WorldWideScience

Sample records for antioxidant therapeutic advances

  1. Significance of antioxidant potential of plants and its relevance to therapeutic applications.

    Science.gov (United States)

    Kasote, Deepak M; Katyare, Surendra S; Hegde, Mahabaleshwar V; Bae, Hanhong

    2015-01-01

    Oxidative stress has been identified as the root cause of the development and progression of several diseases. Supplementation of exogenous antioxidants or boosting endogenous antioxidant defenses of the body is a promising way of combating the undesirable effects of reactive oxygen species (ROS) induced oxidative damage. Plants have an innate ability to biosynthesize a wide range of non-enzymatic antioxidants capable of attenuating ROS- induced oxidative damage. Several in vitro methods have been used to screen plants for their antioxidant potential, and in most of these assays they revealed potent antioxidant activity. However, prior to confirming their in vivo therapeutic efficacy, plant antioxidants have to pass through several physiopharmacological processes. Consequently, the findings of in vitro and in vivo antioxidant potential assessment studies are not always the same. Nevertheless, the results of in vitro assays have been irrelevantly extrapolated to the therapeutic application of plant antioxidants without undertaking sufficient in vivo studies. Therefore, we have briefly reviewed the physiology and redox biology of both plants and humans to improve our understanding of plant antioxidants as therapeutic entities. The applications and limitations of antioxidant activity measurement assays were also highlighted to identify the precise path to be followed for future research in the area of plant antioxidants.

  2. Antioxidants as a Potential Preventive and Therapeutic Strategy for Cadmium.

    Science.gov (United States)

    Brzóska, Malgorzata M; Borowska, Sylwia; Tomczyk, Michal

    2016-01-01

    Epidemiological studies provide a growing number of evidences that chronic exposure to relatively low levels of cadmium (Cd), nowadays taking place in industrialized countries, may cause health hazard. Thus, growing interest has been focused on effective ways of protection from adverse effects of exposure to this heavy metal. Because numerous effects to Cd's toxic action result from its prooxidative properties, it seems reasonable that special attention should be directed to agents that can prevent or reduce this metal-induced oxidative stress and its consequences in tissues, organs and systems at risk of toxicity, including liver, kidneys, testes, ears, eyes, cardiovascular system and nervous system as well as bone tissue. This review discusses a wide range of natural (plant and animal origin) and synthetic antioxidants together with many plant extracts (e.g. black and green tea, Aronia melanocarpa, Allium sativum, Allium cepa, Ocimum sanctum, Phoenix dactylifera, Physalis peruviana, Zingiber officinale) that have been shown to prevent from Cd toxicity. Moreover, some attention has been focused on the fact that substances not possessing antioxidative potential may also prevent Cd-induced oxidative stress and its consequences. So far, most of the data on the protective effects of the natural and synthetic antioxidants and plant extracts come from studies in animals' models; however, numerous of them seem to be promising preventive/therapeutic strategies for Cd toxicity in humans. Further investigation of prophylactic and therapeutic use of antioxidants in populations exposed to Cd environmentally and occupationally is warranted, given that therapeutically effective chelation therapy for this toxic metal is currently lacking.

  3. The antioxidant paradox: what are antioxidants and how should they be used in a therapeutic context for cancer.

    Science.gov (United States)

    Bonner, Michael Y; Arbiser, Jack L

    2014-01-01

    So-called antioxidants have yet to make a clinical impact on the treatment of human cancer. The reasons for this failure are several. First, many agents that are called antioxidants are truly antioxidants at a given dose, but this dose may not have been given in clinical trials. Second, many agents are not antioxidants at all. Third, not all tumors use reactive oxygen as a signaling mechanism. Finally, reactive oxygen inhibition is often insufficient to kill or regress a tumor cell by itself, but requires sequential introduction of a therapeutic agent for maximal effect. We hope to provide a framework for the logical use of these agents in cancer.

  4. Therapeutic Hypothermia Reduces Oxidative Damage and Alters Antioxidant Defenses after Cardiac Arrest

    Science.gov (United States)

    Hackenhaar, Fernanda S.; Medeiros, Tássia M.; Heemann, Fernanda M.; Behling, Camile S.; Putti, Jordana S.; Mahl, Camila D.; Verona, Cleber; da Silva, Ana Carolina A.; Guerra, Maria C.; Gonçalves, Carlos A. S.; Oliveira, Vanessa M.; Riveiro, Diego F. M.; Vieira, Silvia R. R.

    2017-01-01

    After cardiac arrest, organ damage consequent to ischemia-reperfusion has been attributed to oxidative stress. Mild therapeutic hypothermia has been applied to reduce this damage, and it may reduce oxidative damage as well. This study aimed to compare oxidative damage and antioxidant defenses in patients treated with controlled normothermia versus mild therapeutic hypothermia during postcardiac arrest syndrome. The sample consisted of 31 patients under controlled normothermia (36°C) and 11 patients treated with 24 h mild therapeutic hypothermia (33°C), victims of in- or out-of-hospital cardiac arrest. Parameters were assessed at 6, 12, 36, and 72 h after cardiac arrest in the central venous blood samples. Hypothermic and normothermic patients had similar S100B levels, a biomarker of brain injury. Xanthine oxidase activity is similar between hypothermic and normothermic patients; however, it decreases posthypothermia treatment. Xanthine oxidase activity is positively correlated with lactate and S100B and inversely correlated with pH, calcium, and sodium levels. Hypothermia reduces malondialdehyde and protein carbonyl levels, markers of oxidative damage. Concomitantly, hypothermia increases the activity of erythrocyte antioxidant enzymes superoxide dismutase, glutathione peroxidase, and glutathione S-transferase while decreasing the activity of serum paraoxonase-1. These findings suggest that mild therapeutic hypothermia reduces oxidative damage and alters antioxidant defenses in postcardiac arrest patients. PMID:28553435

  5. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    Science.gov (United States)

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  6. Widening and Elaboration of Consecutive Research into Therapeutic Antioxidant Enzyme Derivatives

    Directory of Open Access Journals (Sweden)

    Alexander V. Maksimenko

    2016-01-01

    Full Text Available Undiminishing actuality of enzyme modification for therapeutic purposes has been confirmed by application of modified enzymes in clinical practice and numerous research data on them. Intravenous injection of the superoxide dismutase-chondroitin sulfate-catalase (SOD-CHS-CAT conjugate in preventive and medicative regimes in rats with endotoxin shock induced with a lipopolysaccharide bolus has demonstrated that antioxidant agents not only effectively prevent damage caused by oxidative stress (as believed previously but also can be used for antioxidative stress therapy. The results obtained emphasize the importance of investigation into the pathogenesis of vascular damage and the role of oxidative stress in it. The effects of intravenous medicative injection of SOD-CHS-CAT in a rat model of endotoxin shock have demonstrated a variety in the activity of this conjugate in addition to prevention of NO conversion in peroxynitrite upon interaction with O2∙- superoxide radical. Together with the literature data, these findings offer a prospect for the study of NO-independent therapeutic effects of SOD-CHS-CAT, implying the importance of a better insight into the mechanisms of the conjugate activity in modeled cardiovascular damage involving vasoactive agents other than NO.

  7. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent

    Directory of Open Access Journals (Sweden)

    Der Jiun Ooi

    2016-06-01

    Full Text Available Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF isolated from M. latifolia rhizome methanolic extract (RME contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  8. Advances in the Analytical Methods for Determining the Antioxidant ...

    African Journals Online (AJOL)

    Advances in the Analytical Methods for Determining the Antioxidant Properties of Honey: A Review. M Moniruzzaman, MI Khalil, SA Sulaiman, SH Gan. Abstract. Free radicals and reactive oxygen species (ROS) have been implicated in contributing to the processes of aging and disease. In an effort to combat free radical ...

  9. Antioxidant Potential of a Polyherbal Antimalarial as an Indicator of Its Therapeutic Value

    Directory of Open Access Journals (Sweden)

    Protus Arrey Tarkang

    2013-01-01

    Full Text Available Nefang is a polyherbal product composed of Mangifera indica (bark and leaf, Psidium guajava, Carica papaya, Cymbopogon citratus, Citrus sinensis, and Ocimum gratissimum (leaves, used for the treatment of malaria. Compounds with antioxidant activity are believed to modulate plasmodial infection. Antioxidant activity of the constituent aqueous plants extracts, in vitro, was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH, total phenolic content (TPC, and ferric reducing antioxidant power (FRAP methods and, in vivo, Nefang (100 and 500 mg kg−1 activity was evaluated in carbon tetrachloride-induced oxidative stressed Wistar rats. Superoxide dismutase, catalase activities, and lipid peroxidation by the malondialdehyde and total proteins assays were carried out. P. guajava, M. indica leaf, and bark extracts had the highest antioxidant properties in all three assays, with no statistically significant difference. Rats treated with the carbon tetrachloride had a statistically significant decrease in levels of triglycerides, superoxide dismutase, and catalase (P<0.05 and increase in malondialdehyde activity, total protein levels, and liver and renal function markers, whereas rats treated with Nefang showed increased levels in the former and dose-dependent decrease towards normal levels in the later. These results reveal the constituent plants of Nefang that contribute to its in vivo antioxidant potential. This activity is a good indication of the therapeutic potential of Nefang.

  10. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles

    Directory of Open Access Journals (Sweden)

    Jingga Morry

    2017-04-01

    Full Text Available Oxidative stress, mainly contributed by reactive oxygen species (ROS, has been implicated in pathogenesis of several diseases. We review two primary examples; fibrosis and cancer. In fibrosis, ROS promote activation and proliferation of fibroblasts and myofibroblasts, activating TGF-β pathway in an autocrine manner. In cancer, ROS account for its genomic instability, resistance to apoptosis, proliferation, and angiogenesis. Importantly, ROS trigger cancer cell invasion through invadopodia formation as well as extravasation into a distant metastasis site. Use of antioxidant supplements, enzymes, and inhibitors for ROS-generating NADPH oxidases (NOX is a logical therapeutic intervention for fibrosis and cancer. We review such attempts, progress, and challenges. Lastly, we review how nanoparticles with inherent antioxidant activity can also be a promising therapeutic option, considering their additional feature as a delivery platform for drugs, genes, and imaging agents.

  11. Advances in sarcoma gene mutations and therapeutic targets.

    Science.gov (United States)

    Gao, Peng; Seebacher, Nicole A; Hornicek, Francis; Guo, Zheng; Duan, Zhenfeng

    2018-01-01

    Sarcomas are rare and complex malignancies that have been associated with a poor prognostic outcome. Over the last few decades, traditional treatment with surgery and/or chemotherapy has not significantly improved outcomes for most types of sarcomas. In recent years, there have been significant advances in the understanding of specific gene mutations that are important in driving the pathogenesis and progression of sarcomas. Identification of these new gene mutations, using next-generation sequencing and advanced molecular techniques, has revealed a range of potential therapeutic targets. This, in turn, may lead to the development of novel agents targeted to different sarcoma subtypes. In this review, we highlight the advances made in identifying sarcoma gene mutations, including those of p53, RB, PI3K and IDH genes, as well as novel therapeutic strategies aimed at utilizing these mutant genes. In addition, we discuss a number of preclinical studies and ongoing early clinical trials in sarcoma targeting therapies, as well as gene editing technology, which may provide a better choice for sarcoma patient management. Published by Elsevier Ltd.

