constructing a carrier for targeted siRNA delivery into cells. In order to explore structure-activity relationships for the development of potential carriers for siRNA delivery, we synthesized conjugates of Aib-containing amphipathic helical peptide with cRGDfC at the N-terminus (PII) and both the N- and C-termini (PIII) of the helical peptide. Furthermore, to examine the influence of PI helical chain length on siRNA delivery, truncated peptides containing 16 (PIV), 12 (PV), and 8 (PVI) amino acid residues at the N-terminus of the helical chain were synthesized. PII and PIII, as well as PI, could deliver anti-luciferase siRNA into cells to induce the knockdown of luciferase stably expressed in cells. In contrast, all of the truncated peptides were unlikely to transport siRNA into cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits.

    Science.gov (United States)

    Daneshmand, Fatemeh; Zare-Zardini, Hadi; Ebrahimi, Leila

    2013-01-01

    Snakin-Z is a novel antimicrobial peptide (AMP) that is identified from the fruit of Zizyphus jujuba. This peptide is composed of 31 amino acids which is determined with the sequence of CARLNCVPKGTSGNTETCPCYASLHSCRKYG and molecular weight of 3318.82 Da. Snakin-Z is not identical to any AMP in the peptide database. According to this study, Snakin-Z potentially has antimicrobial property against bacteria and fungi. Minimal inhibitory concentration (MIC) value of this peptide is suitable for antimicrobial activity. We assessed that Snakin-Z could affect Phomopsis azadirachtae with the MIC value of 7.65 μg/mL and vice versa Staphylococcus aureus with the MIC value of 28.8 μg/mL. Interestingly, human red blood cells also showed good tolerance to the Snakin-Z. On the basis of this study, Snakin-Z can be an appropriate candidate for therapeutic applications in the future due to its antimicrobial property.

  3. Vasorelaxing and antihypertensive activities of synthesized peptides derived from computer-aided simulation of pepsin hydrolysis of yam dioscorin

    OpenAIRE

    Lin, Yin-Shiou; Lu, Yeh-Lin; Wang, Guei-Jane; Liang, Hong-Jen; Hou, Wen-Chi

    2014-01-01

    Background We reported that yam dioscorin and its peptic hydrolysates exhibited ACE inhibition and antihypertensive effects on SHRs, however, the active peptides are not really isolated until now. Using ACE inhibitory screenings, two penta-peptides, KTCGY and KRIHF, were selected for ex vivo and in vivo experiments. Results KTCGY, KRIHF, and captopril were shown to have similar vasodilating effects against phenylephrine (PE)-induced tensions in rat endothelium-dependent thoracic aortic rings,...

  4. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli.

    Science.gov (United States)

    Kim, Ha-Kun; Chun, Dae-Sik; Kim, Joon-Sik; Yun, Cheol-Ho; Lee, Ju-Hoon; Hong, Soon-Kwang; Kang, Dae-Kyung

    2006-09-01

    Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide-lactoferricin fusion gene. The monomeric acidic peptide-lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-beta-D-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.

  5. Recent progress in fluorine-18 labelled peptide radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Okarvi, S.M. [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia)

    2001-07-01

    The application of biologically active peptides labelled with positron-emitting nuclides has emerged as a useful and interesting field in nuclear medicine. Small synthetic receptor-binding peptides are currently the preferred agents over proteins and antibodies for diagnostic imaging of various tumours. Due to the smaller size of peptides, both higher target-to-background ratios and rapid blood clearance can often be achieved with radiolabelled peptides. Hence, short-lived positron emission tomography (PET) isotopes are potential candidates for labelling peptides. Among a number of positron-emitting nuclides, fluorine-18 appears to be the best candidate for labelling bioactive peptides by virtue of its favourable physical and nuclear characteristics. The major disadvantage of labelling peptides with {sup 18}F is the laborious and time-consuming preparation of the {sup 18}F labelling agents. In recent years, various techniques have been developed which allow efficient labelling of peptides with {sup 18}F without affecting their receptor-binding properties. Moreover, the development of a variety of prosthetic groups has facilitated the efficient and site-specific labelling of peptides with {sup 18}F. The {sup 18}F-labelled peptides hold enormous clinical potential owing to their ability to quantitatively detect and characterise a wide variety of human diseases when using PET. Recently, a number of {sup 18}F-labelled bioactive peptides have shown great promise as diagnostic imaging agents. This review presents the recent developments in {sup 18}F-labelled biologically active peptides used in PET. (orig.)

  6. Recent progress in fluorine-18 labelled peptide radiopharmaceuticals

    International Nuclear Information System (INIS)

    Okarvi, S.M.

    2001-01-01

    The application of biologically active peptides labelled with positron-emitting nuclides has emerged as a useful and interesting field in nuclear medicine. Small synthetic receptor-binding peptides are currently the preferred agents over proteins and antibodies for diagnostic imaging of various tumours. Due to the smaller size of peptides, both higher target-to-background ratios and rapid blood clearance can often be achieved with radiolabelled peptides. Hence, short-lived positron emission tomography (PET) isotopes are potential candidates for labelling peptides. Among a number of positron-emitting nuclides, fluorine-18 appears to be the best candidate for labelling bioactive peptides by virtue of its favourable physical and nuclear characteristics. The major disadvantage of labelling peptides with 18 F is the laborious and time-consuming preparation of the 18 F labelling agents. In recent years, various techniques have been developed which allow efficient labelling of peptides with 18 F without affecting their receptor-binding properties. Moreover, the development of a variety of prosthetic groups has facilitated the efficient and site-specific labelling of peptides with 18 F. The 18 F-labelled peptides hold enormous clinical potential owing to their ability to quantitatively detect and characterise a wide variety of human diseases when using PET. Recently, a number of 18 F-labelled bioactive peptides have shown great promise as diagnostic imaging agents. This review presents the recent developments in 18 F-labelled biologically active peptides used in PET. (orig.)

  7. Amino acids and peptides. XXXII: A bifunctional poly(ethylene glycol) hybrid of fibronectin-related peptides.

    Science.gov (United States)

    Maeda, M; Izuno, Y; Kawasaki, K; Kaneda, Y; Mu, Y; Tsutsumi, Y; Lem, K W; Mayumi, T

    1997-12-18

    An amino acid type poly(ethylene glycol) (aaPPEG) was prepared and its application to a drug carrier was examined. The peptides, Arg-Gly-Asp (RGD) and Glu-Ile-Leu-Asp-Val (EILDV) which were reported as active fragments of Fibronectin (a cell adhesion protein), were conjugated with aaPEG (molecular weight, 10,000). The hybrid, RGD-aaPEG-EILDV, was prepared by a combination of the solid-phase method and the solution method. Antiadhesive activity of the peptides was not lost by its hybrid formation with the large aaPEG molecule. A mixture of RGD (0.43 mmol) and EILDV (0.43 mmol) did not demonstrate an antiadhesive effect, but the hybrid containing 0.43 mmol of each peptide did exhibit this effect.

  8. Lipidated alpha-Peptide/beta-Peptoid Hybrids with Potent Antiinflammatory Activity

    DEFF Research Database (Denmark)

    Skovbakke, Sarah L.; Larsen, Camilla J.; Heegaard, Peter M. H.

    2015-01-01

    is dependent on the length and position of the lipid element(s). The resulting lead compound, Pam-(Lys-beta NSpe)(6)-NH2, blocks LPS-induced cytokine secretion with a potency comparable to that of polymyxin B. The mode of action of this HDP mimic appears not to involve direct LPS interaction since it......, in contrast to polymyxin B, displayed only minor activity in the Limulus amebocyte lysate assay. Flow cytometry data showed specific interaction of a fluorophore-labeled lipidated a-peptide/beta-peptoid hybrid with monocytes and granulocytes indicating a cellular target expressed by these leukocyte subsets....

  9. [Ala12]MCD peptide: a lead peptide to inhibitors of immunoglobulin E binding to mast cell receptors.

    Science.gov (United States)

    Buku, A; Condie, B A; Price, J A; Mezei, M

    2005-09-01

    An effort was made to discover mast cell degranulating (MCD) peptide analogs that bind with high affinity to mast cell receptors without triggering secretion of histamine or other mediators of the allergic reaction initiated by immunoglobulin E (IgE) after mast cell activation. Such compounds could serve as inhibitors of IgE binding to mast cell receptors. An alanine scan of MCD peptide reported previously showed that the analog [Ala12]MCD was 120-fold less potent in histamine-releasing activity and fivefold more potent in binding affinity to mast cell receptors than the parent MCD peptide. Because this analog showed marginal intrinsic activity and good binding affinity it was subsequently tested in the present study as an IgE inhibitor. In contrast to MCD peptide, [Ala12]MCD showed a 50% inhibition of IgE binding to the Fc epsilon RI alpha mast cell receptor by using rat basophilic leukemia (RBL-2H3) mast cells and fluorescence polarization. Furthermore, in a beta-hexosaminidase secretory assay, the peptide also showed a 50% inhibition of the secretion of this enzyme caused by IgE. An attempt was made to relate structural changes and biologic differences between the [Ala12]MCD analog and the parent MCD peptide. The present results show that [Ala12]MCD may provide a base for designing agents to prevent IgE/Fc epsilon RI alpha interactions and, consequently, allergic conditions.

  10. Cysteine-containing peptides having antioxidant properties

    Science.gov (United States)

    Bielicki, John K [Castro Valley, CA

    2008-10-21

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  11. Circulating elastin peptides, role in vascular pathology.

    Science.gov (United States)

    Robert, L; Labat-Robert, J

    2014-12-01

    The atherosclerotic process starts with the degradation of elastic fibers. Their presence was demonstrated in the circulation as well as several of their biological properties elucidated. We described years ago a procedure to obtain large elastin peptides by organo-alkaline hydrolysis, κ-elastin. This method enabled also the preparation of specific antibodies used to determine elastin peptides, as well as anti-elastin antibodies in body fluids and tissue extracts. Elastin peptides were determined in a large number of human blood samples. Studies were carried out to explore their pharmacological properties. Similar recent studies by other laboratories confirmed our findings and arose new interest in circulating elastin peptides for their biological activities. This recent trend justified the publication of a review of the biological and pathological activities of elastin peptides demonstrated during our previous studies, subject of this article. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Novel α-MSH peptide analogues with broad spectrum antimicrobial activity.

    Directory of Open Access Journals (Sweden)

    Paolo Grieco

    Full Text Available Previous investigations indicate that α-melanocyte-stimulating hormone (α-MSH and certain synthetic analogues of it exert antimicrobial effects against bacteria and yeasts. However, these molecules have weak activity in standard microbiology conditions and this hampers a realistic clinical use. The aim in the present study was to identify novel peptides with broad-spectrum antimicrobial activity in growth medium. To this purpose, the Gly10 residue in the [DNal(2'-7, Phe-12]-MSH(6-13 sequence was replaced with conventional and unconventional amino acids with different degrees of conformational rigidity. Two derivatives in which Gly10 was replaced by the residues Aic and Cha, respectively, had substantial activity against Candida strains, including C. albicans, C. glabrata, and C. krusei and against gram-positive and gram-negative bacteria. Conformational analysis indicated that the helical structure along residues 8-13 is a key factor in antimicrobial activity. Synthetic analogues of α-MSH can be valuable agents to treat infections in humans. The structural preferences associated with antimicrobial activity identified in this research can help further development of synthetic melanocortins with enhanced biological activity.

  13. Structural features governing the activity of lactoferricin-derived peptides that act in synergy with antibiotics against Pseudomonas aeruginosa in vitro and in vivo.

    Science.gov (United States)

    Sánchez-Gómez, Susana; Japelj, Bostjan; Jerala, Roman; Moriyón, Ignacio; Fernández Alonso, Mirian; Leiva, José; Blondelle, Sylvie E; Andrä, Jörg; Brandenburg, Klaus; Lohner, Karl; Martínez de Tejada, Guillermo

    2011-01-01

    Pseudomonas aeruginosa is naturally resistant to many antibiotics, and infections caused by this organism are a serious threat, especially to hospitalized patients. The intrinsic low permeability of P. aeruginosa to antibiotics results from the coordinated action of several mechanisms, such as the presence of restrictive porins and the expression of multidrug efflux pump systems. Our goal was to develop antimicrobial peptides with an improved bacterial membrane-permeabilizing ability, so that they enhance the antibacterial activity of antibiotics. We carried out a structure activity relationship analysis to investigate the parameters that govern the permeabilizing activity of short (8- to 12-amino-acid) lactoferricin-derived peptides. We used a new class of constitutional and sequence-dependent descriptors called PEDES (peptide descriptors from sequence) that allowed us to predict (Spearman's ρ = 0.74; P < 0.001) the permeabilizing activity of a new peptide generation. To study if peptide-mediated permeabilization could neutralize antibiotic resistance mechanisms, the most potent peptides were combined with antibiotics, and the antimicrobial activities of the combinations were determined on P. aeruginosa strains whose mechanisms of resistance to those antibiotics had been previously characterized. A subinhibitory concentration of compound P2-15 or P2-27 sensitized P. aeruginosa to most classes of antibiotics tested and counteracted several mechanisms of antibiotic resistance, including loss of the OprD porin and overexpression of several multidrug efflux pump systems. Using a mouse model of lethal infection, we demonstrated that whereas P2-15 and erythromycin were unable to protect mice when administered separately, concomitant administration of the compounds afforded long-lasting protection to one-third of the animals.

  14. Advances in lanthanide-based luminescent peptide probes for monitoring the activity of kinase and phosphatase.

    Science.gov (United States)

    Pazos, Elena; Vázquez, M Eugenio

    2014-02-01

    Signaling pathways based on protein phosphorylation and dephosphorylation play critical roles in the orchestration of complex biochemical events and form the core of most signaling pathways in cells (i.e. cell cycle regulation, cell motility, apoptosis, etc.). The understanding of these complex signaling networks is based largely on the biochemical study of their components, i.e. kinases and phosphatases. The development of luminescent sensors for monitoring kinase and phosphatase activity is therefore an active field of research. Examples in the literature usually rely on the modulation of the fluorescence emission of organic fluorophores. However, given the exceptional photophysical properties of lanthanide ions, there is an increased interest in their application as emissive species for monitoring kinase and phosphatase activity. This review summarizes the advances in the development of lanthanide-based luminescent peptide sensors as tools for the study of kinases and phosphatases and provides a critical description of current examples and synthetic approaches to understand these lanthanide-based luminescent peptide sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs.

    Directory of Open Access Journals (Sweden)

    Leonard T Nguyen

    2010-09-01

    Full Text Available Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the "antimicrobial centre" of bovine lactoferricin as well as an antimicrobial sequence obtained through the screening of a hexapeptide combinatorial library.HPLC, mass spectrometry and antimicrobial assays were carried out to explore the consequences of the modifications on the serum stability and microbicidal activity of the peptides. The results show that C-terminal amidation increases the antimicrobial activity but that it makes little difference to its proteolytic degradation in human serum. On the other hand, N-terminal acetylation decreases the peptide activities but significantly increases their protease resistance. Peptide cyclization of the hexameric peptides was found to be highly effective for both serum stability and antimicrobial activity. However the two cyclization strategies employed have different effects, with disulfide cyclization resulting in more active peptides while backbone cyclization results in more proteolytically stable peptides. However, the benefit of backbone cyclization did not extend to longer 11-mer peptides derived from the same region of lactoferricin. Mass spectrometry data support the serum stability assay results and allowed us to determine preferred proteolysis sites in the peptides. Furthermore, isothermal titration calorimetry experiments showed that the peptides all had weak interactions with albumin, the most abundant protein in human serum.Taken together, the results provide insight into the behavior of the peptides in human serum and will therefore aid in advancing antimicrobial peptide design towards systemic applications.

  16. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of resistant pathogens.

  17. Investigating the Effect of Ligand Amount and Injected Therapeutic Activity: A Simulation Study for 177Lu-Labeled PSMA-Targeting Peptides

    Science.gov (United States)

    Schuchardt, Christiane; Kulkarni, Harshad R.; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P.; Beer, Ambros J.

    2016-01-01

    In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25−29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1–3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the

  18. Structure of genes for dermaseptins B, antimicrobial peptides from frog skin. Exon 1-encoded prepropeptide is conserved in genes for peptides of highly different structures and activities.

    Science.gov (United States)

    Vouille, V; Amiche, M; Nicolas, P

    1997-09-01

    We cloned the genes of two members of the dermaseptin family, broad-spectrum antimicrobial peptides isolated from the skin of the arboreal frog Phyllomedusa bicolor. The dermaseptin gene Drg2 has a 2-exon coding structure interrupted by a small 137-bp intron, wherein exon 1 encoded a 22-residue hydrophobic signal peptide and the first three amino acids of the acidic propiece; exon 2 contained the 18 additional acidic residues of the propiece plus a typical prohormone processing signal Lys-Arg and a 32-residue dermaseptin progenitor sequence. The dermaseptin genes Drg2 and Drg1g2 have conserved sequences at both untranslated ends and in the first and second coding exons. In contrast, Drg1g2 comprises a third coding exon for a short version of the acidic propiece and a second dermaseptin progenitor sequence. Structural conservation between the two genes suggests that Drg1g2 arose recently from an ancestral Drg2-like gene through amplification of part of the second coding exon and 3'-untranslated region. Analysis of the cDNAs coding precursors for several frog skin peptides of highly different structures and activities demonstrates that the signal peptides and part of the acidic propieces are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The organization of the genes that belong to this family, with the signal peptide and the progenitor sequence on separate exons, permits strikingly different peptides to be directed into the secretory pathway. The recruitment of such a homologous 'secretory' exon by otherwise non-homologous genes may have been an early event in the evolution of amphibian.

  19. Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens.

    Science.gov (United States)

    Tanhaiean, Abass; Azghandi, Marjan; Razmyar, Jamshid; Mohammadi, Elyas; Sekhavati, Mohammad Hadi

    2018-06-08

    Over the last decades, poultry industry faced to the rapid emergence of multidrug-resistant bacteria as a global concern. Antimicrobial peptide (AMPs) known as potential antibiotic alternative and were considered as a new antimicrobial agent. Current methods of production and purification of AMPs have several limitations such as: costly, time-consuming and killing the producing host cells in recombinant form. In the present study, a chimeric peptide derived from camel lactoferrin was produced in Escherichia coli periplasmic space using a pET-based expression system and its antibacterial activity was determined on some avian pathogens in vitro. A carboxy-terminal polyhistidine tag was used for purification by Ni 2+ affinity chromatography with an average yield of 0.42 g/L. The His-tagged chimeric peptide showed different range of antimicrobial activity against clinically isolated avian pathogens with low chicken blood hemolysis activity and high serum stability. Overall, the results of this investigation showed the recombinant chimeric peptide was successfully expressed in pET-based expression system and could be considered as a proper alternative for some currently used antibiotics in poultry industry and drugs veterinary medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  1. Peptide YY receptors in the brain

    International Nuclear Information System (INIS)

    Inui, A.; Oya, M.; Okita, M.

