WorldWideScience

Sample records for antioxidative metabolism ultrastructure

  1. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil.

    Science.gov (United States)

    Pereira de Araújo, Romária; Furtado de Almeida, Alex-Alan; Silva Pereira, Lidiane; Mangabeira, Pedro A O; Olimpio Souza, José; Pirovani, Carlos P; Ahnert, Dário; Baligar, Virupax C

    2017-10-01

    Cadmium (Cd) is a highly toxic metal for plants, even at low concentrations in the soil. The annual production of world cocoa beans is approximately 4 million tons. Most of these fermented and dried beans are used in the manufacture of chocolate. Recent work has shown that the concentration of Cd in these beans has exceeded the critical level (0.6mgkg -1 DM). The objective of this study was to evaluate the toxicity of Cd in young plants of CCN 51 cacao genotype grown in soil with different concentrations of Cd (0, 0.05 and 0.1gkg -1 soil) through photosynthetic, antioxidative, molecular and ultrastructural changes. The increase of Cd concentration in the soil altered mineral nutrient absorption by competition or synergism, changed photosynthetic activity caused by reduction in chloroplastidic pigment content and damage to the photosynthetic machinery evidenced by the Fv/Fm ratio and expression of the psbA gene and increased GPX activity in the root and SOD in leaves. Additionally, ultrastructural alterations in roots and leaves were also evidenced with the increase of the concentration of Cd in the soil, whose toxicity caused rupture of biomembranes in root and leaf cells, reduction of the number of starch grains in foliar cells, increase of plastoglobules in chloroplasts and presence of multivesiculated bodies in root cells. It was concluded, therefore, that soil Cd toxicity caused damage to the photosynthetic machinery, antioxidative metabolism, gene expression and irreversible damage to root cells ultrastructure of CCN 51 cocoa plants, whose damage intensity depended on the exposure time to the metal. Copyright © 2017. Published by Elsevier Inc.

  2. Ultrastructural and metabolic changes in osteoblasts exposed to uranyl nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Tasat, D.R. [Universidad Nacional de San Martin, Escuela de Ciencia y Tecnologia, Pcia de Bs.As. (Argentina); Universidad de Buenos Aires, Catedra de Histologia y Embriologia, Facultad de Odontologia, Buenos Aires (Argentina); Orona, N.S. [Universidad Nacional de San Martin, Escuela de Ciencia y Tecnologia, Pcia de Bs.As. (Argentina); Mandalunis, P.M. [Universidad de Buenos Aires, Catedra de Histologia y Embriologia, Facultad de Odontologia, Buenos Aires (Argentina); Cabrini, R.L. [Comision Nacional de Energia Atomica, Departamento de Radiobiologia, Buenos Aires (Argentina); Ubios, A.M. [Comision Nacional de Energia Atomica, Departamento de Radiobiologia, Buenos Aires (Argentina); Universidad de Buenos Aires, Catedra de Histologia y Embriologia, Facultad de Odontologia, Buenos Aires (Argentina)

    2007-05-15

    Exposure to uranium is an occupational hazard to workers who continually handle uranium and an environmental risk to the population at large. Since the cellular and molecular pathways of uranium toxicity in osteoblast cells are still unknown, the aim of the present work was to evaluate the adverse effects of uranyl nitrate (UN) on osteoblasts both in vivo and in vitro. Herein we studied the osteoblastic ultrastructural changes induced by UN in vivo and analyzed cell proliferation, generation of reactive oxygen species (ROS), apoptosis, and alkaline phosphatase (APh) activity in osteoblasts exposed to various UN concentrations (0.1, 1, 10, and 100 {mu}M) in vitro. Cell proliferation was quantified by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, ROS was determined using the nitro blue tetrazolium test, apoptosis was morphologically determined using Hoechst 3332 and APh activity was assayed spectrophotometrically. Electron microscopy revealed that the ultrastructure of active and inactive osteoblasts exposed to uranium presented cytoplasmic and nuclear alterations. In vitro, 1-100 {mu}M UN failed to modify cell proliferation ratio and to induce apoptosis. ROS generation increased in a dose-dependent manner in all tested doses. APh activity was found to decrease in 1-100 {mu}M UN-treated cells vs. controls. Our results show that UN modifies osteoblast cell metabolism by increasing ROS generation and reducing APh activity, suggesting that ROS may play a more complex role in cell physiology than simply causing oxidative damage. (orig.)

  3. Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress.

    Science.gov (United States)

    Ma, Jing; Lv, Chunfang; Xu, Minli; Chen, Guoxiang; Lv, Chuangen; Gao, Zhiping

    2016-01-01

    The present study was conducted to examine the effects of increasing concentrations of chromium (Cr(6+)) (0, 25, 50, 100, and 200 μmol) on rice (Oryza sativa L.) morphological traits, photosynthesis performance, and the activities of antioxidative enzymes. In addition, the ultrastructure of chloroplasts in the leaves of hydroponically cultivated rice (O. sativa L.) seedlings was analyzed. Plant fresh and dry weights, height, root length, and photosynthetic pigments were decreased by Cr-induced toxicity (200 μM), and the growth of rice seedlings was starkly inhibited compared with that of the control. In addition, the decreased maximum quantum yield of primary photochemistry (Fv/Fm) might be ascribed to the decreased the number of active photosystem II reaction centers. These results were confirmed by inhibited photophosphorylation, reduced ATP content and its coupling factor Ca(2+)-ATPase, and decreased Mg(2+)-ATPase activities. Furthermore, overtly increased activities of antioxidative enzymes were observed under Cr(6+) toxicity. Malondialdehyde and the generation rates of superoxide (O2̄) also increased with Cr(6+) concentration, while hydrogen peroxide content first increased at a low Cr(6+) concentration of 25 μM and then decreased. Moreover, transmission electron microscopy showed that Cr(6+) exposure resulted in significant chloroplast damage. Taken together, these findings indicate that high Cr(6+)concentrations stimulate the production of toxic reactive oxygen species and promote lipid peroxidation in plants, causing severe damage to cell membranes, degradation of photosynthetic pigments, and inhibition of photosynthesis.

  4. Viability, ultrastructure and cytokinin metabolism of free and immobilized tobacco chloroplasts

    Czech Academy of Sciences Publication Activity Database

    Polanská, Lenka; Vičánková, Anna; Dobrev, Petre; Macháčková, Ivana; Vaňková, Radomíra

    2004-01-01

    Roč. 26, č. 20 (2004), s. 1549-1555 ISSN 0141-5492 R&D Projects: GA MŠk OC 840.20; GA MŠk LN00A081; GA ČR GA206/03/0369 Institutional research plan: CEZ:AV0Z5038910 Keywords : calcium alginate * chloroplast ultrastructure * cytokinin metabolism Subject RIV: ED - Physiology Impact factor: 0.849, year: 2004

  5. Microbial production of antioxidant food ingredients via metabolic engineering.

    Science.gov (United States)

    Lin, Yuheng; Jain, Rachit; Yan, Yajun

    2014-04-01

    Antioxidants are biological molecules with the ability to protect vital metabolites from harmful oxidation. Due to this fascinating role, their beneficial effects on human health are of paramount importance. Traditional approaches using solvent-based extraction from food/non-food sources and chemical synthesis are often expensive, exhaustive, and detrimental to the environment. With the advent of metabolic engineering tools, the successful reconstitution of heterologous pathways in Escherichia coli and other microorganisms provides a more exciting and amenable alternative to meet the increasing demand of natural antioxidants. In this review, we elucidate the recent progress in metabolic engineering efforts for the microbial production of antioxidant food ingredients - polyphenols, carotenoids, and antioxidant vitamins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Polyphenolics from Albizia harveyi Exhibit Antioxidant Activities and Counteract Oxidative Damage and Ultra-Structural Changes of Cryopreserved Bull Semen

    Directory of Open Access Journals (Sweden)

    Mansour Sobeh

    2017-11-01

    Full Text Available Albizia harveyi is a tropical deciduous tree, found across South and Eastern Africa and widely used in traditional medicine. The leaf extract ameliorated the damaging effects of the frozen-thawing process in cryopreserved bull semen. In a dose-dependent pattern, sperm motility, viability, and membrane integrity were improved compared to the untreated control. Furthermore, the extract increased the percentage of viable sperm cells and reduced the percentages of early apoptotic and apoptotic sperm cells as well as the damage in sperm ultra-structure. These activities are in agreement with the robust antioxidant properties in vitro and in the seminal fluid as observed in the total antioxidant capacity and the lipid peroxidation parameter malondialdehyde. LC-MS yielded 35 compounds. The extract was dominated by quercetin-O-galloyl-hexoside and quercetin-O-pentoside, along with other flavonoid glycosides. The polyphenols are probably responsible for the observed activities. In conclusion, the current findings show that A. harveyi leaves are rich in bioactive polyphenols with functional properties, validating its traditional use.

  7. The potential role of antioxidants in metabolic syndrome.

    Science.gov (United States)

    Gregório, Bianca Martins; De Souza, Diogo Benchimol; de Morais Nascimento, Fernanda Amorim; Pereira, Leonardo Matta; Fernandes-Santos, Caroline

    2016-01-01

    Metabolic syndrome (MS) is a constellation of risk factors that raise the risk for heart disease and other health problems, such as obesity. The clustering of metabolic abnormality is closely related to oxidative stress and inflammation, as well as the progression of atherosclerosis. Antioxidants are reducing agents which inhibit the oxidation of other molecules and can be used not only to prevent but also to treat health complications of MS and atherosclerosis. They can be ingested in the normal diet, since they are found in many food sources, or in supplement formulations. Herein, we aim to review the literature concerning the effect of antioxidants on MS. We focus on antioxidants with some evidence of action on this condition, like flavonoids, arginine, vitamin C, vitamin E, carotenoids, resveratrol and selenium. Experimental and clinical studies show that most of the above-mentioned antioxidants exhibit a wide range of effects in protecting the human body, especially in MS patients. However, the underlying mechanisms are not fully elucidated for most of these compounds. Also, some of them should be used with caution because their excess can be toxic to the body. In general, antioxidants (especially those present in foods) can be used by MS individuals because of their direct effect on oxidative stress. Additionally, they should be encouraged as part of a nutritional lifestyle change, since this is part of the therapy for all diseases involved in metabolic disorders.

  8. Leaf anatomy and ultrastructure of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana.

    Science.gov (United States)

    Balsamo, R A; Uribe, E G

    1988-02-01

    Light-microscopic analysis of leaf clearings of the obligate Crassulacean-acid-metabolism (CAM) species Kalanchoe daigremontiana Hamet et Perr. has shown the existence of unusual and highly irregular venation patterns. Fifth-order veins exhibit a three-dimensional random orientation with respect to the mesophyll. Minor veins were often observed crossing over or under each other and over and under major veins in the mesophyll. Paraffin sections of mature leaves show tannin cells scattered throughout the mesophyll rather evenly spaced, and a distinct layer of tannin cells below the abaxial epidermis. Scanning electron microscopy showed that bundle-sheath cells are distinct from the surrounding mesophyll in veins of all orders. Transmission electron microscopy demonstrated developing sieve-tube elements in expanded leaves. Cytosolic vesicles produced by dictyosomes undergo a diurnal variation in number and were often observed in association with the chloroplasts. These vesicles are an interesting feature of cell ultrastructure of CAM cells and may serve a regulatory role in the diurnal malic-acid fluctuations in this species.

  9. Salicylic Acid Alters Antioxidant and Phenolics Metabolism in ...

    African Journals Online (AJOL)

    Key words: Antioxidant enzymes; Catharanthus roseus; indole alkaloids; phenolic metabolism; salicylic acid; salinity stress. Abbreviations: CAT - catalase; Chl - chlorophyll; Car - carotenoids; DTNB - 5,5-dithiobis-2-nitrobenzoic acid; GR - glutathione reductase; GST - Glutathione-S-transferase; H2O2 - hydrogen peroxide; ...

  10. Exogenous Melatonin Mitigates Acid Rain Stress to Tomato Plants through Modulation of Leaf Ultrastructure, Photosynthesis and Antioxidant Potential.

    Science.gov (United States)

    Debnath, Biswojit; Hussain, Mubasher; Irshad, Muhammad; Mitra, Sangeeta; Li, Min; Liu, Shuang; Qiu, Dongliang

    2018-02-11

    Acid rain (AR) is a serious global environmental issue causing physio-morphological changes in plants. Melatonin, as an indoleamine molecule, has been known to mediate many physiological processes in plants under different kinds of environmental stress. However, the role of melatonin in acid rain stress tolerance remains inexpressible. This study investigated the possible role of melatonin on different physiological responses involving reactive oxygen species (ROS) metabolism in tomato plants under simulated acid rain (SAR) stress. SAR stress caused the inhibition of growth, damaged the grana lamella of the chloroplast, photosynthesis, and increased accumulation of ROS and lipid peroxidation in tomato plants. To cope the detrimental effect of SAR stress, plants under SAR condition had increased both enzymatic and nonenzymatic antioxidant substances compared with control plants. But such an increase in the antioxidant activities were incapable of inhibiting the destructive effect of SAR stress. Meanwhile, melatonin treatment increased SAR-stress tolerance by repairing the grana lamella of the chloroplast, improving photosynthesis and antioxidant activities compared with those in SAR-stressed plants. However, these possible effects of melatonin are dependent on concentration. Moreover, our study suggests that 100-μM melatonin treatment improved the SAR-stress tolerance by increasing photosynthesis and ROS scavenging antioxidant activities in tomato plants.

  11. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect.

    Science.gov (United States)

    Witkiewicz, Halina; Oh, Phil; Schnitzer, Jan E

    2013-01-01

    Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect). Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis), gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in progression of

  12. Effects of long-term salicylate administration on synaptic ultrastructure and metabolic activity in the rat CNS.

    Science.gov (United States)

    Yi, Bin; Hu, Shousen; Zuo, Chuantao; Jiao, Fangyang; Lv, Jingrong; Chen, Dongye; Ma, Yufei; Chen, Jianyong; Mei, Ling; Wang, Xueling; Huang, Zhiwu; Wu, Hao

    2016-04-12

    Tinnitus is associated with neural hyperactivity in the central nervous system (CNS). Salicylate is a well-known ototoxic drug, and we induced tinnitus in rats using a model of long-term salicylate administration. The gap pre-pulse inhibition of acoustic startle test was used to infer tinnitus perception, and only rats in the chronic salicylate-treatment (14 days) group showed evidence of experiencing tinnitus. After small animal positron emission tomography scans were performed, we found that the metabolic activity of the inferior colliculus (IC), the auditory cortex (AC), and the hippocampus (HP) were significantly higher in the chronic treatment group compared with saline group (treated for 14 days), which was further supported by ultrastructural changes at the synapses. The alterations all returned to baseline 14 days after the cessation of salicylate-treatment (wash-out group), indicating that these changes were reversible. These findings indicate that long-term salicylate administration induces tinnitus, enhanced neural activity and synaptic ultrastructural changes in the IC, AC, and HP of rats due to neuroplasticity. Thus, an increased metabolic rate and synaptic transmission in specific areas of the CNS may contribute to the development of tinnitus.

  13. Effects of taurine on myocardial cGMP/cAMP ratio, antioxidant ability, and ultrastructure in cardiac hypertrophy rats induced by isoproterenol.

    Science.gov (United States)

    Yang, Qunhui; Yang, Jiancheng; Wu, Gaofeng; Feng, Ying; Lv, Qiufeng; Lin, Shumei; Hu, Jianmin

    2013-01-01

    Taurine is the most abundant free amino acid in the human body and accounts for more than 50% of the total amino acid pool in the mammalian heart. To investigate the preventive effects of taurine on cardiac hypertrophy in rats, myocardial injury was established by hypodermic injection of isoprenaline (ISO) (10 mg/kg d) for 7 days. The preventive effects of taurine (100 mg/kg d, 200 mg/kg d, and 300 mg/kg d, i.p) on heart coefficient; ultrastructure of cardiac muscle; the levels of creatine kinase heart isoenzyme (CK-MB), cAMP, and cGMP; and antioxidant ability were investigated. The results showed that taurine could significantly prevent the increase of heart coefficient induced by ISO. Compared with the model group, 100 mg/kg and 200 mg/kg taurine significantly decrease the levels of cAMP and cGMP, while 300 mg/kg taurine could significantly decrease the levels of cAMP in myocardium, and all the three concentrations of taurine could significantly increase the ratio of cGMP/cAMP. The level of serum CK-MB was significantly increased by ISO; 200 mg/kg taurine could significantly decrease it, but 100 mg/kg and 300 mg/kg taurine had no significant effect. As for the antioxidant ability, ISO administration could significantly increase the myocardial level of MDA but had no significant effects on the myocardial levels of SOD, GSH, GSH-Px, and T-AOC. However, taurine administration could significantly decrease the myocardial level of MDA and increase the levels of GSH and T-AOC compared with the model group. The serum levels of SOD, GSH-Px, GSH, and T-AOC were significantly reduced by ISO administration, but the level of MDA showed no significant changes compared with the control group. Taurine administration could significantly increase the serum levels of SOD, GSH-Px, GSH, and T-AOC and decrease the level of MDA compared with the model group. All the results indicated that 200 mg/kg taurine had better effects. The ultrastructure of cardiomyocytes showed that taurine

  14. Overexpression of flavodoxin in bacteroids induces changes in antioxidant metabolism leading to delayed senescence and starch accumulation in alfalfa root nodules.

    Science.gov (United States)

    Redondo, Francisco J; de la Peña, Teodoro Coba; Morcillo, César N; Lucas, M Mercedes; Pueyo, José J

    2009-02-01

    Sinorhizobium meliloti cells were engineered to overexpress Anabaena variabilis flavodoxin, a protein that is involved in the response to oxidative stress. Nodule natural senescence was characterized in alfalfa (Medicago sativa) plants nodulated by the flavodoxin-overexpressing rhizobia or the corresponding control bacteria. The decline of nitrogenase activity and the nodule structural and ultrastructural alterations that are associated with nodule senescence were significantly delayed in flavodoxin-expressing nodules. Substantial changes in nodule antioxidant metabolism, involving antioxidant enzymes and ascorbate-glutathione cycle enzymes and metabolites, were detected in flavodoxin-containing nodules. Lipid peroxidation was also significantly lower in flavodoxin-expressing nodules than in control nodules. The observed amelioration of the oxidative balance suggests that the delay in nodule senescence was most likely due to a role of the protein in reactive oxygen species detoxification. Flavodoxin overexpression also led to high starch accumulation in nodules, without reduction of the nitrogen-fixing activity.

  15. Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Lucie Vávrová

    2013-02-01

    Full Text Available Objective: In the pathogenesis of the metabolic syndrome (MetS, an increase of oxidative stress could play an important role which is closely linked with insulin resistance, endothelial dysfunction, and chronic inflammation. The aim of our study was to assess several parameters of the antioxidant status in MetS. Methods: 40 subjects with MetS and 40 age- and sex-matched volunteers without MetS were examined for activities of superoxide dismutase (CuZnSOD, catalase (CAT, glutathione peroxidase 1 (GPX1, glutathione reductase (GR, paraoxonase1 (PON1, concentrations of reduced glutathione (GSH, and conjugated dienes in low-density lipoprotein (CD-LDL. Results: Subjects with MetS had higher activities of CuZnSOD (p Conclusions: Our results implicated an increased oxidative stress in MetS and a decreased antioxidative defense that correlated with some laboratory (triglycerides, high-density lipoprotein cholesterol (HDL-C and clinical (waist circumference, blood pressure components of MetS.

  16. Effects of water turbulence on variations in cell ultrastructure and metabolism of amino acids in the submersed macrophyte, Elodea nuttallii (Planch.) H. St. John.

    Science.gov (United States)

    Atapaththu, K S S; Miyagi, A; Atsuzawa, K; Kaneko, Y; Kawai-Yamada, M; Asaeda, T

    2015-09-01

    The interactions between macrophytes and water movement are not yet fully understood, and the causes responsible for the metabolic and ultrastructural variations in plant cells as a consequence of turbulence are largely unknown. In the present study, growth, metabolism and ultrastructural changes were evaluated in the aquatic macrophyte Elodea nuttallii, after exposure to turbulence for 30 days. The turbulence was generated with a vertically oscillating horizontal grid. The turbulence reduced plant growth, plasmolysed leaf cells and strengthened cell walls, and plants exposed to turbulence accumulated starch granules in stem chloroplasts. The size of the starch granules increased with the magnitude of the turbulence. Using capillary electrophoresis-mass spectrometry (CE-MS), analysis of the metabolome found metabolite accumulation in response to the turbulence. Asparagine was the dominant amino acid that was concentrated in stressed plants, and organic acids such as citrate, ascorbate, oxalate and γ-amino butyric acid (GABA) also accumulated in response to turbulence. These results indicate that turbulence caused severe stress that affected plant growth, cell ultrastructure and some metabolic functions of E. nuttallii. Our findings offer insights to explain the effects of water movement on the functions of aquatic plants. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Phytosterol supplementation does not affect plasma antioxidant capacity in patients with metabolic syndrome.

    Science.gov (United States)

    Sialvera, Theodora-Eirini; Koutelidakis, Antonios E; Richter, Dimitris J; Yfanti, Georgia; Kapsokefalou, Maria; Micha, Renata; Goumas, Giorgos; Diamantopoulos, Emmanouil; Zampelas, Antonis

    2013-02-01

    Several studies have observed decreased levels of lipophilic antioxidants after supplementation with phytosterols and stanols. The aim of this study was to examine the effect of phytosterol supplementation on plasma total antioxidant capacity in patients with metabolic syndrome. In a parallel arm, randomized placebo-controlled design, 108 patients with metabolic syndrome were assigned to consume yogurt beverage which provided 4 g of phytosterols per day or yogurt beverage without phytosterols. The duration of the study was 2 months and the patients in both groups followed their habitual westernized type diet. Blood samples were drawn at baseline and after 2 months, and the total antioxidant capacity of plasma was measured using the ferric reducing antioxidant power of plasma and oxygen radical absorbance capacity assays. After 2 months of intervention, plasma total antioxidant capacity did not differ between and within the intervention and the control groups. Phytosterol supplementation does not affect plasma antioxidant status.

  18. Myocardial energy metabolism and ultrastructure with polarizing and depolarizing cardioplegia in a porcine model.

    Science.gov (United States)

    Aass, Terje; Stangeland, Lodve; Chambers, David J; Hallström, Seth; Rossmann, Christine; Podesser, Bruno K; Urban, Malte; Nesheim, Knut; Haaverstad, Rune; Matre, Knut; Grong, Ketil

    2017-07-01

    This study investigated whether the novel St. Thomas' Hospital polarizing cardioplegic solution (STH-POL) with esmolol/adenosine/magnesium offers improved myocardial protection by reducing demands for high-energy phosphates during cardiac arrest compared to the depolarizing St. Thomas' Hospital cardioplegic solution No 2 (STH-2). Twenty anaesthetised pigs on tepid cardiopulmonary bypass were randomized to cardiac arrest for 60 min with antegrade freshly mixed, repeated, cold, oxygenated STH-POL or STH-2 blood cardioplegia every 20 min. Haemodynamic variables were continuously recorded. Left ventricular biopsies, snap-frozen in liquid nitrogen or fixed in glutaraldehyde, were obtained at Baseline, 58 min after cross-clamp and 20 and 180 min after weaning from bypass. Adenine nucleotides were evaluated by high-performance liquid chromatography, myocardial ultrastructure with morphometry. With STH-POL myocardial creatine phosphate was increased compared to STH-2 at 58 min of cross-clamp [59.9 ± 6.4 (SEM) vs 44.5 ± 7.4 nmol/mg protein; P  STH-POL (35.4 ± 1.1 vs 32.4 ± 1.2 nmol/mg protein; P  STH-POL; 4.8 ± 0.2 compared to 4.0 ± 0.2 l/min/m 2 ( P  =   0.011) for STH-2 at 180 min. Polarizing STH-POL cardioplegia improved energy status compared to standard STH-2 depolarizing blood cardioplegia during cardioplegic arrest and early after reperfusion. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery.

  19. Cryptoendolithic Antarctic Black Fungus Cryomyces antarcticus Irradiated with Accelerated Helium Ions: Survival and Metabolic Activity, DNA and Ultrastructural Damage

    Directory of Open Access Journals (Sweden)

    Claudia Pacelli

    2017-10-01

    Full Text Available Space represents an extremely harmful environment for life and survival of terrestrial organisms. In the last decades, a considerable deal of attention was paid to characterize the effects of spaceflight relevant radiation on various model organisms. The aim of this study was to test the survival capacity of the cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 to space relevant radiation, to outline its endurance to space conditions. In the frame of an international radiation campaign, dried fungal colonies were irradiated with accelerated Helium ion (150 MeV/n, LET 2.2 keV/μm, up to a final dose of 1,000 Gy, as one of the space-relevant ionizing radiation. Results showed that the fungus maintained high survival and metabolic activity with no detectable DNA and ultrastructural damage, even after the highest dose irradiation. These data give clues on the resistance of life toward space ionizing radiation in general and on the resistance and responses of eukaryotic cells in particular.

  20. Alterations in lipid metabolism and antioxidant status in lichen planus

    Directory of Open Access Journals (Sweden)

    Falguni H Panchal

    2015-01-01

    Full Text Available Background: Lichen planus (LP, a T-cell-mediated inflammatory disorder, wherein inflammation produces lipid metabolism disturbances, is linked to increase in cardiovascular (CV risk with dyslipidemia. Increased reactive oxygen species and lipid peroxides have also been implicated in its pathogenesis. Aim and Objective: The aim of the study was to evaluate the status on lipid disturbances, oxidative stress, and inflammation in LP patients. Materials and Methods: The study was initiated after obtaining Institutional Ethics Committee permission and written informed consent from participants. The study included 125 patients (74 LP patients and 51 age and sex-matched controls visiting the outpatient clinic in the dermatology department of our hospital. Variables analyzed included lipid profile, C-reactive protein (CRP, malondialdehyde (MDA, and catalase (CAT activity. Results: Analysis of lipid parameters revealed significantly higher levels of total cholesterol (TC, triglycerides, and low-density lipoprotein cholesterol (LDL-C along with decreased levels of high-density lipoprotein cholesterol (HDL-C in LP patients as compared to their respective controls. LP patients also presented with a significantly higher atherogenic index that is, (TC/HDL-C and LDL-C/HDL-C ratios than the controls. A significant increase in CRP levels was observed among the LP patients. There was a statistically significant increase in the serum levels of the lipid peroxidation product, MDA and a statistically significant decrease in CAT activity in LP patients as compared to their respective controls. A statistically significant positive correlation (r = 0.96 was observed between serum MDA levels and duration of LP whereas a significantly negative correlation (r = −0.76 was seen between CAT activity and LP duration. Conclusion: Chronic inflammation in patients with LP may explain the association with dyslipidemia and CV risk. Our findings also suggest that an increase in

  1. Serum Antioxidant Associations with Metabolic Characteristics in Metabolically Healthy and Unhealthy Adolescents with Severe Obesity: An Observational Study

    Directory of Open Access Journals (Sweden)

    Ana Paula Stenzel

    2018-01-01

    Full Text Available Considering the inadequacy of some antioxidant nutrients in severely obese adolescents, this study aimed to assess the relationship between antioxidant micronutrients status and metabolic syndrome components in metabolically healthy obesity (MHO and unhealthy obesity (MUO. We performed an observational study in severely obese adolescents (body mass index > 99th percentile and they were classified into MHO or MUO, according to the criteria adapted for adolescents. Anthropometric, biochemical, and clinical variables were analyzed to characterize the sample of adolescents. The serum antioxidant nutrients assessed were retinol, β-carotene, Vitamin E, Vitamin C, zinc and selenium. A total of 60 adolescents aged 17.31 ± 1.34 years were enrolled. MHO was identified in 23.3% of adolescents. The MHO group showed lower frequency of non-alcoholic fatty liver disease (14.3% vs. 78.3%, p < 0.001 when compared to MUO. A correlation was found between retinol and β-carotene concentrations with glycemia (r = −0.372; p = 0.011 and r = −0.314; p = 0.034, respectively and between Vitamin E with waist circumference (r = −0.306; p = 0.038 in the MUO group. The current study shows that some antioxidant nutrients status, specifically retinol, β-carotene, and Vitamin E, are negatively associated with metabolic alterations in MUO. Further studies are necessary to determine the existing differences in the serum antioxidant profile of metabolically healthy and unhealthy obese adolescents.

  2. Differential responses of the antioxidant defence system and ultrastructure in a salt-adapted potato cell line.

    Science.gov (United States)

    Queirós, Filipa; Rodrigues, José A; Almeida, José M; Almeida, Domingos P F; Fidalgo, Fernanda

    2011-12-01

    Changes in lipid peroxidation and ion content and the possible involvement of the antioxidant system in salt tolerance at the cellular level was studied in a potato (Solanum tuberosum L.) callus line grown on 150 mM NaCl (salt-adapted) and in a non-adapted line exposed to 150 mM NaCl (salt-stressed). Salinity reduced the growth rate and increased lipid peroxidation in salt-stressed line, which remained unaltered in the adapted line. Na⁺ and Cl⁻ content increased due to salinity in both lines, but the adapted line displayed greater K⁺/Na⁺ ratio than the stressed one. Total superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and glutathione reductase (GR, EC 1.6.4.2) activities decreased in both salt-exposed lines; catalase (CAT, EC 1.11.1.6) activity did not change in the adapted line, but decreased in the stressed cell line. Salinity caused the suppression of one GR isoform, while the isozyme patterns of SOD, APX, and CAT were not affected. Ascorbate and reduced glutathione increased in both salt-exposed calli lines. α-Tocopherol increased as a result of salt exposure, with higher levels found in adapted calli. Electron microscopy showed that neither the structural integrity of the cells nor membrane structure were affected by salinity, but plastids from adapted cells had higher starch content. The results suggest that the enzymic and non-enzymic components of the antioxidant system are differentially modulated by salt. Different concentrations of antioxidant metabolites are more relevant to the adaptive response to salinity in potato calli than the differences in activity of the antioxidant enzymes. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  3. Siofor influence on the process of lipid peroxidation and antioxidant status at patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Elena N. Chernysheva

    2014-10-01

    Full Text Available The purpose of the work is to research siofor influence (metformin on the activity of the process of lipid peroxidation and antioxidant activity of blood serum at patients with metabolic syndrome. Material and Methods — 62 patients with metabolic syndrome at the age from 30 till 60 were examined and treated by siofor (1700 mg per day during a year. The process of lipid peroxidation was studied due to the level of lipid hydroperoxide of blood serum. Antioxidant capacity was based on the antioxidant reaction in the blood serum with definite number of exogenic hydrogen dioxide (mkmole/l with the method of enzyme-linked immunosorbent assay (ELISA. Results — Intensification of process of lipid peroxidation has been observed at patients with metabolic syndrome — the level of lipid hydroperoxide of blood serum has been 2.9 (1.9, 3.9 mkM (presented as median and interquartile range, antioxidant activity of blood serum has been decreased — 276.4 (239.0, 379.9 mkmole/l. In 12 months of siofor intake hydroperoxide level has been decreased till 1.1 (0.8, 1.9 mkМ, but antioxidant activity has been increased and amounted 320.0 (278.9, 334.3 mkmole/l. Conclusion — Siofor has been proved to be a highly effective medicine for correction of process of lipid peroxidation and for improvement of antioxidant activity of blood serum at patients with metabolic syndrome.

  4. Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat

    DEFF Research Database (Denmark)

    Breinholt, V.; Lauridsen, S.T.; Dragsted, L.O.

    1999-01-01

    1. Gavage administration of the natural flavonoids tangeretin, chrysin, apigenin, naringenin, genistein and quercetin for 2 consecutive weeks to the female rat resulted in differential effects on selected phase 1 and 2 enzymes in liver, colon and heart as well as antioxidant enzymes in red brood......, genistein, tangeretin and BNF. 5. The observed effects of chrysin, quercetin and genistein on antioxidant enzymes, concurrently with a protection against oxidative stress, suggest a feedback mechanism on the antioxidant enzymes triggered by the flavonoid antioxidants. 6. Despite the use of high flavonoid...... doses, which by far exceed the human exposure levels, the effect on drug metabolizing and antioxidant enzymes was still very minor. The role of singly administered flavonoids in the protection against cancer and heart disease is thus expected to be limited....

  5. Physiology of pepper fruit and the metabolism of antioxidants: chloroplasts, mitochondria and peroxisomes

    Science.gov (United States)

    Palma, José M.; Sevilla, Francisca; Jiménez, Ana; del Río, Luis A.; Corpas, Francisco J.; Álvarez de Morales, Paz; Camejo, Daymi M.

    2015-01-01

    Background and Aims Pepper (Capsicum annuum) contains high levels of antioxidants, such as vitamins A and C and flavonoids. However, information on the role of these beneficial compounds in the physiology of pepper fruit remains scarce. Recent studies have shown that antioxidants in ripe pepper fruit play a key role in responses to temperature changes, and the redox state at the time of harvest affects the nutritional value for human consumption. In this paper, the role of antioxidant metabolism of pepper fruit during ripening and in the response to low temperature is addressed, paying particular attention to ascorbate, NADPH and the superoxide dismutase enzymatic system. The participation of chloroplasts, mitochondria and peroxisomes in the ripening process is also investigated. Scope and Results Important changes occur at a subcellular level during ripening of pepper fruit. Chloroplasts turn into chromoplasts, with drastic conversion of their metabolism, and the role of the ascorbate–glutathione cycle is essential. In mitochondria from red fruits, higher ascorbate peroxidase (APX) and Mn-SOD activities are involved in avoiding the accumulation of reactive oxygen species in these organelles during ripening. Peroxisomes, whose antioxidant capacity at fruit ripening is substantially affected, display an atypical metabolic pattern during this physiological stage. In spite of these differences observed in the antioxidative metabolism of mitochondria and peroxisomes, proteomic analysis of these organelles, carried out by 2-D electrophoresis and MALDI-TOF/TOF and provided here for the first time, reveals no changes between the antioxidant metabolism from immature (green) and ripe (red) fruits. Conclusions Taken together, the results show that investigation of molecular and enzymatic antioxidants from cell compartments, especially chloroplasts, mitochondria and peroxisomes, is a useful tool to study the physiology of pepper fruit, particularly in the context of

  6. Antioxidants

    Science.gov (United States)

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  7. The Antioxidant Status and Concentrations of Coenzyme Q10 and Vitamin E in Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Chi-Hua Yen

    2013-01-01

    Full Text Available The purpose of this study was to investigate the levels of coenzyme Q10 and vitamin E and the antioxidant status in subjects with metabolic syndrome (MS. Subjects with MS (n=72 were included according to the criteria for MS. The non-MS group (n=105 was comprised of healthy individuals with normal blood biochemical values. The plasma coenzyme Q10, vitamin E concentrations, lipid profiles, and antioxidant enzymes levels (catalase, superoxide dismutase, and glutathione peroxidase were measured. The subjects with MS had significantly higher concentrations of plasma coenzyme Q10 and vitamin E than those in the non-MS group, but these differences were not significant after being normalized for triglyceride level. The levels of antioxidant enzymes were significantly lower in the MS group than in the non-MS group. The subjects with the higher antioxidant enzymes activities had significant reductions in the risk of MS (P<0.01 after being adjusted for coenzyme Q10 and vitamin E. In conclusion, the subjects with MS might be under higher oxidative stress resulting in low levels of antioxidant enzyme activities. A higher level of antioxidant enzymes activities was significantly associated with a reduction in the risk of MS independent of the levels of coenzyme Q10 and vitamin E.

  8. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco

    Czech Academy of Sciences Publication Activity Database

    Polanská, Lenka; Vičánková, Anna; Nováková, Marie; Malbeck, Jiří; Dobrev, Petre; Brzobohatý, Břetislav; Vaňková, Radomíra; Macháčková, Ivana

    2007-01-01

    Roč. 58, č. 3 (2007), s. 637-649 ISSN 0022-0957 R&D Projects: GA ČR GA206/03/0369; GA ČR GA206/06/1306; GA AV ČR IAA600040612 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50040507 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : abscisic acid * auxin * chloroplast ultrastructure Subject RIV: EF - Botanics Impact factor: 3.917, year: 2007

  9. Oxidative stress and metabolic syndrome: Effects of a natural antioxidants enriched diet on insulin resistance.

    Science.gov (United States)

    Mancini, Antonio; Martorana, Giuseppe Ettore; Magini, Marinella; Festa, Roberto; Raimondo, Sebastiano; Silvestrini, Andrea; Nicolotti, Nicola; Mordente, Alvaro; Mele, Maria Cristina; Miggiano, Giacinto Abele Donato; Meucci, Elisabetta

    2015-04-01

    Oxidative stress (OS) could play a role in metabolic syndrome-related manifestations contributing to insulin resistance (IR). The aim of the present study was to gain insight the relationships between OS, IR and other hormones involved in caloric balance, explaining the effects of a natural antioxidant-enriched diet in patients affected by metabolic syndrome. We investigated the effects of dietary antioxidants on IR, studying 53 obese (20 males and 33 females, 18-66 years old, BMI 36.3 ± 5.5 kg/m 2 ), with IR evaluated by Homeostasis Model Assessment (HOMA)-index, comparing 4 treatments: hypocaloric diet alone (group A) or plus metformin 1000 mg/daily (group B), natural antioxidants-enriched hypocaloric diet alone (group C) or plus metformin (group D). A personalized program, with calculated antioxidant intake of 800-1000 mg/daily, from fruit and vegetables, was administered to group C and D. The glycemic and insulinemic response to oral glucose load, and concentrations of total-, LDL- and HDL-cholesterol, triglycerides, uric acid, C reactive protein, fT3, fT4, TSH, insulin-like growth factor 1 were evaluated before and after 3-months. Plasma Total antioxidant capacity was determined by H 2 O 2 -metmyoglobin system, which interacting with the chromogen ABTS generates a radical with latency time (LAG) proportional to antioxidant content. Despite a similar BMI decrease, we found a significant decrease of HOMA and insulin peak only in group B and D. Insulin response (AUC) showed the greatest decrease in group D (25.60  ±  8.96%) and was significantly lower in group D vs B. No differences were observed in glucose response, lipid metabolism and TAC (expressed as LAG values). TSH values were significantly suppressed in group D vs B. These data suggest that dietary antioxidants ameliorate insulin-sensitivity in obese subjects with IR by enhancing the effect of insulin-sensitizing drugs albeit with molecular mechanisms which remain yet to be elucidated

  10. UHPLC-PDA-ESI-TOF/MS metabolic profiling and antioxidant capacity of arabica and robusta coffee silverskin: Antioxidants vs phytotoxins.

    Science.gov (United States)

    Panusa, Alessia; Petrucci, Rita; Lavecchia, Roberto; Zuorro, Antonio

    2017-09-01

    A deeper knowledge of the chemical composition of coffee silverskin (CS) is needed due to the growing interest in its use as a food additive or an ingredient of dietary supplements. Accordingly, the aim of this paper was to investigate the metabolic profile of aqueous extracts of two varieties of CS, Coffee arabica (CS-A), Coffee canephora var. robusta (CS-R) and of a blend of the two (CS-b) and to compare it to the profile of Coffee arabica green coffee (GC). Chlorogenic acids, caffeine, furokauranes, and atractyligenins, phytotoxins not previously detected in CS, were either identified or tentatively assigned. An unknown compound, presumably a carboxyatractyligenin glycoside was detected only in GC. Caffeine and chlorogenic acids were quantified while the content of furokauranes and atractyligens was estimated. GC and CS were also characterized in terms of total polyphenols and antioxidant capacity. Differences in the metabolites distribution, polyphenols and antioxidant capacity in GC and CS were detailed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails.

    Science.gov (United States)

    Hermes-Lima, M; Storey, J M; Storey, K B

    1998-07-01

    The roles of enzymatic antioxidant defenses in the natural tolerance of environmental stresses that impose changes in oxygen availability and oxygen consumption on animals is discussed with a particular focus on the biochemistry of estivation and metabolic depression in pulmonate land snails. Despite reduced oxygen consumption and PO2 during estivation, which should also mean reduced production of oxyradicals, the activities of antioxidant enzymes, such as superoxide dismutase and catalase, increased in 30 day-estivating snails. This appears to be an adaptation that allows the snails to deal with oxidative stress that takes place during arousal when PO2 and oxygen consumption rise rapidly. Indeed, oxidative stress was indicated by increased levels of lipid peroxidation damage products accumulating in hepatopancreas within minutes after arousal was initiated. The various metabolic sites responsible for free radical generation during arousal are still unknown but it seems unlikely that the enzyme xanthine oxidase plays any substantial role in this despite being implicated in oxidative stress in mammalian models of ischemia/reperfusion. We propose that the activation of antioxidant defenses in the organs of Otala lactea during estivation is a preparative mechanism against oxidative stress during arousal. Increased activities of antioxidant enzymes have also observed under other stress situations in which the actual production of oxyradicals should decrease. For example, antioxidant defenses are enhanced during anoxia exposure in garter snakes Thamnophis sirtalis parietalis (10 h at 5 degrees C) and leopard frogs Rana pipiens (30 h at 5 degrees C) and during freezing exposure (an ischemic condition due to plasma freezing) in T. sirtalis parietalis and wood frogs Rana sylvatica. It seems that enhancement of antioxidant enzymes during either anoxia or freezing is used as a preparatory mechanism to deal with a physiological oxidative stress that occurs rapidly within the

  12. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism.

    Science.gov (United States)

    Tan, Dun-Xian; Manchester, Lucien C; Esteban-Zubero, Eduardo; Zhou, Zhou; Reiter, Russel J

    2015-10-16

    Melatonin is a tryptophan-derived molecule with pleiotropic activities. It is present in almost all or all organisms. Its synthetic pathway depends on the species in which it is measured. For example, the tryptophan to melatonin pathway differs in plants and animals. It is speculated that the melatonin synthetic machinery in eukaryotes was inherited from bacteria as a result of endosymbiosis. However, melatonin's synthetic mechanisms in microorganisms are currently unknown. Melatonin metabolism is highly complex with these enzymatic processes having evolved from cytochrome C. In addition to its enzymatic degradation, melatonin is metabolized via pseudoenzymatic and free radical interactive processes. The metabolic products of these processes overlap and it is often difficult to determine which process is dominant. However, under oxidative stress, the free radical interactive pathway may be featured over the others. Because of the complexity of the melatonin degradative processes, it is expected that additional novel melatonin metabolites will be identified in future investigations. The original and primary function of melatonin in early life forms such as in unicellular organisms was as a free radical scavenger and antioxidant. During evolution, melatonin was selected as a signaling molecule to transduce the environmental photoperiodic information into an endocrine message in multicellular organisms and for other purposes as well. As an antioxidant, melatonin exhibits several unique features which differ from the classic antioxidants. These include its cascade reaction with free radicals and its capacity to be induced under moderate oxidative stress. These features make melatonin a potent endogenously-occurring antioxidant that protects organisms from catastrophic oxidative stress.

  13. Quantitative combination of natural anti-oxidants prevents metabolic syndrome by reducing oxidative stress.

    Science.gov (United States)

    Gao, Mingjing; Zhao, Zhen; Lv, Pengyu; Li, YuFang; Gao, Juntao; Zhang, Michael; Zhao, Baolu

    2015-12-01

    Insulin resistance and abdominal obesity are present in the majority of people with the metabolic syndrome. Antioxidant therapy might be a useful strategy for type 2 diabetes and other insulin-resistant states. The combination of vitamin C (Vc) and vitamin E has synthetic scavenging effect on free radicals and inhibition effect on lipid peroxidation. However, there are few studies about how to define the best combination of more than three anti-oxidants as it is difficult or impossible to test the anti-oxidant effect of the combination of every concentration of each ingredient experimentally. Here we present a math model, which is based on the classical Hill equation to determine the best combination, called Fixed Dose Combination (FDC), of several natural anti-oxidants, including Vc, green tea polyphenols (GTP) and grape seed extract proanthocyanidin (GSEP). Then we investigated the effects of FDC on oxidative stress, blood glucose and serum lipid levels in cultured 3T3-L1 adipocytes, high fat diet (HFD)-fed rats which serve as obesity model, and KK-ay mice as diabetic model. The level of serum malondialdehyde (MDA) in the treated rats was studied and Hematoxylin-Eosin (HE) staining or Oil red slices of liver and adipose tissue in the rats were examined as well. FDC shows excellent antioxidant and anti-glycation activity by attenuating lipid peroxidation. FDC determined in this investigation can become a potential solution to reduce obesity, to improve insulin sensitivity and be beneficial for the treatment of fat and diabetic patients. It is the first time to use the math model to determine the best ratio of three anti-oxidants, which can save much more time and chemical materials than traditional experimental method. This quantitative method represents a potentially new and useful strategy to screen all possible combinations of many natural anti-oxidants, therefore may help develop novel therapeutics with the potential to ameliorate the worldwide metabolic

  14. Psychological Recovery in the Metabolic Syndrome in the Context of Antioxidant Therapy-Case Presentation

    Directory of Open Access Journals (Sweden)

    Ana-Maria DUMITRESCU

    2015-07-01

    Full Text Available Representing a major medical issue, especially in industrialized countries, the metabolic syndrome (MetS consists of a complex association of the most dangerous metabolic and cardiovascular risk factors according to the International Diabetes Federation: diabetes and prediabetes, abdominal obesity, high cholesterol and high blood pressure. The oxidative stress has as cause the existence of free radicals or radical-forming agents in higher concentrations than what it would be possible to cope with for the natural radical-blocking or scavenging systems. The effects of the antioxidant therapy in the metabolic syndrome and the psychological component involved are studied through a case presentation correlated, as well, with data from literature.

  15. YCF1-Mediated Cadmium Resistance in Yeast Is Dependent on Copper Metabolism and Antioxidant Enzymes

    Science.gov (United States)

    Wei, Wenzhong; Smith, Nathan; Wu, Xiaobin; Kim, Heejeong; Seravalli, Javier; Khalimonchuk, Oleh

    2014-01-01

    Abstract Aims: Acquisition and detoxification of metal ions are vital biological processes. Given the requirement of metallochaperones in cellular copper distribution and metallation of cuproproteins, this study investigates whether the metallochaperones also deliver metal ions for transporters functioning in metal detoxification. Results: Resistance to excess cadmium and copper of the yeast Saccharomyces cerevisiae, which is conferred by PCA1 and CaCRP1 metal efflux P-type ATPases, respectively, does not rely on known metallochaperones, Atx1p, Ccs1p, and Cox17p. Copper deficiency induced by the expression of CaCRP1 encoding a copper exporter occurs in the absence of Atx1p. Intriguingly, CCS1 encoding the copper chaperone for superoxide dismutase 1 (Sod1p) is necessary for cadmium resistance that is mediated by Ycf1p, a vacuolar cadmium sequestration transporter. This is attributed to Ccs1p's role in the maturation of Sod1p rather than its direct interaction with Ycf1p for cadmium transfer. Functional defect in Ycf1p associated with the absence of Sod1p as well as another antioxidant enzyme Glr1p is rescued by anaerobic growth or substitutions of specific cysteine residues of Ycf1p to alanine or serine. This further supports oxidative inactivation of Ycf1p in the absence of Ccs1p, Sod1p, or Glr1p. Innovation: These results provide new insights into the mechanisms of metal metabolism, interaction among metal ions, and the roles for antioxidant systems in metal detoxification. Conclusion: Copper metabolism and antioxidant enzymes maintain the function of Ycf1p for cadmium defense. Antioxid. Redox Signal. 21, 1475–1489. PMID:24444374

  16. The Antioxidant Cofactor Alpha-Lipoic Acid May Control Endogenous Formaldehyde Metabolism in Mammals

    Directory of Open Access Journals (Sweden)

    Anastasia V. Shindyapina

    2017-12-01

    Full Text Available The healthy human body contains small amounts of metabolic formaldehyde (FA that mainly results from methanol oxidation by pectin methylesterase, which is active in a vegetable diet and in the gastrointestinal microbiome. With age, the ability to maintain a low level of FA decreases, which increases the risk of Alzheimer's disease and dementia. It has been shown that 1,2-dithiolane-3-pentanoic acid or alpha lipoic acid (ALA, a naturally occurring dithiol and antioxidant cofactor of mitochondrial α-ketoacid dehydrogenases, increases glutathione (GSH content and FA metabolism by mitochondrial aldehyde dehydrogenase 2 (ALDH2 thus manifests a therapeutic potential beyond its antioxidant property. We suggested that ALA can contribute to a decrease in the FA content of mammals by acting on ALDH2 expression. To test this assumption, we administered ALA in mice in order to examine the effect on FA metabolism and collected blood samples for the measurement of FA. Our data revealed that ALA efficiently eliminated FA in mice. Without affecting the specific activity of FA-metabolizing enzymes (ADH1, ALDH2, and ADH5, ALA increased the GSH content in the brain and up-regulated the expression of the FA-metabolizing ALDH2 gene in the brain, particularly in the hippocampus, but did not impact its expression in the liver in vivo or in rat liver isolated from the rest of the body. After ALA administration in mice and in accordance with the increased content of brain ALDH2 mRNA, we detected increased ALDH2 activity in brain homogenates. We hypothesized that the beneficial effects of ALA on patients with Alzheimer's disease may be associated with accelerated ALDH2-mediated FA detoxification and clearance.

  17. Metabolic engineering of β-carotene in orange fruit increases its in vivo antioxidant properties.

    Science.gov (United States)

    Pons, Elsa; Alquézar, Berta; Rodríguez, Ana; Martorell, Patricia; Genovés, Salvador; Ramón, Daniel; Rodrigo, María Jesús; Zacarías, Lorenzo; Peña, Leandro

    2014-01-01

    Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit's health benefits. In this work, we have afforded enhancing the β-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous β-carotene hydroxylase gene (Csβ-CHX) that is involved in the conversion of β-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csβ-CHX gene resulted in oranges with a deep yellow ('golden') phenotype and significant increases (up to 36-fold) in β-carotene content in the pulp. The capacity of β-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the β-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata.

    Directory of Open Access Journals (Sweden)

    Jian Qiu

    Full Text Available The rare wild species of snow lotus Saussurea involucrata is a commonly used medicinal herb with great pharmacological value for human health, resulting from its uniquely high level of phenylpropanoid compound production. To gain information on the phenylpropanid biosynthetic pathway genes in this critically important medicinal plant, global transcriptome sequencing was performed. It revealed that the phenylpropanoid pathway genes were well represented in S. involucrata. In addition, we introduced two key phenylpropanoid pathway inducing transcription factors (PAP1 and Lc into this medicinal plant. Transgenic S. involucrata co-expressing PAP1 and Lc exhibited purple pigments due to a massive accumulation of anthocyanins. The over-expression of PAP1 and Lc largely activated most of the phenylpropanoid pathway genes, and increased accumulation of several phenylpropanoid compounds significantly, including chlorogenic acid, syringin, cyanrine and rutin. Both ABTS (2,2'-azinobis-3-ethylbenzotiazo-line-6-sulfonic acid and FRAP (ferric reducing anti-oxidant power assays revealed that the antioxidant capacity of transgenic S. involucrata lines was greatly enhanced over controls. In addition to providing a deeper understanding of the molecular basis of phenylpropanoid metabolism, our results potentially enable an alternation of bioactive compound production in S. involucrata through metabolic engineering.

  19. YCF1-mediated cadmium resistance in yeast is dependent on copper metabolism and antioxidant enzymes.

    Science.gov (United States)

    Wei, Wenzhong; Smith, Nathan; Wu, Xiaobin; Kim, Heejeong; Seravalli, Javier; Khalimonchuk, Oleh; Lee, Jaekwon

    2014-10-01

    Acquisition and detoxification of metal ions are vital biological processes. Given the requirement of metallochaperones in cellular copper distribution and metallation of cuproproteins, this study investigates whether the metallochaperones also deliver metal ions for transporters functioning in metal detoxification. Resistance to excess cadmium and copper of the yeast Saccharomyces cerevisiae, which is conferred by PCA1 and CaCRP1 metal efflux P-type ATPases, respectively, does not rely on known metallochaperones, Atx1p, Ccs1p, and Cox17p. Copper deficiency induced by the expression of CaCRP1 encoding a copper exporter occurs in the absence of Atx1p. Intriguingly, CCS1 encoding the copper chaperone for superoxide dismutase 1 (Sod1p) is necessary for cadmium resistance that is mediated by Ycf1p, a vacuolar cadmium sequestration transporter. This is attributed to Ccs1p's role in the maturation of Sod1p rather than its direct interaction with Ycf1p for cadmium transfer. Functional defect in Ycf1p associated with the absence of Sod1p as well as another antioxidant enzyme Glr1p is rescued by anaerobic growth or substitutions of specific cysteine residues of Ycf1p to alanine or serine. This further supports oxidative inactivation of Ycf1p in the absence of Ccs1p, Sod1p, or Glr1p. These results provide new insights into the mechanisms of metal metabolism, interaction among metal ions, and the roles for antioxidant systems in metal detoxification. Copper metabolism and antioxidant enzymes maintain the function of Ycf1p for cadmium defense.

  20. The antioxidative and antilipidemic effects of different molecular weight chitosans in metabolic syndrome model rats.

    Science.gov (United States)

    Anraku, Makoto; Michihara, Akihiro; Yasufuku, Taira; Akasaki, Kenji; Tsuchiya, Daiju; Nishio, Hiroaki; Maruyama, Toru; Otagiri, Masaki; Maezaki, Yuji; Kondo, Yuko; Tomida, Hisao

    2010-01-01

    The effect of high and low molecular weight chitosans (HMC; 1000 kDa, LMC; 30 kDa) on oxidative stress and hypercholesterolemia was investigated using male 6-week-old Wistar Kyoto rats as a normal model (Normal-rats) and spontaneously hypertensive rat/ND mcr-cp (SHP/ND) as a metabolic syndrome model (MS-rats), respectively. In Normal-rats, the ingestion of both chitosans over a 4 week period resulted in a significant decrease in total body weight (BW), glucose (Gl), triglyceride (TG), low density lipoprotein (LDL) and serum creatinine (Cre) levels. The ingestion of both chitosans also resulted in a lowered ratio of oxidized to reduced albumin and an increase in total plasma antioxidant activity. In addition to similar results in Normal-rats, the ingestion of only HMC over a 4 week period resulted in a significant decrease in total cholesterol levels in MS-rats. Further, the ingestion of LMC resulted in a significantly higher antioxidant activity than was observed for HMC in both rat models. In in vitro studies, LMC caused a significantly higher reduction in the levels of two stable radicals, compared to HMC, and the effect was both dose- and time-dependent. The findings also show that LDL showed strong binding in the case of HMC. These results suggest that LMC has a high antioxidant activity as well as antilipidemic effects, while HMC results in a significant reduction in the levels of pro-oxidants such as LDL in the gastrointestinal tract, thereby inhibiting the subsequent development of oxidative stress in the systemic circulation in metabolic model rats.

  1. Effect of diesel exhaust inhalation on antioxidant and oxidative stress responses in adults with metabolic syndrome.

    Science.gov (United States)

    Allen, Jason; Trenga, Carol A; Peretz, Alon; Sullivan, Jeffrey H; Carlsten, Christopher C; Kaufman, Joel D

    2009-11-01

    Traffic-related air pollution is associated with cardiovascular morbidity and mortality. Although the biological mechanisms are not well understood, oxidative stress may be a primary pathway. Subpopulations, such as individuals with metabolic syndrome (MeS), may be at increased risk of adverse effects associated with air pollution. Our aim was to assess the relationship between exposure to diesel exhaust (DE) and indicators of systemic antioxidant and oxidative responses in adults with MeS. We hypothesized that DE exposure would result in greater oxidative stress and antioxidant responses compared with filtered air (FA). Ten adult subjects with MeS were exposed on separate days for two hours to FA or DE (at 200microg/m3), in a double blind, crossover experiment. Urinary 8-isoPGF2alpha (F2-isoprostanes), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were assessed as markers of oxidative stress at 3 hrs and 22 hrs, respectively, after exposure initiation. To assess the short-term antioxidant response we analyzed plasma ascorbic acid (AA) 90 minutes after exposure initiation. All outcomes were compared to pre-exposure levels, and mean changes were compared between FA and DE exposures. Mean changes in urinary F2-isoprostanes (ng/mg creatinine), (-0.05 [95% CI = -0.29, 0.15]), and 8-OHdG (microg/g creatinine) (-0.09 [-0.13, 0.31]), were not statistically significant. Mean changes in plasma AA (mg/dl) were also not significant (-0.02 [-0.78, 0.04]). In this carefully controlled experiment, we did not detect significant changes in oxidative stress or systemic antioxidant responses in subjects with MeS exposed to 200microg/m3 DE.

  2. [The effect of exogenous antioxidants on the antioxidant status of erythrocytes and hepcidin content in blood of patients with disorders of iron metabolism regulation].

    Science.gov (United States)

    Shcherbinina, S P; Levina, A A; Lisovskaia, I L; Ataullakhanov, F I

    2013-01-01

    In many diseases associated with impairments in iron metabolism, erythrocytes exhibit an increased sensitivity to oxidative stress induced in vitro. In this study, we have examined the antioxidant status of erythrocytes from healthy donors and from 12 patients with disorders of iron homeostasis by measuring the extent of t-BHP-induced hemolysis in vitro. The extent of hemolysis observed with patient erythrocytes was significantly higher than that observed in experiment with normal cells. After therapeutic infusions of the antioxidants mexidol or emoxypin, oxidative hemolysis in patients was restored to normal values and blood hepcidin content increased significantly. A significant correlation was observed between hepcidin concentration after treatment and t-BHP-induced hemolysis before treatment. These data suggest that antioxidants may exert a favorable effect under pathological conditions associated with iron overload disease.

  3. [Glutathione redox system, immune status, antioxidant enzymes and metabolism of purine nucleotides in hypothyroidism].

    Science.gov (United States)

    Tapbergenov, S O; Sovetov, B S; Bekbosynova, R B; Bolysbekova, S M

    2015-01-01

    The immune status, components of the glutathione redox system, the activity of antioxidant enzymes and metabolism of purine nucleotides have been investigated in animals with experimental hypothyroidism. On day 8 after an increase in the number of leukocytes, lymphocytes, T-helpers and T-suppressors as well as increased number of B-lymphocytes was found in blood of thyroidectomized rats. This was accompanied by decreased activity of adenosine deaminase (AD), AMP-deaminase (AMPD), and 5'-nucleotidase (5'N) in blood, but the ratio of enzyme activity AD/AMPD increased. These changes in the activity of enzymes, involved in purine catabolism can be regarded as increased functional relationships between T and B lymphocytes in hypothyroidism. The functional changes of immune system cells were accompanied by increased activity of glutathione peroxidase (GPx), a decrease in the activity of superoxide dismutase (SOD), glutathione reductase (GR) and the ratio GH/GPx. Thyroidectomized rats had increased amounts of total, oxidized (GSSG) and reduced glutathione (GSH), but the ratio GSH/GSSG decerased as compared with control animals. In the liver, hypothyroidism resulted in activation of SOD, GPx, decreased activity of GR and decreased ratio GR/GPx. At the same time, the levels of total, oxidized, and reduced glutathione increased, but the ratio GSH/GSSG as well as activities of enzymes involved in purine nucleotide metabolism ratio (and their ratio 5'N/AD + AMPD) decreased. All these data suggest a functional relationship of the glutathione redox system not only with antioxidant enzymes, but also activity of enzymes involved purine nucleotide metabolism and immune status.

  4. Polyphenols of Salix aegyptiaca modulate the activities of drug metabolizing and antioxidant enzymes, and level of lipid peroxidation.

    Science.gov (United States)

    Nauman, Mohd; Kale, R K; Singh, Rana P

    2018-03-07

    Salix aegyptiaca is known for its medicinal properties mainly due to the presence of salicylate compounds. However, it also contains other beneficial phytochemicals such as gallic acid, quercetin, rutin and vanillin. The aim of the study was to examine the redox potential, antioxidant and anti-inflammatory activity of these phytochemicals along with acetylsalicylic acid. The redox potential and antioxidant activity of gallic acid, quercetin, rutin, vanillin and acetylsalicylic acid were determined by oxidation-reduction potential electrode method and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, respectively. In ex vivo studies, antioxidant activity of these phytochemicals was determined by lipid peroxidation and carbonyl content assay in the liver of mice. Anti-inflammatory activity was determined by protein denaturation method. Six-week old C57BL/6 mice treated with gallic acid (100 mg/kg body weight) and acetylsalicylic acid (25 and 50 mg/kg body weight) to investigate their in vivo modulatory effects on the specific activities of drug metabolizing phase I and phase II enzymes, antioxidant enzymes and level of lipid peroxidation in liver. The order of ability to donate electron and antioxidant activity was found to be: gallic acid > quercetin > rutin > vanillin > acetylsalicylic acid. In ex vivo studies, the similar pattern and magnitude of inhibitory effects of these phytochemicals against peroxidative damage in microsomes and protein carbonyl in cytosolic fraction were observed. In in vivo studies, gallic acid and acetylsalicylic acid alone or in combination, enhanced the specific activities of drug metabolizing phase I and phase II enzymes as well as antioxidant enzymes and also inhibited lipid peroxidation in liver. These findings show a close link between the electron donation and antioxidation potential of these phytochemicals, and in turn their biological activity. Gallic acid, quercetin, rutin and vanillin were found to be better electron donors and

  5. The Anti-Oxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota

    Science.gov (United States)

    Cai, Jingwei; Zhang, Limin; Jones, Richard A.; Correll, Jared B.; Hatzakis, Emmanuel; Smith, Philip B.; Gonzalez, Frank J.; Patterson, Andrew D.

    2016-01-01

    Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver 1H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum 1H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles were observed in germ-free mice thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function resulting in reduced host energy availability and a significant shift in liver metabolism towards a more catabolic state. PMID:26696396

  6. Antioxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota.

    Science.gov (United States)

    Cai, Jingwei; Zhang, Limin; Jones, Richard A; Correll, Jared B; Hatzakis, Emmanuel; Smith, Philip B; Gonzalez, Frank J; Patterson, Andrew D

    2016-02-05

    Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver (1)H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum (1)H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles was observed in germ-free mice, thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function, resulting in reduced host energy availability and a significant shift in liver metabolism toward a more catabolic state.

  7. Antioxidized LDL Antibodies Are Associated With Different Metabolic Pathways in Patients With Atherosclerotic Plaque and Type 2 Diabetes

    OpenAIRE

    Bernal-Lopez, M. Rosa; Garrido-Sanchez, Lourdes; Gomez-Carrillo, Victor; Gallego-Perales, Jose Luis; Llorente-Cortes, Vicenta; Calleja, Fernando; Gomez-Huelgas, Ricardo; Badimon, Lina; Tinahones, Francisco J.

    2013-01-01

    OBJECTIVE Oxidized lipoproteins and antioxidized LDL antibodies (antioxLDL abs) have been detected in human plasma and atherosclerotic lesions. The principle aim of this study was to analyze the possible relationship between IgG and IgM antioxLDL abs and factors involved in different metabolic pathways (inflammation, lipid metabolism, apoptosis, and cell cycle arrest profile) in the occluded popliteal artery (OPA) compared with the femoral vein (FV). RESEARCH DESIGN AND METHODS Fifteen patien...

  8. Different exercise protocols improve metabolic syndrome markers, tissue triglycerides content and antioxidant status in rats

    Directory of Open Access Journals (Sweden)

    Botezelli José D

    2011-12-01

    Full Text Available Abstract Background An increase in the prevalence of obesity entails great expenditure for governments. Physical exercise is a powerful tool in the combat against obesity and obesity-associated diseases. This study sought to determine the effect of three different exercise protocols on metabolic syndrome and lipid peroxidation markers and the activity of antioxidant enzymes in adult Wistar rats (120 days old. Methods Animals were randomly divided into four groups: the control (C group was kept sedentary throughout the study; the aerobic group (A swam1 h per day, 5 days per week, at 80% lactate threshold intensity; the strength group (S performed strength training with four series of 10 jumps, 5 days per week; and the Concurrent group (AS was trained using the aerobic protocol three days per week and the strength protocol two days per week. Results Groups A and S exhibited a reduction in body weight compared to group C. All exercised animals showed a reduction in triglyceride concentrations in fatty tissues and the liver. Exercised animals also exhibited a reduction in lipid peroxidation markers (TBARS and an increase in serum superoxide dismutase activity. Animals in group A had increased levels of liver catalase and superoxide dismutase activities. Conclusions We concluded that all physical activity protocols improved the antioxidant systems of the animals and decreased the storage of triglycerides in the investigated tissues.

  9. NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthus amarus.

    Science.gov (United States)

    Jaleel, Cheruth Abdul; Manivannan, Paramasivam; Lakshmanan, Ganapathy Murugan Alagu; Sridharan, Ramalingam; Panneerselvam, Rajaram

    2007-11-01

    Some medicinal plants need to be cultivated commercially in order to meet the ever-increasing demand for medicinal plants for the indigenous systems of medicine as well as for the pharmaceutical industry; in this regard, it seems significant to test the important medicinal plants for their salt-tolerance capacity, with a view to exploiting the saline lands for medicinal plant cultivation. Phyllanthus amarus plants were grown in the presence of NaCl in order to study the effect of NaCl (80 mM NaCl) in the induction of oxidative stress in terms of lipid peroxidation (TBARS content), H2O2 content, osmolyte concentration, proline(PRO)-metabolizing enzymes, and antioxidant enzyme activities. Groundwater was used for irrigation of control plants. Plants were uprooted randomly on 90 days after sowing (DAS). NaCl-stressed plants showed increased TBARS, H2O2, glycine betaine (GB), and PRO contents, whereas NaCl uptake decreased proline oxidase (PROX) activity and increased gamma-glutamyl kinase (gamma-GK) activity when compared to control. The antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were increased under salinity.

  10. Alterations in antioxidant metabolism in coffee leaves infected by Cercospora coffeicola

    Directory of Open Access Journals (Sweden)

    Camila Cristina Lage de Andrade

    2016-01-01

    Full Text Available ABSTRACT: Brown eye spot (BE caused by Cercospora coffeicola is the main disease of coffee crop. A variation in symptoms of BE has been reported in the field, raising suspicion of occurrence of new species. However, information about coffee- C. coffeicola interaction is still limited. This research aimed to determine the difference between antioxidant metabolism of coffee plants cultivar Mundo Novo inoculated with a strain isolated from a common BE lesion (CML 2984 and a strain isolated from a black BE lesion (CML 2985. The enzyme activity of peroxidase (POX, catalase (CAT, superoxide dismutase (SOD, ascorbate peroxidase (APX and phenylalanine ammonia lyase (PAL were determined. Activities of POX, APX, and PAL increased in plants inoculated with both strains compared to non-inoculated plants at 12 and 24 hours post inoculation (hpi. CAT activity increased in inoculated plants with black BE strain at 24 hpi and both strains at 48 hpi. The SOD activity only increased in inoculated plants with both strains at 48 hpi. These results show that an elevated antioxidant response was observed when the plants were challenged with both strains of C. coffeicola. Both strains produced lesions of the common type, suggesting that other factors lead to the development of black BE lesion type under field conditions and further investigation is needed.

  11. Antioxidative properties of Jaffa sweeties and grapefruit and their influence on lipid metabolism and plasma antioxidative potential in rats

    Czech Academy of Sciences Publication Activity Database

    Gorinstein, S.; Yamamoto, K.; Katrich, E.; Leontowicz, H.; Lojek, Antonín; Leontowicz, M.; Číž, Milan; Goshev, I.; Shalev, U.; Trakhtenberg, S.

    2003-01-01

    Roč. 67, č. 4 (2003), s. 907-910 ISSN 0916-8451 Institutional research plan: CEZ:AV0Z5004920 Keywords : antioxidant * Jaffa seetie * grapefruit Subject RIV: BO - Biophysics Impact factor: 1.025, year: 2003

  12. Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints

    Energy Technology Data Exchange (ETDEWEB)

    Picco, Agnese; Ferrara, Michela; Arnaldi, Dario; Brugnolo, Andrea; Nobili, Flavio [University of Genoa and IRCCS San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Largo P. Daneo, 3, 16132, Genoa (Italy); Polidori, M.C. [University of Cologne, Institute of Geriatrics, Cologne (Germany); Cecchetti, Roberta; Baglioni, Mauro; Bastiani, Patrizia; Mecocci, Patrizia [University of Perugia, Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, Perugia (Italy); Morbelli, Silvia; Bossert, Irene [University of Genoa and IRCCS San Martino-IST, Nuclear Medicine, Department of Health Science (DISSAL), Genoa (Italy); Fiorucci, Giuliana; Dottorini, Massimo Eugenio [Nuclear Medicine, S. M. della Misericordia Hospital, Perugia (Italy)

    2014-04-15

    The role of oxidative stress is increasingly recognized in cognitive disorders of the elderly, notably Alzheimer's disease (AD). In these subjects brain{sup 18}F-FDG PET is regarded as a reliable biomarker of neurodegeneration. We hypothesized that oxidative stress could play a role in impairing brain glucose utilization in elderly subjects with increasing severity of cognitive disturbance. The study group comprised 85 subjects with cognitive disturbance of increasing degrees of severity including 23 subjects with subjective cognitive impairment (SCI), 28 patients with mild cognitive impairment and 34 patients with mild AD. In all subjects brain FDG PET was performed and plasma activities of extracellular superoxide dismutase (eSOD), catalase and glutathione peroxidase were measured. Voxel-based analysis (SPM8) was used to compare FDG PET between groups and to evaluate correlations between plasma antioxidants and glucose metabolism in the whole group of subjects, correcting for age and Mini-Mental State Examination score. Brain glucose metabolism progressively decreased in the bilateral posterior temporoparietal and cingulate cortices across the three groups, from SCI to mild AD. eSOD activity was positively correlated with glucose metabolism in a large area of the left temporal lobe including the superior, middle and inferior temporal gyri and the fusiform gyrus. These results suggest a role of oxidative stress in the impairment of glucose utilization in the left temporal lobe structures in elderly patients with cognitive abnormalities, including AD and conditions predisposing to AD. Further studies exploring the oxidative stress-energy metabolism axis are considered worthwhile in larger groups of these patients in order to identify pivotal pathophysiological mechanisms and innovative therapeutic opportunities. (orig.)

  13. Hypoglycemic and antioxidant effect of Tai chi exercise training in older adults with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Mendoza-Núñez VM

    2018-04-01

    Full Text Available Víctor Manuel Mendoza-Núñez,1 Taide Laurita Arista-Ugalde,1 Juana Rosado-Pérez,1 Mirna Ruiz-Ramos,1 Edelmiro Santiago-Osorio2 1Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico; 2Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico Introduction: The antioxidant and anti-inflammatory effects of Tai chi (TC exercise training in healthy older adults has been demonstrated. However, there are no studies on this effect in older adults with metabolic syndrome (MetS.Purpose: The aim of this study was to determine the effect of TC exercise on oxidative stress and inflammatory markers in older adults with MetS.Methods: A quasi-experimental study was carried out with a sample of 110 older sedentary volunteers with clinical diagnoses of MetS: (i a control group, n = 50, of individuals who do not participate in physical exercise, of which 37 fulfilled the entire study protocol, and (ii an experimental group, n = 60, of subjects enrolled in a TC exercise training program (eight-form easy, 5 days a week for 6 months, in sessions of 50 min, under the supervision of a qualified instructor, of which 48 fulfilled the entire study protocol. We measured in both groups (pre- and post-intervention the following cardiovascular parameters: resting heart rate (RHR, diastolic and systolic blood pressure (DBP and SBP, mean arterial pressure (MAP, RHR-SBP product, RHR-MAP product; glycosylated hemoglobin (HbA1c; oxidative stress markers (superoxide dismutase, total antioxidant status, thiobarbituric acid reacting substances, and oxidative stress score; and inflammation markers (TNF-α, IL-6, IL-8, and IL-10.Results: A statistically significant decrease in HbA1c concentration was observed in the TC group compared with the control group (p < 0.05. This group also showed a statistically significant increase

  14. Evaluation of the radioprotective and curative role of a natural antioxidant against cellular ultrastructural hazards induced in rats by gamma radiation exposure

    International Nuclear Information System (INIS)

    Abdel-Azeem, M.G.

    2005-01-01

    This study was designed to investigate the effects of Nigella sativa known as black seed in the amelioration of the histological disorders that occur in different tissues of albino rats exposed to 8 Gy whole body gamma irradiation, delivered as a single dose. Nigella sativa oil was administered daily to rats at a dose of 30 mg / 100 g body weight by gavage, 10 days before irradiation and to another group 10 days after irradiation. Experimental investigations performed one day after radiation for the first group and ten days after radiation for the second group showed that Nigella sativa treatment exerted a radioprotective and curative role on the fine structure of the renal tissue detected as swelling and cristalysis of mitochondria, fragmentation and dilatation damage in the rough endoplasmic reticulum which exhibited in various degrees such as active lysosomes, irregular nuclear membrane, clumped marginal chromatin, pyknotic nucleus with abnormal brush border, absence of infolding and irregularity of basement membrane. Moreover, the radiated hepatic cells showed dilation and thickness in membrane of blood sinasoid as well as lysis of cytoplasmic matrix. Treatment of rats with Nigella sativa during 10 consecutive days either before or after exposure to 8 Gy single dose led to partial improvement of hepatic and kidney cells.The results of the current study indicated that Nigella sativa oil exerted an important protective and curative role against radiation-induced damage in the ultrastructure configuration of kidney and liver cells

  15. Antioxidant gene expression and metabolic responses of earthworms (Eisenia fetida) after exposure to various concentrations of hexabromocyclododecane.