  12. Therapeutic implications of curcumin in the prevention of diabetic retinopathy via modulation of anti-oxidant activity and genetic pathways

    Science.gov (United States)

    Aldebasi, Yousef H; Aly, Salah M; Rahmani, Arshad H

    2013-01-01

    Diabetic Retinopathy (DR) is one of the most common complications of diabetes mellitus that affects the blood vessels of the retina, leading to blindness. The current approach of treatment based on anti-inflammatory, anti-angiogenesis drugs and laser photocoagulation are effective but also shows adverse affect in retinal tissues and that can even worsen the visual abilities. Thus, a safe and effective mode of treatment is needed to control or delaying the DR. Based on the earlier evidence of the potentiality of natural products as anti-oxidants, anti-diabetic and antitumor, medicinal plants may constitute a good therapeutic approach in the prevention of DR. Curcumin, constituents of dietary spice turmeric, has been observed to have therapeutic potential in the inhibition or slow down progression of DR. In this review, we summarize the therapeutic potentiality of curcumin in the delaying the DR through antioxidant, anti-inflammatory, inhibition of Vascular Endothelial Growth and nuclear transcription factors. The strength of involvement of curcumin in the modulation of genes action creates a strong optimism towards novel therapeutic strategy of diabetic retinopathy and important mainstay in the management of diabetes and its complications DR. PMID:24379904

  13. Advancements in therapeutically-targeting orphan GPCRs

    Directory of Open Access Journals (Sweden)

    Jennifer eStockert

    2015-05-01

    Full Text Available G-protein coupled receptors (GPCRs are popular biological targets for drug discovery and development. To date there are more than 140 orphan GPCRs, i.e. receptors whose endogenous ligands are unknown. Traditionally orphan GPCRs have been difficult to study and the development of therapeutic compounds targeting these receptors has been extremely slow although these GPCRs are considered important targets based on their distribution and behavioral phenotype revealed by animals lacking the receptor. Recent advances in several methods used to study orphan receptors, including protein crystallography and homology modeling are likely to be useful in the identification of therapeutics targeting these receptors. In the past 13 years, over a dozen different Class A GPCRs have been crystallized; this trend is exciting, since homology modeling of GPCRs has previously been limited by the availability of solved structures. As the number of solved GPCR structures continues to grow so does the number of templates that can be used to generate increasingly accurate models of phylogenetically-related orphan GPCRs. The availability of solved structures along with the advances in using multiple templates to build models (in combination with molecular dynamics simulations that reveal structural information not provided by crystallographic data and methods for modeling hard-to-predict flexible loop regions have improved the quality of GPCR homology models. This, in turn, has improved the success rates of virtual ligand screens that use homology models to identify potential receptor binding compounds. Experimental testing of the predicted hits and validation using traditional GPCR pharmacological approaches can be used to drive ligand-based efforts to probe orphan receptor biology as well as to define the chemotypes and chemical scaffolds important for binding. As a result of these advances, orphan GPCRs are emerging from relative obscurity as a new class of drug

  14. Antioxidant supplements for liver diseases

    DEFF Research Database (Denmark)

    Bjelakovic, Goran; Gluud, Lise Lotte; Nikolova, Dimitrinka

    2011-01-01

    Several liver diseases have been associated with oxidative stress. Accordingly, antioxidants have been suggested as potential therapeutics for various liver diseases. The evidence supporting these suggestions is equivocal.......Several liver diseases have been associated with oxidative stress. Accordingly, antioxidants have been suggested as potential therapeutics for various liver diseases. The evidence supporting these suggestions is equivocal....

  15. Evaluation of Therapeutics for Advanced-Stage Heart Failure and Other Severely-Debilitating or Life-Threatening Diseases.

    Science.gov (United States)

    Prescott, J S; Andrews, P A; Baker, R W; Bogdanffy, M S; Fields, F O; Keller, D A; Lapadula, D M; Mahoney, N M; Paul, D E; Platz, S J; Reese, D M; Stoch, S A; DeGeorge, J J

    2017-08-01

    Severely-debilitating or life-threatening (SDLT) diseases include conditions in which life expectancy is short or quality of life is greatly diminished despite available therapies. As such, the medical context for SDLT diseases is comparable to advanced cancer and the benefit vs. risk assessment and development of SDLT disease therapeutics should be similar to that of advanced cancer therapeutics. A streamlined development approach would allow patients with SDLT conditions earlier access to therapeutics and increase the speed of progression through development. In addition, this will likely increase the SDLT disease therapeutic pipeline, directly benefiting patients and reducing the economic and societal burden of SDLT conditions. Using advanced-stage heart failure (HF) as an example that illustrates the concepts applicable to other SDLT indications, this article proposes a streamlined development paradigm for SDLT disease therapeutics and recommends development of aligned global regulatory guidance. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  16. The role of oxidative stress in Huntington's disease: are antioxidants good therapeutic candidates?

    Science.gov (United States)

    Gil-Mohapel, Joana; Brocardo, Patricia S; Christie, Brian R

    2014-04-01

    Huntington's disease (HD) is the most common polyglutamine neurodegenerative disorder in humans, and is caused by a mutation of an unstable expansion of CAG repeats within the coding region of the HD gene, which expresses the protein huntingtin. Although abnormal protein is ubiquitously expressed throughout the organism, cell degeneration occurs mainly in the brain, and there, predominantly in the striatum and cortex. The mechanisms that account for this selective neuronal death are multifaceted in nature and several lines of evidence suggest that mitochondrial dysfunction, overproduction of reactive oxygen species (ROS) and oxidative stress (an imbalance between pro-oxidant and antioxidant systems resulting in oxidative damage to proteins, lipids and DNA) might play important roles. Over time, this can result in the death of the affected neuronal populations. In this review article we present an overview of the preclinical and clinical studies that have indicated a link between oxidative stress, neurodegeneration, and cell death in HD. We also discuss how changes in ROS production affect neuronal survival, highlighting the evidence for the use of antioxidants including essential fatty acids, coenzyme Q10, and creatine, as potential therapeutic strategies for the treatment of this devastating neurodegenerative disorder.

  17. Dendrimer advances for the central nervous system delivery of therapeutics.

    Science.gov (United States)

    Xu, Leyuan; Zhang, Hao; Wu, Yue

    2014-01-15

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.

  18. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    Science.gov (United States)

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  19. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    Directory of Open Access Journals (Sweden)

    Xiaochun Duan

    2016-01-01

    Full Text Available Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH. Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches.

  20. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    Science.gov (United States)

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  1. Mitochondrial Dysfunction and Oxidative Stress in Asthma: Implications for Mitochondria-Targeted Antioxidant Therapeutics

    Directory of Open Access Journals (Sweden)

    P. Hemachandra Reddy

    2011-02-01

    Full Text Available Asthma is a complex, inflammatory disorder characterized by airflow obstruction of variable degrees, bronchial hyper-responsiveness, and airway inflammation. Asthma is caused by environmental factors and a combination of genetic and environmental stimuli. Genetic studies have revealed that multiple loci are involved in the etiology of asthma. Recent cellular, molecular, and animal-model studies have revealed several cellular events that are involved in the progression of asthma, including: increased Th2 cytokines leading to the recruitment of inflammatory cells to the airway, and an increase in the production of reactive oxygen species and mitochondrial dysfunction in the activated inflammatory cells, leading to tissue injury in the bronchial epithelium. Further, aging and animal model studies have revealed that mitochondrial dysfunction and oxidative stress are involved and play a large role in asthma. Recent studies using experimental allergic asthmatic mouse models and peripheral cells and tissues from asthmatic humans have revealed antioxidants as promising treatments for people with asthma. This article summarizes the latest research findings on the involvement of inflammatory changes, and mitochondrial dysfunction/oxidative stress in the development and progression of asthma. This article also addresses the relationship between aging and age-related immunity in triggering asthma, the antioxidant therapeutic strategies in treating people with asthma.

  2. Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Michihiro Fujiwara

    2010-07-01

    Full Text Available Cannabis contains the psychoactive component delta9-tetrahydrocannabinol (delta9-THC, and the non-psychoactive components cannabidiol (CBD, cannabinol, and cannabigerol. It is well-known that delta9-THC and other cannabinoid CB1 receptor agonists are neuroprotective during global and focal ischemic injury. Additionally, delta9-THC also mediates psychological effects through the activation of the CB1 receptor in the central nervous system. In addition to the CB1 receptor agonists, cannabis also contains therapeutically active components which are CB1 receptor independent. Of the CB1 receptor-independent cannabis, the most important is CBD. In the past five years, an increasing number of publications have focused on the discovery of the anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD. In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson’s disease, Alzheimer’s disease, and rheumatoid arthritis. The cerebroprotective action of CBD is CB1 receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance. In this review, we will discuss the therapeutic possibility of CBD as a cerebroprotective agent, highlighting recent pharmacological advances, novel mechanisms, and therapeutic time window of CBD in ischemic stroke.

  3. [Advances in Neurological Therapeutics for Friedreich Ataxia and Machado-Joseph Disease].

    Science.gov (United States)

    Yabe, Ichiro; Sasaki, Hidenao

    2017-08-01

    We reviewed advances in therapeutics for both Friedreich ataxia and Machado-Joseph disease. Various clinical trials have been carried out, mainly for Friedreich ataxia; however, the therapeutic reports from these trials have not provided much evidence for success. Some interesting clinical trials have been reported, and further developments are expected. Regenerative therapy using umbilical cord mesenchymal stem cells and a therapeutic study investigating a new pathomechanism in animal and/or cell culture studies were reported. We expect that these results will translate to therapeutic strategies for patients with these disorders. In addition, biomarkers play an important role when novel treatments are discovered and clinical trials are performed: hence at present, a number of biomarkers such as gait analysis by triaxial accelerometers and prism adaptation of hand-reaching movements, are being examined.

  4. Therapeutic advancement of chronic lymphocytic leukemia

    Directory of Open Access Journals (Sweden)

    Lu Kang

    2012-09-01

    Full Text Available Abstract Despite the combinations of chemotherapy with monoclonal antibodies have further improved response rates, chronic lymphocytic leukemia (CLL remains an incurable disease with an extremely variable course. This article reviews the ongoing clinical advances in the treatment of CLL in both previously untreated and relapsed disease and focuses on the benefit of different therapeutic strategies, the most effective therapy combinations and the potential activity of novel agents. Novel agents and combination therapies have been investigated by several studies in both the upfront and relapsed setting, particularly for patients with 17p deletion, TP53 mutation and fludarabine-refractory CLL. While these agents and combination therapies have improved initial response rates, ongoing studies are continued to determine and improve the efficacy and safety. Despite advancements in the treatment of CLL have led to high response rates, allogeneic hematopoietic stem cell transplantation (allo-HSCT remains the only curative option and reduced-intensity conditioning (RIC allo-HSCT must be strongly considered whenever feasible. As such, ongoing studies of these agents and other novel approaches in clinical development are needed to expand and improve treatment options for CLL patients.

  5. Advances in the proteomic discovery of novel therapeutic targets in cancer

    Directory of Open Access Journals (Sweden)

    Guo S

    2013-10-01

    Full Text Available Shanchun Guo,1 Jin Zou,2 Guangdi Wang3 1Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 2Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA; 3Research Centers in Minority Institutions Cancer Research Program, Xavier University of Louisiana, New Orleans, LA, USA Abstract: Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed. Keywords: proteomics, cancer, therapeutic target, signaling network, tumorigenesis

  6. Nanomedicine in the ROS-mediated pathophysiology: Applications and clinical advances.

    Science.gov (United States)

    Nash, Kevin M; Ahmed, Salahuddin

    2015-11-01

    Reactive oxygen species (ROS) are important in regulating normal cell physiological functions, but when produced in excess lead to the augmented pathogenesis of various diseases. Among these, ischemia reperfusion injury, Alzheimer's disease and rheumatoid arthritis are particularly important. Since ROS can be counteracted by a variety of antioxidants, natural and synthetic antioxidants have been developed. However, due to the ubiquitous production of ROS in living systems, poor in vivo efficiency of these agents and lack of target specificity, the current clinical modalities to treat oxidative stress damage are limited. Advances in the developing field of nanomedicine have yielded nanoparticles that can prolong antioxidant activity, and target specificity of these agents. This article reviews recent advances in antioxidant nanoparticles and their applications to manage oxidative stress-mediated diseases. Production of reactive oxygen species (ROS) is a purely physiological process in many disease conditions. However, excessive and uncontrolled production will lead to oxidative stress and further tissue damage. Advances in nanomedicine have provided many novel strategies to try to combat and counteract ROS. In this review article, the authors comprehensively highlighted the current status and future developments in using nanotechnology for providing novel therapeutic options in this field. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Advances in the delivery of RNA therapeutics: from concept to clinical reality.

    Science.gov (United States)

    Kaczmarek, James C; Kowalski, Piotr S; Anderson, Daniel G

    2017-06-27

    The rapid expansion of the available genomic data continues to greatly impact biomedical science and medicine. Fulfilling the clinical potential of genetic discoveries requires the development of therapeutics that can specifically modulate the expression of disease-relevant genes. RNA-based drugs, including short interfering RNAs and antisense oligonucleotides, are particularly promising examples of this newer class of biologics. For over two decades, researchers have been trying to overcome major challenges for utilizing such RNAs in a therapeutic context, including intracellular delivery, stability, and immune response activation. This research is finally beginning to bear fruit as the first RNA drugs gain FDA approval and more advance to the final phases of clinical trials. Furthermore, the recent advent of CRISPR, an RNA-guided gene-editing technology, as well as new strides in the delivery of messenger RNA transcribed in vitro, have triggered a major expansion of the RNA-therapeutics field. In this review, we discuss the challenges for clinical translation of RNA-based therapeutics, with an emphasis on recent advances in delivery technologies, and present an overview of the applications of RNA-based drugs for modulation of gene/protein expression and genome editing that are currently being investigated both in the laboratory as well as in the clinic.