    1988-01-01

    Radiolabelled ligand binding studies demonstrated that specific receptors for peptide YY are present in the porcine as well as the canine brains. Peptide YY was bound to brain tissue membranes via high-affinity (dissociation constant, 1.39 X 10(-10)M) and low-affinity (dissociation constant, 3.72 X 10(-8)M) components. The binding sites showed a high specificity for peptide YY and neuropeptide Y, but not for pancreatic polypeptide or structurally unrelated peptides. The specific activity of peptide YY binding was highest in the hippocampus, followed by the pituitary gland, the hypothalamus, and the amygdala of the porcine brain, this pattern being similarly observed in the canine brain. The results suggest that peptide YY and neuropeptide Y may regulate the function of these regions of the brain through interaction with a common receptor site

  2. Antimicrobial activity of analogues of a peptide isolated from venom glands of social wasps Polistes major major inhabiting the Dominican Republic

    Czech Academy of Sciences Publication Activity Database

    Ježek, Rudolf; Šebestík, Jaroslav; Šafařík, Martin; Borovičková, Lenka; Fučík, Vladimír; Čeřovský, Václav; Slaninová, Jiřina

    2008-01-01

    Roč. 14, č. 8 (2008), s. 99-99 ISSN 1075-2617. [European Peptide Symposium /30./. 31.08.2008-05.09.2008, Helsinki] Institutional research plan: CEZ:AV0Z40550506 Keywords : peptides from venom glands * Polistes major * synthesis and antimicrobial activity * analogues Subject RIV: CC - Organic Chemistry

  3. Bovine and human lactoferricin peptides: chimeras and new cyclic analogs.

    Science.gov (United States)

    Arias, Mauricio; McDonald, Lindsey J; Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J

    2014-10-01

    Lactoferrin (LF) is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. The antimicrobial activity of LF has been related to the presence of an antimicrobial peptide sequence, called lactoferricin (LFcin), located in the N-terminal region of the protein. The antimicrobial activity of bovine LFcin is considerably stronger than the human version. In this work, chimera peptides combining segments of bovine and human LFcin were generated in order to study their antimicrobial activity and mechanism of action. In addition, the relevance of the conserved disulfide bridge and the resulting cyclic structure of both LFcins were analyzed by using "click chemistry" and sortase A-catalyzed cyclization of the peptides. The N-terminal region of bovine LFcin (residues 17-25 of bovine LF) proved to be very important for the antimicrobial activity of the chimera peptides against E. coli, when combined with the C-terminal region of human LFcin. Similarly the cyclic bovine LFcin analogs generated by "click chemistry" and sortase A preserved the antimicrobial activity of the original peptide, showing the significance of these two techniques in the design of cyclic antimicrobial peptides. The mechanism of action of bovine LFcin and its active derived peptides was strongly correlated with membrane leakage in E. coli and up to some extent with the ability to induce vesicle aggregation. This mechanism was also preserved under conditions of high ionic strength (150 mM NaCl) illustrating the importance of these peptides in a more physiologically relevant system.

  4. Maturation processes and structures of small secreted peptides in plants

    Directory of Open Access Journals (Sweden)

    Ryo eTabata

    2014-07-01

    Full Text Available In the past decade, small secreted peptides have proven to be essential for various aspects of plant growth and development, including the maintenance of certain stem cell populations. Most small secreted peptides identified in plants to date are recognised by membrane-localized receptor kinases, the largest family of receptor proteins in the plant genome. This peptide-receptor interaction is essential for initiating intracellular signalling cascades. Small secreted peptides often undergo post-translational modifications and proteolytic processing to generate the mature peptides. Recent studies suggest that, in contrast to the situation in mammals, the proteolytic processing of plant peptides involves a number of complex steps. Furthermore, NMR-based structural analysis demonstrated that post-translational modifications induce the conformational changes needed for full activity. In this mini review, we summarise recent advances in our understanding of how small secreted peptides are modified and processed into biologically active peptides and describe the mature structures of small secreted peptides in plants.

  5. Nitazoxanide is active against Mycobacterium leprae

    Science.gov (United States)

    Bailey, Mai Ann; Na, Hana; Duthie, Malcolm S.; Gillis, Thomas P.; Lahiri, Ramanuj

    2017-01-01

    Nitazoxanide (NTZ) is an anti-parasitic drug that also has activity against bacteria, including Mycobacterium tuberculosis. Our data using both radiorespirometry and live-dead staining in vitro demonstrate that NTZ similarly has bactericidal against M. leprae. Further, gavage of M. leprae-infected mice with NTZ at 25mg/kg provided anti-mycobacterial activity equivalent to rifampicin (RIF) at 10 mg/kg. This suggests that NTZ could be considered for leprosy treatment. PMID:28850614

  6. Genomewide Analysis of the Antimicrobial Peptides in Python bivittatus and Characterization of Cathelicidins with Potent Antimicrobial Activity and Low Cytotoxicity.

    Science.gov (United States)

    Kim, Dayeong; Soundrarajan, Nagasundarapandian; Lee, Juyeon; Cho, Hye-Sun; Choi, Minkyeung; Cha, Se-Yeoun; Ahn, Byeongyong; Jeon, Hyoim; Le, Minh Thong; Song, Hyuk; Kim, Jin-Hoi; Park, Chankyu

    2017-09-01

    In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens. Copyright © 2017 American Society for Microbiology.

  7. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.

    Science.gov (United States)

    Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C

    2015-03-23

    Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.

  8. Nanoparticle Delivered Human Biliverdin Reductase-Based Peptide Increases Glucose Uptake by Activating IRK/Akt/GSK3 Axis: The Peptide Is Effective in the Cell and Wild-Type and Diabetic Ob/Ob Mice

    Directory of Open Access Journals (Sweden)

    Peter E. M. Gibbs

    2016-01-01

    Full Text Available Insulin’s stimulation of glucose uptake by binding to the IRK extracellular domain is compromised in diabetes. We have recently described an unprecedented approach to stimulating glucose uptake. KYCCSRK (P2 peptide, corresponding to the C-terminal segment of hBVR, was effective in binding to and inducing conformational change in the IRK intracellular kinase domain. Although myristoylated P2, made of L-amino acids, was effective in cell culture, its use for animal studies was unsuitable. We developed a peptidase-resistant formulation of the peptide that was efficient in both mice and cell culture systems. The peptide was constructed of D-amino acids, in reverse order, and blocked at both termini. Delivery of the encapsulated peptide to HepG2 and HSKM cells was confirmed by its prolonged effect on stimulation of glucose uptake (>6 h. The peptide improved glucose clearance in both wild-type and Ob/Ob mice; it lowered blood glucose levels and suppressed glucose-stimulated insulin secretion. IRK activity was stimulated in the liver of treated mice and in cultured cells. The peptide potentiated function of IRK’s downstream effector, Akt-GSK3-(α,β axis. Thus, P2-based approach can be used for improving glucose uptake by cells. Also, it allows for screening peptides in vitro and in animal models for treatment of diabetes.

  9. A liver metalloendopeptidase which degrades the circulating hypotensive peptide hormones bradykinin and atrial natriuretic peptide

    Directory of Open Access Journals (Sweden)

    Carvalho K.M.

    1999-01-01

    Full Text Available A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human liver using successive steps of chromatography on DEAE-cellulose, hydroxyapatite and Sephacryl S-200. The purified enzyme hydrolyzed the Pro7-Phe8 bond of bradykinin and the Ser25-Tyr26 bond of atrial natriuretic peptide. No cleavage was produced in other peptide hormones such as vasopressin, oxytocin or Met- and Leu-enkephalin. This enzyme activity was inhibited by 1 mM divalent cation chelators such as EDTA, EGTA and o-phenanthroline and was insensitive to 1 µM phosphoramidon and captopril, specific inhibitors of neutral endopeptidase (EC 3.4.24.11 and angiotensin-converting enzyme (EC 3.4.15.1, respectively. With Mr 85 kDa, the enzyme exhibits optimal activity at pH 7.5. The high affinity of this endopeptidase for bradykinin (Km = 10 µM and for atrial natriuretic peptide (Km = 5 µM suggests that it may play a physiological role in the inactivation of these circulating hypotensive peptide hormones.

  10. Factors affecting antimicrobial activity of MUC7 12-mer, a human salivary mucin-derived peptide

    Directory of Open Access Journals (Sweden)

    Bobek Libuse A

    2007-11-01

    Full Text Available Abstract Background MUC7 12-mer (RKSYKCLHKRCR, a cationic antimicrobial peptide derived from the human low-molecular-weight salivary mucin MUC7, possesses potent antimicrobial activity in vitro. In order to evaluate the potential therapeutic application of the MUC7 12-mer, we examined the effects of mono- and divalent cations, EDTA, pH, and temperature on its antimicrobial activity. Methods Minimal Inhibitory Concentrations (MICs were determined using a liquid growth inhibition assay in 96-well microtiter plates. MUC7 12-mer was added at concentrations of 1.56–50 μM. MICs were determined at three endpoints: MIC-0, MIC-1, and MIC-2 (the lowest drug concentration showing 10%, 25% and 50% of growth, respectively. To examine the effect of salts or EDTA, a checkerboard microdilution technique was used. Fractional inhibitory concentration index (FICi was calculated on the basis of MIC-0. The viability of microbial cells treated with MUC7 12-mer in the presence of sodium or potassium was also determined by killing assay or flow cytometry. Results The MICs of MUC7 12-mer against organisms tested ranged from 6.25–50 μM. For C. albicans, antagonism (FICi 4.5 was observed for the combination of MUC7 12-mer and calcium; however, there was synergism (FICi 0.22 between MUC7 12-mer and EDTA, and the synergism was retained in the presence of calcium at its physiological concentration (1–2 mM. No antagonism but additivity or indifference (FICi 0.55–2.5 was observed for the combination of MUC7 12-mer and each K+, Na+, Mg2+, or Zn2+. MUC7 12-mer peptide (at 25 μM also exerted killing activity in the presence of NaCl, (up to 25 mM for C. albicans and up to 150 mM for E. coli, a physiological concentration of sodium in the oral cavity and serum, respectively and retained candidacidal activity in the presence of KCl (up to 40 mM. The peptide exhibited higher inhibitory activity against C. albicans at pH 7, 8, and 9 than at pH 5 and 6, and temperature up to

  11. Brain reward-system activation in response to anticipation and consumption of palatable food is altered by glucagon-like peptide-1 receptor activation in humans

    NARCIS (Netherlands)

    van Bloemendaal, L.; Veltman, D. J.; ten Kulve, J. S.; Groot, P. F. C.; Ruhe, H. G.; Barkhof, F.; Sloan, J. H.; Diamant, M.; Ijzerman, R. G.

    AimTo test the hypothesis that food intake reduction after glucagon-like peptide-1 (GLP-1) receptor activation is mediated through brain areas regulating anticipatory and consummatory food reward. MethodsAs part of a larger study, we determined the effects of GLP-1 receptor activation on brain

  12. Brain reward-system activation in response to anticipation and consumption of palatable food is altered by glucagon-like peptide-1 receptor activation in humans

    NARCIS (Netherlands)

    van Bloemendaal, L.; Veltman, D. J.; ten Kulve, J. S.; Groot, P. F. C.; Ruhé, H. G.; Barkhof, F.; Sloan, J. H.; Diamant, M.; Ijzerman, R. G.

    2015-01-01

    To test the hypothesis that food intake reduction after glucagon-like peptide-1 (GLP-1) receptor activation is mediated through brain areas regulating anticipatory and consummatory food reward. As part of a larger study, we determined the effects of GLP-1 receptor activation on brain responses to

  13. Brain reward-system activation in response to anticipation and consumption of palatable food is altered by glucagon-like peptide-1 receptor activation in humans

    NARCIS (Netherlands)

    van Bloemendaal, L.; Veltman, D.J.; ten Kulve, J.S.; Groot, P.F.C.; Ruhe, H.G.; Barkhof, F.; Sloan, J.H.; Diamant, M.; IJzerman, R.G.

    2015-01-01

    Aim: To test the hypothesis that food intake reduction after glucagon-like peptide-1 (GLP-1) receptor activation is mediated through brain areas regulating anticipatory and consummatory food reward. Methods: As part of a larger study, we determined the effects of GLP-1 receptor activation on brain

  14. Designed β-Boomerang Antiendotoxic and Antimicrobial Peptides

    Science.gov (United States)

    Bhunia, Anirban; Mohanram, Harini; Domadia, Prerna N.; Torres, Jaume; Bhattacharjya, Surajit

    2009-01-01

    Lipopolysaccharide (LPS), an integral part of the outer membrane of Gram-negative bacteria, is involved in a variety of biological processes including inflammation, septic shock, and resistance to host-defense molecules. LPS also provides an environment for folding of outer membrane proteins. In this work, we describe the structure-activity correlation of a series of 12-residue peptides in LPS. NMR structures of the peptides derived in complex with LPS reveal boomerang-like β-strand conformations that are stabilized by intimate packing between the two aromatic residues located at the 4 and 9 positions. This structural feature renders these peptides with a high ability to neutralize endotoxicity, >80% at 10 nm concentration, of LPS. Replacements of these aromatic residues either with Ala or with Leu destabilizes the boomerang structure with the concomitant loss of antiendotoxic and antimicrobial activities. Furthermore, the aromatic packing stabilizing the β-boomerang structure in LPS is found to be maintained even in a truncated octapeptide, defining a structured LPS binding motif. The mode of action of the active designed peptides correlates well with their ability to perturb LPS micelle structures. Fourier transform infrared spectroscopy studies of the peptides delineate β-type conformations and immobilization of phosphate head groups of LPS. Trp fluorescence studies demonstrated selective interactions with LPS and the depth of insertion into the LPS bilayer. Our results demonstrate the requirement of LPS-specific structures of peptides for endotoxin neutralizations. In addition, we propose that structures of these peptides may be employed to design proteins for the outer membrane. PMID:19520860

  15. Novel carbazole aminoalcohols as inhibitors of β-hematin formation: Antiplasmodial and antischistosomal activities

    Directory of Open Access Journals (Sweden)

    Weisi Wang

    2017-08-01

    Full Text Available Malaria and schistosomiasis are two of the most socioeconomically devastating parasitic diseases in tropical and subtropical countries. Since current chemotherapeutic options are limited and defective, there is an urgent need to develop novel antiplasmodials and antischistosomals. Hemozoin is a disposal product formed from the hemoglobin digestion by some blood-feeding parasites. Hemozoin formation is an essential process for the parasites to detoxify free heme, which is a reliable therapeutic target for identifying novel antiparasitic agents. A series of novel carbazole aminoalcohols were designed and synthesized as potential antiplasmodial and antischistosomal agents, and several compounds showed potent in vitro activities against Plasmodium falciparum 3D7 and Dd2 strains and adult and juvenile Schistosoma japonicum. Investigations on the dual antiparasitic mechanisms showed the correlation between inhibitory activity of β-hematin formation and antiparasitic activity. Inhibiting hemozoin formation was identified as one of the mechanisms of action of carbazole aminoalcohols. Compound 7 displayed potent antiplasmodial (Pf3D7 IC50 = 0.248 μM, PfDd2 IC50 = 0.091 μM and antischistosomal activities (100% mortality of adult and juvenile schistosomes at 5 and 10 μg/mL, respectively and exhibited low cytotoxicity (CC50 = 7.931 μM, which could be considered as a promising lead for further investigation. Stoichiometry determination and molecular docking studies were also performed to explain the mode of action of compound 7. Keywords: Carbazole aminoalcohols, Plasmodium falciparum, Schistosoma japonicum, Antiplasmodials, Antischistosomals, Hematin

  16. Connective tissue activation. XXXII. Structural and biologic characteristics of mesenchymal cell-derived connective tissue activating peptide-V.

    Science.gov (United States)

    Cabral, A R; Cole, L A; Walz, D A; Castor, C W

    1987-12-01

    Connective tissue activating peptide-V (CTAP-V) is a single-chain, mesenchymal cell-derived anionic protein with large and small molecular forms (Mr of 28,000 and 16,000, respectively), as defined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proteins have similar specific activities with respect to stimulation of hyaluronic acid and DNA formation in human synovial fibroblast cultures. S-carboxymethylation or removal of sialic acid residues did not modify CTAP-V biologic activity. Rabbit antibodies raised separately against each of the purified CTAP-V proteins reacted, on immunodiffusion and on Western blot, with each antigen and neutralized mitogenic activity. The amino-terminal amino acid sequence of the CTAP-V proteins, determined by 2 laboratories, confirmed their structural similarities. The amino-terminal sequence through 37 residues was demonstrated for the smaller protein. The first 10 residues of CTAP-V (28 kd) were identical to the N-terminal decapeptide of CTAP-V (16 kd). The C-terminal sequence, determined by carboxypeptidase Y digestion, was the same for both CTAP-V molecular species. The 2 CTAP-V peptides had similar amino acid compositions, whether residues were expressed as a percent of the total or were normalized to mannose. Reduction of native CTAP-V protein released sulfhydryl groups in a protein:disulfide ratio of 1:2; this suggests that CTAP-V contains 2 intramolecular disulfide bonds. Clearly, CTAP-V is a glycoprotein. The carbohydrate content of CTAP-V (16 kd) and CTAP-V (28 kd) is 27% and 25%, respectively. CTAP-V may have significance in relation to autocrine mechanisms for growth regulation of connective tissue cells and other cell types.

  17. Are antimicrobial peptides an alternative for conventional antibiotics?

    International Nuclear Information System (INIS)

    Kamysz, W.

    2005-01-01

    Antimicrobial peptides are widespread in living organisms and constitute an important component of innate immunity to microbial infections. By the early 1980' s , more than 800 different antimicrobial peptides had been isolated from mammals, amphibians, fish, insects, plants and bacterial species. In humans, they are produced by granulocytes, macrophages and most epithelial and endothelial cells. Newly discovered antibiotics have antibacterial, antifungal, antiviral and even antiprotozoal activity. Occasionally, a single antibiotic may have a very wide spectrum of activity and may show activity towards various kinds of microorganisms. Although antimicrobial activity is the most typical function of peptides, they are also characterized by numerous other properties. They stimulate the immune system, have anti-neoplastic properties and participate in cell signalling and proliferation regulation. As antimicrobial peptides from higher eukaryotes differ structurally from conventional antibiotics produced by bacteria and fungi, they offer novel templates for pharmaceutical compounds, which could be used effectively against the increasing number of resistant microbes. (author)

  18. The human endolymphatic sac expresses natriuretic peptides

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2017-01-01

    : Several natriuretic peptides were found expressed significantly in the ES, including uroguanylin and brain natriuretic peptide, but also peptides regulating vascular tone, including adrenomedullin 2. In addition, both neurophysin and oxytocin (OXT) were found significantly expressed. All peptides were...... verified by immunohistochemistry. CONCLUSION: The present data support the hypothesis that the human ES may have an endocrine/paracrine capacity through expression of several peptides with potent natriuretic activity. Furthermore, the ES may influence the hypothalamo-pituitary-adrenal axis and may regulate...... vasopressin receptors and aquaporin-2 channels in the inner ear via OXT expression. We hypothesize that the ES is likely to regulate inner ear endolymphatic homeostasis, possibly through secretion of several peptides, but it may also influence systemic and/or intracranial blood pressure through direct...