    Science.gov (United States)

    Shi, Yajuan; Xu, Xiangbo; Chen, Juan; Liang, Ruoyu; Zheng, Xiaoqi; Shi, Yajing; Wang, Yurong

    2018-01-01

    Hexabromocyclododecane (HBCD), a ubiquitous suspected contaminant, is one of the world's most prominent brominated flame retardants (BFRs). In the present study, earthworms (Eisenia fetida) were exposed to HBCD. The expression of selected antioxidant enzyme genes was measured, and the metabolic responses were assessed using nuclear magnetic resonance (NMR) to identify the molecular mechanism of the antioxidant stress reaction and the metabolic reactions of earthworms to HBCD. A significant up-regulation (p  0.05). Principal component analysis (PCA) of the metabolic responses showed that all groups could be clearly differentiated, and the highest concentration dose group was the most distant from the control group. Except for fumarate, the measured metabolites, which included adenosine triphosphate (ATP), valine, lysine, glycine, betaine and lactate, revealed significant (p earthworm exposure studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Alterations in the metabolism of benzo[a]pyrene in syrian hamster embryo (SHE) cells pretreated with phenolic antioxidants

    International Nuclear Information System (INIS)

    Strniste, G.F.; Okinaka, R.T.; Chen, D.J.

    1983-01-01

    Inhibition of chemical- or radiation-induced neoplasia has been observed in animals whose diets were supplemented with antioxidants commonly used as food additives. Inhibition of the carcinogenicity of benzo[a]pyrene (BaP) or of 7,12-dimenthylbenz[a]anthracene (DMBA) - in rats has been achieved by the addition of the phenolic antioxidants butylated hydroxyanisole (BHA) or butylated hydroxytoluene (BHT) to the diet. Our data suggest that in SHE cells antioxidants inhibit the overall metabolism of BaP to its various oxidized moieties including 7,8-diol- and 7,8,9,10-tetrol-BaP. A plausible explanation for our results with SHE cells is that the antioxidants interact directly with AHH, thus inhibiting AHH metabolic capacity. From analysis of nuclear material from SHE cells (+- antioxidants) incubated for 36 hours with BaP at 1 μg/ml, it is calculated that 4.6, 2.4 and 2.9 pmol BaP are bound to the DNA isolated from 10 7 nuclei of control, BHA-(20 μg/ml) and p-MP-(10 μg/ml) treated cultures, respectively

  17. Alterations in the metabolism of benzo(a)pyrene in syrian hamster embryo (SHE) cells pretreated with phenolic antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Strniste, G.F.; Okinaka, R.T.; Chen, D.J.

    1983-01-01

    Inhibition of chemical- or raddiation-induced neoplasia has been observed in animals whose diets were supplemented with antioxidants commonly used as food additives. Inhibition of the carcinogenicity of benzo(a)pyrene (BaP) or of 7,12-dimenthylbenz(a)anthracene (DMBA) - in rats has been achieved by the addition of the phenolic antioxidants butylated hydroxyanisole (BHA) or butylated hydroxytoluene (BHT) to the diet. Our data suggest that in SHE cells antioxidants inhibit the overall metabolism of BaP to its various oxidized moieties including 7,8-diol- and 7,8,9,10-tetrol-BaP. A plausible explanation for our results with SHE cells is that the antioxidants interact directly with AHH, thus inhibiting AHH metabolic capacity. From analysis of nuclear material from SHE cells (+- antioxidants) incubated for 36 hours with BaP at 1 ..mu..g/ml, it is calculated that 4.6, 2.4 and 2.9 pmol BaP are bound to the DNA isolated from 10/sup 7/ nuclei of control, BHA-(20 ..mu..g/ml) and p-MP-(10 ..mu..g/ml) treated cultures, respectively.

  18. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect [v1; ref status: indexed, http://f1000r.es/a0

    Directory of Open Access Journals (Sweden)

    Halina Witkiewicz

    2013-01-01

    Full Text Available Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect. Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis, gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in

  19. Metabolic Profiling and Antioxidant Assay of Metabolites from Three Radish Cultivars (Raphanus sativus

    Directory of Open Access Journals (Sweden)

    Chang Ha Park

    2016-01-01

    Full Text Available A total of 13 anthocyanins and 33 metabolites; including organic acids, phenolic acids, amino acids, organic compounds, sugar acids, sugar alcohols, and sugars, were profiled in three radish cultivars by using high-performance liquid chromatography (HPLC and gas chromatography time-of-flight mass spectrometry (GC-TOFMS-based metabolite profiling. Total phenolics and flavonoids and their in vitro antioxidant activities were assessed. Pelargonidins were found to be the major anthocyanin in the cultivars studied. The cultivar Man Tang Hong showed the highest level of anthocyanins (1.89 ± 0.07 mg/g, phenolics (0.0664 ± 0.0033 mg/g and flavonoids (0.0096 ± 0.0004 mg/g. Here; the variation of secondary metabolites in the radishes is described, as well as their association with primary metabolites. The low-molecular-weight hydrophilic metabolite profiles were subjected to principal component analysis (PCA, hierarchical clustering analysis (HCA, Pearson’s correlation analysis. PCA fully distinguished the three radish cultivars tested. The polar metabolites were strongly correlated between metabolites that participate in the TCA cycle. The chemometrics results revealed that TCA cycle intermediates and free phenolic acids as well as anthocyanins were higher in the cultivar Man Tang Hong than in the others. Furthermore; superoxide radical scavenging activities and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging were investigated to elucidate the antioxidant activity of secondary metabolites in the cultivars. Man Tang Hong showed the highest superoxide radical scavenging activity (68.87% at 1000 μg/mL, and DPPH activity (20.78%, followed by Seo Ho and then Hong Feng No. 1. The results demonstrate that GC-TOFMS-based metabolite profiling, integrated with chemometrics, is an applicable method for distinguishing phenotypic variation and determining biochemical reactions connecting primary and secondary metabolism. Therefore; this study might

  20. A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network.

    Directory of Open Access Journals (Sweden)

    Ranji Singh

    Full Text Available The reduced nicotinamide adenine dinucleotide phosphate (NADPH is pivotal to the cellular anti-oxidative defence strategies in most organisms. Although its production mediated by different enzyme systems has been relatively well-studied, metabolic networks dedicated to the biogenesis of NADPH have not been fully characterized. In this report, a metabolic pathway that promotes the conversion of reduced nicotinamide adenine dinucleotide (NADH, a pro-oxidant into NADPH has been uncovered in Pseudomonas fluorescens exposed to oxidative stress. Enzymes such as pyruvate carboxylase (PC, malic enzyme (ME, malate dehydrogenase (MDH, malate synthase (MS, and isocitrate lyase (ICL that are involved in disparate metabolic modules, converged to create a metabolic network aimed at the transformation of NADH into NADPH. The downregulation of phosphoenol carboxykinase (PEPCK and the upregulation of pyruvate kinase (PK ensured that this metabolic cycle fixed NADH into NADPH to combat the oxidative stress triggered by the menadione insult. This is the first demonstration of a metabolic network invoked to generate NADPH from NADH, a process that may be very effective in combating oxidative stress as the increase of an anti-oxidant is coupled to the decrease of a pro-oxidant.

  1. Metabolic characterization and antioxidant activity in sweet cherry (Prunus avium L.) Campania accessions: Metabolic characterization of sweet cherry accessions.

    Science.gov (United States)

    Mirto, Antonio; Iannuzzi, Federica; Carillo, Petronia; Ciarmiello, Loredana F; Woodrow, Pasqualina; Fuggi, Amodio

    2018-02-01

    The failure of the antioxidant scavenging system in advanced ripening stages, causing oxidative stress, is one of the most important factor of fruit decay. Production of rich antioxidant fruit could represent a way to delay fruit senescence and preserve its characteristics. We investigated the antioxidant metabolites (ascorbate, glutathione, tocopherols, and polyphenols) and enzymes (ascorbic peroxidases, peroxidases and polyphenol oxidases) involved in the antioxidant response in forty-three accessions of sweet cherry fruits from Campania region. Our results highlight accessions with high antioxidant metabolites contents but low enzymatic activities. These represent important factors in both pre- and post-harvest on the qualitative and nutritional characteristics of sweet cherry. Observed differences are probably due to endogenous characteristics making these accessions particularly interesting for breeding programs aimed to improve fruit quality and shelf-life and for addressing the cultivation of a specific characterized cultivar based on the intended use, fresh consumption or processed products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Dose-response effects of lycopene on selected drug-metabolizing and antioxidant enzymes in the rat

    DEFF Research Database (Denmark)

    Breinholt, V.; Lauridsen, S. T.; Daneshvar, B.

    2000-01-01

    enzymes involved in the protection against oxidative stress and cancer. The fact that these enzymatic activities are induced at all of these very low plasma levels, could be taken to suggest that modulation of antioxidant and drug-metabolizing enzymes map indeed be relevant to humans, which in general......The administration of lycopene to female rats at doses ranging from 0.001 to 0.1 g/kg b.w, per day for 2 weeks was found to alter the drug-metabolizing capacity and antioxidant status of the exposed animals. An investigation of four cytochrome P450-dependent enzymes revealed that benzyloxyresorufin...... is barely within the lower range of the mean human plasma concentration of lycopene, which ranges from 70-1790 nM. Oxidative stress induced by the heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP), and investigated by analyzing for malondialdehyde in plasma, was not found...

  3. Wet and dry extraction of coconut oil: impact on lipid metabolic and antioxidant status in cholesterol coadministered rats.

    Science.gov (United States)

    Nevin, K Govindan; Rajamohan, Thankappan

    2009-08-01

    Because coconut oil extracted by wet process (virgin coconut oil, VCO) is gaining popularity among consumers, this study was conducted to evaluate VCO compared with coconut oil extracted by dry process (copra oil, CO) for their influence on lipid parameters, lipid peroxidation, and antioxidant status in rats coadministered with cholesterol. VCO, CO, and cholesterol were fed in a semi-synthetic diet to 24 male Sprague-Dawley rats for 45 days. After the experimental period, lipid and lipid peroxide levels and antioxidant enzyme activities were observed. Chemical composition and antioxidant properties of the polyphenolic fraction from VCO and CO were also analyzed. The results showed that lipid and lipid peroxide levels were lower in VCO-fed animals than in animals fed either CO or cholesterol alone. Antioxidant enzyme activities in VCO-fed animals were comparable with those in control animals. Although the fatty acid profiles of both oils were similar, a significantly higher level of unsaponifiable components was observed in VCO. Polyphenols from VCO also showed significant radical-scavenging activity compared with those from CO. This study clearly indicates the potential benefits of VCO over CO in maintaining lipid metabolism and antioxidant status. These effects may be attributed in part to the presence of biologically active minor unsaponifiable components.

  4. Serum and dietary antioxidant status is associated with lower prevalence of the metabolic syndrome in a study in Shanghai, China.

    Science.gov (United States)

    Li, Yanrong; Guo, Hongwei; Wu, Min; Liu, Ming

    2013-01-01

    The aim of our study was to examine the association between the metabolic syndrome (MS) and serum antioxidant status. A cross-sectional study was conducted with 221 cases and 329 controls aged 18 to 65 years. Weight, height, body mass index, waist circumference, blood pressure, fasting blood glucose and lipids, as well as serum superoxide dismutase, glutathione peroxidase, malondialdehide, vitamins A, E, β-carotene and lycopene were examined. Intakes of antioxidants were also estimated. Mean serum superoxide dismutase activity, β-carotene concentrations were significantly lower, malondialdehide was higher (p<0.05) in persons with the MS (after adjusting for age, sex) than those without. Superoxide dismutase, glutathione peroxidase, and β- carotene also decreased significantly (p<0.05) with increased number of components of the MS. Low levels of serum superoxide dismutase activity and β-carotene concentration appeared to be associated with the MS status. Moreover, dietary energy, carbohydrate, vitamin C, zinc and copper intake in the MS patients were lower, but fat intake were higher. Vitamins E, C and manganese intake decreased with the elevated number of the MS components. For zinc and manganese, a lower risk was observed for other quartile of intake compared with the first one. Inverse links between dietary fat, energy intake and serum antioxidant status were found in MS patients, meanwhile dietary vitamin C was positively related with serum antioxidant level. Serum antioxidant status was associated with a lower prevalence of the MS, and with lower dietary fat, energy intake and higher vitamin C intake.

  5. Effect of Feeding Oxidized Soybean Oil against Antioxidant role of Pomegranate Seed on Physiology and Metabolism of Periparturient Saanen Goats

    Directory of Open Access Journals (Sweden)

    Seyyed Ehsan Ghiasi

    2016-08-01

    Full Text Available Introduction Oxidative stress is metabolic and physiologic status caused by imbalance between free radical production and antioxidant defense of body. In some physiological status such as rapid growth, parturition, disease and high production rate that imbalance would occur. High producing dairy animals are suspected to oxidative stress and require to antioxidant supplementation. Negative energy balance in early lactation force the nutrition specialist to apply oil and high NFC diet to exceed the requirement of high producing dairy animals such as Holstein cows and Saanen goats. In recent years, the attention to the use of herbal or organic antioxidant in animal nutrition has increased. This study was carried out to investigate the effects of feeding oxidized soybean oil (OSO plus pomegranate seed (PS as a natural antioxidant, on metabolism and physiology of Preparturient Saanen Goats. Materials and Methods Eighteen Saanen dairy goats with initial body weight of 47 ± 9 kg were assigned to three dietary treatments in a completely randomized design with repeated measurements for 21 days before anticipated parturition. Experimental treatments including: 1 base diet and 4% fresh soybean oil (FSO, 2 base diet and 4% oxidized soybean oil (DM basis respectively, and 3 base diet plus 4% OSO and 8% Pomegranate seed (OSO-PS. After 2 weeks of feeding trial diets, goats were sampled for blood, rumen liquor, faeces and urine for measuring parameters of blood glucose, BHBA, lipid and nitrogen profile, rumen liquor ammonia nitrogen, urine pH and volume, faeces qualitative and quantitative variables and other responses such as nutrients digestibility. The GLM procedure of SAS software v.9.2 were used for statistical analysis. Initial body weight and metabolic variables were used as covariate in the model. Results and discussion All nutrients digestibility, Ruminal ammonia nitrogen and voluntary feed intake were decreased by OSO (p

  6. 1H NMR based metabolic profiling of eleven Algerian aromatic plants and evaluation of their antioxidant and cytotoxic properties.

    Science.gov (United States)

    Brahmi, Nabila; Scognamiglio, Monica; Pacifico, Severina; Mekhoukhe, Aida; Madani, Khodir; Fiorentino, Antonio; Monaco, Pietro

    2015-10-01

    Eleven Algerian medicinal and aromatic plants (Aloysia triphylla, Apium graveolens, Coriandrum sativum, Laurus nobilis, Lavandula officinalis, Marrubium vulgare, Mentha spicata, Inula viscosa, Petroselinum crispum, Salvia officinalis, and Thymus vulgaris) were selected and their hydroalcoholic extracts were screened for their antiradical and antioxidant properties in cell-free systems. In order to identify the main metabolites constituting the extracts, 1 H NMR-based metabolic profiling was applied. Data obtained emphasized the antiradical properties of T. vulgaris, M. spicata and L. nobilis extracts (RACI 1.37, 0.97 and 0.93, respectively), whereas parsley was the less active as antioxidant (RACI -1.26). When the cytotoxic effects of low and antioxidant doses of each extract were evaluated towards SK-N-BE(2)C neuronal and HepG2 hepatic cell lines, it was observed that all the extracts weakly affected the metabolic redox activity of the tested cell lines. Overall, data strongly plead in favor of the use of these plants as potential food additives in replacement of synthetic compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sodium P-Aminosalicylic Acid Improved Manganese-Induced Learning and Memory Dysfunction via Restoring the Ultrastructural Alterations and γ-Aminobutyric Acid Metabolism Imbalance in the Basal Ganglia.

    Science.gov (United States)

    Ou, Chao-Yan; Luo, Yi-Ni; He, Sheng-Nan; Deng, Xiang-Fa; Luo, Hai-Lan; Yuan, Zong-Xiang; Meng, Hao-Yang; Mo, Yu-Huan; Li, Shao-Jun; Jiang, Yue-Ming

    2017-03-01

    Excessive intake of manganese (Mn) may cause neurotoxicity. Sodium para-aminosalicylic acid (PAS-Na) has been used successfully in the treatment of Mn-induced neurotoxicity. The γ-aminobutyric acid (GABA) is related with learning and memory abilities. However, the mechanism of PAS-Na on improving Mn-induced behavioral deficits is unclear. The current study was aimed to investigate the effects of PAS-Na on Mn-induced behavioral deficits and the involvement of ultrastructural alterations and γ-aminobutyric acid (GABA) metabolism in the basal ganglia of rats. Sprague-Dawley rats received daily intraperitoneally injections of 15 mg/kg MnCl 2 .4H 2 O, 5d/week for 4 weeks, followed by a daily back subcutaneously (sc.) dose of PAS-Na (100 and 200 mg/kg), 5 days/week for another 3 or 6 weeks. Mn exposure for 4 weeks and then ceased Mn exposure for 3 or 6 weeks impaired spatial learning and memory abilities, and these effects were long-lasting. Moreover, Mn exposure caused ultrastructural alterations in the basal ganglia expressed as swollen neuronal with increasing the electron density in the protrusions structure and fuzzed the interval of neuropil, together with swollen, focal hyperplasia, and hypertrophy of astrocytes. Additionally, the results also indicated that Mn exposure increased Glu/GABA values as by feedback loops controlling GAT-1, GABA A mRNA and GABA A protein expression through decreasing GABA transporter 1(GAT-1) and GABA A receptor (GABA A ) mRNA expression, and increasing GABA A protein expression in the basal ganglia. But Mn exposure had no effects on GAT-1 protein expression. PAS-Na treatment for 3 or 6 weeks effectively restored the above-mentioned adverse effects induced by Mn. In conclusion, these findings suggest the involvement of GABA metabolism and ultrastructural alterations of basal ganglia in PAS-Na's protective effects on the spatial learning and memory abilities.

  8. Metabolic Biosynthesis of Potato (Solanum tuberosum l.) Antioxidants and Implications for Human Health.

    Science.gov (United States)

    Lovat, Christie; Nassar, Atef M K; Kubow, Stan; Li, Xiu-Qing; Donnelly, Danielle J

    2016-10-25

    Potato (Solanum tuberosum L.) is common, affordable, readily stored, easily prepared for consumption, and nutritious. For these reasons, potato has become one of the top five crops consumed worldwide. Consequently, it is important to understand its contribution to both our daily and long-term health. Potato is one of the most important sources of antioxidants in the human diet. As such, it supports the antioxidant defense network in our bodies that reduces cellular and tissue toxicities that result from free radical-induced protein, lipid, carbohydrate, and DNA damage. In this way, potato antioxidants may reduce the risk for cancers, cardiovascular diseases, diabetes, and even radiation damage. A better understanding of these components of potato is needed by the food industry, health professionals, and consumers. This review provides referenced summaries of all of the antioxidant groups present in potato tubers and updated schematics including genetic regulation for the major antioxidant biosynthesis pathways. This review complements current knowledge on the role of potato in human health. We hope it will provide impetus toward breeding efforts to develop cultivars with increased antioxidant capacity as 'functional foods' and encourage potato consumers and processors to work toward preservation of antioxidant capacity in cooked potato and potato products.

  9. Antioxidants reverse the changes in energy metabolism of rat brain after chronic administration of L.-tyrosine.

    Science.gov (United States)

    Teodorak, Brena P; Scaini, Giselli; Carvalho-Silva, Milena; Gomes, Lara M; Teixeira, Letícia J; Rebelo, Joyce; De Prá, Samira D T; Zeni, Neila; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2017-04-01

    Tyrosinemia type II is a rare autosomal recessive disease caused by deficiency of hepatic tyrosine aminotransferase and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that high concentrations of tyrosine provoke mitochondrial dysfunction and oxidative stress, in the present study we investigated the in vivo influence of antioxidants (N-acetylcysteine, NAC; and deferoxamine, DFX) administration on the inhibitory effects on parameters of energy metabolism in cerebral cortex, hippocampus and striatum of rats, provoked by chronic administration of L.-tyrosine. Our results showed that chronic administration of L.-tyrosine results in a marked decrease in the activity of citrate synthase in all the analyzed structures and succinate dehydrogenase activities in hippocampus and striatum, and that antioxidants administration can prevent this inhibition in hippocampus and striatum. Moreover, chronic administration of L.-tyrosine inhibited the activity of complex I, II-III and IV in the striatum, which can be prevented by antioxidant treatment. However, the co-administration of NAC plus DFX could not prevent the inhibition of creatine kinase activity in the striatum. In conclusion, the present study demonstrates that the administration of antioxidants NAC and DFX attenuates the L.-tyrosine effects on enzymes of the Krebs cycle and the mitochondrial respiratory chain, suggesting that impairment of energy metabolism can be involved with oxidative stress. These results also indicate a possible neuroprotective role for NAC and DFX as a potential adjuvant therapy to the patients with Tyrosinemia type II.

  10. Short-term influence of Cu, Zn, Ni and Cd excess on metabolism, ultrastructure and distribution of elements in lichen Xanthoria parietina (L.) Th. Fr.

    Science.gov (United States)

    Piovár, J; Weidinger, M; Bačkor, M; Bačkorová, M; Lichtscheidl, I

    2017-11-01

    Lichens are symbiotic organisms that are very sensitive to heavy metal pollution. However, there is little evidence of how heavy metal pollution affects the physiological status, ultrastructural changes and distribution of elements in the layers of lichen thalli. For this purpose we simulated metal pollution to lichens and studied its impact on Xanthoria parietina. Thalli were treated with the heavy metals Cu, Zn, Ni, Cd in the form of sulfates at concentrations of 100µM and 500µM during 24, 48 and 72h. Untreated lichens served as controls. We assessed the status of physiological parameters (fluorescence and integrity of chlorophyll a, content of soluble proteins and ergosterol), ultrastructural changes, especially to the photobiont, and the distribution of elements in the layers of thalli in relation to treatment with heavy metals. We found positive correlations between the content of all tested heavy metals and the physiological response. We assessed the toxicity of the selected metals as follows: Cd >= Cu >= Ni > Zn, based on the effects on the photobiont layer in the lichen thallus and physiological measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Lycium barbarum Reduces Abdominal Fat and Improves Lipid Profile and Antioxidant Status in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Mayara Zagonel de Souza Zanchet

    2017-01-01

    Full Text Available Natural antioxidants present in fruits have attracted considerable interest due to their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals of goji berry (GB in patients with metabolic syndrome have not been investigated. In this study, we examined anthropometric and biochemical parameters in patients with metabolic syndrome after the consumption of GB. The patients were divided into two groups, control (C and supplemented (S, and followed up for 45 days. Participants were individually instructed to carry out a healthy diet, but additionally, an inclusion of 14 g of the natural form of goji berry in the diet during 45 days for the S group was proposed. After 45 days of study, a significant reduction in transaminases as well as an improvement in lipid profile in the S group was observed. Likewise, a significant reduction in the waist circumference of the S group was observed when compared with that of the C group, and increased glutathione and catalase levels associated with a reduction of lipid peroxidation. These results suggest that this is an effective dietary supplement for the prevention of cardiovascular diseases in individuals with metabolic syndrome.

  12. Lycium barbarum Reduces Abdominal Fat and Improves Lipid Profile and Antioxidant Status in Patients with Metabolic Syndrome.

    Science.gov (United States)

    de Souza Zanchet, Mayara Zagonel; Nardi, Geisson Marcos; de Oliveira Souza Bratti, Letícia; Filippin-Monteiro, Fabíola Branco; Locatelli, Claudriana

    2017-01-01

    Natural antioxidants present in fruits have attracted considerable interest due to their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals of goji berry (GB) in patients with metabolic syndrome have not been investigated. In this study, we examined anthropometric and biochemical parameters in patients with metabolic syndrome after the consumption of GB. The patients were divided into two groups, control (C) and supplemented (S), and followed up for 45 days. Participants were individually instructed to carry out a healthy diet, but additionally, an inclusion of 14 g of the natural form of goji berry in the diet during 45 days for the S group was proposed. After 45 days of study, a significant reduction in transaminases as well as an improvement in lipid profile in the S group was observed. Likewise, a significant reduction in the waist circumference of the S group was observed when compared with that of the C group, and increased glutathione and catalase levels associated with a reduction of lipid peroxidation. These results suggest that this is an effective dietary supplement for the prevention of cardiovascular diseases in individuals with metabolic syndrome.

  13. Quercetin Feeding in Newborn Dairy Calves Cannot Compensate Colostrum Deprivation: Study on Metabolic, Antioxidative and Inflammatory Traits

    Science.gov (United States)

    Gruse, Jeannine; Kanitz, Ellen; Weitzel, Joachim M.; Tuchscherer, Armin; Stefaniak, Tadeusz; Jawor, Paulina; Wolffram, Siegfried; Hammon, Harald M.

    2016-01-01

    Immaturity of the neonatal immune system is causative for high morbidity in calves and colostrum intake is crucial for acquiring passive immunity. Pathogenesis is promoted by reactive oxygen species accumulating at birth if counter-regulation is inadequate. The flavonol quercetin exerts antioxidative and anti-inflammatory effects that may enhance neonatal health. The aim of this work was to study effects of quercetin feeding on metabolic, antioxidative and inflammatory parameters in neonatal calves to investigate whether quercetin could compensate for insufficient colostrum supply. Twenty-eight newborn calves were assigned to two dietary groups fed colostrum or milk-based formula on day 1 and 2 and milk replacer thereafter. From day 2 onwards, 7 calves per diet group were additionally fed quercetin aglycone (50 mg/(kg body weight × day)). Blood samples were taken repeatedly to measure plasma concentrations of flavonols, glucose, lactate, total protein, albumin, urea, non-esterified fatty acids, triglycerides, cholesterol, insulin, glucagon, cortisol, immunoglobulins, fibrinogen, haptoglobin and serum amyloid A. Trolox equivalent antioxidative capacity, ferric reducing ability of plasma, thiobarbituric acid reactive species and F2-isoprostanes were analyzed to evaluate plasma antioxidative status. Expression of tumor necrosis factor, interleukin-1α, interleukin-1β, serum amyloid A, haptoglobin, fibrinogen, C-reactive protein, catalase, glutathione peroxidase and superoxide dismutase mRNA were measured in liver tissue on day 8. Plasma flavonol concentrations were detectable only after quercetin-feeding without differences between colostrum and formula feeding. Plasma glucose, lactate, total protein, immunoglobulins, triglycerides, cholesterol, trolox equivalent antioxidative capacity and thiobarbituric acid reactive species were higher after colostrum feeding. Body temperature, fecal fluidity and plasma concentrations of cortisol and haptoglobin were higher in

  14. Relation between plasma antioxidant vitamin levels, adiposity and cardio-metabolic profile in adolescents: Effects of a multidisciplinary obesity programme.

    Science.gov (United States)

    Guerendiain, Marcela; Mayneris-Perxachs, Jordi; Montes, Rosa; López-Belmonte, Gemma; Martín-Matillas, Miguel; Castellote, Ana I; Martín-Bautista, Elena; Martí, Amelia; Martínez, J Alfredo; Moreno, Luis; Garagorri, Jesús Mª; Wärnberg, Julia; Caballero, Javier; Marcos, Ascensión; López-Sabater, M Carmen; Campoy, Cristina

    2017-02-01

    In vivo and in vitro evidence suggests that antioxidant vitamins and carotenoids may be key factors in the treatment and prevention of obesity and obesity-associated disorders. Hence, the objective of the present study was to determine the relationship between plasma lipid-soluble antioxidant vitamin and carotenoid levels and adiposity and cardio-metabolic risk markers in overweight and obese adolescents participating in a multidisciplinary weight loss programme. A therapeutic programme was conducted with 103 adolescents aged 12-17 years old and diagnosed with overweight or obesity. Plasma concentrations of α-tocopherol, retinol, β-carotene and lycopene, anthropometric indicators of general and central adiposity, blood pressure and biochemical parameters were analysed at baseline and at 2 and 6 months of treatment. Lipid-corrected retinol (P vitamin and carotenoid levels. The adolescents who experienced the greatest weight loss also showed the largest decrease in anthropometric indicators of adiposity and biochemical parameters and the highest increase in fat free mass. Weight loss in these adolescents was related to an increase in plasma levels of lipid-corrected α-tocopherol (P = 0.001), β-carotene (P = 0.034) and lycopene (P = 0.019). Plasma lipid-soluble antioxidant vitamin and carotenoid levels are associated with reduced adiposity, greater weight loss and an improved cardio-metabolic profile in overweight and obese adolescents. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  15. Disturbance of Antioxidant Enzymes and Purine Metabolism in the Ejaculate of Men Living in Disadvantaged Areas of Kyzylorda Region

    Directory of Open Access Journals (Sweden)

    Valentihna N. Kislitskaya

    2015-07-01

    CONCLUSIONS: According to the results of study, it was put the influence  of negative factors of the Aral Sea region in men’s sperm of reproductive  age gives to disability free-radical processes, that proves changing of ferments of ant oxidative protection Catalase and adenosine deaminase (ADA.  This disturbance in men’s sperm of reproductive age leading to increased level of oxidative stress and impaired activity of  antioxidant enzymes and purine metabolism, responsible for the abnormal transmembrane and intracellular processes, reflecting the degree of imbalance of enzymes.

  16. Impact of the components of metabolic syndrome on oxidative stress and enzymatic antioxidant activity in essential hypertension.

    Science.gov (United States)

    Abdilla, N; Tormo, M C; Fabia, M J; Chaves, F J; Saez, G; Redon, J

    2007-01-01

    The objective of the present study was to analyze the impact of metabolic syndrome (MS) and its individual components on oxidative stress (OX) and on the activity of antioxidant enzymes of patients with essential hypertension. One hundred and eighty-seven hypertensives, 127 (61.9%) of them having criteria for MS according to the International Diabetes Federation criteria and 30 healthy normotensive subjects were included. OX status was assessed by measuring glutathione oxidized/glutathione reduced and reactive oxygen species-induced byproducts of lipid peroxidation, malondialdehyde, and DNA damage, 8-oxo-dG genomic and mitochondrial. Antioxidant enzymatic activity of Cu/Zn extracellular-superoxide dismutase (SOD) and catalase (CAT) was measured in plasma and glutathione peroxidase 1 in hemolysed erythrocytes. In mononuclear cells, total-SOD activity, CAT and glutathione peroxidase 1, were assessed as well. The OX state in both blood and peripheral mononuclear cells observed in hypertensives were not enhanced by the addition of components of the so-called MS. Likewise, the reduction in the activity of antioxidant enzymes, both extracellular and cytoplasmic, was not affected by the presence of additional components of the MS. Neither the number of components nor the individual addition of each of them, low high-density lipoprotein, triglycerides, abdominal obesity or fasting glucose, further impact in the OX abnormalities observed in those with only hypertension in absence of other components. In conclusion, the present data indicates that contribution of MS components to the OX burden generated by high blood pressure is minimal.

  17. Effects of Chimonanthus nitens Oliv. Leaf Extract on Glycolipid Metabolism and Antioxidant Capacity in Diabetic Model Mice

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2017-01-01

    Full Text Available The paper investigated the antihyperglycemic and antihyperlipidemic efficacy and antioxidant capacity of Chimonanthus nitens Oliv. leaf extract (COE in combination of high-glucose-fat diet-fed and streptozotocin-induced diabetic model mice. Various physiological indexes in diabetic model mice were well improved especially by oral administration of high dose of COE; the results were listed as follows. Fast blood glucose (FBG level and serum triglyceride (TC, total cholesterol (TG, low-density lipoprotein cholesterol (LDLC, and malondialdehyde (MDA as well as MDA in liver were significantly reduced; fasting serum insulin (FINS and insulin sensitivity index (ISI were both increased; high-density lipoprotein cholesterol (HDLC in serum was significantly increased; total antioxidant capacity (T-AOC, activities of superoxide dismutase (SOD, glutathione peroxidase (GSH-Px, and catalase (CAT in serum and liver were apparently enhanced; liver coefficient (LC, liver transaminase, and alkaline phosphatase (ALP were decreased. Furthermore, pancreas islets and liver in diabetic model mice showed some extend of improvement in morphology and function after 4 weeks of COE treatment. In consequence, COE was advantageous to regulate glycolipid metabolism and elevate antioxidant capacity in diabetic model mice. Thus, the present study will provide a scientific evidence for the use of COE in the management of diabetes and its related complications.

  18. A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington’s disease in mice

    Science.gov (United States)

    Acuña, Aníbal I.; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A.; Parra, Alejandra V.; Cepeda, Carlos; Toro, Carlos A.; Vidal, René L.; Hetz, Claudio; Concha, Ilona I.; Brauchi, Sebastián; Levine, Michael S.; Castro, Maite A.

    2013-12-01

    Huntington’s disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death.

  19. Chilling-related cell damage of apple (Malus × domestica Borkh.) fruit cortical tissue impacts antioxidant, lipid and phenolic metabolism.

    Science.gov (United States)

    Leisso, Rachel S; Buchanan, David A; Lee, Jinwook; Mattheis, James P; Sater, Chris; Hanrahan, Ines; Watkins, Christopher B; Gapper, Nigel; Johnston, Jason W; Schaffer, Robert J; Hertog, Maarten L A T M; Nicolaï, Bart M; Rudell, David R

    2015-02-01

    'Soggy breakdown' (SB) is an internal flesh disorder of 'Honeycrisp' apple (Malus × domestica Borkh.) fruit that occurs during low temperature storage. The disorder is a chilling injury (CI) in which visible symptoms typically appear after several weeks of storage, but information about the underlying metabolism associated with its induction and development is lacking. The metabolic profile of flesh tissue from wholly healthy fruit and brown and healthy tissues from fruit with SB was characterized using gas chromatography-mass spectrometry (GC-MS) and liquid chromatograph-mass spectrometry (LC-MS). Partial least squares discriminant analysis (PLS-DA) and correlation networks revealed correlation among ester volatile compounds by composition and differences in phytosterol, phenolic and putative triacylglycerides (TAGs) metabolism among the tissues. anova-simultaneous component analysis (ASCA) was used to test the significance of metabolic changes linked with tissue health status. ASCA-significant components included antioxidant compounds, TAGs, and phytosterol conjugates. Relative to entirely healthy tissues, elevated metabolite levels in symptomatic tissue included γ-amino butyric acid, glycerol, sitosteryl (6'-O-palmitoyl) β-d-glucoside and sitosteryl (6'-O-stearate) β-d-glucoside, and TAGs containing combinations of 16:0, 18:3, 18:2 and 18:1 fatty acids. Reduced metabolite levels in SB tissue included 5-caffeoyl quinate, β-carotene, catechin, epicatechin, α-tocopherol, violaxanthin and sitosteryl β-d glucoside. Pathway analysis indicated aspects of primary metabolism differed according to tissue condition, although differences in metabolites involved were more subtle than those of some secondary metabolites. The results implicate oxidative stress and membrane disruption processes in SB development and constitute a diagnostic metabolic profile for the disorder. © 2014 Scandinavian Plant Physiology Society.

  20. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro

    Directory of Open Access Journals (Sweden)

    Nadia Dekdouk

    2015-01-01

    Full Text Available Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects.

  1. Asparagus Root Regulates Cholesterol Metabolism and Improves Antioxidant Status in Hypercholesteremic Rats

    Directory of Open Access Journals (Sweden)

    Nishant P. Visavadiya

    2009-01-01

    Full Text Available Hyperlipidemia/hypercholesteremia are major risk factors for atherosclerosis and cardiovascular diseases. Root of Asparagus racemosus (AR is widely used in Ayurvedic system of medicine in India and is known for its steroidal saponin content. This study was designed to investigate the hypocholesteremic and antioxidant potential of AR root in both normo- and hypercholesteremic animals. Normal and hypercholesteremic male albino rats were administered with root powder of AR (5 and 10 g% dose levels along with normal and hypercholesteremic diets, respectively, for a duration of 4 weeks. Plasma and hepatic lipid profiles, fecal sterol, bile acid excretion and hepatic antioxidant activity were assessed. Inclusion of AR root powder in diet, resulted in a dose-dependant reduction in plasma and hepatic lipid profiles, increased fecal excretion of cholesterol, neutral sterol and bile acid along with increases in hepatic HMG-CoA reductase activity and bile acid content in hypercholesteremic rats. Further, AR root also improved the hepatic antioxidant status (catalase, SOD and ascorbic acid levels. No significant changes in lipid and antioxidant profiles occurred in the normocholesteremic rats administered with AR root powder. AR root appeared to be useful as a dietary supplement that offers a protection against hyperlipidemia/hypercholesteremia in hypercholesteremic animals. The results of the present study indicate that the potent therapeutic phyto-components present in AR root i.e. phytosterols, saponins, polyphenols, flavonoids and ascorbic acid, could be responsible for increased bile acid production, elimination of excess cholesterol and elevation of hepatic antioxidant status in hypercholesteremic conditions.

  2. Controlled atmosphere storage, temperature conditioning, and antioxidant treatment alter postharvest 'Honeycrisp' metabolism

    Science.gov (United States)

    The physiology and metabolism characterizing postharvest chilling and CO2 injury in apple has important implications for postharvest management of soft scald and soggy breakdown. This research assessed differences of primary metabolism related to soggy breakdown (cortex chilling injury) and CO2 cor...

  3. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment.

    Science.gov (United States)

    Zhang, Wenjin; Xie, Zhicai; Wang, Lianhong; Li, Ming; Lang, Duoyong; Zhang, Xinhui

    2017-05-01

    This study was conducted to determine effect and mechanism of exogenous silicon (Si) on salt and drought tolerance of Glycyrrhiza uralensis seedling by focusing on the pathways of antioxidant defense and osmotic adjustment. Seedling growth, lipid peroxidation, antioxidant metabolism, osmolytes concentration and Si content of G. uralensis seedlings were analyzed under control, salt and drought stress [100 mM NaCl with 0, 10 and 20% of PEG-6000 (Polyethylene glycol-6000)] with or without 1 mM Si. Si addition markedly affected the G. uralensis growth in a combined dose of NaCl and PEG dependent manner. In brief, Si addition improved germination rate, germination index, seedling vitality index and biomass under control and NaCl; Si also increased radicle length under control, NaCl and NaCl-10% PEG, decreased radicle length, seedling vitality index and germination parameters under NaCl-20% PEG. The salt and drought stress-induced-oxidative stress was modulated by Si application. Generally, Si application increased catalase (CAT) activity under control and NaCl-10% PEG, ascorbate peroxidase (APX) activity under all treatments and glutathione (GSH) content under salt combined drought stress as compared with non-Si treatments, which resisted to the increase of superoxide radicals and hydrogen peroxide caused by salt and drought stress and further decreased membrane permeability and malondialdehyde (MDA) concentration. Si application also increased proline concentration under NaCl and NaCl-20% PEG, but decreased it under NaCl-10% PEG, indicating proline play an important role in G. uralensis seedling response to osmotic stress. In conclusion, Si could ameliorate adverse effects of salt and drought stress on G. uralensis likely by reducing oxidative stress and osmotic stress, and the oxidative stress was regulated through enhancing of antioxidants (mainly CAT, APX and GSH) and osmotic stress was regulated by proline.

  4. The Effects ofPiper GuineenseversusSesamum IndicumAqueous Extracts on Lipid Metabolism and Antioxidants in Hypercholesterolemic Rats.

    Science.gov (United States)

    Nwozo, Sarah O; Lewis, Yetunde T; Oyinloye, Babatunji E

    2017-09-01

    Piper guineense (PG) and Sesamum indicum (SI) have been shown to be rich sources of antioxidants and other health benefits; hence, we evaluated the impact of its consumption in hypercholesterolemic model on lipid metabolism. Forty-eight animals were divided into eight groups of six rats each. Rats were given cholesterol (40 mg/0.3ml), PG and SI extract (100 and 200 mg/kg), and Questran (0.26 g/kg) orally, five times a week for 28 days. Lipid profile, hepatic antioxidant status, biomarkers of liver toxicity, and tissue histopathology were examined. Data were analyzed using one-way ANOVA and P<0.05 were considered statistically significant. Cholesterol feeding caused 100% gain in weight, significantly increased AST, LPO (P=0.41 and 0.002) but significantly decreased SOD (P=0.003) compared to control. CHPG(1)/(2) and CHSI(1)/(2) caused a significant decrease (P=0.01, 0.005, 0.003, and 0.023) in cholesterol-induced body-weight gain and decreased serum total cholesterol by 20-30% compared to untreated-hypercholesterolemic rats. Triglyceride and LDL-c decreased with extract administration and specifically HDL-c increased significantly (P<0.001) by CHSI(1) compared to untreated-hypercholesterol rats. Furthermore, an increase in HDL-c was higher (P=0.04 and 0.002) by SI compared to PG at both doses. These results indicate that PG and SI exerts a hypolipidemic effect, reduces cholesterol intake induced body weight gain, and increases the body's antioxidant defense system in experimental hypercholesterolemia.

  5. The Effects of Piper Guineense versus Sesamum Indicum Aqueous Extracts on Lipid Metabolism and Antioxidants in Hypercholesterolemic Rats

    Science.gov (United States)

    Nwozo, Sarah O; Lewis, Yetunde T; Oyinloye, Babatunji E

    2017-01-01

    Background: Piper guineense (PG) and Sesamum indicum (SI) have been shown to be rich sources of antioxidants and other health benefits; hence, we evaluated the impact of its consumption in hypercholesterolemic model on lipid metabolism. Methods: Forty-eight animals were divided into eight groups of six rats each. Rats were given cholesterol (40 mg/0.3ml), PG and SI extract (100 and 200 mg/kg), and Questran (0.26 g/kg) orally, five times a week for 28 days. Lipid profile, hepatic antioxidant status, biomarkers of liver toxicity, and tissue histopathology were examined. Data were analyzed using one-way ANOVA and P<0.05 were considered statistically significant. Results: Cholesterol feeding caused 100% gain in weight, significantly increased AST, LPO (P=0.41 and 0.002) but significantly decreased SOD (P=0.003) compared to control. CHPG(1)/(2) and CHSI(1)/(2) caused a significant decrease (P=0.01, 0.005, 0.003, and 0.023) in cholesterol-induced body-weight gain and decreased serum total cholesterol by 20-30% compared to untreated-hypercholesterolemic rats. Triglyceride and LDL-c decreased with extract administration and specifically HDL-c increased significantly (P<0.001) by CHSI(1) compared to untreated-hypercholesterol rats. Furthermore, an increase in HDL-c was higher (P=0.04 and 0.002) by SI compared to PG at both doses. Conclusion: These results indicate that PG and SI exerts a hypolipidemic effect, reduces cholesterol intake induced body weight gain, and increases the body’s antioxidant defense system in experimental hypercholesterolemia. PMID:29234177

  6. Effects of dietary chitosan on growth, lipid metabolism, immune response and antioxidant-related gene expression in Misgurnus anguillicaudatus.

    Science.gov (United States)

    Yan, J; Guo, C; Dawood, M A O; Gao, J

    2017-05-30

    This study was performed to evaluate the effects of dietary chitosan supplementation on growth performance, lipid metabolism, gut microbial, antioxidant status and immune responses of juvenile loach (Misgurnus anguillicaudatus). Five experimental diets were formulated to contain graded levels of chitosan (0 (control), 0.5, 1, 2 and 5% CHI) for 50 days. Results of the present study showed that body weight gain was significantly higher in fish fed chitosan supplemented diets in dose dependent manner than control group. Increasing dietary chitosan levels reduced gut lipid content. Meanwhile the mRNA expression levels of intestine lipoprotein lipase and fatty acid binding protein 2 were significantly reduced with incremental dietary chitosan level. The percentages of total monounsaturated fatty acid decreased, while polyunsaturated fatty acid increased with dietary chitosan. The fish fed 0.5% CHI had higher mucus lysozyme activity (LZM) than those fed 0% CHI, but the LZM activity was significantly decreased with advancing chitosan supplement. The expression levels of superoxide dismutase, catalase and glutathione peroxidase revealed a similar trend, where the highest expressions were found in fish fed 5% CHI diet. In the term of intestine microbiota between 0 and 1% CHI groups, the proportion of bacteria in the phylum Bacteroidetes increased, whereas the proportion of bacteria in the phylum Firmicutes decreased as the fish supplemented chitosan. In conclusion, supplementation of chitosan improved growth performance, antioxidant status and immunological responses in loach.

  7. Preliminary study of cell metabolism, by use of NBT test, determination the intensity of lipid peroxidation and antioxidant activity

    Directory of Open Access Journals (Sweden)

    Diana BEI

    2009-05-01

    Full Text Available Otto Warburg, in the early part of the 20th century, originated a hypothesis, that the cause of cancer is primarily a defect in energy metabolism.A decrease in the capacity of mitochondria to reduce NAD(P, together with a decline in the NAD(PH/NAD(P redox couple, uncouples oxidative phosphorylation, lead to depletion of ATP and decrease the cell viability.Nitro-bleu tetrazolium have been used to assay cell proliferation and viability. The method to measure cell proliferation is based on enzymatic cleavage of the tetrazolium salts to a water-soluble formazan dye.Succinate-tetrazolium reductase, is an enzymatic sistem, which belongs to the respiratory chain of the mitochondria and it is active only in viable cells. The reagent diffuses into the cells and it is cleaved to formazan. The absorption change is measured and analysed.Free radicals such as superoxide, can cause a damage in cellular components, but several antioxidants inhibiting the lipid peroxidation and limiting the level of free radicals in cells.In the present study we had in view the proliferation and viability of leukemia cells during antineoplastic treatment along with the alteration of the serum level of malondialdehyde (MDA and ceruloplasmin (CP. With serum level of malondialdehyde we monitored the presence of the lipid peroxidation by the reactive oxygen species, and with the oxidized ceruloplasmin level in blood serum we evidenced the activity of antioxidant system in blood.

  8. Exposure of embryos to cyclically cold incubation temperatures durably affects energy metabolism and antioxidant pathways in broiler chickens.

    Science.gov (United States)

    Loyau, T; Collin, A; Yenisey, C; Crochet, S; Siegel, P B; Akşit, M; Yalçin, S

    2014-08-01

    Cyclically cold incubation temperatures have been suggested as a means to improve resistance of broiler chickens to ascites; however, the underlying mechanisms are not known. Nine hundred eggs obtained from 48 wk Ross broiler breeders were randomly assigned to 2 incubation treatments: control I eggs were incubated at 37.6°C throughout, whereas for cold I eggs the incubation temperature was reduced by 1°C for 6 h daily from 10 to 18 d of incubation. Thereafter, chickens were reared at standard temperatures or under cold exposure that was associated or not with a postnatal cold acclimation at d 5 posthatch. At hatch, hepatic catalase activity and malondialdehyde content were measured. Serum thyroid hormone and triglyceride concentrations, and muscle expression of several genes involved in the regulation of energy metabolism and oxidative stress were also measured at hatch and 5 and 25 d posthatch. Cold incubation induced modifications in antioxidant pathways with higher catalase activity, but lower expression of avian uncoupling protein 3 at hatch. However, long-term enhancement in the expression of avian uncoupling protein 3 was observed, probably caused by an increase in the expression of the transcription factor peroxisome proliferator activated receptor-γ coactivator-1α. These effects were not systematically associated with an increase in serum triiodothyronine concentrations that were observed only in chickens exposed to both cold incubation and later acclimation at 5 d with cold rearing. Our results suggest that these conditions of cyclically cold incubation resulted in the long-term in changes in antioxidant pathways and energy metabolism, which could enhance the health of chickens reared under cold conditions. © Poultry Science Association Inc.

  9. Geraniol Pharmacokinetics, Bioavailability and Its Multiple Effects on the Liver Antioxidant and Xenobiotic-Metabolizing Enzymes

    Directory of Open Access Journals (Sweden)

    Barbara Pavan

    2018-01-01

    Full Text Available Geraniol is a natural monoterpene showing anti-inflammatory, antioxidant, neuroprotective and anticancer effects. No pharmacokinetic and bioavailability data on geraniol are currently available. We therefore performed a systematic study to identify the permeation properties of geraniol across intestinal cells, and its pharmacokinetics and bioavailability after intravenous and oral administration to rats. In addition, we systematically investigated the potential hepatotoxic effects of high doses of geraniol on hepatic phase I, phase II and antioxidant enzymatic activities and undertook a hematochemical analysis on mice. Permeation studies performed via HPLC evidenced geraniol permeability coefficients across an in vitro model of the human intestinal wall for apical to basolateral and basolateral to apical transport of 13.10 ± 2.3 × 10-3 and 2.1 ± 0.1⋅× 10-3 cm/min, respectively. After intravenous administration of geraniol to rats (50 mg/kg, its concentration in whole blood (detected via HPLC decreased following an apparent pseudo-first order kinetics with a half-life of 12.5 ± 1.5 min. The absolute bioavailability values of oral formulations (50 mg/kg of emulsified geraniol or fiber-adsorbed geraniol were 92 and 16%, respectively. Following emulsified oral administration, geraniol amounts in the cerebrospinal fluid of rats ranged between 0.72 ± 0.08 μg/mL and 2.6 ± 0.2 μg/mL within 60 min. Mice treated with 120 mg/kg of geraniol for 4 weeks showed increased anti-oxidative defenses with no signs of liver toxicity. CYP450 enzyme activities appeared only slightly affected by the high dosage of geraniol.

  10. The influence of maca (Lepidium meyenii) on antioxidant status, lipid and glucose metabolism in rat.

    Science.gov (United States)

    Vecera, Rostislav; Orolin, Jan; Skottová, Nina; Kazdová, Ludmila; Oliyarnik, Olena; Ulrichová, Jitka; Simánek, Vilím

    2007-06-01

    This work focused on the effect of Maca on lipid, anti-oxidative, and glucose parameters in hereditary hypertriglyceridemic (HHTg) rat. Maca (1%) was administred to rats as a part of a high-sucrose diet (HSD) for 2 weeks. Rosiglitazone (0.02%) was used as a positive control. Maca significantly decreased the levels of VLDL (very low density lipoproteins), LDL (low density lipoproteins), and total cholesterol, and also the level of TAG (triacylglycerols) in the plasma, VLDL, and liver. Maca, as well as rosiglitazone, significantly improved glucose tolerance, as the decrease of AUC (area under the curve) of glucose showed, and lowered levels of glucose in blood. The activity of SOD (superoxide dismutase) in the liver, the GPX (glutathione peroxidase) in the blood, and the level of GSH (glutathione) in liver increased in all cases significantly. Results demonstrate that maca seems to be promising for a positive influence on chronic human diseases (characterized by atherogenous lipoprotein profile, aggravated antioxidative status, and impaired glucose tolerance), and their prevention.

  11. Effect of selenium on the thyroid gland antioxidative metabolisms in rat model by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyung Seok; Choi, Jun Hyeok; JUng, Do Young; Kim, Jang Oh; Shin, Ji Hye; Min, Byung In [Inje University, Gimhae (Korea, Republic of)

    2017-03-15

    Selenium (Se), which is natural materials existing was known as an important component of selenoprotein, one of the important proteins responsible for the redox pump of a living body. Selenium was orally administered to Rat and irradiated with 10 Gy of radiation. Then, the thyroid gland was used as a target organ for 1 day, 7 days and 21 days to investigate the radiation protection effect of selenium (Se) through changes of blood components, thyroid hormones (T3, T4), antioxidant enzyme (GPx) activity and thyroid tissue changes. As a result, there was a significant protective effect of hematopoietic immune system(hemoglobin concentration, neutrophil, platelet)(p<0.05). The activity of Glutathione Peroxidase (GPx), the antioxidant enzyme, and the activity of the target organ, thyroid hormone (T3, T4), also showed significant activity changes (p<0.05). In the observation of tissue changes, it was confirmed that there was a protective effect of thyroid cell damage which caused the cell necrosis by radiation treatment. Therefore, it is considered that selenium(Se) can be utilized as a radiation defense agent by inducing immunogenic activity effect of a living body.

  12. Saffron supplements modulate serum pro-oxidant-antioxidant balance in patients with metabolic syndrome: A randomized, placebo-controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Tayyebeh Kermani

    2015-08-01

    Full Text Available Objectives: We have investigated the effect of a saffron supplement, given at a dose of 100 mg/kg, on prooxidant-antioxidant balance (PAB in individuals with metabolic syndrome. Materials and Methods: A randomized, placebo-controlled trial design was used in 75 subjects with metabolic syndrome who were randomly allocated to one of two study groups: (1 the case group received 100mg/kg saffron and (2 the placebo control group received placebo for 12 weeks. The serum PAB assay was applied to all subjects before (week 0 and after (weeks 6 and 12 the intervention. Results: There was a significant (p=0.035 reduction in serum PAB between week 0 to week 6 and also from week 0 to week 12.  Conclusion: Saffron supplements can modulate serum PAB in subjects with metabolic syndrome, implying an improvement in some aspects of oxidative stress or antioxidant protection.

  13. The Dual Role of Nrf2 in Nonalcoholic Fatty Liver Disease: Regulation of Antioxidant Defenses and Hepatic Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Sílvia S. Chambel

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a progressive liver disease with ever-growing incidence in the industrialized world. It starts with the simple accumulation of lipids in the hepatocyte and can progress to the more severe nonalcoholic steatohepatitis (NASH, which is associated with inflammation, fibrosis, and cirrhosis. There is increasing awareness that reactive oxygen species and electrophiles are implicated in the pathogenesis of NASH. Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2 is a positive regulator of the expression of a battery of genes involved in the protection against oxidative/electrophilic stress. In rodents, Nrf2 is also known to participate in hepatic fatty acid metabolism, as a negative regulator of genes that promote hepatosteatosis. We review relevant evidence in the literature that these two mechanisms may contribute to the protective role of Nrf2 in the development of hepatic steatosis and in the progression to steatohepatitis, particularly in young animals. We propose that age may be a key to explain contradictory findings in the literature. In summary, Nrf2 mediates the crosstalk between lipid metabolism and antioxidant defense mechanisms in experimental models of NAFLD, and the nutritional or pharmacological induction of Nrf2 represents a promising potential new strategy for its prevention and treatment.

  14. Oxidative stress and antioxidant defense mechanisms linked to exercise during cardiopulmonary and metabolic disorders

    Science.gov (United States)

    Fisher-Wellman, Kelsey; Bell, Heather K

    2009-01-01

    Oxidative stress has been implicated in the pathophysiology of multiple human diseases, in addition to the aging process. Although various stimuli exist, acute exercise is known to induce a transient increase in reactive oxygen and nitrogen species (RONS), evident by several reports of increased oxidative damage following acute bouts of aerobic and anaerobic exercise. Although the results are somewhat mixed and appear disease dependent, individuals with chronic disease experience an exacerbation in oxidative stress following acute exercise when compared to healthy individuals. However, this increased oxidant stress may serve as a necessary “signal” for the upregulation in antioxidant defenses, thereby providing protection against subsequent exposure to prooxidant environments within susceptible individuals. Here we present studies related to both acute exercise-induced oxidative stress in those with disease, in addition to studies focused on adaptations resulting from increased RONS exposure associated with chronic exercise training in persons with disease. PMID:20046644

  15. Responses of Landoltia punctata to cobalt and nickel: Removal, growth, photosynthesis, antioxidant system and starch metabolism.

    Science.gov (United States)

    Guo, Ling; Ding, Yanqiang; Xu, Yaliang; Li, Zhidan; Jin, Yanling; He, Kaize; Fang, Yang; Zhao, Hai

    2017-09-01

    Landoltia punctata has been considered as a potential bioenergy crop due to its high biomass and starch yields in different cultivations. Cobalt and nickel are known to induce starch accumulation in duckweed. We monitored the growth rate, net photosynthesis rate, total chlorophyll content, Rubisco activity, Co 2+ and Ni 2+ contents, activity of antioxidant enzymes, starch content and activity of related enzymes under various concentrations of cobalt and nickel. The results indicate that Co 2+ and Ni 2+ (≤0.5mgL -1 ) can facilitate growth in the beginning. Although the growth rate, net photosynthesis rate, chlorophyll content and Rubisco activity were significantly inhibited at higher concentrations (5mgL -1 ), the starch content increased sharply up to 53.3% dry weight (DW) in L. punctata. These results were attributed to the increase in adenosine diphosphate-glucose pyrophosphorylase (AGPase) and soluble starch synthase (SSS) activities and the decrease in α-amylase activity upon exposure to excess Co 2+ and Ni 2+ . In addition, a substantial increase in the antioxidant enzyme activities and high flavonoid contents in L. punctata may have largely resulted in the metal tolerance. Furthermore, the high Co 2+ and Ni 2+ contents (2012.9±18.8 and 1997.7±29.2mgkg -1 DW) in the tissue indicate that L. punctata is a hyperaccumulator. Thus, L. punctata can be considered as a potential candidate for the simultaneous bioremediation of Co 2+ - and Ni 2+ -polluted water and high-quality biomass production. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Antioxidant activity and fermentative metabolism in the plant Erythrina crista-galli L. under flood conditions

    Directory of Open Access Journals (Sweden)

    Cristina Ferreira Larré

    2016-04-01

    Full Text Available This study aimed to evaluate the mechanisms of flood tolerance of the root system of Erythrina crista-galli L. plants by measuring the activity of antioxidant enzymes and oxidative stress components in the leaves and roots. Additionally, the activity of fermentation enzymes in the roots was measured. The following two treatments were used: plants with flooded roots, which were maintained at a given water level above the soil surface, and non-flooded plants, which were used as the control. The measurements were performed at 10, 20, 30, 40, and 50 days after treatment. The following parameters were evaluated at each time-point: the activities of superoxide dismutase, catalase and ascorbate peroxidase, the quantification of lipid peroxidation and hydrogen peroxide (H2O2 content in the leaves, roots, and adventitious roots, and the activities of lactate dehydrogenase, pyruvate decarboxylase and alcohol dehydrogenase in both the primary and adventitious roots. There was an increase in the activity of catalase and ascorbate peroxidase in the leaves to maintain stable H2O2 levels, which reduced lipid peroxidation. In the roots, higher activity of all antioxidant enzymes was observed at up to 30 days of flooding, which favoured both reduced H2O2 levels and lipid peroxidation. Activity of the fermentation enzymes was observed in the primary roots from the onset of the stress conditions; however, their activity was necessary only in the adventitious roots during the final periods of flooding. In conclusion, E. crista-galli L. depends on adventitious roots and particularly on the use of the fermentation pathway to tolerate flood conditions.

  17. Polyphenolic compounds of red wine: relationship with the antioxidant properties and effects on the metabolic syndrome induced in high-fructose fed rats

    Directory of Open Access Journals (Sweden)

    D. Di Majo

    2009-01-01

    Full Text Available Epidemiologists have observed that a diet rich in polyphenolic compounds may provide a positive effects due to their antioxidant properties. Red wine is an excellent source of polyphenolic compounds. Objective of this work is a review of the polyphenolic compounds of red wine. The first study evaluates the antioxidant properties of Sicilian red wines in relationship with their polyphenolic composition; the second investigates the corrective offects of some phenolic molecules on the metabolic syndrome induced in high-fructose fed rats.

  18. In Vivo Effects of Free Form Astaxanthin Powder on Anti-Oxidation and Lipid Metabolism with High-Cholesterol Diet.

    Directory of Open Access Journals (Sweden)

    Yung-Yi Chen

    Full Text Available Astaxanthin extracted from Pomacea canaliculata eggs was made into free-form astaxanthin powder (FFAP and its effects on lipid metabolism, liver function, antioxidants activities and astaxanthin absorption rate were investigated. 45 hamsters were split into 5 groups and fed with normal diet, high-cholesterol control (0.2% cholesterol, 1.6FFAP (control+1.6% FFAP, 3.2FFAP (control+3.2% FFAP and 8.0FFAP (control+8.0% FFAP, respectively, for 6 weeks. FFAP diets significantly decreased the liver total cholesterol, triglyceride levels and increased liver fatty acids (C20:5n3; C22:6n3 compositions. It decreased plasma alanine aminotransferase and aspartate aminotransferase. In terms of anti-oxidative activities, we found 8.0 FFAP diet significantly decreased plasma and liver malonaldehyde (4.96±1.96 μg TEP eq./mL and 1.56±0.38 μg TEP eq./g liver and liver 8-isoprostane levels (41.48±13.69 μg 8-ISOP/g liver. On the other hand, it significantly increased liver catalase activity (149.10±10.76 μmol/min/g liver, Vitamin C (2082.97±142.23 μg/g liver, Vitamin E (411.32±81.67 μg/g liver contents, and glutathione levels (2.13±0.42 mg GSH eq./g liver. Furthermore, 80% of astaxanthin absorption rates in all FFAP diet groups suggest FFAP is an effective form in astaxanthin absorption. Finally, astaxanthin was found to re-distribute to the liver and eyes in a dose dependent manner. Taken together, our results suggested that the appropriate addition of FFAP into high cholesterol diets increases liver anti-oxidative activity and reduces the concentration of lipid peroxidase and therefore, it may be beneficial as a material in developing healthy food.

  19. Resveratrol protects the ovary against chromium-toxicity by enhancing endogenous antioxidant enzymes and inhibiting metabolic clearance of estradiol

    International Nuclear Information System (INIS)

    Banu, Sakhila K.; Stanley, Jone A.; Sivakumar, Kirthiram K.; Arosh, Joe A.; Burghardt, Robert C.

    2016-01-01

    Resveratrol (RVT), a polyphenolic component in grapes and red wine, has been known for its cytoprotective actions against several diseases. However, beneficial effects of RVT against early exposure to endocrine disrupting chemicals (EDCs) have not been understood. EDCs are linked to several ovarian diseases such as premature ovarian failure, polycystic ovary syndrome, early menopause and infertility in women. Hexavalent chromium (CrVI) is a heavy metal EDC, and widely used in > 50 industries. Environmental contamination with CrVI in the US is rapidly increasing, predisposing the human to several illnesses including cancers and still birth. Our lab has been involved in determining the molecular mechanism of CrVI-induced female infertility and intervention strategies to mitigate CrVI effects. Lactating mother rats were exposed to CrVI (50 ppm potassium dichromate) from postpartum days 1–21 through drinking water with or without RVT (10 mg/kg body wt., through oral gavage daily). During this time, F1 females received respective treatments through mother's milk. On postnatal day (PND) 25, blood and the ovary, kidney and liver were collected from the F1 females for analyses. CrVI increased atresia of follicles by increasing cytochrome C and cleaved caspase-3; decreasing antiapoptotic proteins; decreasing estradiol (E 2 ) biosynthesis and enhancing metabolic clearance of E 2 , increasing oxidative stress and decreasing endogenous antioxidants. RVT mitigated the effects of CrVI by upregulating cell survival proteins and AOXs; and restored E 2 levels by inhibiting hydroxylation, glucuronidation and sulphation of E 2 . This is the first study to report the protective effects of RVT against any toxicant in the ovary. - Highlights: • Resveratrol (RVT) protects the ovary against CrVI-toxicity. • RVT mitigated CrVI-induced apoptosis and follicle atresia. • RVT restored estradiol level against CrVI-toxicity. • RVT inhibited metabolic clearance of estradiol in the

  20. Mitochondrial Alterations (Inhibition of Mitochondrial Protein Expression, Oxidative Metabolism, and Ultrastructure) Induced by Linezolid and Tedizolid at Clinically Relevant Concentrations in Cultured Human HL-60 Promyelocytes and THP-1 Monocytes.

    Science.gov (United States)

    Milosevic, Tamara V; Payen, Valéry L; Sonveaux, Pierre; Muccioli, Giulio G; Tulkens, Paul M; Van Bambeke, Françoise

    2018-03-01

    Linezolid, the first clinically available oxazolidinone antibiotic, causes potentially severe toxicities (myelosuppression, lactic acidosis, and neuropathies) ascribed to impairment of mitochondrial protein synthesis and consecutive mitochondrial dysfunction. Tedizolid, a newly approved oxazolidinone, shows an enhanced activity compared to linezolid but is also a more potent inhibitor of mitochondrial protein synthesis. We compared linezolid and tedizolid for (i) inhibition of the expression of subunit I of cytochrome c -oxidase (CYTox I; Western blot analysis), (ii) cytochrome c -oxidase activity (biochemical assay), (iii) mitochondrial oxidative metabolism (Seahorse technology), and (iv) alteration of mitochondrial ultrastructure (electron microscopy) using HL-60 promyelocytes and THP-1 monocytes exposed to microbiologically (multiples of modal MIC against Staphylococcus aureus ) and therapeutically ( C min - C max ) pertinent concentrations. Both drugs caused a rapid and complete (48 to 72 h) inhibition of CYTox I expression, cytochrome c -oxidase activity, and spare respiratory capacity, with conspicuous swelling of the mitochondrial matrix and loss of their cristae. Globally, tedizolid was a more potent inhibitor than linezolid. For both drugs, all effects were quickly (48 to 72 h) and fully reversible upon drug withdrawal. Using an alternation of exposure to and withdrawal from drug mimicking their approved schedule of administration (twice daily and once daily [qD] for linezolid and tedizolid, respectively), only partial inhibition of CYTox I expression was noted for up to 96 h. Thus, rapid reversal of toxic effects upon discontinuous administration may mitigate oxazolidinone toxicity. Since tedizolid is given qD, this may help to explain its reported lower preclinical and clinical toxicity. Copyright © 2018 American Society for Microbiology.

  1. Restitution of Energy Metabolism in Irradiated Rats Considering Curcumin Antioxidant Capacity and Metal Biotransformation

    International Nuclear Information System (INIS)

    Azab, Kh.Sh.; Nada, A.Sh.

    2004-01-01

    The primary source of energy in living cells is ATP. Creatine kinase attached to the inner mitochondrial membrane (Mi-CK) is a key enzyme catalyzing the reversible phosphoryl transfer form phosphoryl creatine to ADP. The objective of this study was to evaluate the role of curcumin in minimizing the radiation induced alterations in Mi-CK related to the antioxidant status of mitochondria. Curcumin was supplemented daily to rats (45 mg/kg body weight/day); by gavage, 15 days before whole body exposure to 7 Gy gamma radiation. Experimental investigation performed 1,3,10 days after irradiation reveals that curcumin treatment significantly ameliorated the decrease in the activity of Mi-Ck in brain and heart tissues of irradiated rats. Curcumin was also effective in minimizing the radiation induced increase in lipid peroxidation determined as thiobarbituric acid reactive substances (TBARS). Significant amelioration was observed for the changes in superoxide dismutase (SOD) and catalase activities. Furthermore, the data obtained showed that, the decrease of mitochondrial trace metals (Fe, Zn, Cu, Mg and Mn) was less pronounced. According to the results obtained it was concluded that curcumin maintains the integrity of mitochondrial membrane and Mi-CK activity, and plays a role in cellular energy production

  2. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    Full Text Available Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts, inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14 as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase. In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2 and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7 in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  3. Cre-Mediated Stress Affects Sirtuin Expression Levels, Peroxisome Biogenesis and Metabolism, Antioxidant and Proinflammatory Signaling Pathways

    Science.gov (United States)

    Xiao, Yu; Karnati, Srikanth; Qian, Guofeng; Nenicu, Anca; Fan, Wei; Tchatalbachev, Svetlin; Höland, Anita; Hossain, Hamid; Guillou, Florian; Lüers, Georg H.; Baumgart-Vogt, Eveline

    2012-01-01

    Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts), inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14) as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase). In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2) and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7) in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt) with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  4. Effect of the red seaweed Mastocarpus stellatus intake on lipid metabolism and antioxidant status in healthy Wistar rats.

    Science.gov (United States)

    Gómez-Ordóñez, Eva; Jiménez-Escrig, Antonio; Rupérez, Pilar

    2012-11-15

    Health-promoting effect of dietary supplementation with the red seaweed Mastocarpus stellatus was studied. Its major component is dietary fibre (31.7/100 g dry weight), 72% as soluble fibre, mainly formed by carrageenans, sulphated-galactans of red seaweeds. Thus, rats were fed either a basal- or an algal-supplemented diet (10%). Then, lipid metabolism was assessed in serum, and reducing power measured in serum and caecum by FRAP method. Also, caecal pH was monitored and short chain fatty acids analysed by gas-liquid chromatography. Seaweed intake reduced significantly triglycerides and total cholesterol in healthy rats, but not atherogenic index. Also, a significant increase in caecal moisture and proportion of acetic and propionic acids was obtained but no clear prebiotic effect was shown. Sulphated-galactans seemed to be related to the antioxidant status improvement in caecum and also to the 1.7-fold increase in anticoagulant capacity of plasma. Therefore, Mastocarpus could be regarded as a source of functional ingredients but its health benefits need to be further explored depending on specific use. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Transcriptomic Analysis Reveals Possible Influences of ABA on Secondary Metabolism of Pigments, Flavonoids and Antioxidants in Tomato Fruit during Ripening.

    Directory of Open Access Journals (Sweden)

    Wangshu Mou

    Full Text Available Abscisic acid (ABA has been proven to be involved in the regulation of climacteric fruit ripening, but a comprehensive investigation of its influence on ripening related processes is still lacking. By applying the next generation sequencing technology, we conducted a comparative analysis of the effects of exogenous ABA and NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis on tomato fruit ripening. The high throughput sequencing results showed that out of the 25728 genes expressed across all three samples, 10388 were identified as significantly differently expressed genes. Exogenous ABA was found to enhance the transcription of genes involved in pigments metabolism, including carotenoids biosynthesis and chlorophyll degradation, whereas NDGA treatment inhibited these processes. The results also revealed the crucial role of ABA in flavonoids synthesis and regulation of antioxidant system. Intriguingly, we also found that an inhibition of endogenous ABA significantly enhanced the transcriptional abundance of genes involved in photosynthesis. Our results highlighted the significance of ABA in regulating tomato ripening, which provided insight into the regulatory mechanism of fruit maturation and senescence process.

  6. Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Amit Pal Singh

    2016-01-01

    Full Text Available Nitric oxide is a gaseous signalling molecule and has a profound impact on plant growth and development. It is reported to serve as pro oxidant as well as antioxidant in plant system. In present study, we evaluated the protective role of nitric oxide against AsV toxicity in rice plants. Arsenate exposure has hampered the plant growth, reduced the chlorophyll content and enhanced the oxidative stress while the exogenous NO supplementation has reverted these symptoms. Nitric oxide supplementation has reduced the As accumulation in root as well as shoot. Nitric oxide supplementation to AsV exposed plants has reduced the gene expression level of OsLsi1 and OsLsi2. Arsenate stress significantly impacted thiol metabolism, it reduced GSH content and GSH/GSSG ratio and enhanced the level of PCs. Nitric oxide supplementation maintained the GSH/GSSG ratio and reduced the level of PCs. Nitric oxide supplementation reverted AsV induced iron deficiency in shoot and had significant impact of gene expression level of various iron transporters (OsYSL2, OsFRDL1, OsIRT1 and OsIRO2. Conclusively, exogenous application of nitric oxide could be advantageous against AsV toxicity and could confer the tolerance to AsV stress in rice.

  7. Role of ultraviolet irradiation and oxidative stress in cataract formation-medical prevention by nutritional antioxidants and metabolic agonists.

    Science.gov (United States)

    Varma, Shambhu D; Kovtun, Svitlana; Hegde, Kavita R

    2011-07-01

    Cataract is a significant cause of visual disability with relatively high incidence. It has been proposed that such high incidence is related to oxidative stress induced by continued intraocular penetration of light and consequent photochemical generation of reactive oxygen species, such as superoxide and singlet oxygen and their derivatization to other oxidants, such as hydrogen peroxide and hydroxyl radical. The latter two can also interact to generate singlet oxygen by Haber-Weiss reaction. It has been proposed that in addition to the endogenous enzymatic antioxidant enzymes, the process can be inhibited by many nutritional and metabolic oxyradical scavengers, such as ascorbate, vitamin E, pyruvate, and xanthine alkaloids, such as caffeine. Initial verification of the hypothesis has been done primarily by rat and mouse lens organ culture studies under ambient as well as ultraviolet (UV) light irradiation and determining the effect of such irradiation on its physiology in terms of its efficiency of active membrane transport activity and the levels of certain metabolites such as glutathione and adenosine triphosphate as well as in terms of apoptotic cell death. In vivo studies on the possible prevention of oxidative stress and cataract formation have been conducted by administering pyruvate and caffeine orally in drinking water and by their topical application using diabetic and galactosemic animal models. Photosensitized damage to lens caused by exposure to visible light and UVA has been found to be significantly prevented by ascorbate and pyruvate. Caffeine has been found be effective against UVA and UVB. Oral or topical application of pyruvate has been found to inhibit the formation of cataracts induced by diabetes and galactosemia. Caffeine has also been found to inhibit cataract induced by sodium selenite and high levels of galactose. Studies with diabetes are in progress. Various in vitro and in vivo studies summarized in this review strongly support the

  8. Helicobacter pylori seropositivity's association with markers of iron, 1-carbon metabolism, and antioxidant status among US adults: a structural equations modeling approach.