  8. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances

    Science.gov (United States)

    Dhanasekaran, Renumathy; Bandoh, Salome; Roberts, Lewis R.

    2016-01-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality and has an increasing incidence worldwide. HCC can be induced by multiple etiologies, is influenced by many risk factors, and has a complex pathogenesis. Furthermore, HCCs exhibit substantial heterogeneity, which compounds the difficulties in developing effective therapies against this highly lethal cancer. With advances in cancer biology and molecular and genetic profiling, a number of different mechanisms involved in the development and progression of HCC have been identified. Despite the advances in this area, the molecular pathogenesis of hepatocellular carcinoma is still not completely understood. This review aims to elaborate our current understanding of the most relevant genetic alterations and molecular pathways involved in the development and progression of HCC, and anticipate the potential impact of future advances on therapeutic drug development. PMID:27239288

  9. Potential of Lichen Compounds as Antidiabetic Agents with Antioxidative Properties: A Review

    Science.gov (United States)

    Karunaratne, Veranja

    2017-01-01

    The advancement in the knowledge of potent antioxidants has uncovered the way for greater insight in the treatment of diabetic complications. Lichens are a rich resource of novel bioactive compounds and their antioxidant potential is well documented. Herein we review the antidiabetic potential of lichens which have received considerable attention, in the recent past. We have correlated the antidiabetic and the antioxidant potential of lichen compounds. The study shows a good accordance between antioxidant and antidiabetic activity of lichens and points out the need to look into gathering the scarce and scattered data on biological activities for effective utilization. The review establishes that the lichen extracts, especially of Parmotrema sp. and Ramalina sp. have shown promising potential in both antidiabetic and antioxidant assays. Ubiquitous compounds, namely, zeorin, methylorsellinate, methyl-β-orcinol carboxylate, methyl haematommate, lecanoric acid, salazinic acid, sekikaic acid, usnic acid, gyrophoric acid, and lobaric acid have shown promising potential in both antidiabetic as well as antioxidant assays highlighting their potential for effective treatment of diabetic mellitus and its associated complications. The available compilation of this data provides the future perspectives and highlight the need for further studies of this potent herbal source to harvest more beneficial therapeutic antidiabetic drugs. PMID:28491237

  10. Advances in RNAi therapeutic delivery to leukocytes using lipid nanoparticles.

    Science.gov (United States)

    Ramishetti, Srinivas; Landesman-Milo, Dalit; Peer, Dan

    2016-11-01

    Small interfering RNAs (siRNAs) therapeutics has advanced into clinical trials for liver diseases and solid tumors, but remain a challenge for manipulating leukocytes fate due to lack of specificity and safety issues. Leukocytes ingest pathogens and defend the body through a complex network. They are also involved in the pathogeneses of inflammation, viral infection, autoimmunity and cancers. Modulating gene expression in leukocytes using siRNAs holds great promise to treat leukocyte-mediated diseases. Leukocytes are notoriously hard to transduce with siRNAs and are spread throughout the body often located deep in tissues, therefore developing an efficient systemic delivery strategy is still a challenge. Here, we discuss recent advances in siRNA delivery to leukocyte subsets such as macrophages, monocytes, dendritic cells and lymphocytes. We focus mainly on lipid-based nanoparticles (LNPs) comprised of new generation of ionizable lipids and their ability to deliver siRNA to primary or malignant leukocytes in a targeted manner. Special emphasis is made on LNPs targeted to subsets of leukocytes and we detail a novel microfluidic mixing technology that could aid in changing the landscape of process development of LNPs from a lab tool to a potential novel therapeutic modality.

  11. Interactions of silica nanoparticles with therapeutics for oxidative stress attenuation in neurons

    Science.gov (United States)

    White-Schenk, Desiree; Shi, Riyi; Leary, James F.

    2015-03-01

    Oxidative stress plays a major role in many disease pathologies, notably in the central nervous system (CNS). For instance, after initial spinal cord injury, the injury site tends to increase during a secondary chemical injury process based on oxidative stress from necrotic cells and the inflammatory response. Prevention of this secondary chemical injury would represent a major advance in the treatment of people with spinal cord injuries. Few therapeutics are useful in combating such stress in the CNS due to side effects, low efficacy, or half-life. Mesoporous silica nanoparticles show promise for delivering therapeutics based on the formation of a porous network during synthesis. Ideally, they increase the circulation time of loaded therapeutics to increase the half-life while reducing overall concentrations to avoid side effects. The current study explored the use of silica nanoparticles for therapeutic delivery of anti-oxidants, in particular, the neutralization of acrolein which can lead to extensive tissue damage due to its ability to generate more and more copies of itself when it interacts with normal tissue. Both an FDA-approved therapeutic, hydralazine, and natural product, epigallocatechin gallate, were explored as antioxidants for acrolein with nanoparticles for increased efficacy and stability in neuronal cell cultures. Not only were the nanoparticles explored in neuronal cells, but also in a co-cultured in vitro model with microglial cells to study potential immune responses to near-infrared (NIRF)-labeled nanoparticles and uptake. Studies included nanoparticle toxicity, uptake, and therapeutic response using fluorescence-based techniques with both dormant and activated immune microglia co-cultured with neuronal cells.

  12. Vitamin D deficiency, oxidative stress and antioxidant status: only weak association seen in the absence of advanced age, obesity or pre-existing disease.

    Science.gov (United States)

    Wang, Erica W; Siu, Parco M; Pang, Marco Y; Woo, Jean; Collins, Andrew R; Benzie, Iris F F

    2017-07-01

    Vitamin D deficiency (plasma 25-hydroxycholecalciferol (25(OH)D)70 % of participants were vitamin D deficient. No significant correlations and no biomarker differences across 25(OH)D quartiles or groups were seen except for total antioxidant status. A weak direct association (r 0·252, Pstress biomarkers in the absence of advanced age, obesity and disease, though some evidence of depleted antioxidant status in those with vitamin D deficiency was seen. Poor antioxidant status may pre-date increased oxidative stress. Study of effects of correction of deficiency on antioxidant status and oxidative stress in vitamin D-deficient but otherwise healthy subjects is needed.

  13. Recent advances in (therapeutic protein drug development [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    H.A. Daniel Lagassé

    2017-02-01

    Full Text Available Therapeutic protein drugs are an important class of medicines serving patients most in need of novel therapies. Recently approved recombinant protein therapeutics have been developed to treat a wide variety of clinical indications, including cancers, autoimmunity/inflammation, exposure to infectious agents, and genetic disorders. The latest advances in protein-engineering technologies have allowed drug developers and manufacturers to fine-tune and exploit desirable functional characteristics of proteins of interest while maintaining (and in some cases enhancing product safety or efficacy or both. In this review, we highlight the emerging trends and approaches in protein drug development by using examples of therapeutic proteins approved by the U.S. Food and Drug Administration over the previous five years (2011–2016, namely January 1, 2011, through August 31, 2016.

  14. Antioxidant phytochemicals in fresh produce: exploitation of genotype variation and advancements in analytical protocols

    Science.gov (United States)

    Manganaris, George A.; Goulas, Vlasios; Mellidou, Ifigeneia; Drogoudi, Pavlina

    2017-12-01

    Horticultural commodities (fruit and vegetables) are the major dietary source of several bioactive compounds of high nutraceutical value for humans, including polyphenols, carotenoids and vitamins. The aim of the current review was dual. Firstly, towards the eventual enhancement of horticultural crops with bio-functional compounds, the natural genetic variation in antioxidants found in different species and cultivar/genotypes is underlined. Notably, some landraces and/or traditional cultivars have been characterized by substantially higher phytochemical content, i.e. small tomato of Santorini island (cv. ‘Tomataki Santorinis’) possesses appreciably high amounts of ascorbic acid. The systematic screening of key bioactive compounds in a wide range of germplasm for the identification of promising genotypes and the restoration of key gene fractions from wild species and landraces may help in reducing the loss of agro-biodiversity, creating a healthier ‘gene pool’ as the basis of future adaptation. Towards this direction, large scale comparative studies in different cultivars/genotypes of a given species provide useful insights about the ones of higher nutritional value. Secondly, the advancements in the employment of analytical techniques to determine the antioxidant potential through a convenient, easy and fast way are outlined. Such analytical techniques include electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy, electrochemical and chemometric methods, flow injection analysis (FIA), optical sensors and high resolution screening (HRS). Taking into consideration that fruits and vegetables are complex mixtures of water- and lipid-soluble antioxidants, the exploitation of chemometrics to develop “omics” platforms (i.e. metabolomics, foodomics) is a promising tool for researchers to decode and/or predict antioxidant activity of fresh produce. For industry, the use of cheap and rapid optical sensors and IR spectroscopy is recommended to

  15. Antioxidant Phytochemicals in Fresh Produce: Exploitation of Genotype Variation and Advancements in Analytical Protocols

    Directory of Open Access Journals (Sweden)

    George A. Manganaris

    2018-02-01

    Full Text Available Horticultural commodities (fruit and vegetables are the major dietary source of several bioactive compounds of high nutraceutical value for humans, including polyphenols, carotenoids and vitamins. The aim of the current review was dual. Firstly, toward the eventual enhancement of horticultural crops with bio-functional compounds, the natural genetic variation in antioxidants found in different species and cultivars/genotypes is underlined. Notably, some landraces and/or traditional cultivars have been characterized by substantially higher phytochemical content, i.e., small tomato of Santorini island (cv. “Tomataki Santorinis” possesses appreciably high amounts of ascorbic acid (AsA. The systematic screening of key bioactive compounds in a wide range of germplasm for the identification of promising genotypes and the restoration of key gene fractions from wild species and landraces may help in reducing the loss of agro-biodiversity, creating a healthier “gene pool” as the basis of future adaptation. Toward this direction, large scale comparative studies in different cultivars/genotypes of a given species provide useful insights about the ones of higher nutritional value. Secondly, the advancements in the employment of analytical techniques to determine the antioxidant potential through a convenient, easy and fast way are outlined. Such analytical techniques include electron paramagnetic resonance (EPR and infrared (IR spectroscopy, electrochemical, and chemometric methods, flow injection analysis (FIA, optical sensors, and high resolution screening (HRS. Taking into consideration that fruits and vegetables are complex mixtures of water- and lipid-soluble antioxidants, the exploitation of chemometrics to develop “omics” platforms (i.e., metabolomics, foodomics is a promising tool for researchers to decode and/or predict antioxidant activity of fresh produce. For industry, the use of optical sensors and IR spectroscopy is recommended to

  16. Gene Therapy for Advanced Melanoma: Selective Targeting and Therapeutic Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Joana R. Viola

    2013-01-01

    Full Text Available Despite recent advances, the treatment of malignant melanoma still results in the relapse of the disease, and second line treatment mostly fails due to the occurrence of resistance. A wide range of mutations are known to prevent effective treatment with chemotherapeutic drugs. Hence, approaches with biopharmaceuticals including proteins, like antibodies or cytokines, are applied. As an alternative, regimens with therapeutically active nucleic acids offer the possibility for highly selective cancer treatment whilst avoiding unwanted and toxic side effects. This paper gives a brief introduction into the mechanism of this devastating disease, discusses the shortcoming of current therapy approaches, and pinpoints anchor points which could be harnessed for therapeutic intervention with nucleic acids. We bring the delivery of nucleic acid nanopharmaceutics into perspective as a novel antimelanoma therapeutic approach and discuss the possibilities for melanoma specific targeting. The latest reports on preclinical and already clinical application of nucleic acids in melanoma are discussed.

  17. 78 FR 49530 - Gastroenterology Regulatory Endpoints and the Advancement of Therapeutics; Public Workshop

    Science.gov (United States)

    2013-08-14

    ...] Gastroenterology Regulatory Endpoints and the Advancement of Therapeutics; Public Workshop AGENCY: Food and Drug... for Drug Evaluation and Research, in cosponsorship with the American College of Gastroenterology, the... American Society for Pediatric Gastroenterology, Hepatology, and Nutrition, and the Pediatric IBD...