  19. TfR Binding Peptide Screened by Phage Display Technology ...

    African Journals Online (AJOL)

    Purpose: To screen an hTfR affinity peptide and investigate its activity in vitro. Methods: hTfR ... Keywords: Peptide, hTfR, Transferrin receptor, Phage display technology, Enhanced green ..... mediated uptake of peptides that bind the human.

  20. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES OF ENTEROCOCCUS FAECIUM].

    Science.gov (United States)

    Vasilchenko, A S; Rogozhin, E A; Valyshev, A V

    2015-01-01

    Isolate bacteriocins from Enterococcus faecium metabolites and characterize their effect on cells of Gram positive (Listeria monocytogenes) and Gram negative (Escherichia coli) bacteria. Methods of solid-phase extraction, ion-exchange and reversed phase chromatography were applied for isolation of bacteriocins from cultural medium of bacteria MALDI time-of-flight mass-spectrometry was used for characterization of the obtained preparations. The mechanism of biological effect of peptides was evaluated using DNA-tropic dyes (SYTO 9 and PI) with subsequent registration of fluorescence spectra: Atomic-force microscopy (AFM) was used for characterization of morpho-functional reaction of target cells. Peptide fractions with mass of 1.0 - 3.0 kDa were isolated from enterococci metabolites, that inhibit the growth of indicator microorganisms. E. faecium strain exoproducts were shown to increase membrane permeability during interaction with L. monocytogenes, that results in subsequent detectable disturbance of normal cell morphology of listeria. Alterations of E. coli surface during the effect of purified peptide fraction was detected using AFM. The studies carried out have revealed the effect of bacteriocins of enterococci on microorganisms with various types of cell wall composition and have confirmed the importance of bacterial barrier structure permeability disturbance in the mechanism of antimicrobial effect of enterocins.

  1. Structural Features Governing the Activity of Lactoferricin-Derived Peptides That Act in Synergy with Antibiotics against Pseudomonas aeruginosa In Vitro and In Vivo▿ †

    Science.gov (United States)

    Sánchez-Gómez, Susana; Japelj, Bostjan; Jerala, Roman; Moriyón, Ignacio; Fernández Alonso, Mirian; Leiva, José; Blondelle, Sylvie E.; Andrä, Jörg; Brandenburg, Klaus; Lohner, Karl; Martínez de Tejada, Guillermo

    2011-01-01

    Pseudomonas aeruginosa is naturally resistant to many antibiotics, and infections caused by this organism are a serious threat, especially to hospitalized patients. The intrinsic low permeability of P. aeruginosa to antibiotics results from the coordinated action of several mechanisms, such as the presence of restrictive porins and the expression of multidrug efflux pump systems. Our goal was to develop antimicrobial peptides with an improved bacterial membrane-permeabilizing ability, so that they enhance the antibacterial activity of antibiotics. We carried out a structure activity relationship analysis to investigate the parameters that govern the permeabilizing activity of short (8- to 12-amino-acid) lactoferricin-derived peptides. We used a new class of constitutional and sequence-dependent descriptors called PEDES (peptide descriptors from sequence) that allowed us to predict (Spearman's ρ = 0.74; P < 0.001) the permeabilizing activity of a new peptide generation. To study if peptide-mediated permeabilization could neutralize antibiotic resistance mechanisms, the most potent peptides were combined with antibiotics, and the antimicrobial activities of the combinations were determined on P. aeruginosa strains whose mechanisms of resistance to those antibiotics had been previously characterized. A subinhibitory concentration of compound P2-15 or P2-27 sensitized P. aeruginosa to most classes of antibiotics tested and counteracted several mechanisms of antibiotic resistance, including loss of the OprD porin and overexpression of several multidrug efflux pump systems. Using a mouse model of lethal infection, we demonstrated that whereas P2-15 and erythromycin were unable to protect mice when administered separately, concomitant administration of the compounds afforded long-lasting protection to one-third of the animals. PMID:20956602

  2. A single mutation in the hepta-peptide active site of Aspergillus niger PhyA phytase leads to myriad of biochemical changes

    Science.gov (United States)

    The active site motif of proteins belonging to ‘Histidine Acid Phosphatase’ (HAP) contains a hepta-peptide region, RHGXRXP. A close comparison among fungal and yeast HAPs has revealed the fourth residue of the hepta-peptide to be E instead of A, which is the case with A. niger phyA phytase. However,...

  3. Antioxidant activity and sensory characteristics of Maillard reaction products derived from different peptide fractions of soybean meal hydrolysate.

    Science.gov (United States)

    Yu, Min; He, Shudong; Tang, Mingming; Zhang, Zuoyong; Zhu, Yongsheng; Sun, Hanju

    2018-03-15

    Four peptide fractions PF1 (>5;kDa), PF2 (3-5;kDa), PF3 (1-3;kDa), PF4 (Maillard reaction products (MRPF1, MRPF2, MRPF3 and MRPF4) were evaluated, respectively. Peptides with low molecular weight showed higher contribution to the changes of pH, colour and browning intensity during Maillard reaction. The DPPH radical-scavenging activity of PF4 was significantly improved after Maillard reaction. Aroma volatiles and PLSR analysis suggested MRPF3 had the best sensory characteristics with higher contents of umami amino acids and lower of bitter amino acids, therefore it could be deduced that the umami and meaty characteristics were correlated with the peptides of 1-3;kDa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. PeptideNavigator: An interactive tool for exploring large and complex data sets generated during peptide-based drug design projects.

    Science.gov (United States)

    Diller, Kyle I; Bayden, Alexander S; Audie, Joseph; Diller, David J

    2018-01-01

    There is growing interest in peptide-based drug design and discovery. Due to their relatively large size, polymeric nature, and chemical complexity, the design of peptide-based drugs presents an interesting "big data" challenge. Here, we describe an interactive computational environment, PeptideNavigator, for naturally exploring the tremendous amount of information generated during a peptide drug design project. The purpose of PeptideNavigator is the presentation of large and complex experimental and computational data sets, particularly 3D data, so as to enable multidisciplinary scientists to make optimal decisions during a peptide drug discovery project. PeptideNavigator provides users with numerous viewing options, such as scatter plots, sequence views, and sequence frequency diagrams. These views allow for the collective visualization and exploration of many peptides and their properties, ultimately enabling the user to focus on a small number of peptides of interest. To drill down into the details of individual peptides, PeptideNavigator provides users with a Ramachandran plot viewer and a fully featured 3D visualization tool. Each view is linked, allowing the user to seamlessly navigate from collective views of large peptide data sets to the details of individual peptides with promising property profiles. Two case studies, based on MHC-1A activating peptides and MDM2 scaffold design, are presented to demonstrate the utility of PeptideNavigator in the context of disparate peptide-design projects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enhancement of glucose uptake in muscular cell by soybean charged peptides isolated by electrodialysis with ultrafiltration membranes (EDUF): activation of the AMPK pathway.

    Science.gov (United States)

    Roblet, Cyril; Doyen, Alain; Amiot, Jean; Pilon, Geneviève; Marette, André; Bazinet, Laurent

    2014-03-15

    Soy peptides consumption has been associated with beneficial effects in type 2 diabetes patients. However, the peptide fractions responsible for these effects, and their mechanisms of action, have not been identified yet. In this study, we have isolated soybean peptides by electrodialysis with an ultrafiltration membrane (EDUF) at 50 V/100 kDa, and tested them for their capacity to improve glucose uptake in L6 muscle cells. We observed that these fractions were able to significantly enhance glucose uptake in the presence of insulin. The reported bioactivity would be due to the low molecular weight peptides (300-500 Da) recovered. Moreover, we observed that an enhancement of glucose uptake was correlated to the activation of the AMPK enzyme, well known for its capacity to increase glucose uptake in muscle cells. To our knowledge, this is the first time that bioactive peptides with glucose uptake activity have been isolated from a complex soy matrix, and that the implication of AMPK in it is demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Preparation, Characterization and Activity of a Peptide-Cellulosic Aerogel Protease Sensor from Cotton

    Directory of Open Access Journals (Sweden)

    J. Vincent Edwards

    2016-10-01

    Full Text Available Nanocellulosic aerogels (NA provide a lightweight biocompatible material with structural properties, like interconnected high porosity and specific surface area, suitable for biosensor design. We report here the preparation, characterization and activity of peptide-nanocellulose aerogels (PepNA made from unprocessed cotton and designed with protease detection activity. Low-density cellulosic aerogels were prepared from greige cotton by employing calcium thiocyanate octahydrate/lithium chloride as a direct cellulose dissolving medium. Subsequent casting, coagulation, solvent exchange and supercritical carbon dioxide drying afforded homogeneous cellulose II aerogels of fibrous morphology. The cotton-based aerogel had a porosity of 99% largely dominated by mesopores (2–50 nm and an internal surface of 163 m2·g−1. A fluorescent tripeptide-substrate (succinyl-alanine-proline-alanine-4-amino-7-methyl-coumarin was tethered to NA by (1 esterification of cellulose C6 surface hydroxyl groups with glycidyl-fluorenylmethyloxycarbonyl (FMOC, (2 deprotection and (3 coupling of the immobilized glycine with the tripeptide. Characterization of the NA and PepNA included techniques, such as elemental analysis, mass spectral analysis, attenuated total reflectance infrared imaging, nitrogen adsorption, scanning electron microscopy and bioactivity studies. The degree of substitution of the peptide analog attached to the anhydroglucose units of PepNA was 0.015. The findings from mass spectral analysis and attenuated total reflectance infrared imaging indicated that the peptide substrate was immobilized on to the surface of the NA. Nitrogen adsorption revealed a high specific surface area and a highly porous system, which supports the open porous structure observed from scanning electron microscopy images. Bioactivity studies of PepNA revealed a detection sensitivity of 0.13 units/milliliter for human neutrophil elastase, a diagnostic biomarker for inflammatory

  7. Designing Antibacterial Peptides with Enhanced Killing Kinetics

    Directory of Open Access Journals (Sweden)

    Faiza H. Waghu

    2018-02-01

    Full Text Available Antimicrobial peptides (AMPs are gaining attention as substitutes for antibiotics in order to combat the risk posed by multi-drug resistant pathogens. Several research groups are engaged in design of potent anti-infective agents using natural AMPs as templates. In this study, a library of peptides with high sequence similarity to Myeloid Antimicrobial Peptide (MAP family were screened using popular online prediction algorithms. These peptide variants were designed in a manner to retain the conserved residues within the MAP family. The prediction algorithms were found to effectively classify peptides based on their antimicrobial nature. In order to improve the activity of the identified peptides, molecular dynamics (MD simulations, using bilayer and micellar systems could be used to design and predict effect of residue substitution on membranes of microbial and mammalian cells. The inference from MD simulation studies well corroborated with the wet-lab observations indicating that MD-guided rational design could lead to discovery of potent AMPs. The effect of the residue substitution on membrane activity was studied in greater detail using killing kinetic analysis. Killing kinetics studies on Gram-positive, negative and human erythrocytes indicated that a single residue change has a drastic effect on the potency of AMPs. An interesting outcome was a switch from monophasic to biphasic death rate constant of Staphylococcus aureus due to a single residue mutation in the peptide.

  8. Cleaving Double-Stranded DNA with Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1997-01-01

    Peptide nucleic acids and analogues of peptide nucleic acids are used to form duplex, triplex, and other structures with nucleic acids and to modify nucleic acids. The peptide nucleic acids and analogues thereof also are used to modulate protein activity through, for example, transcription arrest......, transcription initiation, and site specific cleavage of nucleic acids....

  9. Guanylin peptides: cyclic GMP signaling mechanisms

    Directory of Open Access Journals (Sweden)

    Forte L.R.

    1999-01-01

    Full Text Available Guanylate cyclases (GC serve in two different signaling pathways involving cytosolic and membrane enzymes. Membrane GCs are receptors for guanylin and atriopeptin peptides, two families of cGMP-regulating peptides. Three subclasses of guanylin peptides contain one intramolecular disulfide (lymphoguanylin, two disulfides (guanylin and uroguanylin and three disulfides (E. coli stable toxin, ST. The peptides activate membrane receptor-GCs and regulate intestinal Cl- and HCO3- secretion via cGMP in target enterocytes. Uroguanylin and ST also elicit diuretic and natriuretic responses in the kidney. GC-C is an intestinal receptor-GC for guanylin and uroguanylin, but GC-C may not be involved in renal cGMP pathways. A novel receptor-GC expressed in the opossum kidney (OK-GC has been identified by molecular cloning. OK-GC cDNAs encode receptor-GCs in renal tubules that are activated by guanylins. Lymphoguanylin is highly expressed in the kidney and heart where it may influence cGMP pathways. Guanylin and uroguanylin are highly expressed in intestinal mucosa to regulate intestinal salt and water transport via paracrine actions on GC-C. Uroguanylin and guanylin are also secreted from intestinal mucosa into plasma where uroguanylin serves as an intestinal natriuretic hormone to influence body Na+ homeostasis by endocrine mechanisms. Thus, guanylin peptides control salt and water transport in the kidney and intestine mediated by cGMP via membrane receptors with intrinsic guanylate cyclase activity.

  10. Peptide Inhibitor of Complement C1 (PIC1 Rapidly Inhibits Complement Activation after Intravascular Injection in Rats.

    Directory of Open Access Journals (Sweden)

    Julia A Sharp

    Full Text Available The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1. In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases.

  11. Synthesis, characterization and inhibitory activities of (4-N3[3,5-3H]Phe10)PKI(6-22)amide and its precursors: photoaffinity labeling peptides for the active site of cyclic AMP-dependent protein kinase.

    Science.gov (United States)

    Katz, B M; Lundquist, L J; Walsh, D A; Glass, D B

    1989-06-01

    PKI(6-22)amide is a 17 residue peptide corresponding to the active portion of the heat-stable inhibitor of cAMP-dependent protein kinase. The peptide is a potent (Ki = 1.6 nM), competitive inhibitor of the enzyme. The photoreactive peptide analog (4-azidophenylalanine10)PKI(6-22)amide was synthesized in both its non-radiolabeled and tritiated forms by chemical modification of precursor peptides that were prepared by stepwise solid-phase synthesis. (4-Amino[3,5-3H]phenylalanine10)PKI(6-22)amide, the precursor for the radiolabeled arylazide peptide, was obtained by catalytic reduction of the corresponding peptide containing the 3,5-diiodo-4-aminophenylalanine residue at position 10. The purified PKI peptides were analyzed by HPLC, amino acid analysis, and u.v. spectra. In the dark, (4-azidophenylalanine10)PKI(6-22)amide inhibited the catalytic subunit of cAMP-dependent protein kinase with a Ki value of 2.8 nM. The photoreactivity of the arylazide peptide was demonstrated by time-dependent u.v. spectral changes on exposure to light. Photolysis of the catalytic subunit (4-azido[3,5-3H]phenylalanine10)PKI(6-22)amide complex resulted in specific covalent labeling of the enzyme. The data indicate that this peptide is a useful photoaffinity labeling reagent for the active site of the protein kinase.

  12. Antimicrobial activity of bovine NK-lysin-derived peptides on Mycoplasma bovis

    Science.gov (United States)

    Antimicrobial peptides (AMPs) are a diverse group of molecules which play an important role in the innate immune response. Bovine NK-lysins, a type of AMP, have been predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Bovine NK-lysin-derived peptides demonstrate antimicrobia...

  13. Novel ZnO-binding peptides obtained by the screening of a phage display peptide library

    Energy Technology Data Exchange (ETDEWEB)

    Golec, Piotr [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology (affiliated with the University of Gdansk) (Poland); Karczewska-Golec, Joanna [University of Gdansk and Medical University of Gdansk, Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology (Poland); Los, Marcin; Wegrzyn, Grzegorz, E-mail: wegrzyn@biotech.univ.gda.pl [University of Gdansk, Department of Molecular Biology (Poland)

    2012-11-15

    Zinc oxide (ZnO) is a semiconductor compound with a potential for wide use in various applications, including biomaterials and biosensors, particularly as nanoparticles (the size range of ZnO nanoparticles is from 2 to 100 nm, with an average of about 35 nm). Here, we report isolation of novel ZnO-binding peptides, by screening of a phage display library. Interestingly, amino acid sequences of the ZnO-binding peptides reported in this paper and those described previously are significantly different. This suggests that there is a high variability in sequences of peptides which can bind particular inorganic molecules, indicating that different approaches may lead to discovery of different peptides of generally the same activity (e.g., binding of ZnO) but having various detailed properties, perhaps crucial under specific conditions of different applications.

  14. Isolation and characterisation of in vitro and cellular free radical scavenging peptides from corn peptide fractions.

    Science.gov (United States)

    Wang, Liying; Ding, Long; Wang, Ying; Zhang, Yan; Liu, Jingbo

    2015-02-16

    Corn gluten meal, a corn processing industry by-product, is a good source for the preparation of bioactive peptides due to its special amino acid composition. In the present study, the in vitro and cellular free radical scavenging activities of corn peptide fractions (CPFs) were investigated. Results indicated that CPF1 (molecular weight less than 1 kDa) and CPF2 (molecular weight between 1 and 3 kDa) exhibited good hydroxyl radical, superoxide anion radical and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) diammonium salt (ABTS) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Meanwhile, the in vitro radical scavenging activity of CPF1 was slightly higher than that of CPF2. Both CPF1 and CPF2 also exhibited significant cytoprotective effects and intracellular reactive oxygen species scavenging activity in Caco-2 cells exposed to hydrogen peroxide (H2O2). The amino acid composition analysis revealed that the CPF were rich in hydrophobic amino acids, which comprised of more than 45% of total amino acids. An antioxidant peptide sequence of Tyr-Phe-Cys-Leu-Thr (YFCLT) was identified from CPF1 using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI TOF/TOF MS). The YFCLT exhibited excellent ABTS radical scavenging activity with a 50% effective concentration (EC50) value of 37.63 µM, which was much lower than that of Trolox. In conclusion, corn gluten meal might be a good source to prepare antioxidant peptides.

  15. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans.