    Directory of Open Access Journals (Sweden)

    May A Beydoun

    Full Text Available We tested a model in which Helicobacter pylori seropositivity (Hps predicted iron status, which in turn acted as a predictor for markers of 1-C metabolism that were then allowed to predict antioxidant status.National Health and Nutrition Examination Surveys (NHANES 1999-2000 cross-sectional data among adults aged 20-85 y were analyzed (n = 3,055. Markers of Hps, iron status (serum ferritin and transferrin saturation (TS; 1-C metabolism (serum folate (FOLserum, B-12, total homocysteine (tHcy, methylmalonic acid (MMA and antioxidant status (vitamins A and E were entered into a structural equations model (SEM.Predictors of Hps included older age, lower education and income, racial/ethnic groups (lowest among Non-Hispanic Whites, and lifetime cigarette smoking. SEM modeling indicated that Hps had a direct inverse relationship with iron status (combining serum ferritin and TS which in turn was positively related to 1-C metabolites (higher serum folate, B-12 or lower tHcy/MMA that were positively associated with antioxidant status (combining serum vitamins A and E. Another pathway that was found bypassed 1-C metabolites (Hps → Iron_st → Antiox. The sum of all indirect effects from Hps combining both pathways and the other indirect pathways in the model (Hps → Iron_st → OneCarbon; Hps →OneCarbon →Antiox was estimated at β = -0.006±0.003, p<0.05.In sum, of the total effect of H. pylori seropositivity on antioxidant status, two significant indirect pathways through Iron status and 1-Carbon metabolites were found. Randomized controlled trials should be conducted to uncover the concomitant causal effect of H. pylori eradication on improving iron status, folate, B-12 and antioxidant status among H. pylori seropositive individuals.

  9. Cardiorenal Involvement in Metabolic Syndrome Induced by Cola Drinking in Rats: Proinflammatory Cytokines and Impaired Antioxidative Protection.

    Science.gov (United States)

    Otero-Losada, Matilde; Gómez Llambí, Hernán; Ottaviano, Graciela; Cao, Gabriel; Müller, Angélica; Azzato, Francisco; Ambrosio, Giuseppe; Milei, José

    2016-01-01

    We report experimental evidence confirming renal histopathology, proinflammatory mediators, and oxidative metabolism induced by cola drinking. Male Wistar rats drank ad libitum regular cola (C, n = 12) or tap water (W, n = 12). Measures. Body weight, nutritional data, plasma glucose, cholesterol fractions, TG, urea, creatinine, coenzyme Q10, SBP, and echocardiograms (0 mo and 6 mo). At 6 months euthanasia was performed. Kidneys were processed for histopathology and immunohistochemistry (semiquantitative). Compared with W, C rats showed (I) overweight (+8%, p < 0.05), hyperglycemia (+11%, p < 0.05), hypertriglyceridemia (2-fold, p < 0.001), higher AIP (2-fold, p < 0.01), and lower Q10 level (-55%, p < 0.05); (II) increased LV diastolic diameter (+9%, p < 0.05) and volume (systolic +24%, p < 0.05), posterior wall thinning (-8%, p < 0.05), and larger cardiac output (+24%, p < 0.05); (III) glomerulosclerosis (+21%, p < 0.05), histopathology (+13%, p < 0.05), higher tubular expression of IL-6 (7-fold, p < 0.001), and TNFα (4-fold, p < 0.001). (IV) Correlations were found for LV dimensions with IL-6 (74%, p < 0.001) and TNFα (52%, p < 0.001) and fully abolished after TG and Q10 control. Chronic cola drinking induced cardiac remodeling associated with increase in proinflammatory cytokines and renal damage. Hypertriglyceridemia and oxidative stress were key factors. Hypertriglyceridemic lipotoxicity in the context of defective antioxidant/anti-inflammatory protection due to low Q10 level might play a key role in cardiorenal disorder induced by chronic cola drinking in rats.

  10. Cardiorenal Involvement in Metabolic Syndrome Induced by Cola Drinking in Rats: Proinflammatory Cytokines and Impaired Antioxidative Protection

    Directory of Open Access Journals (Sweden)

    Matilde Otero-Losada

    2016-01-01

    Full Text Available We report experimental evidence confirming renal histopathology, proinflammatory mediators, and oxidative metabolism induced by cola drinking. Male Wistar rats drank ad libitum regular cola (C, n=12 or tap water (W, n=12. Measures. Body weight, nutritional data, plasma glucose, cholesterol fractions, TG, urea, creatinine, coenzyme Q10, SBP, and echocardiograms (0 mo and 6 mo. At 6 months euthanasia was performed. Kidneys were processed for histopathology and immunohistochemistry (semiquantitative. Compared with W, C rats showed (I overweight (+8%, p<0.05, hyperglycemia (+11%, p<0.05, hypertriglyceridemia (2-fold, p<0.001, higher AIP (2-fold, p<0.01, and lower Q10 level (−55%, p<0.05; (II increased LV diastolic diameter (+9%, p<0.05 and volume (systolic +24%, p<0.05, posterior wall thinning (−8%, p<0.05, and larger cardiac output (+24%, p<0.05; (III glomerulosclerosis (+21%, p<0.05, histopathology (+13%, p<0.05, higher tubular expression of IL-6 (7-fold, p<0.001, and TNFα (4-fold, p<0.001. (IV Correlations were found for LV dimensions with IL-6 (74%, p<0.001 and TNFα (52%, p<0.001 and fully abolished after TG and Q10 control. Chronic cola drinking induced cardiac remodeling associated with increase in proinflammatory cytokines and renal damage. Hypertriglyceridemia and oxidative stress were key factors. Hypertriglyceridemic lipotoxicity in the context of defective antioxidant/anti-inflammatory protection due to low Q10 level might play a key role in cardiorenal disorder induced by chronic cola drinking in rats.

  11. Antioxidants in liver health

    Science.gov (United States)

    Casas-Grajales, Sael; Muriel, Pablo

    2015-01-01

    Liver diseases are a worldwide medical problem because the liver is the principal detoxifying organ and maintains metabolic homeostasis. The liver metabolizes various compounds that produce free radicals (FR). However, antioxidants scavenge FR and maintain the oxidative/antioxidative balance in the liver. When the liver oxidative/antioxidative balance is disrupted, the state is termed oxidative stress. Oxidative stress leads to deleterious processes in the liver and produces liver diseases. Therefore, restoring antioxidants is essential to maintain homeostasis. One method of restoring antioxidants is to consume natural compounds with antioxidant capacity. The objective of this review is to provide information pertaining to various antioxidants found in food that have demonstrated utility in improving liver diseases. PMID:26261734

  12. ULTRASTRUCTURAL CHANGES OF THE NEURONAL ...

    African Journals Online (AJOL)

    ULTRASTRUCTURAL CHANGES OF THE NEURONAL COMPONENT IN THE DETRUSOR MUSCLE FOLLOWING SACRAL ROOT STIMULATION OF DECENTRALIZED ... Early sacral root electric stimulation decreased the incidence of neuronal degeneration in decentralized detrusor muscle, together with improving the ...

  13. A Regenerative Antioxidant Protocol of Vitamin E and α-Lipoic Acid Ameliorates Cardiovascular and Metabolic Changes in Fructose-Fed Rats

    Directory of Open Access Journals (Sweden)

    Jatin Patel

    2011-01-01

    Full Text Available Type 2 diabetes is a major cause of cardiovascular disease. We have determined whether the metabolic and cardiovascular changes induced by a diet high in fructose in young adult male Wistar rats could be prevented or reversed by chronic intervention with natural antioxidants. We administered a regenerative antioxidant protocol using two natural compounds: α-lipoic acid together with vitamin E (α-tocopherol alone or a tocotrienol-rich fraction, given as either a prevention or reversal protocol in the food. These rats developed glucose intolerance, hypertension, and increased collagen deposition in the heart together with an increased ventricular stiffness. Treatment with a fixed combination of vitamin E (either α-tocopherol or tocotrienol-rich fraction, 0.84 g/kg food and α-lipoic acid (1.6 g/kg food normalized glucose tolerance, blood pressure, cardiac collagen deposition, and ventricular stiffness in both prevention and reversal protocols in these fructose-fed rats. These results suggest that adequate antioxidant therapy can both prevent and reverse the metabolic and cardiovascular damage in type 2 diabetes.

  14. Dietary glutamine supplementation effects on amino acid metabolism, intestinal nutrient absorption capacity and antioxidant response of gilthead sea bream (Sparus aurata) juveniles.

    Science.gov (United States)

    Coutinho, F; Castro, C; Rufino-Palomares, E; Ordóñez-Grande, B; Gallardo, M A; Oliva-Teles, A; Peres, H

    2016-01-01

    A study was undertaken to evaluate dietary glutamine supplementation effects on gilthead sea bream performance, intestinal nutrient absorption capacity, hepatic and intestinal glutamine metabolism and oxidative status. For that purpose gilthead sea bream juveniles (mean weight 13.0g) were fed four isolipidic (18% lipid) and isonitrogenous (43% protein) diets supplemented with 0, 0.5, 1 and 2% glutamine for 6weeks. Fish performance, body composition and intestinal nutrient absorption capacity were not affected by dietary glutamine levels. Hepatic and intestinal glutaminase (GlNase), glutamine synthetase (GSase), alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase activities were also unaffected by dietary glutamine supplementation. In the intestine GlNase activity was higher and GSase/GlNase ratio was two-fold lower than in the liver, suggesting a higher use of glutamine for energy production by the intestine than by the liver. The liver showed higher catalase and glucose-6-phosphate dehydrogenase activities, while the intestine presented higher glutathione peroxidase and glutathione reductase activities and oxidised glutathione content, which seems to reveal a higher glutathione dependency of the intestinal antioxidant response. Total and reduced glutathione contents in liver and intestine and superoxide dismutase activity in the intestine were enhanced by dietary glutamine, though lipid peroxidation values were not affected. Overall, differences between liver and intestine glutamine metabolism and antioxidant response were identified and the potential of dietary glutamine supplementation to gilthead sea bream's antioxidant response was elucidated. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2017-07-01

    Conclusion: Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate–glutathione cycles, are activated to protect against phenolic compound oxidation.

  16. Correlation of nucleotides and carbohydrates metabolism with pro-oxidant and antioxidant systems of erythrocytes depending on age in patients with colorectal cancer.

    Science.gov (United States)

    Zuikov, S A; Borzenko, B G; Shatova, O P; Bakurova, E M; Polunin, G E

    2014-06-01

    To examine the relationship between metabolic features of purine nucleotides and antioxidant system depending on the age of patients with colorectal cancer. The activity of adenosine deaminase, xanthine oxidase, glutathione peroxidase, superoxide dismutase and glucose-6-phosphate dehydrogenase, the NOx concentration and the oxidative modification of proteins were determined spectrophotometricaly in 50 apparently healthy people and 26 patients with colorectal cancer stage -III---IV, aged 40 to 79 years. Increase of pro-oxidant system of erythrocytes with the age against decrease in level of antioxidant protection in both healthy individuals and colorectal cancer patients was determined. A significant increase of pro-ducts of oxidative proteins modification in erythrocytes with ageing was shown. Statistically significant correlation between enzymatic and non enzymatic markers pro-oxidant system and the activity of antioxidant defense enzymes in erythrocytes of patient with colorectal cancer was determined. Obtained results have demonstrated the imbalance in the antioxidant system of erythrocytes in colorectal cancer patients that improve the survival of cancer cells that is more distinctly manifested in ageing.

  17. Regional asymmetry of metabolic and antioxidant profile in the sciaenid fish shi drum (Umbrina cirrosa white muscle. Response to starvation and refeeding

    Directory of Open Access Journals (Sweden)

    M. Carmen Hidalgo

    2017-04-01

    Full Text Available The objective of the present study is to characterize the metabolic and antioxidant profile of white muscle of shi drum in two sites of the body, anterior dorsal (AM and posterior dorsal (PM portions. In addition, it will be analyzed the possible effect of starvation and a subsequent refeeding, with two different protocols, pair feeding and ad libitum. Activities of key enzymes of intermediary metabolism and of antioxidant enzymes, as well as lipid peroxidation, as an index of oxidative stress, were evaluated. The results indicate the existence of a regional asymmetry of the metabolic capacities of the white muscle of shi drum, which is likely related to the different contribution to swimming of the body regions examined. Starvation induces a metabolic depression that is more marked in those activities that support burst swimming in PM, while those activities supporting maintenance requirements are conserved. The greatest energy demands during starvation appear to lie in AM, which showed the highest oxidative metabolism rate. The increased use of fatty acids as energy source for AM leads to oxidative stress. A period of more than four weeks of refeeding for full restoration of metabolic capacities in AM is needed, probably related to the higher muscle mass located in this region. On the contrary, all enzyme activities in PM returned to control levels in both refeeding protocols, but pair feeding seems to be advantageous since compensatory growth has been taking place without signs of oxidative stress. This work was addressed to gain knowledge on the physiology of a promising fish species in aquaculture like shi drum. The results displayed here show how the starving and further re-feeding events could generate oxidative stress situations characterized by high lipid peroxidation levels which may influence negatively on the quality of the edible part of the fish. This study opens an interesting field on this fish species which deserves being

  18. Ultrastructure Processing of Macromolecular Materials.

    Science.gov (United States)

    1983-09-01

    polymers and other areas. The ultrastructure portion consists of a coordinated research effort with Profs. R. Lenz and H. Winter into the synthesis of...polymers and other areas. The ultrastructure portion consists of a coordinated research effort with Profs. R. Lenz and H. Winter into the synthesis ...further to characterize asymetric solutes and suspensoids. High pressure stu- dies of polymer liquid crystals were initiated to elucidate the

  19. Global metabolic profile identifies choline kinase alpha as a key regulator of glutathione-dependent antioxidant cell defense in ovarian carcinoma.

    Science.gov (United States)

    Granata, Anna; Nicoletti, Roberta; Perego, Paola; Iorio, Egidio; Krishnamachary, Balaji; Benigni, Fabio; Ricci, Alessandro; Podo, Franca; Bhujwalla, Zaver M; Canevari, Silvana; Bagnoli, Marina; Mezzanzanica, Delia

    2015-05-10

    Epithelial Ovarian Cancer (EOC) "cholinic phenotype", characterized by increased intracellular phosphocholine content sustained by over-expression/activity of choline kinase-alpha (ChoKα/CHKA), is a metabolic cellular reprogramming involved in chemoresistance with still unknown mechanisms.By stable CHKA silencing and global metabolic profiling here we demonstrate that CHKA knockdown hampers growth capability of EOC cell lines both in vitro and in xenotransplant in vivo models. It also affected antioxidant cellular defenses, decreasing glutathione and cysteine content while increasing intracellular levels of reactive oxygen species, overall sensitizing EOC cells to current chemotherapeutic regimens. Natural recovering of ChoKα expression after its transient silencing rescued the wild-type phenotype, restoring intracellular glutathione content and drug resistance. Rescue and phenocopy of siCHKA-related effects were also obtained by artificial modulation of glutathione levels. The direct relationship among CHKA expression, glutathione intracellular content and drug sensitivity was overall demonstrated in six different EOC cell lines but notably, siCHKA did not affect growth capability, glutathione metabolism and/or drug sensitivity of non-tumoral immortalized ovarian cells. The "cholinic phenotype", by recapitulating EOC addiction to glutathione content for the maintenance of the antioxidant defense, can be therefore considered a unique feature of cancer cells and a suitable target to improve chemotherapeutics efficacy.

  20. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats.

    Science.gov (United States)

    Rincón-Cervera, Miguel Ángel; Valenzuela, Rodrigo; Hernandez-Rodas, María Catalina; Barrera, Cynthia; Espinosa, Alejandra; Marambio, Macarena; Valenzuela, Alfonso

    2016-08-01

    Alpha-linolenic acid (C18:3 n-3, ALA) is an essential fatty acid and the metabolic precursor of long-chain polyunsaturated fatty acids (LCPUFA) from the n-3 family with relevant physiological and metabolic roles: eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA). Western diet lacks of suitable intake of n-3 LCPUFA and there are recommendations to increase the dietary supply of such nutrients. Seed oils rich in ALA such as those from rosa mosqueta (Rosa rubiginosa), sacha inchi (Plukenetia volubis) and chia (Salvia hispanica) may constitute an alternative that merits research. This study evaluated hepatic and epididymal accretion and biosynthesis of n-3 LCPUFA, the activity and expression of Δ-5 and Δ-6 desaturase enzymes, the expression and DNA-binding activity of PPAR-α and SREBP-1c, oxidative stress parameters and the activity of antioxidative enzymes in rats fed sunflower oil (SFO, 1% ALA) as control group, canola oil (CO, 10% ALA), rosa mosqueta oil (RMO, 33% ALA), sacha inchi oil (SIO, 49% ALA) and chia oil (ChO, 64% ALA) as single lipid source. A larger supply of ALA increased the accretion of n-3 LCPUFA, the activity and expression of desaturases, the antioxidative status, the expression and DNA-binding of PPAR-α, the oxidation of fatty acids and the activity of antioxidant enzymes, whereas the expression and DNA-binding activity of SREBP-1c transcription factor and the biosynthetic activity of fatty acids declined. Results showed that oils rich in ALA such as SIO and ChO may trigger metabolic responses in rats such as those produced by n-3 PUFA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Protective role of antioxidants capacity of Hyrtios aff. Erectus sponge extract against mixture of persistent organic pollutants (POPs)-induced hepatic toxicity in mice liver: biomarkers and ultrastructural study.

    Science.gov (United States)

    Abd El-Moneam, Nehad M; Shreadah, Mohamed A; El-Assar, Samy A; Nabil-Adam, Asmaa

    2017-09-01

    The current study investigates the hepatoprotective effect of Hyrtios aff. Erectus sponge extract against POPs intoxication on endogenous antioxidant enzymes and lipid peroxidation in mice liver tissue. In the present study, the mice BALB/C were assigned into four groups: group I: received saline subcutaneously for 7 days and served as negative control; group II: received subcutaneously for 7 days, 130.6 mg/100 g/b. w/day POPs mixture(mixture of PCB 28, PCB 52,, PCB 101, PCB 118, PCB 153, PCB 138 and PCB 180, alpha-Hexachlorocyclohexane, beta-Hexachloro-cyclohexane, gamma-hexachlorocyclohexane, Aldrin, O,P'-DDE, Dieldrin, P,p DDE, O,P DDD, Endrin, P,p DDD and P,pDDT were extracted from sediments collected from Lake Mariout), and served as induced group; group III: pretreated with Hyrtios aff. Erectus sponge extract for 7 days, as a protection dose and then treated with POPs as group II and served as protective group; and group IV: received i.p Hyrtios aff. Erectus sponge extract of dose 0.7 mg/100 g b.wt/day for 7 days and served as positive control. After 7 days (experimental period), mice were scarified and the liver was harvested for biochemical estimation. Significant reduction in lipid peroxidation (p antioxidant biomarkers levels were significantly increase as the hepatic GSH and GST increased by 69.9 and 89.9%, respectively. Such increase was accompanied by a decrease in tyrosine kinase activity by 59.82%, additionally remarkable histopathological changes in liver tissue indicate the protective effect of Hyrtios aff. Erectus sponge extract. The results of this study revealed that the Hyrtios aff. Erectus sponge extract has the potential to diminish the destructive effect of POPs intoxication through enhancement of the endogenous antioxidant status. The hepatoprotective activity of Hyrtios aff. Erectus sponge extract is mediated, by the antioxidant effect of its active constituents. The active constituents of Hyrtios aff. Erectus sponge extract were

  2. Diets supplemented with seaweed affect metabolic rate, innate immune, and antioxidant responses, but not individual growth rate in European seabass (Dicentrarchus labrax)

    DEFF Research Database (Denmark)

    Peixoto, Maria J.; Svendsen, Jon Christian; Malte, Hans

    2016-01-01

    This study investigated the effects of seaweed dietary supplementation on measures of fish performance including aerobic metabolism, digestive enzymes activity, innate immune status, oxidative damage, and growth rate using European seabass (Dicentrarchus labrax). Fish were fed for 49 days...... with three different diets: a control diet (CTRL), a Gracilaria-supplemented diet (GR7.5), and a mixed diet (Mix) composed of Gracilaria, Fucus, and Ulva genera representatives. All diets were isoenergetic (22 kJ g−1 adjusted for dry matter (DM)), isoproteic (47 %DM), and isolipidic (18 %DM) and tested......-transferase activity. Mix diet increased glutathione reductase activity when compared to CTRL. Collectively, our findings suggest that dietary seaweed supplementation may alter seabass metabolic rate, innate immune, and antioxidant responses without compromising growth parameters...

  3. Oxidative stress status, antioxidant metabolism and polypeptide patterns in Juncus maritimus shoots exhibiting differential mercury burdens in Ria de Aveiro coastal lagoon (Portugal).

    Science.gov (United States)

    Anjum, Naser A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2014-05-01

    This study assessed the oxidative stress status, antioxidant metabolism and polypeptide patterns in salt marsh macrophyte Juncus maritimus shoots exhibiting differential mercury burdens in Ria de Aveiro coastal lagoon at reference and the sites with highest, moderate and the lowest mercury contamination. In order to achieve these goals, shoot-mercury burden and the responses of representative oxidative stress indices, and the components of both non-glutathione- and glutathione-based H2O2-metabolizing systems were analyzed and cross-talked with shoot-polypeptide patterns. Compared to the reference site, significant elevations in J. maritimus shoot mercury and the oxidative stress indices such as H2O2, lipid peroxidation, electrolyte leakage and reactive carbonyls were maximum at the site with highest followed by moderate and the lowest mercury contamination. Significantly elevated activity of non-glutathione-based H2O2-metabolizing enzymes such as ascorbate peroxidase and catalase accompanied the studied damage-endpoint responses, whereas the activity of glutathione-based H2O2-scavenging enzymes glutathione peroxidase and glutathione sulfo-transferase was inhibited. Concomitantly, significantly enhanced glutathione reductase activity and the contents of both reduced and oxidized glutathione were perceptible in high mercury-exhibiting shoots. It is inferred that high mercury-accrued elevations in oxidative stress indices were obvious, where non-glutathione-based H2O2-decomposing enzyme system was dominant over the glutathione-based H2O2-scavenging enzyme system. In particular, the glutathione-based H2O2-scavenging system failed to coordinate with elevated glutathione reductase which in turn resulted into increased pool of oxidized glutathione and the ratio of oxidized glutathione-to-reduced glutathione. The substantiation of the studied oxidative stress indices and antioxidant metabolism with approximately 53-kDa polypeptide warrants further studies.

  4. Sodium chlorate, a major water disinfection byproduct, alters brush border membrane enzymes, carbohydrate metabolism and impairs antioxidant system of Wistar rat intestine.

    Science.gov (United States)

    Ali, Shaikh Nisar; Ansari, Fariheen Aisha; Khan, Aijaz Ahmed; Mahmood, Riaz

    2017-05-01

    Sodium chlorate (NaClO 3 ) is a widely used nonselective herbicide. It is also generated as a by-product during disinfection of drinking water by chlorine dioxide. The purpose of this study was to evaluate the effect of NaClO 3 on rat intestine. Adult male rats were randomly divided into five groups: control and remaining four groups were administered orally different doses of NaClO 3 and sacrificed 24 h after the treatment. The administration of NaClO 3 produced acute oxidative stress in the intestine, which manifested in the form of markedly enhanced malondialdehyde levels and carbonyl content and lowered total sulfhydryl groups and glutathione levels. The activities of several brush border membrane (BBM) enzymes were greatly reduced as compared to control. There were alterations in the activities of various enzymes of carbohydrate metabolism and those involved in maintaining the antioxidant defense system. Histological studies support the biochemical results showing NaClO 3 dose-dependent increase in tissue damage. Thus, the present study shows that oral administration of NaClO 3 decreases the activities of BBM enzymes, induces oxidative stress, alters metabolic pathways, and impairs the antioxidant system of rat intestine. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1607-1616, 2017. © 2017 Wiley Periodicals, Inc.

  5. Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on brush border membrane enzymes, carbohydrate metabolism and antioxidant system in rat intestine.

    Science.gov (United States)

    Shahid, Faaiza; Farooqui, Zeba; Rizwan, Sana; Abidi, Subuhi; Parwez, Iqbal; Khan, Farah

    2017-06-14

    Cisplatin (CP) is an effective chemotherapeutic agent that induces gastrointestinal toxicity. Nigella sativa oil (NSO) has been shown to be beneficial in a wide range of gastrointestinal disorders. The present study investigates the possible protective effect of NSO on CP-induced gastrointestinal toxicity. NSO administration (2ml/kg bwt, orally), prior to and following, a single dose CP treatment (6mg/kg bwt. ip), significantly attenuated the CP-induced decrease in brush border membrane (BBM) enzyme activities in intestinal homogenates and BBM vesicles (BBMV). NSO administration also mitigated CP induced alterations in the activities of carbohydrate metabolism enzymes and in the enzymatic and non-enzymatic antioxidant parameters in the intestine. The results suggest that NSO by empowering the endogenous antioxidant system improves intestinal redox and metabolic status and restores BBM integrity in CP treated rats. Histopathological studies supported the biochemical findings. Thus, NSO may help prevent the accompanying gastrointestinal dysfunction in CP chemotherapy. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. The Effect of Thyme Essential Oil (Thymus Vulgaris Added to Quail Diets on Performance, Some Blood Parameters, and the Antioxidative Metabolism of the Serum and Liver Tissues

    Directory of Open Access Journals (Sweden)

    R Gumus

    Full Text Available ABSTRACT This study was conducted to determine the effect of diets containing different levels of thyme essential oil (TEO on performance, some serum parameters and the antioxidative metabolism of the serum and liver tissues in quails. A total number of 200 sixteen-days-old Japanese quails (Coturnix coturnix japonica were used in the study. The animals were divided into 4 groups; the control group was fed only basal diet but groups TEO1, TEO2 and TEO3 had thyme essential oil of 150, 300 and 450 mg/kg, respectively, added to their diets. Body weight and daily weight gain increased with higher levels of thyme essential oil in the feed, yet a statistically significant increase was detected in only group TEO3 (p<0.05. Furthermore, in all of the groups that were fed on TEO, feed intake was significantly higher than that of the control group (p<0.05. In the groups that received thyme essential oil, serum creatinine and low-density lipoprotein (LDL levels were low, whereas serum magnesium levels were high (p<0.05. Thyme essential oil significantly increased in liver catalase (CAT, superoxide dismutase (SOD and glutathione peroxidase (GSH-Px activities and serum CAT and GSH-Px activities, and significantly reduced both liver and serum lipid peroxidation (malondialdehyde=MDA levels (p<0.01. In result, while thyme essential oil partially affected the performance and serum parameters, it had a marked effect on the antioxidant metabolism.

  7. Antioxidants of edible mushrooms

    NARCIS (Netherlands)

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M.; Griensven, Van Leo

    2015-01-01

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic

  8. Ethephon increases photosynthetic-nitrogen use efficiency, proline and antioxidant metabolism to alleviate decrease in photosynthesis under salinity stress in mustard.

    Science.gov (United States)

    Iqbal, Noushina; Umar, Shahid; Per, Tasir S; Khan, Nafees A

    2017-05-04

    Salinity is a serious threat to plant growth and development worldwide reducing agricultural productivity each year. Ethylene is an important phytohormone that affects plants performance under normal and abiotic stress conditions. In this study, role of ethylene was investigated in mitigating salinity stress (100 mM NaCl) effects on photosynthesis in mustard plants subjected to different nitrogen (N; 5 and 10 mM) levels. Plants under salinity stress exhibited marked increase in proline and reduced glutathione (GSH) content and activity of antioxidant enzymes. Nitrogen supplementation at 10 mM was better than 200 µl l -1 ethephon treatment under no stress. However, under salinity stress, both N and ethephon were equally effective. The combined application of 10 mM N and ethephon to salinity stressed plants produced greatest increase in photosynthesis by increasing proline and antioxidant metabolism. Ethylene evolution was high under salinity stress, but treatment of 10 mM N and 200 µl l -1 ethephon greatly decreased ethylene evolution that was equivalent to the 10 mM N treatment alone. This concentration of ethylene decreased the oxidative stress and increased the photosynthetic nitrogen use efficiency (NUE) maximally to increase photosynthesis. The use of ethylene action inhibitor, norbornadiene (NBD) showed reduction in ethylene mediated effects in alleviating salinity. Norbornadiene decreased the photosynthetic-NUE, proline and GSH content that resulted in decrease in photosynthesis under salinity stress. This study indicated that ethylene regulated the proline and antioxidant metabolism under salinity stress to increase photosynthetic functions of mustard grown with low and optimum N. The modulation of ethylene could be adopted in agricultural practices to increase photosynthesis under salinity stress.

  9. Dose-response effects of lycopene on selected drug-metabolizing and antioxidant enzymes in the rat

    DEFF Research Database (Denmark)

    Breinholt, V.; Lauridsen, S. T.; Daneshvar, B.

    2000-01-01

    detoxification enzymes provided evidence that lycopene was capable of inducing hepatic quinone reductase, approximately two-fold, at doses between 0.001 and 0.05 g/kg b.w, per day, whereas no effect was observed at the remaining doses tested. Glutathione transferase, using the two substrates, 2......,4-dichloronitrobenzene and 1-chloro-2,4-dinitrobenzene, was significantly induced at the 0.1 g/kg b.w. per day dose, whereas no effect was observed at the remaining lycopene doses. Analysis of the antioxidant status of thr blood compartment revealed that three out of four antioxidant enzymes were affected by lycopene...... to be affected by prior. lycopene exposure. The level of PhIP-DNA adducts in the liver or colon was likewise not affected by lycopene at any dose. Overall, the present study provides evidence that lycopene administered in the diet of young female rats exerts minor modifying effects toward antioxidant and drug...

  10. Effects of combined inositol hexakisphosphate and inositol supplement on antioxidant activity and metabolic enzymes in the liver of streptozotocin-induced type 2 diabetic rats.

    Science.gov (United States)

    Foster, Shadae R; Dilworth, Lowell L; Thompson, Rory K; Alexander-Lindo, Ruby L; Omoruyi, Felix O

    2017-09-25

    Diabetes mellitus is associated with elevated reactive oxygen species, lipid abnormalities, reduced antioxidant activity and organ damage. This study examines the effects of combined inositol hexakisphosphate (IP6) and inositol supplement on antioxidant levels and other biochemical parameters in the liver of type 2 diabetic rats. Five groups of Sprague-Dawley rats were studied. Six rats were fed normal diet (non-diabetic control), while 24 rats were fed high-fat diet (HFD) for 4 weeks. Diabetes was induced in 18 of the rats fed HFD by intraperitoneal administration of streptozotocin. The diabetic rats were separated into three groups namely: combined IP6 and inositol, glibenclamide and diabetic control. The non-diabetic group fed high-fat diet was classified as a high-fat control group. For the final four weeks of the experiment, all rats were fed normal diet and given their respective treatment regimes. Hepatic antioxidant status, metabolic enzyme activity, lipid profile, peroxidative damage and liver histology, as well as, serum aminotransferase and alkaline phosphatase activities, and total bilirubin concentration were assessed. Treatment with combined IP6 and inositol supplement significantly increased liver reduced glutathione and high-density lipoprotein levels while liver triglyceride levels and serum alkaline phosphatase activity were significantly reduced by 27%, 50%, 38.5%, and 69.2% respectively compared to the diabetic control. Hepatic superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase activities were significantly upregulated by 55%, 26% and 53% respectively in the diabetic rats treated with combined IP6 and inositol compared to the diabetic control. Combined IP6 and inositol treatment resulted in the preservation of liver cell integrity and improved antioxidant status in type 2 diabetic rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Micronuclei in Bone Marrow and Liver in relation to Hepatic Metabolism and Antioxidant Response due to Coexposure to Chloroform, Dichloromethane, and Toluene in the Rat Model

    Directory of Open Access Journals (Sweden)

    Javier Belmont-Díaz

    2014-01-01

    Full Text Available Genotoxicity in cells may occur in different ways, direct interaction, production of electrophilic metabolites, and secondary genotoxicity via oxidative stress. Chloroform, dichloromethane, and toluene are primarily metabolized in liver by CYP2E1, producing reactive electrophilic metabolites, and may also produce oxidative stress via the uncoupled CYP2E1 catalytic cycle. Additionally, GSTT1 also participates in dichloromethane activation. Despite the oxidative metabolism of these compounds and the production of oxidative adducts, their genotoxicity in the bone marrow micronucleus test is unclear. The objective of this work was to analyze whether the oxidative metabolism induced by the coexposure to these compounds would account for increased micronucleus frequency. We used an approach including the analysis of phase I, phase II, and antioxidant enzymes, oxidative stress biomarkers, and micronuclei in bone marrow (MNPCE and hepatocytes (MNHEP. Rats were administered different doses of an artificial mixture of CLF/DCM/TOL, under two regimes. After one administration MNPCE frequency increased in correlation with induced GSTT1 activity and no oxidative stress occurred. Conversely, after three-day treatments oxidative stress was observed, without genotoxicity. The effects observed indicate that MNPCE by the coexposure to these VOCs could be increased via inducing the activity of metabolism enzymes.

  12. Effect of fishmeal replacement by soy protein concentrate with taurine supplementation on hepatic intermediary metabolism and antioxidant status of totoaba juveniles (Totoaba macdonaldi).

    Science.gov (United States)

    Bañuelos-Vargas, Isaura; López, Lus M; Pérez-Jiménez, Amalia; Peres, Helena

    2014-04-01

    The effect of dietary incorporation of soy protein concentrate (SPC) and the concomitant supplementation with taurine on hepatic intermediary metabolism and antioxidant status of totoaba (Totoaba macdonaldi) juveniles was assessed. Four isoproteic and isolipidic diets were formulated containing either 30 or 60% of SPC (diets SP30 and SP60), supplemented or not with 1% of taurine (diets SP30T and SP60T). A fish meal (FM) based diet, without SPC and taurine supplementation, was used as a control. Triplicate groups of 32 totoaba juveniles (average body mass=7.5g) were fed these diets over 45days. Results revealed that dietary FM replacement by SPC depressed the overall intermediary metabolism. Activity of key enzymes of amino acid catabolism and gluconeogenesis was significantly reduced and a trend to reduce glycolysis and glucose-6-phosphate dehydrogenase activity was observed. The incorporation of the highest level of SPC also significantly increased hepatic lipid peroxidation and the activity of superoxide dismutase. Concomitant taurine supplementation restored the activity of amino acid catabolic and gluconeogenic enzymes and hexokinase to levels similar of those of the control diet. Taurine supplementation also led to a significant increase of glucose-6-phosphate dehydrogenase and catalase activity, as well as to a significant reduction of liver lipid peroxidation. These results suggest that taurine may play an important metabolic modulation action on totoaba fed SPC based diets, contributing to the enhancement of the overall metabolism and to the reduction of liver oxidative damage. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Effectiveness of Hydrogen Rich Water on Antioxidant Status of Subjects with Potential Metabolic Syndrome?An Open Label Pilot Study

    OpenAIRE

    Nakao, Atsunori; Toyoda, Yoshiya; Sharma, Prachi; Evans, Malkanthi; Guthrie, Najla

    2010-01-01

    Metabolic syndrome is characterized by cardiometabolic risk factors that include obesity, insulin resistance, hypertension and dyslipidemia. Oxidative stress is known to play a major role in the pathogenesis of metabolic syndrome. The objective of this study was to examine the effectiveness of hydrogen rich water (1.5?2?L/day) in an open label, 8-week study on 20 subjects with potential metabolic syndrome. Hydrogen rich water was produced, by placing a metallic magnesium stick into drinking w...

  14. Ultrastructural patterns of Helicobacter pylori.

    OpenAIRE

    Caselli, M; Aleotti, A; Boldrini, P; Ruina, M; Alvisi, V

    1993-01-01

    Ultrastructural morphology of the bacterial bodies was studied in 40 Helicobacter pylori positive cases. Two bacterial patterns were identified, which were associated with different modes of contact with the epithelial cells and possibly with different stages of the natural history of the infection.

  15. Physiological Role of a Multigrain Diet in Metabolic Regulations of Lipid and Antioxidant Profiles in Hypercholesteremic Rats

    Directory of Open Access Journals (Sweden)

    Rupal A. Vasant

    2014-06-01

    Full Text Available Objectives:The objective of the present study was to investigate the lipid and the antioxidant regulatory potential of a multigrain diet in laboratory animals with reference to lipid profiles, tissue lipid peroxidation and antioxidant status. Methods: Two types of diets, with or without addition of cholesterol, were used in the study – a commercial diet and a formulated multigrain diet (with Sorghum vulgare, Avena sativa, Pennisetum typhoideum, Oryza sativa, Eleusine coracana and Zea mays grains. After a 10-week period of feeding the diets to albino rats the plasma, liver and fecal lipid profiles and the hepatic and renal antioxidant status of the animals that were fed the commercial and the formulated diets (with and without cholesterol addition were assessed. Results: The commercial diet supplemented with cholesterol elevated the levels of plasma total lipids, total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL-C, and very low-density lipoprotein cholesterol (VLDL-C, as well as the atherogenic index (AI. The high-density lipoprotein cholesterol (HDL-C content and the antioxidant profiles (total ascorbic acid, superoxide dismutase, catalase, glutathione peroxidase reduced glutathione declined along with increases in lipid peroxidation. The formulated diet (with and without addition of cholesterol was found to be more efficient than the commercial diet in controlling plasma, hepatic and fecal lipid profiles, as well as hepatic and renal lipid peroxidation and antioxidant status, than of the hypercholesteremic animals. Conclusion:The multigrain diet used in the present study is effective in countering the hyperlipidemia and oxidative stress caused by high cholesterol intake.

  16. Metabolic effect of TAp63α : enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense

    NARCIS (Netherlands)

    D'Alessandro, Angelo; Amelio, Ivano; Berkers, Celia R; Antonov, Alexey; Vousden, Karen H; Melino, Gerry; Zolla, Lello

    2014-01-01

    TAp63α is a member of the p53 family, which plays a central role in epithelial cancers. Recently, a role has emerged for p53 family members in cancer metabolic modulation. In order to assess whether TAp63α plays a role in cancer metabolism, we exploited p53-null osteosarcoma Tet-On Saos-2 cells, in

  17. Heat stress in the heart and muscle of the Antarctic fishes Notothenia rossii and Notothenia coriiceps: Carbohydrate metabolism and antioxidant defence.

    Science.gov (United States)

    Souza, Maria Rosa Dmengeon Pedreiro de; Herrerias, Tatiana; Zaleski, Tania; Forgati, Mariana; Kandalski, Priscila Krebsbach; Machado, Cintia; Silva, Dilza Trevisan; Piechnik, Cláudio Adriano; Moura, Maurício Osvaldo; Donatti, Lucélia

    2018-03-01

    Carbohydrate metabolism and the antioxidant defence system of heart and muscle of the Antarctic notothenioids Notothenia rossii and Notothenia coriiceps were evaluated in response to heat stress (8 °C) over 144 h. N. rossii heart exhibited decreased glycolysis and aerobic metabolism after up to 12 h of exposure to 8 °C, and anaerobiosis was inhibited within 24 h. However, these pathways were stimulated after 72 h at 8 °C. The consumption of glucose-6-phosphate, derived from hexokinase (HK), by glucose-6-phosphate dehydrogenase (G6PDH) decreased in N. rossii heart within 6 h at 8 °C, with a subsequent increase at 72 h. In N. rossii muscle at 8 °C, glycolysis was stimulated within 2 h by an increase in pyruvate kinase (PK), and aerobic metabolism was stimulated at 144 h, together with anaerobiosis. In N. coriiceps heart at 8 °C, glucose break down by HK decreased within 2 h and subsequently increased at 12 and 24 h. Increased glucose-6-phosphate consumption by G6PDH occurred within 6 h at 8 °C. In N. coriiceps muscle at 8 °C, glycolysis was stimulated at 2 and 6 h, with subsequent inhibition within 24 h, as indicated by HK activity. Aerobic metabolism was inhibited at 72 and 144 h at 8 °C through the inhibition of citrate synthase (CS). Heat stress caused responses were only occasional and transient in antioxidant defence system of both species in the heart and muscle, leading to increased glutathione (GSH) and decreased levels of lipoperoxidation in the heart of both species. The results obtained in this study in the heart and muscles indicate that under heat stress at 8 °C, N. rossii is more responsive than N. coriiceps with respect to carbohydrate metabolism. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. The role of cinnamon as a modulator of the expression of genes related to antioxidant activity and lipid metabolism of laying quails.

    Science.gov (United States)

    Bastos, Marisa Silva; Del Vesco, Ana Paula; Santana, Thaís Pacheco; Santos, Thailine Santana; de Oliveira Junior, Gregório Murilo; Fernandes, Roberta Pereira Miranda; Barbosa, Leandro Teixeira; Gasparino, Eliane

    2017-01-01

    Since cinnamon has vitamins and minerals in addition to antioxidants compounds in its chemical composition studies have shown the potential of cinnamon supplementation on some important characteristics in the performance of birds. Thus, this study was conducted under the hypothesis that the inclusion of cinnamon in the laying quail diet could influence the performance of the birds through the expression of genes related to antioxidant activity and lipid metabolism. To test this hypothesis, 144 Japanese quail (Coturnix japonica) with an initial age of 18 weeks and average weight of 133g were distributed in a completely randomized design with two treatments: no cinnamon supplementation (NCS-control group) and with supplementation of 9g/kg of cinnamon powder (CPS). The experiment lasted for 84 days. At the end of the experimental period, six animals from each treatment were euthanized by cervical dislocation, blood was collected and organs weighed. Liver tissue was collected for gene expression and biochemical analyses. We observed a significant effect of cinnamon inclusion on the weight of the pancreas (P = 0.0418), intestine (P = 0.0209) and ovary (P = 0.0389). Lower weights of the pancreas and intestine, and a higher ovary weight was observed in birds receiving the CPS diet. Quails fed with cinnamon supplementation also had better feed conversion per egg mass (2.426 g /g, P = 0.0126), and higher triglyceride (1516.60 mg/dL, P = 0.0207), uric acid (7.40 mg/dL, P = 0.0003) and VLDL (300.40 mg/dL, P = 0.0252) contents. A decreased content of thiobarbituric acid reactive substances (TBARS) and lower catalase activity was observed in the liver of quails from the CPS diet (0.086 nmoles/mg PTN, and 2.304 H2O2/min/mg PTN, respectively). Quails from the CPS group presented significantly greater expression of FAS (fatty acid synthase, 36,03 AU), ACC (Acetyl-CoA Carboxylase, 31.33 AU), APOAI (apolipoprotein A-I, 803,9 AU), ESR2 (estrogen receptor 2, 0.73 AU) SOD (superoxide

  19. Effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) on some metabolic and reproductive profiles in dairy cows during transition period.

    Science.gov (United States)

    Omur, A; Kirbas, A; Aksu, E; Kandemir, F; Dorman, E; Kaynar, O; Ucar, O

    2016-12-01

    The objective of this study was to determine the effects of some antioxidant vitamins and trace elements on some metabolic and postpartum reproductive profiles in dairy cows during transition period. In the study, altogether 20 clinically healthy Brown Swiss dairy cows (aged 4-5 years-old) under the same management and feeding conditions in periparturient period were used. The animals were divided into two equal groups: control (C) and treatment (T) group (n=10 for each group). Vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) were administered intramuscularly into the cows of the T group, while isotonic saline, as placebo, was injected subcutaneously into those in the C group. Blood samples were collected by venipuncture of the jugular vein at the beginning of transition period, parturition and 3-weeks after the parturition. The metabolic and reproductive parameters were determined. In the C group, statistically significant changes were observed in the levels of non-esterified fatty acids (NEFA), high density lipoprotein (HDL), low density lipoprotein (LDL), total protein (TP) (pvitamins and trace elements could be effective to improve some metabolic and reproductive profiles in dairy cows during the transition period.

  20. Aging Increases Susceptibility to High Fat Diet-Induced Metabolic Syndrome in C57BL/6 Mice: Improvement in Glycemic and Lipid Profile after Antioxidant Therapy

    Directory of Open Access Journals (Sweden)

    Valéria Nunes-Souza

    2016-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD has been considered a novel component of the metabolic syndrome (MetS, with the oxidative stress participating in its progression. This study aimed to evaluate the metabolic profile in young and old mice with MetS, and the effects of apocynin and tempol on glycemic and lipid parameters. Young and old C57BL/6 mice with high fat diet- (HFD- induced MetS received apocynin and tempol 50 mg·kg−1/day in their drinking water for 10 weeks. After HFD, the young group showed elevated fasting glucose, worsened lipid profile in plasma, steatosis, and hepatic lipid peroxidation. Nevertheless, the old group presented significant increase in fasting insulin levels, insulin resistance, plasma and hepatic lipid peroxidation, and pronounced steatosis. The hepatic superoxide dismutase and catalase activity did not differ between the groups. Tempol and apocynin seemed to prevent hepatic lipid deposition in both groups. Furthermore, apocynin improved glucose tolerance and insulin sensitivity in old mice. In summary, old mice are more susceptible to HFD-induced metabolic changes than their young counterparts. Also, the antioxidant therapy improved insulin sensitivity and glucose tolerance, and in addition, apocynin seemed to prevent the HFD-induced hepatic fat deposition, suggesting an important role of oxidative stress in the induction of NAFLD.

  1. Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    Kasperczyk, Sławomir, E-mail: kaslav@mp.pl [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Dobrakowski, Michał [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Kasperczyk, Janusz [Dept. of Environmental Medicine and Epidemiology, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Ostałowska, Alina; Zalejska-Fiolka, Jolanta; Birkner, Ewa [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland)

    2014-10-01

    The aim of this study was to determine whether beta-carotene administration reduces oxidative stress and influences antioxidant, mainly glutathione-related, defense systems in workers chronically exposed to lead. The population consisted of two randomly divided groups of healthy male volunteers exposed to lead. Workers in the first group (reference group) were not administered any antioxidants, while workers in the second group (CAR group) were treated orally with 10 mg of beta-carotene once a day for 12 weeks. Biochemical analysis included measuring markers of lead-exposure and oxidative stress in addition to the levels and activities of selected antioxidants. After treatment, levels of malondialdehyde, lipid hydroperoxides and lipofuscin significantly decreased compared with the reference group. However, the level of glutathione significantly increased compared with the baseline. Treatment with beta-carotene also resulted in significantly decreased glutathione peroxidase activity compared with the reference group, while the activities of other glutathione-related enzymes and of superoxide dismutase were not significantly changed. However, the activities of glucose-6-phosphate dehydrogenase and catalase, as well as the level of alpha-tocopherol, were significantly higher after treatment compared with the baseline. Despite controversy over the antioxidant properties of beta-carotene in vivo, our findings showed reduced oxidative stress after beta-carotene supplementation in chronic lead poisoning. - Highlights: • Beta-carotene reduces oxidative stress in lead-exposed workers. • Beta-carotene elevates glutathione level in lead-exposed workers. • Beta-carotene administration could be beneficial in lead poisoning.

  2. No Effects of Antioxidant Supplementation in Triathletes on Maximal Oxygen Uptake, 31P-NMRS Detected Muscle Energy Metabolism and Muscle Fatigue

    DEFF Research Database (Denmark)

    Nielsen, A.N.; Mizuno, M.; Ratkevicius, Aivaras

    1999-01-01

    Antioxidative vitamins, coenzyme Q 10 electrical stimulation, isometric exercise, low frequency fatigue......Antioxidative vitamins, coenzyme Q 10 electrical stimulation, isometric exercise, low frequency fatigue...

  3. Diagnóstico de doenças metabólicas do sistema nervoso da infância por exame ultra-estrutural de tecido não cerebral Diagnosis of metabolic diseases of the nervous system in children through ultrastructural analysis of non cerebral tissue.

    Directory of Open Access Journals (Sweden)

    SÉRGIO ROSEMBERG

    1998-09-01

    ceroid-lipofuscinosis, infantile neuroaxonal dystrophy or Lafora disease. We present our experience with ultrastructural analysis in 582 exams of ocular conjunctiva (n=320, skin (n=92 or peripheral nerve (n=170 performed between 1975 and 1996, in 486 children. In 112 cases there were definit ultrastructural changes. In 59 cases, the sole ultrastructural exam allowed the diagnosis. In 29, the changes were less specific, and the final diagnosis was performed by a combination of clinical and pathological analysis. In the remaining 24 cases, a generic diagnosis of mucopolysaccharidosis was done in 8 cases, oligosaccharidosis in 4 cases and GM2 gangliosidosis in 12 cases. Whenever a biochemical test was performed in overseas laboratories, the initial diagnosis was confirmed. These results stress the importance of ultrastructural analysis in non-cerebral tissues for the diagnosis of many metabolic disorders mainly when biochemical tests cannot be performed.

  4. Sulphated galactopyran derived from Gracilaria opuntia, a marine macroalgae restores the antioxidant metabolic enzymes during STZ induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Lavanya Rayapu

    2017-02-01

    Full Text Available Objective: To screen the effect of sulphated galactopyran fraction isolated from Gracilaria opuntia (G. opuntia (FM4 in streptozotocin (STZ induced diabetic rats. Methods: In vitro antioxidant assays of FM4 were estimated by DPPH, ABTS, hydroxyl free radical and Nitric oxide free radical activities. FM4 was purified and characterized by 1H-NMR spectra and FTIR as sulphated galactopyran. Diabetes was induced intraperitonially by single dose of STZ (55 mg/kg body weight. FM4 was administrated orally (80, 100, 125 mg/kg BW to diabetic rats for 60 days. The enzymatic and non-enzymatic antioxidants such as superoxide dismutase (SOD, glutathione peroxidase (GPx, catalase (CAT, glutathione-S-transferase (GST, lipid peroxidase (LPx, glutathione reduced (GSH, vitamin-C (VIT-C and vitamin-E (VIT-E levels were estimated. Glibenclamide was used as standard drug. Results: Our results demonstrated that the aqueous extract of G. opuntia possess free radical scavenging activity. During FM4 fraction treatment (100 mg/kg BW, the SOD, GPx, CAT, GST, GSH, VIT-C and VIT-E levels were significantly (P < 0.05 increased, and the LPx levels were decreased in different organs such as liver, kidney, brain and pancreas of diabetic rats. Conclusions: The sulphated galactopyran fraction of the marine macroalgae (G. opuntia possesses the antioxidant activity which might help in the prevention of oxidative damage that occurs during diabetes.

  5. Modulation of the endogenous antioxidants paraoxonase-1 and urate by pesticide exposure and genetic variants of xenobiotic-metabolizing enzymes.

    Science.gov (United States)

    Hernández, Antonio F; Gil, Fernando; Lacasaña, Marina; Rodríguez-Barranco, Miguel; Gómez-Martin, Antonio; Lozano, David; Pla, Antonio

    2013-11-01

    This study evaluated the association between pesticide exposure in farmworkers and plasma levels of the endogenous antioxidants urate and paraoxonase-1 (PON1) enzyme activities (paraoxonase, arylesterase and diazoxonase, three substrate-specific assays for measuring PON1 function) by using generalized estimating equations (GEEs). Decreases in plasma and erythrocyte cholinesterases (BChE and AChE, respectively) were used as biomarkers of pesticide exposure. We also assessed the contribution of genetic polymorphisms of the pesticide-metabolising enzymes PON1, glutathione S-transferases (GST) and cholinesterase variants (BCHE) on plasma levels of endogenous antioxidants and potential gene-environment interactions. A dual effect was observed on paraoxonase depending on the pattern of pesticide exposure. Thus, exposure to anticholinesterase pesticides was associated with decreased paraoxonase activity and urate levels whereas long-term pesticide exposure showed an association with increased paraoxonase activity. Significant interactions were observed between BChE activity and PON1 regulatory region polymorphisms on arylesterase and diazoxonase activities, and between AChE activity (a biomarker for long-term pesticide exposure) and PON1192RR genotype on arylesterase activity. These findings suggest that pesticide exposure may affect plasma antioxidant potential and that relevant gene-pesticide interactions may play a mechanistic role in oxidative stress-induced diseases following pesticide exposure. Nonetheless, more studies are needed to better characterise these interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. [Physical activity in patients with symptoms of metabolic syndrome reduces the concentration of plasma antioxidant vitamins - protective effect of vitamin C].

    Science.gov (United States)

    Godala, Małgorzata; Materek-Kuśmierkiewicz, Izabela; Moczulski, Dariusz; Rutkowski, Maciej; Szatko, Franciszek; Gaszyńska, Ewelina; Tokarski, Sławomir; Kowalski, Jan

    2015-05-01

    Patients with cardiovascular diseases, including those with the symptoms of metabolic syndrome (MS), are recommended regular exercise but many studies indicate its role in the production of reactive oxygen species. Vitamin C supplementation may enhance the antioxidant barrier in MS patients. The aim of the study was to assess the impact of regular physical activity (PA)and vitamin C supplementation on plasma vitamin A, C and E levels in patients with MS. The study included 62 patients with MS according to International Diabetes Federation criteria, 32 men and 30 women, aged 38-57 years (mean age 51,24 ± 5,29 years). The patients were divided in two groups: group I (MS+PA) - 31 patients with recommended regular physical activity; group II ( MS+PA+C) - 31 patients with recommended regular physical activity and vitamin C supplementation per os. The control group consisted of 23 healthy individuals without MS, 17 men and 6 women, aged 49-56 years (mean age 53,21 ± 3,6 years), who were not recommended any vitamin supplementation nor physical activity. Plasma vitamin A, C and E levels were estimated in MS patients with spectrophotometry using T60V spectrophotometer (PG Instruments) before and after regular exercise with and without vitamin C supplementation. In the control group plasma levels of antioxidant vitamins were assessed only once. The plasma vitamin A, C and E levels were significantly lower (pvitamins was observed in MS patients. In the group of patients with regular physical activity and vitamin C supplementation there was detected a significant rise in the level of all the tested vitamins close to the levels in control group. Regular physical activity enhances the decrease in plasma antioxidant vitamin level in patients with MS. Vitamin C supplementation conducted in parallel with regular physical activity normalize plasma vitamin A, C and E levels in these patients. © 2015 MEDPRESS.

  7. INFLUENCE OF DIETARY SELENIUM SUPPLEMENTATION OF EWES ON PRODUCTION TRAITS, ANTIOXIDANT STATUS AND METABOLIC PROFILE OF LAMBS

    Directory of Open Access Journals (Sweden)

    Josip Novoselec

    2013-12-01

    Full Text Available The aim of this study was to determine the effect of dietary selenium supplementation (organic, inorganic of high pregnant ewes on the production traits of lambs, the concentration of selenium in the blood of ewes and their lambs, indicators of antioxidant status in the blood of ewes and their lambs, the metabolic profile of ewes and their lambs and concentrations of thyroid hormones. Ewes were in the last third of pregnancy, the average age of four years, healthy and in good condition, divided into three groups of 10 animals. The research lasted 4 months respectively, 2 months with ewes during high pregnancy, 2 months with ewes during lactation and on their lambs during suckling period. Ewes ration from control group one was composed from 300 g/day/animal feed mixture without addition of selenium and 150 g/day/animal barley and alfalfa hay that they had ad libitum. Feed mixture from second group of ewes was supplemented with 0.3 mg/kg organic form of selenium (Sel-Plex®, and feed mixture from third group with the same amount inorganic form of selenium (sodium selenite. Selenium supplementation of ewes feed mixture did not significantly influence on the production traits of their lambs postpartum. Selenium supplementation of ewes and their lambs had influence on a significant (P<0.01; P<0.05 increase in the concentration of selenium, GSH-Px and SOD in whole blood compared to control group of ewes. Organic selenium supplement had a more significant impact on the increase in concentration of selenium and GSH-Px in the blood. In the ewes and lambs blood was determined decrease of MDA with increasing concentrations of selenium in the blood. Generally, the selenium supplementation led to an increase (P<0.05 in the number of WBC and lymphocytes in the blood of ewes and lambs. Also, the increase in the number of RBC, HGB content and MCV in lambs and MCH as well as MCHC in ewes that had a selenium supplement in feed mixture were determined

  8. Responses of Nigella sativa L. to Zinc Excess: Focus on Germination, Growth, Yield and Yield Components, Lipid and Terpene Metabolism, and Total Phenolics and Antioxidant Activities.

    Science.gov (United States)

    Marichali, Ahmed; Dallali, Sana; Ouerghemmi, Saloua; Sebei, Houcine; Casabianca, Hervé; Hosni, Karim

    2016-03-02

    A comprehensive analysis of the responses of Nigella sativa L. to elevated zinc concentrations was assessed in pot experiments. Zn excess supply did not affect the germination but drastically reduced radicle elongation. A concentration-dependent reduction in all growth parameters, yield, and yield components was observed. With the increasing Zn concentrations, total lipid contents decreased and changes in fatty composition toward the production of saturated ones were underscored. Despite the reduction in the seeds essential oil yield, a redirection of the terpene metabolism toward the synthesis of oxygenated compounds has been evidenced. A significant increase in the total phenols and flavonoids contents concomitant with improved antioxidant activities has also been found. Collectively, these results highlight the possible use of N. sativa L. in phytoremediation applications, on the one hand, and that Zn excess could represent an excellent alternative to improve the nutritional attributes of this important species, on the other hand.

  9. Colonic fermentation of polyphenols from Chilean currants (Ribes spp.) and its effect on antioxidant capacity and metabolic syndrome-associated enzymes.

    Science.gov (United States)

    Burgos-Edwards, Alberto; Jiménez-Aspee, Felipe; Theoduloz, Cristina; Schmeda-Hirschmann, Guillermo

    2018-08-30

    The Chilean wild currants Ribes magellanicum and R. punctatum are a good source of polyphenols. Polyphenolic-enriched extracts (PEEs) from both species were submitted to in vitro colonic fermentation to assess the changes in phenolic composition, antioxidant capacity and inhibition of metabolic syndrome-associated enzymes. The phenolic profiles of the fermented samples showed significant changes after 24 h incubation. Nine metabolites, derived from the microbial fermentation, were tentatively identified, including dihydrocaffeic acid, dihydrocaffeoyl-, dihydroferuloylquinic acid, 1-(3,4-dihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propan-2-ol (3,4-diHPP-2-ol), among others. The content of anthocyanins and hydroxycinnamic acids was most affected by simulated colonic conditions, with a loss of 71-92% and 90-100% after 24 h incubation, respectively. The highest antioxidant capacity values (ORAC) were reached after 8 h incubation. The inhibitory activity against the enzyme α-glucosidase was maintained after the fermentation process. Our results show that simulated colonic fermentation exerts significant changes on the polyphenolic composition of these berries, modifying their health-promoting properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Metabolic variation and antioxidant potential of Malus prunifolia (wild apple) compared with high flavon-3-ol containing fruits (apple, grapes) and beverage (black tea).

    Science.gov (United States)

    Maria John, K M; Enkhtaivan, Gansukh; Kim, Ju Jin; Kim, Doo Hwan

    2014-11-15

    Secondary metabolic variation of wild apple (Malus prunifolia) was compared with fruits that contained high flavan-3-ol like grapes (GR), apple (App) and the beverage, black tea (BT). The polyphenol contents in wild apple was higher than in GR and App but less than BT. The identified phenolic acids (gallic, protocatechuic, chlorogenic, p-coumaric and ferulic acids) and flavonoids (quercetin and myricetin) indicate that wild apple was higher than that of App. Among all the samples, BT had highest antioxidant potential in terms of 2,2'-Azinobis (3-thylbenzothiazoline-6-sulfonic acid) diammonium salt (95.36%), metal chelating (45.36%) and phosphomolybdenum activity (95.8 mg/g) because of the high flavan-3-ol content. The gallic acid and epigallocatechin gallate were highly correlated with antioxidant potential and these metabolites levels are higher in wild apple than that of App. Wild apples being a non-commercial natural source, a detailed study of this plant will be helpful for the food additive and preservative industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The ameliorating effects of vitamin E on hepatic antioxidant system and xenobiotic-metabolizing enzymes in fenvalerate-exposed iodine-deficient rats.

    Science.gov (United States)

    Kocer-Gumusel, Belma; Erkekoglu, Pinar; Caglayan, Aydan; Hincal, Filiz

    2016-01-01

    This study investigated the effects of vitamin E (VE) on hepatic antioxidant system and drug-metabolizing enzymes in fenvalerate (FEN)-exposed iodine-deficient (ID) Wistar rats. ID was produced by perchlorate containing drinking water. VE was introduced by a loading dose of 100 mg/kg/d, i.g. for the first three days in the last week of feeding period; then with a single maintenance dose of 40 mg/kg on the 4th day. During last week, FEN groups (F) received 100 mg/kg/d, i.p. FEN. VE alone did not significantly affect thyroid hormones and antioxidant parameters; however, significantly increased total cytochrome P450 (38%) and cytochrome b5 levels (36%). In all ID groups, plasma thyroid-stimulating hormone (TSH) levels increased markedly, but remained at control level in vitamin E plus FEN receiving iodine-deficient group (IDVF) group. Glutathione peroxidase activity showed marked increases in F (19%) and FEN-exposed iodine-deficient group (IDF, 48%) groups. FEN treatment significantly increased total cytochrome P450 (28%) and thiobarbituric acid reactive substance levels (36%), as well as 7-ethoxyresorufin O-deethylase (120%), 7-penthoxyresorufin O-deethylase (139%) and glutathione S-transferase (15%) activities and decreased total glutathione concentrations (28%) versus control. Overall results suggest that vitamin E has ameliorating effects on the measured parameters in ID and/or FEN exposure.

  12. Sodium Nitrate Induces Reactive Oxygen Species That Lower the Antioxidant Power, Damage the Membrane, and Alter Pathways of Glucose Metabolism in Human Erythrocytes.

    Science.gov (United States)

    Ansari, Fariheen Aisha; Mahmood, Riaz

    2015-12-09

    Nitrate salts are widely used as food additives and nitrogenous fertilizers and are present as contaminants in drinking water supplies. The effect of different concentrations (1-15 mM) of sodium nitrate (NaNO3) on human erythrocytes was studied under in vitro conditions. Treatment of erythrocytes with NaNO3 resulted in increases in methemoglobin levels, lipid peroxidation, and protein oxidation and a decrease in glutathione content. There were changes in the activities of all major antioxidant defense enzymes, and the pathways of glucose metabolism were also affected. Increased generation of reactive oxygen species (ROS) took place while the antioxidant power was impaired. The osmotic fragility of cells was increased, and membrane-bound enzymes were greatly inhibited. All changes were statistically significant at a probability level of P < 0.05 at all concentrations of NaNO3 except the lowest (1 mM). Thus, NaNO3 generates ROS that cause significant damage to human erythrocytes and interfere in normal cellular pathways.

  13. The Effects of Different Amount of Protein and Vitamin e Supplementation in Rations on Lipid and Antioxidant Metabolism of Broilers Exposed to Heat Stress

    Directory of Open Access Journals (Sweden)

    HS Erol

    Full Text Available ABSTRACT Heat stress, causes economic losses and has negative effects on both broiler husbandry and animal welfare. Nutritional strategies are applied for minimizing the negative effects of heat stress. In the present study, at the finishing period (24-39 days of age of heat stress, the effects of diet involving 21% and 19% proteins and vitamin E on lipid metabolism and antioxidant mechanism of action, aimed to be identified. This study was carried out in six groups as: HPC (24oC heat + 21% crude protein (CP, HPS (34oC heat + 21% CP, LPC (24oC heat + 19% CP, LPS (34oC heat + 19% CP, HPSVE (34oC heat + 21% CP + Vitamin E and LPSVE (34oC heat + 19% CP + vitamin E groups. Superficial pectoral muscles (breast and liver tissues were used for oxidative stress and antioxidant defence determinations. Triglyceride and cholesterol levels have also been determined in blood serums. During the research, it is found that heat stress increased serum triglyceride and cholesterol levels, where Vitamin E has recovered triglyceride levels limitedly and cholesterol levels significantly. It is also observed that the adverse effect of high temperature was directly related to oxidative stress. Protein levels and vitamin supplementation relatively ameliorated these adverse effects, suggesting the tissue specificity. Consequently, the importance of feeding strategies such as the presence of Vitamin E and protein ratios on broiler nutrition in heat stress was established.

  14. Pyridoxine (Vitamin B6) and the Glutathione Peroxidase System; a Link between One-Carbon Metabolism and Antioxidation

    OpenAIRE

    Dalto, Danyel Bueno; Matte, Jean-Jacques

    2017-01-01

    Vitamin B6 (B6) has a central role in the metabolism of amino acids, which includes important interactions with endogenous redox reactions through its effects on the glutathione peroxidase (GPX) system. In fact, B6-dependent enzymes catalyse most reactions of the transsulfuration pathway, driving homocysteine to cysteine and further into GPX proteins. Considering that mammals metabolize sulfur- and seleno-amino acids similarly, B6 plays an important role in the fate of sulfur-homocysteine and...

  15. Pyridoxine (Vitamin B6 and the Glutathione Peroxidase System; a Link between One-Carbon Metabolism and Antioxidation

    Directory of Open Access Journals (Sweden)

    Danyel Bueno Dalto

    2017-02-01

    Full Text Available Vitamin B6 (B6 has a central role in the metabolism of amino acids, which includes important interactions with endogenous redox reactions through its effects on the glutathione peroxidase (GPX system. In fact, B6-dependent enzymes catalyse most reactions of the transsulfuration pathway, driving homocysteine to cysteine and further into GPX proteins. Considering that mammals metabolize sulfur- and seleno-amino acids similarly, B6 plays an important role in the fate of sulfur-homocysteine and its seleno counterpart between transsulfuration and one-carbon metabolism, especially under oxidative stress conditions. This is particularly important in reproduction because ovarian metabolism may generate an excess of reactive oxygen species (ROS during the peri-estrus period, which may impair ovulatory functions and early embryo development. Later in gestation, placentation raises embryo oxygen tension and may induce a higher expression of ROS markers and eventually embryo losses. Interestingly, the metabolic accumulation of ROS up-regulates the flow of one-carbon units to transsulfuration and down-regulates remethylation. However, in embryos, the transsulfuration pathway is not functional, making the understanding of the interplay between these two pathways particularly crucial. In this review, the importance of the maternal metabolic status of B6 for the flow of one-carbon units towards both maternal and embryonic GPX systems is discussed. Additionally, B6 effects on GPX activity and gene expression in dams, as well as embryo development, are presented in a pig model under different oxidative stress conditions.

  16. Fenofibrate Therapy Restores Antioxidant Protection and Improves Myocardial Insulin Resistance in a Rat Model of Metabolic Syndrome and Myocardial Ischemia: The Role of Angiotensin II

    Directory of Open Access Journals (Sweden)

    Luz Ibarra-Lara

    2016-12-01

    Full Text Available Renin-angiotensin system (RAS activation promotes oxidative stress which increases the risk of cardiac dysfunction in metabolic syndrome (MetS and favors local insulin resistance. Fibrates regulate RAS improving MetS, type-2 diabetes and cardiovascular diseases. We studied the effect of fenofibrate treatment on the myocardic signaling pathway of Angiotensin II (Ang II/Angiotensin II type 1 receptor (AT1 and its relationship with oxidative stress and myocardial insulin resistance in MetS rats under heart ischemia. Control and MetS rats were assigned to the following groups: (a sham; (b vehicle-treated myocardial infarction (MI (MI-V; and (c fenofibrate-treated myocardial infarction (MI-F. Treatment with fenofibrate significantly reduced triglycerides, non-high density lipoprotein cholesterol (non-HDL-C, insulin levels and insulin resistance index (HOMA-IR in MetS animals. MetS and MI increased Ang II concentration and AT1 expression, favored myocardial oxidative stress (high levels of malondialdehyde, overexpression of nicotinamide adenine dinucleotide phosphate (NADPH oxidase 4 (NOX4, decreased total antioxidant capacity and diminished expression of superoxide dismutase (SOD1, SOD2 and catalase and inhibited expression of the insulin signaling cascade: phosphatidylinositol 3-kinase (PI3K/protein kinase B (PkB, also known as Akt/Glut-4/endothelial nitric oxide synthase (eNOS. In conclusion, fenofibrate treatment favors an antioxidant environment as a consequence of a reduction of the Ang II/AT1/NOX4 signaling pathway, reestablishing the cardiac insulin signaling pathway. This might optimize cardiac metabolism and improve the vasodilator function during myocardial ischemia.

  17. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system.

    Directory of Open Access Journals (Sweden)

    Piotr Popławski

    Full Text Available Type 1 iodothyronine deiodinase (DIO1 contributes to deiodination of 3,5,3',5'-tetraiodo-L-thyronine (thyroxine, T4 yielding of 3,5,3'-triiodothyronine (T3, a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The 'downregulated' group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2 that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2, enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2, sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10. DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression

  18. Antioxidative defense

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals occur constantly during metabolism and take part in numerous physiological processes, such as: intra-cellular and inter-cellular signalization, gene expression, removal of damaged or senescent cells, and control of the tone of blood vessels. However, there is an increased quantity of free radicals in situations of so-called oxidative stress, when they cause serious damage to cellular membranes (peroxidation of their lipids, damage of membrane proteins, and similar, to interior cellular protein molecules, as well as DNA molecules and carbohydrates. This is precisely why the organism has developed numerous mechanisms for removing free radicals and/or preventing their production. Some of these are enzyme-related and include superoxide-dismutase, catalase, glutathione-peroxidase, and others. Other, non-enzyme mechanisms, imply antioxidative activities of vitamins E and C, provitamin A, coenzyme Q, reduced glutation, and others. Since free radicals can leave the cell that has produced them and become dispersed throughout the body, in addition to antioxidative defense that functions within cellular structures, antioxidant extra-cellular defense has also been developed. This is comprised by: transferrin, lactoferrin, haptoglobin, hemopexin, ceruloplasmin, albumins, extra-cellular isoform SOD, extracellular glutathione-peroxidase, glucose, bilirubin, urates, and many other molecules.

  19. Pilot study demonstrating metabolic and anti-proliferative effects of in vivo anti-oxidant supplementation with N-Acetylcysteine in Breast Cancer.

    Science.gov (United States)

    Monti, Daniel; Sotgia, Federica; Whitaker-Menezes, Diana; Tuluc, Madalina; Birbe, Ruth; Berger, Adam; Lazar, Melissa; Cotzia, Paolo; Draganova-Tacheva, Rossitza; Lin, Zhao; Domingo-Vidal, Marina; Newberg, Andrew; Lisanti, Michael P; Martinez-Outschoorn, Ubaldo

    2017-06-01

    High oxidative stress as defined by hydroxyl and peroxyl activity is often found in the stroma of human breast cancers. Oxidative stress induces stromal catabolism, which promotes cancer aggressiveness. Stromal cells exposed to oxidative stress release catabolites such as lactate, which are up-taken by cancer cells to support mitochondrial oxidative phosphorylation. The transfer of catabolites between stromal and cancer cells leads to metabolic heterogeneity between these cells and increased cancer cell proliferation and reduced apoptosis in preclinical models. N-Acetylcysteine (NAC) is an antioxidant that reduces oxidative stress and reverses stromal catabolism and stromal-carcinoma cell metabolic heterogeneity, resulting in reduced proliferation and increased apoptosis of cancer cells in experimental models of breast cancer. The purpose of this clinical trial was to determine if NAC could reduce markers of stromal-cancer metabolic heterogeneity and markers of cancer cell aggressiveness in human breast cancer. Subjects with newly diagnosed stage 0 and I breast cancer who were not going to receive neoadjuvant therapy prior to surgical resection were treated with NAC before definitive surgery to assess intra-tumoral metabolic markers. NAC was administered once a week intravenously at a dose of 150 mg/kg and 600 mg twice daily orally on the days not receiving intravenous NAC. Histochemistry for the stromal metabolic markers monocarboxylate transporter 4 (MCT4) and caveolin-1 (CAV1) and the Ki67 proliferation assay and TUNEL apoptosis assay in carcinoma cells were performed in pre- and post-NAC specimens. The range of days on NAC was 14-27 and the mean was 19 days. Post-treatment biopsies showed significant decrease in stromal MCT4 and reduced Ki67 in carcinoma cells. NAC did not significantly change stromal CAV1 and carcinoma TUNEL staining. NAC was well tolerated. NAC as a single agent reduces MCT4 stromal expression, which is a marker of glycolysis in breast cancer

  20. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L).

    Science.gov (United States)

    Ahanger, Mohammad Abass; Agarwal, R M

    2017-07-01

    Pot experiments were conducted to find out the effectivity of K on Triticum aestivum L cultivars. Polyethylene glycol 6000 (PEG 6000) was used as an osmoticum to induce osmotic stress under sand culture setting up the water potential of external solution at -3 and -5 bars. In pots, plants were raised under restricted and normal irrigation and K was applied in varying doses (0, 20, 40, 60 kg ha -1 ) and estimation of different physiological and biochemical parameters was done at two developmental stages, i.e., preflowering and flowering. Supplementation of K resulted in obvious increase in growth and activity of antioxidant enzymes in both normal and stressed plants. Added potassium increased total phenols and tannins thereby strengthening the components of both the enzymatic as well as non-enzymatic antioxidant system. Under both normal and stressed conditions, K-fed plants experienced significant increase in the synthesis of osmolytes like free proline, amino acids, and sugars which assumes special significance in growth under water stress conditions. Wheat plants accumulating greater K were able to counteract the water stress-induced changes by maintaining lower Na/K ratio.

  1. Metabolism

    Science.gov (United States)

    ... functions: Anabolism (uh-NAB-uh-liz-um), or constructive metabolism, is all about building and storing. It ... in infants and young children. Hypothyroidism slows body processes and causes fatigue (tiredness), slow heart rate, excessive ...

  2. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  3. The Effects of Curcumin and Curcumin-Phospholipid Complex on the Serum Pro-oxidant-Antioxidant Balance in Subjects with Metabolic Syndrome.