  18. CIMAvax-EGF®: Therapeutic Vaccine Against Non-small Cell Lung Cancer in Advanced Stages

    Directory of Open Access Journals (Sweden)

    Diana Rosa Fernández Ruiz

    2017-02-01

    Full Text Available Biotechnology is one of the scientific activities deployed by the Cuban State, which shows greater results and impact on the of the Cuban population health. It has increased the therapeutic repertoire in dealing with oncological diseases with products such as CIMAvax-EGF®, the first therapeutic vaccine of its kind, from the Molecular Immunology Center, against non-small cell lung cancer in advanced stages IIIB IV. The application of this product already extends to Primary Health Care with encouraging results, by prolonging the survival of patients with higher quality of life.

  19. Antiglycation and antioxidation properties of berberis lyceum and terminalia chebula: possible role in curing diabetes and slowing aging

    International Nuclear Information System (INIS)

    Khan, I.; Ahmad, H.; Ahmad, B.; Azam, S.

    2014-01-01

    Plants have been shown to possess a great potential to benefit mankind. Extracts from plants that have antiglycation and antioxidation abilities can be of great therapeutic value in reducing complication of diabetes and slowing down aging. Advanced glycation end-products (AGE's) formation due to non-enzymatic glycation and oxidative stress has been demonstrated in the pathogenesis of diabetic complications and aging processes. In this study we investigated the antiglycation and antioxidation potential of methanolic extracts of Berberis lyceum and Terminalia chebula. Results indicated that the methanolic extract of B. lyceum had more antiglycation ability with a Minimum inhibitory concentration (MIC50) of 123 meu g/mL as compared to the MIC50 of 110 meu g/ml of T. chebula. While the results of antioxidation assay showed that T. chebula has more antioxidation potential than B. lyceum. T. chebula had 46.55, 35.01 and 32.81% antioxidation potential at 0.5 mg, 0.25 mg and 0.125 mg respectively as compared to the 16.53, 16.09 and 15.10 % oxidation inhibition at same mass values by B. lycium. (author)

  20. Therapeutic effects of gingerol on hematopoietic and antioxidative damage of 60Co γ-rays irradiated mice

    International Nuclear Information System (INIS)

    Geng Yanyan; Xie Zhenfei; Zhou Yu; Zeng Xianyin

    2012-01-01

    18 female Kunming mice were chosen and randomly divided into three groups, and the therapeutic effects of gingerol on hemopoietic and antioxidative system in liver of 60 Co γ-rays irradiated mice were developed in this study. Control group was given distilled water intragastrically once a day for five days. Mice in the irradiated group and irradiated + gingerol group were both irradiated at 3 Gy of 60 Co γ-rays and were given distilled water and gingerol intragastrically within 30 min after irradiation respectively, once a day for five days. The mice were sacrificed and sampled in 48 hours after intragastric administration. Compared with control group, the relative spleen index and WBC numbers significantly decreased (P 60 Co γ-rays irradiated mice. (authors)

  1. Mitochondria-Targeted Antioxidant SS31 Prevents Amyloid Beta-Induced Mitochondrial Abnormalities and Synaptic Degeneration in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Marcus J. Calkins

    2012-10-01

    Full Text Available In neuronal systems, the health and activity of mitochondria and synapses are tightly coupled. For this reason, it has been postulated that mitochondrial abnormalities may, at least in part, drive neurodegeneration in conditions such as Alzheimer’s disease (AD. Mounting evidence from multiple Alzheimer’s disease cell and mouse models and postmortem brains suggest that loss of mitochondrial integrity may be a key factor that mediates synaptic loss. Therefore, the prevention or rescue of mitochondrial dysfunction may help delay or altogether prevent AD-associated neurodegeneration. Since mitochondrial health is heavily dependent on antioxidant defenses, researchers have begun to explore the use of mitochondria-targeted antioxidants as therapeutic tools to prevent neurodegenerative diseases. This review will highlight advances made using a model mitochondria-targeted antioxidant peptide, SS31, as a potential treatment for AD.

  2. Molecular and therapeutic advances in the diagnosis and management of malignant pheochromocytomas and paragangliomas.

    LENUS (Irish Health Repository)

    Lowery, Aoife J

    2013-01-01

    Pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare catecholamine-secreting tumors derived from chromaffin cells originating in the neural crest. These tumors represent a significant diagnostic and therapeutic challenge because the diagnosis of malignancy is frequently made in retrospect by the development of metastatic or recurrent disease. Complete surgical resection offers the only potential for cure; however, recurrence can occur even after apparently successful resection of the primary tumor. The prognosis for malignant disease is poor because traditional treatment modalities have been limited. The last decade has witnessed exciting discoveries in the study of PCCs and PGLs; advances in molecular genetics have uncovered hereditary and germline mutations of at least 10 genes that contribute to the development of these tumors, and increasing knowledge of genotype-phenotype interactions has facilitated more accurate determination of malignant potential. Elucidating the molecular mechanisms responsible for malignant transformation in these tumors has opened avenues of investigation into targeted therapeutics that show promising results. There have also been significant advances in functional and radiological imaging and in the surgical approach to adrenalectomy, which remains the mainstay of treatment for PCC. In this review, we discuss the currently available diagnostic and therapeutic options for patients with malignant PCCs and PGLs and detail the molecular rationale and clinical evidence for novel and emerging diagnostic and therapeutic strategies.

  3. Renoprotective effect of the antioxidant curcumin: Recent findings☆

    Science.gov (United States)

    Trujillo, Joyce; Chirino, Yolanda Irasema; Molina-Jijón, Eduardo; Andérica-Romero, Ana Cristina; Tapia, Edilia; Pedraza-Chaverrí, José

    2013-01-01

    For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China, curcumin is considered as a therapeutic agent used in several foods. Numerous studies have shown that curcumin has broad biological functions particularly antioxidant and antiinflammatory. In fact, it has been established that curcumin is a bifunctional antioxidant; it exerts antioxidant activity in a direct and an indirect way by scavenging reactive oxygen species and inducing an antioxidant response, respectively. The renoprotective effect of curcumin has been evaluated in several experimental models including diabetic nephropathy, chronic renal failure, ischemia and reperfusion and nephrotoxicity induced by compounds such as gentamicin, adriamycin, chloroquine, iron nitrilotriacetate, sodium fluoride, hexavalent chromium and cisplatin. It has been shown recently in a model of chronic renal failure that curcumin exerts a therapeutic effect; in fact it reverts not only systemic alterations but also glomerular hemodynamic changes. Another recent finding shows that the renoprotective effect of curcumin is associated to preservation of function and redox balance of mitochondria. Taking together, these studies attribute the protective effect of curcumin in the kidney to the induction of the master regulator of antioxidant response nuclear factor erythroid-derived 2 (Nrf2), inhibition of mitochondrial dysfunction, attenuation of inflammatory response, preservation of antioxidant enzymes and prevention of oxidative stress. The information presented in this paper identifies curcumin as a promising renoprotective molecule against renal injury. PMID:24191240

  4. Renoprotective effect of the antioxidant curcumin: Recent findings

    Directory of Open Access Journals (Sweden)

    Joyce Trujillo

    2013-01-01

    Full Text Available For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China, curcumin is considered as a therapeutic agent used in several foods. Numerous studies have shown that curcumin has broad biological functions particularly antioxidant and antiinflammatory. In fact, it has been established that curcumin is a bifunctional antioxidant; it exerts antioxidant activity in a direct and an indirect way by scavenging reactive oxygen species and inducing an antioxidant response, respectively. The renoprotective effect of curcumin has been evaluated in several experimental models including diabetic nephropathy, chronic renal failure, ischemia and reperfusion and nephrotoxicity induced by compounds such as gentamicin, adriamycin, chloroquine, iron nitrilotriacetate, sodium fluoride, hexavalent chromium and cisplatin. It has been shown recently in a model of chronic renal failure that curcumin exerts a therapeutic effect; in fact it reverts not only systemic alterations but also glomerular hemodynamic changes. Another recent finding shows that the renoprotective effect of curcumin is associated to preservation of function and redox balance of mitochondria. Taking together, these studies attribute the protective effect of curcumin in the kidney to the induction of the master regulator of antioxidant response nuclear factor erythroid-derived 2 (Nrf2, inhibition of mitochondrial dysfunction, attenuation of inflammatory response, preservation of antioxidant enzymes and prevention of oxidative stress. The information presented in this paper identifies curcumin as a promising renoprotective molecule against renal injury.

  5. A quantum chemical explanation of the antioxidant activity af flavonoids.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; de Groot, M.J.; van den Berg, D.J.; Tromp, M.N.J.L.; Donné-Op den Kelder, G.M.; van der Vijgh, W.J.F.; Bast, A.

    1996-01-01

    Flavonoids are a group of naturally occurring antioxidants, which over the past years have gained tremendous interest because of their possible therapeutic applicability. The mechanism of their antioxidant activity has been extensively studied over several decades. However, there is still much

  6. Anti-glycation and anti-oxidation properties of Capsicum frutescens and Curcuma longa fruits: possible role in prevention of diabetic complication.

    Science.gov (United States)

    Khan, Ibrar; Ahmad, Haroon; Ahmad, Bashir

    2014-09-01

    The accumulation of advanced glycationend products (AGE's) in the body, due to the non-enzymatic glycation of proteins is associated with several pathological conditions like aging and diabetes mellitus. Hence a plant having anti-glycation and anti-oxidation potentials may serve as therapeutic agent for diabetic complications and aging. In this study the anti-glycation and anti-oxidation properties of crude methanolic extracts of fruits of Capsicum frutescens and Curcuma longa were investigated. Among the two C. frutescens had more anti-glycation ability with a minimum inhibitory concentration (MIC50) of 90βg/mLas compared to 324βg/mL MIC50 of C. longa. Curcuma longa had the more anti-oxidation potential i.e. 35.01, 30.83 and 28.08% at 0.5mg, 0.25mg and 0.125mg respectively.

  7. Therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Guo, Chao; Zhu, Yanrong; Weng, Yan; Wang, Shiquan; Guan, Yue; Wei, Guo; Yin, Ying; Xi, Miaomaio; Wen, Aidong

    2014-01-01

    Breviscapine injection is a Chinese herbal medicine standardized product extracted from Erigeron breviscapus (Vant.) Hand.-Mazz. It has been widely used for treating cardiovascular and cerebrovascular diseases. However, the therapeutic time window and the action mechanism of breviscapine are still unclear. The present study was designed to investigate the therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemic/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 2h followed by 24h of reperfusion. Experiment part 1 was used to investigate the therapeutic time window of breviscapine. Rats were injected intravenously with 50mg/kg breviscapine at different time-points of reperfusion. After 24h of reperfusion, neurologic score, infarct volume, brain water content and serum level of neuron specific enolase (NSE) were measured in a masked fashion. Part 2 was used to explore the therapeutic mechanism of breviscapine. 4-Hydroxy-2-nonenal (4-HNE), 8-hydroxyl-2'- deoxyguanosine (8-OHdG) and the antioxidant capacity of ischemia cortex were measured by ELISA and ferric-reducing antioxidant power (FRAP) assay, respectively. Immunofluorescence and western blot analysis were used to analyze the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Part 1: breviscapine injection significantly ameliorated neurologic deficit, reduced infarct volume and water content, and suppressed the levels of NSE in a time-dependent manner. Part 2: breviscapine inhibited the increased levels of 4-HNE and 8-OHdG, and enhanced the antioxidant capacity of cortex tissue. Moreover, breviscapine obviously raised the expression of Nrf2 and HO-1 proteins after 24h of reperfusion. The therapeutic time window of breviscapine injection for cerebral ischemia/reperfusion injury seemed to be within 5h after reperfusion. By up-regulating the expression of Nrf2/HO-1 pathway

  8. The potential usefulness of the Response Index in positron emission tomography assessing the therapeutic effect of pre-operative chemotherapy for advanced colorectal cancer.

    Science.gov (United States)

    Nomura, Masatoshi; Takahashi, Hidekazu; Haraguchi, Naotsugu; Nishimura, Junichi; Hata, Taishi; Matsuda, Chu; Ikenaga, Masakazu; Yamamoto, Hirofumi; Murata, Kohei; Doki, Yuichiro; Mori, Masaki; Mizushima, Tsunekazu

    2017-12-01

    Pre-operative chemotherapy is an option for patients with local advanced rectal cancer, but the response rate to pre-operative chemotherapy with oxaliplatin is still low. If the therapeutic effect of pre-operative chemotherapy could be assessed, we may be able to convert to surgery early. The purpose of the present study was to validate the correlation between the maximum standardized uptake value (SUV max ) in 18F-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) of the primary tumor and the therapeutic effect of pre-operative chemotherapy in advanced colorectal cancer. Retrospective cohort study from January 2011 to October 2015. We examined 28 patients with pathologically confirmed sigmoid or rectal cancer that underwent pre-operative chemotherapy and surgery. The correlation between Response Index (RI), calculated as (SUV max after chemotherapy)/(SUV max before chemotherapy), and the therapeutic effect on the primary tumor in advanced colorectal cancer. The degree of differentiation (p = 0.04), SUV max in the primary tumor after chemotherapy (p = 0.02), and RI (p = 0.008) were significant predictors of the therapeutic effect in univariate analysis. The areas under the ROC curve constructed with RI and therapeutic effect was 0.77. The optimal cut-off values for the RI in the responder group was effect of chemotherapy on advanced colorectal cancer. Thus, RI is potentially useful for predicting the therapeutic effect in advanced colorectal cancer.