    Science.gov (United States)

    Yoo, Won Gi; Lee, Joon Ha; Shin, Younhee; Shim, Jae-Young; Jung, Myunghee; Kang, Byeong-Chul; Oh, Jaedon; Seong, Jiyeon; Lee, Hak Kyo; Kong, Hong Sik; Song, Ki-Duk; Yun, Eun-Young; Kim, In-Woo; Kwon, Young-Nam; Lee, Dong Gun; Hwang, Ui-Wook; Park, Junhyung; Hwang, Jae Sam

    2014-06-01

    The centipede Scolopendra subspinipes mutilans is an environmentally beneficial and medically important arthropod species. Although this species is increasingly applied as a reliable source of new antimicrobial peptides, the transcriptome of this species is a prerequisite for more rational selection of antimicrobial peptides. In this report, we isolated total RNA from the whole body of adult centipedes, S. subspinipes mutilans, that were nonimmunized and immunized against Escherichia coli, and we generated a total of 77,063 pooled contigs and singletons using high-throughput sequencing. To screen putative antimicrobial peptides, in silico analyses of the S. subspinipes mutilans transcriptome were performed based on the physicochemical evidence of length, charge, isoelectric point, and in vitro and in vivo aggregation scores together with the existence of continuous antimicrobial peptide stretches. Moreover, we excluded some transcripts that showed similarity with both previously known antimicrobial peptides and the human proteome, had a proteolytic cleavage site, and had downregulated expression compared with the nonimmunized sample. As a result, we selected 17 transcripts and tested their antimicrobial activity with a radial diffusion assay. Among them, ten synthetic peptides experimentally showed antimicrobial activity against microbes and no toxicity to mouse erythrocytes. Our results provide not only a useful set of antimicrobial peptide candidates and an efficient strategy for novel antimicrobial peptide development but also the transcriptome data of a big centipede as a valuable resource.

  16. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency

    OpenAIRE

    HaiFang Yin; Prisca Boisguerin; Hong M Moulton; Corinne Betts; Yiqi Seow; Jordan Boutilier; Qingsong Wang; Anthony Walsh; Bernard Lebleu; Matthew JA Wood

    2013-01-01

    We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was ...

  17. Improving oral bioavailability of cyclic peptides by N-methylation.

    Science.gov (United States)

    Räder, Andreas F B; Reichart, Florian; Weinmüller, Michael; Kessler, Horst

    2018-06-01

    The renaissance of peptides in pharmaceutical industry results from their importance in many biological functions. However, low metabolic stability and the lack of oral availability of most peptides is a certain limitation. Whereas metabolic instability may be often overcome by development of small cyclic peptides containing d-amino acids, the very low oral availability of most peptides is a serious limitation for some medicinal applications. The situation is complicated because a twofold optimization - biological activity and oral availability - is required to overcome this problem. Moreover, most simple "rules" for achieving oral availability are not general and are applicable only to limited cases. Many structural modifications for increasing biological activities and metabolic stabilities of cyclic peptides have been described, of which N-alkylation is probably the most common. This mini-review focuses on the effects of N-methylation of cyclic peptides in strategies to optimize bioavailabilities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Structure, Content, and Bioactivity of Food-Derived Peptides in the Body.

    Science.gov (United States)

    Sato, Kenji

    2018-03-28

    Orally administered peptides are assumed to be degraded into amino acids in the body. However, our recent studies revealed some food-derived prolyl and pyroglutamyl peptides with 2-3 amino acid residues in the blood of humans and animals, while most of the peptides in the endoproteinase digest of food protein are degraded by exopeptidase. Some food-derived dipeptides in the body display in vitro and in vivo biological activities. These facts indicate that the biological activities of food-derived peptides in the body rather than those in food are crucial to understanding the mechanism of the beneficial effects of orally administered peptides.

  19. AN INFLUENCE OF SPONTANEOUS MICROFLORA OF FERMENTED HORSEMEAT PRODUCTS ON THE FORMATION OF BIOLOGICALLY ACTIVE PEPTIDES

    Directory of Open Access Journals (Sweden)

    I. M. Chernukha

    2017-01-01

    Full Text Available At present, different methods are used to accumulate functional peptides in meat raw materials, including the use of spontaneous microflora during autolysis, the use of the microbial enzymes (the application of starter cultures and the use of the non-microbial enzymes (enzymes of animals and plant origin. Each method has its own specific characteristics of an impact on raw materials, which requires their detail study. This paper examines an effect of spontaneous microflora of fermented meat products from horsemeat on formation of biologically active peptides. Using the T-RFLP analysis, it was established that in air dried and uncooked smoked sausages produced with the use of the muscle tissue of horsemeat as a raw material, a significant proportion of microflora was presented by lactic acid microorganisms. The highest content of lactic acid microflora was observed in sample 1 (52.45 %, and the least in sample 3 (29.62 %. Sample 2 had the medium percent content of microflora compared to samples 1 and 3 — 38.82 %. It is necessary to note that about 25 % of microflora was unculturable; i.e., it had metabolic processes but did not grow on culture media. In the samples, the representatives of Actinobacteria and Pseudomonadales were found. Pathogenic and conditionally pathogenic microflora was not detected. Not only quantitative but also qualitative changes were observed in the studied samples. For example, in samples 1 and 2, the fractions of amilo-1,6-glucosidase, fast-type muscle myosin-binding-protein C; glucose-6-phosphate isomerase; fast skeletal muscle troponin I, phosphoglycerate kinase, pyruvate kinase and skeletal muscle actin were found, which were absent or reduced in sample 3. Therefore, in the studied product, good preservation of the main spectra of muscle proteins was observed, and the identified fractions, apparently, can be sources of new functional peptides. Not only quantitative but also qualitative changes were observed in the

  20. Utilisation of rapeseed protein isolates for production of peptides with angiotensin I-converting enzyme (ACE-inhibitory activity

    Directory of Open Access Journals (Sweden)

    Vioque, Javier

    2004-12-01

    Full Text Available ACE activity is related to increased arterial pressure and coronary diseases. A rapeseed protein isolate was hydrolyzed with the protease Alcalase in order to investigate the possible presence of ACE inhibitory peptides in the resulting hydrolysates. Hydrolysis for 30 min yielded a hydrolysate with the highest ACE inhibitory activity. Two fractions of this hydrolysate obtained by Biogel P2 gel filtration chromatography were used for further purification of ACE inhibitory peptides. Three fractions with ACE inhibitory activity were purified by reverse-phase HPLC of Biogel P2 f ractions. This demonstrates that rapeseed protein hydrolysates represent a good source of ACE inhibitory peptides .La actividad de ECA está relacionada con una presión arterial alta y enfermedades cardíacas. Un aislado proteico de colza se hidrolizó con alcalasa para estudiar la posible presencia de péptidos inhibidores de ECA en el hidrolizado. La hidrólisis durante 30 min produjo el hidrolizado con la mayor actividad inhibidora de ECA. Dos fracciones de este hidrolizado, obtenidas por cromatografía de filtración en gel Biogel P2, se usaron para la purificación de péptidos inhibidores de ECA. Tres fracciones con actividad inhibidora de ECA se purificaron mediante HPLC en fase reversa de las fracciones obtenidas mediante Biogel P2. Esto demuestra que los hidrolizados proteicos de colza representan una buena fuente de péptidos inhibidores de ECA.

  1. Effect of N-Terminal Acylation on the Activity of Myostatin Inhibitory Peptides.

    Science.gov (United States)

    Takayama, Kentaro; Nakamura, Akari; Rentier, Cédric; Mino, Yusaku; Asari, Tomo; Saga, Yusuke; Taguchi, Akihiro; Yakushiji, Fumika; Hayashi, Yoshio

    2016-04-19

    Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 μm) more potent than parent peptide A (3.53±0.25 μm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Marine Peptides: Bioactivities and Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-06-01

    Full Text Available Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant, immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.

  3. NGR-peptide-drug conjugates with dual targeting properties.

    Directory of Open Access Journals (Sweden)

    Kata Nóra Enyedi

    Full Text Available Peptides containing the asparagine-glycine-arginine (NGR motif are recognized by CD13/aminopeptidase N (APN receptor isoforms that are selectively overexpressed in tumor neovasculature. Spontaneous decomposition of NGR peptides can result in isoAsp derivatives, which are recognized by RGD-binding integrins that are essential for tumor metastasis. Peptides binding to CD13 and RGD-binding integrins provide tumor-homing, which can be exploited for dual targeted delivery of anticancer drugs. We synthesized small cyclic NGR peptide-daunomycin conjugates using NGR peptides of varying stability (c[KNGRE]-NH2, Ac-c[CNGRC]-NH2 and the thioether bond containing c[CH2-CO-NGRC]-NH2, c[CH2-CO-KNGRC]-NH2. The cytotoxic effect of the novel cyclic NGR peptide-Dau conjugates were examined in vitro on CD13 positive HT-1080 (human fibrosarcoma and CD13 negative HT-29 (human colon adenocarcinoma cell lines. Our results confirm the influence of structure on the antitumor activity and dual acting properties of the conjugates. Attachment of the drug through an enzyme-labile spacer to the C-terminus of cyclic NGR peptide resulted in higher antitumor activity on both CD13 positive and negative cells as compared to the branching versions.

  4. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    International Nuclear Information System (INIS)

    Rodina, N P; Yudenko, A N; Terterov, I N; Eliseev, I E

    2013-01-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested

  5. Multivalent display of the antimicrobial peptides BP100 and BP143

    Directory of Open Access Journals (Sweden)

    Imma Güell

    2012-12-01

    Full Text Available Carbohydrates are considered as promising templates for the display of multiple copies of antimicrobial peptides. Herein, we describe the design and synthesis of chimeric structures containing two or four copies of the antimicrobial peptides KKLFKKILKYL-NH2 (BP100 and KKLfKKILKYL-NH2 (BP143 attached to the carbohydrate template cyclodithioerythritol (cDTE or α-D-galactopyranoside (Galp. The synthesis involved the preparation of the corresponding peptide aldehyde followed by coupling to an aminooxy-functionalized carbohydrate template. After purification, the multivalent display systems were obtained in high purities (90–98% and in good yields (42–64%. These compounds were tested against plant and human pathogenic bacteria and screened for their cytotoxicity on eukaryotic cells. They showed lower MIC values than the parent peptides against the bacteria analyzed. In particular, the carbopeptides derived from cDTE and Galp, which contained two or four copies of BP100, respectively, were 2- to 8-fold more active than the monomeric peptide against the phytopathogenic bacteria. These results suggest that preassembling antimicrobial peptides to multimeric structures is not always associated with a significant improvement of the activity. In contrast, the carbopeptides synthesized were active against human red blood cells pointing out that peptide preassembly is critical for the hemolytic activity. Notably, peptide preassembly resulted in an enhanced bactericidal effect.

  6. Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity.

    Directory of Open Access Journals (Sweden)

    Kyle E Roberts

    Full Text Available The cystic fibrosis transmembrane conductance regulator (CFTR is an epithelial chloride channel mutated in patients with cystic fibrosis (CF. The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators ("potentiators" and "correctors", but ΔF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand (CAL, which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell validation of novel, effective CAL PDZ inhibitors (called "stabilizers" that rescue ΔF508-CFTR activity. To design the "stabilizers", we extended our structural ensemble-based computational protein redesign algorithm K* to encompass protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for CAL (kCAL01 binds six-fold more tightly than the previous best hexamer (iCAL35, and 170-fold more tightly than the CFTR C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide an additional therapeutic pathway that can be used in conjunction with current methods.

  7. Evaluation of the antioxidant activity in food model system of fish peptides released during simulated gastrointestinal digestion

    DEFF Research Database (Denmark)

    Nieva-Echevarria, B.; Jacobsen, Charlotte; García Moreno, Pedro Jesús

    In the last decade, increasing evidences of the occurrence of lipid oxidation during digestion have been reported, in either in vivo or in vitro studies (1,2,3). As a result, the nutritional quality and safety of foodstuffs could be affected by the decrease of certain lipidic compounds of interest...... in the gastrointestinal tract. In fact, several studies have reported antioxidant activity of fish protein hydrolysates, coming from fish industry waste by-products (3,4). Thus, the potential release of peptides showing antioxidant properties during fish digestion cannot be ruled out. In order to shed light...... on these aspects, in vitro digestates of European sea bass were submitted to ultrafiltration using membranes with different cut off size. Afterwards, the potential antioxidant activity of the peptide fractions obtained was evaluated by comparing the oxidative stability of fish oil-in-water emulsions (5...

  8. Bioactive peptides released from Saccharomyces cerevisiae under accelerated autolysis in a wine model system.

    Science.gov (United States)

    Alcaide-Hidalgo, J M; Pueyo, E; Polo, M C; Martínez-Rodríguez, A J

    2007-09-01

    The ACE inhibitory activity (IACE) and the oxygen radical absorbance capacity (ORAC-FL) values of yeast peptides isolated from a model wine during accelerated autolysis of Saccharomyces cerevisiae have been studied. Samples were taken at 6, 24, 48, 121, and 144 h of autolysis. Peptide concentration increased throughout autolysis process. Peptides were fractionated into 2 fractions: F1, constituted by hydrophilic peptides, and F2, containing hydrophobic peptides. Both IACE activity and ORAC-FL values increased during 121 h of autolysis, then decreased afterward. Peptide fraction F2 was the main fraction involved in IACE activity and ORAC-FL.

  9. Structure-function characterization and optimization of a plant-derived antibacterial peptide.

    Science.gov (United States)

    Suarez, Mougli; Haenni, Marisa; Canarelli, Stéphane; Fisch, Florian; Chodanowski, Pierre; Servis, Catherine; Michielin, Olivier; Freitag, Ruth; Moreillon, Philippe; Mermod, Nicolas

    2005-09-01

    Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.

  10. Enzyme active site mimics based on TriAzaCyclophane (TAC)-scaffolded peptides and amino acid residues

    NARCIS (Netherlands)

    Albada, H.B.

    2009-01-01

    This thesis describes the scope and limitations of the application of TriAzaCyclophane (TAC)-scaffolded peptides or amino acid residues as enzyme active site mimics, as ligands in asymmetric catalysis and as hydrolysis catalysts attached to vancomycin. For the mimicry of functional group enzymes, of

  11. Activation of phospholipase A2 by temporin B: Formation of antimicrobial peptide-enzyme amyloid-type cofibrils

    NARCIS (Netherlands)

    Code, Christian; Domanov, Y.A.; Killian, J.A.; Kinnunen, P.K.J.

    2009-01-01

    Phospholipases A2 have been shown to be activated in a concentration dependent manner by a number of antimicrobial peptides, including melittin, magainin 2, indolicidin, and temporins B and L. Here we used fluorescently labelled bee venom PLA2 (PLA2D) and the saturated phospholipid substrate

  12. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency.

    Science.gov (United States)

    Yin, Haifang; Boisguerin, Prisca; Moulton, Hong M; Betts, Corinne; Seow, Yiqi; Boutilier, Jordan; Wang, Qingsong; Walsh, Anthony; Lebleu, Bernard; Wood, Matthew Ja

    2013-09-24

    We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was investigated. Four additional chimeric peptide-PMO conjugates including newly identified peptide 9 (B-9-PMO and 9-B-PMO) and control peptide 3 (B-3-PMO and 3-B-PMO) were tested in mdx mice. Immunohistochemical staining, RT-PCR and western blot results indicated that B-9-PMO induced significantly higher level of exon skipping and dystrophin restoration than its counterpart (9-B-PMO), further corroborating the notion that the activity of chimeric peptide-PMO conjugates is dependent on relative position of the tissue-targeting peptide motif within the chimeric peptide with respect to PMOs. Subsequent mechanistic studies showed that enhanced cellular uptake of B-MSP-PMO into muscle cells leads to increased exon-skipping activity in comparison with MSP-B-PMO. Surprisingly, further evidence showed that the uptake of chimeric peptide-PMO conjugates of both orientations (B-MSP-PMO and MSP-B-PMO) was ATP- and temperature-dependent and also partially mediated by heparan sulfate proteoglycans (HSPG), indicating that endocytosis is likely the main uptake pathway for both chimeric peptide-PMO conjugates. Collectively, our data demonstrate that peptide orientation in chimeric peptides is an important parameter that determines cellular uptake and activity when conjugated directly to oligonucleotides. These observations provide insight into the design of improved cell targeting compounds for future therapeutics studies.Molecular Therapy-Nucleic Acids (2013) 2, e124; doi:10.1038/mtna.2013

  13. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency

    Directory of Open Access Journals (Sweden)

    HaiFang Yin

    2013-01-01

    Full Text Available We have recently reported that cell-penetrating peptides (CPPs and novel chimeric peptides containing CPP (referred as B peptide and muscle-targeting peptide (referred as MSP motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was investigated. Four additional chimeric peptide-PMO conjugates including newly identified peptide 9 (B-9-PMO and 9-B-PMO and control peptide 3 (B-3-PMO and 3-B-PMO were tested in mdx mice. Immunohistochemical staining, RT-PCR and western blot results indicated that B-9-PMO induced significantly higher level of exon skipping and dystrophin restoration than its counterpart (9-B-PMO, further corroborating the notion that the activity of chimeric peptide-PMO conjugates is dependent on relative position of the tissue-targeting peptide motif within the chimeric peptide with respect to PMOs. Subsequent mechanistic studies showed that enhanced cellular uptake of B-MSP-PMO into muscle cells leads to increased exon-skipping activity in comparison with MSP-B-PMO. Surprisingly, further evidence showed that the uptake of chimeric peptide-PMO conjugates of both orientations (B-MSP-PMO and MSP-B-PMO was ATP- and temperature-dependent and also partially mediated by heparan sulfate proteoglycans (HSPG, indicating that endocytosis is likely the main uptake pathway for both chimeric peptide-PMO conjugates. Collectively, our data demonstrate that peptide orientation in chimeric peptides is an important parameter that determines cellular uptake and activity when conjugated directly to oligonucleotides. These observations provide insight into the design of improved cell targeting compounds for future therapeutics studies.

  14. Enhancement of the Enterocin CRL35 Activity by a Synthetic Peptide Derived from the NH2-Terminal Sequence

    Science.gov (United States)

    Saavedra, Lucila; Minahk, Carlos; de Ruiz Holgado, Aída P.; Sesma, Fernando

    2004-01-01

    The enterocin CRL35 biosynthetic gene cluster was cloned and sequenced. The sequence was revealed to be highly identical to that of the mundticin KS gene cluster (S. Kawamoto, J. Shima, R. Sato, T. Eguchi, S. Ohmomo, J. Shibato, N. Horikoshi, K. Takeshita, and T. Sameshima, Appl. Environ. Microbiol. 68:3830-3840, 2002). Short synthetic peptides were designed based on the bacteriocin sequence and were evaluated in antimicrobial competitive assays. The peptide KYYGNGVSCNKKGCS produced an enhancement of enterocin CRL35 antimicrobial activity in a buffer system. PMID:15215149

  15. Identification of structural traits that increase the antimicrobial activity of a chimeric peptide of human β-defensins 2 and 3.