    Science.gov (United States)

    Ghazimoradi, Maryam; Saberi-Karimian, Maryam; Mohammadi, Farzane; Sahebkar, Amirhossein; Tavallaie, Shima; Safarian, Hamideh; Ferns, Gordon A; Ghayour-Mobarhan, Majid; Moohebati, Mohsen; Esmaeili, Habibollah; Ahmadinejad, Malihe

    2017-11-01

    Metabolic syndrome (MetS) is defined by a clustering of metabolic and anthropometric abnormalities and is associated by an increased risk of cardiovascular disease. We have investigated the effect of curcumin supplementation on the serum pro-oxidant-antioxidant balance (PAB) in patients with MetS. This double-blind, randomized, placebo-controlled trial was conducted over 6 weeks. Subjects (n = 120) were randomly allocated to one of three groups (curcumin, phospholipidated curcumin, and placebo). The curcumin group received 1 g/day of simple curcumin, the phospholipidated curcumin group received 1 g/day of phospholipidated curcumin (containing 200 mg of pure curcumin), and the control group received 1 g/day of placebo. Serum PAB was measured before and after the intervention (at baseline and at 6 weeks). Data analyses were performed using spss software (version 16.0). Serum PAB increased significantly in the curcumin group (p curcumin group, elevation of PAB level was not significant (p = 0.053). The results of our study did not suggest any improvement of PAB following supplementation with curcumin in MetS subjects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Chemoprotective influence of Zanthoxylum sps. on hepatic carcinogen metabolizing and antioxidant enzymes and skin papillomagenesis in murine model.

    Science.gov (United States)

    Rajamani, Paulraj; Banerjeet, Sanjeev; Rao, A Ramesha

    2011-11-01

    In the present study, the putative potential of pericarp of dried fruit of Zanthoxylum (Rutaceae Family), a common spice additive in India's west coast cuisines, in protecting against carcinogenesis has been reported. Extract from dried fruit of Zanthoxylum was orally administered to mice at two dose levels: 100 and 200 mg/kg body wt. for 14 days. Results reveal bifunctional nature of Zanthoxylum species as deduced from its potential to induce phase-I and phase-II enzyme activities associated with carcinogen activation and detoxification in the liver of mice. Hepatic glutathione S-transferase and DT-diaphorase were found significantly elevated by the treatment. Zanthoxylum was also effective in augmenting the antioxidant enzyme activities of glutathione peroxidase, superoxide dismutase and catalase albeit significantly by high dose of the extract (P Zanthoxylum on initiated mouse skin. Results showed a significant reduction in tumor incidence from 68% to 36% (P Zanthoxylum sps.

  5. Antioxidants of Edible Mushrooms.

    Science.gov (United States)

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M; van Griensven, Leo

    2015-10-27

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  6. Antioxidants of Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Maja Kozarski

    2015-10-01

    Full Text Available Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  7. Effect of Grape Seeds Oil Extracted from Radiation Processed Seeds on Lipid Metabolism and on Antioxidant Activity in Rats Fed Diets Containing Cholesterol

    International Nuclear Information System (INIS)

    El-Neily, H.F.G.; El-Shennawy, H.M.

    2011-01-01

    Grape seeds were separated from fresh grape pomace and dried at room temperature then packed in polyethylene bags and subjected to gamma rays at dose level of 10 kGy. The grape seeds oil was extracted from non and irradiated seeds. The oil quality, fatty acid composition and total phenolic compounds of oil extracted from non or irradiated seeds have been studied. The results indicated that there were significant increases in the acid value, saponification value and peroxide value of oil extracted from irradiated seeds at 10 kGy by 46.2%, 2.5% and 95.2%, respectively, and the total phenolic compounds and total radical trapping antioxidant potential (TRAP) were reduced by 22.13% and 10%, respectively, as compared to those of oil extracted from non-irradiated seeds. No degradation of the fatty acids; palmitic, linoleic, linolenic and arachidic acids, were observed for oil extracted from irradiated seeds at 10 kGy. However, significant decrease in oleic acid by 11.35% and increase in stearic acid by 26.22% were recorded corresponding to those for oil extracted from non-irradiated seeds. The effect of grape seeds oils extracted from non or irradiated seeds on lipid metabolism and antioxidant activity was investigated using 60 male Albino rats divided into six groups: (1) Control group: animals fed casein diet. (2) Ch group: animals received casein diet contains 10 g cholesterol per kg diet. (3) RGSO group: animals received diet contains grape seeds oil extracted from non-irradiated seeds (100 g oil per kg diet). (4) RGSO + Ch group: rats received diet contains grape seeds oil extracted from non-irradiated seeds (100 g oil per kg diet) + 100 g cholesterol per kg diet. (5) IGSO group: rats received diet contains grape seeds oil extracted from irradiated seeds at 10 kGy (100 g oil per kg diet). (6) IGSO + Ch group: rats received diet contains grape seeds oil extracted from irradiated seeds at 10 kGy (100 g oil per kg diet) + 10 g cholesterol per kg diet. Animals received

  8. The Native Fruit Geoffroea decorticans from Arid Northern Chile: Phenolic Composition, Antioxidant Activities and In Vitro Inhibition of Pro-Inflammatory and Metabolic Syndrome-Associated Enzymes

    Directory of Open Access Journals (Sweden)

    Felipe Jiménez-Aspee

    2017-09-01

    Full Text Available The native tree Geoffroea decorticans (chañar grows in the arid lands of northern Chile. It has been used as a food plant since prehistoric times. Phenolic-enriched extracts (PEEs of Chilean chañar fruits were assessed for their chemical composition, antioxidant properties and inhibition of pro-inflammatory and metabolic syndrome-associated enzymes. Phenolic profiles were determined by HPLC-DAD-MS/MS. The PEEs of G. decorticans showed a strong effect towards the enzymes COX-1/COX-2, with inhibition percentages ranging from inactive to 92.1% and inactive to 76.0% at 50 µg PEE/mL, respectively. The IC50 values of the PEEs towards lipoxygenase and phospholipase A2 inhibitory activity were between 43.6–96.8 and 98.9–156.0 μg PEE/mL, respectively. Samples inhibited α-glucosidase (IC50 0.8–7.3 μg PEE/mL and lipase (9.9 to >100 μg PEE/mL. However, samples did not inhibit α-amylase. The HPLC-DAD-MS analysis of the PEEs allowed the tentative identification of 53 compounds, mainly flavonol glycosides and procyanidins. The procyanidin content of the Chilean G. decorticans pulp was positively correlated with the antioxidant activity and the inhibition of the enzyme α-glucosidase. These results indicate that the Chilean chañar fruit contains bioactive polyphenols with functional properties.

  9. Enhancing phytochemical levels, enzymatic and antioxidant activity of spinach leaves by chitosan treatment and an insight into the metabolic pathway using DART-MS technique.

    Science.gov (United States)

    Singh, Shachi

    2016-05-15

    Phytochemicals are health promoting compounds, synthesized by the plants to protect them against biotic or abiotic stress. The metabolic pathways leading to the synthesis of these phytochemicals are highly inducible; therefore methods could be developed to enhance their production by the exogenous application of chemical inducers/elicitors. In the present experiment, chitosan was used as an elicitor molecule to improve the phytochemical content of spinach plant. When applied at a concentration of 0.01 mg/ml as a foliar spray, chitosan was able to cause an increase in the enzymatic (peroxidase, catalase and phenylalanine ammonium lyase (PAL)) and non enzymatic (total phenolics, flavonoids and proteins) defensive metabolites, as well as, in the total antioxidant activity of the spinach leaves. A 1.7-fold increase in the total phenolics, a 2-fold increase in total flavonoid and a 1.6-fold increase in total protein were achieved with the treatment. A higher level of enzymatic activity was observed with a 4-fold increase in peroxidase and approximately 3-fold increases in catalase and phenylalanine ammonium lyase activity. Antioxidant activity showed a positive correlation between phenolic compounds and the enzymatic activity. Direct analysis in real time mass spectrometry (DART-MS) was applied to generate the metabolite profile of control and treated leaves. DART analysis revealed the activation of phenylpropanoid pathway by chitosan molecule, targeting the synthesis of diverse classes of flavonoids and their glycosides. Important metabolites of stress response were also visible in the DART spectra, including proline and free sugars. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Linoleic acid, α-linolenic acid and enterolactone affect lipid oxidation and expression of lipid metabolism and antioxidant-related genes in hepatic tissue of dairy cows.

    Science.gov (United States)

    Fortin, Émilie; Blouin, Richard; Lapointe, Jérôme; Petit, Hélène V; Palin, Marie-France

    2017-05-01

    Although beneficial effects have been attributed to PUFA supplementation in high-yielding dairy cows, diets rich in PUFA may also increase oxidative stress in tissues such as the liver. To fully exploit the health benefits of PUFA, we believe that the addition of natural antioxidants could help in preventing oxidative damage. Using an in vitro precision-cut liver slices (PCLS) tissue culture system, we investigated the effects of different linoleic acid (LA, n-6):α-linolenic acid (ALA, n-3) ratios (LA:ALA ratio of 4, LA:ALA ratio of 15 and LA:ALA ratio of 25) in the presence or absence of the antioxidant enterolactone (ENL) on (1) the mRNA abundance of genes with key roles in hepatic lipid metabolism, oxidative stress response and inflammatory processes, (2) oxidative damages to lipids and proteins and (3) superoxide dismutase activity in early-lactating dairy cows. The addition of LA and ALA to PCLS culture media increased oxidative damage to lipids as suggested by higher concentrations of thiobarbituric acid reactive substances and increased the expression of nuclear factor erythroid 2-related factor 2 target genes. The addition of ENL was effective in preventing lipid peroxidation caused by LA and ALA. Transcript abundance of sterol regulatory element-binding transcription factor 1 and its lipogenic target genes acetyl-CoA carboxylase α, fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD) was decreased with LA and ALA, whereas ENL decreased FASN and SCD gene expression. Our results show that addition of LA and ALA to PCLS culture media lowers hepatic lipogenic gene expression and increases oxidative damages to lipids. On the other hand, addition of ENL prevents oxidative damages provoked by these PUFA.

  11. Atrial natriuretic peptide (ANP)-granules: ultrastructure ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-12-29

    Dec 29, 2006 ... cardiocytes: an immunocytochemical and ultrastructural morphometric comparative study. Ann Anat (in press). Gilloteaux J, Jennes L, Menu R, Vanderhaeghen JJ (1991). Ultrastructural immunolocalization of the atrial natriuretic factor pathways in fetal, neonatal, and adult Syrian hamsters: from the atrial.

  12. Comparative effect of benzanthrone and 3-bromobenzanthrone on hepatic xenobiotic metabolism and anti-oxidative defense system in guinea pigs.

    Science.gov (United States)

    Singh, Ravindra P; Khanna, Raj; Kaw, Jawahar L; Khanna, Subhash K; Das, Mukul

    2003-02-01

    Benzanthrone (BA) and 3-bromobenzanthrone (3-BBA) are important dye intermediates used in the manufacture of various vat and disperse dyes. BA has been implicated as a cause of hepatic malfunctions and dermal lesions in workers. However, not much information on halogenated BAs, especially 3-BBA, is available. Experiments were designed to undertake a comparative safety assessment of both BA and 3-BBA, given orally at a dose of 50 mg/kg body weight for 10 days to guinea pigs. There was a significant decrease (25%) in body weight with 3-BBA, whereas BA treatment did not cause any change. Serum glutamate oxaloacetate transaminase and glutamate pyruvate transminase were found to be significantly (P<0.05) increased in 3-BBA- as well as in BA-treated animals. 3-BBA and BA led to substantial depletion of ascorbic acid in both liver and adrenal glands. However, depletion of ascorbic acid was more pronounced with 3-BBA (19.2-28.3%) than with BA (13.5-16.6%). 3-BBA and BA treatments caused 80% and 24% depletion of hepatic free sulfydryl content, while lipid peroxidation showed a significant enhancement of 73% and 47%, respectively. BA and 3-BBA caused decreases in cytochrome P-450 content and phase I enzymes particularly ethoxyresorufin- O-deethylase and aryl hydrocarbon hydroxylase, whereas phase II enzymes (quinone reductase and glutathione- S-transferase) were substantially increased. Activities of bio-antioxidant enzymes, viz., glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase, were significantly increased by 153, 104, 20 and 67% in the 3-BBA-treated group, whereas the degree of increase in these parameters was relatively less in BA-treated group. The data indicate that both BA and 3-BBA can disturb membrane integrity by decreasing endogenous glutathione and ascorbic acid levels with a concomitant increase in lipid peroxidative damage. This may in turn lead to impairment of hepatic P-450-dependent monooxygenase, while the changes in

  13. Arbuscular Mycorrhiza Augments Arsenic Tolerance in Wheat (Triticum aestivum L.) by Strengthening Antioxidant Defense System and Thiol Metabolism

    Science.gov (United States)

    Sharma, Surbhi; Anand, Garima; Singh, Neeraja; Kapoor, Rupam

    2017-01-01

    Arbuscular mycorrhiza (AM) can help plants to tolerate arsenic (As) toxicity. However, plant responses are found to vary with the host plant and the AM fungal species. The present study compares the efficacy of two AM fungi Rhizoglomus intraradices (M1) and Glomus etunicatum (M2) in amelioration of As stress in wheat (Triticum aestivum L. var. HD-2967). Mycorrhizal (M) and non-mycorrhizal (NM) wheat plants were subjected to four levels of As (0, 25, 50, and 100 mg As kg-1 soil). Although As additions had variable effects on the percentage of root colonized by the two fungal inoculants, each mycobiont conferred benefits to the host plant. Mycorrhizal plants continued to display better growth than NM plants. Formation of AM helped the host plant to overcome As-induced P deficiency and maintained favorable P:As ratio. Inoculation of AMF had variable effects on the distribution of As in plant tissues. While As translocation factor decreased in low As (25 mg kg-1 soil), it increased under high As (50 and 100 mg As kg-1 soil). Further As translocation to grain was reduced (As grain:shoot ratio) in M plants compared with NM plants. Arsenic-induced oxidative stress (generation of H2O2 and lipid peroxidation) in plants reduced significantly by AMF inoculation. The alleviation potential of AM was more evident with increase in severity of As stress. Colonization of AMF resulted in higher activities of the antioxidant enzymes (superoxide dismutase, catalase, and guaiacol peroxidase). It increased the concentrations of the antioxidant molecules (carotenoids, proline, and α-tocopherol) than their NM counterparts at high As addition level. Comparatively higher activities of enzymes of glutathione-ascorbate cycle in M plants led to higher ascorbate:dehydroascorbate (AsA:DHA) and glutathione:glutathione disulphide (GSH:GSSG) ratios. Inoculation by AMF also augmented the glyoxalase system by increasing the activities of both glyoxalase I and glyoxalase II enzymes. Mycorrhizal

  14. Mathematical model of uptake and metabolism of arsenic(III) in human hepatocytes - Incorporation of cellular antioxidant response and threshold-dependent behavior.

    Science.gov (United States)

    Stamatelos, Spyros K; Brinkerhoff, Christopher J; Isukapalli, Sastry S; Georgopoulos, Panos G

    2011-01-25

    Arsenic is an environmental pollutant, potent human toxicant, and oxidative stress agent with a multiplicity of health effects associated with both acute and chronic exposures. A semi-mechanistic cellular-level toxicokinetic (TK) model was developed in order to describe the uptake, biotransformation and clearance of arsenical species in human hepatocytes. Notable features of this model are the incorporation of arsenic-glutathione complex formation and a "switch-like" formulation to describe the antioxidant response of hepatocytes to arsenic exposure. The cellular-level TK model applies mass action kinetics in order to predict the concentrations of trivalent and pentavalent arsenicals in hepatocytes. The model simulates uptake of arsenite (iAsIII) via aquaporin isozymes 9 (AQP9s), glutathione (GSH) conjugation, methylation by arsenic methyltransferase (AS3MT), efflux through multidrug resistant proteins (MRPs) and the induced antioxidant response via thioredoxin reductase (TR) activity. The model was parameterized by optimization of model estimates for arsenite (iAsIII), monomethylated (MMA) and dimethylated (DMA) arsenicals concentrations with time-course experimental data in human hepatocytes for a time span of 48 hours, and dose-response data at 24 hours for a range of arsenite concentrations from 0.1 to 10 μM. Global sensitivity analysis of the model showed that at low doses the transport parameters had a dominant role, whereas at higher doses the biotransformation parameters were the most significant. A parametric comparison of the TK model with an analogous model developed for rat hepatocytes from the literature demonstrated that the biotransformation of arsenite (e.g. GSH conjugation) has a large role in explaining the variation in methylation between rats and humans. The cellular-level TK model captures the temporal modes of arsenical accumulation in human hepatocytes. It highlighted the key biological processes that influence arsenic metabolism by

  15. Effect of high dietary copper on growth, antioxidant and lipid metabolism enzymes of juvenile larger yellow croaker Larimichthys croceus

    Directory of Open Access Journals (Sweden)

    Fanxing Meng

    2016-05-01

    Full Text Available A study was carried out to test the responses of juvenile larger yellow croaker Larimichthys croceus to high Cu intake. Experimental diets were formulated containing three levels of Cu: low Cu (3.67 mg/kg, middle Cu (13.65 mg/kg and high Cu (25.78 mg/kg, and each diet were fed to large yellow croaker in triplicate for 10 weeks. Final body weight, weight gain and feed intake were the lowest in high Cu group, but hepatosomatic index was the highest; Cu concentrations in the whole-body, muscle and liver of fish fed low Cu diet was the lowest; Liver superoxide dismutase, catalase and glutathione peroxidase activities in fish fed high Cu diet were lower than those in fish fed other diets; The higher content of liver thiobarbituric acid reactive substance content was found in high Cu group, followed by middle Cu group, and the lowest in low Cu group; Liver 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, malic enzyme, isocitrate dehydrogenase and fatty acid synthase activities were the lowest in high Cu group, but lipoprotein lipase activity was the highest. This study indicated that high copper intake reduced growth of juvenile larger yellow croaker, inhibited activities of antioxidant enzymes and lipid synthetases, and led to energy mobilization.

  16. Oral administration of thymoquinone mitigates the effect of cisplatin on brush border membrane enzymes, energy metabolism and antioxidant system in rat intestine.

    Science.gov (United States)

    Shahid, Faaiza; Farooqui, Zeba; Abidi, Subuhi; Parwez, Iqbal; Khan, Farah

    2017-10-01

    Cisplatin (CP) is a widely used chemotherapeutic agent that elicits severe gastrointestinal toxicity. Nigella sativa, a member of family Ranunculaceae, is one of the most revered medicinal plant known for its numerous health benefits. Thymoquinone (TQ), a major bioactive component derived from the volatile oil of Nigella sativa seeds, has been shown to improve gastrointestinal functions in animal models of acute gastric/intestinal injury. In view of this, the aim of the present study was to investigate the protective effect of TQ on CP induced toxicity in rat intestine and to elucidate the mechanism underlying these effects. Rats were divided into four groups viz. control, CP, TQ and CP+TQ. Animals in CP+TQ and TQ groups were orally administered TQ (1.5mg/kg bwt) with and without a single intraperitoneal dose of CP (6mg/kg bwt) respectively. The effect of TQ was determined on CP induced alterations in the activities of brush border membrane (BBM), carbohydrate metabolism, and antioxidant defense enzymes in rat intestine. TQ administration significantly mitigated CP induced decline in the specific activities of BBM marker enzymes, both in the mucosal homogenates and in the BBM vesicles (BBMV) prepared from intestinal mucosa. Furthermore, TQ administration restored the redox and metabolic status of intestinal mucosal tissue in CP treated rats. The biochemical results were supported by histopathological findings that showed extensive damage to intestine in CP treated rats and markedly preserved intestinal histoarchitecture in CP and TQ co-treated group. The biochemical and histological data suggest a protective effect of TQ against CP-induced gastrointestinal damage. Thus, TQ may have a potential for clinical application to counteract the accompanying gastrointestinal toxicity in CP chemotherapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply.

    Science.gov (United States)

    Blasco, Begoña; Graham, Neil S; Broadley, Martin R

    2015-03-15

    Zinc (Zn), calcium (Ca), and magnesium (Mg) malnutrition are common deficiencies in many developed and developing countries, resulting in a widespread health problem. Biofortification of food crops is an agricultural strategy that can be used to increase the levels of these elements in the edible portions of crops. Deficiency or toxicity of these cations in soils reduces plant growth, crop yield, and the quality of plant foodstuff. The aim of this study was to investigate the effect of external Zn, Ca, and Mg supply on accumulation and distribution of this elements as well as antioxidant response and organic acid composition of Brassica rapa ssp. trilocularis line R-o-18. Plants were grown at low Zn (0.05 μM Zn) and high Zn (500 μM Zn), low Ca (0.4 mM) and high Ca (40 mM), and low Mg (0.2 mM), and high Mg (20 mM) to simulate deficiency and toxicity conditions. Larger shoot biomass reductions were observed under high Zn, Ca and Mg treatments, and superoxide dismutase (SOD), ascorbate peroxidase (APX), H2O2, malondialdehyde (MDA), and total ascorbate (AA) showed a marked increase in these treatments. Therefore, Brassica plants might be more sensitive to excess of these elements in the nutrient solution. The translocation factor (TF) and distribution coefficient (DC) values of Zn, Ca, and Mg indicated higher translocation and accumulation in deficient conditions. High biosynthesis and citrate content in Brassica plants may be associated mainly with a high-nutrient solution extraction ability of these plants. These results provide background data, which will be used to characterize TILLING mutants to study the effects of mutations in genes involved in regulating Zn, Ca, and Mg distribution and accumulation in plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content.

    Science.gov (United States)

    Cantabella, Daniel; Piqueras, Abel; Acosta-Motos, José Ramón; Bernal-Vicente, Agustina; Hernández, José A; Díaz-Vivancos, Pedro

    2017-06-01

    In order to cope with challenges linked to climate change such as salinity, plants must develop a wide spectrum of physiological and molecular mechanisms to rapidly adapt. Stevia rebaudiana Bertoni plants are a case in point. According to our findings, salt stress has no significant effect on plant growth in these plants, which accumulate sodium (Na + ) in their roots, thus avoiding excessive Na + accumulation in leaves. Furthermore, salt stress (NaCl stress) increases the potassium (K + ), calcium (Ca 2+ ), chloride ion (Cl - ) and proline concentrations in Stevia leaves, which could contribute to osmotic adjustment. We also found that long-term NaCl stress does not produce changes in chlorophyll concentrations in Stevia leaves, reflecting a mechanism to protect the photosynthesis process. Interestingly, an increase in chlorophyll b (Chlb) content occured in the oldest plants studied. In addition, we found that NaCl induced reactive oxygen species (ROS) accumulation in Stevia leaves and that this accumulation was more evident in the presence of 5 g/L NaCl, the highest concentration used in the study. Nevertheless, Stevia plants are able to induce (16 d) or maintain (25 d) antioxidant enzymes to cope with NaCl-induced oxidative stress. Low salt levels did not affect steviolbioside and rebaudioside A contents. Our results suggest that Stevia plants induce tolerance mechanisms in order to minimize the deleterious effects of salt stress. We can thus conclude that saline waters can be used to grow Stevia plants and for Steviol glycosides (SGs) production. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Short-term role of the dietary total antioxidant capacity in two hypocaloric regimes on obese with metabolic syndrome symptoms: the RESMENA randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Lopez-Legarrea Patricia

    2013-02-01

    Full Text Available Abstract Background Dietary strategies seem to be the most prescribed therapy in order to counteract obesity regarding not only calorie restriction, but also bioactive ingredients and the composition of the consumed foods. Dietary total antioxidant capacity (TAC is gaining importance in order to assess the quality of the diet. Methods Ninety-six obese adults presenting metabolic syndrome (MetS symptoms completed an 8-week intervention trial to evaluate the effects of a novel dietary program with changes in the nutrient distribution and meal frequency and to compare it with a dietary pattern based on the American Heart Association (AHA guidelines. Anthropometric and biochemical parameters were assessed at baseline and at the endpoint of the study, in addition to 48-hours food dietary records. Results Both diets equally (p > 0.05 improved MetS manifestations. Dietary TAC was the component which showed the major influence on body weight (p = 0.034, body mass index (p = 0.026, waist circumference (p = 0.083 and fat mass (p = 0.015 reductions. Transaminases (ALT and AST levels (p = 0.062 and p = 0.004, respectively were associated with lower TAC values. Conclusion RESMENA diet was as effective as AHA pattern for reducing MetS features. Dietary TAC was the most contributing factor involved in body weight and obesity related markers reduction. Trial registration http://www.clinicaltrials.gov; NCT01087086

  20. Synergistic Hepatoprotective and Antioxidant Effect of Artichoke, Fig, Blackberry Herbal Mixture on HepG2 Cells and Their Metabolic Profiling Using NMR Coupled with Chemometrics.

    Science.gov (United States)

    Youssef, Fadia S; Labib, Rola M; Eldahshan, Omayma A; Singab, Abdel Nasser B

    2017-12-01

    The edible plants have long been reported to possess a lot of biological activities. Herein, the hepatoprotective and the antioxidant activities of the aqueous infusion of the edible parts of Cynara cardunculus, Ficus carica, and Morus nigra and their herbal mixture (CFM) was investigated in vitro using CCl 4 induced damage in HepG2 cells. The highest amelioration was observed via the consumption of CFM at 1 mg/ml showing 47.00% and 37.09% decline in aspartate transaminase and alanine transaminase and 77.32% and 101.02% increase in reduced glutathione and superoxide dismutase comparable to CCl 4 treated cells. Metabolic profiling of their aqueous infusions was done using nuclear magnetic resonance spectroscopic experiments coupled with chemometrics particularly hierarchical cluster analysis (HCA) and principal component analysis (PCA). The structural closeness of the various metabolites existing in black berry and the mixture as reflected in the PCA score plot and HCA processed from the 1 H-NMR spectral data could eventually explained the close values in their biological behavior. For fig and artichoke, the existence of different phenolic metabolites that act synergistically could greatly interpret their potent biological behavior. Thus, it can be concluded that a herbal mixture composed of black berry, artichoke, and fig could afford an excellent natural candidate to combat oxidative stress and counteract hepatic toxins owing to its phenolic compounds. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  1. Analysis of Two Methods to Evaluate Antioxidants

    Science.gov (United States)

    Tomasina, Florencia; Carabio, Claudio; Celano, Laura; Thomson, Leonor

    2012-01-01

    This exercise is intended to introduce undergraduate biochemistry students to the analysis of antioxidants as a biotechnological tool. In addition, some statistical resources will also be used and discussed. Antioxidants play an important metabolic role, preventing oxidative stress-mediated cell and tissue injury. Knowing the antioxidant content…

  2. Methionine and Choline Supply during the Periparturient Period Alter Plasma Amino Acid and One-Carbon Metabolism Profiles to Various Extents: Potential Role in Hepatic Metabolism and Antioxidant Status

    Directory of Open Access Journals (Sweden)

    Zheng Zhou

    2016-12-01

    Full Text Available The objective of this study was to profile plasma amino acids (AA and derivatives of their metabolism during the periparturient period in response to supplemental rumen-protected methionine (MET or rumen-protected choline (CHOL. Forty cows were fed from −21 through 30 days around parturition in a 2 × 2 factorial design a diet containing MET or CHOL. MET supply led to greater circulating methionine and proportion of methionine in the essential AA pool, total AA, and total sulfur-containing compounds. Lysine in total AA also was greater in these cows, indicating a better overall AA profile. Sulfur-containing compounds (cystathionine, cystine, homocystine, and taurine were greater in MET-fed cows, indicating an enriched sulfur-containing compound pool due to enhanced transsulfuration activity. Circulating essential AA and total AA concentrations were greater in cows supplied MET due to greater lysine, arginine, tryptophan, threonine, proline, asparagine, alanine, and citrulline. In contrast, CHOL supply had no effect on essential AA or total AA, and only tryptophan and cystine were greater. Plasma 3-methylhistidine concentration was lower in response to CHOL supply, suggesting less tissue protein mobilization in these cows. Overall, the data revealed that enhanced periparturient supply of MET has positive effects on plasma AA profiles and overall antioxidant status.

  3. Antioxidants: real medicines?

    African Journals Online (AJOL)

    Repro

    While endogenous metabolic pathways utilise oxidative processes largely for our benefit, various pathological .... quenchers of these oxidants have been discovered and characterised. Endogenous antioxidants may be ... ly recognised, what is much less well known is the fact that vitamin. E is a family of 8 vitamins: 4 toco-.

  4. Genotype-Dependent Effect of Exogenous Nitric Oxide on Cd-induced Changes in Antioxidative Metabolism, Ultrastructure, and Photosynthetic Performance in Barley Seedlings (Hordeum vulgare)

    DEFF Research Database (Denmark)

    Chen, Fei; Wang, Fang; Sun, Hongyan

    2010-01-01

    A greenhouse hydroponic experiment was performed using Cd-sensitive (cv. Dong 17) and Cd-tolerant (Weisuobuzhi) barley seedlings to evaluate how different genotypes responded to cadmium (Cd) toxicity in the presence of sodium nitroprusside (SNP), a nitric oxide (NO) donor. Results showed that 5 μ...

  5. Induction of antioxidant and phase 2 drug-metabolizing enzymes by falcarindiol isolated from Notopterygium incisum extract, which activates the Nrf2/ARE pathway, leads to cytoprotection against oxidative and electrophilic stress.

    Science.gov (United States)

    Ohnuma, Tomokazu; Komatsu, Takao; Nakayama, Shinji; Nishiyama, Takahito; Ogura, Kenichiro; Hiratsuka, Akira

    2009-08-01

    In the present study, we isolated falcarindiol from Notopterygium incisum and investigated the effect of falcarindiol on the expression of antioxidant enzymes (AOEs), such as catalase, and phase 2 drug-metabolizing enzymes (DMEs), such as glutathione S-transferase and NAD(P)H:quinone oxidoreductase 1, in a cultured cell line from normal rat liver, Clone 9 cells. Exposure of Clone 9 cells to falcarindiol resulted in the significant induction of AOEs and phase 2 DMEs. Western blot analysis and transfection studies using a luciferase reporter construct demonstrated that the induction of AOEs and phase 2 DMEs by falcarindiol was caused through the Nrf2/ARE (nuclear factor-E2-related factor 2/antioxidant response element) pathway. Pretreatment of cells with falcarindiol accelerated the detoxification of a potentially toxic quinone (menadione) and mitigated menadione-induced cytotoxicity. We found that falcarindiol was a novel inducer of AOEs and phase 2 DMEs and falcarindiol might exhibit chemopreventive activity.

  6. The Ultrastructural Effects of Sulfachloropyrazine on Toxoplasma Gondii Tachyzoites

    Directory of Open Access Journals (Sweden)

    YB Zeng

    2013-03-01

    Full Text Available Background: Toxoplasmosis is one of the most common parasitic infections of humans and other mammals. This study was aimed to understand the mechanism of action of veterinary medicine-sulfachlo­ropyrazine (SPZ, 99.97% against Toxoplasma gondii.Methods: T. gondii tachyzoites were soaked in PBS (as a control or SPZ (250 mg/mL for 2 h at 37 °C. After being processed, any ultrastructural changes of the tachyzoites that had occurred were observed by Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM.Results: The tachyzoites from control groups with a uniform size had a smooth surface and intact cell or nuclear membranes. In addition, an oval-shaped nucleus, conoids and micronemes were also observed. By contrast, many parasites from the SPZ-treated groups were detrimentally affected by the treatment. Some appeared to be of the vacuolization in their cytoplasm, with the substantial reduc­tion in the number of dense granules and the blur of some organelles.Conclusion: The morphology and ultrastructure of tachyzoites can be affected significantly by SPZ, which might kill the parasite by inhibiting its energy metabolism, inducing apoptosis and damaging its structure. The study provides an experimental basis for further study on the mechanism of SPZ against T. gondii.

  7. The Ultrastructural Effects of Sulfachloropyrazine on Toxoplasma gondii Tachyzoites.

    Science.gov (United States)

    Zeng, Yb; Dong, H; Han, Hy; Jiang, Ll; Zhao, Qp; Zhu, Sh; Ma, Wj; Cheng, J; Huang, B

    2013-01-01

    Toxoplasmosis is one of the most common parasitic infections of humans and other mammals. This study was aimed to understand the mechanism of action of veterinary medicine-sulfachloropyrazine (SPZ, 99.97%) against Toxoplasma gondii. T. gondii tachyzoites were soaked in PBS (as a control) or SPZ (250 mg/mL) for 2 h at 37 °C. After being processed, any ultrastructural changes of the tachyzoites that had occurred were observed by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The tachyzoites from control groups with a uniform size had a smooth surface and intact cell or nuclear membranes. In addition, an oval-shaped nucleus, conoids and micronemes were also observed. By contrast, many parasites from the SPZ-treated groups were detrimentally affected by the treatment. Some appeared to be of the vacuolization in their cytoplasm, with the substantial reduction in the number of dense granules and the blur of some organelles. The morphology and ultrastructure of tachyzoites can be affected significantly by SPZ, which might kill the parasite by inhibiting its energy metabolism, inducing apoptosis and damaging its structure. The study provides an experimental basis for further study on the mechanism of SPZ against T. gondii.

  8. Metabolic Myopathies.

    Science.gov (United States)

    Tarnopolsky, Mark A

    2016-12-01

    Metabolic myopathies are genetic disorders that impair intermediary metabolism in skeletal muscle. Impairments in glycolysis/glycogenolysis (glycogen-storage disease), fatty acid transport and oxidation (fatty acid oxidation defects), and the mitochondrial respiratory chain (mitochondrial myopathies) represent the majority of known defects. The purpose of this review is to develop a diagnostic and treatment algorithm for the metabolic myopathies. The metabolic myopathies can present in the neonatal and infant period as part of more systemic involvement with hypotonia, hypoglycemia, and encephalopathy; however, most cases present in childhood or in adulthood with exercise intolerance (often with rhabdomyolysis) and weakness. The glycogen-storage diseases present during brief bouts of high-intensity exercise, whereas fatty acid oxidation defects and mitochondrial myopathies present during a long-duration/low-intensity endurance-type activity or during fasting or another metabolically stressful event (eg, surgery, fever). The clinical examination is often normal between acute events, and evaluation involves exercise testing, blood testing (creatine kinase, acylcarnitine profile, lactate, amino acids), urine organic acids (ketones, dicarboxylic acids, 3-methylglutaconic acid), muscle biopsy (histology, ultrastructure, enzyme testing), MRI/spectroscopy, and targeted or untargeted genetic testing. Accurate and early identification of metabolic myopathies can lead to therapeutic interventions with lifestyle and nutritional modification, cofactor treatment, and rapid treatment of rhabdomyolysis.

  9. Ultrastructure of Reissner's membrane in the rabbit

    DEFF Research Database (Denmark)

    Qvortrup, K; Rostgaard, J; Bretlau, P

    1994-01-01

    The ultrastructure of Reissner's membrane in the rabbit is described following vascular perfusion-fixation of live, anesthetized and artificially respirated healthy animals. A new and improved technique of fixation is employed that includes a pressure feedback controlled peristaltic pump and an o......The ultrastructure of Reissner's membrane in the rabbit is described following vascular perfusion-fixation of live, anesthetized and artificially respirated healthy animals. A new and improved technique of fixation is employed that includes a pressure feedback controlled peristaltic pump...

  10. Atrial natriuretic peptide (ANP)-granules: ultrastructure ...

    African Journals Online (AJOL)

    ANP) are present in the four regions of the atrial-auricular complex (two atria and two auricles). ANP-immunoreactivity was detected in all granules from the four regions. Ultrastructurally, atrial myocytes show the presence of very electron dense ...

  11. Aerodynamics and pollen ultrastructure in Ephedra.

    Science.gov (United States)

    Bolinder, Kristina; Niklas, Karl J; Rydin, Catarina

    2015-03-01

    • Pollen dispersal is affected by the terminal settling velocity (Ut) of the grains, which is determined by their size, bulk density, and by atmospheric conditions. The likelihood that wind-dispersed pollen is captured by ovulate organs is influenced by the aerodynamic environment created around and by ovulate organs. We investigated pollen ultrastructure and Ut of Ephedra foeminea (purported to be entomophilous), and simulated the capture efficiency of its ovules. Results were compared with those from previously studied anemophilous Ephedra species.• Ut was determined using stroboscopic photography of pollen in free fall. The acceleration field around an "average" ovule was calculated, and inflight behavior of pollen grains was predicted using computer simulations. Pollen morphology and ultrastructure were investigated using SEM and STEM.• Pollen wall ultrastructure was correlated with Ut in Ephedra. The relative proportion and amount of granules in the infratectum determine pollen bulk densities, and (together with overall size) determine Ut and thus dispersal capability. Computer simulations failed to reveal any functional traits favoring anemophilous pollen capture in E. foeminea.• The fast Ut and dense ultrastructure of E. foeminea pollen are consistent with functional traits that distinguish entomophilous species from anemophilous species. In anemophilous Ephedra species, ovulate organs create an aerodynamic microenvironment that directs airborne pollen to the pollination drops. In E. foeminea, no such microenvironment is created. Ephedroid palynomorphs from the Cretaceous share the ultrastructural characteristics of E. foeminea, and at least some may, therefore, have been produced by insect-pollinated plants. © 2015 Botanical Society of America, Inc.

  12. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes.

    Science.gov (United States)

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-07

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway.

  13. Mejora de defensas antioxidantes mediante ejercicio aeróbico en mujeres con síndrome metabólico Aerobic training improves antioxidant defense system in women with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Manuel Rosety-Rodríguez

    2012-02-01

    Full Text Available En la actualidad se acepta que el daño oxidativo juega un papel esencial en la patogénesis del síndrome metabólico. Estudios recientes proponen al daño oxidativo como diana terapéutica frente al síndrome metabólico. Precisamente nuestro objetivo fue mejorar el estatus total antioxidante (TAS de mujeres con síndrome metabólico mediante ejercicio aeróbico. Participaron voluntariamente 100 mujeres con síndrome metabólico de acuerdo con los criterios del National Cholesterol Educational Program (Adult-Treatment-Panel-III distribuidas aleatoriamente en grupo experimental (n = 60 y control (n = 40. El grupo experimental desarrolló un programa de entrenamiento aeróbico sobre tapiz rodante de intensidad ligera/moderada de 12 semanas (5 sesiones/semana. La determinación del TAS plasmático se realizó mediante espectrofotometría utilizando kits comercializados por Randox Lab. Este protocolo fue aprobado por un Comité de Etica Institucional. Tras completar el programa de entrenamiento se incrementó significativamente el TAS (0.79 ± 0.05 vs.1.01 ± 0.03 mmol/l; p = 0.027. No hubo cambios en grupo control. El ejercicio aeróbico de intensidad ligera/moderada aumenta las defensas antioxidantes en mujeres con síndrome metabólico. Son necesarios futuros estudios longitudinales para conocer su impacto en la evolución clínica.A 12-week training protocol increased antioxidant defense system in young adult women with metabolic syndrome. It is generally accepted that oxidative stress is implicated in the pathogenesis of metabolic syndrome. Furthermore, recent studies have reported that stress may be acting as a therapeutic target in metabolic syndrome. Consequently, this study was designed to explore whether aerobic training may increase plasmatic total antioxidant status in women with metabolic syndrome. A total of 100 young adult women with metabolic syndrome according to the criteria reported by the National Cholesterol Education Program

  14. Antioxidants and vascular health.

    Science.gov (United States)

    Bielli, Alessandra; Scioli, Maria Giovanna; Mazzaglia, Donatella; Doldo, Elena; Orlandi, Augusto

    2015-12-15

    Oxygen free radicals and other reactive oxygen species (ROS) are common products of normal aerobic cellular metabolism, but high levels of ROS lead to oxidative stress and cellular damage. Increased production of ROS favors vascular dysfunction, inducing altered vascular permeability and inflammation, accompanied by the loss of vascular modulatory function, the imbalance between vasorelaxation and vasoconstriction, and the aberrant expression of inflammatory adhesion molecules. Inflammatory stimuli promote oxidative stress generated from the increased activity of mitochondrial nicotinamide adenine dinucleotide phosphate oxidase, particularly of the Nox4 isoform, with the consequent impairment of mitochondrial β-oxidation. Vascular dysfunction due to the increase in Nox4 activity and ROS overproduction leads to the progression of cardiovascular diseases, diabetes, inflammatory bowel disease, and neurological disorders. Considerable research into the development of effective antioxidant therapies using natural derivatives or new synthetic molecules has been conducted. Antioxidants may prevent cellular damage by reducing ROS overproduction or interfering in reactions that involve ROS. Vitamin E and ascorbic acid are well known as natural antioxidants that counteract lipid peroxidative damage by scavenging oxygen-derived free radicals, thus restoring vascular function. Recently, preliminary studies on natural antioxidants such as goji berries, thymus, rosemary, green tea ginseng, and garlic have been conducted for their efficacy in preventing vascular damage. N-acetyl-cysteine and propionyl-L-carnitine are synthetic compounds that regulate ROS production by replacing endogenous antioxidants in both endothelial and smooth muscle cells. In this review, we consider the molecular mechanisms underlying the generation of oxidative stress-induced vascular dysfunction as well as the beneficial effects of antioxidant therapies.

  15. Mitochondrial ultrastructure and tissue respiration of pea leaves under clinorotation

    Science.gov (United States)

    Brykov, Vasyl

    2016-07-01

    Respiration is essential for growth, maintenance, and carbon balance of all plant cells. Mitochondrial respiration in plants provides energy for biosynthesis, and its balance with photosynthesis determines the rate of plant biomass accumulation (production). Mitochondria are not only the energetic organelles in a cell but they play an essential regulatory role in many basic cellular processes. As plants adapt to real and simulated microgravity, it is very important to understand the state of mitochondria in these conditions. Disturbance of respiratory metabolism can significantly affect the productivity of plants in long-term space flights. We have established earlier that the rate of respiration in root apices of pea etiolated seedlings rose after 7 days of clinorotation. These data indicate the oxygen increased requirement by root apices under clinorotation, that confirms the necessity of sufficient substrate aeration in space greenhouses to provide normal respiratory metabolism and supply of energy for root growth. In etiolated seedlings, substrate supply of mitochondria occurs at the expense of the mobilization of cotyledon nutrients. A goal of our work was to study the ultrastructure and respiration of mitochondria in pea leaves after 12 days of clinorotation during (2 rpm/min). Plants grew at a light level of 180 μµmol m ^{-2} s ^{-1} PAR and a photoperiod of 16 h light/4 h dark. It was showed an essential increase in the mitochondrion area on 53% in palisade parenchyma cells at the sections. Such phenomenon can not be described as swelling of mitochondria, since enlarged mitochondria contained a more quantity of crista 1.76 times. In addition, the cristae total area per organelle also increased in comparison with that in control. An increase in a size of mitochondria in the experimental conditions is supposed to occur by a partial alteration of the chondriom. Thus, a size of 49% mitochondria in control was 0.1 - 0.3 μµm ^{2}, whereas only 26

  16. Malignant mesothelioma: ultrastructural distinction from adenocarcinoma.

    Science.gov (United States)

    Warhol, M J; Hickey, W F; Corson, J M

    1982-06-01

    Mesotheliomas and metastatic adenocarcinomas involving the pleura are frequently difficult to distinguish by light-microscopic and histochemical methods. In a double-blind study, we have compared ultrastructural features of 10 mesotheliomas of epithelial type and 10 adenocarcinomas from the lung, breast, and upper GI tract, i.e., sites known to give rise to metastases which mimic mesothelioma. Mesotheliomas were observed to have a significantly greater microvillus length/diameter ratio (LDR) than adenocarcinomas (p less than 0.01) and more abundant intermediate filaments (p less than 0.001). Mesotheliomas had more complex microvilli than adenocarcinomas, whereas adenocarcinomas had rootlets (2/10 cases) and lamellar inclusion bodies (2/10 cases), both of which were absent in the mesotheliomas. This study provides quantitative and qualitative ultrastructural features of potential utility in the differential diagnosis of pleural mesotheliomas and adenocarcinomas.

  17. Ultrastructural Analysis of Myoblast Fusion in Drosophila

    OpenAIRE

    Zhang, Shiliang; Chen, Elizabeth H.

    2008-01-01

    Myoblast fusion in Drosophila has become a powerful genetic system with which to unravel the mechanisms underlying cell fusion. The identification of important components of myoblast fusion by genetic analysis has led to a molecular pathway toward our understanding of this cellular process. In addition to the application of immunohistochemistry and live imaging techniques to visualize myoblast fusion at the light microscopic level, ultrastructural analysis using electron microscopy remains an...

  18. Fructose-Drinking Water Induced Nonalcoholic Fatty Liver Disease and Ultrastructural Alteration of Hepatocyte Mitochondria in Male Wistar Rat

    Directory of Open Access Journals (Sweden)

    Norshalizah Mamikutty

    2015-01-01

    Full Text Available Background. Nonalcoholic fatty liver disease (NAFLD is one of the complications of the metabolic syndrome. It encompasses a wide range of disease spectrum from simple steatosis to liver cirrhosis. Structural alteration of hepatic mitochondria might be involved in the pathogenesis of NAFLD. Aims. In the present study, we used a newly established model of fructose-induced metabolic syndrome in male Wistar rats in order to investigate the ultrastructural changes in hepatic mitochondria that occur with fructose consumption and their association with NAFLD pathogenesis. Methods. The concentration of fructose-drinking water (FDW used in this study was 20%. Six male Wistar rats were supplemented with FDW 20% for eight weeks. Body composition and metabolic parameters were measured before and after 8 weeks of FDW 20%. Histomorphology of the liver was evaluated and ultrastructural changes of mitochondria were assessed with transmission electron micrograph. Results. After 8 weeks of fructose consumption, the animals developed several features of the metabolic syndrome. Moreover, fructose consumption led to the development of macrovesicular hepatic steatosis and mitochondrial ultrastructural changes, such as increase in mitochondrial size, disruption of the cristae, and reduction of matrix density. Conclusion. We conclude that in male Wistar rat 8-week consumption of FDW 20% leads to NAFLD likely via mitochondrial structural alteration.

  19. Antioxidant relevance to human health.

    Science.gov (United States)

    Wahlqvist, Mark L

    2013-01-01

    Human ecology requires both oxygen and water with the generation from food of an immediate energy source, ATP, by oxidative phosphorylation. A continuing balance between oxidation and antioxidation is necessary for longer less-disabled lives, taking account of oxidative stresses and the critical roles of oxidants in defence against infection, tissue repair and signalling. Antioxidant capacity is derived both exogenously (from food, beverage and sunlight) and endogenously (from enzymatic and non-enzymatic pathways). A number of oxidant food factors service antioxidant metallo-enzymes. The capacity operates extra- or intracellularly. Uric acid is the major antioxidant in primate blood. Uric acid synthesis is increased by dietary fructose from fruit, sugary foods and drinks. This indirect antioxidant effect of fruit is separate from that attributable to its flavonoids. Alcohol also increases serum uric acid. Urate excess and retention is associated with disease. The high prevalence of hyperuricaemia in NE Asia presents a major public health dilemma in regard to putative benefits and risks. Foods with high antioxidant activity include berries, nuts and legumes, tomatoes and sweet potato leaves. Each of the antioxidants in these foods is pleiotropic being inter-alia anti-inflammatory, anti-angiogenic or anti-neoplastic. Moreover, food matrices and patterns contribute to the safety of antioxidant consumption. There is no evidence to date that isolated antioxidants as food supplements improve health outcomes or survival; and some that indicate unacceptable risk. Their use as biomarkers of food cannot justify their isolated use. Nevertheless, a spectrum of dietary pluripotential antioxidants for tissues, metabolic and immune systems is advantageous.

  20. Antioxidants in dermatology*

    Science.gov (United States)

    Addor, Flavia Alvim Sant'anna

    2017-01-01

    The skin cells continuously produce, through cellular respiration, metabolic processes or under external aggressions, highly reactive molecules oxidation products, generally called free radicals. These molecules are immediately neutralized by enzymatic and non-enzymatic systems in a physiological and dynamic balance. In situations where this balance is broken, various cellular structures, such as the cell membrane, nuclear or mitochondrial DNA may suffer structural modifications, triggering or worsening skin diseases. several substances with alleged antioxidant effects has been offered for topical or oral use, but little is known about their safety, possible associations and especially their mechanism of action. The management of topical and oral antioxidants can help dermatologist to intervene in the oxidative processes safely and effectively, since they know the mechanisms, limitations and potential risks of using these molecules as well as the potential benefits of available associations. PMID:29186248

  1. A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism.

    Science.gov (United States)

    Sánchez-Martín, Javier; Heald, Jim; Kingston-Smith, Alison; Winters, Ana; Rubiales, Diego; Sanz, Mariluz; Mur, Luis A J; Prats, Elena

    2015-07-01

    Although a wealth of information is available on the induction of one or several drought-related responses in different species, little is known of how their timing, modulation and crucially integration influence drought tolerance. Based upon metabolomic changes in oat (Avena sativa L.), we have defined key processes involved in drought tolerance. During a time course of increasing water deficit, metabolites from leaf samples were profiled using direct infusion-electrospray mass spectroscopy (DI-ESI-MS) and high-performance liquid chromatography (HPLC) ESI-MS/MS and analysed using principal component analysis (PCA) and discriminant function analysis (DFA). The involvement of metabolite pathways was confirmed through targeted assays of key metabolites and physiological experiments. We demonstrate an early accumulation of salicylic acid (SA) influencing stomatal opening, photorespiration and antioxidant defences before any change in the relative water content. These changes are likely to maintain plant water status, with any photoinhibitory effect being counteracted by an efficient antioxidant capacity, thereby representing an integrated mechanism of drought tolerance in oats. We also discuss these changes in relation to those engaged at later points, consequence of the different water status in susceptible and resistant genotypes. © 2014 John Wiley & Sons Ltd.

  2. Chemical Elicitor-Induced Modulation of Antioxidant Metabolism and Enhancement of Secondary Metabolite Accumulation in Cell Suspension Cultures of Scrophularia kakudensis Franch

    Directory of Open Access Journals (Sweden)

    Abinaya Manivannan

    2016-03-01

    Full Text Available Scrophularia kakudensis is an important medicinal plant with pharmaceutically valuable secondary metabolites. To develop a sustainable source of naturaceuticals with vital therapeutic importance, a cell suspension culture was established in S. kakudensis for the first time. Friable calli were induced from the leaf explants cultured on a Murashige and Skoog (MS medium containing 3.0 mg·L−1 6-benzyladenine (BA in a combination with 2 mg·L−1 2,4-dichlorophenoxy acetic acid (2,4-D. From the callus cultures, a cell suspension culture was initiated and the cellular differentiation was investigated. In addition, the effect of biotic elicitors such as methyl jasmonate (MeJa, salicylic acid (SA, and sodium nitroprusside (SNP on the accumulation of secondary metabolites and antioxidant properties was demonstrated. Among the elicitors, the MeJa elicited the accumulation of total phenols, flavonoids, and acacetin, a flavonoid compound with multiple pharmaceutical values. Similarly, the higher concentrations of the MeJa significantly modulated the activities of antioxidant enzymes and enhanced the scavenging potentials of free radicals of cell suspension extracts. Overall, the outcomes of this study can be utilized for the large scale production of pharmaceutically important secondary metabolites from S. kakudensis through cell suspension cultures.

  3. Chemical Elicitor-Induced Modulation of Antioxidant Metabolism and Enhancement of Secondary Metabolite Accumulation in Cell Suspension Cultures of Scrophularia kakudensis Franch.

    Science.gov (United States)

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2016-03-18

    Scrophularia kakudensis is an important medicinal plant with pharmaceutically valuable secondary metabolites. To develop a sustainable source of naturaceuticals with vital therapeutic importance, a cell suspension culture was established in S. kakudensis for the first time. Friable calli were induced from the leaf explants cultured on a Murashige and Skoog (MS) medium containing 3.0 mg·L(-1) 6-benzyladenine (BA) in a combination with 2 mg·L(-1) 2,4-dichlorophenoxy acetic acid (2,4-D). From the callus cultures, a cell suspension culture was initiated and the cellular differentiation was investigated. In addition, the effect of biotic elicitors such as methyl jasmonate (MeJa), salicylic acid (SA), and sodium nitroprusside (SNP) on the accumulation of secondary metabolites and antioxidant properties was demonstrated. Among the elicitors, the MeJa elicited the accumulation of total phenols, flavonoids, and acacetin, a flavonoid compound with multiple pharmaceutical values. Similarly, the higher concentrations of the MeJa significantly modulated the activities of antioxidant enzymes and enhanced the scavenging potentials of free radicals of cell suspension extracts. Overall, the outcomes of this study can be utilized for the large scale production of pharmaceutically important secondary metabolites from S. kakudensis through cell suspension cultures.

  4. The Beneficial Effect of Anthocyanidin-Rich Vitis vinifera L. Grape Skin Extract on Metabolic Changes Induced by High-Fat Diet in Mice Involves Antiinflammatory and Antioxidant Actions.

    Science.gov (United States)

    da Costa, Gisele França; Santos, Izabelle Barcellos; de Bem, Graziele Freitas; Cordeiro, Viviane Silva Cristino; da Costa, Cristiane Aguiar; de Carvalho, Lenize Costa Reis Marins; Ognibene, Dayane Teixeira; Resende, Angela Castro; de Moura, Roberto Soares

    2017-10-01

    We hypothesized that a polyphenol-rich extract from Vitis vinifera L. grape skin (GSE) may exert beneficial effects on obesity and related metabolic disorders induced by a high-fat diet (HFD). C57/BL6 mice were fed a standard diet (10% fat, control, and GSE groups) or an HFD (60% fat, high fat (HF), and HF + GSE) with or without GSE (200 mg/kg/day) for 12 weeks. GSE prevented weight gain; dyslipidemia; insulin resistance; the alterations in plasma levels of leptin, adiponectin, and resistin; and the deregulation of leptin and adiponectin expression in adipose tissue. These beneficial effects of GSE may be related to a positive modulation of insulin signaling proteins (IR, pIRS, PI3K, pAKT), pAMPK/AMPK ratio, and GLUT4 expression in muscle and adipose tissue. In addition, GSE prevented the oxidative damage, evidenced by the restoration of antioxidant activity and decrease of malondialdehyde and carbonyl levels in muscle and adipose tissue. Finally, GSE showed an anti-inflammatory action, evidenced by the reduced plasma and adipose tissue inflammatory markers (TNF-α, IL-6). Our results suggest that GSE prevented the obesity and related metabolic disorders in HF-fed mice by regulating insulin sensitivity and GLUT4 expression as well as by preventing the oxidative stress and inflammation in skeletal muscle and adipose tissue. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Real space flight travel is associated with ultrastructural changes, cytoskeletal disruption and premature senescence of HUVEC.

    Science.gov (United States)

    Kapitonova, M Y; Muid, S; Froemming, G R A; Yusoff, W N W; Othman, S; Ali, A M; Nawawi, H M

    2012-12-01

    Microgravity, hypergravity, vibration, ionizing radiation and temperature fluctuations are major factors of outer space flight affecting human organs and tissues. There are several reports on the effect of space flight on different human cell types of mesenchymal origin while information regarding changes to vascular endothelial cells is scarce. Ultrastructural and cytophysiological features of macrovascular endothelial cells in outer space flight and their persistence during subsequent culturing were demonstrated in the present investigation. At the end of the space flight, endothelial cells displayed profound changes indicating cytoskeletal lesions and increased cell membrane permeability. Readapted cells of subsequent passages exhibited persisting cytoskeletal changes, decreased metabolism and cell growth indicating cellular senescence.

  6. Ultrastructural changes in goat interspecies and intraspecies reconstructed early embryos

    DEFF Research Database (Denmark)

    Tao, Yong; Gheng, Lizi; Zhang, Meiling

    2008-01-01

    The low efficiency of somatic cell nuclear transfer may be related to the ultrastructural deviations of reconstructed embryos. The present study investigated ultrastructural differences between in vivo-produced and cloned goat embryos, including intra- and interspecies embryos. Goat ear fibroblas...

  7. Ultrastructural liver changes in the experimental thyrotoxicosis

    Directory of Open Access Journals (Sweden)

    Nadiya Vasylivna Pasyechko

    2017-09-01

    Full Text Available Aim of the study is to evaluate ultrastructural changes of rat liver in experimental thyrotoxicosis. For the study, 36 male rats have been utilized, weighing approximately 150-190 g, which were divided into three groups: the first, control group (12 animals was composed of healthy rats that received intragastric sodium chloride 0.9% solution, the second group (12 animals – animals with experimental thyrotoxicosis, which received intragastric solution of L-thyroxine at the rate of 200 μg/kg for 2 weeks, and the third group (12 animals – rats with experimental thyrotoxicosis, which received intragastric solution of L-thyroxine at the rate of 200 μg/kg for 4 weeks. For electron-microscopic studies small pieces of liver tissue were taken at the end of the 2nd and 4th weeks of the experiment. The material was studied and documented in electron micrographs by using a TEM-125K electron microscope. In experiment in white male rats the electron-microscopic state of the liver in thyrotoxicosis has been studied. It has been established that thyrotoxicosis is accompanied by the significant changes of the hepatocytes ultrastructure, blood and bile capillaries. Experimental thyrotoxicosis causes significant damage of the liver plasma membranes and intracellular structural components of hepatocytes and endothelial cells. In experimental thyrotoxicosis, on the background of microcirculatory disorders, significant damage of plasmatic and intracellular organoid membranes of hepatocytes in the liver develops, which has an adverse effect on the functionality of the organ. The found ultrastructural changes are aggravated depending on the duration of thyrotoxicosis.

  8. Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches

    NARCIS (Netherlands)

    Beamonte Barrientos, Rene; Verhulst, Simon

    Understanding the sources of variation in oxidative stress level is a challenging issue due to the implications of oxidative stress for late age diseases, longevity and life-history trade-offs. Reactive oxygen species that cause oxidative stress are mostly a by-product of energy metabolism and it is

  9. Lipid metabolism and pro-oxidant/antioxidant balance of Halamphora oceanica from the Gulf of Mexico exposed to water accommodated fraction of Maya crude oil.

    Science.gov (United States)

    Olivares-Rubio, Hugo F; Salazar-Coria, Lucía; Nájera-Martínez, Minerva; Godínez-Ortega, José Luis; Vega-López, Armando

    2018-01-01

    Diatoms play key roles in primary production and carbon fixation at a global scale and in some cases these species live on marine ecosystems impacted by crude oil (CO) spills. Halamphora oceanica, a new diatom species from the Southwest of the Gulf of Mexico was isolated and cultured in the laboratory and was exposed to water accommodated fraction (WAF) of different Maya CO loads at 0.01, 0.1, 1 and 10g/L by 96h. A battery of biomarkers involved in oxidative stress (O 2 •, H 2 O 2 , TBARS, ROOH, RC=O, SOD, CAT, GPx), biotransformation and conjugation (total CYP450 activity and GST) moreover fatty acid (FA) metabolism (FA levels, fatty-acid synthase and acyl-CoA oxidase) were measured. Obtained results suggest that increases of PAHs in the medium (below to EC 50 ) acts as external forces able to turn-on regulatory mechanisms on H. oceanica involved in both, on the PAHs uptake and changing its aerobic metabolism to anaerobic metabolism. However, the growth of this microalgae species evaluated as chlorophyll "a" and pheophytin levels increased as the WAF concentration indicating that PAHs and other hydrosoluble hydrocarbons were used as carbon and energy sources by unidentified enzymes not evaluated in the current study. Our hypothesis was also corroborated by IBRv2. In the current study, we suppose the change from aerobic to anaerobic metabolism as a strategy for Halamphora oceanica survival exposed to petroleum hydrocarbons. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Protective effect of different antioxidant agents in UVB-irradiated keratinocytes

    Directory of Open Access Journals (Sweden)

    Sara Salucci

    2017-09-01

    Full Text Available Skin cells can respond to UVB-induced damage either by tolerating it, or restoring it through antioxidant activation and DNA repair mechanisms or, ultimately, undergoing programmed cell death, when damage is massive. Nutritional factors, in particular, food antioxidants, have attracted much interest because of their potential use in new preventive, protective, and therapeutic strategies for chronic degenerative diseases, including skin inflammation and cancer. Some polyphenols, present in virgin olive oil, well tolerated by organism after oral administration, show a variety of pharmacological and clinical benefits such as anti-oxidant, anti-cancer, anti-inflammatory, and neuro-protective activities. Here, the protective effects of antioxidant compounds against UV-induced apoptosis have been described in HaCat cell line. Human keratinocytes were pre-treated with antioxidants before UVB exposure and their effects have been evaluated by means of ultrastructural analyses. After UVB radiation, a known cell death trigger, typical apoptotic features, absent in control condition and in antioxidant alone-treated cells, appear. An evident numerical decrease of ultrastructural apoptotic patterns and TUNEL positive nuclei can be observed when natural antioxidants were supplied before cell death induction. These data have been confirmed by molecular investigation of caspase activity. In conclusion, this paper highlights antioxidant compound ability to prevent apoptotic cell death in human keratinocytes exposed to UVB, suggesting, for these molecules, a potential role in preventing skin damage. 

  11. Further analysis of multicentre cystathionine beta synthase deficiency thrombosis data and metabolic pathways suggests potentially better treatment via improved cysteine supplementation, diet, antioxidant supplementation, follow-up and testing for thrombophilic mutations

    Directory of Open Access Journals (Sweden)

    David Vance

    2017-01-01

    in the sub- optimality of metabolic outcomes, due not only to CBS-- but also its treatments. Conclusions It seems likely that substantial improvements in the treatment of CBS-- may be achieved through 1 Cysteine supplementation (preferably on its own rather than in whole-diet formula mixtures, in accord with various uses of homocysteine-lowering nutrients other than VitB6, which have various effects on the metabolism of homocysteine to cysteine. 2 Better use of low-methionine, high-fruit and vegetable whole-food diets. 3 Supplementation with vitamin C and other antioxidants. 4 Better cultivation of patient compliance. 5 Testing for Factor 5 Leiden and prothrombin C20210A mutations.

  12. Ultrastructure of human mature oocytes after vitrification

    Directory of Open Access Journals (Sweden)

    M.A. Khalili

    2012-08-01

    Full Text Available Since the introduction of human assisted reproduction, oocyte cryopreservation has been regarded as an attractive option to capitalize the reproductive potential of surplus oocytes and preserve female fertility. However, for two decades the endeavor to store oocytes has been limited by the not yet optimized methodologies, with the consequence of poor clinical outcome or of uncertain reproducibility. Vitrification has been developed as the promising technology of cryopreservation even if slow freezing remains a suitable choice. Nevertheless, the insufficiency of clinical and correlated multidisciplinary data is still stirring controversy on the impact of this technique on oocyte integrity. Morphological studies may actually provide a great insight in this debate. Phase contrast microscopy and other light microscopy techniques, including cytochemistry, provided substantial morphofunctional data on cryopreserved oocyte, but are unable to unraveling fine structural changes. The ultrastructural damage is one of the most adverse events associated with cryopreservation, as an effect of cryo-protectant toxicity, ice crystal formation and osmotic stress. Surprisingly, transmission electron microscopy has attracted only limited attention in the field of cryopreservation. In this review, the subcellular structure of human mature oocytes following vitrification is discussed at the light of most relevant ultrastructural studies.

  13. Eccrine syringofibroadenoma (Mascaro): an ultrastructural study.

    Science.gov (United States)

    Sueki, H; Miller, S J; Dzubow, L M; Murphy, G F

    1992-06-01

    To confirm the eccrine acrosyringeal differentiation of eccrine syringofibroadenoma (ESFA) and to elucidate the histogenesis of its angiofibrotic stroma, a case of ESFA from a 45-year-old man was examined by light and electron microscopy. Histologically, the parenchyma featured anastomosing, slender epithelial cords containing small cuboidal cells and occasional duct-like structures. The stroma had increased numbers of mast cells, increased capillaries with swollen endothelial cells, and prominent fibrosis. Ultrastructurally, the following findings were characteristic of ESFA: a) abundant glycogen particles in epithelial cells, b) numerous intracytoplasmic and extracellular spaces lined with microvilli, c) intraepithelial duct formation, consisting of microvilli, vesicles, rod-shaped dense bodies, multivesicular dense bodies, and peripheral network of tonofilaments, and d) large numbers of mast cells, closely associated with fibroblasts, surrounding increased numbers of capillaries containing swollen endothelial cells. These ultrastructural features support the acrosyringeal differentiation of ESFA. We hypothesize that mast cell hyperplasia and degranulation may play an important role in the formation of the angiofibrotic stroma.

  14. [Regulation of terpene metabolism]. [Mentha piperita, Mentha spicata

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-01-01

    Progress in understanding of the metabolism of monoterpenes by peppermint and spearmint is recorded including the actions of two key enzymes, geranyl pyrophosphate:limonene cyclase and a UDP-glucose dependent glucosyl transferase; concerning the ultrastructure of oil gland senescence; enzyme subcellular localization; regulation of metabolism; and tissue culture systems.

  15. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress.

    Science.gov (United States)

    Gao, Hui-Juan; Yang, Hong-Yu; Bai, Jiang-Ping; Liang, Xin-Yue; Lou, Yan; Zhang, Jun-Lian; Wang, Di; Zhang, Jin-Lin; Niu, Shu-Qi; Chen, Ying-Long

    2014-01-01

    Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. "Longshu No. 3") plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars.

  16. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress

    Science.gov (United States)

    Gao, Hui-Juan; Yang, Hong-Yu; Bai, Jiang-Ping; Liang, Xin-Yue; Lou, Yan; Zhang, Jun-Lian; Wang, Di; Zhang, Jin-Lin; Niu, Shu-Qi; Chen, Ying-Long

    2015-01-01

    Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. “Longshu No. 3”) plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars. PMID:25628634

  17. Ultrastructural and physiological responses of potato (Solanum tuberosum L. plantlets to gradient saline stress

    Directory of Open Access Journals (Sweden)

    Hui-Juan eGao

    2015-01-01

    Full Text Available Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. ‘Longshu No. 3’ plantlets to gradient saline stress (0, 25, 50, 100 and 200 mM NaCl with two consequent observations (two and six weeks, respectively. The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1 the number of chloroplasts and cell intercellular spaces markedly decreased, (2 cell walls were thickened and even ruptured, (3 mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4 leaf Na and Cl contents increased while leaf K content decreased, (5 leaf proline content and the activities of catalase (CAT and superoxide dismutase (SOD increased significantly, and (6 leaf malondialdehyde (MDA content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars.

  18. The effect of exogenous calcium on mitochondria, respiratory metabolism enzymes and ion transport in cucumber roots under hypoxia.

    Science.gov (United States)

    He, Lizhong; Li, Bin; Lu, Xiaomin; Yuan, Lingyun; Yang, Yanjuan; Yuan, Yinghui; Du, Jing; Guo, Shirong

    2015-08-25

    Hypoxia induces plant stress, particularly in cucumber plants under hydroponic culture. In plants, calcium is involved in stress signal transmission and growth. The ultimate goal of this study was to shed light on the mechanisms underlying the effects of exogenous calcium on the mitochondrial antioxidant system, the activity of respiratory metabolism enzymes, and ion transport in cucumber (Cucumis sativus L. cv. Jinchun No. 2) roots under hypoxic conditions. Our experiments revealed that exogenous calcium reduces the level of reactive oxygen species (ROS) and increases the activity of antioxidant enzymes in mitochondria under hypoxia. Exogenous calcium also enhances the accumulation of enzymes involved in glycolysis and the tricarboxylic acid (TCA) cycle. We utilized fluorescence and ultrastructural cytochemistry methods to observe that exogenous calcium increases the concentrations of Ca(2+) and K(+) in root cells by increasing the activity of plasma membrane (PM) H(+)-ATPase and tonoplast H(+)-ATPase and H(+)-PPase. Overall, our results suggest that hypoxic stress has an immediate and substantial effect on roots. Exogenous calcium improves metabolism and ion transport in cucumber roots, thereby increasing hypoxia tolerance in cucumber.

  19. Ultrastructural morphometry using dual axes tangential scale: a technical revelation.

    Science.gov (United States)

    Rayat, C S

    2005-04-01

    While performing ultrastructural morphometry, under or over estimation of ultrastructural size could be avoided by using accurate measuring devices. Biological investigators have always relied on conventional linear scale for the baseline measurement of ultrastructural size parameters on electron micrographs to project the dimensions of intracellular organelles or tissue components. Since it was not possible to measure decimal fractions of mm with linear scale, a 'dual axes tangential scale' has been designed for measuring ultrastructural image parameters on electron micrographs with an accuracy of 0.1 mm to minimize the error in finally computed size of ultrastructural component. In an exercise using 'dual axes tangential scale' and 'conventional linear scale', measurement of glomerular basement membrane thickness (GBMT) as orthogonal intercepts across the GBM revealed a 'coefficient of variation' at 4.4% with dual axes tangential scale as compared to 'coefficient of variation' at 10.9% with linear scale, expressing superiority of dual axes tangential scale over linear scale. Use of mathematical formula rather than nomogram has been preferred. However, 'slide guide, ultrastructure size calculator' could also be used for discerning ultrastructural size after measurement with dual axes tangential scale.

  20. Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings.

    Science.gov (United States)

    Chen, Huize; Gong, Yan; Han, Rong

    2014-01-01

    Nanoparticles (NPs) are becoming increasingly widespread in the environment. Free cadmium ions released from commonly used NPs under ultraviolet-B (UV-B) radiation are potentially toxic to living organisms. With increasing levels of UV-B radiation at the Earth's surface due to the depletion of the ozone layer, the potential additive effect of NPs and UV-B radiation on plants is of concern. In this study, we investigated the synergistic effect of CdTe quantum dots (CdTe-QDs), a common form of NP, and UV-B radiation on wheat seedlings. Graded doses of CdTe-QDs and UV-B radiation were tested, either alone or in combination, based on physical characteristics of 5-day-old seedlings. Treatments of wheat seedlings with either CdTe-QDs (200 mg/L) or UV-B radiation (10 KJ/m(2)/d) induced the activation of wheat antioxidant enzymes. CdTe-QDs accumulation in plant root cells resulted in programmed cell death as detected by DNA laddering. CdTe-QDs and UV-B radiation inhibited root and shoot growth, respectively. Additive inhibitory effects were observed in the combined treatment group. This research described the effects of UV-B and CdTe-QDs on plant growth. Furthermore, the finding that CdTe-QDs accumulate during the life cycle of plants highlights the need for sustained assessments of these interactions.

  1. Functional role of test cells in swimming larvae of Ascidia malaca: ultrastructural and cytochemical investigations.

    Science.gov (United States)

    Dolcemascolo, G; Gianguzza, M

    2004-01-01

    The functional role played by test cells in larvae of various ascidian species consists in depositing sub-microscopic structures known as ornaments and/or proteoglycan substances on the larval test surface. According to the data reported in the literature, the deposition of ornaments together with proteoglycan substances on the larval test would render the latter hydrophilic and thus allow the larva to swim being immersed in water. Ornament deposition on the larval test does not occur in all the ascidian species. Ultrastructural investigations made on larvae belonging to the Cionidae and Ascididae families, for instance, have failed to evidence the presence of ornaments on the test. For these ascidian families it has been hypothesized that in swimming larvae test cells secrete an amorphous substance that would allow them to adhere to the larval test. In order to ascertain the functional role played by test cells in swimming larvae of the Ascididae family, the presently reported ultrastructural and cytochemical investigations have been made on larvae of Ascidia malaca. Besides suggesting that test cells, tightly adherent to the test surface, present an amoeboidic behaviour, the ultrastructural investigations have evidenced that these cells are still metabolically active. Their cytoplasm, characterized by the presence of a Golgi apparatus actively involved in synthesis, is almost entirely filled with very large granules; some of them gradually empty their contents turning into vacuoles containing scarce residues of electrondense particles. The present ultrastructural observations support the hypothesis that the adhesion of test cells on the larval test could be very likely eased by the secretion of substances synthesized by the Golgi and released through pseudopodes which test cells then wedge into the test. The cytochemical investigations were based on a reaction (fixation in glutaraldehyde-tannic acid) which evidences the presence, at the ultrastructural level, of

  2. Ultrastructure of epidermis of Salamandra salamandra followed throughout ontogenesis.

    Science.gov (United States)

    Warburg, M R; Lewinson, D

    1977-07-15

    Ventral epidermal ultrastructure of the amphibian urodele Salamandra salamandra is described and followed throughout its life cycle. Tadpoles were divided into five categories on the basis of the organization of their epidermis and the ultrastructure of its cells. In newly hatched tadpoles the epidermis is arranged in two layers and four types of cells were recognized. The number of epidermal layers increases in the metamorphosing tadpole. At this stage the layers become organized in four strata. Metamorphosis involves the disappearance of some cell types and the appearance of others, typical of the adult epidermis. The significance of these ontogenetic changes in epidermal ultrastructure is discussed in respect to aquatic and terrestrial life habits.