  9. Angolan Cymbopogon citratus used for therapeutic benefits: nutritional composition and influence of solvents in phytochemicals content and antioxidant activity of leaf extracts.

    Science.gov (United States)

    Soares, Marta O; Alves, Rita C; Pires, Pedro C; Oliveira, M Beatriz P P; Vinha, Ana F

    2013-10-01

    Folk medicine is a relevant and effective part of indigenous healthcare systems which are, in practice, totally dependent on traditional healers. An outstanding coincidence between indigenous medicinal plant uses and scientifically proved pharmacological properties of several phytochemicals has been observed along the years. This work focused on the leaves of a medicinal plant traditionally used for therapeutic benefits (Angolan Cymbopogon citratus), in order to evaluate their nutritional value. The bioactive phytochemical composition and antioxidant activity of leaf extracts prepared with different solvents (water, methanol and ethanol) were also evaluated. The plant leaves contained ∼60% of carbohydrates, protein (∼20%), fat (∼5%), ash (∼4%) and moisture (∼9%). The phytochemicals screening revealed the presence of tannins, flavonoids, and terpenoids in all extracts. Methanolic extracts also contained alkaloids and steroids. Several methods were used to evaluate total antioxidant capacity of the different extracts (DPPH·, NO·, and H₂O₂ scavenging assays, reducing power, and FRAP). Ethanolic extracts presented a significantly higher antioxidant activity (p<0.05) except for FRAP, in which the best results were achieved by the aqueous extracts. Methanolic extracts showed the lowest radical scavenging activities for both DPPH· and NO· radicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Milrinone in advanced heart failure: dose and therapeutic monitor outside intensive care unit.

    Science.gov (United States)

    Charisopoulou, Dafni; Leaver, Neil; Banner, Nicholas R

    2014-04-01

    Advanced chronic heart failure (ACHF) patients often require inotropes before transplantation or ventricular assist device implantation. Milrinone, an inotrope and vasodilator, may accumulate in cardiorenal syndrome with serious adverse effects. We investigated the potential for therapeutic drug monitoring of milrinone levels using High Performance Liquid Chromatography Mass Spectrometry (HPLC-MS). 22 ACHF patients (15 males, 49±9 years) received milrinone 50 µg/kg intravenously (i.v.) during heart catheterization. Milrinone levels were 216±71 ng/ml (within the reported therapeutic range: 100-300 ng/ml), followed by improvements in cardiac index, pulmonary artery and wedge pressures (p milrinone (5-26 days) at 0.1-0.2 µg/kg/min, titrated according to plasma milrinone levels. No adverse events occurred. Therapeutic levels were achieved with doses of 0.2±0.06 µg/Kg/min, below those recommended in Summary of Product Characteristics. Milrinone therapy can be noninvasively monitored by HPLC-MS, while avoiding toxicity in ACHF.

  11. Antimicrobial, Cytotoxic, Phytotoxic and Antioxidant Potential of Heliotropium strigosum Willd.

    Science.gov (United States)

    Khurm, Muhammad; Chaudhry, Bashir A; Uzair, Muhammad; Janbaz, Khalid H

    2016-07-28

    Background: Heliotropium strigosum Willd. (Chitiphal) is a medicinally important herb that belongs to the Boraginaceae family. Traditionally, this plant was used in the medication therapy of various ailments in different populations of the world. The aim of the study is to probe the therapeutic aspects of H. strigosum described in the traditional folklore history of medicines. Methods: In the present study, the dichloromethane crude extract of this plant was screened to explore the antimicrobial, cytotoxic, phytotoxic and antioxidant potential of H. strigosum . For antibacterial, antifungal and antioxidant activities, microplate alamar blue assay (MABA), agar tube dilution method and diphenyl picryl hydrazine (DPPH) radical-scavenging assay were used, respectively. The cytotoxic and phytotoxic potential were demonstrated by using brine shrimp lethality bioassay and Lemna minor assay. Results: The crude extract displayed positive cytotoxic activity in the brine shrimp lethality assay, with 23 of 30 shrimps dying at the concentration of 1000 µg/mL. It also showed moderate phytotoxic potential with percent inhibition of 50% at the concentration of 1000 µg/mL. The crude extract exhibited no significant antibacterial activity against Staphylococcus aureus , Shigella flexneri , Escherichia coli and Pseudomonas aeruginosa . Non-significant antifungal and radical scavenging activity was also shown by the dichloromethane crude extract. Conclusion: It is recommended that scientists focus on the identification and isolation of beneficial bioactive constituents with the help of advanced scientific methodologies that seems to be helpful in the synthesis of new therapeutic agents of desired interest.

  12. Evidences of Reduced Antioxidant Activity in Patients With Chronic Migraine and Medication-Overuse Headache.

    Science.gov (United States)

    Lucchesi, Cinzia; Baldacci, Filippo; Cafalli, Martina; Chico, Lucia; Lo Gerfo, Annalisa; Bonuccelli, Ubaldo; Siciliano, Gabriele; Gori, Sara

    2015-01-01

    Migraine is a complex multifactorial, neurobiological disorder, whose pathogenesis is not fully understood, nor are the mechanisms associated with migraine transformation from episodic to chronic pattern. A possible role of impaired oxidative mitochondrial metabolism in migraine pathogenesis has been hypothesized, and increased levels of peripheral markers of oxidative stress have been reported in migraine patients, although the literature data are limited and heterogeneous. The aim of this cross-sectional study was to determine plasmatic levels of advanced oxidation protein products, ferric-reducing antioxidant power and total plasmatic thiol groups, all plasmatic markers related to oxidative stress, in a sample of chronic migraine patients and medication-overuse headache, compared to a control group of healthy subjects. Thirty-three patients with a diagnosis of both chronic migraine and medication-overuse headache (International Classification of Headache Disorders,3rd edition, beta version) and 33 healthy, headache-free subjects were enrolled. Patients with comorbid/coexisting conditions were excluded, as well as patients in treatment with migraine preventive drugs. Plasmatic levels of advanced oxidation protein products, ferric-reducing antioxidant power, and total thiol groups were determined in migraine patients and controls; moreover, oxidative stress biomarkers were compared in migraine patients with triptan compared to non-steroidal anti-inflammatory drug overuse. The statistical analysis showed significantly lower levels of ferric-reducing antioxidant power and total plasmatic thiol groups, both expression of antioxidant power, in patients with chronic migraine and medication-overuse headache compared to controls (respectively, ferric antioxidant power median [interquartile range] 0.53 [0.22] vs 0.82 [0.11] mmol/L, P stress biomarkers were detected between patients with triptan and nonsteroidal anti-inflammatory drug overuse. The data from the present

  13. Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers.

    Science.gov (United States)

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang

    2016-07-01

    Functionalization of therapeutic carrier biomaterials can potentially provide additional benefits in drug delivery for disease treatment. Given that this modification determines final therapeutic efficacy of drug carriers, here, we investigate systematically the role of grafting amount of antioxidant gallic acid (GA) onto GN in situ gelling copolymers made of biodegradable gelatin and thermo-responsive poly(N-isopropylacrylamide) for intracameral delivery of pilocarpine in antiglaucoma treatment. As expected, increasing redox reaction time increased total antioxidant activities and free radical scavenging abilities of synthesized carrier biomaterials. The hydrophilic nature of antioxidant molecules strongly affected physicochemical properties of carrier materials with varying GA grafting amounts, thereby dictating in vitro release behaviors and mechanisms of pilocarpine. In vitro oxidative stress challenges revealed that biocompatible carriers with high GA content alleviated lens epithelial cell damage and reduced reactive oxygen species. Intraocular pressure and pupil diameter in glaucomatous rabbits showed correlations with GA-mediated release of pilocarpine. Additionally, enhanced pharmacological treatment effects prevented corneal endothelial cell loss during disease progression. Increasing GA content increased total antioxidant level and decreased nitrite level in the aqueous humor, suggesting a much improved antioxidant status in glaucomatous eyes. This work significantly highlights the dependence of physicochemical properties, drug release behaviors, and bioactivities on intrinsic antioxidant capacities of therapeutic carrier biomaterials for glaucoma treatment. Development of injectable biodegradable polymer depots and functionalization of carrier biomaterials with antioxidant can potentially provide benefits such as improved bioavailability, controlled release pattern, and increased therapeutic effect in intracameral pilocarpine administration for glaucoma

  14. Skewed Epigenetics: An Alternative Therapeutic Option for Diabetes Complications

    Directory of Open Access Journals (Sweden)

    Gabriele Togliatto

    2015-01-01

    Full Text Available Vascular complications are major causes of morbidity and mortality in type 2 diabetes patients. Mitochondrial reactive oxygen species (ROS generation and a lack of efficient antioxidant machinery, a result of hyperglycaemia, mainly contribute to this problem. Although advances in therapy have significantly reduced both morbidity and mortality in diabetic individuals, diabetes-associated vascular complications are still one of the most challenging health problems worldwide. New healing options are urgently needed as current therapeutics are failing to improve long-term outcomes. Particular effort has recently been devoted to understanding the functional relationship between chromatin structure regulation and the persistent change in gene expression which is driven by hyperglycaemia and which accounts for long-lasting diabetic complications. A detailed investigation into epigenetic chromatin modifications in type 2 diabetes is underway. This will be particularly useful in the design of mechanism-based therapeutics which interfere with long-lasting activating epigenetics and improve patient outcomes. We herein provide an overview of the most relevant mechanisms that account for hyperglycaemia-induced changes in chromatin structure; the most relevant mechanism is called “metabolic memory.”

  15. Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity.

    Science.gov (United States)

    Rahmani, Arshad H; Aly, Salah M; Ali, Habeeb; Babiker, Ali Y; Srikar, Sauda; Khan, Amjad A

    2014-01-01

    The current mode of treatment of various diseases based on synthetic drugs is expensive, alters genetic and metabolic pathways and also shows adverse side effects. Thus, safe and effective approach is needed to prevent the diseases development and progression. In this vista, Natural products are good remedy in the treatment/management of diseases and they are affordable and effective without any adverse effects. Dates are main fruit in the Arabian Peninsula and are considered to be one of the most significant commercial crops and also have been documented in Holy Quran and modern scientific literatures. Earlier studies have shown that constituents of dates act as potent antioxidant, anti-tumour as well as anti-inflammatory, provide a suitable alternative therapy in various diseases cure. In this review, dates fruits has medicinal value are summarized in terms of therapeutic implications in the diseases control through anti-oxidant, anti-inflammatory, anti-tumour and ant-diabetic effect.

  16. Joint conference on the impact of EU legislation on therapeutic advance.

    Science.gov (United States)

    Forgó, Nikolaus; Hildebrandt, Martin

    2013-12-01

    On October 11, 2012, two FP7-funded Research Consortia, CONTRACT (Consent in a Trial and Care Environment) and Academic GMP, held a Joint Conference in Brussels entitled "The Impact of EU Legislation on Therapeutic Advance." Academic researchers including stem cell transplant physicians and cell therapy specialists, legal advocates and representatives from industry, regulatory authorities and patient advocacy groups met with members of the European Parliament and the European Commission. This article summarizes important points of discussion and detailed proposals for improvement. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Decreased total antioxidant levels and increased oxidative stress in ...

    African Journals Online (AJOL)

    21–25 ... Decreased total antioxidant levels and increased oxidative stress in South ... antioxidant-rich diet and lifestyle changes in T2DM patients would help to avert the .... glycation of proteins and the formation of advanced glycosylation.

  18. Determination of secondary metabolites and antioxidant activity of ...

    African Journals Online (AJOL)

    justify the ethno-therapeutic usage of these plants by traditional healers. Keywords: Boraginaceae ... direct relationship between antioxidant activities and phenolic contents .... The diode array UV detector and the mobile phases, including (A) ...