    Science.gov (United States)

    Spudy, Björn; Sönnichsen, Frank D; Waetzig, Georg H; Grötzinger, Joachim; Jung, Sascha

    2012-10-12

    Antimicrobial peptides participate in the first line of defence of many organisms against pathogens. In humans, the family of β-defensins plays a pivotal role in innate immunity. Two human β-defensins, β-defensin-2 and -3 (HBD2 and HBD3), show substantial sequence identity and structural similarity. However, HBD3 kills Staphylococcus (S.) aureus with a 4- to 8-fold higher efficiency compared to HBD2, whereas their activities against Escherichia (E.) coli are very similar. The generation of six HBD2/HBD3-chimeric molecules led to the identification of distinct molecular regions which mediate their divergent killing properties. One of the chimeras (chimera C3) killed both E. coli and S. aureus with an even higher efficacy compared to the wild-type molecules. Due to the broad spectrum of its antimicrobial activity against many human multidrug-resistant pathogens, this HBD2/HBD3-chimeric peptide represents a promising candidate for a new class of antibiotics. In order to investigate the structural basis of its exceptional antimicrobial activity, the peptide's tertiary structure was determined by NMR spectroscopy, which allowed its direct comparison to the published structures of HBD2 and HBD3 and the identification of the activity-increasing molecular features. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Proteinase-Activated Receptor-1 and Immunomodulatory Effects of a PAR1-Activating Peptide in a Mouse Model of Prostatitis

    Science.gov (United States)

    Stanton, M. Mark; Nelson, Lisa K.; Benediktsson, Hallgrimur; Hollenberg, Morley D.; Buret, Andre G.; Ceri, Howard

    2013-01-01

    Background. Nonbacterial prostatitis has no established etiology. We hypothesized that proteinase-activated receptor-1 (PAR1) can play a role in prostatitis. We therefore investigated the effects of PAR1 stimulation in the context of a new model of murine nonbacterial prostatitis. Methods. Using a hapten (ethanol-dinitrobenzene sulfonic acid- (DNBS-)) induced prostatitis model with both wild-type and PAR1-null mice, we examined (1) the location of PAR1 in the mouse prostate and (2) the impact of a PAR1-activating peptide (TFLLR-NH2: PAR1-TF) on ethanol-DNBS-induced inflammation. Results. Ethanol-DNBS-induced inflammation was maximal at 2 days. In the tissue, PAR1 was expressed predominantly along the apical acini of prostatic epithelium. Although PAR1-TF on its own did not cause inflammation, its coadministration with ethanol-DNBS reduced all indices of acute prostatitis. Further, PAR1-TF administration doubled the prostatic production of interleukin-10 (IL-10) compared with ethanol-DNBS treatment alone. This enhanced IL-10 was not observed in PAR1-null mice and was not caused by the reverse-sequence receptor-inactive peptide, RLLFT-NH2. Surprisingly, PAR1-TF, also diminished ethanol-DNBS-induced inflammation in PAR1-null mice. Conclusions. PAR1 is expressed in the mouse prostate and its activation by PAR1-TF elicits immunomodulatory effects during ethanol-DNBS-induced prostatitis. However, PAR1-TF also diminishes ethanol-DNBS-induced inflammation via a non-PAR1 mechanism by activating an as-yet unknown receptor. PMID:24459330

  17. Peptides and Anti-peptide Antibodies for Small and Medium Scale Peptide and Anti-peptide Affinity Microarrays: Antigenic Peptide Selection, Immobilization, and Processing.

    Science.gov (United States)

    Zhang, Fan; Briones, Andrea; Soloviev, Mikhail

    2016-01-01

    This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.

  18. Radioactive labelling of peptidic hormones

    International Nuclear Information System (INIS)

    Fromageot, P.; Pradelles, P.; Morgat, J.L.; Levine, H.

    1976-01-01

    The labelling of peptidic hormones requires stability, specificity and sensitivity of the label. Introduction of a radioactive atome is one way to satisfy these criteria. Several processes have been described to prepare radioactive TRF: synthesis of the peptide with labelled aminoacids or introduction of the label into the hormone. In that approach, tritium can be substituted in the imidazole ring, via precursors activating the proper carbon. Monoiodo TRF leads essentially to tritium labelling of the 5 positions whereas monoazo TRF allows the preparation of 3 H TRF labelled in the 2 positions. Di-substituted TRF leads to labelling into the 2 and 5 carbons. Labelled analogs of TRF can be prepared with labelled iodine; further developments of peptide labelling, will be presented. In particular, the homolytic scission of the C-iodine, bond by photochemical activation. The nascent carbon radical can be stabilized by a tritiated scavenger. This approach eliminates the use of heavy metal catalysts

  19. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    of these are currently being used in quantitative structure--activity relationship (QSAR) studies for AMP optimization. Additionally, some key commercial computational tools are discussed, and both successful and less successful studies are referenced, illustrating some of the challenges facing AMP scientists. Through...... examples of different peptide QSAR studies, this review highlights some of the missing links and illuminates some of the questions that would be interesting to challenge in a more systematic fashion. Expert opinion: Computer-aided peptide QSAR using molecular descriptors may provide the necessary edge...

  20. Therapeutic peptides for cancer therapy. Part II - cell cycle inhibitory peptides and apoptosis-inducing peptides.

    Science.gov (United States)

    Raucher, Drazen; Moktan, Shama; Massodi, Iqbal; Bidwell, Gene L

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein-protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.

  1. Purification and Characterization of Antioxidant Peptide from Sunflower Protein Hydrolysate

    Directory of Open Access Journals (Sweden)

    Xi-Qun Zheng

    2010-01-01

    Full Text Available Sunflower proteins were hydrolyzed with Flavourzyme for the production of antioxidant peptide. DEAE-Sepharose Fast Flow, Sephadex G-25 gel filtration chromatography and reversed-phase HPLC were consecutively employed to purify a novel sunflower antioxidant peptide, and the ability to inhibit the autoxidation of pyrogallol was expressed as the antioxidative activity of the peptide. The amino acid sequence was identified as Ala-Cys-Ala-His-Asp-Lys-Val by a Q-Tof2 mass spectrometer. This novel peptide exhibited a high antioxidative activity of 79.42 U/mL, which is expected to protect against oxidative damage in living systems in relation to aging and carcinogenesis. Higher antioxidative activities were presumed mainly due to the presence of hydrophobic amino acids in its sequence.

  2. The Pig PeptideAtlas

    DEFF Research Database (Denmark)

    Hesselager, Marianne Overgaard; Codrea, Marius; Sun, Zhi

    2016-01-01

    Biological research of Sus scrofa, the domestic pig, is of immediate relevance for food production sciences, and for developing pig as a model organism for human biomedical research. Publicly available data repositories play a fundamental role for all biological sciences, and protein data...... repositories are in particular essential for the successful development of new proteomic methods. Cumulative proteome data repositories, including the PeptideAtlas, provide the means for targeted proteomics, system-wide observations, and cross-species observational studies, but pigs have so far been...... underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within...

  3. Insect Peptides - Perspectives in Human Diseases Treatment.

    Science.gov (United States)

    Chowanski, Szymon; Adamski, Zbigniew; Lubawy, Jan; Marciniak, Pawel; Pacholska-Bogalska, Joanna; Slocinska, Malgorzata; Spochacz, Marta; Szymczak, Monika; Urbanski, Arkadiusz; Walkowiak-Nowicka, Karolina; Rosinski, Grzegorz

    2017-01-01

    Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Effects of the substitution of amino acid residues, through chemical synthesis, on the conformation and activity of antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Regina C. Adão

    2012-06-01

    Full Text Available Antimicrobial peptides make up an assorted group of molecules which contain from 12 to 50 amino acid residues and which may be produced by microorganisms, plants and animals. From the discovery that these biomolecules are lethal to bacteria, inhibiting the pathogenic organism’s growth, and are also related to innate and adapted defense mechanisms, the investigation of such molecules came to be an emergent research field, in which more than 1800 antimicrobial peptides have so far been discovered throughout the last three decades. These molecules are potential representatives of a new generation of antibiotic agents and the main motivation for such use is their activity against a wide variety of pathogens, including Gram-positive and Gram-negative bacteria as well as fungi and viruses. An important class of comprising some of these peptides may be found in anurans, from which it has been isolated, a considerable number of antimicrobial peptides with diverse sequences and structures, including linear and dimeric ones. In this work monomeric chains (CH1 e CH2 of the heterodimeric antimicrobial peptide distinctin (isolated in 1999 from Phyllomedusa distincta anurans, as well as its mutated monomers (CH1-S and CH2-S and the heterodimer itself were synthesized. The distinctin is the peptide with two chains of different sequences (Table 1 bound each other by disulfide bond from the cystein residues constituting the heterodimer. To investigate the effects on the biological activity by amino acids substitution at normal distinctin CH1 and CH2 chains, both were synthesized as well as their similar chains (CH1-S and CH2-S in which the cystein (Fig.1 a residues of each chain were changed by serin residues (Fig. 1 b. The new chains were named mutants. The synthesis was carried out in solid phase, using Fmoc strategy. The heterodimer distinctin was obtained from CH1 and CH2 chains coupling through cystein residues air oxidation. The results from HPLC

  5. Identification and screening of potent antimicrobial peptides in arthropod genomes.

    Science.gov (United States)

    Duwadi, Deepesh; Shrestha, Anishma; Yilma, Binyam; Kozlovski, Itamar; Sa-Eed, Munaya; Dahal, Nikesh; Jukosky, James

    2018-05-01

    Using tBLASTn and BLASTp searches, we queried recently sequenced arthropod genomes and expressed sequence tags (ESTs) using a database of known arthropod cecropins, defensins, and attacins. We identified and synthesized 6 potential AMPs and screened them for antimicrobial activity. Using radial diffusion assays and microtiter antimicrobial assays, we assessed the in vitro antimicrobial effects of these peptides against several human pathogens including Gram-positive and Gram-negative bacteria and fungi. We also conducted hemolysis assays to examine the cytotoxicity of these peptides to mammalian cells. Four of the six peptides identified showed antimicrobial effects in these assays. We also created truncated versions of these four peptides to assay their antimicrobial activity. Two cecropins derived from the monarch butterfly genome (Danaus plexippus), DAN1 and DAN2, showed minimum inhibitory concentrations (MICs) in the range of 2-16 μg/ml when screened against Gram-negative bacteria. HOLO1 and LOUDEF1, two defensin-like peptides derived from red flour beetle (Tribolium castaneum) and human body louse (Pediculus humanus humanus), respectively, exhibited MICs in the range of 13-25 μg/ml against Gram-positive bacteria. Furthermore, HOLO1 showed an MIC less than 5 μg/ml against the fungal species Candida albicans. These peptides exhibited no hemolytic activity at concentrations up to 200 μg/ml. The truncated peptides derived from DAN2 and HOLO1 showed very little antimicrobial activity. Our experiments show that the peptides DAN1, DAN2, HOLO1, and LOUDEF1 showed potent antimicrobial activity in vitro against common human pathogens, did not lyse mammalian red blood cells, and indicates their potential as templates for novel therapeutic agents against microbial infection. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Development of an oxygen-sensitive degradable peptide probe for the imaging of hypoxia-inducible factor-1-active regions in tumors.

    Science.gov (United States)

    Ueda, Masashi; Ogawa, Kei; Miyano, Azusa; Ono, Masahiro; Kizaka-Kondoh, Shinae; Saji, Hideo

    2013-12-01

    We aimed to develop a radiolabeled peptide probe for the imaging of hypoxia-inducible factor-1 (HIF-1)-active tumors. We synthesized the peptide probes that contain or lack an essential sequence of the oxygen-dependent degradation of HIF-1α in proteasomes ((123/125)I-DKOP30 or (125)I-mDKOP, respectively). The degradation of probes was evaluated in vitro using cell lysates containing proteasomes. In vivo biodistribution study, planar imaging, autoradiography, and comparison between probe accumulation and HIF-1 transcriptional activity were also performed. The (125)I-DKOP30 underwent degradation in a proteasome-dependent manner, while (125)I-mDKOP was not degraded. Biodistribution analysis showed (125)I-DKOP30 accumulation in tumors. The tumors were clearly visualized by in vivo imaging, and intratumoral distribution of (125)I-DKOP30 coincided with the HIF-1α-positive hypoxic regions. Tumoral accumulation of (125)I-DKOP30 was significantly correlated with HIF-1-dependent luciferase bioluminescence, while that of (125)I-mDKOP was not. (123)I-DKOP30 is a useful peptide probe for the imaging of HIF-1-active tumors.

  7. Antihypertensive properties of lactoferricin B-derived peptides.

    Science.gov (United States)

    Ruiz-Giménez, Pedro; Ibáñez, Aida; Salom, Juan B; Marcos, Jose F; López-Díez, Jose Javier; Vallés, Salvador; Torregrosa, Germán; Alborch, Enrique; Manzanares, Paloma

    2010-06-09

    A set of eight lactoferricin B (LfcinB)-derived peptides was examined for inhibitory effects on angiotensin I-converting enzyme (ACE) activity and ACE-dependent vasoconstriction, and their hypotensive effect in spontaneously hypertensive rats (SHR). Peptides were derived from different elongations both at the C-terminal and N-terminal ends of the representative peptide LfcinB(20-25), which is known as the LfcinB antimicrobial core. All of the eight LfcinB-derived peptides showed in vitro inhibitory effects on ACE activity with different IC(50) values. Moreover, seven of them showed ex vivo inhibitory effects on ACE-dependent vasoconstriction. No clear correlation between in vitro and ex vivo inhibitory effects was found. Only LfcinB(20-25) and one of its fragments, F1, generated after a simulated gastrointestinal digestion, showed significant antihypertensive effects in SHR after oral administration. Remarkably, F1 did not show any effect on ACE-dependent vasoconstriction in contrast to the inhibitory effect showed by LfcinB(20-25). In conclusion, two LfcinB-derived peptides lower blood pressure and exhibit potential as orally effective antihypertensive compounds, yet a complete elucidation of the mechanism(s) involved deserves further ongoing research.

  8. Antifungal Activity of a Synthetic Cationic Peptide against the Plant Pathogens Colletotrichum graminicola and Three Fusarium Species

    Directory of Open Access Journals (Sweden)

    Eric T. Johnson

    2015-09-01

    Full Text Available A small cationic peptide (JH8944 was tested for activity against a number of pathogens of agricultural crops. JH8944 inhibited conidium growth in most of the tested plant pathogens with a dose of 50 μg/ml, although one isolate of Fusarium oxysporum was inhibited at 5 μg/ml of JH8944. Most conidia of Fusarium graminearum were killed within 6 hours of treatment with 50 μg/ml of JH8944. Germinating F. graminearum conidia required 238 μg/ml of JH8944 for 90% growth inhibition. The peptide did not cause any damage to tissues surrounding maize leaf punctures when tested at a higher concentration of 250 μg/ml even after 3 days. Liposomes consisting of phosphatidylglycerol were susceptible to leakage after treatment with 25 and 50 μg/ml of JH8944. These experiments suggest this peptide destroys fungal membrane integrity and could be utilized for control of crop fungal pathogens.

  9. Seahorse-derived peptide suppresses invasive migration of HT1080 fibrosarcoma cells by competing with intracellular α-enolase for plasminogen binding and inhibiting uPA-mediated activation of plasminogen.

    Science.gov (United States)

    Kim, Yong-Tae; Kim, Se-kwon; Jeon, You-Jin; Park, Sun Joo

    2014-12-01

    α-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. α-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, α-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of α-enolase. In this study, we report that this peptide competes with cellular α-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer.

  10. Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells

    Science.gov (United States)

    2011-01-01

    Background Several naturally occurring cationic antimicrobial peptides (CAPs), including bovine lactoferricin (LfcinB), display promising anticancer activities. These peptides are unaffected by multidrug resistance mechanisms and have been shown to induce a protective immune response against solid tumors, thus making them interesting candidates for developing novel lead structures for anticancer treatment. Recently, we showed that the anticancer activity by LfcinB was inhibited by the presence of heparan sulfate (HS) on the surface of tumor cells. Based on extensive structure-activity relationship studies performed on LfcinB, shorter and more potent peptides have been constructed. In the present study, we have investigated the anticancer activity of three chemically modified 9-mer peptides and the influence of HS and chondroitin sulfate (CS) on their cytotoxic activity. Methods Various cell lines and red blood cells were used to investigate the anticancer activity and selectivity of the peptides. The cytotoxic effect of the peptides against the different cell lines was measured by use of a colorimetric MTT viability assay. The influence of HS and CS on their cytotoxic activity was evaluated by using HS/CS expressing and HS/CS deficient cell lines. The ability of soluble HS and CS to inhibit the cytotoxic activity of the peptides and the peptides' affinity for HS and CS were also investigated. Results The 9-mer peptides displayed selective anticancer activity. Cells expressing HS/CS were equally or more susceptible to the peptides than cells not expressing HS/CS. The peptides displayed a higher affinity for HS compared to CS, and exogenously added HS inhibited the cytotoxic effect of the peptides. Conclusions In contrast to the previously reported inhibitory effect of HS on LfcinB, the present study shows that the cytotoxic activity of small lytic peptides was increased or not affected by cell surface HS. PMID:21453492

  11. Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells

    Directory of Open Access Journals (Sweden)

    Lindin Inger

    2011-03-01

    Full Text Available Abstract Background Several naturally occurring cationic antimicrobial peptides (CAPs, including bovine lactoferricin (LfcinB, display promising anticancer activities. These peptides are unaffected by multidrug resistance mechanisms and have been shown to induce a protective immune response against solid tumors, thus making them interesting candidates for developing novel lead structures for anticancer treatment. Recently, we showed that the anticancer activity by LfcinB was inhibited by the presence of heparan sulfate (HS on the surface of tumor cells. Based on extensive structure-activity relationship studies performed on LfcinB, shorter and more potent peptides have been constructed. In the present study, we have investigated the anticancer activity of three chemically modified 9-mer peptides and the influence of HS and chondroitin sulfate (CS on their cytotoxic activity. Methods Various cell lines and red blood cells were used to investigate the anticancer activity and selectivity of the peptides. The cytotoxic effect of the peptides against the different cell lines was measured by use of a colorimetric MTT viability assay. The influence of HS and CS on their cytotoxic activity was evaluated by using HS/CS expressing and HS/CS deficient cell lines. The ability of soluble HS and CS to inhibit the cytotoxic activity of the peptides and the peptides' affinity for HS and CS were also investigated. Results The 9-mer peptides displayed selective anticancer activity. Cells expressing HS/CS were equally or more susceptible to the peptides than cells not expressing HS/CS. The peptides displayed a higher affinity for HS compared to CS, and exogenously added HS inhibited the cytotoxic effect of the peptides. Conclusions In contrast to the previously reported inhibitory effect of HS on LfcinB, the present study shows that the cytotoxic activity of small lytic peptides was increased or not affected by cell surface HS.

  12. Comparative study on the antioxidant activity of peptides from pearl oyster ( Pinctada martensii) mantle type V collagen and tilapia ( Oreochromis niloticus) scale type I collagen

    Science.gov (United States)

    Xia, Guanghua; Zhang, Xueying; Dong, Zhenghua; Shen, Xuanri

    2017-12-01

    In this study, Pearl oyster mantle type V collagen (POMC) and tilapia scale type I collagen (TSC) were extracted and hydrolyzed by various proteases in order to obtain peptides. The antioxidant activity of the peptides was investigated by DPPH, hydroxyl radical scavenging experiments and a dynamic digestion model in vitro. The results show that there are significant differences in amino acid composition between POMC and TSC. The collagen peptides obtained from pearl oyster mantle (POMCP) by treating with alkaline protease exhibited higher antioxidant activity than that from tilapia scale (TSCP) treated with papaya protease, and both of them showed greater DPPH and hydroxyl radical scavenging activity than other peptides. After being separated via Sephadex G-25 chromatography, the M1 fraction isolated from POMCP, and the S1 fraction from TSCP with which both had higher molecular weights showed the strongest antioxidant activity than other fractions, and the M1 fraction exhibited stronger antioxidant activity than the S1 fraction in scavenging free-radicals and protecting cells from the oxidation damage. Furthermore, after treating the dynamic digestion system model in vitro, the DPPH and hydroxyl radical scavenging activity of the M1 fraction increased slightly. These results suggest that POMCP exhibits stronger antioxidant activity than TSCP, which means that PMOP may be a good candidate to be a potential natural antioxidant in the food-processing industry.