  3. Enhanced photosynthetic capacity and antioxidant potential mediate brassinosteriod-induced phenanthrene stress tolerance in tomato

    International Nuclear Information System (INIS)

    Ahammed, Golam Jalal; Li, Xin; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan

    2015-01-01

    Photosynthesis, the basal manufacturing process in the earth is habitually restricted by airborne micropollutants such as phenanthrene (PHE). Here, we show that 24-epibrassinolide (EBR), a bioactive plant steroid is able to keep higher photosynthetic capacity consistently for a long period under a shoot-imposed PHE stress in tomato. EBR-promoted photosynthetic capacity and efficiency eventually resulted in a 37.5% increase of biomass under PHE stress. As primary response, transcripts of antioxidant genes were remarkably induced by EBR in PHE-treated plants. Activities of antioxidant and detoxification enzymes were also enhanced by EBR. Notably, EBR-induced higher antioxidant potential was associated with reduced levels of H 2 O 2 and O 2 · — , resulting in a 32.7% decrease of content of malondialdehyde in the end of experiment and relatively healthy chloroplast ultrastructure in EBR + PHE treatment compared with PHE alone. These results indicate that EBR alleviates shoot-imposed PHE phytotoxicity by maintaining a consistently higher photosynthetic capacity and antioxidant potential in tomato. - Highlights: • PHE mist spray gradually inhibits photosynthesis and eventually reduces biomass. • EBR maintains a consistently higher photosynthesis even under PHE stress. • EBR upregulates expression of antioxidant genes as initial response to PHE stress. • EBR reduces oxidative stress by constantly activating strong antioxidant potential. • EBR-induced efficient neutralization of ROS protects chloroplast ultrastructure. - 24-epibrassinolide protects tomato plants from airborne phenanthrene-induced damages by maintaining a consistently higher photosynthetic capacity and antioxidant potential

  4. Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells.

    Science.gov (United States)

    Foresti, Roberta; Bains, Sandip K; Pitchumony, Tamil Selvi; de Castro Brás, Lisandra E; Drago, Filippo; Dubois-Randé, Jean-Luc; Bucolo, Claudio; Motterlini, Roberto

    2013-10-01

    The nuclear factor erythroid derived 2-related factor 2 (Nrf2) and the antioxidant protein heme oxygenase-1 (HO-1) are crucial components of the cellular stress response. These two systems work together to combat oxidative stress and inflammation and are attractive drug targets for counteracting different pathologies, including neuroinflammation. We aimed to identify the most effective Nrf2/HO-1 activators that modulate the inflammatory response in microglia cells. In the present study, we searched the literature and selected 56 compounds reported to activate Nrf2 or HO-1 and analyzed them for HO-1 induction at 6 and 24h and cytotoxicity in BV2 microglial cells in vitro. Approximately 20 compounds up-regulated HO-1 at the concentrations tested (5-20 μM) with carnosol, supercurcumin, cobalt protoporphyrin-IX and dimethyl fumarate exhibiting the best induction/low cytotoxicity profile. Up-regulation of HO-1 by some compounds resulted in increased cellular bilirubin levels but did not augment the expression of proteins involved in heme synthesis (ALAS 1) or biliverdin reductase. Bilirubin production by HO-1 inducers correlated with their potency in inhibiting nitrite production after challenge with interferon-γ (INF-γ) or lipopolysaccharide (LPS). The compounds down-regulated the inflammatory response (TNF-α, PGE2 and nitrite) more strongly in cells challenged with INF-γ than LPS, and silencing HO-1 or Nrf2 with shRNA differentially affected the levels of inflammatory markers. These findings indicate that some small activators of Nrf2/HO-1 are effective modulators of microglia inflammation and highlight the chemical scaffolds that can serve for the synthesis of potent new derivatives to counteract neuroinflammation and neurodegeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The effect of ionizing radiation on the structural and ultrastructural organization of Mycobacterium rubrum

    International Nuclear Information System (INIS)

    Poglazova, M.N.; Biryuzova, V.I.; Gromova, L.A.

    1979-01-01

    A description of a structural and ultrastructural organization of a normally developing and irradiated cell of Mycobacterium rubrum is given. The cytomorphological differentiation of membrane bacterial structures and radiation their functional role are shown. When ionizing role of membrane is used as a tool for decoding the structures their relationship with a certain cell function is confirmed. A description of damages of different individually functioning membrane systems under cell irradiation is given. It is shown that at suppression of peptidoglycane synthesis the mesosomes are absent in the cells, at their hypertrophy the hypersynthesis of cell wall material is observed. An increase in the level of cell metabolic processes results in an increase of the number of mitochondrial analogs. It is shown that the disturbance of the cell division function is caused by the damage of nucleoid DNA structure and degradation of nucleidosomes. Changes in carbohydrate and lipide metabolisms are observed

  6. Effects of PCBs on liver ultrastructure and monooxygenase activities in Japanese quail

    Energy Technology Data Exchange (ETDEWEB)

    Stouvenakers, N.; Kremers, P. [Univeriste de Liege, Liege (Belgium)] [and others

    1996-05-01

    The effect of environmental pollutants such as PCBs and DDT on avian species is well documented. It is proven that chronic high level PCB intoxication perturbs calcium metabolism in birds, affecting eggshell thickness. PCBs have an impact on the liver. which accumulates high levels of toxicants. These induce drug-metabolizing enzyme activities in quail (Coturnix coturnix), herring gull (larus argentatus), and partridge (Prdix perdix). As these enzymes can degrade endogeneous molecules such as steroids, xenobiotics like PCBs can severely hinder birds` reproductive performance. PCBs induce damage such as regression of the testes, decreased sperm concentration, and altered embryonic development resulting in death or malformation of chicks. More ever, ultrastructural alterations linked with induction of these enzymes have been observed in the livers of PCB-contaminated chickens and ducks. This study examines the effects of Aroclor 1254 on liver morphology and glycogen content in quail, and related morphological modification to liver monoxygenase activities. 26 refs., 6 figs., 1 tab.

  7. Pericytopathy: Oxidative Stress and Impaired Cellular Longevity in the Pancreas and Skeletal Muscle in Metabolic Syndrome and Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Melvin R. Hayden

    2010-01-01

    early pharmacotherapy in addition to lifestyle changes targeted to maintaining pericyte integrity. In conclusion, we have provided a review of current knowledge regarding the pericyte and novel ultrastructural findings regarding its role in metabolic syndrome and T2DM.

  8. Effect of livingstonepotato (Plectranthus esculenthus N.E.Br) on hyperglycemia, antioxidant activity and lipid metabolism of streptozotocin induced diabetic rats.

    Science.gov (United States)

    Eleazu, C O; Eleazu, K C; Chukwuma, S C; Okoronkwo, J; Emelike, C U

    2014-01-01

    Acid Equivalent/g of sample and strong antioxidant activity comparable to standard quercetin. The study shows the potentials of livingstone potato in the management of diabetes and hyperlipidemia.

  9. Effect of livingstonepotato (Plectranthus esculenthus N.E.Br on hyperglycemia, antioxidant activity and lipid metabolism of streptozotocin induced diabetic rats

    Directory of Open Access Journals (Sweden)

    C.O. Eleazu

    2014-01-01

    Acid Equivalent/g of sample and strong antioxidant activity comparable to standard quercetin. The study shows the potentials of livingstone potato in the management of diabetes and hyperlipidemia.

  10. Antioxidants: Protecting Healthy Cells

    Science.gov (United States)

    ... and Nutrients Antioxidants - Protecting Healthy Cells Print Email Antioxidants - Protecting Healthy Cells Reviewed by Taylor Wolfram, MS, ... to cardiovascular disease and certain types of cancers. Antioxidants — such as vitamins C and E and carotenoids, ...

  11. [Features of influence adenosine, AMP and hyperadrenalinemiya on the immune status, metabolic enzymes of purine nucleotides and the antioxidant defense system].

    Science.gov (United States)

    Tapbergenov, S O; Sovetov, B S; Tapbergenov, A T

    2016-11-01

    Administration of a large dose of adrenaline (4 mg/kg 60 min before analysis) increased blood levels of total leukocytes, lymphocytes, decreased T-cell suppressors, leukocyte migration inhibition reaction (LMIR) and NBT test, but increased the level of conjugated dienes (CD). Administration of AMPand adenosine increased levels of total leukocytes, lymphocytes, T- lymphocytes, T-helpers, decreased the level of malondialdehyde (MDA), LMIR, and T-cell suppressors. Sympathetic hyperactivation induced by administration of a large dose of adrenaline (4 mg/kg 60 min before analysis) was accompanied by an increase in heart and liver activities of glutathione peroxidase (GPx), catalase, AMP deaminase (AMPD), and adenosine deaminase (AD). Administration of AMP or adenosine caused a decrease in activities of glutathione reductase (GR), GPx, catalase, a decrease in the MDA level and an increase in activities of AMPD and AD in the heart. In the liver AMP and adenosine also caused a decrease in activities of glutathione reductase (GR), GPx, a decrease in the MDA level and an increase in activities of AMPD and AD. The data obtained suggest that administration of adrenaline, AMP, and adenosine influences activity of enzymes involved in purine nucleotide metabolism. However, in contrast to adrenaline, administration of AMP or adenosine does not provoke stress reaction.

  12. Subtoxic and toxic concentrations of benzene and toluene induce Nrf2-mediated antioxidative stress response and affect the central carbon metabolism in lung epithelial cells A549.

    Science.gov (United States)

    Murugesan, Kalaimathi; Baumann, Sven; Wissenbach, Dirk K; Kliemt, Stefanie; Kalkhof, Stefan; Otto, Wolfgang; Mögel, Iljana; Kohajda, Tibor; von Bergen, Martin; Tomm, Janina M

    2013-11-01

    Since people in industrialized countries spend most of their time indoors, the effects of indoor contaminants such as volatile organic compounds become more and more relevant. Benzene and toluene are among the most abundant compounds in the highly heterogeneous group of indoor volatile organic compounds. In order to understand their effects on lung epithelial cells (A549) representing lung's first line of defense, we chose a global proteome and a targeted metabolome approach in order to detect adverse outcome pathways caused by exposure to benzene and toluene. Using a DIGE approach, 93 of 469 detected protein spots were found to be differentially expressed after exposure to benzene, and 79 of these spots were identified by MS. Pathway analysis revealed an enrichment of proteins involved in Nrf2-mediated and oxidative stress response glycolysis/gluconeogenesis. The occurrence of oxidative stress at nonacute toxic concentrations of benzene and toluene was confirmed by the upregulation of the stress related proteins NQO1 and SOD1. The changes in metabolism were validated by ion chromatography MS/MS analysis revealing significant changes of glucose-6-phosphate, fructose-6-phosphate, 3-phosphoglycerate, and NADPH. The molecular alterations identified as a result of benzene and toluene exposure demonstrate the detrimental effect of nonacute toxic concentrations on lung epithelial cells. The data provided here will allow for a targeted validation in in vivo models. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Antioxidants and antioxidant capacity of human milk

    OpenAIRE

    Živković, Jelena; Sunarić, Slavica; Trutić, Nataša; Denić, Marko; Kocić, Gordana; Jovanović, Tatjana

    2015-01-01

    Milk contains plenty of enzymatic and non-enzymatic antioxidant components that probably account for the vital antioxidant protection of the infants at early stages of life against the development of complications induced by oxygen free radicals. Indigenous milk enzymes play a key role in regulating lactogenesis, including active involution of mammary gland. Moreover, they are essential constituents of antioxidation and the innate immune system of milk. Among antioxidant enzymes, superoxide d...

  14. Marine natural products as novel antioxidant prototypes.

    Science.gov (United States)

    Takamatsu, Satoshi; Hodges, Tyler W; Rajbhandari, Ira; Gerwick, William H; Hamann, Mark T; Nagle, Dale G

    2003-05-01

    Pure natural products isolated from marine sponges, algae, and cyanobacteria were examined for antioxidant activity using a 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) solution-based chemical assay and a 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) cellular-based assay. The DCFH system detects only antioxidants that penetrate cellular membranes. Potent antioxidants were identified and the results from each system compared. The algal metabolites cymopol (1), avrainvilleol (3), and fragilamide (4), and the invertebrate constituent puupehenone (5) showed strong antioxidant activity in both systems. Several compounds were active in the DPPH assay but significantly less active in the DCFH system. The green algal metabolite 7-hydroxycymopol (2) was isolated from Cymopolia barbataand its structure determined. Compound 2 was significantly less active in the DCFH system than cymopol (1). The sponge metabolites (1S)-(+)-curcuphenol (6), aaptamine (7), isoaaptamine (8), and curcudiol (9) and the cyanobacterial pigment scytonemin (10) showed strong antioxidant activity in the DPPH assay, but were relatively inactive in the DCFH system. Thus, cellular uptake dramatically affects the potential significance of antioxidants discovered using only the DPPH assay. The apparent "proantioxidants" hormothamnione A diacetate (11) and Laurencia monomer diacetate (12) require metabolic activation for antioxidant activity. Significant advantages are achieved using both a solution- and cellular-based assay to discover new antioxidants.

  15. Enamel ultrastructure in pigmented hypomaturation amelogenesis imperfecta.

    Science.gov (United States)

    Wright, J T; Lord, V; Robinson, C; Shore, R

    1992-10-01

    Hypomaturation amelogenesis imperfecta (AI) is a hereditary condition of enamel that is presumed to result from defects during the maturation stage of enamel development. This study characterized the enamel ultrastructure and enamel crystallite morphology, as well as the distribution of organic material in enamel affected with pigmented hypomaturation AI. Enamel exhibiting autosomal recessive pigmented hypomaturation AI was sectioned or fractured and examined using light microscopy, scanning electron microscopy and transmission electron microscopy. Enamel samples were treated with 30% NaOCl or 8 M urea to remove organic components and determine the effect of deproteinization on crystallite morphology. These were compared with untreated normal enamel samples. The enamel crystallites in hypomaturation AI exhibited considerable variability in size and morphology. Examination of deproteinized tissue indicated that the AI crystallites had a thick coating, presumably of organic or partially mineralized material, which was not visible in normal enamel. The results of this investigation provide further evidence that hypomaturation AI is associated with the retention of organic material that is most probably enamel protein. Enamel protein retention is likely to be involved in the inhibition of normal crystallite growth resulting in the morphological crystallite abnormalities associated with this disorder.

  16. Spermatozoon ultrastructure in two monorchiid digeneans.

    Science.gov (United States)

    Quilichini, Yann; Bakhoum, Abdoulaye J S; Justine, Jean-Lou; Bray, Rodney A; Bâ, Cheikh T; Marchand, Bernard

    2016-01-01

    Spermatological characteristics of species from two monorchiid genera, Opisthomonorchis and Paramonorcheides, have been investigated, for the first time, by means of transmission electron microscopy. The ultrastructural study reveals that the mature spermatozoon of Opisthomonorchis dinema and Paramonorcheides selaris share several characters such as the presence of two axonemes of different lengths showing the 9+"1" pattern of the Trepaxonemata, a nucleus, two mitochondria, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, spine-like bodies, granules of glycogen and similar morphologies of the anterior and posterior extremities. The slight differences between the male gamete of O. dinema and P. selaris are the length of the first axoneme and the position of the second mitochondrion. This study also elucidates the general morphology of the spermatozoon in all monorchiid species described so far, which corresponds to a unique spermatozoon type. Other interesting finds concern the spermatological similarities between monorchiid spermatozoa and the mature spermatozoon reported in the apocreadiid Neoapocreadium chabaudi. These similarities allow us to suggest a close phylogenetical relationship between the Monorchiidae and the Apocreadiidae, although more studies are needed, especially in the unexplored taxa.

  17. Ultrastructural cytochemical analysis of intranuclear arsenic inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, E.M.B.

    1987-01-01

    To establish the chemical composition of the arsenic inclusion, freshly isolated preparations of inclusions and epon-embedded thin sections of inclusions were subjected to ultrastructural cytochemical analysis. Intranuclear inclusions are composed of amorphous, arsenic-containing subunits aligned linearly to form a coiled complex. Lipase, ribonuclease, deoxyribonuclease, trypsin, pepsin, protease, amylase, or ethylenediaminetetraacetic acid (EDTA) was used to digest or chelate these inclusions. Following enzymatic digestion or chelation, the electron opacity of inclusions was compared with that of control sections exposed for equal times to equivalent solutions lacking the enzymes. Exposure to amylase caused a consistent reduction in the electron opacity of thin sections of inclusions and almost complete digestion of the freshly isolated preparations of inclusions. This was indicative of the presence of a carbohydrate moiety within arsenic inclusions. Incubation of inclusions with EDTA resulted in solubilization of freshly isolated and thin-sectioned embedded material. These data indicated that the intranuclear arsenic inclusion is composed of both metallic and carbohydrate moieties, confirming earlier studies which identified arsenic within inclusions using instrumental neutron activation analysis and x-ray microprobe analysis.

  18. Ultrastructural Characterization of Zika Virus Replication Factories.

    Science.gov (United States)

    Cortese, Mirko; Goellner, Sarah; Acosta, Eliana Gisela; Neufeldt, Christopher John; Oleksiuk, Olga; Lampe, Marko; Haselmann, Uta; Funaya, Charlotta; Schieber, Nicole; Ronchi, Paolo; Schorb, Martin; Pruunsild, Priit; Schwab, Yannick; Chatel-Chaix, Laurent; Ruggieri, Alessia; Bartenschlager, Ralf

    2017-02-28

    A global concern has emerged with the pandemic spread of Zika virus (ZIKV) infections that can cause severe neurological symptoms in adults and newborns. ZIKV is a positive-strand RNA virus replicating in virus-induced membranous replication factories (RFs). Here we used various imaging techniques to investigate the ultrastructural details of ZIKV RFs and their relationship with host cell organelles. Analyses of human hepatic cells and neural progenitor cells infected with ZIKV revealed endoplasmic reticulum (ER) membrane invaginations containing pore-like openings toward the cytosol, reminiscent to RFs in Dengue virus-infected cells. Both the MR766 African strain and the H/PF/2013 Asian strain, the latter linked to neurological diseases, induce RFs of similar architecture. Importantly, ZIKV infection causes a drastic reorganization of microtubules and intermediate filaments forming cage-like structures surrounding the viral RF. Consistently, ZIKV replication is suppressed by cytoskeleton-targeting drugs. Thus, ZIKV RFs are tightly linked to rearrangements of the host cell cytoskeleton. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Ultrastructural Characterization of Zika Virus Replication Factories

    Directory of Open Access Journals (Sweden)

    Mirko Cortese

    2017-02-01

    Full Text Available Summary: A global concern has emerged with the pandemic spread of Zika virus (ZIKV infections that can cause severe neurological symptoms in adults and newborns. ZIKV is a positive-strand RNA virus replicating in virus-induced membranous replication factories (RFs. Here we used various imaging techniques to investigate the ultrastructural details of ZIKV RFs and their relationship with host cell organelles. Analyses of human hepatic cells and neural progenitor cells infected with ZIKV revealed endoplasmic reticulum (ER membrane invaginations containing pore-like openings toward the cytosol, reminiscent to RFs in Dengue virus-infected cells. Both the MR766 African strain and the H/PF/2013 Asian strain, the latter linked to neurological diseases, induce RFs of similar architecture. Importantly, ZIKV infection causes a drastic reorganization of microtubules and intermediate filaments forming cage-like structures surrounding the viral RF. Consistently, ZIKV replication is suppressed by cytoskeleton-targeting drugs. Thus, ZIKV RFs are tightly linked to rearrangements of the host cell cytoskeleton. : Cortese et al. show that ZIKV infection in both human hepatoma and neuronal progenitor cells induces drastic structural modification of the cellular architecture. Microtubules and intermediate filaments surround the viral replication factory composed of vesicles corresponding to ER membrane invagination toward the ER lumen. Importantly, alteration of microtubule flexibility impairs ZIKV replication. Keywords: Zika virus, flavivirus, human neural progenitor cells, replication factories, replication organelles, microtubules, intermediate filaments, electron microscopy, electron tomography, live-cell imaging

  20. Spermatozoon ultrastructure in two monorchiid digeneans

    Directory of Open Access Journals (Sweden)

    Yann Quilichini

    2016-09-01

    Full Text Available Spermatological characteristics of species from two monorchiid genera, Opisthomonorchis and Paramonorcheides, have been investigated, for the first time, by means of transmission electron microscopy. The ultrastructural study reveals that the mature spermatozoon of Opisthomonorchis dinema and Paramonorcheides selaris share several characters such as the presence of two axonemes of different lengths showing the 9+“1” pattern of the Trepaxonemata, a nucleus, two mitochondria, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, spine-like bodies, granules of glycogen and similar morphologies of the anterior and posterior extremities. The slight differences between the male gamete of O. dinema and P. selaris are the length of the first axoneme and the position of the second mitochondrion. This study also elucidates the general morphology of the spermatozoon in all monorchiid species described so far, which corresponds to a unique spermatozoon type. Other interesting finds concern the spermatological similarities between monorchiid spermatozoa and the mature spermatozoon reported in the apocreadiid Neoapocreadium chabaudi. These similarities allow us to suggest a close phylogenetical relationship between the Monorchiidae and the Apocreadiidae, although more studies are needed, especially in the unexplored taxa.

  1. Oral Nigella sativa oil and thymoquinone administration ameliorates the effect of long-term cisplatin treatment on the enzymes of carbohydrate metabolism, brush border membrane, and antioxidant defense in rat intestine.

    Science.gov (United States)

    Shahid, Faaiza; Farooqui, Zeba; Khan, Aijaz Ahmed; Khan, Farah

    2018-02-01

    We have previously shown that oral administration of Nigella sativa oil (NSO) ameliorates the deleterious gastrointestinal effects of cisplatin (CP), administered as a single dose. Since a typical clinical CP dosing regimen involves multiple cycles of CP administration in lower doses, in the present study we investigate the protective efficacy of NSO and its major bioactive constituent, thymoquinone (TQ), against multiple-dose CP treatment-induced deleterious biochemical and histological changes in rat intestine. Rats were divided into six groups, viz., control, CP, CP+NSO, CP+TQ, NSO, and TQ. Animals in CP+NSO and CP+TQ groups were pre-administered NSO (2 ml/kg bwt, orally) and TQ (1.5 mg/kg bwt, orally), respectively, daily for 14 days and were then treated with five repeated doses of CP (3 mg/kg bwt, i.p.), every fourth day for 20 days while still receiving NSO/TQ. CP treatment alone led to a significant decline in specific activities of brush border membrane (BBM) enzymes while NSO or TQ administration to CP-treated rats significantly prevented the decline in BBM enzyme activities in the isolated brush border membrane vesicles (BBMV) as well as in mucosal homogenates. Furthermore, both NSO and TQ administration markedly ameliorated CP-induced alterations on carbohydrate metabolism enzymes and the enzymatic and non-enzymatic parameters of antioxidant defense system in the intestinal mucosa. However, NSO appeared to be more efficacious than TQ in protecting against CP-induced gastrointestinal dysfunction. Histopathological findings corroborated the biochemical results. Thus, NSO and TQ may prove clinically useful in amelioration of the intestinal toxicity associated with long-term CP chemotherapy.

  2. Biochemical and Ultrastructural Cardiac Changes Induced by High-Fat Diet in Female and Male Prepubertal Rabbits

    Directory of Open Access Journals (Sweden)

    Dina Sibouakaz

    2018-01-01

    Full Text Available Early weight gain induced by high-fat diet has been identified as a predictor for cardiac disease, one of the most serious public health problems. Our goal is to study the influence of a HFD on biochemical, oxidant stress parameters, and the cardiac ultrastructure in both male and female prepubertal models. Experiments were carried on 24 prepubertal New Zealand white rabbits, randomly assigned to male and female control (MC and FC, resp. or HFD (MHFD and FHFD, resp. groups (n=6 for 3 months. Body and heart weights and some biochemical and oxidative stress parameters such as lipids, calcium, CKMB, MDA, uric acid, ascorbic acid, and AOA are evaluated in plasma and the left ventricle. Under HFD effect, plasma parameters, such as lipids (TL, PL, and LDL-C, MDA, and CK-MB, increase more significantly in male than in female groups, when AA decreases. Some cardiac parameters such as TG and UA increase, when AA and AOA decrease; these variations are more significant in FHFD. In both male and female rabbits, HFD caused changes in heart ultrastructure, junctional complexes, mitochondria size and form, and so on. Early HFD feeding induced overweight, oxidative stress, and metabolic alterations in plasma and the heart of prepubertal rabbits, whereas lipotoxicity has especially a negative impact on male plasma but affects more the female heart ultrastructure.

  3. Antioxidant effects of green tea

    Science.gov (United States)

    FORESTER, SARAH C.; LAMBERT, JOSHUA D.

    2013-01-01

    Consumption of green tea (Camellia sinensis) may provide protection against chronic diseases, including cancer. Green tea polyphenols are believed to be responsible for this cancer preventive effect, and the antioxidant activity of the green tea polyphenols has been implicated as a potential mechanism. This hypothesis has been difficult to study in vivo due to metabolism of these compounds and poor understanding of the redox environment in vivo. Green tea polyphenols can be direct antioxidants by scavenging reactive oxygen species or chelating transition metals as has been demonstrated in vitro. Alternatively, they may act indirectly by up-regulating phase II antioxidant enzymes. Evidence of this latter effect has been observed in vivo, yet more work is required to determine under which conditions these mechanisms occur. Green tea polyphenols can also be potent pro-oxidants, both in vitro and in vivo, leading to the formation of hydrogen peroxide, the hydroxyl radical, and superoxide anion. The potential role of these pro-oxidant effects in the cancer preventive activity of green tea is not well understood. The evidence for not only the antioxidant, but also pro-oxidant, properties of green tea are discussed in the present review. PMID:21538850

  4. The ultrastructure of separated and cultured cell of Porphyra yezoensis

    Science.gov (United States)

    Mei, Jun-Xue; Fei, Xiu-Geng

    2001-03-01

    There are many reports that cells (protoplasts) separated from the thallus of Porphyra by enzyme can develop to normal leafy thalli in the same way as monospores. But there are few investigations on the subcellular structure of the isolated vegetative cell for comparison with the subcellular structure of monospores. To clarify whether the separated and cultured cells undergo the same or similar ultrastructure changes during culture and germination as monospores undergo in their formation and germination, we observed their ultrastructure, compared them with those of the monospore and found that the ultrastructure of separated and cultured cells did not have the characteristic feature as that of monospore formation, such as production of small and large fibrous vesicles, but was accompanied by vacuolation and starch mobilization like that in monospore germination. The paper also discusses the relations between monospores and separated and cultured cells.

  5. Early studies of placental ultrastructure by electron microscopy

    DEFF Research Database (Denmark)

    Carter, A M; Enders, A C

    2016-01-01

    BACKGROUND: Transmission electron microscopy (TEM) was first applied to study placental ultrastructure in the 1950's. We review those early studies and mention the scientists that employed or encouraged the use of TEM. FINDINGS: Among the pioneers Edward W. Dempsey was a key figure who attracted...... many other scientists to Washington University in St. Louis. Work on human placental ultrastructure was initiated at Cambridge and Kyoto whilst domestic animals were initially studied by Björkman in Stockholm and electron micrographs of bat placenta were published by Wimsatt of Cornell University...

  6. Ultrastructural studies of Biomphalaria glabrata (Say, 1818) embryo

    International Nuclear Information System (INIS)

    Kikuchi, O.K.; Okazaki, K.; Kawano, T.; Ribeiro, A.A.G.F.C.

    1988-09-01

    Ultrastructural studies of Biomphalaria glabrata embryos (MOllusca: Gastropoda), and important snail vector of schistosomiasis has not been explored. In the present work it was evaluated a suitable electron microscopical technique for embryos processing. Promising results was obtained with double fixation in 1% glutaraldehyde plus 1% osmium tetroxide in 0.05 M cacodylate buffer (pH 7.4), preliminary staining overnight in 1% uranyl acetate and embedding in EPON or Polylite under vacuum. It was used embryos at young trochophore stage wich is characterized by active organogenesis. Some ultrastructural aspects of B. glabrata embryos cells are presented. (author) [pt

  7. Antioxidant-Induced Stress

    Directory of Open Access Journals (Sweden)

    Robert D. Kross

    2012-02-01

    Full Text Available Antioxidants are among the most popular health-protecting products, sold worldwide without prescription. Indeed, there are many reports showing the benefits of antioxidants but only a few questioning the possible harmful effects of these “drugs”. The normal balance between antioxidants and free radicals in the body is offset when either of these forces prevails. The available evidence on the harmful effects of antioxidants is analyzed in this review. In summary, a hypothesis is presented that “antioxidant-induced stress” results when antioxidants overwhelm the body’s free radicals.

  8. [Regulation of terpene metabolism]. Annual progress report, March 15, 1988--March 14, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-12-31

    Progress in understanding of the metabolism of monoterpenes by peppermint and spearmint is recorded including the actions of two key enzymes, geranyl pyrophosphate:limonene cyclase and a UDP-glucose dependent glucosyl transferase; concerning the ultrastructure of oil gland senescence; enzyme subcellular localization; regulation of metabolism; and tissue culture systems.

  9. Anti-inflammatory and ultrastructural effects of Turkish propolis in a rat model of endotoxin-induced uveitis.

    Science.gov (United States)

    Ertürküner, Salime Pelin; Yaprak Saraç, Elif; Göçmez, Semil Selcen; Ekmekçi, Hakan; Öztürk, Zeynep Banu; Seçkin, İsmail; Sever, Özkan; Keskinbora, Kadircan

    2016-01-01

    Experimental animal models of acute uveitis, an inflammatory eye disease, can be established via endotoxin-induced inflammation. Propolis, a natural substance collected by honeybees from buds and tree exudates, has antioxidant, antibacterial, antiviral, and anti-inflammatory effects. We investigated the effects of propolis, obtained from the Sakarya province of Turkey, on endotoxin-induced uveitis using immunohistochemical, ultrastructural, and biochemical approaches. Male Wistar albino rats (n = 6/group) received intraperitoneal (ip) lipopolysaccharide (LPS) endotoxin (150 μg/kg) followed by aqueous extract of propolis (50 mg/kg ip) or vehicle; two additional groups received either saline (control) or propolis only. After 24 h, aqueous humor (AH) was collected from both eyes of each animal for analysis of tumor necrosis factor-α (TNF-α) and hypoxia-inducible factor-1α (HIF-1α). Right eyeballs were paraffin-embedded for immunohistochemical staining of nuclear factor κB (NF-κB)/p65 and left eyeballs were araldite-embedded for ultrastructural analysis. Treatment of LPS-induced uveitis with propolis significantly reduced ciliary body NF-κB/p65 immunoreactivity and AH levels of HIF-1α and TNF-α. Ultrastructural analysis showed fewer vacuoles and reduced mitochondrial degeneration in the retinal pigment epithelium, as compared to the uveitis group. The intercellular spaces of the inner nuclear layer and outer limiting membrane were comparable with those of the control group; no polymorphonuclear cells or stasis was observed in intravascular or extravascular spaces. This is the first report demonstrating an anti-inflammatory effect of Turkish propolis in a rat model of LPS-induced acute uveitis, suggesting a therapeutic potential of propolis for the treatment of inflammatory ophthalmic diseases.

  10. The Protective Effect of Proponyl-L-Carnitine Against Ultrastructural Alterations in Cardiac Muscle of Irradiated and / or diabetic Rats

    International Nuclear Information System (INIS)

    Abu Nour, S.M.; Abdel-Azeem, M.G.; El-Nashar, D.E.M.

    2011-01-01

    Heart dysfunction in chronic diabetes has been observed to be associated with depressed myofibrillar adenosine triphosphatase activities. Oxidative stress a factor implicated in the heart injury may contribute towards some of these alterations. The present study was designed to evaluate the efficacy of L-carnitine on gamma radiation and diabetes induced oxidative damage in the heart by investigating alterations in the ultrastructural level. Streptozotocin was intraperitoneally injected (i.p) to rats at a dose of 28 mg/Kg b.wt / day for 2 weeks pre-irradiation. In irradiated groups, animals were exposed to 6.5 Gy whole body gamma radiation. L-carnitine was intraperitoneally injected (i.p) to rats at a dose of 250 mg/Kg b.wt/day for 2 weeks pre-irradiation. Animals were sacrificed on the 7th day after irradiation. The results demonstrated that the whole body exposure of rats to ionizing radiation induce oxidative stress which showed alterations on the ultrastructural level included dis organization with mayofibrillolysis relatively intact z-band (Z), fibrosis, swollen mitochondria, apoptotic nuclei and thickened walls of capillaries. In diabetic rats cardio muscle focal loss of myofilaments, also swelling of mitochondria and rupture of sacroplasmic reticulum, apoptotic nuclei with dilation of capillaries were evident. Administration of L-carnitine pre-irradiation has improved the ultrastructural alterations of the heart tissue. It is proposed that the oxidative stress is associated with a deficit in the status of the antioxidant defense system which may play a critical role in subcellular remodeling, calcium-handling abnormalities and subsequent diabetic cardiomyopathy

  11. Hydropriming effects on carbohydrate metabolism, antioxidant ...

    African Journals Online (AJOL)

    CQ60

    2012-02-21

    Feb 21, 2012 ... of xanthine oxidase (from bovine milk; Sigma-Aldrich Chemie. GmbH P.O., Steinheim, Germany). The mixture was incubated at. 30°C for 20 min, after which 0.2 ml of 8 mM CuCl2 was added and the activity of the enzyme was measured using the absorbance at. 560 nm. One unit of SOD was defined as the ...

  12. Oxidative damage, ultrastructural alterations and gene expressions of hemocytes in the freshwater crab Sinopotamon henanense exposed to cadmium.

    Science.gov (United States)

    Zhou, Yanying; Jing, Weixin; Dahms, Hans-Uwe; Hwang, Jiang-Shiou; Wang, Lan

    2017-04-01

    Toxicity of Cd was tested with the hemocytes of the freshwater crab, Sinopotamon henanense, which were exposed to concentrations of 0, 0.725, 1.450, and 2.900mgL -1 Cd for 7, 14 and 21 d. We investigated the effects of Cd on the total antioxidant capacity (TAC), and oxidative damage of biomarkers, such as malondialdehyde (MDA), protein carbonyl derivates (PCO), and DNA-protein crosslink (DPC). Transmission electron microscopy (TEM) was applied to assess ultrastructural changes of hemocytes. The mRNA expression levels of prophenoloxidase (proPO), lysozyme (LSZ), metallothionein (MT), and the activity of phenoloxidase (PO) were also determined. Our results showed that TAC was inhibited by Cd, resulting in an increase of MDA contents, PCO contents, and DPC levels in hemocytes, respectively. Ultrastructural observations revealed that chromatin condensation, nucleus deformation, mitochondrial dilation, rough endoplasmatic reticulum (rER) degranulation and secondary or tertiary lysosomes were observed in hemocytes of crabs exposed to Cd. Meanwhile, the expression levels of proPO were down-regulated, while the activity of PO was up-regulated in hemocytes. The expression levels of LSZ and MT were up-regulated to some extent. Our findings suggest these parameters could be used as biomarkers in the monitoring of heavy metal pollution and quantitative risk assessments of pollutant exposure. Copyright © 2016. Published by Elsevier Inc.

  13. Ultrastructure and elemental analysis of Hypoxis hemerocallidea : A ...

    African Journals Online (AJOL)

    The ultrastructure and crystal deposits of the plant were assessed using scanning electron microscopy (SEM), and energy dispersive x-ray (EDX). Results: It was observed that the leaves were characterised by multicelullar glandular and non glandular trichomes which are sparsely distributed over the entire surfaces.

  14. Ultrastructure of the lingual epithelium of adult scincine lizard ...

    African Journals Online (AJOL)

    In the present investigation, the histological and histochemical characteristics, as well as the ultrastructure of the lingual epithelium of the adult lizard Chalcides ocellatus, were investigated by light microscopy (LM) and scanning electron microscopy (SEM). Histological examination revealed taste buds and sensory papillae ...

  15. Biological, Histological and Ultra-Structural Studies of Female Mullet ...

    African Journals Online (AJOL)

    Biological, Histological and Ultra-Structural Studies of Female Mullet, Mugil cephalus , Ovaries Collected from Different Habitats during Annual Reproductive Cycle. ... 35 and 52 cm, respectively; whereas, the total number of ripe ova in brackish water fish ranged from 0.57±0.14 to 3.81±0.59 x106 for the same length groups.

  16. Ultrastructural description of the corpora allata of Pimpla turionellae ...

    African Journals Online (AJOL)

    The corpora allata, are endocrine glands which produced juvenile hormone. In this study, corpora allata of adult females of Pimpla turionellae were examined ultrastructurally by using the transmission electron microscopy. The gland is surrounded with thick fibrous capsule that penetrates into the gland as a stromatal ...

  17. Investigations of ultrastructure of damaged and regenerated skeletal muscle fibers.

    Science.gov (United States)

    Lańcut, Mirosław; Godlewski, Piotr; Lis-Sochocka, Marta; Visconti, Józef; Czerny, Krystyna

    2004-01-01

    Our investigations concerned the head of the parietal part of quadriceps femoris, and we based our investigation on observations of the ultrastructure of muscle fibers using an electron microscope. We observed tissue samples taken from patients (10 men) 25-35 years old, who had old damage of knee joint ligament (after about 6 week's immobilization). In the first group, segments of tissue of parietal head of quadriceps femoris were taken inter-operationally from patients in whom there was found old damage of knee joint ligament. The second group was of tissue segments of this muscle after surgical repair of knee and rehabilitation, which consisted in power training using resistance machines. The muscle fiber samples of quadriceps femoris which were taken from patients during the first operation, showed big changes in their ultrastructure. These changes included: myofibrils disintegration; disturbance of regularly arranged striation in sarcomers; dissappearance of Z line. In the sarcoplasm, we observed large vacuolisation, and in the interfibrillar spaces--an accumulation of exudate and morphotic elements of blood outside the capillary vessels. Observations of muscle tissue after regeneration, showed a big improvement in the muscle cell's ultrastructure--the myofibrils were regularly arranged, and the sarcomers striations showed no deviations from normal structure. We also observed a considerable increase in the number of properly formed ultrastructure mitochondria when compared with the first group.

  18. Surface ultrastructure of third-instar Megaselia scalaris (Diptera: Phoridae

    Directory of Open Access Journals (Sweden)

    Sukontason Kabkaew L

    2002-01-01

    Full Text Available We describe some ultrastructure of the third-instar Megaselia scalaris (Diptera: Phoridae using scanning electron microscopy, with the cephalic segment, anterior spiracle and posterior spiracle being emphasized. This study provides the taxonomic information of this larval species, which may be useful to differentiate from other closely-related species.

  19. The ultrastructure of the midgut epithelium in millipedes (Myriapoda, Diplopoda)

    Czech Academy of Sciences Publication Activity Database

    Sosinka, A.; Rost-Roszkowska, M.M.; Vilímová, J.; Tajovský, Karel; Kszuk-Jendrysik, M.; Chajec, Ł.; Sonakowska, L.; Kamińska, K.; Hyra, M.; Poprawa, I.

    2014-01-01

    Roč. 43, č. 5 (2014), s. 477-492 ISSN 1467-8039 Institutional support: RVO:60077344 Keywords : digestive cells * midgut epithelium * millipedes * regenerative cells * secretory cells * ultrastructure Subject RIV: EG - Zoology Impact factor: 1.650, year: 2014

  20. Ultrastructure comparison of the sensory morphology of the first- and ...

    African Journals Online (AJOL)

    Ultrastructure comparison of the sensory morphology of the first- and third-instar larvae of Parasarcophaga argyrostoma (Robineau-Desvoidy) (Diptera: Sarcophagidae). Azza Awad, Salah Abdel-Salam, Refat Abou El-Ela, Abdel-Aal Abdel-Aal, Doaa Mohamed ...

  1. Oxidative stress among subjects with metabolic syndrome in Sokoto ...

    African Journals Online (AJOL)

    2015-08-20

    Aug 20, 2015 ... and HOMA‑IR. The HDL‑C was found to be lower in subjects with metabolic syndrome but not statistically significant (P = 0.48). Antioxidant levels. The oxidative stress markers and antioxidant levels of the research participants are shown in Table 3. The subjects with metabolic syndrome had significantly ...

  2. Cadmium-induced upregulation of lipid peroxidation and reactive oxygen species caused physiological, biochemical, and ultrastructural changes in upland cotton seedlings.

    Science.gov (United States)

    Khan, Muhammad Daud; Mei, Lei; Ali, Basharat; Chen, Yue; Cheng, Xin; Zhu, S J

    2013-01-01

    Cadmium (Cd) toxicity was investigated in cotton cultivar (ZMS-49) using physiological, ultrastructural, and biochemical parameters. Biomass-based tolerance index decreased, and water contents increased at 500 μM Cd. Photosynthetic efficiency determined by chlorophyll fluorescence and photosynthetic pigments declined under Cd stress. Cd contents were more in roots than shoots. A significant decrease in nutrient levels was found in roots and stem. A significant decrease in nutrient levels was found in roots and stems. In response to Cd stress, more MDA and ROS contents were produced in leaves than in other parts of the seedlings. Total soluble proteins were reduced in all parts except in roots at 500 μM Cd. Oxidative metabolism was higher in leaves than aerial parts of the plant. There were insignificant alterations in roots and leaves ultrastructures such as a little increase in nucleoli, vacuoles, starch granules, and plastoglobuli in Cd-imposed stressful conditions. Scanning micrographs at 500 μM Cd showed a reduced number of stomata as well as near absence of closed stomata. Cd depositions were located in cell wall, vacuoles, and intracellular spaces using TEM-EDX technology. Upregulation of oxidative metabolism, less ultrastructural modification, and Cd deposition in dead parts of cells show that ZMS-49 has genetic potential to resist Cd stress, which need to be explored.

  3. Nano-TiO2 Is Not Phytotoxic As Revealed by the Oilseed Rape Growth and Photosynthetic Apparatus Ultra-Structural Response.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available Recently nano-materials are widely used but they have shown contrasting effects on human and plant life. Keeping in view the contrasting results, the present study has evaluated plant growth response, antioxidant system activity and photosynthetic apparatus physiological and ultrastructural changes in Brassica napus L. plants grown under a wide range (0, 500, 2500, 4000 mg/l of nano-TiO2 in a pot experiment. Nano-TiO2 has significantly improved the morphological and physiological indices of oilseed rape plants under our experimental conditions. All the parameters i-e morphological (root length, plant height, fresh biomass, physiological (photosynthetic gas exchange, chlorophyll content, nitrate reductase activity and antioxidant system (Superoxide dismutase, SOD; Guaiacol peroxidase, POD; Catalase, CAT recorded have shown improvement in their performance by following nano-TiO2 dose-dependent manner. No significant chloroplast ultra-structural changes were observed. Transmission electron microscopic images have shown that intact & typical grana and stroma thylakoid membranes were in the chloroplast, which suggest that nano-TiO2 has not induced the stressful environment within chloroplast. Finally, it is suggested that, nano-TiO2 have growth promoting effect on oilseed rape plants.

  4. Ultra-structural morphology of long-term cultivated white adipose tissue-derived stem cells.

    Science.gov (United States)

    Varga, Ivan; Miko, Michal; Oravcová, Lenka; Bačkayová, Tatiana; Koller, Ján; Danišovič, Ľuboš

    2015-12-01

    White adipose tissue was long perceived as a passive lipid storage depot but it is now considered as an active and important endocrine organ. It also harbours not only adipocytes and vascular cells but also a wide array of immunologically active cells, including macrophages and lymphocytes, which may induce obesity-related inflammation. Recently, adipose tissue has been reported as a source of adult mesenchymal stem cells with wide use in regenerative medicine and tissue engineering. Their relatively non-complicated procurement and collection (often performed as liposuction during aesthetic surgery) and grand plasticity support this idea even more. We focused our research on exploring the issues of isolation and long-term cultivation of mesenchymal stem cells obtained from adipose tissue. Ultra-structural morphology of the cells cultivated in vitro has been studied and analysed in several cultivation time periods and following serial passages--up to 30 passages. In the first passages they had ultra-structural characteristics of cells with high proteosynthetic activity. Within the cytoplasm, big number of small lipid droplets and between them, sparsely placed, small and inconspicuous, electron-dense, lamellar bodies, which resembled myelin figures were observed. The cells from the later passages contained high number of lamellar electron-dense structures, which filled out almost the entire cytoplasm. In between, mitochondria were often found. These bodies were sometimes small and resembled myelin figures, but several of them reached huge dimensions (more than 1 µm) and their lamellar structure was not distinguishable. We did not have an answer to the question about their function, but they probably represented the evidence of active metabolism of lipids present in the cytoplasm of these cells or represented residual bodies, which arise after the breakdown of cellular organelles, notably mitochondria during long-term cultivation.

  5. Sanguineous normothermic, intermittent cardioplegia, effects on hypertrophic myocardium: morphometric, metabolic and ultrastructural studies in rabbits hearts Efeitos da cardioplegia sanguínea normotérmica intermitente, em miocárdio hipertrófico: estudos morfométricos, metabólicos e ultraestruturais em corações coelhos

    Directory of Open Access Journals (Sweden)

    Clovis Carbone Junior

    2012-12-01

    Full Text Available OBJECTIVES: The present investigation aimed to study the protective effect of intermittent normothermic cardioplegia in rabbit's hypertrophic hearts. METHODS: The parameters chosen were 1 the ratio heart weight / body weight, 2 the myocardial glycogen levels, 3 ultrastructural changes of light and electron microscopy, and 4 mitochondrial respiration. RESULTS: 1 The experimental model, coarctation of the aorta induced left ventricular hypertrophy; 2 the temporal evolution of the glycogen levels in hypertrophic myocardium demonstrates that there is a significant decrease; 3 It was observed a time-dependent trend of higher oxygen consumption values in the hypertrophic group; 4 there was a significant time-dependent decrease in the respiratory coefficient rate in the hypertrophic group; 5 the stoichiometries values of the ADP: O2 revealed the downward trend of the values of the hypertrophic group; 6 It was possible to observe damaged mitochondria from hypertrophic myocardium emphasizing the large heterogeneity of data. CONCLUSION: The acquisition of biochemical data, especially the increase in speed of glycogen breakdown, when anatomical changes are not detected, represents an important result even when considering all the difficulties inherent in the process of translating experimental results into clinical practice. With regard to the adopted methods, it is clear that morphometric methods are less specific. Otherwise, the biochemical data allow detecting alterations of glycogen concentrations and mitochondria respiration before the morphometric alterations should be detectedOBJETIVOS: O presente estudo teve como objetivo estudar o efeito protetor da cardioplegia normotérmica intermitente em corações hipertróficos de coelhos. MÉTODOS: Os parâmetros escolhidos foram: 1 relação peso cardíaco/peso corporal; 2 níveis de glicogênio nos músculos cardíacos; 3 alterações ultraestruturais por microscopia óptica e eletrônica; e 4 respira

  6. Ultrastructure of spermatogenesis in the testis of Paragonimus heterotremus.

    Science.gov (United States)

    Uabundit, Nongnut; Kanla, Pipatphong; Puthiwat, Phongphithak; Arunyanart, Channarong; Chaiciwamongkol, Kowit; Maleewong, Wanchai; Intapan, Pewpan M; Iamsaard, Sitthichai; Hipkaeo, Wiphawi

    2013-12-01

    Lung fluke, Paragonimus heterotremus, is a flatworm causing pulmonary paragonimiasis in cats, dogs, and humans in Southeast Asia. We examined the ultrastructure of the testis of adult P. heterotremus with special attention to spermatogenesis and spermiogenesis using scanning and transmission electron microscopy. The full sequence of spermatogenesis and spermiogenesis, from the capsular basal lamina to the luminal surface, was demonstrated. The sequence comprises spermatogonia, spermatocytes with obvious nuclear synaptonemal complexes, spermatids, and eventual spermatozoa. Moreover, full steps of spermatid differentiation were shown which consisted of 1) early stage, 2) differentiation stage representing the flagella, intercentriolar body, basal body, striated rootlets, and electron dense nucleus of thread-like lamellar configuration, and 3) growing spermatid flagella. Detailed ultrastructure of 2 different types of spermatozoa was also shown in this study.

  7. Crohn's disease: ultrastructure of interstitial cells in colonic myenteric plexus

    DEFF Research Database (Denmark)

    Rumessen, Jüri Johs.; Vanderwinden, Jean-Marie; Horn, Thomas

    2011-01-01

    -MP and other interstitial cells in the myenteric region of the colon are lacking for CD. In the present study, we characterized the ultrastructure of interstitial cells, nerves, and glial cells in the myenteric region in Crohn's colitis (CC). In comparison with controls, varicosities of the myenteric bundles...... were dilated and appeared to be empty. Lipid droplets and lipofuscin-bodies were prominent in glial cells and neurons. ICC-MP were scanty but, as in controls, had caveolae, prominent intermediate filaments, cytoplasmic dense bodies, and membrane-associated dense bands with a patchy basal lamina. ICC......The role of the interstitial cells of Cajal (ICC) in chronic inflammatory bowel disease, i.e., ulcerative colitis (UC) and Crohn's disease (CD), remains unclear. Ultrastructural alterations in ICC in the colonic myenteric plexus (ICC-MP) have been reported previously in UC, but descriptions of ICC...

  8. Morphological and ultrastructural characterization of sea urchin immune cells.

    Science.gov (United States)

    Deveci, Remziye; Şener, Ecem; İzzetoğlu, Savaş

    2015-05-01

    The free circulating coelomocytes in the coelomic cavity of echinoderms are considered to be immune effectors by phagocytosis, encapsulation, cytotoxicity, and by the production of antimicrobial agents. Although echinoderms (especially sea urchin embryo) have been used as a model organisms in biology, no uniform criteria exist for classification of coelomocytes in echinoderms, and few studies have reported about the biological functions of their coelomocytes. Hence, we study the coelomocytes in the echinoid sea urchin, Paracentrotus lividus, and describe their morphological and ultrastructural features using light and transmission electron microscopes. We classify the coelomocytes of P. lividus into red spherule and colorless spherule cells, small cells, vibratile cells, and phagocytic cells; petaloid and filopodial cells. To our knowledge, this is the first report describing ultrastructural details of the coelomocytes of P. lividus. © 2015 Wiley Periodicals, Inc.

  9. Ultrastructure of Withania Somnifera (L.) Dunal pollen grains

    International Nuclear Information System (INIS)

    Alwadie, H.M.

    2002-01-01

    Light, scanning and transmission electron microscopy were used to study the morphology and ultrastructure of Withania Somnifera (L.) Dunall pollen grains. Light microscopic examination revealed that the pollen grains are tri- or tetrazonocoplate grains, approximately as long as broad, measuring 29-um. Scanning electron microscopic observation showed that surface sculpturing of the pollen is scarbate-granulate. Ultrathin sections as examined by transmission electron microscope showed that the pollen contained numerous starch grains, lipid droplets, endoplasmic reticulum and vesicles of dictyosomes. Two layers of the pollen wall were also distinguished, the outer wall (exine) divided into ektexine and endexine as well as the inner layer (intine). The nutritive values of Withania pollen are discussed. The importance of studying the ultrastructure of pollen grains as a new tool in palynology is also discussed. (author)

  10. Ultrastructural localization of 5-methylcytosine on DNA and RNA.

    Science.gov (United States)

    Masiello, Irene; Biggiogera, Marco

    2017-08-01

    DNA methylation is the major epigenetic modification and it is involved in the negative regulation of gene expression. Its alteration can lead to neoplastic transformation. Several biomolecular approaches are nowadays used to study this modification on DNA, but also on RNA molecules, which are known to play a role in different biological processes. RNA methylation is one of the most common RNA modifications and 5-methylcytosine presence has recently been suggested in mRNA. However, an analysis of nucleic acid methylation at electron microscope is still lacking. Therefore, we visualized DNA methylation status and RNA methylation sites in the interphase nucleus of HeLa cells and rat hepatocytes by ultrastructural immunocytochemistry and cytochemical staining. This approach represents an efficient alternative to study nucleic acid methylation. In particular, this ultrastructural method makes the visualization of this epigenetic modification on a single RNA molecule possible, thus overcoming the technical limitations for a (pre-)mRNA methylation analysis.

  11. Histochemical and ultrastructural study of adult human tendon.

    Science.gov (United States)

    Józsa, L; Bálint, J B; Réffy, A; Demel, Z

    1979-01-01

    The authors have studied the enzymhistochemical and ultrastructural pictures of tenocytes of adult human tendons. High succinate dehydrogenase, cytochrome oxidase, TPN-diaphorase, lactate dehydrogenase and glucose-6-phosphate dehydrogenase activity were found, as indicated both oxidativ, anaerobic and pentose-phosphate shung activity. Phosphorylase and glutamate dehydrogenase activity was medial, lipase and alcaline phosphatase activity was slight. In tenocytes well developed rough endoplasmic reticulum and GOLGI apparatus, large amount of free ribosomes were found.

  12. Behavioural and ultrastructural activity relationship as early warning ...

    African Journals Online (AJOL)

    Heterogeneous sexes of fish consisting of 18 females (gravid and non-gravid), and 9 males, in three replicates, were separately exposed to spinosad (49 and 110 μgL-1) and chlorpyrifos (0.4 and 0.8 μgL-1) at dosages that did not cause physical death for 28-days under static renewal bioassay with control. Ultrastructural ...

  13. Nanoscale Correlated Disorder in Out-of-Equilibrium Myelin Ultrastructure.

    Science.gov (United States)

    Campi, Gaetano; Di Gioacchino, Michael; Poccia, Nicola; Ricci, Alessandro; Burghammer, Manfred; Ciasca, Gabriele; Bianconi, Antonio

    2018-01-23

    Ultrastructural fluctuations at nanoscale are fundamental to assess properties and functionalities of advanced out-of-equilibrium materials. We have taken myelin as a model of supramolecular assembly in out-of-equilibrium living matter. Myelin sheath is a simple stable multilamellar structure of high relevance and impact in biomedicine. Although it is known that myelin has a quasi-crystalline ultrastructure, there is no information on its fluctuations at nanoscale in different states due to limitations of the available standard techniques. To overcome these limitations, we have used scanning micro X-ray diffraction, which is a unique non-invasive probe of both reciprocal and real space to visualize statistical fluctuations of myelin order of the sciatic nerve of Xenopus laevis. The results show that the ultrastructure period of the myelin is stabilized by large anticorrelated fluctuations at nanoscale, between hydrophobic and hydrophilic layers. The ratio between the total thickness of hydrophilic and hydrophobic layers defines the conformational parameter, which describes the different states of myelin. Our key result is that myelin in its out-of-equilibrium functional state fluctuates point-to-point between different conformations showing a correlated disorder described by a Levy distribution. As the system approaches the thermodynamic equilibrium in an aged state, the disorder loses its correlation degree and the structural fluctuation distribution changes to Gaussian. In a denatured state at low pH, it changes to a completely disordered stage. Our results aim to clarify the degradation mechanism in biological systems by associating these states with ultrastructural dynamic fluctuations at nanoscale.

  14. Ultrastructure of right ventricular myocardium subjected to acute pressure load.

    Science.gov (United States)

    Mühlfeld, C; Coulibaly, M; Dörge, H; Sellin, C; Liakopoulos, O; Ballat, C; Richter, J; Schoendube, F

    2004-12-01

    Ultrastructural data on acute right ventricular pressure load in pigs are rare. In control (n = 7) and banding groups (n = 6), right ventricular pressure (micromanometry) and function (sonomicrometry) were measured. Right ventricular pressure was increased 2.5-fold in the banding group by pulmonary artery constriction. Right ventricular biopsies were taken at baseline and after 6 h and processed for electron microscopy. Parameters of cellular injury were determined stereologically. Three perfusion -fixed hearts were investigated qualitatively in each group. Stereology revealed an increase in the sarcoplasmic volume fraction and the cellular edema index in the banding group ( p < 0.05). Mitochondrial surface-to-volume ratio and volume fraction did not show significant alterations. Subendocardial edema and small amounts of severely injured myocytes were observed in the perfusion-fixed hearts after banding. Ultrastructure was normal in controls. After an initial increase, the right ventricular work index declined progressively in the banding group but remained unchanged in controls. Ultrastructural alterations resulting from acute right ventricular pressure load were characterized by edema of subendocardial myocytes and single cell necrosis. Focal adrenergic overstimulation and mechanical stress are probably more relevant in the pathogenesis of these lesions than ischemia.

  15. Ultrastructural Changes in the Liver of Intravenous Heroin Addicts

    Directory of Open Access Journals (Sweden)

    Goran Ilić

    2010-02-01

    Full Text Available The ultrastructural research has a decisive role in gathering the knowledge on the liver’s response to the influence of some drugs. The aim of the study was to perform an ultrastructurai analysis of the liver in chronic intravenous heroin addicts.The study involved the autopsy conducted on 40 bodies of intravenous heroin addicts and 10 control autopsies. The liver tissue was fixed in glutaraldehyde and moulded with epon for investigation purposes of ultrastructural changes. The analysis was performed using the method of transmission electron microscopy.In the group of intravenous heroin addicts, the liver autopsy samples showed degenerative vesicular and fat changes, chronic active and persistent hepatitis, cirrhosis, reduction in the amount of glycogen in hepatocytes, as well as the Kupffer cell’s dominant hypertrophy. Various changes occur in organelles, plasma membrane of hepatocytes and biliary channels as well as in the nucleus.The most important ultrastructural findings include: hyperplasia and hypertrophy of the smooth endoplasmic reticulum, which is histologically proven vesicular degeneration of hepatocyte occurring as a result of the increased synthesis of enzymes of smooth endoplasmic reticulum due to chronic intravenous heroin intake, and the presence of continuous basal membrane followed by transformation of the sinusoids into capillaries (in the cases of chronic active hepatitis and cirrhosis which leads to a disorder of microcirculation and further progress of cirrhosis.

  16. A review of the ultrastructural features of superficial candidiasis.

    Science.gov (United States)

    Jayatilake, J A M S

    2011-04-01

    Commensal yeast Candida causes opportunistic infections ranging from superficial lesions to disseminated mycoses in compromised patients. Superficial candidiasis, the commonest form of candidal infections, primarily affects the mucosa and the skin where Candida lives as a commensal. Conversion of candidal commensalism into opportunism at the fungal-epithelial interface is still ill-defined. Nevertheless, fungal virulence mechanisms such as adhesion to epithelia, morphogenesis, production of secretory hydrolytic enzymes, and phenotypic switching are thought to contribute in the process of pathogenesis. On the other hand, host responses in terms of immunity and local epithelial responses are actively involved in resisting the fungal challenge at the advancing front of the infection. Ultrastructural investigations using electron microscopy along with immunohistochemistry, cytochemistry, etc. have helped better viewing of Candida-host interactions. Thus, studies on the ultrastructure of superficial candidiasis have revealed a number of fungal behaviors and associated host responses such as adhesion, morphogenesis (hyphae and appresoria formation), thigmotropism, production and distribution of extracellular enzymes, phagocytosis, and epithelial changes. The purpose of this review is to sum up most of the ultrastructural findings of Candida-host interactions and to delineate the important pathological processes underlying superficial candidiasis.

  17. Ultrastructural morphometry of parotid acinar cells following fractionated irradiation

    International Nuclear Information System (INIS)

    Grehn, A.-L.; Gustafsson, H.; Franzen, L.; Thornell, L.-E.; Henriksson, R.

    1997-01-01

    The aim of this study was to evaluate the long term effects on the ultrastructure of parotid glands after fractionated irradiation. The method implemented involved 5 x 6 Gy and 5 x 8 Gy, Monday to Friday 6 MV photons. By unilateral irradiation, the contralateral parotid gland served as a control. Although irradiation diminished the acinar cell density in light microscopic sections from 75 to 32% after 5 x 8 Gy of irradiation, ultrastructural morphometry could not detect any statistically significant differences in acinar cell size, nuclear size, nuclear density, granule area, mean granule size, or granule density. In general, greater differences were seen between rats receiving 30 or 40 Gy, on both the irradiated and the control side, than between the irradiated side and the control side. This was interpreted as due to differences in the nutritional state of the animals. This analysis concluded that individual acinar cells that survive irradiation seem not to be damaged in the long term when evaluated at the ultrastructural level. The study further stresses the importance of adequate sampling sizes and the use of adequate controls. (author)

  18. Ultrastructural mitochondrial alterations in equine myopathies of unknown origin.

    Science.gov (United States)

    Van Driessche, K; Ducatelle, R; Chiers, K; Van Coster, R; van der Kolk, J H; van der Kolk, H

    2015-03-01

    Very few mitochondrial myopathies have been described in horses. To examine the ultrastructure of muscle mitochondria in equine cases of myopathy of unknown origin. Biopsies of vastus lateralis of the Musculus quadriceps femoris were taken predominantly immediately post mortem and processed for transmission electron microscopy. As a result, electron micrographs of 90 horses in total were available for analysis comprising 4 control horses, 16 horses suffering from myopathy and 70 otherwise diseased horses. Following a thorough clinical and laboratory work-up, four out of five patients that did not fit into the usual algorithm to detect known causes of myopathy showed ultrastructural mitochondrial alterations. Small mitochondria with zones with complete disruption of cristae associated with lactic acidemia were detected in a 17-year-old pony mare, extremely long and slender mitochondria with longitudinal cristae in a 5-year-old Quarter horse stallion, a mixture of irregular extremely large mitochondria (measuring 2500 by 800 nm) next to smaller ones in an 8-year-old Hanoverian mare and round mitochondria with only few cristae in a 11-year-old pony gelding. It remains uncertain whether the subsarcolemmal mitochondrial accumulations observed in the fifth patient have any pathological significance. Ultrastructural alterations in mitochondria were detected in at least four horses. To conclude that these are due to mitochondrial dysfuntions, biochemical tests should be performed. The possibility of a mitochondrial myopathy should be included in the differential diagnosis of muscle weakness.

  19. Effect of Turmeric and Carrot Seed Extracts on Serum Liver Biomarkers and Hepatic Lipid Peroxidation, Antioxidant Enzymes and Total Antioxidant Status in Rats

    OpenAIRE

    Rezaei-Moghadam, Adel; Mohajeri, Daryoush; Rafiei, Behnam; Dizaji, Rana; Azhdari, Asghar; Yeganehzad, Mahdi; Shahidi, Maryamossadat; Mazani, Mohammad

    2012-01-01

    Introduction: Pathogenic role of free radicals are well known in various metabolic diseases. They originate from internal and external sources of body. Essential roles of antioxidant defense system for cellular redox regulation and free radical scavenging activity were described in this study. Many in vitro investigations have shown that turmeric (TE) and carrot seed extract (CSE) exhibits to possess antioxidant activities. In this study, we evaluated the antioxidant potentials of ethanolic T...

  20. The microspores of Pleuromeia rossica Neuburg (Lycopsida; Triassic): Comparative ultrastructure and phylogenetic implications

    Science.gov (United States)

    Lugardon, Bernard; Grauvogel-Stamm, Léa; Dobruskina, Inna

    1999-09-01

    The ultrastructural features of the microspores of the Triassic lycopsid Pleuromeia rossica are similar to those of the microspores of the living Isoetes, except that the latter have an additional outermost wall. These features differ greatly from those of the spores of all the other extant Pteridophyta. Likewise, the megaspores of P. rossica, of which the comparative analysis will be presented later, are also ultrastructurally analogous to the megaspores of Isoetes. These ultrastructural similarities very likely imply close relationships between Pleuromeia and Isoetes. Moreover they suggest that these genera belong to a distinct group among the heterosporous lycopsids, in which the ultrastructural features of the microspores remained outstandingly steady.

  1. Antioxidant system parameters in children from different follow-up groups who suffered from Chernobyl accident and their changes at application of antioxidants (vitamin E and iskador)

    International Nuclear Information System (INIS)

    Antipkyin, Yu.G.; Pochinok, T.V.; Omel'chenko, L.Yi.; Arabs'ka, L.P.; Osins'ka, L.F.; Vasyuk, O.M.

    1998-01-01

    Low-dose radiation causes changes in the lipid peroxidation-antioxidant protective system in children who frequently suffer from acute respiratory virus infections. To improve the general condition and to normalize the metabolic disturbances it is advisable to administer antioxidants (vitamin E, Iskador)

  2. Delivery aspects of antioxidants in diabetes management.

    Science.gov (United States)

    Duvvuri, Lakshmi Sailaja; Katiyar, Sameer; Kumar, Ashutosh; Khan, Wahid

    2015-05-01

    Ample research has been done to study the role of oxidative stress due to the generation of excess reactive species in initiation and progression of diabetic complications. A positive result has been indicated hypothesizing that abating this oxidative stress can prove to be an alternate strategy in therapy apart from oral antidiabetic drugs. But these dietary antioxidants are less efficient because of poor solubility, permeability, instability on storage, gastrointestinal degradation and first-pass metabolism. This review gives a brief insight into the molecular mechanism of oxidative stress in development of diabetic complications. Major hurdles limiting the translation of antioxidants to clinical area are also discussed. Various delivery approaches including both conventional and novel drug delivery systems explored so far for combating these challenges in antioxidant delivery are also explored. Mitochondrial targeting of such molecules is also briefly discussed. A thorough study of clinical efficacy and safety of antioxidants on long-term use judging its clinical applicability is required. The clinical success of antioxidants as a therapeutic strategy involves a combination of effective design of drug delivery carrier that are in turn related to their degradation profile, possibility of cellular uptake at defined site of action and so on and clinical and preclinical trials that will provide a base for the design of dose and administration regimen.

  3. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L.

    Science.gov (United States)

    Gill, Rafaqat A; Zang, Lili; Ali, Basharat; Farooq, Muhammad A; Cui, Peng; Yang, Su; Ali, Shafaqat; Zhou, Weijun

    2015-02-01

    In nature, plants are continuously exposed to several biotic and abiotic stresses. Among these stresses, chromium (Cr) stress is one of the most adverse factors that affects the plant growth, and productivity, and imposes a severe threat for sustainable crop production. In the present study, toxic effects of Cr were studied in hydroponically grown seedlings of four different cultivars of Brassica napus L. viz. ZS 758, Zheda 619, ZY 50 and Zheda 622. The study revealed that elevated Cr concentrations reduced the plant growth rate and biomass as compared to respective controls in all the cultivars and this decline was more obvious in Zheda 622. It was observed that reduction of photosynthetic attributes was more pronounced in Zheda 622 as compared to other cultivars; while, cultivar ZS 758 performed better under Cr-toxicity. Results showed that Cr contents in different parts of seedlings were higher in Zheda 622 as compared to other cultivars and Cr contents were higher in roots than shoots in all the cultivars. Accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) were induced under different Cr concentrations. Results showed that some of anti-oxidant enzyme activities in leaves and roots were increased under the Cr-toxicity. The electron microscopic study showed that ultrastructural damages in leaf mesophyll and root tip cells were more prominent in Zheda 622 as compared to other cultivars under 400 μM Cr stress. Under 400 μM Cr concentration, changes like broken cell wall, immature nucleus, a number of mitochondria, ruptured thylakoid membranes and large size of vacuole and starch grains were observed in leaf ultrastructures. The damages in root cells were observed in the form of disruption of golgibodies and diffused cell wall under the higher concentration of Cr (400 μM). On the basis of these observations, it was concluded that Zheda 622 was found to be more sensitive as followed by ZY 50, Zheda 619 and ZS 758 under Cr-toxicity. Copyright

  4. Natural phenolic antioxidants in human fluids: analytical approaches and antioxidant capacity studies

    International Nuclear Information System (INIS)

    Zhang, K.; Zuo, Y.

    2006-01-01

    Phenolic compounds are the most abundant natural antioxidants in our diet. Epidemiological studies have shown the possible prevention effects of consumption of fruits and vegetables rich in phenolic compounds on degenerative diseases, such as cardiovascular diseases and cancers. However, there is a serious lack of fundamental knowledge on the uptake and metabolism of phenolic compounds in humans. It is clear that phenolic molecules, only absorbed by humans, can exert biological effects. This review presents a current knowledge on the analytical methods, antioxidant capacity measurements, as well as research strategies related to natural phenolic antioxidants on human health. Both GC-MS and LC-MS have proved to be very useful analytical techniques that can be employed to identify and quantitate targeted phenolic antioxidants and their metabolites in biofluids. Free radical quenching tests provide a direct measurement of antioxidant capacity but lack specificity and may oversimplify the in vivo human physiological environment. Research strategies are diverse and mainly focused on positive health effect of antioxidants. In the future studies, multiple potential bioactivities, both positive and negative, should be considered. (author)

  5. [Dynamics of ultrastructure changes in sheet plate fiber flax with braking transport assimilate by nitrate-anion].

    Science.gov (United States)

    Abdrakhimov, F A; Batasheva, S N; Bakirova, G G; Chikov, V I

    2008-01-01

    Changes in leaf mesophyll cell ultrastructure under nitrate feeding into the apoplast of common flax (Linum usitatissimum L.) in the form of 50 mM KNO3 solution were studied. In 30 min after the beginning of nitrate feeding through the transpiration water stream, swelling of mitochondrial and microbodies, clarification of their matrices, and curling of dictyosome discs into annular structures were observed. These events characterized symplastic domain formed by mesophyll, bundle sheath and phloem parenchyma cells, and were not found in companion cell-sieve element complex. Simultaneously, formation of large central vacuoles in companion cells was noted. Restoration of organelle structures in assimilating cells and phloem parenchyma in 1-2 h after treatment was accompanied by enhancement of morphological changes in phloem elements and companion cells and signs of plasmolysis in the mesophyll cells. It was supposed that the two-phase character of changes in leaf organelle ultrastructure and photosynthesis might reflect duality of leaf cell response to nitrate ion. The rapid alterations of the structure can be coupled with direct influence of the anion on cell metabolism and(or) with signal-regulatory functions of oxidized nitrogen forms, while the slower ones reflect the result of suppression of photoassimilate export from leaves by the anion.

  6. THE SHELL ULTRASTRUCTURE OF THE GENUS GLYCYMERIS DA COSTA, 1778: A COMPARISON BETWEEN FOSSIL AND RECENT SPECIMENS

    Directory of Open Access Journals (Sweden)

    GAIA CRIPPA

    2013-11-01

    Full Text Available New data about the shell ultrastructure of species of the genus Glycymeris are obtained through a comparison between the fabric of recent specimens from Brittany (France and fossil specimens collected from the Lower Pleistocene Castell’Arquato Formation cropping out along the Arda River in Western Emilia (Italy. This comparison, made using Scanning Electron Microscope (SEM, results in a strong similarity between the two fabrics, highlighting the good preservation of fossil ones. Both fossil and recent specimens show a well preserved outer simple crossed lamellar layer and an inner irregular and cone complex crossed lamellar layer. The inner and outer layers are separated by an irregular simple prismatic pallial myostracum. These mineralized layers are penetrated by parallel, not ramified and not bifurcated cylindrical tubules, which represent a peculiar character of the Arcoida shells. This analysis provides a more complete picture of Glycymeris shell ultrastructure. It shows that Glycymeris shell fabric has not changed for the last 2 million years and that the fossil specimens are pristine. Furthermore new data on the pattern and origin of tubules are reported, allowing to conclude that it is unlikely that they have a deterrence function for boring organisms. They may instead function to increase the volume of the organic content of the shell at lower metabolic cost without increasing the shell surface. 

  7. Survival and ultrastructural features of peach palm (Bactris gasipaes, Kunth) somatic embryos submitted to cryopreservation through vitrification.

    Science.gov (United States)

    Heringer, Angelo Schuabb; Steinmacher, Douglas André; Schmidt, Éder Carlos; Bouzon, Zenilda Laurita; Guerra, Miguel Pedro

    2013-10-01

    Bactris gasipaes (Arecaceae), also known as peach palm, was domesticated by Amazonian Indians and is cultivated for its fruit and heart-of-palm, a vegetable grown in the tree's inner core. Currently, the conservation of this species relies on in situ conditions and field gene banks. Complementary conservation strategies, such as those based on in vitro techniques, are indicated in such cases. To establish an appropriate cryopreservation protocol, this study aimed to evaluate the ultrastructural features of B. gasipaes embryogenic cultures submitted to vitrification and subsequent cryogenic temperatures. Accordingly, somatic embryo clusters were submitted to Plant Vitrification Solution 3 (PVS3). In general, cells submitted to PVS3 had viable cell characteristics associated with apparently many mitochondria, prominent nucleus, and preserved cell walls. Cells not incubated in PVS3 did not survive after the cryogenic process in liquid nitrogen. The best incubation time for the vitrification technique was 240 min, resulting in a survival rate of 37 %. In these cases, several features were indicative of quite active cell metabolism, including intact nuclei and preserved cell walls, an apparently many of mitochondria and lipid bodies, and the presence of many starch granules and condensed chromatin. Moreover, ultrastructure analysis revealed that overall cellular structures had been preserved after cryogenic treatment, thus validating the use of vitrification in conjunction with cryopreservation of peach palm elite genotypes, as well as wild genotypes, which carry a rich pool of genes that must be conserved.

  8. An ultrastructural comparison of mesotheliomas and adenocarcinomas of the ovary and endometrium.

    Science.gov (United States)

    Warhol, M J; Hunter, N J; Corson, J M

    1982-01-01

    The ultrastructural features of 16 malignant mesotheliomas were compared qualitatively and quantitatively with nine ovarian adenocarcinomas and 11 endometrial adenocarcinomas. The mesotheliomas could be distinguished ultrastructurally by their significantly greater content of tonofilaments (p less than 0.001) and their lack of structures found in both ovarian and endometrial adenocarcinomas, specifically abundant mucin, numerous cilia, and dense core granules of the neurosecretory type.