  19. Therapeutic Potential and Recent Advances of Curcumin in the Treatment of Aging-Associated Diseases

    Directory of Open Access Journals (Sweden)

    Sathish Sundar Dhilip Kumar

    2018-04-01

    Full Text Available Curcumin, a low molecular weight, lipophilic, major yellow natural polyphenolic, and the most well-known plant-derived compound, is extracted from the rhizomes of the turmeric (Curcuma longa plant. Curcumin has been demonstrated as an effective therapeutic agent in traditional medicine for the treatment and prevention of different diseases. It has also shown a wide range of biological and pharmacological effects in drug delivery, and has actively been used for the treatment of aging-associated diseases, including cardiovascular diseases, atherosclerosis, neurodegenerative diseases, cancer, rheumatoid arthritis, ocular diseases, osteoporosis, diabetes, hypertension, chronic kidney diseases, chronic inflammation and infection. The functional application and therapeutic potential of curcumin in the treatment of aging-associated diseases is well documented in the literature. This review article focuses mainly on the potential role of plant-derived natural compounds such as curcumin, their mechanism of action and recent advances in the treatment of aging-associated diseases. Moreover, the review briefly recaps on the recent progress made in the preparation of nanocurcumins and their therapeutic potential in clinical research for the treatment of aging-associated diseases.

  20. Therapeutic Potential and Recent Advances of Curcumin in the Treatment of Aging-Associated Diseases.

    Science.gov (United States)

    Sundar Dhilip Kumar, Sathish; Houreld, Nicolette Nadene; Abrahamse, Heidi

    2018-04-05

    Curcumin, a low molecular weight, lipophilic, major yellow natural polyphenolic, and the most well-known plant-derived compound, is extracted from the rhizomes of the turmeric ( Curcuma longa ) plant. Curcumin has been demonstrated as an effective therapeutic agent in traditional medicine for the treatment and prevention of different diseases. It has also shown a wide range of biological and pharmacological effects in drug delivery, and has actively been used for the treatment of aging-associated diseases, including cardiovascular diseases, atherosclerosis, neurodegenerative diseases, cancer, rheumatoid arthritis, ocular diseases, osteoporosis, diabetes, hypertension, chronic kidney diseases, chronic inflammation and infection. The functional application and therapeutic potential of curcumin in the treatment of aging-associated diseases is well documented in the literature. This review article focuses mainly on the potential role of plant-derived natural compounds such as curcumin, their mechanism of action and recent advances in the treatment of aging-associated diseases. Moreover, the review briefly recaps on the recent progress made in the preparation of nanocurcumins and their therapeutic potential in clinical research for the treatment of aging-associated diseases.

  1. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Directory of Open Access Journals (Sweden)

    Umberto Tosi

    2017-02-01

    Full Text Available Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.

  2. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Science.gov (United States)

    Tosi, Umberto; Marnell, Christopher S.; Chang, Raymond; Cho, William C.; Ting, Richard; Maachani, Uday B.; Souweidane, Mark M.

    2017-01-01

    Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents. PMID:28208698

  3. Protection against ionizing radiation by antioxidant nutrients and phytochemicals

    International Nuclear Information System (INIS)

    Weiss, Joseph F.; Landauer, Michael R.

    2003-01-01

    The potential of antioxidants to reduce the cellular damage induced by ionizing radiation has been studied in animal models for more than 50 years. The application of antioxidant radioprotectors to various human exposure situations has not been extensive although it is generally accepted that endogenous antioxidants, such as cellular non-protein thiols and antioxidant enzymes, provide some degree of protection. This review focuses on the radioprotective efficacy of naturally occurring antioxidants, specifically antioxidant nutrients and phytochemicals, and how they might influence various endpoints of radiation damage. Results from animal experiments indicate that antioxidant nutrients, such as vitamin E and selenium compounds, are protective against lethality and other radiation effects but to a lesser degree than most synthetic protectors. Some antioxidant nutrients and phytochemicals have the advantage of low toxicity although they are generally protective when administered at pharmacological doses. Naturally occurring antioxidants also may provide an extended window of protection against low-dose, low-dose-rate irradiation, including therapeutic potential when administered after irradiation. A number of phytochemicals, including caffeine, genistein, and melatonin, have multiple physiological effects, as well as antioxidant activity, which result in radioprotection in vivo. Many antioxidant nutrients and phytochemicals have antimutagenic properties, and their modulation of long-term radiation effects, such as cancer, needs further examination. In addition, further studies are required to determine the potential value of specific antioxidant nutrients and phytochemicals during radiotherapy for cancer

  4. Evaluation of Antioxidant and Antifungal Activities of Polyphenol-rich ...

    African Journals Online (AJOL)

    therapeutic activity against certain diseases. Methods: Analysis of ... hydroxyl radical (HO-) and nitric oxide (NO) radical are ... medicinal and aromatic plant section, Life. Sciences ..... Many antioxidant defenses depend on ... Mechanisms of cell.

  5. Renoprotective effects of antioxidants against cisplatin nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Hajian Shabnam

    2014-04-01

    Full Text Available Nephrotoxicity is the major limitation for the clinical use of cisplatin as an anti-tumoural drug. Intracellular effects of cisplatin cause tubular damage and tubular dysfunction with sodium, potassium, and magnesium wasting. Renoperotective strategies against cisplatin are classified on 8 targets: 1 Decrease of cisplatin uptake by renal cell, 2 Inhibition of cisplatin metabolism, 3 Blocking cell death pathways, 4 Cyclin-dependent kinase inhibitors, 5 Pharmacologic, molecular, and genetic blockade of p53, 6 Inhibition of specific Mitogen-activated protein kinase, 7 Antioxidants usage for renoprotection against cisplatin injury and inhibit of oxidative stress, 8 Suppress of inflammation. The oxidation reactions can produce free radicals, which start chain reactions and subsequently can cause a large number of diseases in humans. Antioxidant from natural products have attracted the physicians’ attentions, nowadays. The natural product antioxidants detoxify reactive oxygen species (ROS in kidneys, without affecting the anticancer efficacy of cisplatin. Hence, antioxidants have potential therapeutic applications.

  6. [Pathogenetic associations of periodontal diseases with somatic therapeutic pathology, comorbid conditions in patients of advanced and senile age: state-of-the-art review. Part 1. Associations of periodontal diseases with somatic therapeutic pathology in patients of advanced and senile age].

    Science.gov (United States)

    Ar'eva, G T; Solov'ev, M M; Ar'ev, A L; Ryzhak, G A

    2014-01-01

    The state-of-the-art review of literature on existing views on the association of periodontal diseases with somatic therapeutic pathology (first part of the review) and comorbid conditions (second part of the review) is submitted. The conclusion about need of carrying out the further multicenter researches which purpose is development of new integrated indicators, in a complex and comprehensively characterizing not only the periodontal status, but also set of available somatic therapeutic pathology, especially at pa- tients of advanced and senile age is drawn.

  7. Effects of Cinnamon Consumption on Glycemic Indicators, Advanced Glycation End Products, and Antioxidant Status in Type 2 Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Behrouz Talaei

    2017-09-01

    Full Text Available The aim of the current study was to determine the effect of a daily intake of three grams of cinnamon over eight weeks on glycemic indicators, advanced glycation end products, and antioxidant status in patients with type 2 diabetes. In a double-blind, randomized, placebo controlled clinical trial study, 44 patients with type 2 diabetes, aged 57 ± 8 years, were randomly assigned to take either a three g/day cinnamon supplement (n = 22 or a placebo (n = 22 for eight weeks. We measured the fasting blood glucose, insulin, hemoglobinbA1c, homeostasis model assessment for insulin resistance (HOMA-IR, carboxymethyl lysine, total antioxidant capacity, and malondialdehyde levels at the beginning and the end of the study. Thirty-nine patients (20 in the intervention group and 19 in the control group completed the study. After an eight-week intervention, changes in the level of fasting blood glucose, insulin, hemoglobinbA1c, HOMA-IR, carboxymethyl lysine, total antioxidant capacity, and malondialdehyde were not significant in either group, nor were any significant differences between groups observed in these glycemic and inflammatory indicators at the end of the intervention. Our study revealed that cinnamon supplementation had no significant effects on glycemic and inflammatory indicators in patients with type 2 diabetes.

  8. Cysteine-containing peptides having antioxidant properties

    Science.gov (United States)

    Bielicki, John K [Castro Valley, CA

    2008-10-21

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  9. A new therapeutic assessment score for advanced hepatocellular carcinoma patients receiving hepatic arterial infusion chemotherapy.

    Directory of Open Access Journals (Sweden)

    Issei Saeki

    Full Text Available Hepatic arterial infusion chemotherapy (HAIC is an option for treating advanced hepatocellular carcinoma (HCC. Because of the poor prognosis in HAIC non-responders, it is important to identify patients who may benefit from continuous HAIC treatment; however, there are currently no therapeutic assessment scores for this identification. Therefore, we aimed to establish a new therapeutic assessment score for such patients.We retrospectively analyzed 90 advanced HCC patients with elevated baseline alpha-fetoprotein (AFP and/or des-gamma-carboxy prothrombin (DCP levels and analyzed various parameters for their possible use as predictors of response and survival. AFP and DCP responses were assessed after half a course of HAIC (2 weeks; a positive-response was defined as a reduction of ≥ 20% from baseline.Multivariate analysis identified DCP response (odds ratio 16.03, p < 0.001 as an independent predictor of treatment response. In multivariate analysis, Child-Pugh class A (hazard ratio [HR] 1.99, p = 0.018, AFP response (HR 2.17, p = 0.007, and DCP response (HR 1.90, p = 0.030 were independent prognostic predictors. We developed an Assessment for Continuous Treatment with HAIC (ACTH score, including the above 3 factors, which ranged from 0 to 3. Patients stratified into two groups according to this score showed significantly different prognoses (≤ 1 vs. ≥ 2 points: median survival time, 15.1 vs. 8.7 months; p = 0.003.The ACTH score may be useful in the therapeutic assessment of HCC patients receiving HAIC.

  10. Antioxidant potential of selected Spirulina platensis preparations.

    Science.gov (United States)

    Dartsch, Peter C

    2008-05-01

    Recent studies suggest that Spirulina, a unicellular blue-green alga, may have a variety of health benefits and therapeutic properties and is also capable of acting as an antioxidant and antiinflammatory agent. In this study, a cell-free and a cell-based test assay were used to examine the antioxidant and antiinflammatory properties of four selected Spirulina platensis preparations: (1) Biospirulina, (2) SpiruComplex, a preparation with naturally bound selenium, chromium and zinc, (3) SpiruZink, a preparation with naturally bound zinc, (4) Zinkspirulina + Acerola, a preparation with naturally bound zinc and acerola powder. The cell-free test assay used potassium superoxide as a donor for superoxide radicals, whereas the cell-based test assay used the formation of intracellular superoxide radicals of functional neutrophils upon stimulation by phorbol-12-myristate-13-acetate as a model to investigate the potential of Spirulina preparations to inactivate superoxide radicals. In accordance with the recommended daily dosage, test concentrations ranging from 50 to 1000 microg/mL were chosen. The results showed a dose-dependent inactivation of free superoxide radicals (antioxidant effect) as well as an antiinflammatory effect characterized by a dose-dependent reduction of the metabolic activity of functional neutrophils and a dose-dependent inactivation of superoxide radicals generated during an oxidative burst. The results demonstrate that the tested Spirulina preparations have a high antioxidant and antiinflammatory potential. Especially SpiruZink and Zinkspirulina + Acerola might be useful as a supportive therapeutic approach for reducing oxidative stress and/or the generation of oxygen radicals in the course of inflammatory processes.

  11. Advances in the management of diabetic neuropathy.

    Science.gov (United States)

    Várkonyi, Tamás; Körei, Anna; Putz, Zsuzsanna; Martos, Tímea; Keresztes, Katalin; Lengyel, Csaba; Nyiraty, Szabolcs; Stirban, Alin; Jermendy, György; Kempler, Péter

    2017-10-01

    The authors review current advances in the therapy of diabetic neuropathy. The role of glycemic control and management of cardiovascular risk factors in the prevention and treatment of neuropathic complications are discussed. As further options of pathogenetically oriented treatment, recent knowledge on benfotiamine and alpha-lipoic acid is comprehensively reviewed. Alpha-lipoic acid is a powerful antioxidant and clinical trials have proven its efficacy in ameliorating neuropathic signs and symptoms. Benfotiamine acts via the activation of transketolase and thereby inhibits alternative pathways triggered by uncontrolled glucose influx in the cells comprising polyol, hexosamine, protein-kinase-C pathways and formation of advanced glycation end products. Beyond additional forms of causal treatment, choices of symptomatic treatment will be summarized. The latter is mostly represented by the anticonvulsive agents pregabalin and gabapentin as well as duloxetine widely acknowledged as antidepressant. Finally, non-pharmacological therapeutic alternatives are summarized. The authors conclude that combination therapy should be more often suggested to our patients; especially the combination of pathogenetic and symptomatic agents.