  13. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion.

    Directory of Open Access Journals (Sweden)

    Michela Riz

    2015-12-01

    Full Text Available Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1, peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT and ATP-sensitive K+-channels (K(ATP-channels to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release.

  14. Intracellular activity of the peptide antibiotic NZ2114: studies with Staphylococcus aureus and human THP-1 monocytes, and comparison with daptomycin and vancomycin

    DEFF Research Database (Denmark)

    Brinch, Karoline Sidelmann; Tulkens, Paul M; Van Bambeke, Francoise

    2010-01-01

    Staphylococcus aureus survives inside eukaryotic cells. Our objective was to assess the activity of NZ2114, a novel peptidic antibiotic, against intracellular S. aureus in comparison with established antistaphylococcal agents acting on the bacterial envelope with a distinct mechanism.......Staphylococcus aureus survives inside eukaryotic cells. Our objective was to assess the activity of NZ2114, a novel peptidic antibiotic, against intracellular S. aureus in comparison with established antistaphylococcal agents acting on the bacterial envelope with a distinct mechanism....

  15. Antibiotic activity and synergistic effect of antimicrobial peptide against pathogens from a patient with gallstones

    International Nuclear Information System (INIS)

    Park, Yoonkyung; Park, Soon Nang; Park, Seong-Cheol; Park, Joon Yong; Park, Yong Ha; Hahm, Joon Soo; Hahm, Kyung-Soo

    2004-01-01

    HP (2-20) is a peptide derived from the N-terminus of Helicobacter pylori ribosomal protein L1 that has been shown to have antimicrobial activity against various species of bacteria. When we tested the effects of HP (2-20), we found that this peptide displayed strong activity against pathogens from a patient with gallstones, but it did not have hemolytic activity against human erythrocytes. We also found that HP (2-20) had potent activity against cefazolin sodium-resistant bacterial cell lines, and that HP (2-20) and cefazolin sodium had synergistic effects against cell lines resistant to the latter. To investigate the mechanism of action of HP (2-20), we performed fluorescence activated flow cytometry using pathogens from the patient with gallstones. As determined by propidium iodide (PI) staining, pathogenic bacteria treated with HP (2-20) showed higher fluorescence intensity than untreated cells, similar to melittin-treated cells, and that HP (2-20) acted in an energy- and salt-dependent manner. Scanning electron microscopy showed that HP (2-20) caused significant morphological alterations in the cell surface of pathogens from the patient with gallstones. By determining their 16S rDNA sequences, we found that both the pathogens from the patient with gallstones and the cefazolin sodium-resistant cell lines showed 100% homology with sequences from Pseudomonas aeruginosa. Taken together, these results suggest that HP (2-20) has antibiotic activity and that it may be used as a lead drug for the treatment of acquired pathogens from patients with gallstones and antibiotic-resistant cell lines

  16. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Science.gov (United States)

    Wang, Zhejun; de la Fuente-Núñez, Cesar; Shen, Ya; Haapasalo, Markus; Hancock, Robert E W

    2015-01-01

    Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM), peptide 1018 was able to significantly (pbiofilm formation over 3 days. The activity of the peptide on preformed biofilms was found to be concentration-dependent since more than 60% of the total plaque biofilm cell population was killed by 10 μg/ml of peptide 1018 in 3 days, while at 5 μg/ml 50% of cells were dead and at 1 μg/ml the peptide triggered cell death in around 30% of the total bacterial population, as revealed by confocal microscopy. The presence of saliva did not affect peptide activity, since no statistically significant difference was found in the ability of peptide 1018 to kill oral biofilms using either saliva coated and non-saliva coated hydroxyapatite surfaces. Scanning electron microscopy experiments indicated that peptide 1018 induced cell lysis in plaque biofilms. Furthermore, combined treatment using peptide 1018 and chlorhexidine (CHX) increased the anti-biofilm activity of each compound compared to when these were used alone, resulting in >50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  17. Inhibitory mechanism of peptides and antibodies targeting murine urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Liu, Zhuo

    2012-01-01

    drugs, a detailed mechanistic understanding must be obtained. One peptide and two antibodies were studied in this thesis. First, an engineered cyclic peptide, mupain-1-16 with an unnatural amino acid in the P1 position and the sequence CPAYS[L-3-(N-Amidino-4-piperidyl)alanine]YLDC was investigated...... different conformational and inhibitory mechanisms both in vivo and in vitro. Their similar epitopes, but different functions revealed two different allosteric regulation mechanisms for antibodies binding to serine proteases. Both the peptidic inhibitors and the allosteric mechanisms of uPA are believed...

  18. Coiled-coil forming peptides for the induction of silver nanoparticles

    International Nuclear Information System (INIS)

    Božič Abram, Sabina; Aupič, Jana; Dražić, Goran; Gradišar, Helena; Jerala, Roman

    2016-01-01

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  19. Coiled-coil forming peptides for the induction of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Božič Abram, Sabina [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000 (Slovenia); Aupič, Jana [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Doctoral Programme in Chemical Sciences, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000 (Slovenia); Dražić, Goran [Laboratory for Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gradišar, Helena [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia); Jerala, Roman, E-mail: roman.jerala@ki.si [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia)

    2016-04-08

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  20. N-Formylated humanin activates both formyl peptide receptor-like 1 and 2

    International Nuclear Information System (INIS)

    Harada, Masataka; Habata, Yugo; Hosoya, Masaki; Nishi, Kazunori; Fujii, Ryo; Kobayashi, Makoto; Hinuma, Shuji

    2004-01-01

    We have discovered that humanin (HN) acts as a ligand for formyl peptide receptor-like 1 (FPRL1) and 2 (FPRL2). This discovery was based on our finding that HN suppressed forskolin-induced cAMP production in Chinese hamster ovary (CHO) cells expressing human FPRL1 (CHO-hFPRL1) or human FPRL2 (CHO-hFPRL2). In addition, we found that N-formylated HN (fHN) performed more potently as a ligand for FPRL1 than HN: in CHO-hFPRL1 cells, the effective concentration for the half-maximal response (EC 50 ) value of HN was 3.5 nM, while that of fHN was 0.012 nM. We demonstrated by binding experiments using [ 125 I]-W peptide that HN and fHN directly interacted with hFPRL1 on the membrane. In addition, we found that HN and fHN showed strong chemotactic activity for CHO-hFPRL1 and CHO-hFPRL2 cells. HN is known to have a protective effect against neuronal cell death. Our findings contribute to the understanding of the mechanism behind HN's function

  1. Calcium ions effectively enhance the effect of antisense peptide nucleic acids conjugated to cationic tat and oligoarginine peptides

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Pankratova, Stanislava; Nielsen, Peter E

    2005-01-01

    Cell-penetrating peptides have been widely used to improve cellular delivery of a variety of proteins and antisense agents. However, recent studies indicate that such cationic peptides are predominantly entering cells via an endosomal pathway. We now show that the nuclear antisense effect in He......La cells of a variety of peptide nucleic acid (PNA) peptide conjugates is significantly enhanced by addition of 6 mM Ca(2+) (as well as by the lysosomotrophic agent chloroquine). In particular, the antisense activities of Tat(48-60) and heptaarginine-conjugated PNAs were increased 44-fold and 8.5-fold......, respectively. Evidence is presented that the mechanism involves endosomal release. The present results show that Ca(2+) can be used as an effective enhancer for in vitro cellular delivery of cationic peptide-conjugated PNA oligomers, and also emphasize the significance of the endosomal escape route...

  2. How much of Virus-Specific CD8 T Cell Reactivity is Detected with a Peptide Pool when Compared to Individual Peptides?

    Directory of Open Access Journals (Sweden)

    Ramu A. Subbramanian

    2012-10-01

    Full Text Available Immune monitoring of T cell responses increasingly relies on the use of peptide pools. Peptides, when restricted by the same HLA allele, and presented from within the same peptide pool, can compete for HLA binding sites. What impact such competition has on functional T cell stimulation, however, is not clear. Using a model peptide pool that is comprised of 32 well-defined viral epitopes from Cytomegalovirus, Epstein-Barr virus, and Influenza viruses (CEF peptide pool, we assessed peptide competition in PBMC from 42 human subjects. The magnitude of the peptide pool-elicited CD8 T cell responses was a mean 79% and a median 77% of the sum of the CD8 T cell responses elicited by the individual peptides. Therefore, while the effect of peptide competition was evident, it was of a relatively minor magnitude. By studying the dose-response curves for individual CEF peptides, we show that several of these peptides are present in the CEF-pool at concentrations that are orders of magnitude in excess of what is needed for the activation threshold of the CD8 T cells. The presence of such T cells with very high functional avidity for the viral antigens can explain why the effect of peptide competition is relatively minor within the CEF-pool.

  3. Rosuvastatin ameliorates cognitive impairment in rats fed with high-salt and cholesterol diet via inhibiting acetylcholinesterase activity and amyloid beta peptide aggregation.

    Science.gov (United States)

    Husain, I; Akhtar, M; Abdin, M Zainul; Islamuddin, M; Shaharyar, M; Najmi, A K

    2018-04-01

    Amyloid beta (Aβ) peptide aggregation and cholinergic neurodegeneration are involved in the development of cognitive impairment. Therefore, in this article, we examined rosuvastatin (RSV), an oral hypolipidemic drug, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for the treatment of cognitive impairment. Molecular docking study was done to examine the affinity of RSV with Aβ 1-42 and AChE in silico. We also employed neurobehavioral activity tests, biochemical estimation, and histopathology to study the anti-Aβ 1-42 aggregation capability of RSV in vivo. Molecular docking study provided evidence that RSV has the best binding conformer at its receptor site or active site of an enzyme. The cognitive impairment in female Wistar rats was induced by high-salt and cholesterol diet (HSCD) ad libitum for 8 weeks. RSV ameliorated serum cholesterol level, AChE activity, and Aβ 1-42 peptide aggregations in HSCD induced cognitive impairment. In addition, RSV-treated rats showed greater scores in the open field (locomotor activity) test. Moreover, the histopathological studies in the hippocampus and cortex of rat brain also supported that RSV markedly reduced the cognitive impairment and preserved the normal histoarchitectural pattern of the hippocampus and cortex. Taken together, these data indicate that RSV may act as a dual inhibitor of AChE and Aβ 1-42 peptide aggregation, therefore suggesting a therapeutic strategy for cognitive impairment treatment.

  4. The antibacterial activity of peptides derived from human beta-2 glycoprotein I is inhibited by protein H and M1 protein from Streptococcus pyogenes

    NARCIS (Netherlands)

    Nilsson, Maria; Wasylik, Sylwia; Mörgelin, Matthias; Olin, Anders I.; Meijers, Joost C. M.; Derksen, Ronald H. W. M.; de Groot, Philip G.; Herwald, Heiko

    2008-01-01

    During the last years, the importance of antibacterial peptides has attracted considerable attention. We report here that peptides derived from the fifth domain of beta-2 glycoprotein I (beta(2)GPI), a human heparin binding plasma protein, have antibacterial activities against Gram-positive and

  5. Purification of labeled cyanogen bromide peptides of the alpha polypeptide from sodium ion and potassium ion activated adenosinetriphosphatase modified with N-[3H]ethylmaleimide

    International Nuclear Information System (INIS)

    Le, D.T.

    1986-01-01

    Sodium ion and potassium ion activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-[ 3 H]ethylmaleimide while it was poised in three different conformations, ostensibly E2-P, E2, and E1, respectively. These assignments were made from a consideration of the particular concentrations of ligands in the respective alkylation mixtures. After a 30-min reaction, the remaining enzymatic activity was found to vary among these three different samples from 90 to 30% of that of unalkylated controls. In all cases, the alpha polypeptide was purified and subjected to digestion with cyanogen bromide, and in each digest the same two distinct radioactive peptides were identified and purified by gel filtration on a column of Sephadex LH-60. The incorporation of N-[ 3 H]ethylmaleimide into one of these two peptides correlated closely with enzymatic inactivation, while the incorporation into the other was most extensive when the portion of the active site to which ATP binds was unoccupied. Alkylation of the residue within the latter peptide, however, does not result in inactivation of the enzyme. Both peptides were further purified by high-pressure liquid chromatography, and their amino-terminal sequences were determined by manual dansyl Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluoresceinyl 5'-isothiocyanate

  6. Treating autoimmune disorders with venom-derived peptides.

    Science.gov (United States)

    Shen, Bingzheng; Cao, Zhijian; Li, Wenxin; Sabatier, Jean-Marc; Wu, Yingliang

    2017-09-01

    The effective treatment of autoimmune diseases remains a challenge. Voltage-gated potassium Kv1.3 channels, which are expressed in lymphocytes, are a new therapeutic target for treating autoimmune disease. Consequently, Kv1.3 channel-inhibiting venom-derived peptides are a prospective resource for new drug discovery and clinical application. Area covered: Preclinical and clinical studies have produced a wealth of information on Kv1.3 channel-inhibiting venom-derived peptides, especially from venomous scorpions and sea anemones. This review highlights the advances in screening and design of these peptides with diverse structures and potencies. It focuses on representative strategies for improving peptide selectivity and discusses the preclinical research on those venom-derived peptides as well as their clinical developmental status. Expert opinion: Encouraging results indicate that peptides isolated from the venom of venomous animals are a large resource for discovering immunomodulators that act on Kv1.3 channels. Since the structural diversity of venom-derived peptides determines the variety of their pharmacological activities, the design and optimization of venom-peptides for improved Kv1.3 channel-specificity has been advanced through some representative strategies, such as peptide chemical modification, amino acid residue truncation and binding interface modulation. These advances should further accelerate research, development and the future clinical application of venom-derived peptides selectively targeting Kv1.3 channels.

  7. Cytotoxic and antioxidant capacity of camel milk peptides: Effects of isolated peptide on superoxide dismutase and catalase gene expression

    Directory of Open Access Journals (Sweden)

    Masoud Homayouni-Tabrizi

    2017-07-01

    Full Text Available Peptides from natural sources such as milk are shown to have a wide spectrum of biological activities. In this study, three peptides with antioxidant capacity were identified from camel milk protein hydrolysate. Pepsin and pancreatin were used for hydrolysis of milk proteins. Ultrafiltration and reverse-phase high-performance liquid chromatography were used for the concentration and purification of the hydrolysate, respectively. Sequences of the three peptides, which were determined by matrix-assisted laser desorption/ionization time-of-flight spectrophotometry, were LEEQQQTEDEQQDQL [molecular weight (MW: 1860.85 Da, LL-15], YLEELHRLNAGY (MW: 1477.63 Da, YY-11, and RGLHPVPQ (MW: 903.04 Da, RQ-8. The 3-(4,5-dimethylthia-zol-2-yl-2,5-diphenyltetrazolium bromide assay was used to evaluate the cytotoxicity of these chemically synthesized peptides against HepG2 cells. In vitro analysis showed antioxidant properties and radical scavenging activities of these peptides on 2,2-diphenyl-1-picrylhydrazyl, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid+, O2–, and OH– free radicals. HepG2 cells were treated with YY-11 peptide for 48 hours, and the expression of superoxide dismutase and catalase genes was examined using real-time polymerase chain reaction. The results revealed a significant increase in the expression of superoxide dismutase and catalase genes in treated HepG2 cells.

  8. Enantioselective Collision-Activated Dissociation of Gas-Phase Tryptophan Induced by Chiral Recognition of Protonated l-Alanine Peptides

    Science.gov (United States)

    Fujihara, Akimasa; Matsuyama, Hiroki; Tajiri, Michiko; Wada, Yoshinao; Hayakawa, Shigeo

    2017-06-01

    Enantioselective dissociation in the gas phase is important for enantiomeric enrichment and chiral transmission processes in molecular clouds regarding the origin of homochirality in biomolecules. Enantioselective collision-activated dissociation (CAD) of tryptophan (Trp) and the chiral recognition ability of l-alanine peptides ( l-Ala n ; n = 2-4) were examined using a linear ion trap mass spectrometer. CAD spectra of gas-phase heterochiral H+( d-Trp)( l-Ala n ) and homochiral H+( l-Trp)( l-Ala n ) noncovalent complexes were obtained as a function of the peptide size n. The H2O-elimination product was observed in CAD spectra of both heterochiral and homochiral complexes for n = 2 and 4, and in homochiral H+( l-Trp)( l-Ala3), indicating that the proton is attached to the l-alanine peptide, and H2O loss occurs from H+( l-Ala n ) in the noncovalent complexes. H2O loss did not occur in heterochiral H+( d-Trp)( l-Ala3), where NH3 loss and (H2O + CO) loss were the primary dissociation pathways. In heterochiral H+( d-Trp)( l-Ala3), the protonation site is the amino group of d-Trp, and NH3 loss and (H2O + CO) loss occur from H+( d-Trp). l-Ala peptides recognize d-Trp through protonation of the amino group for peptide size n = 3. NH3 loss and (H2O + CO) loss from H+( d-Trp) proceeds via enantioselective CAD in gas-phase heterochiral H+( d-Trp)( l-Ala3) at room temperature, whereas l-Trp dissociation was not observed in homochiral H+( l-Trp)( l-Ala3). These results suggest that enantioselective dissociation induced by chiral recognition of l-Ala peptides through protonation could play an important role in enantiomeric enrichment and chiral transmission processes of amino acids.

  9. Novel thrombopoietin mimetic peptides bind c-Mpl receptor: Synthesis, biological evaluation and molecular modeling.

    Science.gov (United States)

    Liu, Yaquan; Tian, Fang; Zhi, Dejuan; Wang, Haiqing; Zhao, Chunyan; Li, Hongyu

    2017-02-01

    Thrombopoietin (TPO) acts in promoting the proliferation of hematopoietic stem cells and by initiating specific maturation events in megakaryocytes. Now, TPO-mimetic peptides with amino acid sequences unrelated to TPO are of considerable pharmaceutical interest. In the present paper, four new TPO mimetic peptides that bind and activate c-Mpl receptor have been identified, synthesized and tested by Dual-Luciferase reporter gene assay for biological activities. The molecular modeling research was also approached to understand key molecular mechanisms and structural features responsible for peptide binding with c-Mpl receptor. The results presented that three of four mimetic peptides showed significant activities. In addition, the molecular modeling approaches proved hydrophobic interactions were the driven positive forces for binding behavior between peptides and c-Mpl receptor. TPO peptide residues in P7, P13 and P7' positions were identified by the analysis of hydrogen bonds and energy decompositions as the key ones for benefiting better biological activities. Our data suggested the synthesized peptides have considerable potential for the future development of stable and highly active TPO mimetic peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Lactoferricin B-derived peptides with inhibitory effects on ECE-dependent vasoconstriction.