  9. Cypermethrin-induced histopathological, ultrastructural and biochemical changes in liver of albino rats: The protective role of propolis and curcumin

    Directory of Open Access Journals (Sweden)

    Manal Abdul-Hamid

    2017-06-01

    Full Text Available Cypermethrin (CYP, an insecticide belongs to a synthetic pyrethroid, is used for agriculture and household applications. The present study aimed to examine the toxic effects of CYP on rat liver and to clarify the hepatoprotective effects of propolis (PRO and curcumin (CUR against CYP. This study was assessed in male albino rats, each weighting (120–150 g. The rats were equally divided into six groups as follow; the 1st control group, 2nd PRO group (100 mg/kg/day and 3rd CUR group (100 mg/kg/day. While 4th, 5th and 6th groups were orally treated with CYP (30 mg/kg/day, CYP plus PRO and CYP plus CUR, respectively for 28 days. The present study revealed that CYP-induced significant increase in hepatic markers enzymes (ALT, AST and ALP and elevation in MDA concomitant with significant decrease of SOD and GPx levels. Histological and histochemical results revealed extensive vacuolar degeneration of hepatocytes, fatty change, blood vessel congestion and fibrosis in the liver of CYP- treated group and depletion of glycogen, protein and DNA. Moreover, ultrastructural observations showed vacuolation, damage of mitochondria and nuclear changes. On the other hand, treatment with PRO and CUR led to an obvious improvement of the injured liver tissues and ameliorating the damaging effects of CYP. In conclusion, PRO is markedly effective than CUR in protecting rats against CYP-induced histopathological, ultrastructural and biochemical changes. This protection may be due to its antioxidant properties and scavenging abilities against active free radicals.

  10. BIOSECURITY FOR REDUCING OCHRATOXIN A PRODUCTIVITY AND THEIR IMPACT ON GERMINATION AND ULTRASTRUCTURES OF GERMINATED WHEAT GRAINS

    Directory of Open Access Journals (Sweden)

    M.M.

    2012-08-01

    Full Text Available Ochratoxin A (OTA is a secondary metabolite of some fungi that causes very serious problems for plants, animals and humans. Various microorganisms such as bacteria and microscopic fungi have been tested for their abilities to prevent ochratoxin A contamination or detoxify foods. In this study, Saccharomyces cerevisiae and Lactobacillus bulgaricus reduced OTA production by Aspergillus ochraceus to 40.88 µg/ml ( productivity 60.69% and 13.80 µg/ml (productivity 20.48% respectively compared with the control (67.35 µg/ml (productivity 100%. The results clearly indicated that the seed germinibility in the presence of OTA was decreased with increasing concentration, whereas the germinibility was uncompletely ceased at high concentration (67.35 µg/ml of OTA. The maximum amount of germination was observed in control (without OTA treatment and at low concentration (13.80 µg/ml within 4 days. Antioxidant enzymes catalase and peroxidase decreased in germinated grains treated with OTA. Catalase was 18.12 U/ml in grains treated with low concentration (13.80 µg/ml of OTA while at high concentration (67.35 µg/ml, it was 12.23 U/ml compared with the control (20.33 U/ml. On the other hand, peroxidase decreased only in germinated grains treated with high concentration of OTA. The ultrastructural studies indicate that there were dramatic differences between the cells of root system of wheat seedlings of grains treated and untreated with the OTA. Cell ultrastructures of treated grains with OTA showed that the cytoplasmic membrane collapses away from the cell wall. Plasmodesmata threads were appeared in untreated cells but not formed in treated cells.

  11. Ultrastructural assessment of cellulite morphology: clues to a therapeutic strategy?

    Science.gov (United States)

    Omi, Tokuya; Sato, Shigeru; Kawana, Seiji

    2013-01-01

    Cellulite is a problematic condition affecting mostly women, characterized by a bumpy or nodular skin surface. Recent approaches with laser treatment have offered some promise. The present study sought to identify possible targets for laser treatment or light therapy through an ultrastructural investigation of the condition. Study subjects comprised 7 healthy Japanese female volunteers (Age range 37-46 yr, average 38.4) with cellulite, graded on the 4-point Nurnberger-Muller cellulite severity scale. Four patients were at grade 2 and 3 at grade 3. Three millimeter punch biopsies were obtained and routinely processed for light and transmission electron microscopy. Microphotography of specimens from cellulite patients demonstrated the presence of fibrotic septa which divided up larger clusters of adipose tissue into smaller packets, with the septa acting as a tethering system, thus producing the typical dimpling pattern. Ultrastructural findings showed proliferation of collagen and elastic fibers down into the cellulite tissue with compression of capillaries and congestion of arterioles, resulting in poor blood flow. The histological and ultrastructural findings of cellulite clearly distinguish the condition from simple fat deposition. The remodeling of the fat layer into lobulated packets of lipocytes sequestered by fibrotic septa with a high proportion of elastic fibers would suggest the use of a fiber-based interstitial laser-assisted lipolysis system at an appropriate wavelength which might offer benefits through disruption of the septae through a photomechanical effect and lipolysis of the sequestered lipocytes. This could be followed by a course of near-infrared phototherapy to accelerate clearance of freed lipid and debris and reestablish the vascular system.

  12. Ultrastructural localization of nonheme celluar iron with ferrocyanide.

    Science.gov (United States)

    Parmley, R T; Spicer, S S; Alvarez, C J

    1978-09-01

    The Prussian blue reaction was evaluated at the ultrastructural level as a cytochemical method to identify ferric and ferrous iron in rat bone marrow and splenic macrophages. Satisfactory tissue preservation and staining were achieved after fixation for 1 hr in 3% glutaraldehyde and exposure for 30 min to Perls's ferrocyanide solution before routine osmication and embedding. The acid ferrocyanide solution formed cuboidal and irregular electron-opaque deposits which localized ferric iron in the macrophage siderosomes and hyaloplasm. When thin sections were directly stained with the acid ferrocyanide, the stain deposits were much less distinct. The size and number of cytes exhibited sparse evenly distributed stain deposits. Several cells displayed abundant precipitates on the inner surface of the plasmalemma. Prussian blue precipitates were occasionally seen in mitochondria and nuclear euchromatin. Although osmium tetroxide post-fixation improved tissue preservation, it did not enhance the density of the ferri-ferrocyanide precipitate. The ferrocyanide solution yielded cuboidal deposits also in clots impregnated with ferritin, and electron diffraction analysis confirmed the symmetrical crystal structure of these stain precipitates. Smaller irregular precipitates were formed in clots impregnated with FeCl3, or Fe2 (SO4)3 solutions, despite the equally interpreted as indicating that the iron hydroxide core or protein structure of ferritin and hemosiderin contributed to the formation of the ultrastructurally evident cuboidal precipitates, but were not necessary for the formation of a colored reaction product. The acid ferrocyanide solution failed to stain clots formed in FeCI2, CuCI2 or CuCI solutions. Staining with a ferricyanide solution identified only sparse foci of ferrous iron in some siderosomes. This study demonstrates that the Prussian blue reaction can be used ultrastructurally to localize iron cations bound to some nonheme iron binding proteins.

  13. Antioxidants in Translational Medicine

    Science.gov (United States)

    Schmidt, Harald H.H.W.; Stocker, Roland; Vollbracht, Claudia; Paulsen, Gøran; Riley, Dennis

    2015-01-01

    Abstract Significance: It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. Recent Advances: The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. Critical Issues: Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. Future Directions: Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities. Antioxid. Redox Signal. 23, 1130–1143. PMID:26154592

  14. Simultaneous detection of multiple targets for ultrastructural immunocytochemistry

    Czech Academy of Sciences Publication Activity Database

    Philimonenko, Vlada; Filimonenko, Anatolij; Šloufová, I.; Hrubý, Martin; Novotný, F.; Halbhuber, Z.; Krivjanská, M.; Nebesářová, Jana; Šlouf, Miroslav; Hozák, Pavel

    2014-01-01

    Roč. 141, č. 3 (2014), s. 229-239 ISSN 0948-6143 R&D Projects: GA AV ČR KAN200520704; GA TA ČR TE01020118; GA ČR GAP305/11/2232; GA MŠk LD12063 Grant - others: Human Frontier Science Program(FR) RGP0017/2013 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:61389013 ; RVO:60077344 ; RVO:68378050 Keywords : Immunolabeling * Metal nanoparticles * Electron microscopy * Cell nucleus * Ultrastructure * Phosphatidylinositol-4,5-Bisphosphate (PIP2) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.927, year: 2013

  15. Simultaneous detection of multiple targets for ultrastructural immunocytochemistry

    Czech Academy of Sciences Publication Activity Database

    Philimonenko, Vlada; Filimonenko, Anatolij; Šloufová, I.; Hrubý, Martin; Novotný, F.; Halbhuber, Z.; Krivjanská, M.; Nebesářová, Jana; Šlouf, Miroslav; Hozák, Pavel

    2014-01-01

    Roč. 141, č. 3 (2014), s. 229-239 ISSN 0948-6143 R&D Projects: GA AV ČR KAN200520704; GA TA ČR TE01020118; GA ČR GAP305/11/2232; GA MŠk LD12063 Grant - others:Human Frontier Science Program(FR) RGP0017/2013 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:61389013 ; RVO:60077344 ; RVO:68378050 Keywords : Immunolabeling * Metal nanoparticles * Electron microscopy * Cell nucleus * Ultrastructure * Phosphatidylinositol-4,5-Bisphosphate (PIP2) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.927, year: 2013

  16. Ultrastructural modifications in Common ash tissues colonised by Chalara fraxinea

    Directory of Open Access Journals (Sweden)

    Elisa DAL MASO

    2013-01-01

    Full Text Available Chalara fraxinea, the cause of ash dieback, is present in many European countries and constitutes a severe threat to Fraxinus spp. in forests, urban areas and nurseries. This study investigated tissue colonisation strategies of the parasite in Common ash at ultrastructural level and demonstrated that C. fraxinea develops intracellularly, moving through the cells and easily colonising the phloem, paratracheal parenchyma and parenchymatic rays. However, damage to either the plasmalemma or cell walls was not observed under our experimental conditions. Furthermore, the presence of intrahyphal hyphae was frequently detected, which are likely associated with a regeneration mechanism.

  17. Anatomy and ultrastructure of root nodules of Lupinus luteus

    Directory of Open Access Journals (Sweden)

    A. Woźny

    2015-01-01

    Full Text Available The paper presents anatomic structure of root nodules of lupine (Lupinus luteus L. cv. Express and ultrastructure of cells infected by Rhizobium, The inside of cells from the infected nodule region was filled with numerous bacteria; only centrally located cell nucleus was free of bacteria. Rhizobium was present mostly in the form of "transforming bacteria" (according to the terminology by Ching et al. 1977, characterized by visible nucleoid areas, numerous ribosomes, and polyphosphate granules, although typical bacterioids with poly-β-hydroxybutyrate were also found.

  18. Autofluorescence and ultrastructure in the Myxomycete Diachea leucopodia (Physarales).

    Science.gov (United States)

    Carmarán, Cecilia C; Rosenfeldt, Sonia; Skigin, Diana; Inchaussandague, Marina; Keller, Harold W

    2013-12-01

    Autofluorescence is reported for the first time in Myxomycete fruiting bodies. Ultrastructure of stalked sporangia of Diachea leucopodia (Didymiaceae, Physarales) was studied using scanning and transmission electron microscopy, energy-dispersive X-ray microanalysis, and fluorescence microscopy. External and internal properties of the peridium that surround the spores and capillitium exhibit autofluorescence. The stalk is composed of calcareous granules and energy-dispersive X-ray microanalysis demonstrates that the elemental composition of the peridium, capillitium, and stalk has varying concentrations of calcium.

  19. [Dynamics of bioelectric activity of the brain and erythrocyte ultrastructure after intravenous infusion of sodium bicarbonate to oncologic patients].

    Science.gov (United States)

    Davydova, I G; Kassil', V L; Raĭkhlin, N T; Filippova, N A

    1992-04-01

    23 patients with malignant tumors of different location and histogenesis were investigated. There were no metastases in 9 cases. 10 patients had metastases in regional areas and 4--distant. The results were compared with those obtained in 4 patients with nonmalignant diseases. EEG, blood gases, plasma acid--base balance and ultrastructure of erythrocytes were explored before and after intravenous infusion of 4.2% sodium bicarbonate solution. The metabolic alkalosis induced amelioration of EEG, which was changed basically, the condense of pre-membrane layer disappeared or decreased in erythrocytes, and disaggregation of erythrocytes took place in cancer patients vs those with nonmalignant tumors. The results confirm the suggestion of generalized intracellular acidosis in malignant tumor patients. This acidosis can be temporarily avoided or diminished artificially by blood alkalosis.

  20. Evolution of food antioxidants as a core topic of food science for a century.

    Science.gov (United States)

    Cömert, Ezgi Doğan; Gökmen, Vural

    2018-03-01

    Antioxidants are among the most studied topics both in the area of food science and nutrition. Antioxidants were firstly used as just a food preservative, then it was realized that they inhibited the oxidation processes not only in foods but also in human metabolism. Then, they gained the spotlight with their important roles both in foods and in human body. Consequently, significant number of research articles focusing on the antioxidant content of different foods, analytical methods for better estimation and measurement of the antioxidant capacity of foods have been publishing for years. In addition, there is a growing interest among the food scientists in improving the knowledge on the physiological effects of antioxidants in the human body. This review provides a historical overview about antioxidants covering their occurrence and roles in various foods, analytical methods for the determination of their antioxidant capacity, and their physiological effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ultrastructural Characterization of Fresh and Vitrified In Vitro- and In Vivo-Produced Sheep Embryos.

    Science.gov (United States)

    Romão, R; Bettencourt, E; Pereira, R M L N; Marques, C C; Baptista, M C; Barbas, J P; Oliveira, E; Bettencourt, C; Sousa, M

    2016-06-01

    The lower results in cryopreservation of in vitro-produced (IVP) sheep embryos, when compared to the in vivo derived, limits its use. Four groups of blastocyst (BL) were evaluated: fresh IVP (n = 3), fresh in vivo derived (n = 3), warmed IVP cryopreserved in open pulled straws (OPS, n = 3) and warmed in vivo derived cryopreserved in OPS (n = 3). Ultrastructural observation of processed fresh embryos showed a reduced number of microvilli and mitochondria in the IVP ones, as well as a lower number of mature mitochondria, that can be associated with deficient metabolism in IVP embryos, possibly involved in the lower resistance to cryopreservation. Both in vivo-derived and IVP embryos had a large number of vesicles, with light and dense content. In embryos vitrified by OPS, major changes were observed mainly in IVP embryos with small changes in grade 2 (fair) and high changes in grade 3 (bad) semithin scoring. The main changes associated with cryopreservation included disruption of cellular membranes and poor intracellular preservation, with loss of microvilli and the presence of cellular debris. In conclusion, ultrastructural evaluation of IVP blastocysts cryopreserved in OPS was herein described for the first time, reporting more severe cellular damage in these embryos when compared to those produced in vivo. This is probably associated with a lower cryotolerance that can be related to their lipid content and metabolism. © 2015 Blackwell Verlag GmbH.

  2. Ultrastructure of mitochondria and the endoplasmic reticulum in renal tubules of Dahl salt-sensitive rats.

    Science.gov (United States)

    He, Xiaofeng; Liu, Yong; Usa, Kristie; Tian, Zhongmin; Cowley, Allen W; Liang, Mingyu

    2014-05-15

    Metabolic and functional abnormalities in the kidney precede or coincide with the initiation of overt hypertension in the Dahl salt-sensitive (SS) rat. However, renal histological injury in SS rats is mild before the development of overt hypertension. We performed electron microscopy analysis in 7-wk-old SS rats and salt-insensitive consomic SS.13(BN) rats and Sprague-Dawley (SD) rats fed a 4% NaCl diet for 7 days. Long mitochondria (>2 μm) accounted for a significantly smaller fraction of mitochondria in medullary thick ascending limbs in SS rats (4% ± 1%) than in SS.13(BN) rats (8% ± 1%, P tubules, however, were more abundant in SS rats than in SS.13(BN) and SD rats. The width of the endoplasmic reticulum, an index of endoplasmic reticulum stress, was significantly greater in medullary thick ascending limbs of SS rats (107 ± 1 nm) than in SS.13(BN) rats (95 ± 2 nm, P tubules examined were indistinguishable between rat strains under light microscopy. These data indicate that ultrastructural abnormalities occur in the medullary thick ascending limbs of SS rats before the development of histological injury in renal tubules, providing a potential structural basis contributing to the subsequent development of overt hypertension. Copyright © 2014 the American Physiological Society.

  3. Ultrastructural alterations of atrial myocardium induced by adriamycin in chronically treated animals.

    Science.gov (United States)

    Lambertenghi-Deliliers, G; Zanon, P L; Pozzoli, E F; Bellini, O; Praga, C

    1978-02-28

    The clinical use of adriamycin (AM) is limited by a possible dose-dependent myocardiopathy. Severe lesions of ventricular myocardium widely described by electron microscopy have been correlated to irreversible congestive heart failure. On the other hand, the atrial contractile elements which differ from the ventricular ones because of the presence of the so-called specific granules have rarely been considered. In the work described in this paper, adriamycin was injected into rabbits and mice according to schedules of chronic toxicity. At the end of the treatment the atrial myocells presented diffuse ultrastructural lesions of mitochondria, sarcoplasmic reticulum and myofibrillar bundles. These alterations might be caused by the ribonucleoprotein synthesis inhibition, by a direct drug toxicity or by an energetic crisis due to early mitochondrial lesions. Besides, adriamycin produces a decrease of the specific atrial granules that play a hypothetic role in the metabolism of myocardial cells. However, lack of information about the contents and the exact function of atrial granules does not allow us to conclude that their decrease in treated animals has a pathogenetic significance in myocardiopathy induced by adriamycin.

  4. Phylogeny, Morphology, and Metabolic and Invasive Capabilities of Epicellular Fish Coccidium Goussia janae

    Czech Academy of Sciences Publication Activity Database

    Dogga, S.K.; Bartošová-Sojková, Pavla; Lukeš, Julius; Soldati-Favre, D.

    2015-01-01

    Roč. 166, č. 6 (2015), s. 659-676 ISSN 1434-4610 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Apicomplexa * Coccidia * Goussia janae * phylogeny * ultrastructure * invasion * central carbon metabolism. Subject RIV: EG - Zoology Impact factor: 2.898, year: 2015

  5. Antioxidant Status and DNA Damage Induced by Heavy Metals in Matricaria recutita L. (Asteraceae)

    OpenAIRE

    Gjorgieva Ackova, Darinka; Kadifkova-Panovska, Tatjana; Ruskovska, Tatjana

    2011-01-01

    In summary, this study has shown that heavy metals can induce antioxidant stress and DNA damage. Antioxidative system of M. recutita seems to be inducible by environmentally encountered heavy metals concentrations. Balance of different levels of plant metabolism is essential for eliminating toxic effects of metals and maintaining of structural and metabolic integrity. Thus, oxidative stress characterized by increased production of ROS could be an important mechanism of metal toxicity, though ...

  6. Antioxidative properties of flavonoids

    NARCIS (Netherlands)

    Bowedes, T.C.F.; Luttikhold, J.; Stijn, van M.F.M.; Visser, M.; Norren, van K.; Vermeulen, M.A.R.; Leeuwen, P.A.M.

    2011-01-01

    Evidence accumulates that a family of plant compounds, known as flavonoids, can prevent or slow down the progression of cardiovascular diseases, cancer, inflammatory and neurodegenerative diseases. Flavonoids are considered beneficial, this is often attributed to their powerful antioxidant

  7. Atmospheric oxidation and antioxidants

    CERN Document Server

    Meurant, Gerard

    1993-01-01

    Volume I reviews current understanding of autoxidation, largely on the basis of the reactions of oxygen with characterised chemicals. From this flows the modern mechanism of antioxidant actions and their application in stabilisation technology.

  8. Ultrastructure of the thymus in diabetes mellitus and starvation.

    Science.gov (United States)

    Elmas, Cigdem; Erdogan, Deniz; Take, Gulnur; Ozogul, Candan; Nacar, Ahmet; Koksal, Mete

    2008-01-01

    The purpose of this study was to investigate the ultrastructural change of the thymus under stress conditions created by diabetes accompanied by fasting, and also the effects of insulin therapy. Forty-eight Sprague-Dawley type rats were used in this experiment. Type 1 diabetes symptoms were induced in 24 of the rats by the application of a single dose of intravenous streptozotocin in sodium citrate buffer through the tail vein. A single dose of sodium citrate buffer was given to rats to create a control group. Following the infusions, rats were divided into control, control and fasting, diabetes, diabetes and fasting, and insulin treatment groups. At the end of the experiment tissues from the thymus of the rats were extracted and examined using electron microscopy. Severe degeneration was observed in the prolonged fasting (stress) and diabetes groups without insulin treatment. Insulin treatment was found to mostly reverse this degeneration. This study demonstrates that the thymus was affected ultrastructurally by diabetes and concomitant fasting, and insulin treatment can reverse these changes.

  9. Pseudomembranous oral candidiasis in HIV infection: ultrastructural findings.

    Science.gov (United States)

    Reichart, P A; Philipsen, H P; Schmidt-Westhausen, A; Samaranayake, L P

    1995-07-01

    A light and electron microscopic investigation of pseudomembranous candidiasis in HIV infection was undertaken as there is little data available on the ultrastructural features of the invasive phase of Candida in this disease. On examination of biopsy specimens of four patients, histopathology revealed the classic features of superficial candidiasis, including hyphal penetration down to the spinous cell layer, parakeratosis, acanthosis and spongiosis of the infected, superficial epithelium. However, in one case, hyphae traversed the entire epithelium and crossed the basal membrane, invading the adjacent connective tissue. Ultrastructural investigations revealed initial hyphal penetration through the intercellular spaces, possibly demonstrating thigmotropism. However, hyphal penetration was not solely confined to intercellular spaces, as some specimens demonstrated hyphal elements traversing both the cytoplasm and the nuclei of the spinous cells. In these areas of the epithelium appressoria-like appendages were often found at the hyphal tip. These phenomena, commonly described in plant fungi, have rarely been described in human material. Pools of desmosomes were seen in the vicinity of the hyphal pathways, implying that the penetration procedure is associated with detachment and congregation of desmosomes, possibly by enzymatic means. Interestingly, the host immune response to fungal invasion appeared to be minimal, as no immune-effector cells were seen closely associated with either the blastospores or the hyphae in any of the tissues examined. Whether the foregoing events are exaggerated by the abortive immune response seen in HIV-infected patients, or common in immunocompetent individuals during candidal invasion of epithelia, needs to be ascertained by further studies.

  10. Collyricloides massanae (Digenea, Collyriclidae): spermatozoon ultrastructure and phylogenetic importance.

    Science.gov (United States)

    Bakhoum, Abdoulaye Jacque; Quilichini, Yann; Miquel, Jordi; Feliu, Carlos; Bâ, Cheikh Tidiane; Marchand, Bernard

    2014-01-01

    The spermatological characteristics of Collyricloides massanae (Digenea: Collyriclidae), a parasite of Apodemus sylvaticus caught in France, were studied by means of transmission electron microscopy. The mature sperm of C. massanae presents two axonemes of different lengths with the 9 + "1" pattern of the Trepaxonemata, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, spine-like bodies, one mitochondrion, a nucleus and granules of glycogen. An analysis of spermatological organisation emphasised some differences between the mature spermatozoon of C. massanae and those reported in the Gorgoderoidea species studied to date, specially belonging to the families Dicrocoeliidae, Paragonimidae and Troglotrematidae. The ultrastructural criteria described in C. massanae such as the morphology of both anterior and posterior spermatozoon extremities, the association "external ornamentation+cortical microtubules", the type 2 of external ornamentation and the spine-like bodies would allow us to bring closer the Collyriclidae to Microphalloidea. However, further ultrastructural and molecular studies are needed particularly in the unexplored taxa in order to fully resolve the phylogenetic position of the Collyriclidae. © A.J. Bakhoum et al., published by EDP Sciences, 2014.

  11. Spermatozoon ultrastructure of Thysanotaenia congolensis (Cyclophyllidea, Anoplocephalidae, Inermicapsiferinae): phylogenetic implications.

    Science.gov (United States)

    Miquel, Jordi; Świderski, Zdzisław; Feliu, Carlos

    2016-08-01

    The mature spermatozoon of Thysanotaenia congolensis, an intestinal parasite of black rat Rattus rattus from Cape Verde, is described by means of transmission electron microscopy. The ultrastructural organization of the sperm cell of T. congolensis follows Levron et al.'s type VII of the Eucestoda. It corresponds to a uniflagellate spermatozoon that presents crested bodies, periaxonemal sheath and intracytoplasmic walls, spiralled cortical microtubules and nucleus spiralled around the axoneme. These characteristics are also present in the spermatozoa of other inermicapsiferines and differ from the characters found in species belonging to the remaining subfamilies of anoplocephalids, namely Anoplocephalinae, Linstowiinae and Thysanosomatinae. Several authors consider the family Anoplocephalidae as a polyphyletic group, and its relationships with the Davaineidae are a matter of controversy. The phylogenetic implications of spermatological ultrastructural features present in inermicapsiferines and in the remaining anoplocephalids are discussed, and the available data on anoplocephalids are compared to similar results in davaineids in order to contribute to a better knowledge of relationships between these cyclophyllidean families.

  12. Collyricloides massanae (Digenea, Collyriclidae: spermatozoon ultrastructure and phylogenetic importance

    Directory of Open Access Journals (Sweden)

    Bakhoum Abdoulaye Jacque

    2014-01-01

    Full Text Available The spermatological characteristics of Collyricloides massanae (Digenea: Collyriclidae, a parasite of Apodemus sylvaticus caught in France, were studied by means of transmission electron microscopy. The mature sperm of C. massanae presents two axonemes of different lengths with the 9 + “1” pattern of the Trepaxonemata, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, spine-like bodies, one mitochondrion, a nucleus and granules of glycogen. An analysis of spermatological organisation emphasised some differences between the mature spermatozoon of C. massanae and those reported in the Gorgoderoidea species studied to date, specially belonging to the families Dicrocoeliidae, Paragonimidae and Troglotrematidae. The ultrastructural criteria described in C. massanae such as the morphology of both anterior and posterior spermatozoon extremities, the association “external ornamentation + cortical microtubules”, the type 2 of external ornamentation and the spine-like bodies would allow us to bring closer the Collyriclidae to Microphalloidea. However, further ultrastructural and molecular studies are needed particularly in the unexplored taxa in order to fully resolve the phylogenetic position of the Collyriclidae.

  13. Dietary adaptions in the ultrastructure of dinosaur dentine.

    Science.gov (United States)

    Brink, Kirstin S; Chen, Yu-Cheng; Wu, Ya-Na; Liu, Wei-Min; Shieh, Dar-Bin; Huang, Timothy D; Sun, Chi-Kuang; Reisz, Robert R

    2016-12-01

    Teeth are key to understanding the feeding ecology of both extant and extinct vertebrates. Recent studies have highlighted the previously unrecognized complexity of dinosaur dentitions and how specific tooth tissues and tooth shapes differ between taxa with different diets. However, it is unknown how the ultrastructure of these tooth tissues contributes to the differences in feeding style between taxa. In this study, we use third harmonic generation microscopy and scanning electron microscopy to examine the ultrastructure of the dentine in herbivorous and carnivorous dinosaurs to understand how the structure of this tissue contributes to the overall utility of the tooth. Morphometric analyses of dentinal tubule diameter, density and branching rates reveal a strong signal for dietary preferences, with herbivorous saurischian and ornithischian dinosaurs consistently having higher dentinal tubule density than their carnivorous relatives. We hypothesize that this relates to the hardness of the dentine, where herbivorous taxa have dentine that is more resistant to breakage and wear at the dentine-enamel junction than carnivorous taxa. This study advocates the detailed study of dentine and the use of advanced microscopy techniques to understand the evolution of dentition and feeding ecology in extinct vertebrates. © 2016 The Author(s).

  14. Ultrastructural, autoradiographic and electrophoretic examinations of Chara tomentosa spermiogenesis

    Directory of Open Access Journals (Sweden)

    Maria Kwiatkowska

    2014-01-01

    Full Text Available Ultrastructure of a spermatid nucleus changes many times during spermiogenesis. Condensed chromatin forms irregular clusters during phases I-II, a continuous ring adjacent to a nuclear envelope during phases III-V and a network occupying the whole nucleus during phase VI. In advanced spermiogenesis dense chromatin disappears and short randomly positioned fibrils arise, then long parallel ones are found (phase VIII which during phase IX form a lamellar structure. In mature spermatozoids (phase X chromatin becomes extremely condensed. 3H-arginine and 3H-lysine incorporation into spermatids during 2-min incubation is intensive during phases IN, decreases during phases VI, VII and becomes very low during phases VIII-IX. Capillary electrophoresis has shown that during Chara tomentosa spermiogenesis replacement of histones with basic proteins whose mobility is comparable to that of salmon protamines takes place. At the beginning of spermiogenesis core and linker histones are found in spermatids. During early spermiogenesis protamine-like proteins appear and their amount increases in late spermiogenesis when core histones are still present. In mature spermatozoids only protamine-like proteins represented by 3 fractions: 9.1 kDa, 9.6 kDa, 11.2 kDa are found. Disappearance of linker histones following their modification precedes disappearance of core histones. The results indicate that dynamic rearrangement of chromatin ultrastructure and aminoacid incorporation rate during spermiogenesis are reflected in basic nuclear protein changes.

  15. Ultrastructural study of tissues surrounding replanted teeth and dental implants.

    Science.gov (United States)

    Shioya, Kazuhiro; Sawada, Takashi; Miake, Yasuo; Inoue, Sadayuki; Yanagisawa, Takaaki

    2009-03-01

    The aim of this study was to describe the ultrastructure of the dentogingival border at replanted teeth and implants. Wistar rats (8 weeks old) were divided into groups for replantation and implantation experiments. In the former, the upper right first molars were extracted and then immediately replanted. In the latter, pure titanium implants were used. All tissues were fixed, demineralized and embedded in epoxy resin for ultrastructural observations. One week after replantation, the junctional epithelium was lost, and the oral sulcular epithelium covered the enamel surface. The amount of the epithelium increased in 2 weeks, and resembled the junctional epithelium, and the internal basal lamina and hemidesmosomes were formed in 4 weeks. One week after implantation, peri-implant epithelium was formed, and in 2 and 4 weeks, this epithelium with aggregated connective tissue cells were observed. In 8 weeks, the peri-implant epithelium receded, and aligned special cells with surrounding elongated fibroblasts and bundles of collagen fibers appeared to seal the implant interface. In replantation of the tooth, the internal basal lamina remained at the surface of the enamel of the replanted tooth, which is likely to be related to regeneration of the junctional epithelium and the attachment apparatus at the epithelium-tooth interface. Following implantation, a layer of cells with characteristics of connective tissue cells, but no junctional epithelium and attachment apparatus, was formed to seal the site of the implant.

  16. Ultrastructural study of the chromatoid body in planarian regenerative cells

    Energy Technology Data Exchange (ETDEWEB)

    Hori, I. (Kanazawa Medical Univ., Ishikawa (Japan))

    1982-04-01

    The present paper deals with the ultrastructural changes of chromatoid bodies in planarian regenerative cells under normal and experimental conditions. A close relationship was usually observed between chromatoid bodies and pore regions of the nuclear envelope in these cells. The chromatoid bodies continued to decrease in size during cytodifferentiation of regenerative cells, though they did not disappear entirely throughout the regeneration processes. Cytochemistry and (/sup 3/H)uridine autoradiography have shown that the chromatoid body contains RNA. The typical morphological effect of actinomycin D became apparent in three organelles, i.e., nucleolus, polysome and chromatoid body. Ultrastructural changes in nucleoli were observed to occur after actinomycin treatment (20 ..mu..g/ml). The exposure to a higher dose of actinomycin (50 ..mu..g/ml) caused a decay of chromatoid bodies while nuclear envelopes retained numerous pores. Both the nucleoli and the chromatoid bodies disappeared in the sequential stages. Within the cytoplasm of such cells disintegration of a polysomal pattern was correlated with the disappearance of chromatoid bodies. The significance of the planarian chromatoid body is discussed in relation to differentiation of the regenerative cells.

  17. Plasma antioxidants from chocolate

    OpenAIRE

    Serafini, M.; Bugianesi, R.; Maiani, G.; Valtuena, S.; De Santis, S.; Crozier, A.

    2003-01-01

    There is some speculation that dietary flavonoids from chocolate, in particular (-)epicatechin, may promote cardiovascular health as a result of direct antioxidant effects or through antithrombotic mechanisms. Here we show that consumption of plain, dark chocolate results in an increase in both the total antioxidant capacity and the (-)epicatechin content of blood plasma, but that these effects are markedly reduced when the chocolate is consumed with milk or if milk is incorporated as milk ch...

  18. Antioxidant supplements and mortality

    DEFF Research Database (Denmark)

    Bjelakovic, Goran; Nikolova, Dimitrinka; Gluud, Christian

    2014-01-01

    Oxidative damage to cells and tissues is considered involved in the aging process and in the development of chronic diseases in humans, including cancer and cardiovascular diseases, the leading causes of death in high-income countries. This has stimulated interest in the preventive potential of a...... of antioxidant supplements. Today, more than one half of adults in high-income countries ingest antioxidant supplements hoping to improve their health, oppose unhealthy behaviors, and counteract the ravages of aging....

  19. Antioxidant properties of flavonoids

    Directory of Open Access Journals (Sweden)

    Sofna D.S. Banjarnahor

    2015-01-01

    Full Text Available Flavonoids represent a remarkable group of plant secondary metabolites and have long been used as traditional medicines with scientifically proven pharmacological benefits. They serve vast-ranging medicinal activities that may lead drug discovery with novel and potential therapeutic evidence. Latest research magnifies primarily functional activity of flavonoids as antioxidant against oxidative stress. This review enlightens the prospective role of flavonoids as antioxidant.

  20. Antioxidants in Translational Medicine.

    Science.gov (United States)

    Schmidt, Harald H H W; Stocker, Roland; Vollbracht, Claudia; Paulsen, Gøran; Riley, Dennis; Daiber, Andreas; Cuadrado, Antonio

    2015-11-10

    It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities.

  1. Oxidative stress in bone remodeling: role of antioxidants.

    Science.gov (United States)

    Domazetovic, Vladana; Marcucci, Gemma; Iantomasi, Teresa; Brandi, Maria Luisa; Vincenzini, Maria Teresa

    2017-01-01

    ROS are highly reactive molecules which consist of a number of diverse chemical species, including radical and non-radical oxygen species. Oxidative stress occurs as a result of an overproduction of ROS not balanced by an adequate level of antioxidants. The natural antioxidants are: thiol compounds among which GSH is the most representative, and non-thiol compounds such as polyphenols, vitamins and also various enzymes. Many diseases have been linked to oxidative stress including bone diseases among which one of the most important is the osteoporosis. The redox state changes are also related to the bone remodeling process which allows the continuous bone regeneration through the coordinated action of bone cells: osteoclasts, osteoblasts and osteocytes. Changes in ROS and/or antioxidant systems seem to be involved in the pathogenesis of bone loss. ROS induce the apoptosis of osteoblasts and osteocytes, and this favours osteoclastogenesis and inhibits the mineralization and osteogenesis. Excessive osteocyte apoptosis correlates with oxidative stress causing an imbalance in favor of osteoclastogenesis which leads to increased turnover of bone remodeling and bone loss. Antioxidants either directly or by counteracting the action of oxidants contribute to activate the differentiation of osteoblasts, mineralization process and the reduction of osteoclast activity. In fact, a marked decrease in plasma antioxidants was found in aged or osteoporotic women. Some evidence shows a link among nutrients, antioxidant intake and bone health. Recent data demonstrate the antioxidant properties of various nutrients and their influence on bone metabolism. Polyphenols and anthocyanins are the most abundant antioxidants in the diet, and nutritional approaches to antioxidant strategies, in animals or selected groups of patients with osteoporosis or inflammatory bone diseases, suggest the antioxidant use in anti-resorptive therapies for the treatment and prevention of bone loss.

  2. Microgravity changes in heart structure and cyclic-AMP metabolism

    Science.gov (United States)

    Philpott, D. E.; Fine, A.; Kato, K.; Egnor, R.; Cheng, L.

    1985-01-01

    The effects of microgravity on cardiac ultrastructure and cyclic AMP metabolism in tissues of rats flown on Spacelab 3 are reported. Light and electron microscope studies of cell structure, measurements of low and high Km phosphodiesterase activity, cyclic AMP-dependent protein kinase activity, and regulatory subunit compartmentation show significant deviations in flight animals when compared to ground controls. The results indicate that some changes have occurred in cellular responses associated with catecholamine receptor interactions and intracellular signal processing.

  3. Biochemical and ultrastructural changes in the liver of European perch (Perca fluviatilis L. in response to cyanobacterial bloom in the Gruža reservoir

    Directory of Open Access Journals (Sweden)

    Perendija Branka R.

    2011-01-01

    Full Text Available We investigated the biochemical and ultrastructural changes in the liver of the freshwater fish, European perch (Perca fluviatilis, in response to Aphanizomenon flos-aquae bloom in the Gruža Reservoir, Serbia. The activities of total manganese- and copper zinc-containing superoxide dismutase (Tot SOD, Mn-SOD, Cu/Zn-SOD, catalase (CAT, glutathione peroxidase (GSH-Px, glutathione reductase (GR and biotransformation phase II enzyme glutathione-S-transferase (GST, as well as concentrations of total glutathione (GSH and sulfhydryl (-SH groups were examined before and during the bloom period. Mn-SOD activity was significantly higher, while the activities of Cu/Zn-SOD, CAT and GSH-Px and the concentration of the -SH groups were significantly lower during the bloom. The ultrastructure of the liver revealed necrotic and apoptotic damage to the hepatocytes during the bloom period. Our work represents the first study to report the influences of an Aphanizomenon flos-aquae bloom in the Gruža Reservoir on antioxidant biomarkers and on histopathological alterations in the liver of the freshwater fish European perch (Perca fluviatilis.

  4. Morin, A Flavonoid, On Lipid Peroxidation And Antioxidant Status In ...

    African Journals Online (AJOL)

    Background: Myocardial infarction affects a large population in the world. Lipid peroxide metabolism plays an important role in the pathology of myocardial infarction. Objective: The present study was designed to investigate the antioxidant potential of morin, a flavonoid in isoproterenol (ISO)-induced myocardial infarction ...

  5. Oxidative Stress and Antioxidant Potential of One Hundred Medicinal Plants.

    Science.gov (United States)

    Hassan, Waseem; Noreen, Hamsa; Rehman, Shakila; Gul, Shehnaz; Kamal, Mohammad Amjad; Kamdem, Jean Paul; Zaman, Bakht; da Rocha, Joao B T

    2017-01-01

    Reactive species are produced in biological system because of redox reactions. The imbalance in pro-oxidant and antioxidant homeostasis leads to the production of toxic reactive oxygen and nitrogen species like hydrogen peroxide, organic peroxides, hydroxyl radicals, superoxide anion and nitric oxide. Inactivation of metabolic enzymes, oxidation of biomolecules and cellular damage are some of the prominent characteristics of reactive species. Similarly, oxidative stress has been associated with more than one hundred (100) pathologies such as atherosclerosis, diabetes, cardiovascular diseases, pancreatic and liver diseases, joint disorders, cardiac fibrosis, acute respiratory distress syndrome, neurological diseases (amyotrophic lateral sclerosis, Huntington's disorder, Parkinson's disease and Alzheimer's disease), ageing and cancer etc. The toxicity of reactive species is balanced by the integrated antioxidant systems, which include enzymatic and non-enzymatic antioxidants. Antioxidant therapies or defenses protect the biological sites by removing or quenching the free radicals (prooxidants). Medicinal plants can not only protect the oxidative damage, but also play a vital role in health maintenance and prevention of chronic degenerative diseases. This review will provide a valuable discussion of one hundred (100) well known medicinal plants, which may add to the optimization of antioxidants rank. Besides, some of the antioxidant evaluation techniques or mechanisms via which medicinal plants act as antioxidants are also described. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. ANTIOXIDANT SUPPLEMENTATION IN THE TREATMENT OF AGING-ASSOCIATED DISEASES

    Directory of Open Access Journals (Sweden)

    Valeria eConti

    2016-02-01

    Full Text Available Oxidative stress is generally considered an imbalance between pro- and antioxidants species, which often results into indiscriminate and global damage at the organismal level. Elderly people are more susceptible to oxidative stress and this depends, almost in part, from a decreased performance of their endogenous antioxidant system. As many studies reported an inverse correlation between systemic levels of antioxidants and several diseases, primarily cardiovascular diseases, but also diabetes and neurological disorders, antioxidant supplementation has been foreseen as an effective preventive and therapeutic intervention for aging-associated pathologies. However, the expectations of this therapeutic approach have often been partially disappointed by clinical trials. The interplay of both endogenous and exogenous antioxidants with the systemic redox system is very complex and represents an issue that is still under debate. In this review a selection of recent clinical studies concerning antioxidants supplementation and the evaluation of their influence in aging-related diseases is analyzed. The controversial outcomes of the antioxidants supplementation therapy that might partially depend, among others, from an underestimation of the patient specific metabolic demand and genetic background, are presented.

  7. Food Processing Antioxidants.

    Science.gov (United States)

    Hidalgo, F J; Zamora, R

    Food processing has been carried out since ancient times as a way to preserve and improve food nutritional and organoleptic properties. Although it has some undesirable consequences, such as the losses of some nutrients and the potential formation of toxic compounds, a wide range of benefits can be enumerated. Among them, the increased total antioxidant capacity of many processed foods has been known for long. This consequence has been related to both the release or increased availability of natural antioxidants and the de novo formation of substances with antioxidant properties as a consequence of the produced reactions. This review analyzes the chemical changes produced in foods during processing with special emphasis on the formation of antioxidants as a consequence of carbonyl-amine reactions produced by both carbohydrate- and lipid-derived reactive carbonyls. It discusses the lastest advances produced in the characterization of carbonyl-amine adducts and their potential action as primary (free radical scavengers), secondary (chelating and other ways to prevent lipid oxidation), and tertiary (carbonyl scavengers as a way to avoid lipid oxidation consequences) antioxidants. Moreover, the possibility of combining amino compounds with different hydrophobicity, such as aminophospholipids and proteins, with a wide array of reactive carbonyls points out to the use of carbonyl-amine reactions as a new way to induce the formation of a great variety of substances with antioxidant properties and very variable hydrophilia/lipophilia. All presented results point out to carbonyl-amine reactions as an effective method to generate efficacious antioxidants that can be used in food technology. © 2017 Elsevier Inc. All rights reserved.

  8. Ultrastructure of human oocytes after in vitro maturation.

    Science.gov (United States)

    Coticchio, Giovanni; Dal Canto, Mariabeatrice; Fadini, Rubens; Mignini Renzini, Mario; Guglielmo, Maria Cristina; Miglietta, Selenia; Palmerini, Maria Grazia; Macchiarelli, Guido; Nottola, Stefania Annarita

    2016-02-01

    How does the ultrastructure of human oocytes matured in vitro compare with oocytes collected from women after full hormonal stimulation? The ultrastructure of human oocytes matured in vitro is largely, but not entirely, similar to those matured in vivo. Embryos derived from in vitro-matured oocytes often have limited developmental potential, possibly as an effect of inappropriate in vitro maturation (IVM) conditions. Transmission electron microscopy (TEM) is a valuable research tool to compare in vivo and in vitro matured oocytes. However, previous studies on the ultrastructure of human IVM oocytes were done with inadequate material or inappropriate IVM conditions, and have limited significance. Immature cumulus cell-enclosed oocytes, retrieved from mid-sized antral follicles of women requiring IVM treatment, were matured in vitro for 30 h. No leftover germinal vesicle-stage oocytes collected from fully stimulated cycles were used. Control in vivo matured oocytes were obtained from age-matched women undergoing full ovarian stimulation. In vitro and in vivo matured oocytes were analysed by TEM and compared according to previously established morphometric criteria of oocyte quality. All oocytes had normal ooplasm showing uniform distribution of organelles. Mitochondrial morphology appeared similar between the maturation conditions. Cortical granules were found typically stratified in a single, mostly continuous row just beneath the ooplasm in all oocytes. Microvilli were well preserved after IVM. Vacuoles were only occasionally found in all oocytes and, if present, they were frequently associated with lysosomes. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates and mitochondria-vesicles (MV) complexes were commonly found in in vivo matured oocytes. However, large MV complexes partially replaced M-SER aggregates in IVM oocytes. As a note of caution it should be noticed that, being laborious and technically demanding, TEM cannot be applied to a large number

  9. [Cellphone electromagnetic radiation damages the testicular ultrastructure of male rats].

    Science.gov (United States)

    Gao, Xiao-Hui; Hu, Hui-Rong; Ma, Xue-Lian; Chen, Jie; Zhang, Guo-Hong

    2016-06-01

    To investigate the influence of cellphone electromagnetic radiation (CER) on the testicular ultrastructure and the apoptosis of spermatogenic cells in male rats.atability, feasibility, applicability, and controllability in the construction of experimental animal models, we compared the major anatomic features of the penis of 20 adult beagle dogs with those of 10 adult men. Using microsurgical techniques, we performed cross-transplantation of the penis in the 20 (10 pairs) beagle dogs and observed the survival rate of the transplanted penises by FK506+MMF+MP immune induction. We compared the relevant indexes with those of the 10 cases of microsurgical replantation of the amputated penis. Thirty adult male SD rats were equally randomized into a 2 h CER, a 4 h CER, and a normal control group, the former two groups exposed to 30 days of 900 MHz CER for 2 and 4 hours a day, respectively, while the latter left untreated. Then the changes in the ultrastructure of the testis tissue were observed under the transmission electron microscope and the apoptosis of the spermatogenic cells was determined by TUNEL. Compared with the normal controls, the rats of the 2 h CER group showed swollen basement membrane of seminiferous tubules, separated tight junction of Sertoli cells, increased cell intervals, apparent vacuoles and medullization in some mitochondria, and increased apoptosis of spermatogenic cells, mainly the apoptosis of primary spermatocytes (P<0.05 ). In comparison with the 2 h CER group, the animals of the 4 h CER group exhibited swollen basement membrane of seminiferous tubules, more separated tight junction of Sertoli cells, wider cell intervals, incomplete membrane of spermatogonial cells, fragments of cytoplasm, nuclear pyknosis and notch, slight dilation of perinuclear space, abnormalities of intracellular mitochondria with vacuoles, fuzzy structure, and fusion or disappearance of some cristae, and increased damage of mitochondria and apoptosis of spermatogenic

  10. How effectively does a clinostat mimic the ultrastructural effects of microgravity on plant cells?

    Science.gov (United States)

    Moore, R.

    1990-01-01

    Columella cells of seedlings of Zea mays L. cv. Bear Hybrid grown in the microgravity of orbital flight allocate significantly larger relative-volumes to hyaloplasm and lipid bodies, and significantly smaller relative-volumes to dictyosomes, plastids, and starch than do columella cells of seedlings grown at 1 g. The ultrastructure of columella cells of seedlings grown at 1 g and on a rotating clinostat is not significantly different. However, the ultrastructure of cells exposed to these treatments differs significantly from that of seedlings grown in microgravity. These results indicate that the actions of a rotating clinostat do not mimic the ultrastructural effects of microgravity in columella cells of Z. mays.

  11. Phenotypic plasticity of wall ultrastructure in the green alga Pediastrum s.l. (Chlorophyta, Sphaeropleales

    Directory of Open Access Journals (Sweden)

    Lenarczyk Joanna

    2016-07-01

    Full Text Available This study examined wall ultrastructure variability in the microscopic green alga Pediastrum s.l. Its value as a diagnostic character is discussed. Field and cultured material of 21 taxa were compared using light and scanning electron microscopy. Nine ultrastructural elements occurring on the surface of Pediastrum are documented with LM and SEM micrographs. The highest number of taxa showed reticulate ornamentation composed of a trigonal mesh and granules situated on its corners. The paper considers the use of wall ultrastructure to reconcile traditional and modern taxonomical systems with regard to Pediastrum varieties, and addresses the phylogenetic relationships between strains representing different varieties.

  12. Metabolic Panel

    Science.gov (United States)

    A metabolic panel is a group of tests that measures different chemicals in the blood. These tests are usually done on ... and liver. There are two types: basic metabolic panel (BMP) and comprehensive metabolic panel (CMP). The BMP ...

  13. Antioxidant and Antioxidant capacity of raw and processed Nigerian ...

    African Journals Online (AJOL)

    Lechner,2010;. Zhang et al., 2013) and hepatoprotective effects. (Rabeh, 2015). This study was carried out to investigate the antioxidant and antioxidant capacity of raw and processed Nigerian red Beetroots for its potential as a functional food.

  14. Ultrastructure of extrusomes in hypotrichous ciliate Pseudourostyla nova

    Science.gov (United States)

    Zhou, Yao; Wang, Zhengjun; Zhang, Jun; Gu, Fukang

    2011-01-01

    The ultrastructure of extrusomes of the hypotrichous ciliate Pseudourostyla nova was observed in scanning and transmission electron microscopy and enzyme-cytochemistry. The results show that the distribution, morphological characteristics, morphogenesis process, and extrusive process of the extrusomes in P. nova are different from the trichocysts in Paramecium, suggesting that the extrusomes of P. nova can respond to environmental stimuli, play an important role in the defense of this species, and cannot be regarded as "trichocysts". The results also suggest that the extrusomes might be originated from the Golgi apparatus and mature in the cytoplasm; after the extrusion of mature extrusomes, the residual substance might be reabsorbed and reused by the ciliate cell via food vacuoles, and take part in material recycling of the cell.

  15. Changes in the ultrastructure of rectum cancer cells after irradiation

    International Nuclear Information System (INIS)

    Zaretskaya, A.I.; Lushnikov, E.F.

    1980-01-01

    Data on electron microscopy of the tumoral tissue of 10 patients with rectum cancer after preoperative irradiation in a total focal dose of 2O00 rad are presented. Visually cells with a certain degree of damage of the organoids prevailed in the newgrowths. No relationship between the extent of the tumour differentiation, time of investigation and the nature of radiation changes on the tumoral cells was established. Under the effect of irradiation the cell nucleus size increases and chromatin becomes condensed near the nuclear membrane. Mitocehondria swell and vacuolize. Endoplasmatic reticulum and Golgi complex widen and vacuolize. It is suggested that at the level of ultrastructures there occures the formation of the routes of the development of events: survival of the cell or its destruction by an interphasal or reproductive type

  16. Collagenous Tissues upon Lithium Treatment: A Quantitative Ultrastructural Study

    Directory of Open Access Journals (Sweden)

    Margaret Tzaphlidou

    2004-01-01

    Full Text Available In this review, the influence of lithium treatment in mouse, rat, and rabbit skin, liver, bone, and aorta, as well as arachnoid and dura mater collagen fibrils, is examined using electron microscopy and image processing. Structural changes (fibril architecture and diameter are detected at the ultrastructural level in specimens from all lithium-treated tissues. The overall collagen fibril architecture is disturbed as compared with specimens from normal species. The mean diameter values of treated collagen fibrils are significantly smaller than those from controls in all tissues examined. The banding patterns of fibrils are normal in all cases. Measurements by a computerized method of measuring axial periodicity of fibrils indicate no effect of lithium on this parameter. Computer analysis shows no differences in charged amino acid composition between lithium-treated and -untreated samples. Under the present experimental conditions, lithium can induce permanent structural collagen alterations.

  17. Surface ultrastructure of Chrysomya rufifacies (Macquart) larvae (Diptera: Calliphoridae).

    Science.gov (United States)

    Sukontason, Kabkaew L; Sukontason, Kom; Lertthamnongtham, Sirisuda; Kuntalue, Budsabong; Thijuk, Natchanart; Vogtsberger, Roy C; Olson, Jimmy K

    2003-05-01

    The surface ultrastructure of all larval instars of Chrysomya rufifacies (Macquart) is described by means of scanning electron microscopy (SEM). Morphological changes were greatest from the first to the second instar, but less from the second to the third instar. Most of these changes involved the structure of the anterior spiracle, posterior spiracle, integument of the body, and mouthhooks. Modification of the mouthhooks, especially in the third instar, are helpful in explaining the ferocious feeding ability of the older maggots. The common name of "hairy-maggot" for C. rufifacies is only appropriate for the second and third instars because of their elongated tubercles along the body, whereas this name is not descriptive of the first instar that lack tubercles.

  18. Ultrastructure and mitochondrial numbers in pre- and postpubertal pig oocytes

    DEFF Research Database (Denmark)

    Pedersen, Hanne Skovsgaard; Callesen, Henrik; Løvendahl, Peter

    2016-01-01

    Prepubertal pig oocytes are associated with lower developmental competence. The aim of this experiment was to conduct an exhaustive survey of oocyte ultrastructure and to use a design-unbiased stereological approach to quantify the numerical density and total number of mitochondria in oocytes......, but no differences were observed in mitochondrial densities between groups. Mature postpubertal oocytes adhered to the following characteristics: presence of metaphase II, lack of contact between cumulus cells and oocyte, absence of rough endoplasmic reticulum and Golgi complexes, peripheral location of cortical...... their reduced capacity. The higher number of mitochondria in large pre- and postpubertal oocytes could have an influence on oocyte competence, by increasing the pool of mitochondria available for early embryonic development....

  19. Ultrastructural apoptotic lesions induced in rat thymocytes after borax ingestion.

    Science.gov (United States)

    Sylvain, I C; Berry, J P; Galle, P

    1998-01-01

    Apoptosis has gained increasing attention in recent years. Several chemical compounds induce apoptotic lesions in the thymus. Male Wistar rats received 2000 ppm of borax (Na2B4O7.10H2O) in their food for 16 days. The rats were sacrificed 2, 5, 9, 12, 19, 21, 26 and 28 days after the beginning of treatment. Thymus samples of all rats were taken. A Philips EM 300 electron microscopy was used to study the ultrastructural morphology. Serious nuclear and cytoplasmic lesions were observed. Moreover, numerous macrophages containing apoptotic cells were present in the thymus. The alterations were observed from the 2nd to the 28th day. The extent of damage was much more important in the rats sacrificed 21, 26 and 28 days after borax ingestion.

  20. The ultrastructural localization of von Willebrand factor in endothelial cells.

    Science.gov (United States)

    Warhol, M J; Sweet, J M

    1984-11-01

    Factor VIII-related antigen was localized ultrastructurally in a variety of human tissues (smooth muscle, skeletal muscle, breast, capillary hemangioma) with the use of a low-temperature embedding protein A-gold technique with both polyclonal and monoclonal antisera directed against von Willebrand factor. All endothelial cells examined localized the anti-von Willebrand factor to Weibel-Palade bodies. Cisternae of the endoplasmic reticulum, and cytoplasmic vacuoles were also labeled. These results establish the distribution of factor VIII-related antigen at the subcellular level. The observed distribution suggests that the endothelial cells synthesize von Willebrand factor, store it in Weibel-Palade bodies, and release it by exocytosis. These observations provide in vivo confirmation for previous biochemical and immunocytochemical data obtained from studies on cultured endothelial cells.

  1. [Lattice degeneration of the peripheral retina: ultrastructural study].

    Science.gov (United States)

    Bec, P; Malecaze, F; Arne, J L; Mathis, A

    1985-01-01

    The ultrastructural study of a case of snail track degeneration shows the presence of lipid inclusions in both the glial and the macrophage cells in every layer of the retina, and the existence of intraretinal fibers different from collagen fibers appearing to be glial filaments similar to those found in astrocytic gliomes and to the Rosenthal fibers observed in senile nervous cells. Other features were thinning of the retina and absence of blood vessels in the retina. There are no abnormalities of the vitreo-retinal juncture. All the lesions are in agreement with those observed by Daicker [Ophthalmologica, Basel 165: 360-365, 1972; Klin. Mbl. Augenheilk. 172: 581-583, 1978] with some differences, however. They are different from those found in lattice degeneration. They show that snail track degeneration is a specific form of peripheral retinal degeneration which is quite different from lattice degeneration and must not be considered similar.

  2. Ultrastructure of Procamallanus (Spirocamallanus) halitrophus (Nematoda: Camallanidae) parasite of flounder.

    Science.gov (United States)

    Cárdenas, M Q; De Souza, W; Lanfredi, R M

    2005-12-01

    The ultrastructure of the camallanid nematode Procamallanus (Spirocamallanus) halitrophus, a parasite of flounder, is described for the first time by the use of transmission electron microscopy. The body wall is composed of an outer cuticle, a hypodermis, and a muscular layer. The cuticle comprises the epicuticle, the cortical, median, fibrous, and basal layers. The cortical layer is subdivided into an outer zone and an inner zone; the median layer is subdivided into an outer layer, rich in electrondense fibrils, and an inner layer, which does not contain these fibrils; the fibrous layer is subdivided into three regions delimited by electrondense lines; the basal layer presents electrondense sustaining structures. Underlying the basal layer is the hypodermis where many organelles are observed. The musculature is striated, and each muscle cell consists of individualized contractile and non-contractile regions. Inclusion bodies are present in the muscle fibers, hypodermis, hypodermal chord, and in the intestine.

  3. Ultrastructural and Histochemical Characterization of the Zebra Mussel Adhesive Apparatus

    Science.gov (United States)

    Farsad, Nikrooz

    Since their accidental introduction into the Great Lakes in mid- to late-1980s, the freshwater zebra mussels, Dreissena polymorpha, have colonized most lakes and waterways across eastern North America. Their rapid spread is partly attributed to their ability to tenaciously attach to hard substrates via an adhesive apparatus called the byssus, resulting in serious environmental and economic impacts. A detailed ultrastructural study of the byssus revealed a 10 nm adhesive layer at the attachment interface. Distributions of the main adhesive amino acid, 3,4-dihydroxyphenylalanine (DOPA), and its oxidizing (cross-linking) enzyme, catechol oxidase, were determined histochemically. It was found that, upon aging, DOPA levels remained high in the portion of the byssus closest to the interface, consistent with an adhesive role. In contrast, reduced levels of DOPA corresponded well with high levels of catechol oxidase in the load-bearing component of the byssus, presumably forming cross-links and increasing the cohesive strength.

  4. Ultrastructural myocardial changes in seven cats with spontaneous hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Christiansen, Liselotte Bruun; Prats Gavalda, Clara; Hyttel, Poul

    2015-01-01

    OBJECTIVES: Hypertrophic cardiomyopathy (HCM) is the most common heart disease in cats and shares clinical and pathological characteristics with human HCM. Little is known about the pathogenic mechanisms underlying development of spontaneous feline HCM. ANIMALS: The study population consisted...... of seven cats diagnosed with HCM and eight age-matched cats with no evidence of cardiac disease. METHODS: Fresh myocardial biopsies taken from the middle of the left ventricular posterior free wall were obtained and examined with transmission electron microscopy. RESULTS: Electron microscopic examination...... showed ultrastructural aberrations of the myocardial cytoarchitecture and of the interstitium in the seven cats with HCM. In the most severely affected cats the myofibrils were disorganized and subsarcolemmal mitochondria were depleted. In control cats, contraction band artifacts were commonly seen...

  5. Ultrastructure of oogenesis in the bluefin tuna, Thunnus thynnus.

    Science.gov (United States)

    Abascal, Francisco J; Medina, Antonio

    2005-05-01

    Ovarian ultrastructure of the Atlantic bluefin tuna (Thunnus thynnus) was investigated during the reproductive season with the aim of improving our understanding of the reproductive biology in this species. The bluefin, like the other tunas, has an asynchronous mode of ovarian development; therefore, all developmental stages of the oocyte can be found in mature ovaries. The process of oocyte development can be divided into five distinct stages (formation of oocytes from oogonia, primary growth, lipid stage, vitellogenesis, and maturation). Although histological and ultrastructural features of most these stages are similar among all studied teleosts, the transitional period between primary growth and vitellogenesis exhibits interspecific morphological differences that depend on the egg physiology. Although the most remarkable feature of this stage in many teleosts is the occurrence of cortical alveoli, in the bluefin tuna, as is common in marine fishes, the predominant cytoplasmic inclusions are lipid droplets. Nests of early meiotic oocytes derive from the germinal epithelium that borders the ovarian lumen. Each oocyte in the nest becomes surrounded by extensions of prefollicle cells derived from somatic epithelial cells and these form the follicle that is located in the stromal tissue. The primary growth stage is characterized by intense RNA synthesis and the differentiation of the vitelline envelope. Secondary growth commences with the accumulation of lipid droplets in the oocyte cytoplasm (lipid stage), which is then followed by massive uptake and processing of proteins into yolk platelets (vitellogenic stage). During the maturation stage the lipid inclusions coalesce into a single oil droplet, and hydrolysis of the yolk platelets leads to the formation of a homogeneous mass of fluid yolk in mature eggs. 2004 Wiley-Liss, Inc.

  6. Ultrastructure and pathology of desmoplastic small round cell tumor

    International Nuclear Information System (INIS)

    Xu Bin; Wang Bo; Gu Junlian; Li Xin; Li Yang

    2010-01-01

    Objective: To observe the change of ultrastructure and pathology of desmoplastic small round cell tumor (DSRCT) and recognize the characteristics of DSRCT and improve the standard of diagnosis. Methods: One case of primary DSRCT in right leg was observed by light microscope, immunohistochemical method and electron microscope and analyzed with review of the literatures. Results: The size of tumor was 3.2 cm x 2.4 cm x 1.3 cm with gray-yellow on cross-section. Foci of hemorrhage and necrosis were noted. Under light microscope, the tumor was composed of sharply demarcated nests of small rounded or oval cells. The cellular aggregates were surrounded and separated by abundant fibrous connective tissue. The tumor cells were uniform in size and shape, and showed small to moderate amounts of pale cytoplasm with indistinct cell borders. The nuclei were round to oval, with clumped chromatin and marked hyperchromasia. Some cells had one or two indistinct nucleoli. Numerous mitotic figures and areas of necrosis were dentified. The immunohistochemical results showed that the tumor cells were strongly positive for CK, EMA and NSE. There was focal positive staining for desmin with a perinuclear dot-like pattern. However, the tumor cells were negative for CgA, Myogenin, Syn, LCA, SMA, S-100, NF, GFAP, HMB45, HHF-35, CD3, CD10, Actin, CD99, and CD20. Under electron microscope, the tumor cells showed paranuclear cytoplasmic intermediate filaments arranging in globular or whorl array. Conclusion: DSRCT occurs both in the abdomen and at other sites. The patients with DSRCT range widely in age. DSRCT has distinctive histopathologic and ultrastructural features. This tumor shows immunohistochemical feature of epithelial, mesenchymal as well as neural multidirectional differentiation. RT-PCR may be served as an important diagnostic adjunct for DSRAT. The prognosis of the patients with DSRCT is very poor. (authors)

  7. Capsaicin induced histological and ultrastructural changes in the submandibular salivary gland of albino rats

    Directory of Open Access Journals (Sweden)

    Ahmed Mahmoud Halawa

    2016-06-01

    From the present work, it could be concluded that chronic capsaicin intake was associated with noticeable histological and ultrastructural changes in acini, granular convoluted tubules and excretory ducts of the SMSG in albino rats.

  8. Ultrastructure of Sheep Primordial Follicles Cultured in the Presence of Indol Acetic Acid, EGF, and FSH

    Directory of Open Access Journals (Sweden)

    Evelyn Rabelo Andrade

    2011-01-01

    Full Text Available The aim of this study was to investigate the ultrastructural characteristics of primordial follicles after culturing of sheep ovarian cortical slices in the presence of indol acetic acid (IAA, Epidermal Growth Factor (EGF, and FSH. To evaluate ultrastructure of primordial follicles cultured in MEM (control or in MEM containing IAA, EGF, and FSH, fragments of cultured tissue were processes for transmission electron microscopy. Except in the control, primordial follicles cultured in supplemented media for 6 d were ultrastructurally normal. They had oocyte with intact nucleus and the cytoplasm contained heterogeneous-sized lipid droplets and numerous round or elongated mitochondria with intact parallel cristae were observed. Rough endoplasmic reticulum (RER was rarely found. The granulosa cells cytoplasm contained a great number of mitochondria and abundant RER. In conclusion, the presence of IAA, EGF, and FSH helped to maintain ultrastructural integrity of sheep primordial follicles cultured in vitro.

  9. Ultrastructural and functional abnormalities of mitochondria in cultivated fibroblasts from α -mannosidosis patiens

    Czech Academy of Sciences Publication Activity Database

    Brantová, O.; Asfaw, B.; Sládková, J.; Poupětová, H.; Živný, J.; Magner, M.; Krůšek, Jan; Veselá, K.; Hansíková, H.; Ledvinová, J.; Tesařová, M.; Zeman, J.

    2009-01-01

    Roč. 64, č. 2 (2009), s. 394-401 ISSN 0006-3088 Institutional research plan: CEZ:AV0Z50110509 Keywords : mitochondria * endoplasmatic reticulum * ultrastructure Subject RIV: ED - Physiology Impact factor: 0.617, year: 2009

  10. Mitochondrial disruption and limited apoptosis of erythroblasts are associated with high risk myelodysplasia. An ultrastructural analysis

    NARCIS (Netherlands)

    van de Loosdrecht, AA; Brada, SJL; Blom, NR; Smit, JW; van den Berg, E; de Wolf, JTM; Vellenga, E

    Aims: To investigate the ultrastructural characteristics of erythroblasts in myelodysplasia (MDS) which might be of additional importance in understanding its pathogenesis. Methods and results: 22 patients were classified according to FAB (French-American-British classification), IPSS (international

  11. [Ultrastructure of endometrium during low-dose gestagenic anticonception (author's transl)].

    Science.gov (United States)

    Houdek, J; Pelák, Z; Vacek, Z

    1977-02-01

    31 women (average age, 26 years) were administered a modified low dosage gestagen contraceptive, containing .3 of norethisterone for an average period of 10.6 months. Changes in the ultrastructure of the endometrium were studied throughout this period. Changes in both parts of the ultrastructure, the fibrose and epithelial parts, were revealed in comparison to material taken before use of the preparation. Changes in the stromata cells were particularly of a gestagenic character. Epithelial cells also demonstrated a particularly gestagenic stimulation.

  12. Morphological aspects of the rat kidney preserved by cold storage. III. Ultrastructural aspects.

    Science.gov (United States)

    Neagu, S; Gabrielescu, E; Codorean, E; Chirculescu, A R

    1983-01-01

    The ultrastructural changes of the white Wistar rat kidney, preserved by cold storage into two preservation media (Sacks and Plasmagel) are reported. For each medium two groups of kidney were used; for one of them the medium was used without additives and for the other stabilizing additives were added. The results showed the favourable effects of additives on the maintenance of the cellular ultrastructure during preservation, and more important the damages incurred when Plasmagel was used.

  13. Antioxidative activity of high-density lipoprotein (HDL: Mechanistic insights into potential clinical benefit

    Directory of Open Access Journals (Sweden)

    Fernando Brites

    2017-12-01

    Antioxidative function of HDL can be impaired in several metabolic and inflammatory diseases. Structural and compositional anomalies in the HDL proteome and lipidome underlie such functional deficiency. Concomitant normalization of the metabolism, circulating levels, composition and biological activities of HDL particles, primarily those of small, dense HDL3, can constitute future therapeutic target.

  14. Antioxidants for female subfertility.

    Science.gov (United States)

    Showell, Marian G; Mackenzie-Proctor, Rebecca; Jordan, Vanessa; Hart, Roger J

    2017-07-28

    A couple may be considered to have fertility problems if they have been trying to conceive for over a year with no success. This may affect up to a quarter of all couples planning a child. It is estimated that for 40% to 50% of couples, subfertility may result from factors affecting women. Antioxidants are thought to reduce the oxidative stress brought on by these conditions. Currently, limited evidence suggests that antioxidants improve fertility, and trials have explored this area with varied results. This review assesses the evidence for the effectiveness of different antioxidants in female subfertility. To determine whether supplementary oral antioxidants compared with placebo, no treatment/standard treatment or another antioxidant improve fertility outcomes for subfertile women. We searched the following databases (from their inception to September 2016) with no language or date restriction: Cochrane Gynaecology and Fertility Group (CGFG) specialised register, the Cochrane Central Register of Studies (CENTRAL CRSO), MEDLINE, Embase, PsycINFO, CINAHL and AMED. We checked reference lists of appropriate studies and searched for ongoing trials in the clinical trials registers. We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment or treatment with another antioxidant, among women attending a reproductive clinic. We excluded trials comparing antioxidants with fertility drugs alone and trials that only included fertile women attending a fertility clinic because of male partner infertility. Two review authors independently selected eligible studies, extracted the data and assessed the risk of bias of the included studies. The primary review outcome was live birth; secondary outcomes included clinical pregnancy rates and adverse events. We pooled studies using a fixed-effect model, and calculated odds ratios (ORs) with 95% confidence intervals (CIs) for the dichotomous

  15. Algae and UV irradiation: effects on ultrastructure and related metabolic functions.

    Science.gov (United States)

    Holzinger, Andreas; Lütz, Cornelius

    2006-01-01

    The effects of ultraviolet radiation in the biological relevant wavebands of UV-A (315-400 nm) and UV-B (280-315 nm) on algae have become an important issue as a man-made depletion of the protecting ozone layer has been reported. However, experimental designs to investigate this issue are manifold and the target organisms are extremely diverse. Data are included from the prokaryotic cyanobacteria, haptophytes, diatoms, brown algae to green algae (fresh water, snow algae and marine species) including different habitats from marine littoral and open ocean to freshwater ponds, lakes and snow fields. A broad overview on UV effects on algae is given, with a focus on structurally visible changes. Here we report on destruction in chloroplasts, mitochondria, and the occurrence of structures that are likely to be related to the UV stress. In addition several new data are presented from organisms that have to face naturally high UV irradiation due to their habitats. As no disturbances are reported in these organisms, they obviously have a set of protective mechanisms allowing survival in extreme habitats such as snow fields. Physiological changes as a consequence of UV irradiation are included, effects on the DNA level are summarized, and avoidance strategies are discussed. Every effort has been made to summarize the diverse observations and critically evaluate and compare the different experimental strategies to study UV effects in algae.

  16. [Regulation of terpene metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1991-01-01

    During the last grant period, we have completed studies on the key pathways of monoterpene biosynthesis and catabolism in sage and peppermint, and have, by several lines of evidence, deciphered the rate-limiting step of each pathway. We have at least partially purified and characterized the relevant enzymes of each pathway. We have made a strong case, based on analytical, in vivo, and in vitro studies, that terpene accumulation depends upon the balance between biosynthesis and catabolism, and provided supporting evidence that these processes are developmentally-regulated and very closely associated with senescence of the oil glands. Oil gland ontogeny has been characterized at the ultrastructural level. We have exploited foliar-applied bioregulators to delay gland senescence, and have developed tissue explant and cell culture systems to study several elusive aspects of catabolism. We have isolated pure gland cell clusters and localized monoterpene biosynthesis and catabolism within these structures, and have used these preparations as starting materials for the purification to homogeneity of target regulatory'' enzymes. We have thus developed the necessary background knowledge, based on a firm understanding of enzymology, as well as the necessary experimental tools for studying the regulation of monoterpene metabolism at the molecular level. Furthermore, we are now in a position to extend our systematic approach to other terpenoid classes (C[sub 15]-C[sub 30]) produced by oil glands.

  17. Three-dimensional analysis of abnormal ultrastructural alteration in ...

    Indian Academy of Sciences (India)

    We also identified the loss of peroxiredoxin 3, an endogenous cytoprotective antioxidant enzyme and the accumulation of A in the hippocampal mitochondria of transgenic mice, which differs from those in age-matched wild-type mice. The mitochondria in A plaque-detected regions were severely disrupted, and the ...

  18. Mitochondrial structural and antioxidant system responses to aging in oat (Avena sativa L.) seeds with different moisture contents.

    Science.gov (United States)

    Xia, Fangshan; Wang, Xianguo; Li, Manli; Mao, Peisheng

    2015-09-01

    We observed the relationship between lifespan and mitochondria, including antioxidant systems, ultrastructure, and the hydrogen peroxide and malondialdehyde contents in 4 h imbibed oat (Avena sativa L.) seeds that were aged with different moisture contents (4%, 10% and 16%) for 0 (the control), 8, 16, 24, 32 and 40 d at 45 °C. The results showed that the decline in the oat seed vigor and in the integrity of the mitochondrial ultrastructure occurred during the aging process, and that these changes were enhanced by higher moisture contents. Mitochondrial antioxidants in imbibed oat seeds aged with a 4% moisture content were maintained at higher levels than imbibed oat seeds aged with a 10% and 16% moisture content. These results indicated that the levels of mitochondrial antioxidants and malondialdehyde after imbibition were related to the integrity of the mitochondrial membrane in aged oat seeds. The scavenging role of mitochondrial superoxide dismutase was inhibited in imbibed oat seeds aged at the early stage. Monodehydroascorbate reductase and dehydroascorbate reductase played more important roles than glutathione reductase in ascorbate regeneration in aged oat seeds during imbibition. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. PHYTOCHEMICAL ANALYSIS, ANTIOXIDANT AND ...

    African Journals Online (AJOL)

    2012-12-31

    EC50 in μg/ml) and total antioxidant activity (mg GAE/g DW) power Phoenyx dactylifera leaves extract and anthentic standards (BHT in IC50, BHA and chlorogenic acid in EC50 μg/ml). Plant species and standards. DPPH test.