  12. Protection against ionizing radiation by antioxidant nutrients and phytochemicals

    International Nuclear Information System (INIS)

    Weiss, J.F.; Landauer, M.R.

    2003-01-01

    Full text: The potential of antioxidants to reduce the cellular damage induced by ionizing radiation has been studied in animal models for more than 50 years. The application of antioxidant radioprotectors to various human exposure situations has not been extensive although it is generally accepted that endogenous antioxidants, such as cellular non-protein thiols and antioxidant enzymes, provide some degree of protection. This review focuses on the radioprotective efficacy of naturally-occurring antioxidants, specifically antioxidant nutrients and phytochemicals, and how they might influence various endpoints of radiation damage. Results from animal experiments indicate that antioxidant nutrients, such as vitamin E and selenium compounds, are protective against lethality and other radiation effects but to a lesser degree than most synthetic protectors. Some antioxidant nutrients and phytochemicals have the advantage of low toxicity although they are generally protective when administered at pharmacological doses. Naturally-occurring antioxidants also may provide an extended window of protection against low-dose, low-dose-rate irradiation, including therapeutic potential when administered after irradiation. A number of phytochemicals, including caffeine, genistein, and melatonin, have multiple physiological effects, as well as antioxidant activity, which result in radioprotection in vivo. Many antioxidant nutrients and phytochemicals have antimutagenic properties, and their modulation of long-term radiation effects, such as cancer, needs further examination. In addition, further studies are required to determine the potential value of specific antioxidant nutrients and phytochemicals during radiotherapy for cancer

  13. Nutraceutical Antioxidants as Novel Neuroprotective Agents

    Directory of Open Access Journals (Sweden)

    Daniel A. Linseman

    2010-11-01

    Full Text Available A variety of antioxidant compounds derived from natural products (nutraceuticals have demonstrated neuroprotective activity in either in vitro or in vivo models of neuronal cell death or neurodegeneration, respectively. These natural antioxidants fall into several distinct groups based on their chemical structures: (1 flavonoid polyphenols like epigallocatechin 3-gallate (EGCG from green tea and quercetin from apples; (2 non-flavonoid polyphenols such as curcumin from tumeric and resveratrol from grapes; (3 phenolic acids or phenolic diterpenes such as rosmarinic acid or carnosic acid, respectively, both from rosemary; and (4 organosulfur compounds including the isothiocyanate, L-sulforaphane, from broccoli and the thiosulfonate allicin, from garlic. All of these compounds are generally considered to be antioxidants. They may be classified this way either because they directly scavenge free radicals or they indirectly increase endogenous cellular antioxidant defenses, for example, via activation of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2 transcription factor pathway. Alternative mechanisms of action have also been suggested for the neuroprotective effects of these compounds such as modulation of signal transduction cascades or effects on gene expression. Here, we review the literature pertaining to these various classes of nutraceutical antioxidants and discuss their potential therapeutic value in neurodegenerative diseases.

  14. Antioxidant Capacity and Antimutagenic Potential of Murraya koenigii

    Directory of Open Access Journals (Sweden)

    Maryam Zahin

    2013-01-01

    Full Text Available It is well known that the intake of antioxidants with increased consumption of fruits and vegetables and medicinal herbs contributes towards reduced risk of certain diseases including cancers. This study aims to evaluate the broad-spectrum antioxidant and antimutagenic activities as well as to elucidate phytochemical profile of an Indian medicinal plant Murraya koenigii (curry leaves. Leaves of the plant were successively fractionated in various organic solvents. Benzene fraction demonstrated the highest phenolic content followed by petroleum ether. The benzene fraction showed maximum antioxidant activity in all tested assays, namely, phosphomolybdenum, 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical, ferric reducing antioxidant power (FRAP and cupric reducing antioxidant capacity (CUPRAC assays. Based on the promising broad-spectrum antioxidant activity, benzene fraction was further evaluated for antimutagenic activity and showed a dose-dependent antimutagenic response in Ames Salmonella mutagenicity assay. It inhibited 72–86% mutagenicity induced by sodium azide, methyl methanesulfonate, benzo(apyrene, and 2-aminoflourene at the maximum tested concentration (100 μg/mL in Salmonella typhimurium tester strains. At least 21 compounds were detected by GC/MS. The findings clearly demonstrated that phenolic-rich benzene fraction has promising broad-spectrum antioxidant and antimutagenic property and needs further evaluation to exploit its therapeutic potential.

  15. Case studies on selected natural food antioxidants

    OpenAIRE

    Herrero, Miguel; Mendiola, J. A.; Cifuentes, Alejandro; Ibáñez, Elena

    2013-01-01

    In this chapter, a broad description of several case studies related to common antioxidants found in food-related products is presented. In this regard, special attention is put on the novel advanced environmentally-friendly extraction methods nowadays employed to extract and purify those potent antioxidants from natural matrices. A brief description of these extraction processes is provided together with some of the instrumentation needed. Besides, the studies carried out so f...

  16. Antioxidant responses and cellular adjustments to oxidative stress.

    Science.gov (United States)

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-12-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. Copyright © 2015. Published by Elsevier B.V.

  17. Evaluation of antioxidant, anti-inflammatory, and antiulcer properties of Vaccinium leschenaultii Wight: A therapeutic supplement

    Directory of Open Access Journals (Sweden)

    Poornima Nagulsamy

    2015-09-01

    Full Text Available In folklore systems of medicine, bilberry fruit and leaf extracts have been used for the treatment of diarrhoea, dysentery, diabetes, inflammation, and ulcer. The present study was to determine antioxidant, anti-inflammatory, and antiulcerogenic activities of Vaccinium leschenaultii Wight leaf and fruit. The phenolic, tannin, and flavonoid contents of V. leschenaultii leaf and fruit were quantified and were subjected to assess their antioxidant potential using various in vitro systems such as 1, 1 diphenyl-2-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical scavenging, phosphomolybdenum, and ferric reducing antioxidant power reduction activities. Based on the antioxidant potential, acetone and methanol extracts of leaf and fruit were used to evaluate the anti-inflammatory activity and protective effect against ethanol-induced gastric damage in a rat model. The quantification of secondary metabolites shows that the phenolic, flavonoid, and tannin contents are higher in methanol extracts of fruit and leaf. The results of antioxidant assays exhibited that the methanol extracts of leaf possesses better 1, 1 diphenyl-2-picrylhydrazyl radical scavenging and ferric reducing power activity. Oral administration of the acetone fruit and leaf extracts of V. leschenaultii were capable of reducing the edema formation in rats against carrageenan and egg albumin induced inflammation. Moreover, leaf and fruit acetone extracts at the dose of 400 mg/kg highly inhibited ulcer formation. The study concluded that the plant substances such as total phenols, flavonoids along with appreciable antioxidant potential could be the supportive evidence to prove both the anti-inflammatory and antiulcer activities of V. leschenaultii. The traditional importance of this plant will help to reveal the potential of plant to provide alternative phytotherapeutics for human health.

  18. An exploration of spiritual needs of Taiwanese patients with advanced cancer during the therapeutic processes.

    Science.gov (United States)

    Hsiao, Szu-Mei; Gau, Meei-Ling; Ingleton, Christine; Ryan, Tony; Shih, Fu-Jin

    2011-04-01

    This study explores the spiritual needs of patients with advanced cancer during their therapeutic process in Taiwan and analyses the influence of Chinese culture in addressing their spiritual needs. Many nurse clinicians have concerns about the difficulties of providing spiritual care for ethnic-Chinese cancer clients within their cultural context, possibly as a result of lack of knowledge and training. There has been little research exploring the potential impact of Chinese cultural values on the spiritual needs of patients with advanced cancer. Explorative qualitative enquiry was used. Data were collected through participant observation and in-depth face-to-face interviews. Transcribed interview data were analysed by using qualitative content analysis. The purposive sample (n = 33) was drawn from a leading medical center (n = 19) with 3000 beds in the capital and a community-based rural teaching hospital (n = 14) with 581 beds in Taiwan. Four spiritual needs emerged from the analysis: the need to foster hope for survival and obtain a peaceful mindset, to fulfil the meanings of life and preserve one's dignity, to experience more reciprocal human love and finally, to receive assistance in facing death peacefully. This research has shown that patients with advanced cancer need caregivers, friends and the help of their religion to meet their spiritual needs during the therapeutic processes. The findings of this study could assist health professionals to detect the unmet spiritual needs of ethnic-Chinese patients with cancer in the context of their cultural or religious background as early as possible. © 2010 Blackwell Publishing Ltd.

  19. Prognosis and therapeutic response according to the world health organization histological classification in advanced thymoma

    International Nuclear Information System (INIS)

    Tagawa, Tetsuzo; Kometani, Takuro; Yamazaki, Koji

    2011-01-01

    The clinical efficacy of the World Health Organization (WHO) classification of thymoma has been reported to be a prognostic factor for patients with thymomas. This study focuses on the relationship between the therapeutic response and the WHO histological classification in patients with advanced thymoma. A retrospective review was performed on 22 patients with Masaoka stage III and IV thymoma treated from 1975 to 2007. There were 1, 1, 7, 3, and 10 patients with WHO histological subtypes A, AB, B1, B2, and B3, respectively. Surgery was performed on 10 patients. There were 2 complete resections, 2 incomplete resections, and 6 exploratory thoracotomies. Of 18 patients with unresectable tumors, 8, 5, and 5 were treated with radiotherapy, chemotherapy, and chemoradiotherapy as the initial therapy, respectively. The response rate in 9 patients with type A-B2 was significantly better than that in 9 patients with type B3 regardless of treatment modality (100% vs 11.1%, P=0.0001). Only the WHO classification was significantly associated with survival, with type B3 having a worse prognosis than A-B2 (P=0.01). Type B3 thymoma showed a lower response rate to treatments and thus shorter survival. The WHO classification is a good predictive factor for therapeutic response in advanced thymoma. (author)

  20. Antioxidant attributes of four lamiaceae essential oils

    International Nuclear Information System (INIS)

    Hussain, A.I.; Anwar, A.; Iqbal, T.; Bhatti, I.A.

    2011-01-01

    The present study was conducted to investigate the antioxidant and radical scavenging activities of essential oils of four Lamiaceae plants i.e. Pogostemon cablin, Lavandula angustifolia, Melissa officinalis, and Salvia officinalis native to Pakistan. The essential oil contents from the aerial parts of P. cablin, L. angustifolia, M. officinalis and S. officinalis were found to be 1.98, 0.58, 0.25 and 0.46%, respectively. The principal chemical constituent established in P. cablin L. angustifolia, M. officinalis, and S. officinalis essential oils, were patchouli alcohol, linalool, citronellal, and 1,8-cineol, respectively. The antioxidant activity was evaluated by scavenging of 2,2-diphenyl-1-picryl hydrazyl radical (DPPH), percent inhibition of linoleic acid oxidation and bleaching beta-carotene in linoleic acid system. The essential oils possessed appreciable antioxidant and radical scavenging activities revealing potential for therapeutic applications. (author)

  1. Natural antioxidant vitamins: A review of their beneficial roles in ...

    African Journals Online (AJOL)

    as therapeutic agents in the management of diabetes mellitus and its complications, ... has made the use of natural antioxidant vitamins (free radical scavengers) from plants inevitable as they ... (disease or abnormality of the nervous system).

  2. Molecular Basis of Cardioprotective Effect of Antioxidant Vitamins in Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Ramón Rodrigo

    2013-01-01

    Full Text Available Acute myocardial infarction (AMI is the leading cause of mortality worldwide. Major advances in the treatment of acute coronary syndromes and myocardial infarction, using cardiologic interventions, such as thrombolysis or percutaneous coronary angioplasty (PCA have improved the clinical outcome of patients. Nevertheless, as a consequence of these procedures, the ischemic zone is reperfused, giving rise to a lethal reperfusion event accompanied by increased production of reactive oxygen species (oxidative stress. These reactive species attack biomolecules such as lipids, DNA, and proteins enhancing the previously established tissue damage, as well as triggering cell death pathways. Studies on animal models of AMI suggest that lethal reperfusion accounts for up to 50% of the final size of a myocardial infarct, a part of the damage likely to be prevented. Although a number of strategies have been aimed at to ameliorate lethal reperfusion injury, up to date the beneficial effects in clinical settings have been disappointing. The use of antioxidant vitamins could be a suitable strategy with this purpose. In this review, we propose a systematic approach to the molecular basis of the cardioprotective effect of antioxidant vitamins in myocardial ischemia-reperfusion injury that could offer a novel therapeutic opportunity against this oxidative tissue damage.