    Science.gov (United States)

    Fernández-Musoles, Ricardo; López-Díez, José Javier; Torregrosa, Germán; Vallés, Salvador; Alborch, Enrique; Manzanares, Paloma; Salom, Juan B

    2010-10-01

    Endothelin-converting enzyme (ECE), a key peptidase in the endothelin (ET) system, cleaves inactive big ET-1 to produce active ET-1, which binds to ET(A) receptors to exert its vasoconstrictor and pressor effects. ECE inhibition could be beneficial in the treatment of hypertension. In this study, a set of eight lactoferricin B (LfcinB)-derived peptides, previously characterized in our laboratory as angiotensin-converting enzyme (ACE) inhibitory peptides, was examined for their inhibitory effects on ECE. In vitro inhibitory effects on ECE activity were assessed using both the synthetic fluorogenic peptide substrate V (FPS V) and the natural substrate big ET-1. To study vasoactive effects, an ex vivo functional assay was developed using isolated rabbit carotid artery segments. With FPS V, only four LfcinB-derived peptides induced inhibition of ECE activity, whereas the eight peptides showed ECE inhibitory effects with big ET-1 as substrate. Regarding the ex vivo assays, six LfcinB-derived peptides showed inhibition of big ET-1-induced, ECE-dependent vasoconstriction. A positive correlation between the inhibitory effects of LfcinB-derived peptides on ECE activity when using big ET-1 and the inhibitory effects on ECE-dependent vasoconstriction was shown. ECE-independent vasoconstriction induced by ET-1 was not affected, thus discarding effects of LfcinB-derived peptides on ET(A) receptors or intracellular signal transduction mechanisms. In conclusion, a combined in vitro and ex vivo method to assess the effects of potentially antihypertensive peptides on the ET system has been developed and applied to show the inhibitory effects on ECE-dependent vasoconstriction of six LfcinB-derived peptides, five of which were dual vasopeptidase (ACE/ECE) inhibitors. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Propensity of a single-walled carbon nanotube-peptide to mimic a KK10 peptide in an HLA-TCR complex

    Science.gov (United States)

    Feng, Mei; Bell, David R.; Zhou, Ruhong

    2017-12-01

    The application of nanotechnology to improve disease diagnosis, treatment, monitoring, and prevention is the goal of nanomedicine. We report here a theoretical study of a functionalized single-walled carbon nanotube (CNT) mimic binding to a human leukocyte antigen-T cell receptor (HLA-TCR) immune complex as a first attempt of a potential nanomedicine for human immunodeficiency virus (HIV) vaccine development. The carbon nanotube was coated with three arginine residues to imitate the HIV type 1 immunodominant viral peptide KK10 (gag 263-272: KRWIILGLNK), named CNT-peptide hereafter. Through molecular dynamics simulations, we explore the CNT-peptide and KK10 binding to an important HLA-TCR complex. Our results suggest that the CNT-peptide and KK10 bind comparably to the HLA-TCR complex, but the CNT-peptide forms stronger interactions with the TCR. Desorption simulations highlight the innate flexibility of KK10 over the CNT-peptide, resulting in a slightly higher desorption energy required for KK10 over the CNT-peptide. Our findings indicate that the designed CNT-peptide mimic has favorable propensity to activate TCR pathways and should be further explored to understand therapeutic potential.

  12. Peptides as Therapeutic Agents for Dengue Virus.

    Science.gov (United States)

    Chew, Miaw-Fang; Poh, Keat-Seong; Poh, Chit-Laa

    2017-01-01

    Dengue is an important global threat caused by dengue virus (DENV) that records an estimated 390 million infections annually. Despite the availability of CYD-TDV as a commercial vaccine, its long-term efficacy against all four dengue virus serotypes remains unsatisfactory. There is therefore an urgent need for the development of antiviral drugs for the treatment of dengue. Peptide was once a neglected choice of medical treatment but it has lately regained interest from the pharmaceutical industry following pioneering advancements in technology. In this review, the design of peptide drugs, antiviral activities and mechanisms of peptides and peptidomimetics (modified peptides) action against dengue virus are discussed. The development of peptides as inhibitors for viral entry, replication and translation is also described, with a focus on the three main targets, namely, the host cell receptors, viral structural proteins and viral non-structural proteins. The antiviral peptides designed based on these approaches may lead to the discovery of novel anti-DENV therapeutics that can treat dengue patients.

  13. Food matrix interaction and bioavailability of bioactive peptides

    NARCIS (Netherlands)

    Udenigwe, Chibuike C.; Fogliano, Vincenzo

    2017-01-01

    Several peptides derived from food protein digestion possess regulatory functions that can lead to health promotion. Such peptides can be used as nutraceuticals and their inclusion as active components of functional food products is increasingly gaining attention. However, physiological evidence to

  14. Antiparasitic activities of acridone alkaloids from Swinglea glutinosa (Bl.) Merr

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Djalma A.P. dos; Vieira, Paulo C; Silva, M. Fatima das G.F. da; Fernandes, Joao B [Universidade Federal de Sao Carlos, SP (Brazil). Dept. de Quimica; Rattray, Lauren; Croft, Simon L [London School of Hygiene and Tropical Medicine, London (United Kingdom). Dept. of Infectious and Tropical Diseases

    2009-07-01

    Eleven acridone alkaloids isolated from Swinglea glutinosa (Bl.) Merr. were examined for in vitro activity against chloroquine-sensitive Plasmodium falciparum 3D7, Trypanosoma brucei rhodesiense STIB900 and Leishmania donovani L82. An assay with KB cells was developed in order to compare in vitro toxicity of alkaloids with the selective action on the parasites. Nine of the compounds had IC{sub 50} values ranging from 0.3 to 11.6 {mu}M against P. falciparum. In contrast, a small number of compounds showed significant activity against T. brucei rhodesiense and none had activity against L. donovani. Among the alkaloids three had IC{sub 50} < 1.0 {mu}M against P. falciparum, whereas against T. b. rhodesiense five had IC{sub 50} < 10 {mu}M. The characterization of the acridone alkaloids, 1,3,5-trihydroxy-4-methoxy-10-methyl-2,8-bis(3-methylbut-2-enyl)acridin-9 (10H)-one (1), 2,3-dihydro-4,9-dihydroxy-2-(2-hydroxypropan-2-yl)-11-methoxy-10-methylfuro [3,2-b] acridin-5(10H)-one (2) and 3,4-dihydro-3,5,8-trihydroxy-6-methoxy-2,2,7-trimethyl-2Hpyrano[ 2,3-a]acridin-12(7H)-one (3), is discussed, as well as the structure-activity relationship of all compounds assayed. Isolation and spectral data of alkaloids 1-3 are described for the first time although their cytotoxicities to cancer cells have been described before. (author)

  15. Cell-penetrating antimicrobial peptides - prospectives for targeting intracellular infections

    DEFF Research Database (Denmark)

    Bahnsen, Jesper S; Franzyk, Henrik; Sayers, Edward J

    2015-01-01

    PURPOSE: To investigate the suitability of three antimicrobial peptides (AMPs) as cell-penetrating antimicrobial peptides. METHODS: Cellular uptake of three AMPs (PK-12-KKP, SA-3 and TPk) and a cell-penetrating peptide (penetratin), all 5(6)-carboxytetramethylrhodamine-labeled, were tested in He......La WT cells and analyzed by flow cytometry and confocal microscopy. Furthermore, the effects of the peptides on eukaryotic cell viability as well as their antimicrobial effect were tested. In addition, the disrupting ability of the peptides in the presence of bilayer membranes of different composition...... the cellular viability to an unacceptable degree. TPk showed acceptable uptake efficiency, high antimicrobial activity and relatively low toxicity, and it is the best potential lead peptide for further development....

  16. Comparative analysis of biological activities of Der p I-derived peptides on Fc epsilon receptor-bearing cells from Dermatophagoides pteronyssinus-sensitive patients.

    Science.gov (United States)

    Jeannin, P; Pestel, J; Bossus, M; Lassalle, P; Tartar, A; Tonnel, A B

    1993-01-01

    The ability of four uncoupled synthetic peptides (p52-71, p117-133, p176-187, p188-199) derived from Der p I, a major allergen from the house dust mite Dermatophagoides pteronyssinus (Dpt) to stimulate Fc epsilon R+ cells from Dpt-sensitive patients was comparatively analysed. Each free peptide may specifically stimulate basophils (Fc epsilon RI+ cells) and platelets (Fc epsilon RII+ cells) from patients with significant levels of anti-Der p I IgE antibodies; p52-71 and p117-133 appear the best cell stimulation inducers. Both concentration-dependent biological activities of Der p I-peptide on Fc epsilon R+ cells are enhanced by coupling peptide to a carrier (as human serum albumin). Interestingly each Der p I-sensitive patient tested presents an individual pattern of response to peptide. Thus, from our results it appears that different Der p I sequences could be involved in the immune response to Der p I. PMID:7682161

  17. Comparative analysis of biological activities of Der p I-derived peptides on Fc epsilon receptor-bearing cells from Dermatophagoides pteronyssinus-sensitive patients.

    Science.gov (United States)

    Jeannin, P; Pestel, J; Bossus, M; Lassalle, P; Tartar, A; Tonnel, A B

    1993-04-01

    The ability of four uncoupled synthetic peptides (p52-71, p117-133, p176-187, p188-199) derived from Der p I, a major allergen from the house dust mite Dermatophagoides pteronyssinus (Dpt) to stimulate Fc epsilon R+ cells from Dpt-sensitive patients was comparatively analysed. Each free peptide may specifically stimulate basophils (Fc epsilon RI+ cells) and platelets (Fc epsilon RII+ cells) from patients with significant levels of anti-Der p I IgE antibodies; p52-71 and p117-133 appear the best cell stimulation inducers. Both concentration-dependent biological activities of Der p I-peptide on Fc epsilon R+ cells are enhanced by coupling peptide to a carrier (as human serum albumin). Interestingly each Der p I-sensitive patient tested presents an individual pattern of response to peptide. Thus, from our results it appears that different Der p I sequences could be involved in the immune response to Der p I.

  18. Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.

    Science.gov (United States)

    Nomura, Wataru; Hashimoto, Chie; Suzuki, Takaharu; Ohashi, Nami; Fujino, Masayuki; Murakami, Tsutomu; Yamamoto, Naoki; Tamamura, Hirokazu

    2013-08-01

    To date, several HIV-1 fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of an HIV-1 envelope protein gp41 have been discovered. We have shown that a synthetic peptide mimetic of a trimer form of the CHR-derived peptide C34 has potent inhibitory activity against the HIV-1 fusion mechanism, compared to a monomer C34 peptide. The present study revealed that a dimeric form of C34 is evidently structurally critical for fusion inhibitors, and that the activity of multimerized CHR-derived peptides in fusion inhibition is affected by the properties of the unit peptides C34, SC34EK, and T20. The fluorescence-based study suggested that the N36-interactive sites of the C34 trimer, including hydrophobic residues, are exposed outside the trimer and that trimerization of C34 caused a remarkable increase in fusion inhibitory activity. The present results could be useful in the design of fusion inhibitors against viral infections which proceed via membrane fusion with host cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Antimicrobial activity and self-assembly behavior of antimicrobial peptide chensinin-1b with lipophilic alkyl tails.

    Science.gov (United States)

    Dong, Weibing; Liu, Ziang; Sun, Liying; Wang, Cui; Guan, Yue; Mao, Xiaoman; Shang, Dejing

    2018-04-25

    The threshold hydrophobicity and amphipathic structure of the peptidic chain are important for the biological function of antimicrobial peptides. Chensinin-1b exhibits broad-spectrum bactericidal activity with no hemolytic activity but has almost no anticancer ability against the selected cancer cell lines. In this study, the conjugation of aliphatic acid was designed with different lengths of N-terminal of chensinin-1b, the antimicrobial activity of the resulting lipo-chensinin-1b was examined, in which OA-C1b showed much stronger activity than those of cheninin-1b and the other two lipopeptides. The membrane interaction between the lipo-chensinin-1b and real/mimetic bacterial cell membrane was investigated. Electrostatic interactions between the lipo-chensinin-1b and lipopolysaccharides were detected by isothermal titration calorimetry and the binding affinities were 10.83 μM, 8.77 μM and 7.35 μM for OA-C1b, LA-C1b and PA-C1b, respectively. The antimicrobial activity and membrane interaction ability of the lipo-chensinin-1b followed this order: OA-C1b > chensinin-1b > LA-C1b > PA-C1b. In addition, the lipo-chensinin-1b also exhibited lytic activity against various cancer cells and demonstrated the ability to inhibit LPS-stimulated cytokine release from human U937 cells. The CD spectra indicated that the helical or β-strands contents were existed as the main components in TFE or LPS solution, respectively. The self-assembly behavior was trigged by the solution pH and affected by the length of carbon chain, in which chensinin-1b, OA-C1b, LA-C1b and PA-C1b formed micelles at neutral pH and the micelle size increased for chensinin-1b, OA-C1b and LA-C1b. PA-C1b formed nanofibers in an acidic environment indicated by TEM experiments, and the peptides formed aggregates in an acidic environment and re-dissociated when the pH was adjusted to neutral. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Selective peptide bond hydrolysis of cysteine peptides in the presence of Ni(II) ions.

    Science.gov (United States)

    Protas, Anna Maria; Bonna, Arkadiusz; Kopera, Edyta; Bal, Wojciech

    2011-01-01

    Recently, we described a sequence-specific R1-(Ser/Thr) peptide bond hydrolysis reaction in peptides of a general sequence R1-(Ser/Thr)-Xaa-His-Zaa-R, which occurs in the presence of Ni(II) ions [A. Krężel, E. Kopera, A. M. Protas, A. Wysłouch-Cieszyńska, J. Poznański, W. Bal, J. Am. Chem. Soc. 132 (2010) 3355-3366]. In this study we explored the possibility of substituting the Ser/Thr and the His residues, necessary for the reaction to occur according to the Ni(II)-assisted acyl shift reaction mechanism, with Cys residues. We tested this concept by synthesizing three homologous peptides: R1-Ser-Arg-Cys-Trp-R2, R1-Cys-Arg-His-Trp-R2, and R1-Cys-Arg-Cys-Trp-R2, and the R1-Ser-Arg-His-Trp-R2 peptide as comparator (R1 and R2 were CH3CO-Gly-Ala and Lys-Phe-Leu-NH2, respectively). We studied their hydrolysis in the presence of Ni(II) ions, under anaerobic conditions and in the presence of TCEP as a thiol group antioxidant. We measured hydrolysis rates using HPLC and identified products of reaction using electrospray mass spectrometry. Potentiometry and UV-vis spectroscopy were used to assess Ni(II) complexation. We demonstrated that Ni(II) is not compatible with the Cys substitution of the Ser/Thr acyl acceptor residue, but the substitution of the Ni(II) binding His residue with a Cys yields a peptide susceptible to Ni(II)-related hydrolysis. The relatively high activity of the R1-Ser-Arg-Cys-Trp-R2 peptide at pH 7.0 suggests that this peptide and its Cys-containing analogs might be useful in practical applications of Ni(II)-dependent peptide bond hydrolysis. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Nonribosomal biosynthesis of backbone-modified peptides

    Science.gov (United States)

    Niquille, David L.; Hansen, Douglas A.; Mori, Takahiro; Fercher, David; Kries, Hajo; Hilvert, Donald

    2018-03-01

    Biosynthetic modification of nonribosomal peptide backbones represents a potentially powerful strategy to modulate the structure and properties of an important class of therapeutics. Using a high-throughput assay for catalytic activity, we show here that an L-Phe-specific module of an archetypal nonribosomal peptide synthetase can be reprogrammed to accept and process the backbone-modified amino acid (S)-β-Phe with near-native specificity and efficiency. A co-crystal structure with a non-hydrolysable aminoacyl-AMP analogue reveals the origins of the 40,000-fold α/β-specificity switch, illuminating subtle but precise remodelling of the active site. When the engineered catalyst was paired with downstream module(s), (S)-β-Phe-containing peptides were produced at preparative scale in vitro (~1 mmol) and high titres in vivo (~100 mg l-1), highlighting the potential of biosynthetic pathway engineering for the construction of novel nonribosomal β-frameworks.

  2. Spermicidal Activity of the Safe Natural Antimicrobial Peptide Subtilosin

    Directory of Open Access Journals (Sweden)

    Michael L. Chikindas

    2008-10-01

    Full Text Available Bacterial vaginosis (BV, a condition affecting millions of women each year, is primarily caused by the gram-variable organism Gardnerella vaginalis. A number of organisms associated with BV cases have been reported to develop multidrug resistance, leading to the need for alternative therapies. Previously, we reported the antimicrobial peptide subtilosin has proven antimicrobial activity against G. vaginalis, but not against the tested healthy vaginal microbiota of lactobacilli. After conducting tissue sensitivity assays using an ectocervical tissue model, we determined that human cells remained viable after prolonged exposures to partially-purified subtilosin, indicating the compound is safe for human use. Subtilosin was shown to eliminate the motility and forward progression of human spermatozoa in a dose-dependent manner, and can therefore be considered a general spermicidal agent. These results suggest subtilosin would be a valuable component in topical personal care products aimed at contraception and BV prophylaxis and treatment.

  3. Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP.

    Science.gov (United States)

    Lisy, Ondrej; Huntley, Brenda K; McCormick, Daniel J; Kurlansky, Paul A; Burnett, John C

    2008-07-01

    Our aim was to design, synthesize and test in vivo and in vitro a new chimeric peptide that would combine the beneficial properties of 2 distinct natriuretic peptides with a biological profile that goes beyond native peptides. Studies have established the beneficial vascular and antiproliferative properties of C-type natriuretic peptide (CNP). While lacking renal actions, CNP is less hypotensive than the cardiac peptides atrial natriuretic peptide and B-type natriuretic peptide but unloads the heart due to venodilation. Dendroaspis natriuretic peptide is a potent natriuretic and diuretic peptide that is markedly hypotensive and functions via a separate guanylyl cyclase receptor compared with CNP. Here we engineered a novel chimeric peptide CD-NP that represents the fusion of the 22-amino acid peptide CNP together with the 15-amino acid linear C-terminus of Dendroaspis natriuretic peptide. We also determined in vitro in cardiac fibroblasts cyclic guanosine monophosphate-activating and antiproliferative properties of CD-NP. Our studies demonstrate in vivo that CD-NP is natriuretic and diuretic, glomerular filtration rate enhancing, cardiac unloading, and renin inhibiting. CD-NP also demonstrates less hypotensive properties when compared with B-type natriuretic peptide. In addition, CD-NP in vitro activates cyclic guanosine monophosphate and inhibits cardiac fibroblast proliferation. The current findings advance an innovative design strategy in natriuretic peptide drug discovery and development to create therapeutic peptides with favorable properties that may be preferable to those associated with native natriuretic peptides.