  20. Antioxidant effects of carotenoids

    NARCIS (Netherlands)

    Bast, A.; Haenen, G.R.M.M.; Berg, R. van den; Berg, H. van den

    1998-01-01

    Surprisingly, neither the precise pharmacological effect nor the toxicological profile is usually established for food components. Carotenoids are no exception in this regard. Only limited insight into the pharmacology and toxicology of carotenoids exists. It is known that the antioxidant action of

  1. Benzo[a]pyrene affects Jurkat T cells in the activated state via the antioxidant response element dependent Nrf2 pathway leading to decreased IL-2 secretion and redirecting glutamine metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Murugaiyan, Jayaseelan; Rockstroh, Maxie; Wagner, Juliane [Department of Proteomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Baumann, Sven [Department of Metabolomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Schorsch, Katrin [Department of Proteomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Trump, Saskia; Lehmann, Irina [Department of Environmental Immunology, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Bergen, Martin von [Department of Proteomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Department of Environmental Immunology, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg (Denmark); Tomm, Janina M., E-mail: Janina.tomm@ufz.de [Department of Proteomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany)

    2013-06-15

    There is a clear evidence that environmental pollutants, such as benzo[a]pyrene (B[a]P), can have detrimental effects on the immune system, whereas the underlying mechanisms still remain elusive. Jurkat T cells share many properties with native T lymphocytes and therefore are an appropriate model to analyze the effects of environmental pollutants on T cells and their activation. Since environmental compounds frequently occur at low, not acute toxic concentrations, we analyzed the effects of two subtoxic concentrations, 50 nM and 5 μM, on non- and activated cells. B[a]P interferes directly with the stimulation process as proven by an altered IL-2 secretion. Furthermore, B[a]P exposure results in significant proteomic changes as shown by DIGE analysis. Pathway analysis revealed an involvement of the AhR independent Nrf2 pathway in the altered processes observed in unstimulated and stimulated cells. A participation of the Nrf2 pathway in the change of IL-2 secretion was confirmed by exposing cells to the Nrf2 activator tBHQ. tBHQ and 5 μM B[a]P caused similar alterations of IL-2 secretion and glutamine/glutamate metabolism. Moreover, the proteome changes in unstimulated cells point towards a modified regulation of the cytoskeleton and cellular stress response, which was proven by western blotting. Additionally, there is a strong evidence for alterations in metabolic pathways caused by B[a]P exposure in stimulated cells. Especially the glutamine/glutamate metabolism was indicated by proteome pathway analysis and validated by metabolite measurements. The detrimental effects were slightly enhanced in stimulated cells, suggesting that stimulated cells are more vulnerable to the environmental pollutant model compound B[a]P. - Highlights: • B[a]P affects the proteome of Jurkat T cells also at low concentrations. • Exposure to B[a]P (50 nM, 5 μM) did not change Jurkat T cell viability. • Both B[a]P concentrations altered the IL-2 secretion of stimulated cells.

  2. Oxidant and Antioxidants During the Transition Period in Dairy Cows

    Directory of Open Access Journals (Sweden)

    Mahmoud Rushdi Abd Ellah

    2016-10-01

    Full Text Available The transition from pregnancy to parturition is associated with metabolic and physiological changes. Oxidative stress is increased in late pregnancy and continue to be higher after parturition, which represent a challenge for the dairy cows to defend the increased free radicals by using the available antioxidants. This review discussed the process of free radical release, the development of oxidative stress and evaluation of the animal health during the transition period and threw the light on different methods used to assess oxidative stress and antioxidants therapy.

  3. Antimicrobial and antioxidant activity of lemon balm Kombucha

    Directory of Open Access Journals (Sweden)

    Velićanski Aleksandra S.

    2007-01-01

    Full Text Available Kombucha is a beverage traditionally produced by metabolic activity of yeasts and acetic acid bacteria. The antimicrobial activity of lemon balm kombucha as well as of particular control samples was determined by agar-well diffusion method. Antioxidant activity on stable 1,1-diphenyl-2-picrylhydrazyl radicals of lemon balm kombucha and lemon balm tea was determined by electron spin resonance spectroscopy. Acetic acid, Kombucha samples and heat-denaturated kombucha showed significant antimicrobial activity against bacteria. However, there was no activity against yeasts and moulds. Kombucha showed higher antioxidant activity than tea sample for all applied sample volumes.

  4. Uric acid contributes greatly to hepatic antioxidant capacity besides protein.

    Science.gov (United States)

    Mikami, T; Sorimachi, M

    2017-12-20

    Uric acid is the end-product of purine nucleotide metabolism and an increase in uric acid concentration in the body results in hyperuricemia, ultimately leading to gout. However, uric acid is a potent antioxidant and interacts with reactive oxygen species (ROS) to be non-enzymatically converted to allantoin. Uric acid accounts for approximately 60 % of antioxidant capacity in the plasma; however, its contribution to tissue antioxidant capacity is unknown. In this study, the contribution of uric acid to tissue antioxidant capacity and its conversion to allantoin by scavenging ROS in tissue were examined. The results showed that a decrease in hepatic uric acid content via allopurinol administration significantly reduced hepatic total-radical trapping antioxidant parameter (TRAP) content in protein-free cytosol. Additionally, treating protein-free cytosol with uricase led to a further reduction of hepatic TRAP content. Allantoin was also detected in the solution containing protein-free cytosol that reacted with ROS. These findings suggest that in the absence of protein, uric acid contributes greatly to antioxidant capacity in the liver, where uric acid is converted to allantoin by scavenging ROS.

  5. Mitochondrial ultrastructural and atpase changes during the life cycle of Ascaris Suum

    Directory of Open Access Journals (Sweden)

    G. E. Rodrick

    1982-06-01

    Full Text Available Ultrastructural morphology and ATPase specific activities of mitochondria isolated from 1-celled fertilized egg, 10-day embryo, 21-day infective larvae and adult body wall muscle of Ascaris suum and rat liver were determined and compared. Although cristae of both muscle and egg mitochondria contained numerous elementary particles with head pieces of conventional diameter (85 A, each muscle mitochondrion contained relatively few, short cristae with a diminished frequency of elementary particles and associated ATPase activity. These morphological relationships are related to the previous conclusion that the transition from an aerobic to an essentially anaerobic metabolism is intimately associated with the mitochondrion and is a normal and mandatory feature of development.Foram determinadas e comparadas a morfologia estrutural e as atividades específicas da ATPase de mitocôndrias do Ascaris suum (isoladas do ovo unicelular fertilizado, do embrião de 10 dias, da larva infectante de 21 dias e do músculo da parede do corpo do adulto e do fígado do rato. Embora as cristas das mitocôndrias do músculo e do ovo contivessem numerosas partículas elementares com cabeças de diâmetro convencional (85 A, cada mitocôndria do músculo continha cristas curtas e em número relativamente pequeno, com diminuição da frequência das partículas elementares e da respectiva atividade de ATPase. Estas relações morfol[ogicas são vinculadas à conclusão prévia de que a transição do metabolismo aeróbio para o metabolismo essencialmente anaeróbio está intimamente associada à mitocôndria e constitui um característico normal e obrigatório do desenvolvimento.

  6. New Antioxidant Drugs for Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno

    2015-01-01

    Full Text Available The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.

  7. [Regulation of terpene metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-11-09

    Terpenoid oils, resins, and waxes from plants are important renewable resources. The objective of this project is to understand the regulation of terpenoid metabolism using the monoterpenes (C[sub 10]) as a model. The pathways of monoterpene biosynthesis and catabolism have been established, and the relevant enzymes characterized. Developmental studies relating enzyme levels to terpene accumulation within the oil gland sites of synthesis, and work with bioregulators, indicate that monoterpene production is controlled by terpene cyclases, the enzymes catalyzing the first step of the monoterpene pathway. As the leaf oil glands mature, cyclase levels decline and monoterpene biosynthesis ceases. Yield then decreases as the monoterpenes undergo catabolism by a process involving conversion to a glycoside and transport from the leaf glands to the root. At this site, the terpenoid is oxidatively degraded to acetate that is recycled into other lipid metabolites. During the transition from terpene biosynthesis to catabolism, the oil glands undergo dramatic ultrastructural modification. Degradation of the producing cells results in mixing of previously compartmentized monoterpenes with the catabolic enzymes, ultimately leading to yield decline. This regulatory model is being applied to the formation of other terpenoid classes (C[sub 15] C[sub 20], C[sub 30], C[sub 40]) within the oil glands. Preliminary investigations on the formation of sesquiterpenes (C[sub 15]) suggest that the corresponding cyclases may play a lesser role in determining yield of these products, but that compartmentation effects are important. From these studies, a comprehensive scheme for the regulation of terpene metabolism is being constructed. Results from this project wail have important consequences for the yield and composition of terpenoid natural products that can be made available for industrial exploitation.

  8. The Effect of Spaceflight on the Ultrastructure of the Cerebellum

    Science.gov (United States)

    Holstein, Gay R.; Martinelli, Giorgio P.

    2003-01-01

    In weightlessness, astronauts and cosmonauts may experience postural illusions as well as motion sickness symptoms known as the space adaptation syndrome. Upon return to Earth, they have irregularities in posture and balance. The adaptation to microgravity and subsequent re-adaptation to Earth occurs over several days. At the cellular level, a process called neuronal plasticity may mediate this adaptation. The term plasticity refers to the flexibility and modifiability in the architecture and functions of the nervous system. In fact, plastic changes are thought to underlie not just behavioral adaptation, but also the more generalized phenomena of learning and memory. The goal of this experiment was to identify some of the structural alterations that occur in the rat brain during the sensory and motor adaptation to microgravity. One brain region where plasticity has been studied extensively is the cerebellar cortex-a structure thought to be critical for motor control, coordination, the timing of movements, and, most relevant to the present experiment, motor learning. Also, there are direct as well as indirect connections between projections from the gravity-sensing otolith organs and several subregions of the cerebellum. We tested the hypothesis that alterations in the ultrastructural (the structure within the cell) architecture of rat cerebellar cortex occur during the early period of adaptation to microgravity, as the cerebellum adapts to the absence of the usual gravitational inputs. The results show ultrastructural evidence for neuronal plasticity in the central nervous system of adult rats after 24 hours of spaceflight. Qualitative studies conducted on tissue from the cerebellar cortex (specifically, the nodulus of the cerebellum) indicate that ultrastructural signs of plasticity are present in the cerebellar zones that receive input from the gravity-sensing organs in the inner ear (the otoliths). These changes are not observed in this region in cagematched

  9. Investigation of the ultrastructural and histopathological changes in ...

    African Journals Online (AJOL)

    Diabetes mellitus is one of the most common disease of the endocrine system in the body that is diagnosed by metabolic malfunction in the metabolism of carbohydrates, fat and proteins. This disease involves most tissues of the body and the consequent deficiencies reduce their efficiency, cause infections and diseases in ...

  10. Straight sinus: ultrastructural analysis aimed at surgical tumor resection.

    Science.gov (United States)

    Amato, Marcelo Campos Moraes; Tirapelli, Luis Fernando; Carlotti, Carlos Gilberto; Colli, Benedicto Oscar

    2016-08-01

    OBJECTIVE Accurate knowledge of the anatomy of the straight sinus (SS) is relevant for surgical purposes. During one surgical procedure involving the removal of part of the SS wall, the authors observed that the venous blood flow was maintained in the SS, possibly through a vein-like structure within the dural sinus or dural multiple layers. This observation and its divergence from descriptions of the histological features of the SS walls motivated the present study. The authors aimed to investigate whether it is possible to dissect the SS walls while keeping the lumen intact, and to describe the histological and ultrastructural composition of the SS wall. METHODS A total of 22 cadaveric specimens were used. The SS was divided into three portions: anterior, middle, and posterior. The characteristics of the SS walls were analyzed, and the feasibility of dissecting them while keeping the SS lumen intact was assessed. The thickness and the number of collagen fibers and other tissues in the SS walls were compared with the same variables in other venous sinuses. Masson's trichrome and Verhoeff's stains were used to assess collagen and elastic fibers, respectively. The data were analyzed using Zeiss image analysis software (KS400). RESULTS A vein-like structure independent of the SS walls was found in at least one of the portions of the SS in 8 of 22 samples (36.36%). The inferior wall could be delaminated in at least one portion in 21 of 22 samples (95.45%), whereas the lateral walls could seldom be delaminated. The inferior wall of the SS was thicker (p < 0.05) and exhibited less collagen and greater amounts of other tissues-including elastic fibers, connective tissue, blood vessels, and nerve fibers (p < 0.05)-compared with the lateral walls. Transmission electron microscopy revealed the presence of muscle fibers at a level deeper than that of the subendothelial connective tissue in the inferior wall of the SS, extending from its junction with the great cerebral vein

  11. Ultrastructure and mineral composition of urinary calculi from horses.

    Science.gov (United States)

    Neumann, R D; Ruby, A L; Ling, G V; Schiffman, P; Johnson, D L

    1994-10-01

    Urinary calculi from 17 horses with urolithiasis were examined to study their mineral content and ultrastructure. Among the analytic methods used were X-ray diffractometry, scanning electron microscopy, and electron microprobe analysis. The calculi initially were observed by use of a stereoscopic dissecting microscope and generally were found to have nodular surfaces surrounding a banded or granular-to-chalky interior. Observation by scanning electron microscopy revealed an intricate pattern of irregularly concentric, fine bands and spherules. These had a round, finely banded, globular texture formed by precipitation of ultrafine-grained radiating crystals. The original pore spaces (ie, between spherules, between bands and spherules, or between crystal generations) could be observed as primary porosity. Precipitation and dissolution of these urinary calculi were observed to be spontaneous processes, which can occur simultaneously within an individual calculus. Another prominent feature of the ultrastructure was secondary porosity (spontaneous dissolution) which, in its incipient stages, appeared to be site-selective (ie, some bands appeared to be more susceptible to development of pinpoint porosity). Textures indicative of dissolution were observed not only on the calculus surface, but within the calculus interior as well. Areas that had more advanced stages of dissolution, resulting in increased secondary porosity, also were observed. All 17 samples of the study were found to be composed of calcium carbonate in the form of the mineral calcite, although minor quantities of 2 other polymorphs of calcium carbonate, minerals vaterite and aragonite, also were encountered. Vaterite was observed in 5 of the samples, whereas aragonite was found in 1 sample. Strontium and sulfur were observed as trace elements in 3 of the calculi, whereas magnesium was present in all calculi. Magnesium was observed to substitute for calcium within the calcite crystal lattice in larger

  12. In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism

    Science.gov (United States)

    Marchiol, Luca; Mattiello, Alessandro; Pošćić, Filip; Giordano, Cristiana; Musetti, Rita

    2014-03-01

    Metallic nanoparticles (MeNPs) can be formed in living plants by reduction of the metal ions absorbed as soluble salts. It is very likely that plant metabolism has an important role in MeNP biosynthesis. The in vivo formation of silver nanoparticles (AgNPs) was observed in Brassica juncea, Festuca rubra and Medicago sativa. Plants were grown in Hoagland's solution for 30 days and then exposed for 24 h to a solution of 1,000 ppm AgNO3. In the leaf extracts of control plants, the concentrations of glucose, fructose, ascorbic acid, citric acid and total polyphenols were determined. Total Ag content in plant fractions was determined by inductively coupled plasma atomic emission spectroscopy. Despite the short exposure time, the Ag uptake and translocation to plant leaves was very high, reaching 6,156 and 2,459 mg kg-1 in B. juncea and F. rubra, respectively. Ultrastructural analysis was performed by transmission electron microscopy (TEM), and AgNPs were detected by TEM X-ray microanalysis. TEM images of plant fractions showed the in vivo formation of AgNPs in the roots, stems and leaves of the plants. In the roots, AgNPs were present in the cortical parenchymal cells, on the cell wall of the xylem vessels and in regions corresponding to the pits. In leaf tissues, AgNPs of different sizes and shapes were located close to the cell wall, as well as in the cytoplasm and within chloroplasts. AgNPs were not observed in the phloem of the three plant species. This is the first report of AgNP synthesis in living plants of F. rubra. The contents of reducing sugars and antioxidant compounds, proposed as being involved in the biosynthesis of AgNPs, were quite different between the species, thus suggesting that it is unlikely that a single substance is responsible for this process.

  13. Gastric emptying, glucose metabolism and gut hormones

    DEFF Research Database (Denmark)

    Vermeulen, Mechteld A R; Richir, Milan C; Garretsen, Martijn K

    2011-01-01

    To study the gastric-emptying rate and gut hormonal response of two carbohydrate-rich beverages. A specifically designed carbohydrate-rich beverage is currently used to support the surgical patient metabolically. Fruit-based beverages may also promote recovery, due to natural antioxidant and carb...... and carbohydrate content. However, gastric emptying of fluids is influenced by its nutrient composition; hence, safety of preoperative carbohydrate loading should be confirmed. Because gut hormones link carbohydrate metabolism and gastric emptying, hormonal responses were studied....

  14. Antioxidant Functions of the Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Cornelia Dietrich

    2016-01-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.

  15. The role of the antioxidant system during intense endurance exercise: lessons from migrating birds.

    Science.gov (United States)

    Cooper-Mullin, Clara; McWilliams, Scott R

    2016-12-01

    During migration, birds substantially increase their metabolic rate and burn fats as fuel and yet somehow avoid succumbing to overwhelming oxidative damage. The physiological means by which vertebrates such as migrating birds can counteract an increased production of reactive species (RS) are rather limited: they can upregulate their endogenous antioxidant system and/or consume dietary antioxidants (prophylactically or therapeutically). Thus, birds can alter different components of their antioxidant system to respond to the demands of long-duration flights, but much remains to be discovered about the complexities of RS production and antioxidant protection throughout migration. Here, we use bird migration as an example to discuss how RS are produced during endurance exercise and how the complex antioxidant system can protect against cellular damage caused by RS. Understanding how a bird's antioxidant system responds during migration can lend insights into how antioxidants protect birds during other life-history stages when metabolic rate may be high, and how antioxidants protect other vertebrates from oxidative damage during endurance exercise. © 2016. Published by The Company of Biologists Ltd.

  16. Polyphenols, Antioxidants and the Sympathetic Nervous System.

    Science.gov (United States)

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2017-11-14

    A high dietary intake of polyphenols has been associated with a reduced cardiovascular mortality, due to their antioxidant properties. However, growing evidence suggests that counteracting oxidative stress in cardiovascular disease might also reduce sympathetic nervous system overactivity. This article reviews the most commonly used techniques to measure sympathetic activity in humans; the role of sympathetic activation in the pathophysiology of cardiovascular diseases; current evidence demonstrating that oxidative stress is involved in the regulation of sympathetic activity and how antioxidants and polyphenols might counteract sympathetic overactivity, particularly focusing on preliminary data from human studies. The main mechanisms by which polyphenols are cardioprotective are related to the improvement of vascular function and their anti-atherogenic effect. Furthermore, a blood pressure-lowering effect was consistently demonstrated in randomized controlled trials in humans, when the effect of flavonoid-rich foods, such as tea and chocolate, was tested. More recent studies suggest that inhibition of sympathetic overactivity might be one of the mechanisms by which these substances exert their cardioprotective effects. Indeed, an increased adrenergic traffic to the vasculature is a major mechanism of disease in a number of cardiovascular and extra-cardiac diseases, including hypertension, obesity and metabolic syndrome and heart failure. A considerable body of evidence, mostly from experimental studies, support the hypothesis that reactive oxygen species might exert sympatho-excitatory effects both at the central and at the peripheral level. Accordingly, supplementation with antioxidants might reduce adrenergic overdrive to the vasculature and blunt cardiovascular reactivity to stress. While supplementation with "classical" antioxidants such as ROS-scavengers has many limitations, increasing the intake of polyphenol-rich foods seems to be a promising novel

  17. Antioxidant potential of selected Spirulina platensis preparations.

    Science.gov (United States)

    Dartsch, Peter C

    2008-05-01

    Recent studies suggest that Spirulina, a unicellular blue-green alga, may have a variety of health benefits and therapeutic properties and is also capable of acting as an antioxidant and antiinflammatory agent. In this study, a cell-free and a cell-based test assay were used to examine the antioxidant and antiinflammatory properties of four selected Spirulina platensis preparations: (1) Biospirulina, (2) SpiruComplex, a preparation with naturally bound selenium, chromium and zinc, (3) SpiruZink, a preparation with naturally bound zinc, (4) Zinkspirulina + Acerola, a preparation with naturally bound zinc and acerola powder. The cell-free test assay used potassium superoxide as a donor for superoxide radicals, whereas the cell-based test assay used the formation of intracellular superoxide radicals of functional neutrophils upon stimulation by phorbol-12-myristate-13-acetate as a model to investigate the potential of Spirulina preparations to inactivate superoxide radicals. In accordance with the recommended daily dosage, test concentrations ranging from 50 to 1000 microg/mL were chosen. The results showed a dose-dependent inactivation of free superoxide radicals (antioxidant effect) as well as an antiinflammatory effect characterized by a dose-dependent reduction of the metabolic activity of functional neutrophils and a dose-dependent inactivation of superoxide radicals generated during an oxidative burst. The results demonstrate that the tested Spirulina preparations have a high antioxidant and antiinflammatory potential. Especially SpiruZink and Zinkspirulina + Acerola might be useful as a supportive therapeutic approach for reducing oxidative stress and/or the generation of oxygen radicals in the course of inflammatory processes.

  18. Characterization of antioxidant enzymes and peroxisomes of olive (Olea europaea L.) fruits.

    Science.gov (United States)

    Lopez-Huertas, Eduardo; del Río, Luis A

    2014-10-15

    The presence of peroxisomes in olive (Olea europaea L.) fruits and different antioxidant enzymes occurring in this plant tissue is reported for the first time. Ultrastructural analysis showed that olive cells were characterized by the presence of large vacuoles and lipid drops. Plastids, mitochondria and peroxisomes were placed near the cell wall, showing some type of association with it. Olive fruit peroxisomes were purified by sucrose density-gradient centrifugation, and catalase, glutathione reductase and ascorbate peroxidase were found in peroxisomes. In olive fruit tissue the presence of a battery of antioxidant enzymes was demonstrated, including catalase, four superoxide dismutase isozymes (mainly an Fe-SOD plus 2 Cu,Zn-SOD and a Mn-SOD), all the enzymes of the ascorbate-glutathione cycle, reduced and oxidized glutathione, ascorbate, and four NADPH-recycling dehydrogenases. The knowledge of the full composition of antioxidants (enzymatic and non-enzymatic) in olive fruits is crucial to be able to understand the processes regulating the antioxidant composition of olive oil. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Ultrastructure of the mature spermatozoon of Eubothrium rugosum (Batsch, 1786) with a re-assessment of the spermatozoon ultrastructure of Eubothrium crassum (Bloch, 1779) (Cestoda: Bothriocephalidea)

    Czech Academy of Sciences Publication Activity Database

    Bruňanská, M.; Fagerholm, H. P.; Nebesářová, Jana; Kostič, B.

    2010-01-01

    Roč. 47, č. 4 (2010), s. 257-263 ISSN 0440-6605 Institutional research plan: CEZ:AV0Z60220518 Keywords : ultrastructure * spermatozoon * Eubothrium * Bothriocephalidea * Cestoda Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 0.847, year: 2010

  20. Histopathological and ultrastructural effects of Losartan on embryonic rat kidney.

    Science.gov (United States)

    Akil, Ipek; Inan, Sevinc; Gurcu, Beyhan; Nazikoglu, Aysegul; Ozbilgin, Kemal; Muftuoglu, Sevda

    2005-01-01

    The aim of our study was to investigate the histopathological, immunohistochemical and ultrastructural effects of Losartan (a selective angiotensin II type-1 receptor blocker) on renal development in rats. Twelve pregnant rats were divided into control and experimental groups. In the experimental group, Losartan (10 mg/kg/day) was given via nasogastric tube, between the sixth day of implantation and time of sacrifice on embryonic days 18 and 20. All formalin-fixed, paraffin wax-embedded renal tissue sections were stained with hematoxylin and eosin or labelled for binding of primary antibodies against transforming growth factor-beta (TGF-beta 1,-2,-3) using an avidin-biotin-peroxidase method. For electron microscopic examination, samples were fixed with glutaraldehyde and osmium tetroxide and embedded in araldite. Glomerular basement membrane (GBM) thickness was measured and compared using an unpaired t-test. Angiotensin II type-1 receptor antagonism by Losartan inhibited renal growth and delayed nephron maturation. Increased immunoreactivity of TGF-beta's was observed in developing nephron precursors and interstitial cells in the experimental group. Electron microscopical examination showed that thickening of the GBM was normal in the control group but an irregular thickening was seen in the experimental group (p < 0.001). It was also seen that epithelial cells of developing tubules underwent apoptosis in the experimental group. Thus, renal development in rats seems to depend on an intact renin-angiotensin system.

  1. Volume scanning electron microscopy for imaging biological ultrastructure.

    Science.gov (United States)

    Titze, Benjamin; Genoud, Christel

    2016-11-01

    Electron microscopy (EM) has been a key imaging method to investigate biological ultrastructure for over six decades. In recent years, novel volume EM techniques have significantly advanced nanometre-scale imaging of cells and tissues in three dimensions. Previously, this had depended on the slow and error-prone manual tasks of cutting and handling large numbers of sections, and imaging them one-by-one with transmission EM. Now, automated volume imaging methods mostly based on scanning EM (SEM) allow faster and more reliable acquisition of serial images through tissue volumes and achieve higher z-resolution. Various software tools have been developed to manipulate the acquired image stacks and facilitate quantitative analysis. Here, we introduce three volume SEM methods: serial block-face electron microscopy (SBEM), focused ion beam SEM (FIB-SEM) and automated tape-collecting ultramicrotome SEM (ATUM-SEM). We discuss and compare their capabilities, provide an overview of the full volume SEM workflow for obtaining 3D datasets and showcase different applications for biological research. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  2. Form follows function: ultrastructure of different morphotypes of Physarum polycephalum

    Science.gov (United States)

    Oettmeier, Christina; Lee, Jonghyun; Döbereiner, Hans-Günther

    2018-04-01

    The multinucleate, unicellular slime mold Physarum polycephalum is a highly motile and morphologically diverse giant amoeba. Despite being brainless and lacking neurons, it exhibits ‘smart’ behavior. There is considerable interest in describing such traits and to investigate the underlying mechanochemical patterns which may hint at universal principles of behavior and decision-making. Furthermore, the slime mold’s mechanism of locomotion is unique. It resembles amoeboid movement, but differs from the locomotion of other amoebae in many ways, e.g. in their much larger size and lack of lobopodia. These two aspects, behavior and locomotion, are linked by the cytoskeleton and the overall morphology of P. polycephalum. In this paper, we present a structural analysis of different growth forms (micro-, meso- and macroplasmodia) by transmission electron microscopy (TEM), scanning electron microscopy (SEM), light microscopy, and fluorescence microscopy of F-actin. With these detailed investigations of cellular ultrastructure and morphology, we provide the basis for the analysis of, e.g. viscoelastic and rheological measurements. Our data also provide structural details for the many models that have been constructed for the understanding of locomotion. We conclude that morphological information is vital for the assessment and measurement of material properties.

  3. Gamma irradiation induced ultrastructural changes in Paracoccidioides brasiliensis yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Demicheli, Marina C.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: marinademicheli@yahoo.com.br; antero@cdtn.br; Goes, Alfredo Miranda [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia]. E-mail: goes@mono.icb.ufmg.br

    2007-07-01

    Paracoccidioides brasiliensis is a thermally dimorphic fungus agent of paracoccidioidomycosis, a deep-seated systemic infection of humans with high prevalence in Latin America. Up to the moment no vaccine has still been reported. Ionizing radiation can be used to attenuate pathogens for vaccine development and we have successfully attenuated yeast cells of P. brasiliensis by gamma irradiation. The aim of the present study was to examine at ultrastructural level the effects of gamma irradiation attenuation on the morphology of P. brasiliensis yeast cells. P. brasiliensis (strain Pb-18) cultures were irradiated with a dose of 6.5 kGy. The irradiated cells were examined by scanning and also transmission electron microscopy. When examined two hours after the irradiation by scanning electron microscopy the 6.5 kGy irradiated cells presented deep folds or were collapsed. These lesions were reversible since examined 48 hours after irradiation the yeast have recovered the usual morphology. The transmission electron microscopy showed that the irradiated cells plasma membrane and cell wall were intact and preserved. Remarkable changes were found in the nucleus that was frequently in a very electrodense form. A extensive DNA fragmentation was produced by the gamma irradiation treatment. (author)

  4. Ultrastructural Modifications of Human Endometrium during the Window of Implantation

    Directory of Open Access Journals (Sweden)

    Maryam Kabir-Salmani

    2008-01-01

    Full Text Available The endometrium is a highly dynamic tissue empowered with the capacity to undergo cyclicdramatic changes in response to ovarian steroid hormones, ultimately aiming to create awindow of receptivity for blastocyst implantation. Intensive research has been performed tounderstand and establish morphological and molecular correlates of embryo implantation.However, it still remains a biological mystery particularly in the human, where ethical andmoral constraints prohibit in vivo testing and the establishment of an ideal in vitro modeling.Rodent models of embryo implantation are largely irrelevant because the process variessignificantly from that in humans. Even among primates, subtle differences exist amongspecies. For maternal preparation of implantation, the endometrial epithelium which issurprisingly hostile towards the embryo implantation, acquires functional status receptiveto blastocyst acceptance during a limited period of cycle days, termed as the ‘window ofimplantation (WOI. This review provides currently available information concernedprimarily with the various ultrastructural modifications of endometrium coordinated withinthe WOI that may signify endometrial receptivity. In the following sections, the dominantfeatures of endometrial differentiation during WOI, including transformations of luminalepithelium, endometrial glands, and stromal decidualization will be discussed from themorphological points of view.

  5. Compartmentalization and ultrastructural alterations induced by chromium in aquatic macrophytes.

    Science.gov (United States)

    Mangabeira, Pedro A; Ferreira, Aluane S; de Almeida, Alex-Alan F; Fernandes, Valéria F; Lucena, Emerson; Souza, Vânia L; dos Santos Júnior, Alberto J; Oliveira, Arno H; Grenier-Loustalot, Marie F; Barbier, Fréderique; Silva, Delmira C

    2011-12-01

    The aim of the present study was to identify the sites of accumulation of Cr in the species of macrophytes that are abundant in the Cachoeira river, namely, Alternanthera philoxeroides, Borreria scabiosoides, Polygonum ferrugineum and Eichhornia crassipes. Plants were grown in nutritive solution supplemented with 0.25 and 50 mg l(-1) of CrCl(3)·6H(2)O. Samples of plant tissues were digested with HNO(3)/HCl in a closed-vessel microwave system and the concentrations of Cr determined using inductively-coupled plasma mass spectrometry (ICP-MS). The ultrastructure of root, stem and leaf tissue was examined using transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) in order to determine the sites of accumulation of Cr and to detect possible alterations in cell organelles induced by the presence of the metal. Chromium accumulated principally in the roots of the four macrophytes (8.6-30 mg kg(-1) dw), with much lower concentrations present in the stems and leaves (3.8-8.6 and 0.01-9.0 mg kg(-1) dw, respectively). Within root tissue, Cr was present mainly in the vacuoles of parenchyma cells and cell walls of xylem and parenchyma. Alterations in the shape of the chloroplasts and nuclei were detected in A. philoxeroides and B. scabiosoides, suggesting a possible application of these aquatic plants as biomarkers from Cr contamination.

  6. Peel Ultrastructure During Developmental Stages of Citrus Sinensis (L. Osbeck.

    Directory of Open Access Journals (Sweden)

    Indira Prabasari

    2014-02-01

    Full Text Available The peel structureof Valencia orange (Citrus sinensis (L. Osbeck was examined using Scanning Electron Microscopy (SEM and showed the distinct regions of the peel: the outer-yellowish part that was called the flavedo and the inner part of the peel that was called the albedo.  The flavedo has compact cells with oil glands embedded in it whereas the albedo contains of spongy cells with vascular bundles embedded in it. The ultrastructural examination of the albedo during development revealed the changes of albedo morphology from compact tissue to the loosely arranged tissue. In addition, the distribution of polysaccharide cell walls was observed with histochemical staining and later the distribution of peptic polysaccharide was conducted using anti-pectin monoclonal antibodies (mAbs. Histochemical staining during development demonstrated the difference of abundance of polysaccharide at the tissue level.  Furthermore, the distribution of homogalacturonan (HG was studied with mAb JIM5 that recognizes low methyl-esterified HG and JJM7 which labels high methyl-esterified HG. The observation at the fruit level was conducted using tissue printing and the result showed that low and high methyl-esterified HG was distributed almost similar at the fruit level. Further experiment at the tissue level was performed using Light Microscopy (LM and revealed that HG was found more abundant in the albedo and vascular bundle followed by the flavedo and oil gland.

  7. Ultrastructural description of rabies virus infection in cultured sensory neurons

    Directory of Open Access Journals (Sweden)

    Myriam L Velandia

    2007-06-01

    Full Text Available Primary cultures were made from adult mouse spinal ganglia for depicting an ultrastructural description of rabies virus (RABV infection in adult mouse sensory neuron cultures; they were infected with rabies virus for 24, 36, and 48 h. The monolayers were processed for transmission electron microscopy and immunochemistry studies at the end of each period. As previously reported, sensory neurons showed great susceptibility to infection by RABV; however, in none of the periods evaluated were assembled virions observed in the cytoplasm or seen to be associated with the cytoplasmic membrane. Instead, fibril matrices of aggregated ribonucleoprotein were detected in the cytoplasm. When infected culture lysate were inoculated into normal animals via intra-cerebral route it was observed that these animals developed clinical symptoms characteristic of infection and transmission electron microscopy revealed assembled virions in the cerebral cortex and other areas of the brain. Sensory neurons infected in vitro by RABV produced a large amount of unassembled viral ribonucleoprotein. However, this intracellular material was able to produce infection and virions on being intra-cerebrally inoculated. It can thus be suggested that the lack of intracellular assembly in sensory neurons forms part of an efficient dissemination strategy.

  8. Ultrastructure of plasma cells in harderian gland of laying hens.

    Science.gov (United States)

    Bejdić, P; Avdić, R; Amidžić, Lj; Ćutahija, V; Tandir, F; Hadžiomerović, N; Katica, A; Mlaćo, N

    2018-02-01

    Ultrastructure of plasma cells in Harderian gland was investigated using the transmission electron microscopy. For this research, we examined the glands of 32 laying hens collected at 1, 7, 20 and 40 days and 4, 6, 8 and 12 months of the birds' ages. The research showed that the stroma of the gland contains a large number of lymphocytes and plasma cells. Most of the plasma cells are mature, but morphologically do not show productive activity. Only some individual plasma cells, situated under the secretory epithelium of primary and secondary ducts, have extremely dilated cisternae of rough endoplasmic reticulum which contain moderately dense, granular material. The morphology of these cells indicates that they are in active stage of immunoglobulin production. Also, we identified plasma cells with two types of Russell bodies. One type of these bodies was small, round or oval, while the other had irregular, angular shape. It was noted that one plasma cell never contains both type of Russell bodies at the same time. These cells were often affected by apoptosis. Among them, in deeper part of the stroma, were situated the small plasmablast cells. © 2017 Blackwell Verlag GmbH.

  9. Ultrastructural changes in porcine mammary tissue during lactogenesis.

    Science.gov (United States)

    Kensinger, R S; Collier, R J; Bazer, F W

    1986-01-01

    Ultrastructural changes occurring in porcine mammary tissue were characterised between Day 90 of pregnancy and Day 4 of lactation. Porcine mammary tissue on Day 90 of pregnancy was composed of alveoli which contained negligible to moderate amounts of secretion. Epithelial cells of these alveoli were relatively undifferentiated. The appearance and distribution of cellular organelles suggested that mammary epithelial differentiation had been initiated by Day 105 of pregnancy in the pig. A further increase in intracellular lipid droplets and granular endoplasmic reticulum suggested that differentiation had progressed by Day 112. On the day of parturition, secretions within the alveolar lumina assumed the appearance of normal milk (as opposed to colostrum) and the epithelia displayed a distinct cellular polarity characteristic of lactating mammary tissue. By Day 4 of lactation, differentiation of epithelial cells appeared to be complete, with dilated cisternae of the granular endoplasmic reticulum and with numerous secretory vesicles. Elongated microvilli were present and numerous cells contained lipid droplets which were being extruded into the lumina. Data from this and previous studies indicate that lactogenesis in the pig occurs in two stages. Stage 1 occurs between Days 90 and 105 of pregnancy, and Stage 2 between Days 112 of pregnancy and early lactation when the predominant feature is active milk secretion. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:3429308

  10. The Ultrastructural Signature of Human Embryonic Stem Cells.

    Science.gov (United States)

    Underwood, Jean M; Becker, Klaus A; Stein, Gary S; Nickerson, Jeffrey A

    2017-04-01

    The epigenetics and molecular biology of human embryonic stem cells (hES cells) have received much more attention than their architecture. We present a more complete look at hES cells by electron microscopy, with a special emphasis on the architecture of the nucleus. We propose that there is an ultrastructural signature of pluripotent human cells. hES cell nuclei lack heterochromatin, including the peripheral heterochromatin, that is common in most somatic cell types. The absence of peripheral heterochromatin may be related to the absence of lamins A and C, proteins important for linking chromatin to the nuclear lamina and envelope. Lamins A and C expression and the development of peripheral heterochromatin were early steps in the development of embryoid bodies. While hES cell nuclei had abundant nuclear pores, they also had an abundance of nuclear pores in the cytoplasm in the form of annulate lamellae. These were not a residue of annulate lamellae from germ cells or the early embryos from which hES cells were derived. Subnuclear structures including nucleoli, interchromatin granule clusters, and Cajal bodies were observed in the nuclear interior. The architectural organization of human ES cell nuclei has important implications for cell structure-gene expression relationships and for the maintenance of pluripotency. J. Cell. Biochem. 118: 764-774, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Ultrastructure of the platypus and echidna mandibular glands.

    Science.gov (United States)

    Krause, W J

    2011-10-01

    The secretory units of the platypus and echidna mandibular glands consist of a single serous cell type. Secretory granules within the cells of the platypus mandibular gland stained intensely with the periodic acid-Schiff staining procedure but failed to stain with Alcian Blue, suggesting the granules contained neutral glycoproteins. Secretory granules within the mandibular glands of the echidna failed to stain with the methods used indicating little if any glycoprotein was associated with the secretory granules. Ultrastructurally, secretory granules of the platypus mandibular gland were electron dense with a central core of less electron-dense material and were membrane bound. In contrast, those of the echidna presented a lamellated appearance and also were limited by a membrane. These secretory granules appeared to form as a result of concentric layering of lamellae within cisternae of the Golgi membranes. The intralobular ductal system of the platypus was more extensively developed than that of the echidna. The striated ducts of both species were characterized by elaborate infoldings of the basolateral plasmalemma and an abundance of associated mitochondria. © 2011 Blackwell Verlag GmbH.

  12. Tridimensional ultrastructure and glycolipid pattern studies of Trypanosoma dionisii.

    Science.gov (United States)

    Oliveira, Miriam Pires de Castro; Ramos, Thiago Cesar Prata; Pinheiro, Adriana Maria V N; Bertini, Silvio; Takahashi, Helio Kiyoshi; Straus, Anita Hilda; Haapalainen, Edna Freymuller

    2013-12-01

    Trypanosoma (Schizotrypanum) dionisii is a non-pathogenic bat trypanosome closely related to Trypanosoma cruzi, the etiological agent of Chaga's disease. Both kinetoplastids present similar morphological stages and are able to infect mammalian cells in culture. In the present study we examined 3D ultrastructure aspects of the two species by serial sectioning epimastigote and trypomastigote forms, and identified common carbohydrate epitopes expressed in T. dionisii, T. cruzi and Leishmania major. A major difference in 3D morphology was that T. dionisii epimastigote forms present larger multivesicular structures, restricted to the parasite posterior region. These structures could be related to T. cruzi reservosomes and are also rich in cruzipain, the major cysteine-proteinase of T. cruzi. We analyzed the reactivity of two monoclonal antibodies: MEST-1 directed to galactofuranose residues of glycolipids purified from Paracoccidioides brasiliensis, and BST-1 directed to glycolipids purified from T. cruzi epimastigotes. Both antibodies were reactive with T. dionisii epimastigotes by indirect immunofluorescense, but we noted differences in the location and intensity of the epitopes, when compared to T. cruzi. In summary, despite similar features in cellular structure and life cycle of T. dionisii and T. cruzi, we observed a unique morphological characteristic in T. dionisii that deserves to be explored. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Ultrastructural features of Mimulus aurantiacus (Scrophulariaceae) pollen tubes in vivo.

    Science.gov (United States)

    Ekici, Nuran; Dane, Feruzan; Olgun, Göksel

    2009-03-01

    The aim of this study is to give information on ultrastructure of in vivo pollen tubes of Mimulus aurantiacus which were collected from the Botanical Garden of the University of California at Berkeley. Materials were prepared according to electron microscopy methods and examined under Zeiss electron microscope. Four zones were examined in the pollen tubes of Mimulus aurantiacus. Apical zone: Mitochondria, smooth endoplasmic reticulum, rough endoplasmic reticulum, dictyosomes and secretory vesicles were observed. Subapical zone: This area contained abundant rough endoplasmic reticulum and occasionally some smooth endoplasmic reticulum. The polysomes, mitochondria, proplastids that contain starch, small vacuoles and a few lipid bodies were detected. Nuclear zone: Both generative and vegetative cell nuclei lie in this zone. The vegetative cell nucleus was large and long. Rough endoplasmic reticulum, mitochondria, ribosomes, dictyosomes, and amyloplasts that are rich of starch were observed. Vacuolation and plug formation zone: Cytoplasm of the tubes was full of large vacuoles. Few organelles such as mitochondria, dictyosome and rough endoplasmic reticulum were detected along their periphery.

  14. The Ultrastructural Relationship Between Osteocytes and Dental Implants Following Osseointegration.

    Science.gov (United States)

    Du, Zhibin; Ivanovski, Saso; Hamlet, Stephen M; Feng, Jian Q; Xiao, Yin

    2016-04-01

    Osteocytes, the most abundant cells in bone, have multiple functions, including acting as mechanosensors and regulating mineralization. It is clear that osteocytes influence bone remodeling by controlling the differentiation and activity of osteoblasts and osteoclasts. Determining the relationship between titanium implants and osteocytes may therefore benefit our understanding of the process of osseointegration. The aim of this study was to visualize the ultrastructural relationship between osteocytes and the titanium implant surface following osseointegration in vivo. Titanium implants were placed in the maxillary molar regions of eight female Sprague Dawley rats, 3 months old. The animals were sacrificed 8 weeks after implantation, and undecalcified tissue sections were prepared. Resin-cast samples were subsequently acid-etched with 37% phosphoric acid prior to examination using scanning electron microscopy. Compared with mature bone, where the osteocytes were arranged in an ordered fashion, the osteocytes appeared less organized in the newly formed bone around the titanium implant. Further, a layer of mineralization with few organic components was observed on the implant surface. This study shows for the first time that osteocytes and their dendrites are directly connected with the implant surface. This study shows the direct anchorage of osteocytes via dendritic processes to a titanium implant surface in vivo. This suggests an important regulatory role for osteocytes and their lacunar-canalicular network in maintaining long-term osseointegration. © 2014 Wiley Periodicals, Inc.

  15. Ultrastructural changes of Saccharomyces cerevisiae in response to ethanol stress.

    Science.gov (United States)

    Ma, Manli; Han, Pei; Zhang, Ruimin; Li, Hao

    2013-09-01

    In the fermentative process using Saccharomyces cerevisiae to produce bioethanol, the performance of cells is often compromised by the accumulation of ethanol. However, the mechanism of how S. cerevisiae responds against ethanol stress remains elusive. In the current study, S. cerevisiae cells were cultured in YPD (yeast extract - peptone - dextrose) medium containing various concentrations of ethanol (0%, 2.5%, 5%, 7.5%, 10%, and 15% (v/v)). Compared with the control group without ethanol, the mean cell volume of S. cerevisiae decreased significantly in the presence of 7.5% and 10% ethanol after incubation for 16 h (P < 0.05), and in the presence of 15% ethanol at all 3 sampling time points (1, 8, and 16 h) (P < 0.05). The exposure of S. cerevisiae cells to ethanol also led to an increase in malonyldialdehyde content (P < 0.05) and a decrease in sulfhydryl group content (P < 0.05). Moreover, the observations through transmission electron microscopy enabled us to relate ultrastructural changes elicited by ethanol with the cellular stress physiology. Under ethanol stress, the integrity of the cell membrane was compromised. The swelling or distortion of mitochondria together with the occurrence of a single and large vacuole was correlated with the addition of ethanol. These results suggested that the cell membrane is one of the targets of ethanol, and the degeneration of mitochondria promoted the accumulation of intracellular reactive oxygen species.

  16. The ultrastructure of bone and its relevance to mechanical properties

    Science.gov (United States)

    Schwarcz, Henry P.; Abueidda, Diab; Jasiuk, Iwona

    2017-09-01

    Bone is a biologically generated composite material comprised of two major structural components: crystals of apatite and collagen fibrils. Computational analysis of the mechanical properties of bone must make assumptions about the geometric and topological relationships between these components. Recent transmission electron microscope (TEM) studies of samples of bone prepared using ion milling methods have revealed important previously unrecognized features in the ultrastructure of bone. These studies show that most of the mineral in bone lies outside the fibrils and is organized into elongated plates 5 nanometers (nm) thick, 80 nm wide and hundreds of nm long. These so-called mineral lamellae (MLs) are mosaics of single 5 nm-thick, 20 - 50 nm wide crystals bonded at their edges. MLs occur either stacked around the 50 nm-diameter collagen fibrils, or in parallel stacks of 5 or more MLs situated between fibrils. About 20% of mineral is in gap zones within the fibrils. MLs are apparently glued together into mechanically coherent stacks which break across the stack rather than delaminating. ML stacks should behave as cohesive units during bone deformation. Finite element computations of mechanical properties of bone show that the model including such features generates greater stiffness and strength than are obtained using conventional models in which most of the mineral, in the form of isolated crystals, is situated inside collagen fibrils.

  17. Horrifying Basal Cell Carcinoma: Cytological, Immunohistochemical, and Ultrastructural Findings

    Directory of Open Access Journals (Sweden)

    Yuichi Kinoshita

    2014-07-01

    Full Text Available Basal cell carcinoma (BCC is a slow-growing and frequently occurring tumor of the eyelids. Among BCC cases, there is a subtype of aggressive cases called horrifying BCC (HBCC. There are also rare BCC cases that show neuroendocrine differentiation. Here, we describe a case of HBCC with neuroendocrine differentiation. The patient, a 41-year-old woman, presented with abnormal left eye tearing and left cheek pain. On computed tomography imaging, a tumor that extended to the left orbit was detected in the left cheek. On cytological examination of fine-needle aspiration (FNA samples, the tumor cells were observed as sheet-like clusters and single bare nuclei with a clear background; peripheral palisading was not clearly seen. On examination of the biopsy specimen taken after FNA, the tumor was found to be composed of cancer cell nests with scattered peripheral palisading in the dermis. Immunohistochemically, the tumor cells were positive for cytokeratin (CK 7 and CD56 and were negative for CK20, synaptophysin, and chromogranin A. Membrane-bound dense-core granules were detected on ultrastructural study. A HBCC case with neuroendocrine differentiation has not been previously reported. The correlation between the presence of neuroendocrine differentiation in HBCC and patient prognosis should be further studied.

  18. "Lycopene: A Promising Antioxidant"

    Directory of Open Access Journals (Sweden)

    Anshumalee Nisheeth

    2007-01-01

    Full Text Available Lycopene is a red colored fat soluble carotenoid, which gives tomatoes and several other fruits their deep red colour. It has shown potential role in prevention and cure of various systemic and oral diseases including malignancies due to its antioxidant and other cancer preventing properties. Lycopene with its 11 conjugated and 2 non conjugated double bonds is the most efficient singIet oxygen quencher and is considered most potent antioxidant among carotenoids. It has shown to be efficient in the management of oral cancer and precancer like leukoplakia and has shown the potential in the management of other oral mucosal lesions thought to arise due to free radical onslaught such as oral lichen planes.

  19. Histopathological, Ultrastructural, and Immunohistochemical Assessment of Hippocampus Structures of Rats Exposed to TCDD and High Doses of Tocopherol and Acetylsalicylic Acid

    Directory of Open Access Journals (Sweden)

    Joanna Rosińczuk

    2015-01-01

    Full Text Available The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD on central nervous system consists of changing expression of estrogen receptors, whereas the result of chronic inflammatory reaction caused by dioxin is occurrence of destructive changes in various organs connected with disturbed metabolism of connective tissue and damage of cells. The aim of the study was to determine the effect of dioxins on function, ultrastructure, and cytological and histological structure of hippocampus, particularly on expression of estrogen receptors in central nervous system as well as to define protective influence of tocopherol (TCP and acetylsalicylic acid (ASA on the decrease in activity of proinflammatory effects in central nervous system. It was shown that TCDD contributes to destructive and inflammatory changes along with demyelization of myelin sheaths and atrophy of estrogen receptors in hippocampus. Dioxin contributes to atrophy of estrogen receptors in hippocampus, in which also destructive and inflammatory changes were found along with demyelination of myelin sheaths. Histopathological and ultrastructural image of hippocampus areas in rats, in which both TCP and ASA were used, is characterized by poorly expressed degenerative changes and smaller inflammatory reactivity. Using both TCP and ASA has a protective effect on functions of central nervous system.

  20. Pro-oxidant and antioxidant processes in aquatic invertebrates.

    Science.gov (United States)

    Canesi, Laura

    2015-03-01

    Most aquatic organisms behave as conformers with respect to environmental variables, including changes in O2 availability. Aquatic species that show tolerance to hypoxia/anoxia or hyperoxia can be excellent models for investigating physiological and biochemical adaptations that deal with changing O2 and consequent changes in metabolic rate and production of reactive oxygen species (ROS). Here, I summarize selected data on ROS production and antioxidant defenses in a model marine invertebrate, the bivalve Mytilus, under different environmental and physiological conditions. An example of other bivalves adapted to particular environments (the Antarctic Sea) is also reported. These studies contributed to the knowledge on pro-oxidant and antioxidant processes in aquatic invertebrates from comparative and environmental perspectives. A common role for metallothioneins in antioxidant protection in mammals and aquatic invertebrates is underlined in different conditions, from human disease to responses to environmental exposure to heavy metals. © 2014 New York Academy of Sciences.

  1. Proliferative and antioxidant activity of Symphytum officinale root extract.

    Science.gov (United States)

    Sowa, Ireneusz; Paduch, Roman; Strzemski, Maciej; Zielińska, Sylwia; Rydzik-Strzemska, Ewelina; Sawicki, Jan; Kocjan, Ryszard; Polkowski, Janusz; Matkowski, Adam; Latalski, Michał; Wójciak-Kosior, Magdalena

    2018-03-01

    The root of Symphytum officinale L. is commonly used in folk medicine to promote the wound healing, reduce the inflammation and in the treatment of broken bones. The objective of our investigation was to analyse the extract from S. officinale in term of its antioxidant activity and the effect on cell viability and proliferation of human skin fibroblast (HSF). Moreover, the quantification of main phenolics and allantoin was conducted using HPLC-DAD method. Five compounds were found: rosmarinic, p-hydroxybenzoic, caffeic, chlorogenic and p-coumaric acid. DPPH, FRAP and TPC assay showed the high antioxidant activity of the extract. MTT test proved the stimulatory effect on cell metabolism and viability of HSF cells. Moreover, no changes in cytoskeleton structure and cells shape were observed. The obtained results indicate that non-toxic extract from S. officinale root has strong antioxidant potential and a beneficial effect on human skin fibroblasts.

  2. Metabolic Syndrome

    Science.gov (United States)

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These conditions ... agree on the definition or cause of metabolic syndrome. The cause might be insulin resistance. Insulin is ...

  3. Drug Metabolism

    Indian Academy of Sciences (India)

    IAS Admin

    Chemistry of Drug Metabolism. Drug metabolism is a chemical process, where enzymes play a crucial role in the conversion of one chemical species to another. The major family of enzymes associated with these metabolic reactions is the cytochrome P450 family. The structural features and functional activity of these ...

  4. Ultrastructure of the spermatozoon of the digenean Plagiorchis elegans (Rudolphi, 1802) (Plagiorchioidea, Plagiorchiidae).

    Science.gov (United States)

    Ndiaye, Papa Ibnou; Quilichini, Yann; Tkach, Vasyl V; Greiman, Stephen E; Bâ, Cheikh Tidiane; Marchand, Bernard

    2013-09-01

    The ultrastructure of the mature spermatozoon of the type genus of the Plagiorchiidae Plagiorchis elegans (Rudolphi, 1802), a parasite of the Golden hamster, Mesocricetus auratus is described. This study is the first ultrastructural study of the spermatozoon of a Plagiorchis, the second of a plagiorchiid species and only the third in the Plagiorchioidea. Previously data on spermatozoon ultrastructure existed only for the plagiorchiid Enodiotrema reductum and the omphalometrid Rubenstrema exasperatum. The mature spermatozoon of P. elegans exhibited the general pattern described in most digenean species, namely two axonemes of the 9 + "1" Trepaxonemata pattern, nucleus, mitochondria, external ornamentation of the plasma membrane, spine-like bodies, and glycogen granules. However, the rather typical expansion of the plasma membrane is not found in P. elegans. Another peculiarity of the spermatozoon of P. elegans is the presence of a structure called thin cytoplasm termination. Spermatozoon ultrastructure of P. elegans is compared with that of E. reductum and R. exasperatum. Spermatozoon of P. elegans conforms to the general pattern described in E. reductum. Thus, this study further expands our knowledge on the spermatozoon ultrastructure among the members of the Plagiorchioidea, one of the most phylogenetically derived groups of the digenea. Copyright © 2013 Wiley Periodicals, Inc.

  5. Sun and shade leaves? Cuticle ultrastructure of Jurassic Komlopteris nordenskioeldii (Nathorst) Barbacka.

    Science.gov (United States)

    Guignard, G; Bóka, K; Barbacka, M

    2001-04-01

    An ultrastructural transmission electron microscope (TEM) study of fossil leaf cuticles from the Jurassic pteridosperm Komlopteris nordenskioeldii (Nathorst) Barbacka from the Mecsek Mountains (South Hungary) was conducted. Remnants of cuticles of leaves originating from so-called "sun and shade" environments were sectioned with a diamond knife, transversally as well as longitudinally. Although the present study showed a simple type of cuticle in this pteridosperm, differences were observed in the occurrence of its components, such as electron lucent amorphous material and various densities of granules, which give rise to different zones. The included fibrilous elements appeared to be made of aggregated and aligned granules, equivalent in size and electron density to nearby non-fibrilous granular regions. The combinations of these ultrastructural features allow distinctions between four types of cuticle: sun upper, sun lower, shade upper and shade lower. Considering the distinction made earlier in two types of cuticle and supposed to be related to sun and shade on the basis of macroscopical and microscopical features, four types only on the basis of differences in thickness, the present study reinforces the distinctions with ultrastructural microcharacteristics. As this study shows the variations in ultrastructure of cuticle among the four types, the differences observed may reveal the great sensitivity of some plants to environment. At the same time, it points out the importance, in ultrastructural studies of cuticles, of studying a number of samples for one taxon.

  6. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system.

    Science.gov (United States)

    Amir Aslani, Banafsheh; Ghobadi, Sirous

    2016-02-01

    Free radical generation occurs continuously within cells as a consequence of common metabolic processes. However, in high concentrations, whether from endogenous or exogenous sources, free radicals can lead to oxidative stress; a harmful process that cause serious damages to all biomolecules in our body hence impairs cell functions and even results in cell death and diseased states. Oxidative injuries accumulate over time and participate in cancer development, cardiovascular and neurodegenerative disorders as well as aging. Nature has bestowed the human body with a complex web of antioxidant defense system including enzymatic antioxidants like glutathione peroxidase and glutathione reductase, catalase and superoxide dismutase as well as non-enzymatic antioxidants such as thiol antioxidants, melatonin, coenzyme Q, and metal chelating proteins, which are efficient enough to fight against excessive free radicals. Also, nutrient antioxidants such as vitamin C, vitamin E, carotenoids, polyphenols, and trace elements are known to have high antioxidant potency to assist in minimizing harmful effects of reactive species. The immune system is also extremely vulnerable to oxidant and antioxidant balance as uncontrolled free radical production can impair its function and defense mechanism. The present paper reviews the ways by which free radicals form in the body and promote tissue damage, as well as the role of the antioxidants defense mechanisms. Finally, we will have a brief glance at oxidants and antioxidants relevance to the immune system. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Antioxidant Properties of Probiotic Bacteria.

    Science.gov (United States)

    Wang, Yang; Wu, Yanping; Wang, Yuanyuan; Xu, Han; Mei, Xiaoqiang; Yu, Dongyou; Wang, Yibing; Li, Weifen

    2017-05-19

    Oxidative stress defines a condition in which the prooxidant-antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  8. Mitochondrial respiratory and antioxidative enzyme activities in turkey meat.

    Science.gov (United States)

    Janisch, S; Wicke, M; Krischek, C

    2012-02-01

    Meat quality and (anti)oxidative metabolism of m. pectoralis superficialis (MPS), m. gastrocnemius (MG) and m. iliotibilialis lateralis (MIL) from turkey toms were analysed. After slaughter, pH of MPS and MG decreased and electrical conductivity of the MPS increased. The MG had generally higher pH values. The meat lightness (L) and redness (a) increased in MG and MPS after slaughter. The MPS always had higher L and lower a values. Mitochondrial respiratory activities (MRA) were higher in the MIL than the MPS. The activities of superoxide dismutase (SOD) and glutathione peroxidase, analysed in the MPS, increased and the glutathione reductase activity decreased after slaughter. Meat samples with lower pH24 h p.m. had higher drip loss and L values. The MRA were tendentially lower and the SOD activities higher in these samples. These results indicate a relation between the meat quality, the antioxidative metabolism and mitochondrial respiration.

  9. Fatty Acids, Antioxidants and Physical Activity in Brain Aging

    Directory of Open Access Journals (Sweden)

    Hércules Rezende Freitas

    2017-11-01

    Full Text Available Polyunsaturated fatty acids and antioxidants are important mediators in the central nervous system. Lipid derivatives may control the production of proinflammatory agents and regulate NF-κB activity, microglial activation, and fatty acid oxidation; on the other hand, antioxidants, such as glutathione and ascorbate, have been shown to signal through transmitter receptors and protect against acute and chronic oxidative stress, modulating the activity of different signaling pathways. Several authors have investigated the role of these nutrients in the brains of the young and the aged in degenerative diseases such as Alzheimer’s and Parkinson’s, and during brain aging due to adiposity- and physical inactivity-mediated metabolic disturbances, chronic inflammation, and oxidative stress. Through a literature review, we aimed to highlight recent data on the role of adiposity, fatty acids, antioxidants, and physical inactivity in the pathophysiology of the brain and in the molecular mechanisms of senescence. Data indicate the complexity and necessity of endogenous/dietary antioxidants for the maintenance of redox status and the control of neuroglial signaling under stress. Recent studies also indicate that omega-3 and -6 fatty acids act in a competitive manner to generate mediators for energy metabolism, influencing feeding behavior, neural plasticity, and memory during aging. Finding pharmacological or dietary resources that mitigate or prevent neurodegenerative affections continues to be a great challenge and requires additional effort from researchers, clinicians, and nutritionists in the field.

  10. Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts.

    Science.gov (United States)

    Gallego-Villar, Lorena; Pérez, Belén; Ugarte, Magdalena; Desviat, Lourdes R; Richard, Eva

    2014-09-26

    Propionic acidemia (PA), caused by a deficiency of the mitochondrial biotin dependent enzyme propionyl-CoA carboxylase (PCC) is one of the most frequent organic acidurias in humans. Most PA patients present in the neonatal period with metabolic acidosis and hyperammonemia, developing different neurological symptoms, movement disorders and cardiac complications. There is strong evidence indicating that oxidative damage could be a pathogenic factor in neurodegenerative, mitochondrial and metabolic diseases. Recently, we identified an increase in ROS levels in PA patients-derived fibroblasts. Here, we analyze the capability of seven antioxidants to scavenge ROS production in PA patients' cells. Tiron, trolox, resveratrol and MitoQ significantly reduced ROS content in patients and controls' fibroblasts. In addition, changes in the expression of two antioxidant enzymes, superoxide dismutase and glutathione peroxidase, were observed in PA patients-derived fibroblasts after tiron and resveratrol treatment. Our results in PA cellular models establish the proof of concept of the potential of antioxidants as an adjuvant therapy for PA and pave the way for future assessment of antioxidant strategies in the murine model of PA. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Plasma antioxidant capacity is reduced in Asperger syndrome.

    Science.gov (United States)

    Parellada, Mara; Moreno, Carmen; Mac-Dowell, Karina; Leza, Juan Carlos; Giraldez, Marisa; Bailón, Concepción; Castro, Carmen; Miranda-Azpiazu, Patricia; Fraguas, David; Arango, Celso

    2012-03-01

    Recent evidence suggests that children with autism have impaired detoxification capacity and may suffer from chronic oxidative stress. To our knowledge, there has been no study focusing on oxidative metabolism specifically in Asperger syndrome (a milder form of autism) or comparing this metabolism with other psychiatric disorders. In this study, total antioxidant status (TAOS), non-enzymatic (glutathione and homocysteine) and enzymatic (catalase, superoxide dismutase, and glutathione peroxidase) antioxidants, and lipid peroxidation were measured in plasma or erythrocyte lysates in a group of adolescent patients with Asperger syndrome, a group of adolescents with a first episode of psychosis, and a group of healthy controls at baseline and at 8-12 weeks. TAOS was also analyzed at 1 year. TAOS was reduced in Asperger individuals compared with healthy controls and psychosis patients, after covarying by age and antipsychotic treatment. This reduced antioxidant capacity did not depend on any of the individual antioxidant variables measured. Psychosis patients had increased homocysteine levels in plasma and decreased copper and ceruloplasmin at baseline. In conclusion, Asperger patients seem to have chronic low detoxifying capacity. No impaired detoxifying capacity was found in the first-episode psychosis group in the first year of illness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments

    DEFF Research Database (Denmark)

    Wrzesinski, Krzysztof; Rogowska-Wrzesinska, Adelina; Borkowski, Kamil

    2014-01-01

    Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analysed the proteome and cellular architecture at these two extremes and found that they are dramatically...... different. Ultrastructurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate cycle are increased while Krebs cycle and oxidative phosphorylation is unchanged. Enzymes involved...

  13. The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments

    DEFF Research Database (Denmark)

    Carvalho, Vasco Botelho

    Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analysed the proteome and cellular architecture at these two extremes and found that they are dramatically...... different. Ultrastructurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate cycle are increased while Krebs cycle and oxidative phosphorylation is unchanged. Enzymes involved...

  14. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia.

    Science.gov (United States)

    Krukenberg, Viola; Riedel, Dietmar; Gruber-Vodicka, Harald R; Buttigieg, Pier Luigi; Tegetmeyer, Halina E; Boetius, Antje; Wegener, Gunter

    2018-02-22

    The sulfate-dependent, anaerobic oxidation of methane (AOM) is an important sink for methane in marine environments. It is carried out between anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) living in syntrophic partnership. In this study, we compared the genomes, gene expression patterns and ultrastructures of three phylogenetically different microbial consortia found in hydrocarbon-rich environments under different temperature regimes: ANME-1a/HotSeep-1 (60°C), ANME-1a/Seep-SRB2 (37°C) and ANME-2c/Seep-SRB2 (20°C). All three ANME encode a reverse methanogenesis pathway: ANME-2c encodes all enzymes, while ANME-1a lacks the gene for N5,N10-methylene tetrahydromethanopterin reductase (mer) and encodes a methylenetetrahydrofolate reductase (Met). The bacterial partners contain the genes encoding the canonical dissimilatory sulfate reduction pathway. During AOM, all three consortia types highly expressed genes encoding for the formation of flagella or type IV pili and/or c-type cytochromes, some predicted to be extracellular. ANME-2c expressed potentially extracellular cytochromes with up to 32 hemes, whereas ANME-1a and SRB expressed less complex cytochromes (≤8 and ≤12 heme, respectively). The intercellular space of all consortia showed nanowire-like structures and heme-rich areas. These features are proposed to enable interspecies electron exchange, hence suggesting that direct electron transfer is a common mechanism to sulfate-dependent AOM, and that both partners synthesize molecules to enable it. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Spermatozoon ultrastructure and semen parameters of Brycon vermelha (Characiformes, Characidae).

    Science.gov (United States)

    Faustino, F; Silva, R C; Hilbig, C C; Makino, L C; Senhorini, J A; Ninhaus-Silveira, A; Nakaghi, L S O

    2015-06-01

    This study analyzed semen parameters and the ultrastructure of spermatozoa of Brycon vermelha. The semen was white and viscous, with a mean volume of 5.0±2.6 mL/kg body weight and mean spermatozoon concentration of 4.3±0.8×10(10) spermatozoa/mL. The estimated motility rate was 90%, with 50% of spermatozoa motile at 35.0±0.1 s and 100% immotile by 46.5±0.1 s. The spermatozoon of B. vermelha had a distinct head, midpiece, and flagellum. The ovoid head measured 1.9±0.2 μm by 1.3±0.1 μm, with its volume almost completely occupied by the nucleus, and was enveloped by an irregular nuclear membrane, with no acrosome vesicle. The nuclear fossa held the centriole complex and the initial segment of flagellum. The midpiece was symmetrical and measured 1.3±0.3μm. Mitochondria were scarce and restricted to the anterior region, while vesicles were absent. The posterior region of the midpiece was characterized by the absence of mitochondria and the presence of the cytoplasmic sheath. The flagellum, enclosed by the flagellar membrane, measured 29.6±3.4 μm, and possessed an axial filament containing a 9+2 microtubule pattern. The spermatozoa of B. vermelha appeared similar in structure to those of fish that breed through external fertilization, thus classifying them as uniflagellate anacrosomal aquasperm, or Type 1 aquasperm. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The ultrastructural morphology of native hepatitis B virus.

    Science.gov (United States)

    Kaito, Masahiko; Ohba, Hiroyoshi; Chiba, Joe; Kohara, Michinori; Tanaka, Hideaki; Fujita, Naoki; Gabazza, Esteban Cesar; Watanabe, Shozo; Konishi, Masayoshi; Adachi, Yukihiko

    2006-09-01

    Cell lines (2.2.15 cells) capable of supporting the replication of hepatitis B virus (HBV) DNA and intact viral particles have been established by HBV DNA transfection into HepG2 cells. The purpose of this study was to determine the ultrastructural morphology of native HBV particles without purification in the culture supernatants and in sera from patients. Electron microscopy (EM) and immunogold EM of the samples were carried out using polyclonal and monoclonal anti-hepatitis B surface antigen antibodies. HBV particles in the purified samples from the culture supernatants by density-gradient centrifugation were examined to compare the morphology with that of unpurified samples. EM and immunogold EM studies demonstrated the presence of Dane particles (41.8 nm in diameter), cobra-shaped (head diameter, 42.4 nm), and horn-shaped (head diameter, 43.5 nm) particles in the culture supernatants and in the sera from two patients. The tail of the cobra-like particles had a diameter of 21.0 nm and a length of 214 nm. The hornlike particles had a long branch 20.1 nm in diameter with a length of 189 nm, and a short branch 21.4 nm in diameter with a length of 112 nm. The ratio of Dane particles and cobra- and horn-shaped particles in the supernatants was 5 : 4 : 1. After ultracentrifugation, the cobra- and horn-shaped particles completely disappeared; there were only Dane particles together with spheres of 22 nm and filaments. In conclusion, this study showed for the first time that the native replicative form of HBV is cobra- and horn-shaped.

  17. Synaptic ultrastructure changes in trigeminocervical complex posttrigeminal nerve injury.

    Science.gov (United States)

    Park, John; Trinh, Van Nancy; Sears-Kraxberger, Ilse; Li, Kang-Wu; Steward, Oswald; Luo, Z David

    2016-02-01

    Trigeminal nerves collecting sensory information from the orofacial area synapse on second-order neurons in the dorsal horn of subnucleus caudalis and cervical C1/C2 spinal cord (Vc/C2, or trigeminocervical complex), which is critical for sensory information processing. Injury to the trigeminal nerves may cause maladaptive changes in synaptic connectivity that plays an important role in chronic pain development. Here we examined whether injury to the infraorbital nerve, a branch of the trigeminal nerves, led to synaptic ultrastructural changes when the injured animals have developed neuropathic pain states. Transmission electron microscopy was used to examine synaptic profiles in Vc/C2 at 3 weeks postinjury, corresponding to the time of peak behavioral hypersensitivity following chronic constriction injury to the infraorbital nerve (CCI-ION). Using established criteria, synaptic profiles were classified as associated with excitatory (R-), inhibitory (F-), and primary afferent (C-) terminals. Each type was counted within the superficial dorsal horn of the Vc/C2 and the means from each rat were compared between sham and injured animals; synaptic contact length was also measured. The overall analysis indicates that rats with orofacial pain states had increased numbers and decreased mean synaptic length of R-profiles within the Vc/C2 superficial dorsal horn (lamina I) 3 weeks post-CCI-ION. Increases in the number of excitatory synapses in the superficial dorsal horn of Vc/C2 could lead to enhanced activation of nociceptive pathways, contributing to the development of orofacial pain states. © 2015 Wiley Periodicals, Inc.

  18. Enamel ultrastructure in fossil cetaceans (Cetacea: Archaeoceti and Odontoceti.

    Directory of Open Access Journals (Sweden)

    Carolina Loch

    Full Text Available The transition from terrestrial ancestry to a fully pelagic life profoundly altered the body systems of cetaceans, with extreme morphological changes in the skull and feeding apparatus. The Oligocene Epoch was a crucial time in the evolution of cetaceans when the ancestors of modern whales and dolphins (Neoceti underwent major diversification, but details of dental structure and evolution are poorly known for the archaeocete-neocete transition. We report the morphology of teeth and ultrastructure of enamel in archaeocetes, and fossil platanistoids and delphinoids, ranging from late Oligocene (Waitaki Valley, New Zealand to Pliocene (Caldera, Chile. Teeth were embedded in epoxy resin, sectioned in cross and longitudinal planes, polished, etched, and coated with gold palladium for scanning electron microscopy (SEM observation. SEM images showed that in archaeocetes, squalodontids and Prosqualodon (taxa with heterodont and nonpolydont/limited polydont teeth, the inner enamel was organized in Hunter-Schreger bands (HSB with an outer layer of radial enamel. This is a common pattern in most large-bodied mammals and it is regarded as a biomechanical adaptation related to food processing and crack resistance. Fossil Otekaikea sp. and delphinoids, which were polydont and homodont, showed a simpler structure, with inner radial and outer prismless enamel. Radial enamel is regarded as more wear-resistant and has been retained in several mammalian taxa in which opposing tooth surfaces slide over each other. These observations suggest that the transition from a heterodont and nonpolydont/limited polydont dentition in archaeocetes and early odontocetes, to homodont and polydont teeth in crownward odontocetes, was also linked to a marked simplification in the enamel Schmelzmuster. These patterns probably reflect functional shifts in food processing from shear-and-mastication in archaeocetes and early odontocetes, to pierce-and-grasp occlusion in crownward

  19. Ultrastructural evidence that ependymal cells are infected in experimental scrapie.

    Science.gov (United States)

    Fournier, Jean-Guy; Adjou, Karim; Grigoriev, Vladimir; Deslys, Jean-Philippe

    2008-06-01

    During the last stage of infection in the experimental scrapie-infected hamster model, light microscopy reveals typical immunostaining of PrPsc in the subependymal region and at the apical ependymal cell borders. Whereas the subependymal immuno-staining is known to originate from extracellular amyloid filaments and residual membranes of astrocytes as constituents of plaque-like structures, the ultrastructural correlate of the supraependymal PrPsc staining remains uncertain. To decipher this apical PrPsc immunopositivity and subsequently the ependymocyte-scrapie agent interaction, we employed highly sensitive immuno-electron microscopy for detecting PrPsc in 263K scrapie-infected hamster brains. The results revealed the supraependymal PrPsc signal to be correlated not only with extracellular accumulation of amyloid filaments, but also with three distinct ependymal cell structures: (1) morphologically intact or altered microvilli associated with filaments, (2) the ependymal cell cytoplasm in proximity of apical cell membrane, and (3) intracytoplasmic organelles such as endosomes and lysosomal-like structures. These findings suggest a strong ependymotrope feature of the scrapie agent and recapitulate several aspects of the cell-prion interaction leading to the formation and production of PrPsc amyloid filaments. Our data demonstrate that in addition to neurons and astrocytes, ependymocytes constitute a new cellular target for the scrapie agent. In contrast, the absence of PrPsc labeling in choroid plexus and brain vascular endothelial cells indicates that these cells are not susceptible to the infection and may inhibit passage of the infectious agent across the blood-brain barrier.

  20. Enamel ultrastructure in fossil cetaceans (Cetacea: Archaeoceti and Odontoceti).

    Science.gov (United States)

    Loch, Carolina; Kieser, Jules A; Fordyce, R Ewan

    2015-01-01

    The transition from terrestrial ancestry to a fully pelagic life profoundly altered the body systems of cetaceans, with extreme morphological changes in the skull and feeding apparatus. The Oligocene Epoch was a crucial time in the evolution of cetaceans when the ancestors of modern whales and dolphins (Neoceti) underwent major diversification, but details of dental structure and evolution are poorly known for the archaeocete-neocete transition. We report the morphology of teeth and ultrastructure of enamel in archaeocetes, and fossil platanistoids and delphinoids, ranging from late Oligocene (Waitaki Valley, New Zealand) to Pliocene (Caldera, Chile). Teeth were embedded in epoxy resin, sectioned in cross and longitudinal planes, polished, etched, and coated with gold palladium for scanning electron microscopy (SEM) observation. SEM images showed that in archaeocetes, squalodontids and Prosqualodon (taxa with heterodont and nonpolydont/limited polydont teeth), the inner enamel was organized in Hunter-Schreger bands (HSB) with an outer layer of radial enamel. This is a common pattern in most large-bodied mammals and it is regarded as a biomechanical adaptation related to food processing and crack resistance. Fossil Otekaikea sp. and delphinoids, which were polydont and homodont, showed a simpler structure, with inner radial and outer prismless enamel. Radial enamel is regarded as more wear-resistant and has been retained in several mammalian taxa in which opposing tooth surfaces slide over each other. These observations suggest that the transition from a heterodont and nonpolydont/limited polydont dentition in archaeocetes and early odontocetes, to homodont and polydont teeth in crownward odontocetes, was also linked to a marked simplification in the enamel Schmelzmuster. These patterns probably reflect functional shifts in food processing from shear-and-mastication in archaeocetes and early odontocetes, to pierce-and-grasp occlusion in crownward odontocetes, with

  1. Antimicrobial and antioxidant activity of lemon balm Kombucha

    OpenAIRE

    Velićanski Aleksandra S.; Cvetković Dragoljub D.; Markov Siniša L.; Tumbas Vesna T.; Savatović Slađana M.

    2007-01-01

    Kombucha is a beverage traditionally produced by metabolic activity of yeasts and acetic acid bacteria. The antimicrobial activity of lemon balm kombucha as well as of particular control samples was determined by agar-well diffusion method. Antioxidant activity on stable 1,1-diphenyl-2-picrylhydrazyl radicals of lemon balm kombucha and lemon balm tea was determined by electron spin resonance spectroscopy. Acetic acid, Kombucha samples and heat-denaturated kombucha showed significant antimicro...

  2. Rosa micrantha as a powerfull source of antioxidants

    OpenAIRE

    Guimarães, Rafaela; Barros, Lillian; Carvalho, Ana Maria; Ferreira, Isabel C.F.R.

    2010-01-01

    Reactive oxygen (ROS) and nitrogen (RNS) species production inevitably occurs during normal cell metabolism both in animals and plants. An excess of those species lead to oxidative and nitrosative stresses, resulting in damage for some cellular molecules such as DNA, proteins and lipids. Natural antioxidants have become a safety option to avoid biological oxidations involved in cellular damage and deterioration of food quality. Rosa micrantha is one of the rose species that gro...

  3. Glutathione: new roles in redox signalling for an old antioxidant

    Directory of Open Access Journals (Sweden)

    KATIA eAQUILANO

    2014-08-01

    Full Text Available The physiological roles played by the tripeptide glutathione have greatly advanced over the past decades superimposing the research on free radicals, oxidative stress and, more recently, redox signalling. In particular, GSH is involved in nutrient metabolism, antioxidant defence and regulation of cellular metabolic functions ranging from gene expression, DNA and protein synthesis to signal transduction, cell proliferation and apoptosis. This review will be focused on the role of GSH in cell signalling by analysing the more recent advancements about its capability to modulate nitroxidative stress, autophagy and viral infection.

  4. Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract.

    Science.gov (United States)

    Ajiboye, Taofeek O; Salawu, Nasir A; Yakubu, Musa T; Oladiji, Adenike T; Akanji, Musbau A; Okogun, Joseph I

    2011-04-01

    The antioxidant and drug metabolizing potentials of Hibiscus anthocyanin extract in CCl(4)- induced oxidative damage of rat liver was investigated. Hibiscus anthocyanin extract effectively scavenge α-diphenyl-β-picrylhydrazyl (DPPH) radical, superoxide ion, and hydrogen peroxide. It produced a 92% scavenging effect of DPPH radical at a concentration of 2.0 mg/mL. Hibiscus anthocyanin extract produced a 69 and 90% scavenging effect on superoxide ion and hydrogen peroxide, respectively, at 1.0 mg/mL, which compared favorably with the synthetic antioxidant (butylated hydroanisole and α-tocopherol). A reducing power of this anthocyanin was examined using K(3)Fe(CN)(6). Hibiscus anthocyanin extract has reducing power that is approximately 2-fold that of the synthetic antioxidant, butylated hydroanisole. Hibiscus anthocyanin extract produced a significantly increase and completely attenuated the CCl(4)-mediated decrease in antioxidant enzymes (e.g., catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase). However, the level of nonenzymic antioxidant molecules (i.e., vitamins C and E) were significant preserved by Hibiscus anthocyanin extract. There was an induction of phase II drug-detoxifying enzymes: glutathione S-transferase, NAD(H):quinone oxidoreductase, and uridyl diphosphoglucuronosyl transferase by 65, 45, and 57%, respectively. In view of these properties, Hibiscus sabdariffa anthocyanin extract can act as a prophylactic by intervening as a free radical scavenger both in vitro and in vivo as well as inducing the phase II drug detoxification enzymes.

  5. Synergistic antioxidant activity of green tea with some herbs

    Directory of Open Access Journals (Sweden)

    Dheeraj P Jain

    2011-01-01

    Full Text Available Cardiovascular diseases, cancer, arthritis, etc. are caused by free radicals that are byproducts of metabolic pathways. Selected plants namely Vitis vinifera, Phyllanthus emblica L., Punica granatum, Cinnamomum cassia, Ginkgo biloba L., and Camellia sinensis Linn. are reported to produce antioxidant property. This study is undertaken to support the hypothesis that formulation of a polyherbal combination of these plants shows a synergistic effect with green tea. The extracts of each drug were characterized by phytochemical studies and tests for phenolics and flavonoids. In vitro antioxidant activity for individual drug and its combination was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH, superoxide, and nitric oxide free radical scavenging methods. Our results suggest that a combination of all these herbs with green tea can synergistically enhance antioxidant activity and thus lower doses of each herb with green tea may be used. Antioxidant potential of polyherbal combination was also comparable to that of standard ascorbic acid. Studies showed that selected individual plants contained abundant quantity of phenolics and flavonoids and their polyherbal combination with green tea was found to produce best antioxidant activity among all individual extracts. This will help in avoiding undesirable side effects due to higher doses of single herb.

  6. Digital three-dimensional reconstruction and ultrastructure of the mouse proximal tubule

    DEFF Research Database (Denmark)

    Zhai, X.Y.; Birn, H.; Jensen, K.B.

    2003-01-01

    , detailed analyses of normal mouse kidney structure and organization are lacking. This study describes the 3D organization and ultrastructural, segmental variation of the mouse kidney proximal tubule. A total of 160 proximal tubules in three C57/BL/6J mouse kidneys were analyzed on 800 serial sections from...... each kidney from the surface to the inner stripe of the outer zone of medulla. All tubules were reconstructed in 3D and visualized by interactive computer graphics. A quantitative ultrastructural analysis of the mouse proximal tubule at every 300 to 400 micro m was performed. The 3D representation....... In the medullary rays, these are arranged in layers outside the clusters of more superficial tubules. In contrast to rat and human kidney, no major segmental variation in the ultrastructure of the proximal tubule was identified, and no parameters enabled definition of distinct segments in this strain of mice...

  7. Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production

    International Nuclear Information System (INIS)

    Ribeiro, J.; Cavaglieri, L.; Vital, H.; Cristofolini, A.; Merkis, C.; Astoreca, A.; Orlando, J.; Caru, M.; Dalcero, A.; Rosa, C.A.R.

    2011-01-01

    The aim of this work was to study the effect of gamma radiation (2 kGy) on Aspergillus flavus and Aspergillus ochraceus ultrastructure. Moreover, the influence on aflatoxin B 1 and ochratoxin A production was also observed. Irradiated A. flavus strain showed a dull orangish colony while control strain showed the typical green color. Minor differences were observed on stipes, metulae and conidia size between control and irradiated A. flavus and A. ochraceus strains. Irradiated fungi showed ultrastructural changes on cell wall, plasmalema and cytoplasm levels. The levels of mycotoxins produced by irradiated strains were two times greater than those produced by control strains. Successive transferences of irradiated strains on malt extract agar allowed the fungus to recuperate morphological characteristics. Although minor changes in the fungal morphology were observed, ultrastructural changes at cell wall level and the increase of mycotoxin production ability were observed. Inappropriate storage of irradiated food and feed would allow the development of potentially more toxicogenic fungal propagules.

  8. Spermatozoon ultrastructure of Gyliauchen sp. (Digenea: Gyliauchenidae), an intestinal parasite of Siganus fuscescens (Pisces: Teleostei).

    Science.gov (United States)

    Quilichini, Y; Foata, J; Justine, J-L; Bray, R A; Marchand, B

    2011-10-01

    The ultrastructure of the mature spermatozoon of Gyliauchen sp., a parasite of the dusky rabbitfish Siganus fuscescens, was studied by transmission electron microscopy. The spermatozoon possesses two axonemes of the 9+"1" pattern of Trepaxonemata, four attachment zones, one mitochondrion, a nucleus, cortical microtubules, external ornamentation of the plasma membrane, and spine-like bodies. The main characteristics of this spermatozoon are the presence of one mitochondrion, spine-like bodies not associated with the external ornamentation, and a posterior extremity of type 3 that is characterized by the following sequence: posterior extremity of the nucleus then posterior extremity of the second axoneme. Numerous other ultrastructural features are also discussed and compared to the digenean spermatology literature. This is the first study of a member of the Gyliauchenidae and the fourth within the Lepocreadioidea. The results show that many ultrastructural characters are variable within this superfamily and could be useful for phylogeny.

  9. Ultrastructure of the midgut in Heteroptera (Hemiptera) with different feeding habits.

    Science.gov (United States)

    Santos, Helen Pinto; Rost-Roszkowska, Magdalena; Vilimova, Jitka; Serrão, José Eduardo

    2017-07-01

    Heteroptera have diverse feeding habits with phytophagous, zoophagous, and haematophagous species. This dietary diversity associated with the monophyly of Heteroptera makes these insects a good object for comparative studies of the digestive tract. This work compares the ultrastructure of the middle midgut region in the phytophagous Coptosoma scutellatum (Plataspidae), Graphosoma lineatum (Pentatomidae), Kleidocerys resedae (Lygaeidae), and zoophagous Rhynocoris iracundus (Reduviidae), Nabis rugosus (Nabidae), and Himacerus apterus (Nabidae), to verify if diet affects midgut cells in phylogenetically related insects. The middle region of the midgut was used for comparison because it is the main site for digestion and absorption of the midgut. The digestive cell ultrastructure was similar in the six species, with features of secretory, absorptive, transport, storage, and excretory cells, suggesting a stronger correlation of middle digestive cell ultrastructure with the phylogeny of these species than with the different heteropteran feeding habits.

  10. Do Dietary Factors Influence Tendon Metabolism?

    Science.gov (United States)

    Scott, Alex; Nordin, Cara

    There is very little direct research to conclusively prove the relevance of diet in primary tendinopathies, however it seems prudent to ask whether our current knowledge about the impact of nutrition on collagen metabolism could be useful in assessing, preventing, or treating tendinopathy. The objective of this chapter is to discuss the potential impact (negative or positive) that nutrition may have on the metabolism of tendons by summarizing the related research. The chapter briefly discusses the roles that specific vitamins, amino acids, lipids, and antioxidants have in various processes of the body that may be directly or indirectly related to tenocyte metabolism.

  11. Ultrastructure of interstitial cells of Cajal in myenteric plexus of human colon

    DEFF Research Database (Denmark)

    Rumessen, Jüri Johs.; Vanderwinden, Jean-Marie; Rasmussen, Helle

    2009-01-01

    The role of the interstitial cells of Cajal (ICC) associated with the myenteric plexus (ICC-MP) as regulators of the motility of the colonic external muscle remains unclear. Ultrastructural studies of myenteric interstitial cells are lacking in human colon. We therefore characterized the distinct......The role of the interstitial cells of Cajal (ICC) associated with the myenteric plexus (ICC-MP) as regulators of the motility of the colonic external muscle remains unclear. Ultrastructural studies of myenteric interstitial cells are lacking in human colon. We therefore characterized...

  12. Postmortem ultrastructural analysis of a cornea transplanted with Descemet membrane endothelial keratoplasty.

    Science.gov (United States)

    Livny, Eitan; Parker, Jack S; van der Kaaij, Mariëlle; Haasdijk, Elize D; van der Wees, Jacqueline; Bruinsma, Marieke; Melles, Gerrit R J

    2014-08-01

    The aim of this study was to describe the ultrastructure of the host-donor interface in the eye of a recently deceased patient, who had undergone Descemet membrane endothelial keratoplasty. The eye was enucleated postmortem, and after standard decontamination, the corneoscleral button was excised, cut into 4 quadrants, and processed for light and transmission electron microscopy evaluation. Transmission electron microscopy revealed close attachment of the donor's Descemet membrane to the host's stroma and projection of stromal collagen fibers into the interfacial matrix, resembling a normal "virgin" corneal architecture. Ultrastructurally, an attached Descemet membrane endothelial keratoplasty graft closely resembles that of an unoperated, healthy eye with no appreciable adventitious or missing structures.

  13. Ultrastructural distinctions between adult pleomorphic rhabdomyosarcomas, pleomorphic liposarcomas, and pleomorphic malignant fibrous histiocytomas.

    Science.gov (United States)

    Weiss, L M; Warhol, M J

    1984-11-01

    The ultrastructural features of five pleomorphic rhabdomyosarcomas, five high-grade malignant fibrous histiocytomas, and five pleomorphic liposarcomas were studied. Electron microscopy was found to be consistently useful in distinguishing between these tumors. The rhabdomyosarcomas showed thick and thin filaments in complexes and consistently contained glycogen. The malignant fibrous histiocytomas had numerous lysosomes, often in cells with ruffled borders, and contained cells showing "myofibroblastic" differentiation. The liposarcomas showed abundant and coalescing lipid droplets, sparse stroma with condensation of amorphous granular materials surrounding plasma membranes, and prominent vascularity. Fourteen of the 15 tumors could be identified on the basis of ultrastructure; thus, electron microscopic examination is an important diagnostic tool for pleomorphic tumors.

  14. Ultra-Structural Changes of the Early Childhood Caries Starting Phases of Development

    Directory of Open Access Journals (Sweden)

    Kokoceva-Ivanovska Olga

    2014-03-01

    Full Text Available In the recent 20 years, besides dramatic reduction of caries in many countries where complex programme of prevention is carried out, prevalence of Early Childhood Caries (ECC has expressed continual growth trend. The aim of our research was to determine precisely ultra-structural changes in the enamel substance at the initial lesion of the ECC (white spot lesion, as initial change of great importance for its preventive aspect. Therefore, we directed our experiment to evaluate ultra-structural changes of the teeth enamel in primary teeth with circular caries in its opening stages of development: initial caries lesion and superficial form.

  15. Vulvar angiomyxoma, aggressive angiomyxoma, and angiomyofibroblastoma: an immunohistochemical and ultrastructural study.

    Science.gov (United States)

    Alameda, Francesc; Munné, Assumpció; Baró, Teresa; Iglesias, Mar; Condom, Enric; Lloreta-Trull, Josep; Serrano, Sergi

    2006-01-01

    To investigate the histogenetical unifying theory of a single, pluripotential primitive cell for vulvar angiomyxoma, aggresive angiomyxoma, and angiomyofibroblastoma, an optical, immunohistochemical and ultrastructural study of a superficial angiomyxoma, aggressive angiomyxoma, and angiomyofibroblastoma was performed. These three tumors showed immunohistochemical and ultrastructural overlapping features. The results of the study suggest that these three tumor entities probably arise on a common pluripotential primitive cell located around the vessels of connective tissue, which could show the capacity for modulating its penotype toward similar but distinct mature cell types.

  16. [Enzymatic and ultrastructural changes in isolated liver mitochondria from mice infected with several group A arboviruses].

    Science.gov (United States)

    Peshkova, E A; Bakhtin, E K

    1978-01-01

    Inoculation of white mice of varying body mass with pathologic strains of eastern and Venezuelan equine encephalomyelitis viruses and their attenuated variants (DNC-20/6 and No. 2621), promising as vaccine candidates, resulted in an increase of enzymatic activity and ultrastructural changes of isolated mitochondria from livers of the animals. The attenuated strains of the viruses were shown to induce temporary changes in both aspects of the study which became normal by the end of the study. There was a certain correlational dependence between the enzymatic activity and ultrastructural changes in isolated mitochondria associated with the use of energy in virus reproduction.

  17. The skin function: a factor of anti-metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Zhou Shi-Sheng

    2012-04-01

    Full Text Available Abstract The body’s total antioxidant capacity represents a sum of the antioxidant capacity of various tissues/organs. A decrease in the body’s antioxidant capacity may induce oxidative stress and subsequent metabolic syndrome, a clustering of risk factors for type 2 diabetes and cardiovascular disease. The skin, the largest organ of the body, is one of the major components of the body’s total antioxidant defense system, primarily through its xenobiotic/drug biotransformation system, reactive oxygen species-scavenging system, and sweat glands- and sebaceous glands-mediated excretion system. Notably, unlike other contributors, the skin contribution is variable, depending on lifestyles and ambient temperature or seasonal variations. Emerging evidence suggests that decreased skin’s antioxidant and excretory functions (e.g., due to sedentary lifestyles and low ambient temperature may increase the risk for metabolic syndrome. This review focuses on the relationship between the variability of skin-mediated detoxification and elimination of exogenous and endogenous toxic substances and the development of metabolic syndrome. The potential role of sebum secretion in lipid and cholesterol homeostasis and its impact on metabolic syndrome, and the association between skin disorders (acanthosis nigricans, acne, and burn and metabolic syndrome are also discussed.

  18. Chronic Mild Hyperhomocysteinemia Alters Inflammatory and Oxidative/Nitrative Status and Causes Protein/DNA Damage, as well as Ultrastructural Changes in Cerebral Cortex: Is Acetylsalicylic Acid Neuroprotective?

    Science.gov (United States)

    de S Moreira, Daniella; Figueiró, Paula W; Siebert, Cassiana; Prezzi, Caroline A; Rohden, Francieli; Guma, Fatima C R; Manfredini, Vanusa; Wyse, Angela T S

    2018-04-01

    Homocysteine is a sulfur-containing amino acid derived from methionine metabolism. When plasma homocysteine levels exceed 10-15 μM, there is a condition known as hyperhomocysteinemia, which occur as a result of an inborn error of methionine metabolism or by non-genetic causes. Mild hyperhomocysteinemia is considered a risk factor for development of neurodegenerative diseases. The objective of the present study was to evaluate whether acetylsalicylic acid has neuroprotective role on the effect of homocysteine on inflammatory, oxidative/nitrative stress, and morphological parameters in cerebral cortex of rats subjected to chronic mild hyperhomocysteinemia. Wistar male rats received homocysteine (0.03 μmol/g of body weight) by subcutaneous injections twice a day and acetylsalicylic acid (25 mg/Kg of body weight) by intraperitoneal injections once a day from the 30th to the 60th postpartum day. Control rats received vehicle solution in the same volume. Results showed that rats subjected to chronic mild hyperhomocysteinemia significantly increased IL-1β, IL-6, and acetylcholinesterase activity and reduced nitrite levels. Homocysteine decreased catalase activity and immunocontent and superoxide dismutase activity, caused protein and DNA damage, and altered neurons ultrastructure. Acetylsalicylic acid totally prevented the effect of homocysteine on acetylcholinesterase activity and catalase activity and immunocontent, as well as the ultrastructural changes, and partially prevented alterations on IL-1β levels, superoxide dismutase activity, sulfhydryl content, and comet assay. Acetylsalicylic acid per se increased DNA damage index. In summary, our findings showed that chronic chemically induced model of mild hyperhomocysteinemia altered some parameters and acetylsalicylic acid administration seemed to be neuroprotective, at least in part, on neurotoxicity of homocysteine.

  19. Toxic effects of cadmium on flatworm stem cell dynamics: A transcriptomic and ultrastructural elucidation of underlying mechanisms.

    Science.gov (United States)

    Plusquin, Michelle; De Mulder, Katrien; Van Belleghem, Frank; DeGheselle, Olivier; Pirotte, Nicky; Willems, Maxime; Cuypers, Ann; Salvenmoser, Willi; Ladurner, Peter; Artois, Tom; Smeets, Karen

    2016-10-01

    Stem cells or undifferentiated cells can cope more easily with external stresses. To evaluate the impact of toxic compounds on stem cell dynamics in vivo, in relation to other biological responses, we use the carcinogenic element cadmium and the regenerating model organism Macrostomum lignano. Through both BrdU and anti-histone H3 immunostainings, cadmium-induced effects were investigated at different stages of the stem cell cycle. A 24-h exposure to 100 and 250 μM CdCl2 significantly decreased the number of stem cells (neoblasts) in mitosis, whereas the number of cells in the S phase remained unchanged. After this short-term exposure, the ultrastructure of the neoblasts was minimally affected in contrast to the epidermal tissues. These results were supported by gene expression data: transcripts of cdc2 and pig3 were significantly upregulated during all treatments. Both genes are involved in the cell cycle progression and are transcribed in the gonadal region, where stem cells are highly represented. Based on a substantial increase in gene expression of heat shock proteins (HSP) and their high activity in the gonadal region, we hypothesize that these proteins are key players in the protection of stem cells against external stresses. Apart from the strong HSP induction, other protective processes including cell division, apoptosis and anti-oxidative defence, were also activated. We, therefore, conclude that the protection of stem cells against external stressors may be based on the interplay between stem cell maintenance, i.e. repair and recovery through division, on one hand and apoptosis on the other hand. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1217-1228, 2016. © 2015 Wiley Periodicals, Inc.

  20. Antioxidant supplements for liver diseases

    DEFF Research Database (Denmark)

    Bjelakovic, Goran; Gluud, Lise Lotte; Nikolova, Dimitrinka

    2011-01-01

    Several liver diseases have been associated with oxidative stress. Accordingly, antioxidants have been suggested as potential therapeutics for various liver diseases. The evidence supporting these suggestions is equivocal.......Several liver diseases have been associated with oxidative stress. Accordingly, antioxidants have been suggested as potential therapeutics for various liver diseases. The evidence supporting these suggestions is equivocal....

  1. Renal nerve ultrastructural alterations in short term and long term experimental diabetes.

    Science.gov (United States)

    Sato, Karina Laurenti; Sanada, Luciana Sayuri; Ferreira, Renata da Silva; de Marco, Maria Carolina Del Bem de Barros Oliveti; Castania, Jaci Airton; Salgado, Helio Cesar; Nessler, Randy Alan; Fazan, Valeria Paula Sassoli

    2014-01-05

    Despite the evidence that renal hemodynamics is impaired in experimental diabetes, associated with glomeruli structural alterations, renal nerves were not yet investigated in experimental models of diabetes and the contribution of nerve alterations to the diabetic nephropathy remains to be investigated. We aimed to determine if ultrastructural morphometric parameters of the renal nerves are affected by short term and/or long term experimental diabetes and if insulin treatment reverses these alterations. Left renal nerves were evaluated 15 days or 12 weeks (N = 10 in each group) after induction of diabetes, with a single injection of streptozotocin (STZ). Control rats (N = 10 in each group) were injected with vehicle (citrate buffer). Treated animals (N = 10 in each group) received a single subcutaneous injection of insulin on a daily basis. Arterial pressure, together with the renal nerves activity, was recorded 15 days (short-term) or 12 weeks (long-term) after STZ injection. After the recordings, the renal nerves were dissected, prepared for light and transmission electron microscopy, and fascicle and fibers morphometry were carried out with computer software. The major diabetic alteration on the renal nerves was a small myelinated fibers loss since their number was smaller on chronic diabetic animals, the average morphometric parameters of the myelinated fibers were larger on chronic diabetic animals and distribution histograms of fiber diameter was significantly shifted to the right on chronic diabetic animals. These alterations began early, after 15 days of diabetes induction, associated with a severe mitochondrial damage, and were not prevented by conventional insulin treatment. The experimental diabetes, induced by a single intravenous injection of STZ, in adult male Wistar rats, caused small fiber loss in the renal nerves, probably due to the early mitochondrial damage. Conventional treatment with insulin was able to correct the weight gain and metabolic

  2. Ultrastructural changes in peripheral arteries and nerves in diabetic ...

    African Journals Online (AJOL)

    Mohamed E. Salem

    2017-01-30

    Jan 30, 2017 ... biopsies in diabetic neuropathy comparing with biopsies of normal arteries and nerves of traumatic amputation as a control group. ... the metabolism of carbohydrate, protein, fat, water and elec- trolytes, sometimes with grave .... loss of the vessel architecture in some sections. The vasa vasorum changes ...

  3. COMPARATIVE SPERM ULTRASTRUCTURE OF BAIKALIAN ENDEMIC PROSOBRANCH GASTROPODS.

    Science.gov (United States)

    Ropstorf, PETER; Healy, JOHN M.; Riedel, FRANK; Sitnikova, TATIANA Y.

    2002-05-01

    Mature euspermatozoan ultrastructure is described for seven species of the rissooidean family Baicaliidae (endemic to Lake Baikal, Russia)-Liobaicalia stiedae, Teratobaikalia ciliata, T. macrostoma, Baicalia carinata, Pseudobaikalia pulla, Maackia bythiniopsis, M. variesculpta, and M. herderiana. For comparison with these species and previously investigated Rissooidea, two species of the Lake Baikal endemic genus Benedictia (B. cf. fragilis and B. baicalensis; Hydrobiidae: Benedictiinae of some authors, Benedictiidae of other authors) in addition to Lithoglyphus naticoides (Hydrobiidae: Lithoglyphinae) and Bythinella austriaca (Hydrobiidae: Bythinellinae) were also investigated. Paraspermatozoa were not observed in any of the species examined, supporting the view that these cells are probably absent in the Rissooidea. In general, the euspermatozoa of all species examined resemble those of many other caenogastropods (basally invaginated acrosomal vesicle, mid-piece with 7-13 helical mitochondria, an annulus, glycogen piece with nine peri-axonemal tracts of granules). However, the presence of a completely flattened acrosomal vesicle and a specialized peri-axonemal membranous sheath (a scroll-like arrangement of 4-6 double membranes) at the termination of the mid-piece, clearly indicates a close relationship between the Baicaliidae and other rissooidean families possessing these features (Bithyniidae, Hydrobiidae, Pyrgulidae, and Stenothyridae). Euspermatozoa of Benedictia, Lithoglyphus, Bythinella, and Pyrgula all have a solid nucleus, which exhibits a short, posterior invagination (housing the centriolar complex and proximal portion of the axoneme). Among the Rissooidea, this form of nucleus is known to occur in the Bithyniidae, Hydrobiidae, Truncatellidae, Pyrgulidae, Iravadiidae, Pomatiopsidae, and Stenothyridae. In contrast, the euspermatozoa of the Baicaliidae all have a long, tubular nucleus, housing not only the centriolar derivative, but also a substantial

  4. A computational framework for ultrastructural mapping of neural circuitry.

    Directory of Open Access Journals (Sweden)

    James R Anderson

    2009-03-01

    Full Text Available Circuitry mapping of metazoan neural systems is difficult because canonical neural regions (regions containing one or more copies of all components are large, regional borders are uncertain, neuronal diversity is high, and potential network topologies so numerous that only anatomical ground truth can resolve them. Complete mapping of a specific network requires synaptic resolution, canonical region coverage, and robust neuronal classification. Though transmission electron microscopy (TEM remains the optimal tool for network mapping, the process of building large serial section TEM (ssTEM image volumes is rendered difficult by the need to precisely mosaic distorted image tiles and register distorted mosaics. Moreover, most molecular neuronal class markers are poorly compatible with optimal TEM imaging. Our objective was to build a complete framework for ultrastructural circuitry mapping. This framework combines strong TEM-compliant small molecule profiling with automated image tile mosaicking, automated slice-to-slice image registration, and gigabyte-scale image browsing for volume annotation. Specifically we show how ultrathin molecular profiling datasets and their resultant classification maps can be embedded into ssTEM datasets and how scripted acquisition tools (SerialEM, mosaicking and registration (ir-tools, and large slice viewers (MosaicBuilder, Viking can be used to manage terabyte-scale volumes. These methods enable large-scale connectivity analyses of new and legacy data. In well-posed tasks (e.g., complete network mapping in retina, terabyte-scale image volumes that previously would require decades of assembly can now be completed in months. Perhaps more importantly, the fusion of molecular profiling, image acquisition by SerialEM, ir-tools volume assembly, and data viewers/annotators also allow ssTEM to be used as a prospective tool for discovery in nonneural systems and a practical screening methodology for neurogenetics. Finally

  5. Ultrastructural features of Mimulus aurantiacus (Scrophulariaceae pollen tubes in vivo

    Directory of Open Access Journals (Sweden)

    Nuran Ekici

    2009-03-01

    Full Text Available The aim of this study is to give information on ultrastructure of in vivo pollen tubes of Mimulus aurantiacus which were collected from the Botanical Garden of the University of California at Berkeley. Materials were prepared according to electron microscopy methods and examined under Zeiss electron microscope. Four zones were examined in the pollen tubes of Mimulus aurantiacus. APICAL ZONE: Mitochondria, smooth endoplasmic reticulum, rough endoplasmic reticulum, dictyosomes and secretory vesicles were observed. SUBAPICAL ZONE: This area contained abundant rough endoplasmic reticulum and occasionally some smooth endoplasmic reticulum. The polysomes, mitochondria, proplastids that contain starch, small vacuoles and a few lipid bodies were detected. NUCLEAR ZONE: Both generative and vegetative cell nuclei lie in this zone. The vegetative cell nucleus was large and long. Rough endoplasmic reticulum, mitochondria, ribosomes, dictyosomes, and amyloplasts that are rich of starch were observed. VACUOLATION AND PLUG FORMATION ZONE: Cytoplasm of the tubes was full of large vacuoles. Few organelles such as mitochondria, dictyosome and rough endoplasmic reticulum were detected along their periphery.O objetivo deste estudo é informar sobre a ultraestrutura de tubos de pólen de Mimulus aurantiacus in vivo coletados no "Botanical Garden" da Universidade da Califórnia em Berkeley. O material foi preparado de acordo com os métodos de microscopia eletrônica e examinado em microscópio eletrônico Zeiss. Quatro zonas dos tubos de pólen de Mimulus aurantiacus foram examinadas. ZONA APICAL: foram observados mitocôndrias, retículo endoplasmático liso; retículo endoplasmático rugoso, dictiossomos e vesículas secretoras. ZONA SUBAPICAL: esta área continha retículo endoplasmático rugoso em abundância e, ocasionalmente, algum retículo endoplasmático liso. Foram detectados polissomos, mitocôndrias, proplastídeos que contêm amido, pequenos vacúolos e

  6. Melatonin: Action as antioxidant and potential applications in human disease and aging

    International Nuclear Information System (INIS)

    Bonnefont-Rousselot, Dominique; Collin, Fabrice

    2010-01-01

    This review aims at describing the beneficial properties of melatonin related to its antioxidant effects. Oxidative stress, i.e., an imbalance between the production of reactive oxygen species and antioxidant defences, is involved in several pathological conditions such as cardiovascular or neurological disease, and in aging. Therefore, research for antioxidants has developed. However, classical antioxidants often failed to exhibit beneficial effects, especially in metabolic diseases. Melatonin has been shown as a specific antioxidant due to its amphiphilic feature that allows it to cross physiological barriers, thereby reducing oxidative damage in both lipid and aqueous cell environments. Studies on the antioxidant action of melatonin are reported, with a special mention to water gamma radiolysis as a method to produce oxygen-derived free radicals, and on structure-activity relationships of melatonin derivatives. Mass spectrometry-based techniques have been developed to identify melatonin oxidation products. Besides its ability to scavenge several radical species, melatonin regulates the activity of antioxidant enzymes (indirect antioxidant properties). Efficient detection methods confirmed the presence of melatonin in several plant products. Therapeutic potential of melatonin relies either on increasing melatonin dietary intake or on supplementation with supraphysiological dosages. Clinical trials showed that melatonin could be efficient in preventing cell damage, as well under acute (sepsis, asphyxia in newborns) as under chronic (metabolic and neurodegenerative diseases, cancer, inflammation, aging). Its global action on oxidative stress, together with its rhythmicity that plays a role in several metabolic functions, lead melatonin to be of great interest for future clinical research in order to improve public health.

  7. Use of antioxidants for the prophylaxis of cold-induced peripheral nerve injury.

    Science.gov (United States)

    Teixeira, Fernanda; Pollock, Martin; Karim, Alveera; Jiang, Yuying

    2002-09-01

    "Trench foot" is a particular risk for those involved in adventure tourism, for soldiers in winter mountain training exercises, and for the homeless. Nonfreezing cold nerve injury is characterized by axonal degeneration, which is attributed to free radicals released during cycles of ischemia and reperfusion. This pilot study sought to determine whether the administration of antioxidants might prevent or ameliorate the development of cold nerve injury. Twenty-six rats were divided into two groups. Group 1 animals received, by gavage, a mixture of vitamin C (150 mg/kg/d), vitamin E (100 mg/kg/d), and N-acetyl-L-cysteine (250 mg/kg/d) daily for 4 weeks. Allopurinol (20 mg/kg/d) was added in the last 4 days of treatment. Group 2 animals served as controls and did not receive any antioxidant supplements. After 1 month, two cycles of sciatic nerve cooling (0 degrees C) were induced in 10 controls and 10 experimental animals using circulating water through a nerve cuff. Six additional control animals were subjected to surgery but did not undergo nerve cooling. All animals were killed on the third postoperative day, and their nerves were processed for ultrastructural and quantitative studies. The proportion of degenerated myelinated and unmyelinated axons showed no significant difference between treated and untreated animals. We conclude that the administration of commonly used antioxidants does not prevent cold nerve injury.

  8. Nucleotide Metabolism

    DEFF Research Database (Denmark)

    Martinussen, Jan; Willemoës, M.; Kilstrup, Mogens

    2011-01-01

    Metabolic pathways are connected through their utilization of nucleotides as supplier of energy, allosteric effectors, and their role in activation of intermediates. Therefore, any attempt to exploit a given living organism in a biotechnological process will have an impact on nucleotide metabolism...

  9. Melatonin Enhances Phenolics Accumulation Partially via Ethylene Signaling and Resulted in High Antioxidant Capacity in Grape Berries

    Directory of Open Access Journals (Sweden)

    Lili Xu

    2017-08-01

    Full Text Available This study assessed the primary impacts of exogenous melatonin (MT treatment on grape berry metabolism. Exogenous MT treatment increased the endogenous MT content and modified berry ripening. Transcriptomic analysis revealed that the processes of polyphenol metabolism, carbohydrate metabolism and ethylene biosynthesis and signaling were the three most significantly altered biological processes upon MT treatment. Further experiments verified that MT treatment increased the contents of total anthocyanins, phenols, flavonoids and proanthocyanidins in berries. Additionally, the contents of 18 of the 22 detected individual phenolic compounds were enhanced by MT treatment; particularly, the resveratrol content was largely increased concomitantly with the up-regulation of STS gene expression. Meanwhile, MT treatment enhanced the antioxidant capacity of berries. On the other hand, it was indicated that ethylene participated in the regulation of polyphenol metabolism and antioxidant capacity under MT treatment in grape berries. In summary, MT enhances the polyphenol content and antioxidant capacity of grape berries partially via ethylene signaling.

  10. Unravelling of the health effects of polyphenols is a complex puzzle complicated by metabolism

    NARCIS (Netherlands)

    Hollman, P.C.H.

    2014-01-01

    Plant metabolism creates complex mixtures of polyphenols in plant foods. Epidemiology and human trials reduced this complexity, by studying specific foods; subclasses of polyphenols; individual polyphenols, or total antioxidant capacity (TAC). This implies the following assumptions: (1) a limited

  11. Ultrastructure of the epithelial cells of the endolymphatic duct in the rat

    DEFF Research Database (Denmark)

    Qvortrup, K; Rostgaard, J

    1994-01-01

    The ultrastructure of the epithelial cells of the endolymphatic duct in the rat is described, following vascular perfusion-fixation of live, anaesthetised and artificially respirated animals. The animals were fixed by means of a pressure feed-back controlled peristaltic pump and an isotonic perfu...

  12. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils

    Science.gov (United States)

    Georgiadis, Marios; Müller, Ralph; Schneider, Philipp

    2016-01-01

    Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils. PMID:27335222

  13. An ultrastructural study of Olpidium brassicae and its transmission of tobacco necrosis virus

    NARCIS (Netherlands)

    Temmink, J.H.M.

    1971-01-01

    This thesis concerns transmission of tobacco necrosis virus (TNV) by zoospores of Olpidiumbrassicae. Electron microscopic observations were made on: a. the fungus, the virus, and the outer layers of seedling roots of two host species (part I); b. ultrastructural aspects of the

  14. Effects of root restriction on the ultrastructure of phloem in grape ...

    African Journals Online (AJOL)

    Yomi

    2011-12-28

    Dec 28, 2011 ... spaces among PP cells in the minor veins occurred in leaves from plants subjected to root restriction than in controls (Figure 4C to E). DISCUSSION. Since structure is often a meaningful guide to function, the ultrastructure of phloem in leaves is expected to yield clues to the mechanisms of phloem loading ...

  15. The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress.

    Science.gov (United States)

    Ali, Shafaqat; Farooq, Muhammad Ahsan; Yasmeen, Tahira; Hussain, Sabir; Arif, Muhammad Saleem; Abbas, Farhat; Bharwana, Saima Aslam; Zhang, Guoping

    2013-03-01

    Silicon (Si) is generally considered as a benefic element for higher plants, especially for those grown under abiotic stressed environments. Current study is carried out in a hydroponic experiment to analyze the effect of Si application on barley growth, photosynthesis and ultra-structure under chromium (Cr) stress. The treatments consisted of three Si (0, 1 and 2mM) and two Cr (0 and 100 μM) levels. The results showed that Si application at both levels enhanced plant growth relative to the control, and alleviated Cr toxicity, reflected by significant increase in growth and photosynthetic parameters, such as SPAD value, net photosynthetic rate (P(n)), cellular CO(2) concentration (C(i)), stomatal conductance (G(s)) and transpiration rate (T(r)), and chlorophyll fluorescence efficiency (Fv/Fm), with 2mM Si having greater effect than 1mM Si. Cr stress caused ultra-structural disorders in leaves, such as uneven swelling of chloroplast, increased amount of plastoglobuli, disintegrated and disappeared thylakoid membranes, increased size and number of starch granules in leaves, and root ultra-structural modification, including increased vacuolar size, presence of Cr metal in cell walls and vacuoles, disruption and disappearance of nucleus. Exogenous Si alleviated these ultra-structural disorders both in roots and leaves. Apparently, Si and Cr behaved antagonistically, indicating that Si could be a candidate for Cr detoxification in crops under Cr-contaminated soil. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Ultrastructure of the spermatozoon of the proteocephalidean cestode Proteocephalus torulosus (Batsch, 1786)

    Czech Academy of Sciences Publication Activity Database

    Bruňanská, Magdaléna; Nebesářová, Jana; Scholz, Tomáš

    2003-01-01

    Roč. 89, č. 5 (2003), s. 345-351 ISSN 0932-0113 R&D Projects: GA ČR GA524/01/1314 Institutional research plan: CEZ:AV0Z6022909 Keywords : cestoda * spermatozoon * ultrastructure Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.000, year: 2003

  17. Ultrastructural Changes of Corpus Luteum after Ovarian Stimulation at Implantation Period

    International Nuclear Information System (INIS)

    Beigi Boroujeni, M.; Beigi Boroujeni, N.; Salehnia, M.; Marandi, E.; Biegi Boroujeni, M.

    2012-01-01

    To achieve multiple oocytes for in vitro fertilization, ovulation induction is induced by gonadotropins; however, it has several effects on oocytes and embryo quality and endometrium receptivity. The aim of this study was to assess ultrastructural changes of corpus luteum after ovarian induction using human menopausal gonadotropin and human chorionic gonadotropin during luteal phase at implantation period. Methods: Female NMRI mice (6-8 weeks) were divided into control and stimulated groups. In the control group, the mice were rendered pseudo pregnant and in the ovarian induction group, the mice were rendered pseudo pregnant after the ovarian induction. The samples were obtained from the ovary in each group at the same time during luteal phase at implantation period. Ultrastructural changes were assessed using electron microscopy study. Results: Our results displayed some identifiable changes in ultrastructure of corpus luteum in ovarian induction group. These changes included enhancement of the apoptosis and intercellular space, whereas the angio genesis was decreased. The findings indicated a decline in organelle density in the cytoplasm of ovarian induction, such as mitochondria, endoplasmic reticulum and polyribosome. Furthermore, chromatin condensation of nuclei was observed in some cells. Conclusion: The ovarian induction using human menopausal gonadotropin and human chorionic gonadotropin resulted in some ultrastructural changes on the corpus luteum at implantation period, which could affect on the pregnancy rate.

  18. Nippotaenia mogurndae Yamaguti et Myiata, 1940 (Cestoda, Nippotaeniidea): first data on spermiogenesis and sperm ultrastructure

    Czech Academy of Sciences Publication Activity Database

    Bruňanská, M.; Bílý, Tomáš; Nebesářová, Jana

    2015-01-01

    Roč. 114, č. 4 (2015), s. 1443-1453 ISSN 0932-0113 R&D Projects: GA TA ČR(CZ) TE01020118 Institutional support: RVO:60077344 Keywords : Nippotaeniidea * Nippotaeniamogurndae * sperm iogenesis * sperm atozoon * ultrastructure Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.027, year: 2015

  19. Ultrastructural immunocytochemical localization of chondroitin sulfate proteoglycan in Bruch's membrane of the rat

    DEFF Research Database (Denmark)

    Lin, W L; Essner, E; McCarthy, K J

    1992-01-01

    Two monoclonal antibodies (Mab 4D5 and 2D6) raised against the core protein of a basement membrane chondroitin sulfate proteoglycan from Reichert's membrane of the rat, were used for ultrastructural immunoperoxidase localization of this protein in Bruch's membrane of the rat. Immunoreactivity for...

  20. An ultrastructural comparison of the attachment sites between Gregarina steini and Cryptosporidium muris

    Czech Academy of Sciences Publication Activity Database

    Valigurová, A.; Hofmannová, L.; Koudela, Břetislav; Vávra, Jiří

    2007-01-01

    Roč. 54, č. 6 (2007), s. 495-510 ISSN 1066-5234 R&D Projects: GA ČR GD524/03/H133 Institutional research plan: CEZ:AV0Z60220518 Keywords : Apicomplexa * gregarine * Cryptosporidium * feeder organelle * epimerite * parasites * ultrastructure Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.525, year: 2007

  1. Changes in Chloroplast Ultrastructure in Pssu-ipt Tobacco During Plant Ontogeny

    Czech Academy of Sciences Publication Activity Database

    Synková, Helena; Pechová, Renáta; Valcke, R.

    2003-01-01

    Roč. 41, č. 1 (2003), s. 117-126 ISSN 0300-3604 R&D Projects: GA ČR GA206/01/1061 Institutional research plan: CEZ:AV0Z5038910 Keywords : chloroplast ultrastructure * cytokinins * transgenic tobacco Subject RIV: EF - Botanics Impact factor: 0.661, year: 2003

  2. Plexus muscularis profundus and associated interstitial cells. II. Ultrastructural studies of mouse small intestine

    DEFF Research Database (Denmark)

    Rumessen, J J; Thuneberg, L; Mikkelsen, H B

    1982-01-01

    The ultrastructure of plexus muscularis profundus (PMP) of the mouse small intestine was investigated subsequent to vascular perfusion with ruthenium red-containing and routine aldehyde fixatives. Four types of nerve terminals were revealed. Type I: numerous 500-A agranular vesicles and few 1,000-A...

  3. Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lükati Formation, Estonia.

    Science.gov (United States)

    Talyzina; Moczydowska

    2000-10-01

    Six acritarch species from the Lükati Formation were studied using a combination of techniques, including transmitted light, scanning electron (SEM) and transmission electron (TEM) microscopy. New details of wall ultrastructure, surface microsculpture and internal morphology of the vesicle and processes significantly add to the previously known morphological features and increase the understanding of the form-genera Archaeodiscina, Globosphaeridium, Comasphaeridium, Skiagia, Tasmanites and Leiosphaeridia. Examination of microfossils using TEM revealed a substantial variation in wall ultrastructure among acritarchs. The diversity includes four structural types of vesicle wall in addition to their single- and multi-layered structure and the variable thickness of the wall. These are: electron-tenuous and fibrous; electron-dense and homogeneous; electron-dense and homogeneous but perforated by radial canals; and composite laminated structure. Morphologically recognised groupings of acritarchs (acanthomorphic, disphaeromorphic, sphaeromorphic) and tasmanitid taxa appear to be characterised by particular features of the wall structure, although the wall structure in itself may not be directly indicative of systematic relationships. Structurally diverse vesicle walls are observed in Tasmanites and Leiosphaeridia, taxa that both have been interpreted, based on other lines of evidence, to be of prasinophycean (green algal) affinities. The distinct wall ultrastructure of the Leiosphaeridia studied is similar to that of extant green algal genera, which provides evidence that some Cambrian leiosphaerids were chlorophycean algae, probably related to the Order Chlorococcales. Previous research and interpretations of the wall ultrastructure are also briefly discussed.

  4. Ultrastructure of embryonated eggs of the cestode Gyrocotyle urna (Gyrocotylidea) using cryo-methods

    Czech Academy of Sciences Publication Activity Database

    Levron, Céline; Scholz, Tomáš; Vancová, Marie; Kuchta, Roman; Conn, D. B.

    2016-01-01

    Roč. 135, č. 3 (2016), s. 279-289 ISSN 0720-213X R&D Projects: GA ČR(CZ) GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Gyrocotylidea * Ultrastructure * Embryonic * Cryo-technique * Cestoda Subject RIV: EG - Zoology Impact factor: 1.038, year: 2016

  5. Ultra-structural study of Egyptian Buffalo oocytes before and after in ...

    African Journals Online (AJOL)

    The oocytes examined in this study showed normal ultra-structure of mitochondria, smooth endoplasmic reticulum (SER), zona pellucida (ZP), lipid droplets, vesicles and Golgi in the good type meanwhile, some differences and abnormalities in denuded oocytes were recorded. The most remarkable changes observed in the ...

  6. PRESERVATION OF THE CELL-BIOMATERIAL INTERFACE AT THE ULTRASTRUCTURAL LEVEL

    NARCIS (Netherlands)

    SCHAKENRAAD, JM; OOSTERBAAN, JA; BLAAUW, EH

    1991-01-01

    Studying the tissue-biomaterial interface at the ultrastructural level is not without problems. Dissolution of the biomaterial in one of the dehydration or embedding media causes holes and shatter during sectioning or dislodgement of the biomaterial. The fine tuning of the hardness of both

  7. Comparative Ultrastructure of Langerhans-Like Cells in Spleens of Ray-Finned Fishes (Actinopterygii)

    Czech Academy of Sciences Publication Activity Database

    Lovy, J.; Wright, G. M.; Speare, D. J.; Tyml, Tomáš; Dyková, Iva

    2010-01-01

    Roč. 271, č. 10 (2010), s. 1229-1239 ISSN 0362-2525 R&D Projects: GA MŠk LC522 Institutional research plan: CEZ:AV0Z60220518 Keywords : fish * cyprinidae * halibut * dendritic cells * Langerhans cell * Birbeck granules * ultrastructure Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.773, year: 2010

  8. Bisphenol A-induced ultrastructural changes in the testes of common marmoset

    Directory of Open Access Journals (Sweden)

    Tushara Vijaykumar

    2017-01-01

    Interpretation & conclusions: The observed ultrastructural changes caused by BPA in testicular morphology might be indicative of a perturbed sperm production. Considering the genetic and spermatogenic similarities of common marmoset (Callithrix jacchus and humans, the study findings are of significance. Further studies are, however, needed to elucidate the mechanism of action.

  9. Oxygenated fixation demonstrates novel and improved ultrastructural features of the human endolymphatic sac

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Caye-Thomasen, Per; Qvortrup, Klaus

    2013-01-01

    in the intraosseous part of the sac: mitochondria-rich cells, ribosome-rich cells, and nonclassifiable cells. A fourth cell type was found in the extraosseous part. Novel ultrastructural features of the epithelial lining and the subepithelial layer are described and discussed. CONCLUSIONS: The results in the present...

  10. The effects of freezing, storage, and thawing on cell compartment integrity and ultrastructure

    DEFF Research Database (Denmark)

    Prentø, P

    1997-01-01

    The effects of slow freezing and thawing on enzyme compartmentalization and ultrastructure were studied in rat liver slices frozen in dry ice, isopentane/ethanol-dry ice, or liquid nitrogen, and stored at -80 degrees C for 1-14 days. Non-frozen slices served as controls. Frozen liver slices were...

  11. [ULTRASTRUCTURE OF PARENCHYMA IN THE SYNCYTIAL DIGESTIVE SYSTEM IN TURBELLARIA Convoluta convoluta (Acoela].

    Science.gov (United States)

    Gazizova, G R; Zabotin, Ya I; Golubev, A I

    2015-01-01

    The paper presents data on the ultrastructure of parenchyma that is involved in the digestion in turbellaria Convoluta convoluta (n = 15). Unusual connections between the nuclear envelope, endoplasmic reticulum and plasma membrane of parenchymal cells were found for the first time, which may indicate the origin of these cell structures. The double trophic role of zooxanthellae in the organism of Convoluta is described.

  12. Ultrastructure of the Microsporidium, Duboscqia legeri, the Type Species of the Genus Duboscqia Perez, 1908

    Czech Academy of Sciences Publication Activity Database

    Weiser, J.; Belton, P.; Žižka, Zdeněk; Holuša, J.

    2010-01-01

    Roč. 49, č. 2 (2010), s. 125-131 ISSN 0065-1583 Institutional research plan: CEZ:AV0Z50200510 Keywords : Duboscqia legeri * microsporidium * ultrastructures Subject RIV: EE - Microbiology, Virology Impact factor: 0.881, year: 2010

  13. Ultrastructure of the body wall of female Philometra obturans (Nematoda: Dracunculoidea)

    Czech Academy of Sciences Publication Activity Database

    Frantová, Denisa; Bruňanská, Magdaléna; Fagerholm, H.-P.; Kihlström, M.

    2005-01-01

    Roč. 95, č. 5 (2005), s. 327-332 ISSN 0932-0113 R&D Projects: GA ČR(CZ) GA524/03/0061 Institutional research plan: CEZ:AV0Z60220518 Keywords : Nematoda * ultrastructure * cuticule Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.226, year: 2005

  14. Comparative Ultrastructural and Stereological Analyses of Unruptured and Ruptured Saccular Intracranial Aneurysms

    NARCIS (Netherlands)

    Korkmaz, Emine; Kleinloog, Rachel|info:eu-repo/dai/nl/345480503; Verweij, Bon H.|info:eu-repo/dai/nl/311491774; Allijn, Iris E.; Hekking, Liesbeth H.P.; Regli, Luca; Rinkel, Gabriel J.E.|info:eu-repo/dai/nl/085712000; Ruigrok, Ynte M.|info:eu-repo/dai/nl/303621222; Andries Post, Jan

    2017-01-01

    Insight into processes leading to rupture of intracranial aneurysms (IAs) may identify biomarkers for rupture or lead to management strategies reducing the risk of rupture. We characterized and quantified (ultra)structural differences between unruptured and ruptured aneurysmal walls. Six unruptured

  15. Ultrastructure of labial glands of .I.Scolytus intricatus./I. (Coleoptera: Curculionidae:Scolytinae)

    Czech Academy of Sciences Publication Activity Database

    Šobotník, Jan

    2003-01-01

    Roč. 67, - (2003), s. 233-238 ISSN 1211-376X R&D Projects: GA ČR GA203/00/0219; GA MŠk OC E16.10 Institutional research plan: CEZ:AV0Z4055905 Keywords : ultrastructure * labial gland * .I.Scolytus./I. Subject RIV: CC - Organic Chemistry

  16. Cytoskeleton structure, pattern of mitochondrial activity and ultrastructure of frozen or vitrified sheep embryos.

    Science.gov (United States)

    Dalcin, Luciana; Silva, Renata C; Paulini, Fernanda; Silva, Bianca D M; Neves, Jairo P; Lucci, Carolina M

    2013-10-01

    Even though sheep embryo cryopreservation is a commonly used procedure the survival and pregnancy outcomes can vary greatly. This study investigated whether cryopreservation was causing subtle changes in ultrastructure, mitochondrial activity or cytoskeletal integrity. Sheep embryos were either slow cooled in 1.5 M EG (n = 22), or vitrified in 20% EG + 20% DMSO with 0.5 M sucrose in Open Pulled Straws (OPS) (n = 24). One hour after warming the cryopreserved embryos differed from control embryos in that they had no mitochondrial activity combined with cytoskeletal disorganization and large vesicles. Vitrified embryos also showed many points of cytoskeleton disruption. Ultrastructural alterations resulting from actin filaments disorganization were observed in both cryopreserved groups. This includes areas presenting no cytoplasmic organelles, Golgi complex located far from the nucleus and a decrease of specialized intercellular junctions. Additionally, large vesicles were observed in vitrified morulae and early blastocysts. The alterations after cryopreservation were proportional to embryo quality as assessed using the stereomicroscope. Even in the absence of mitochondrial activity, grade I and II cryopreserved embryos contained mitochondria with normal ultrastructure. Embryos classified as grade I or II in the stereomicroscope revealed mild ultrastructural alterations, meaning that this tool is efficient to evaluate embryos after cryopreservation. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Ultrastructural features of the internodes’ surface in horsetail (Equisetum arvense L.

    Directory of Open Access Journals (Sweden)

    Myroslava Stakhiv

    2013-04-01

    Full Text Available The ultrastructure of the outer surface of the common horsetail stem was studied. Through electron microscopic analysis we showed that silica plates on the surface of Equisetum arvense L. stem are distributed evenly, not tight, in thin layer. Thus, compact arrangement of particles on the internodes causes high mechanical strength and stiffness of the E. arvensestem and lateral branches.

  18. Ultrastructure of interstitial cells of Cajal at the colonic submuscular border in patients with ulcerative colitis

    DEFF Research Database (Denmark)

    Rumessen, J J

    1996-01-01

    Submuscular interstitial cells of Cajal (ICC) are putative pacemaker cells of the colonic external muscle. Although motility disturbances and smooth muscle dysfunction are prevalent in patients with ulcerative colitis (UC), ICC have never been studied in this disease. The aim of this study...... was to examine the ultrastructure of submuscular ICC in UC....

  19. Antioxidant degradation kinetics in apples.

    Science.gov (United States)

    Arora, Bindvi; Sethi, Shruti; Joshi, Alka; Sagar, V R; Sharma, R R

    2018-04-01

    The effect of shelf storage under ambient conditions of cut apple dices on degradation of bioactive compounds such ascorbic acid, total phenols, antioxidant activity (% DPPH inhibition) and PPO activity were investigated. The results indicated that antioxidant activity declined significantly over 80 min storage of diced apples at ambient temperature. Similar trend was observed for ascorbic acid, total phenols and PPO activity. Ascorbic acid, total phenols and antioxidant activity degradation followed first-order kinetics where the rate constant (k) was found to be in range for all the thirteen cultivars, though initial ascorbic acid and phenol content varied in different apple cultivars. The reaction rate constant (k) for first order degradation ranged from 1.16 to 1.97, 0.89 to 1.29 and 0.37 to 1.54 for antioxidant activity, total phenols and ascorbic acid, respectively. This explains that antioxidant activity degrades at higher rate than total phenols and ascorbic acid, which also corroborates that antioxidant activity is affected by both total phenols and ascorbic acid content. In general, total antioxidant activity for apple dices kept for 80 min under ambient conditions exhibited lower values as compared to control.

  20. Analyses of antioxidant status and nucleotide alterations in genes encoding antioxidant enzymes in patients with benign and malignant thyroid disorders

    Directory of Open Access Journals (Sweden)

    Nur Siti Fatimah Ramli

    2017-06-01

    Full Text Available Background Synthesis of thyroid hormones and regulation of their metabolism involve free radicals that may affect redox balance in the body. Thyroid disorders causing variations in the levels of thyroid hormones may alter cellular oxidative stress. The aim of this study was to measure the antioxidant activities and biomarkers of oxidative stress in serum and red blood cells (RBC of patients with benign and malignant thyroid disorders and to investigate if changes in the antioxidant activities in these patients were linked to alterations in genes encoding the antioxidant enzymes. Methods Forty-one patients with thyroid disorders from University of Malaya Medical Centre were recruited. They were categorised into four groups: multinodular goitre (MNG (n = 18, follicular thyroid adenoma (FTA (n = 7, papillary thyroid cancer (PTC (n = 10, and follicular thyroid cancer (FTC (n = 6. Serum and RBC of patients were analysed for antioxidant activities, antioxidant enzymes, and biomarkers of oxidative stress. Alterations in genes encoding the antioxidant enzymes were analysed using whole exome sequencing and PCR–DNA sequencing. Results Patients with thyroid disorders had significantly higher serum superoxide dismutase (SOD and catalase (CAT activities compared to control, but had lower activities in RBC. There were no significant changes in serum glutathione peroxidase (GPx activity. Meanwhile, GPx activity in RBC was reduced in PTC and FTC, compared to control and the respective benign groups. Antioxidant activities in serum were decreased in the thyroid disorder groups when compared to the control group. The levels of malondialdehyde (MDA were elevated in the serum of FTA group when compared to controls, while in the RBC, only the MNG and PTC groups showed higher MDA equivalents than control. Serum reactive oxygen species (ROS levels in PTC group of both serum and RBC were significantly higher than control group. Whole exome sequencing has resulted in

  1. Impaired Antioxidant Status and Reduced Energy Metabolism in Autistic Children

    Science.gov (United States)

    Essa, M. M.; Braidy, N.; Waly, M. I.; Al-Farsi, Y. M.; Al-Sharbati, M.; Subash, S.; Amanat, A.; Al-Shaffaee, M. A.; Guillemin, G. J.

    2013-01-01

    Accumulating evidence suggests that oxidative stress induced mechanisms are believed to be associated with the pathophysiology of autism. In this study, we recruited 19 Omani autistic children with age-matched controls to analyze their plasma and serum redox status and the levels of ATP, NAD[superscript +] and NADH using well established…

  2. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala).

    Science.gov (United States)

    Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli

    2016-04-01

    A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. [ANTIOXIDANT DYSFUNCTIONALITY OF HIGH-DENSITY LIPOPROTEINS (HDL) IN DECOMPENSATED DIABETIC PATIENTS].

    Science.gov (United States)

    Awad, Fernanda; Contreras-Duarte, Susana; Molina, Patricia; Quiñones, Verónica; Serrano, Valentina; Abbott, Eduardo; Maiz, Alberto; Busso, Dolores; Rigotti, Attilio

    2015-09-01

    high density lipoproteins (HDL) have important cardiovascular protective effects mediated by their role in reverse cholesterol transport as well as other functional activities, including significant anti-inflammatory and antioxidant properties. It has been shown that HDL anti-inflammatory and antioxidant functions are defective in metabolically stable diabetic patients; however they have not been evaluated during a hyperglycemic crisis. to determine the antioxidant activity of HDL during a severe diabetic decompensation and to analyze whether this function is restored after resolution of the acute event. the antioxidant activity of HDL was measured in vitro by a fluorescent assay in plasma samples obtained from diabetic patients with acute metabolic decompensation at admission, recovery within the hospital and follow-up in ambulatory care. As a comparison, HDL particles from some healthy subjects were used as controls. the HDL antioxidant function was significantly reduced in patients during an acute diabetic decompensation compared with the control group, and was gradually restored reaching normal values during the ambulatory follow-up. Hyperglycemic crisis also showed low plasma paraoxonase-1 activity, which increased significantly during at follow-up. HDL particles isolated from acute diabetic descompensated patients exhibit a significantly and reversibly low antioxidant capacity, which is probably due to a reduced paraoxonase-1 activity. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  4. Treatment of stable COPD: antioxidants

    Directory of Open Access Journals (Sweden)

    W. MacNee

    2005-09-01

    Full Text Available There is considerable evidence that an increased oxidative burden occurs in the lungs of patients with chronic obstructive pulmonary disease (COPD and this results in an imbalance between oxidants/antioxidants or oxidative stress, which may play a role in many of the processes involved in the pathogenesis of COPD. These include enhanced proteolytic activity, mucus hypersecretion and the enhanced inflammatory response in the lungs to inhaling tobacco smoke, which is characteristic of COPD. COPD is now recognised to have multiple systemic consequences, such as weight loss and skeletal muscle dysfunction. It is now thought that oxidative stress may extend beyond the lungs and is involved in these systemic effects. Antioxidant therapy therefore would seem to be a logical therapeutic approach in chronic obstructive pulmonary disease. There is a need for more potent antioxidant therapies to test the hypothesis that antioxidant drugs may be a new therapeutic strategy for the prevention and treatment of chronic obstructive pulmonary disease.

  5. Antioxidant and antimutagenic activity of Curcuma caesia Roxb. rhizome extracts

    Directory of Open Access Journals (Sweden)

    Heisanam Pushparani Devi

    2015-01-01

    Full Text Available The rhizomes of Curcuma caesia Roxb. (zingiberacea are traditionally used in treatment of various ailments and metabolic disorders like leukoderma, asthma, tumours, piles, bronchitis, etc. in Indian system of medicine. Considering the importance of natural products in modern phytomedicine, the antioxidant and antimutagenic activities of C. caesia Roxb. rhizome extract and its fractions were evaluated. The ethanolic fraction showed highest antioxidant activity by DPPH assay (86.91% comparable to ascorbic acid (94.77% with IC50 value of 418 μg/ml for EECC followed by MECC (441.90 μg/ml > EAECC(561 μg/ml > AECC(591 μg/ml. Based on the antioxidant activity, three of the rhizome extracts were evaluated for their antimutagenic properties against indirect acting mutagen cyclophosphamide (CP using Salmonella typhimurium strains TA98 and TA100. The antimutagenic activity of the extracts against indirect acting mutagen cyclophosphamide in the presence of mammalian metabolic activation system was found to be significant (p < 0.01, p < 0.05. All the extracts showed similar antimutagenicity in dose dependent manner. The total phenolic content as well as reducing ability of the extracts was also determined.

  6. Oxidative stress and food supplementation with antioxidants in therapy dogs.

    Science.gov (United States)

    Sechi, Sara; Fiore, Filippo; Chiavolelli, Francesca; Dimauro, Corrado; Nudda, Anna; Cocco, Raffaella

    2017-07-01

    The objective of this study was to evaluate the ability of a long-term antioxidant-supplemented diet to regulate the oxidative stress and general health status of dogs involved in animal-assisted intervention (AAI) programs. Oxidative stress is a consequence of the accumulation of reactive oxygen species (ROS). Exercise-induced oxidative stress can increase muscle fatigue and fiber damage and eventually leads to impairment of the immune system. A randomized, placebo-controlled, crossover clinical evaluation was conducted with 11 healthy therapy dogs: 6 females and 5 males of different breeds and with a mean age of 2.7 ± 0.8 y (mean ± SEM). The dogs were divided into 2 groups, 1 fed a high quality commercial diet without antioxidants (CD) and the other a high quality commercial diet supplemented with antioxidants (SD) for 18 wk. After the first 18 wk, metabolic parameters, reactive oxygen metabolite-derivatives (d-ROMs), and biological antioxidant potential (BAP) levels were monitored and showed a significant reduction of d-ROMs, triglycerides, and creatinine values in the SD group ( P dogs.

  7. Grape antioxidant dietary fiber stimulates Lactobacillus growth in rat cecum.

    Science.gov (United States)

    Pozuelo, María José; Agis-Torres, Angel; Hervert-Hernández, Deisy; Elvira López-Oliva, María; Muñoz-Martínez, Emilia; Rotger, Rafael; Goñi, Isabel

    2012-02-01

    The digesta is a highly active biological system where epithelial cells, microbiota, nondigestible dietary components, and a large number of metabolic products interact. The gut microbiota can be modulated by both endogenous and exogenous substrates. Undigested dietary residues are substrates for colonic microbiota and may influence gut microbial ecology. The objective of this work was to study the capacity of grape antioxidant dietary fiber (GADF), which is rich in polyphenols, to modify the bacterial profile in the cecum of rats. Male adult Wistar rats were fed for 4 wk with diets containing either cellulose or GADF as dietary fiber. The effect of GADF on bacterial growth was evaluated in vitro and on the cecal microbiota of rats using quantitative real time polymerase chain reaction (RT-PCR). The results showed that GADF intake stimulates proliferation of Lactobacillus and slightly affects the composition of Bifidobacterium species. GADF was also found to have a stimulative effect on Lactobacillus reuteri and Lactobacillus acidophilus in vitro. These findings suggest that the consumption of a diet rich in plant foods with high dietary fiber and polyphenol content may enhance the gastrointestinal health of the host through microbiota modulation. Grape antioxidant fiber combines nutritional and physiological properties of dietary fiber and natural antioxidants from grapes. Grape antioxidant fiber could be used as an ingredient for functional foods and as a dietary supplement to increase the intake of dietary fiber and bioactive compounds. © 2012 Institute of Food Technologists®

  8. Drug Metabolism

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 3. Drug Metabolism: A Fascinating Link Between Chemistry and Biology. Nikhil Taxak Prasad V Bharatam. General Article Volume 19 Issue 3 March 2014 pp 259-282 ...

  9. Drug Metabolism

    Indian Academy of Sciences (India)

    IAS Admin

    Drug metabolism may be defined as the biochemical modifica- tion of one chemical form to another, occurring usually through ..... Endogenous. Enzyme. Drugs. Cofactor. Glucuronidation. UDP glucoronic. UDP-. Chloramphenicol, acid glucuronosyltransferase morphine, paracetamol, salicylic acid, fenoprofen, desipramine,.

  10. COPD: balancing oxidants and antioxidants

    Directory of Open Access Journals (Sweden)

    Fischer BM

    2015-02-01

    Full Text Available Bernard M Fischer,1,* Judith A Voynow,2,* Andrew J Ghio3,* 1Department of Pediatrics, Duke University Medical Center, Durham, NC, USA; 2Department of Pediatrics, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, VA, USA; 3National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC, USA *These authors contributed equally to this work Abstract: Chronic obstructive pulmonary disease (COPD is one of the most common chronic illnesses in the world. The disease encompasses emphysema, chronic bronchitis, and small airway obstruction and can be caused by environmental exposures, primarily cigarette smoking. Since only a small subset of smokers develop COPD, it is believed that host factors interact with the environment to increase the propensity to develop disease. The major pathogenic factors causing disease include infection and inflammation, protease and antiprotease imbalance, and oxidative stress overwhelming antioxidant defenses. In this review, we will discuss the major environmental and host sources for oxidative stress; discuss how oxidative stress regulates chronic bronchitis; review the latest information on genetic predisposition to COPD, specifically focusing on oxidant/antioxidant imbalance; and review future antioxidant therapeutic options for COPD. The complexity of COPD will necessitate a multi-target therapeutic approach. It is likely that antioxidant supplementation and dietary antioxidants will have a place in these future combination therapies. Keywords: cigarette smoking, mucins, gene regulation, Chinese herbs, acupuncture, dietary antioxidants

  11. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports.

    Science.gov (United States)

    Pingitore, Alessandro; Lima, Giuseppina Pace Pereira; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina

    2015-01-01

    Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need

  12. Animal metabolism

    International Nuclear Information System (INIS)

    Walburg, H.E.

    1977-01-01

    Studies on placental transport included the following: clearance of tritiated water as a baseline measurement for transport of materials across perfused placentas; transport of organic and inorganic mercury across the perfused placenta of the guinea pig in late gestation; and transport of cadmium across the perfused placenta of the guinea pig in late gestation. Studies on cadmium absorption and metabolism included the following: intestinal absorption and retention of cadmium in neonatal rats; uptake and distribution of an oral dose of cadmium in postweanling male and female, iron-deficient and normal rats; postnatal viability and growth in rat pups after oral cadmium administration during gestation; and the effect of calcium and phosphorus on the absorption and toxicity of cadmium. Studies on gastrointestinal absorption and mineral metabolism included: uptake and distribution of orally administered plutonium complex compounds in male mice; gastrointestinal absorption of 144 Ce in the newborn mouse, rat, and pig; and gastrointestinal absorption of 95 Nb by rats of different ages. Studies on iodine metabolism included the following: influence of thyroid status and thiocyanate on iodine metabolism in the bovine; effects of simulated fallout radiation on iodine metabolism in dairy cattle; and effects of feeding iodine binding agents on iodine metabolism in the calf

  13. Role of enzymatic and non enzymatic antioxidant in ameliorating salinity induced damage in nostoc muscorum

    International Nuclear Information System (INIS)

    Hend, A.; Abeer, A.; Allah, A.

    2015-01-01

    Presence of high salt concentration in the growth medium adversely affected the plant growth and productivity by altering its metabolic activities. Experiments were conducted on cyanobacteriaum Nostoc muscorum grown in nitrogen free medium supplemented with 250 mM NaCl to evaluate the salt stress induced changes in growth, antioxidants and lipid composition. Salt stress significantly reduced the growth and physio-biochemical attributes. Salt stress increased malonaldehyde content thereby causing alterations in the lipid fraction. Significant reduction in polyunsaturated fatty acids including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI) and phosphatidylserine (PS) was observed. Where as diacylglycerol, sterol ester and non-esterified fatty acids were increased. Activities of antioxidant enzymes and contents of non-enzymatic antioxidants including glutathione enhanced due to salt stress. An increase in accumulation of proline was also observed. Hence increased activity of antioxidants and altered fatty acid composition was observed in salt stressed Nostoc muscorum. (author)

  14. Effect of supplementation with antioxidants on the quality of bovine milk and meat production.

    Science.gov (United States)

    Castillo, Cristina; Pereira, Víctor; Abuelo, Ángel; Hernández, Joaquín

    2013-11-21

    From a clinical point of view, oxidative stress (OS) is considered the primary cause of numerous metabolic processes in transition cow. Thus, the addition of antioxidants has been considered a palliative or preventive treatment. But beyond the clinical perspective, antioxidant supplementation provides an added value to the product obtained being either milk or meat. This paper reviews the beneficial aspects that provide antioxidant supplementation on quality of both products and that fit into the new concept that the consumer has a functional and healthy food. Our approach is from a veterinary standpoint, by reviewing the studies conducted to date and the new perspectives that are interesting and need to be studied in the following years. One of the highlights is that sustainable farming, one in which production is combined with animal health, also impacts positively on the quality of the final products, with beneficial antioxidant properties to human health.

  15. Morphology and ultrastructure of Sphaeromyxa noblei sp. n. (Myxozoa), parasite of Heteroclinus whiteleggii (Pisces) from Australian New South Wales coast

    Czech Academy of Sciences Publication Activity Database

    Lom, Jiří

    2004-01-01

    Roč. 51, č. 1 (2004), s. 19-26 ISSN 0015-5683 Institutional research plan: CEZ:AV0Z6022909 Keywords : Sphaeromyxa noblei * ultrastructure * Myxosporea Subject RIV: EG - Zoology Impact factor: 0.837, year: 2004

  16. The ultrastructure of pollen grain surface in allotetraploid petunia (Petunia hybrida hort. superbissima as revealed by scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    S. Muszyński

    2015-01-01

    Full Text Available The ultrastructure of pollen grain surface in allotetraploid petunias was analyzed by scanning electron microscopy. The pollen grain wall is developed into characteristic pattern of convulations.

  17. Strain Differences in Antioxidants in Rat Models of Cardiovascular Disease Exposed to Ozone

    Science.gov (United States)

    We examined the hypothesis that antioxidant substances and enzymes in lung, heart and in bronchoalveolar lavage fluid (BALF) are altered in response to 03 in cardiovascular disease and/or metabolic syndrome (CVD)-prone rat models. CVD strains [spontaneously hypertensive (SH), SH ...

  18. Whole eggs enhance antioxidant activity when combined with energy dense, cooked breakfast foods

    Science.gov (United States)

    Acute metabolic changes following the consumption of energy dense foods high in saturated fat (SFA) and glycemic load (GL) may contribute to the pathogenesis of several chronic diseases. Eggs provide highly digestible protein, unsaturated fatty acids, carotenoids, and other antioxidant compounds tha...

  19. Value of antioxidant capacity as relevant assessment tool for “health ...

    African Journals Online (AJOL)

    African black population, Kucich and Wicht8 in the current issue of the. SAJCN identified availability and .... and vegetable intake and with biomarkers in adults from a low-income neighborhood. Health Psychol. 2003 ... role of the dietary total antioxidant capacity in two hypocaloric regimes on obese with metabolic syndrome.

  20. Antioxidants stabilizing fish oils : effect of antioxidant, storage temperature and type of fish oil

    OpenAIRE

    Kasbo, Mari Kristine

    2012-01-01

    The aim of this study was to investigate four commercially available antioxidants in two fish oils. The antioxidants were investigated to see which one of them is most efficient in preventing oxidation. Antioxidants were added in three levels to find the optimal concentration. In addition a possible synergistic effect between the antioxidants was investigated. Two different oils with different concentration of EPA and DHA were added antioxidants. Four of the antioxidants were single antioxida...