  4. Comparison of Cytotoxic Activity in Leukemic Lineages Reveals Important Features of β-Hairpin Antimicrobial Peptides.

    Science.gov (United States)

    Buri, Marcus V; Torquato, Heron F Vieira; Barros, Carlos Castilho; Ide, Jaime S; Miranda, Antonio; Paredes-Gamero, Edgar J

    2017-07-01

    Several reports described different modes of cell death triggered by antimicrobial peptides (AMPs) due to direct effects on membrane disruption, and more recently by apoptosis and necrosis-like patterns. Cytotoxic curves of four β-hairpin AMPs (gomesin, protegrin, tachyplesin, and polyphemusin) were obtained from several human leukemic lineages and normal monocytes and Two cell lines were then selected based on their cytotoxic sensitivity. One was sensitive to AMPs (K562) and the other resistant (KG-1) and their effect compared between these lineages. Thus, these lineages were chosen to further investigate biological features related with their cytotoxicities to AMPs. Stimulation with AMPs produced cell death, with activation of caspase-3, in K562 lineage. Increase on the fluidity of plasmatic membrane by reducing cholesterol potentiated cytotoxicity of AMPs in both lineages. Quantification of internal and external gomesin binding to the cellular membrane of both K562 and KG-1 cells showed that more peptide is accumulated inside of K562 cells. Additionally, evaluation of multi-drug resistant pumps activity showed that KG-1 has more activity than K562 lineage. A comparison of intrinsic gene patterns showed great differences between K562 and KG-1, but stimulation with gomesin promoted few changes in gene expression patterns. Differences in internalization process through the plasma membrane, multidrug resistance pumps activity, and gene expression pattern are important features to AMPs regulated cell death. J. Cell. Biochem. 118: 1764-1773, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Interaction of MreB-derived antimicrobial peptides with membranes.

    Science.gov (United States)

    Saikia, Karabi; Chaudhary, Nitin

    2018-03-25

    Antimicrobial peptides are critical components of defense systems in living forms. The activity is conferred largely by the selective membrane-permeabilizing ability. In our earlier work, we derived potent antimicrobial peptides from the 9-residue long, N-terminal amphipathic helix of E. coli MreB protein. The peptides display broad-spectrum activity, killing not only Gram-positive and Gram-negative bacteria but opportunistic fungus, Candida albicans as well. These results proved that membrane-binding stretches of bacterial proteins could turn out to be self-harming when applied from outside. Here, we studied the membrane-binding and membrane-perturbing potential of these peptides. Steady-state tryptophan fluorescence studies with tryptophan extended peptides, WMreB 1-9 and its N-terminal acetylated analog, Ac-WMreB 1-9 show preferential binding to negatively-charged liposomes. Both the peptides cause permeabilization of E. coli inner and outer-membranes. Tryptophan-lacking peptides, though permeabilize the outer-membrane efficiently, little permeabilization of the inner-membrane is observed. These data attest membrane-destabilization as the mechanism of rapid bacterial killing. This study is expected to motivate the research in identifying microbes' self-sequences to combat them. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. A new pro-migratory activity on human myogenic precursor cells for a synthetic peptide within the E domain of the mechano growth factor

    International Nuclear Information System (INIS)

    Mills, Philippe; Lafreniere, Jean-Francois; Benabdallah, Basma Fattouma; El Fahime, El Mostafa; Tremblay, Jacques-P.

    2007-01-01

    Duchenne muscular dystrophy (DMD) is an inherited disease that leads to progressive muscle wasting. Myogenic precursor cell transplantation is an approach that can introduce the normal dystrophin gene in the muscle fibers of the patients. Unfortunately, these myogenic precursor cells do not migrate well in the muscle and thus many injections have to be done to enable a good graft success. Recent reports have shown that there is extensive splicing of the IGF-1 gene in muscles. The MGF isoform contains a C-terminal 24 amino acids peptide in the E domain (MGF-Ct24E) that has intrinsic properties. It can promote the proliferation while delaying the differentiation of C 2 C 12 cells. Here, we demonstrated that this synthetic peptide is a motogenic factor for human precursor myogenic cells in vitro and in vivo. Indeed, MGF-Ct24E peptide can modulate members of the fibrinolytic and metalloproteinase systems, which are implicated in the migration of myogenic cells. MGF-Ct24E peptide enhances the expression of u-PA, u-PAR and MMP-7 while reducing PAI-1 activity. Moreover, it has no effect on the gelatinases MMP-2 and -9. Those combined effects can favour cell migration. Finally, we present some results suggesting that the MGF-Ct24E peptide induces these cell responses through a mechanism that does not involve the IGF-1 receptor. Thus, this MGF-Ct24E peptide has a new pro-migratory activity on human myogenic precursor cells that may be helpful in the treatment of DMD. Those results reinforce the possibility that the IGF-1Ec isoform may produce an E domain peptide that can act as a cytokine

  7. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  8. Membrane-tethered peptides patterned after the TRP domain (TRPducins) selectively inhibit TRPV1 channel activity.

    Science.gov (United States)

    Valente, Pierluigi; Fernández-Carvajal, Asia; Camprubí-Robles, María; Gomis, Ana; Quirce, Susana; Viana, Félix; Fernández-Ballester, Gregorio; González-Ros, José M; Belmonte, Carlos; Planells-Cases, Rosa; Ferrer-Montiel, Antonio

    2011-05-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is a thermosensory receptor implicated in diverse physiological and pathological processes. The TRP domain, a highly conserved region in the C terminus adjacent to the internal channel gate, is critical for subunit tetramerization and channel gating. Here, we show that cell-penetrating, membrane-anchored peptides patterned after this protein domain are moderate and selective TRPV1 antagonists both in vitro and in vivo, blocking receptor activity in intact rat primary sensory neurons and their peripheral axons with mean decline time of 30 min. The most potent lipopeptide, TRP-p5, blocked all modes of TRPV1 gating with micromolar efficacy (IC(50)100 μM). TRP-p5 did not affect the capsaicin sensitivity of the vanilloid receptor. Our data suggest that TRP-p5 interferes with protein-protein interactions at the level of the TRP domain that are essential for the "conformational" change that leads to gate opening. Therefore, these palmitoylated peptides, which we termed TRPducins, are noncompetitive, voltage-independent, sequence-specific TRPV1 blockers. Our findings indicate that TRPducin-like peptides may embody a novel molecular strategy that can be exploited to generate a selective pharmacological arsenal for the TRP superfamily of ion channels.

  9. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets

    Directory of Open Access Journals (Sweden)

    Carmela eGiordano

    2014-04-01

    Full Text Available Various ketogenic diet (KD therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs. In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the

  10. Exploitation of the Ornithine Effect Enhances Characterization of Stapled and Cyclic Peptides

    Science.gov (United States)

    Crittenden, Christopher M.; Parker, W. Ryan; Jenner, Zachary B.; Bruns, Kerry A.; Akin, Lucas D.; McGee, William M.; Ciccimaro, Eugene; Brodbelt, Jennifer S.

    2016-05-01

    A method to facilitate the characterization of stapled or cyclic peptides is reported via an arginine-selective derivatization strategy coupled with MS/MS analysis. Arginine residues are converted to ornithine residues through a deguanidination reaction that installs a highly selectively cleavable site in peptides. Upon activation by CID or UVPD, the ornithine residue cyclizes to promote cleavage of the adjacent amide bond. This Arg-specific process offers a unique strategy for site-selective ring opening of stapled and cyclic peptides. Upon activation of each derivatized peptide, site-specific backbone cleavage at the ornithine residue results in two complementary products: the lactam ring-containing portion of the peptide and the amine-containing portion. The deguanidination process not only provides a specific marker site that initiates fragmentation of the peptide but also offers a means to unlock the staple and differentiate isobaric stapled peptides.

  11. Cyclic peptides as potential therapeutic agents for skin disorders.

    Science.gov (United States)

    Namjoshi, Sarika; Benson, Heather A E

    2010-01-01

    There is an increasing understanding of the role of peptides in normal skin function and skin disease. With this knowledge, there is significant interest in the application of peptides as therapeutics in skin disease or as cosmeceuticals to enhance skin appearance. In particular, antimicrobial peptides and those involved in inflammatory processes provide options for the development of new therapeutic directions in chronic skin conditions such as psoriasis and dermatitis. To exploit their potential, it is essential that these peptides are delivered to their site of action in active form and in sufficient quantity to provide the desired effect. Many polymers permeate the skin poorly and are vulnerable to enzymatic degradation. Synthesis of cyclic peptide derivatives can substantially alter the physicochemical characteristics of the peptide with the potential to improve its skin permeation. In addition, cyclization can stabilize the peptide structure and thereby increase its stability. This review describes the role of cyclic peptides in the skin, examples of current cyclic peptide therapeutic products, and the potential for cyclic peptides as dermatological therapeutics and cosmeceuticals.

  12. Brazilian Kefir-Fermented Sheep's Milk, a Source of Antimicrobial and Antioxidant Peptides.

    Science.gov (United States)

    de Lima, Meire Dos Santos Falcão; da Silva, Roberto Afonso; da Silva, Milena Fernandes; da Silva, Paulo Alberto Bezerra; Costa, Romero Marcos Pedrosa Brandão; Teixeira, José António Couto; Porto, Ana Lúcia Figueiredo; Cavalcanti, Maria Taciana Holanda

    2017-12-28

    Fermented milks are a source of bioactive peptides and may be considered as functional foods. Among these, sheep's milk fermented with kefir has not been widely studied and its most relevant properties need to be more thoroughly characterized. This research study is set out to investigate and evaluate the antioxidant and antimicrobial properties of peptides from fermented sheep's milk in Brazil when produced by using kefir. For this, the chemical and microbiological composition of the sheep's milk before and after the fermentation was evaluated. The changes in the fermented milk and the peptides extracted before the fermentation and in the fermented milk during its shelf life were verified. The antimicrobial and antioxidant activities of the peptides from the fermented milk were evaluated and identified according to the literature. The physicochemical properties and mineral profile of the fermented milk were like those of fresh milk. The peptide extract presented antimicrobial activity and it was detected that 13 of the 46 peptides were able to inhibit the growth of pathogenic microorganisms. A high antioxidant activity was observed in the peptides extracted from fermented milk (3.125 mg/mL) on the 28th day of storage. Two fractions displayed efficient radical scavenging properties by DPPH and ABTS methods. At least 11 peptides distributed in the different fractions were identified by tandem mass spectrometry. This sheep's milk fermented by Brazilian kefir grains, which has antioxidant and antimicrobial activities and probiotic microorganisms, is a good candidate for further investigation as a source for bioactive peptides. The fermentation process was thus a means by which to produce potential bioactive peptides.

  13. CHARACTERIZATION AND ANTIPARASITIC ACTIVITY OF BENZOPHENONE THIOSEMICARBAZONES ON Trypanosoma brucei brucei

    Directory of Open Access Journals (Sweden)

    Georges C. Accrombessi

    2011-02-01

    Full Text Available The structure of four synthesized thiosemicarbazones, substituted or not, of benzophenone has been confirmed by spectrometrical analysis IR, NMR 1H and 13C. Their anti-trypanosomal activities were evaluated on Trypanosoma brucei brucei. Among these compounds, benzophenone 4 phenyl-3-thiosemicarbazone 4 has the highest activity with the half-inhibitory concentration (IC50 = 8.48 micromolar (µM. Benzophenone 4-methyl-3-thiosemicarbazone 3 and benzophenone thiosemicarbazone 1 showed moderate anti-trypanosomal activity with IC50 values equal to 23.27 µM and 67.17 µM respectively. Benzophenone 2 methyl-3-thiosemicarbazone 2 showed no activity up to IC50 = 371.74 µM.

  14. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Science.gov (United States)

    Prashar, Vishal; Bihani, Subhash; Das, Amit; Ferrer, Jean-Luc; Hosur, Madhusoodan

    2009-11-17

    It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  15. Design and Engineering Strategies for Synthetic Antimicrobial Peptides

    Science.gov (United States)

    Tossi, Alessandro

    Thousands of antimicrobial peptides (AMPs) of prokaryotic, fungal, plant, or animal origin have been identified, and their potential as lead compounds for the design of novel therapeutic agents in the treatment of infection, for stimulating the immune system, or in countering septic shock has been widely recognized. Added to this is their possible use in prophylaxis of infectious diseases for animal or plant protection, for disinfection of surgical instruments or industrial surfaces, and for food preservation among other commercially important applications. Since the early eighties, AMPs have been subject to a vast number of studies aimed at understanding what determines their potency and spectrum of activities against bacterial or fungal pathogens, and at maximizing these while limiting cytotoxic activities toward host cells. Much research has also been directed toward understanding specific mechanisms of action underlying the antimicrobial activity and selectivity, to be able to redesign the peptides for optimal performance. A central theme in the mode of action of many AMPs is their dynamic interaction with biological membranes, which involves various properties of these peptides such as, among others, surface hydrophobicity and polarity, charge, structure, and induced conformational variations. These features are often intimately interconnected so that engineering peptides to independently adjust any one property in particular is not an easy task. However, solid-phase peptide synthesis allows the use of a large repertoire of nonproteinogenic amino acids that can be used in the rational design of peptides to finely tune structural and physicochemical properties and precisely probe structure-function relationships.

  16. Anti-fatigue activity of sea cucumber peptides prepared from Stichopus japonicus in an endurance swimming rat model.

    Science.gov (United States)

    Ye, Jing; Shen, Caihong; Huang, Yayan; Zhang, Xueqin; Xiao, Meitian

    2017-10-01

    Sea cucumber (Stichopus japonicus) is a well-known nutritious and luxurious seafood in Asia which has attracted increasing attention because of its nutrition and bioactivities in recent years. In this study, the anti-fatigue activity of sea cucumber peptides (SCP) prepared from S. japonicus was evaluated in a load-induced endurance swimming model. The SCP prepared in this study was mainly made up of low-molecular-weight peptides (fatigue was significantly improved by SCP treatment. Meanwhile, the remarkable alterations of energy metabolic markers, antioxidant enzymes, antioxidant capacity and oxidative stress biomarkers were normalized. Moreover, administration of SCP could modulate alterations of inflammatory cytokines and downregulate the overexpression of TRL4 and NF-κB. SCP has anti-fatigue activity and it exerted its anti-fatigue effect probably through normalizing energy metabolism as well as alleviating oxidative damage and inflammatory responses. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. [Advances of tumor targeting peptides drug delivery system with pH-sensitive activities].

    Science.gov (United States)

    Ma, Yin-yun; Li, Li; Huang, Hai-feng; Gou, San-hu; Ni, Jing-man

    2016-05-01

    The pH-sensitive peptides drug delivery systems, which target to acidic extracellular environment of tumor tissue, have many advantages in drug delivery. They exhibit a high specificity to tumor and low cytotoxicity, which significantly increase the efficacy of traditional anti-cancer drugs. In recent years the systems have received a great attention. The pH-sensitive peptides drug delivery systems can be divided into five types according to the difference in pH-responsive mechanism,type of peptides and carrier materials. This paper summarizes the recent progresses in the field with a focus on the five types of pH-sensitive peptides in drug delivery systems. This may provide a guideline to design and application of tumor targeting drugs.

  18.  Pleiotropic action of proinsulin C-peptid

    Directory of Open Access Journals (Sweden)

    Michał Usarek

    2012-03-01

    Full Text Available  Proinsulin C-peptide, released in equimolar amounts with insulin by pancreatic β cells, since its discovery in 1967 has been thought to be devoid of biological functions apart from correct insulin processing and formation of disulfide bonds between A and B chains. However, in the last two decades research has brought a substantial amount of data indicating a crucial role of C-peptide in regulating various processes in different types of cells and organs. C-peptide acts presumably via either G-protein-coupled receptor or directly inside the cell, after being internalized. However, a receptor binding this peptide has not been identified yet. This peptide ameliorates pathological changes induced by type 1 diabetes mellitus, including glomerular hyperfiltration, vessel endothelium inflammation and neuron demyelinization. In diabetic patients and diabetic animal models, C-peptide substitution in physiological doses improves the functional and structural properties of peripheral neurons and protects against hyperglycemia-induced apoptosis, promoting neuronal development, regeneration and cell survival. Moreover, it affects glycogen synthesis in skeletal muscles. In vitro C-peptide promotes disaggregation of insulin oligomers, thus enhancing its bioavailability and effects on metabolism. There are controversies concerning the biological action of C-peptide, particularly with respect to its effect on Na /K -ATPase activity. Surprisingly, the excess of circulating peptide associated with diabetes type 2 contributes to atherosclerosis development. In view of these observations, long-term, large-scale clinical investigations using C-peptide physiological doses need to be conducted in order to determine safety and health outcomes of long-term administration of C-peptide to diabetic patients.

  19. Double quick, double click reversible peptide "stapling".

    Science.gov (United States)

    Grison, Claire M; Burslem, George M; Miles, Jennifer A; Pilsl, Ludwig K A; Yeo, David J; Imani, Zeynab; Warriner, Stuart L; Webb, Michael E; Wilson, Andrew J

    2017-07-01

    The development of constrained peptides for inhibition of protein-protein interactions is an emerging strategy in chemical biology and drug discovery. This manuscript introduces a versatile, rapid and reversible approach to constrain peptides in a bioactive helical conformation using BID and RNase S peptides as models. Dibromomaleimide is used to constrain BID and RNase S peptide sequence variants bearing cysteine (Cys) or homocysteine ( h Cys) amino acids spaced at i and i + 4 positions by double substitution. The constraint can be readily removed by displacement of the maleimide using excess thiol. This new constraining methodology results in enhanced α-helical conformation (BID and RNase S peptide) as demonstrated by circular dichroism and molecular dynamics simulations, resistance to proteolysis (BID) as demonstrated by trypsin proteolysis experiments and retained or enhanced potency of inhibition for Bcl-2 family protein-protein interactions (BID), or greater capability to restore the hydrolytic activity of the RNAse S protein (RNase S peptide). Finally, use of a dibromomaleimide functionalized with an alkyne permits further divergent functionalization through alkyne-azide cycloaddition chemistry on the constrained peptide with fluorescein, oligoethylene glycol or biotin groups to facilitate biophysical and cellular analyses. Hence this methodology may extend the scope and accessibility of peptide stapling.

  20. Antioxidant and Anti-Inflammatory Activities of Hydrolysates and Peptide Fractions Obtained by Enzymatic Hydrolysis of Selected Heat-Treated Edible Insects

    OpenAIRE

    Zielińska, Ewelina; Baraniak, Barbara; Karaś, Monika

    2017-01-01

    This study investigated the effect of heat treatment of edible insects on antioxidant and anti-inflammatory activities of peptides obtained by in vitro gastrointestinal digestion and absorption process thereof. The antioxidant potential of edible insect hydrolysates was determined as free radical-scavenging activity, ion chelating activity, and reducing power, whereas the anti-inflammatory activity was expressed as lipoxygenase and cyclooxygenase-2 inhibitory activity. The highest antiradical...