  3. Molecular Basis of Cardioprotective Effect of Antioxidant Vitamins in Myocardial Infarction

    Science.gov (United States)

    Rodrigo, Ramón; Feliú, Felipe; Hasson, Daniel

    2013-01-01

    Acute myocardial infarction (AMI) is the leading cause of mortality worldwide. Major advances in the treatment of acute coronary syndromes and myocardial infarction, using cardiologic interventions, such as thrombolysis or percutaneous coronary angioplasty (PCA) have improved the clinical outcome of patients. Nevertheless, as a consequence of these procedures, the ischemic zone is reperfused, giving rise to a lethal reperfusion event accompanied by increased production of reactive oxygen species (oxidative stress). These reactive species attack biomolecules such as lipids, DNA, and proteins enhancing the previously established tissue damage, as well as triggering cell death pathways. Studies on animal models of AMI suggest that lethal reperfusion accounts for up to 50% of the final size of a myocardial infarct, a part of the damage likely to be prevented. Although a number of strategies have been aimed at to ameliorate lethal reperfusion injury, up to date the beneficial effects in clinical settings have been disappointing. The use of antioxidant vitamins could be a suitable strategy with this purpose. In this review, we propose a systematic approach to the molecular basis of the cardioprotective effect of antioxidant vitamins in myocardial ischemia-reperfusion injury that could offer a novel therapeutic opportunity against this oxidative tissue damage. PMID:23936799

  4. Free radicals, oxidative stress and importance of antioxidants in human health

    Directory of Open Access Journals (Sweden)

    K.I. Priyadarsini

    2011-07-01

    Full Text Available Reactive oxygen species (ROS is a collective term used for oxygen containing free radicals, depending on their reactivity and oxidizing ability. ROS participate in a variety of chemical reactions with biomolecules leading to a pathological condition known as oxidative stress. Antioxidants are employed to protect biomolecules from the damaging effects of such ROS. In the beginning, antioxidant research was mainly aimed at understanding free radical reactions of ROS with antioxidants employing biochemical assays and kinetic methods. Later on, studies began to be directed to monitor the ability of anti-oxidants to modulate cellular signaling proteins like receptors, secondary messengers, transcription factors, etc. Of late several studies have indicated that antioxidants can also have deleterious effects on human health depending on dosage and bio-availability. It is therefore, necessary to validate the utility of antioxidants in improvement of human health in order to take full advantage of their therapeutic potential.

  5. Beyond the therapeutic shackles of the monoamines: New mechanisms in bipolar disorder biology.

    Science.gov (United States)

    Data-Franco, João; Singh, Ajeet; Popovic, Dina; Ashton, Melanie; Berk, Michael; Vieta, Eduard; Figueira, M L; Dean, Olivia M

    2017-01-04

    Multiple novel biological mechanisms putatively involved in the etiology of bipolar disorders are being explored. These include oxidative stress, altered glutamatergic neurotransmission, mitochondrial dysfunction, inflammation, cell signaling, apoptosis and impaired neurogenesis. Important clinical translational potential exists for such mechanisms to help underpin development of novel therapeutics - much needed given limitations of current therapies. These new mechanisms also help improve our understanding of how current therapeutics might exert their effects. Lithium, for example, appears to have antioxidant, immunomodulatory, signaling, anti-apoptotic and neuroprotective properties. Similar properties have been attributed to other mood stabilizers such as valproate, lamotrigine, and quetiapine. Perhaps of greatest translational value has been the recognition of such mechanisms leading to the emergence of novel therapeutics for bipolar disorders. These include the antioxidant N-acetylcysteine, the anti-inflammatory celecoxib, and ketamine - with effects on the glutamatergic system and microglial inhibition. We review these novel mechanisms and emerging therapeutics, and comment on next steps in this space. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Meta-analysis: antioxidant supplements for liver diseases - the Cochrane Hepato-Biliary Group

    DEFF Research Database (Denmark)

    Bjelakovic, Goran; Gluud, L L; Nikolova, D

    2010-01-01

    Several liver diseases have been associated with oxidative stress. Accordingly, antioxidants have been suggested as potential therapeutics for various liver diseases. The evidence supporting these suggestions is equivocal....

  7. Recent advance on the antitumor and antioxidant activity of grape seed extracts

    Directory of Open Access Journals (Sweden)

    Zhu FM

    2015-05-01

    Full Text Available Fengmei Zhu, Bin Du, Jun Li College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province, People's Republic of China Abstract: The grape pomace (including seeds and stems poses potential disposal and pollution problems along with loss of valuable biomass and nutrients. The utilization of grape seeds processing as a source of functional ingredients is a promising field. Grape seed extract provides a concentrated source of polyphenols. Grape seed extract is known as an effective antioxidant that protects the body from premature aging and disease. A number of phytochemicals including resveratrol, proanthocyanidins, etc, have demonstrated significant benefits in cancer chemoprevention. In this review, we summarize the existing knowledge on the antitumor and antioxidant activity of grape seeds polyphenols. Keywords: grape seed, antitumor activity, antioxidant activity, polyphenol, proanthocyanidin

  8. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ji Young Yhee

    2016-09-01

    Full Text Available Chronic lung diseases include a variety of obstinate and fatal diseases, including asthma, chronic obstructive pulmonary disease (COPD, cystic fibrosis (CF, idiopathic pulmonary fibrosis (IPF, and lung cancers. Pharmacotherapy is important for the treatment of chronic lung diseases, and current progress in nanoparticles offers great potential as an advanced strategy for drug delivery. Based on their biophysical properties, nanoparticles have shown improved pharmacokinetics of therapeutics and controlled drug delivery, gaining great attention. Herein, we will review the nanoparticle-based drug delivery system for the treatment of chronic lung diseases. Various types of nanoparticles will be introduced, and recent innovative efforts to utilize the nanoparticles as novel drug carriers for the effective treatment of chronic lung diseases will also be discussed.

  9. Biological and therapeutic activities, and anticancer properties of curcumin.

    Science.gov (United States)

    Perrone, Donatella; Ardito, Fatima; Giannatempo, Giovanni; Dioguardi, Mario; Troiano, Giuseppe; Lo Russo, Lucio; DE Lillo, Alfredo; Laino, Luigi; Lo Muzio, Lorenzo

    2015-11-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis.

  10. Therapeutic Efficacy of Topically Applied Antioxidant Medicinal Plant Extracts in a Mouse Model of Experimental Dry Eye.

    Science.gov (United States)

    Choi, Won; Lee, Jee Bum; Cui, Lian; Li, Ying; Li, Zhengri; Choi, Ji Suk; Lee, Hyo Seok; Yoon, Kyung Chul

    2016-01-01

    Purpose. To investigate the therapeutic effects of topical administration of antioxidant medicinal plant extracts in a mouse model of experimental dry eye (EDE). Methods. Eye drops containing balanced salt solution (BSS) or 0.001%, 0.01%, and 0.1% extracts were applied for the treatment of EDE. Tear volume, tear film break-up time (BUT), and corneal fluorescein staining scores were measured 10 days after desiccating stress. In addition, we evaluated the levels of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, interferon- (IFN-) γ, and IFN-γ associated chemokines, percentage of CD4+C-X-C chemokine receptor type 3 positive (CXCR3+) T cells, goblet cell density, number of 4-hydroxy-2-nonenal (4-HNE) positive cells, and extracellular reactive oxygen species (ROS) production. Results. Compared to the EDE and BSS control groups, the mice treated with topical application of the 0.1% extract showed significant improvements in all clinical parameters, IL-1β, IL-6, TNF-α, and IFN-γ levels, percentage of CD4+CXCR3+ T cells, goblet cell density, number of 4-HNE-positive cells, and extracellular ROS production (P model mice.

  11. A Practice-Based Theory of Healing Through Therapeutic Touch: Advancing Holistic Nursing Practice.

    Science.gov (United States)

    Hanley, Mary Anne; Coppa, Denise; Shields, Deborah

    2017-08-01

    For nearly 50 years, Therapeutic Touch (TT) has contributed to advancing holistic nursing practice and has been recognized as a uniquely human approach to healing. This narrative explores the development of a practice-based theory of healing through TT, which occurred between 2010 and 2016. Through the in-depth self-inquiry of participatory reflective dialogue in concert with constant narrative analysis, TT practitioners revealed the meaning of healing within the context of their TT practice. As the community of TT experts participated in an iterative process of small group and community dialogues with analysis and synthesis of emerging themes, the assumptions and concepts central to a theory of healing emerged, were clarified and verified. Exemplars of practice illustrate the concepts. A model of the theory of healing illuminates the movement and relationship among concepts and evolved over time. Feedback from nursing and inter-professional practitioners indicate that the theory of healing, while situated within the context of TT, may be useful in advancing holistic nursing practice, informing healing and caring approaches, stimulating research and education, and contributing to future transformations in health care.

  12. Current therapeutic strategies of anti-HER2 treatment in advanced breast cancer patients

    Directory of Open Access Journals (Sweden)

    Joanna Huszno

    2016-03-01

    Full Text Available The HER2/neu ( ERBB2 oncogene is amplified and/or overexpressed in approximately 20% of breast cancers, and is a strong prognostic factor for relapse and poor overall survival, particularly in node-positive patients. It is also an important predictor for response to trastuzumab, which has established efficacy against breast cancer with overexpression or amplification of the HER2 oncogene. Treatment with the anti-HER2 humanized monoclonal antibody – trastuzumab significantly improves progression-free and overall survival among patients with HER2-positive breast cancer. However, in most patients with HER2-positive metastatic breast cancer, the disease progresses occurred, what cause the need for new targeted therapies for advanced disease. In clinical trials, there are tested new drugs to improve the results of treatment for this group of patients. This paper presents new drugs introduced into clinical practice for treatment of advanced breast cancer, whose molecular target are receptors of the HER2 family. In addition, new therapeutic strategies and drugs that are currently in clinical researches are discussed.

  13. Delayed Posthypoxic Leukoencephalopathy: Improvement with Antioxidant Therapy

    Directory of Open Access Journals (Sweden)

    Franklin King

    2015-12-01

    Full Text Available Introduction: Delayed posthypoxic leukoencephalopathy (DPHL may result from a variety of hypoxic insults, including respiratory depression from an opiate overdose. The underlying pathophysiological mechanism of DPHL remains uncertain. We describe a patient with a typical case of DPHL who responded clinically to antioxidant treatment. Methods: Clinical, serological, and radiographic investigations were undertaken in the evaluation of the patient. Results: A 63-year-old man developed altered mental status 10 days following recovery from an opiate overdose and aspiration pneumonia that required intubation. The clinical course and brain imaging were consistent with DPHL. Initiation of antioxidant therapy with vitamin E, vitamin C, B-complex vitamins, and coenzyme Q10 coincided with the prompt reversal of clinical deterioration. Conclusions: The potential therapeutic effect of antioxidants on DPHL needs to be explored in future cases. If this relationship indeed holds true, it would be consistent with the hypothesis that formation of reactive oxygen species during reperfusion plays a role in the pathophysiology of this disorder.

  14. Oxidative stress and the antioxidant enzyme system in the developing brain

    Directory of Open Access Journals (Sweden)

    So-Yeon Shim

    2013-03-01

    Full Text Available Preterm infants are vulnerable to the oxidative stress due to the production of large amounts of free radicals, antioxidant system insufficiency, and immature oligodendroglial cells. Reactive oxygen species (ROS play a pivotal role in the development of periventricular leukomalacia. The three most common ROS are superoxide (O2&#8226;-, hydroxyl radical (OH&#8226;, and hydrogen peroxide (H2O2. Under normal physiological conditions, a balance is maintained between the production of ROS and the capacity of the antioxidant enzyme system. However, if this balance breaks down, ROS can exert toxic effects. Superoxide dismutase, glutathione peroxidase, and catalase are considered the classical antioxidant enzymes. A recently discovered antioxidant enzyme family, peroxiredoxin (Prdx, is also an important scavenger of free radicals. Prdx1 expression is induced at birth, whereas Prdx2 is constitutively expressed, and Prdx6 expression is consistent with the classical antioxidant enzymes. Several antioxidant substances have been studied as potential therapeutic agents; however, further preclinical and clinical studies are required before allowing clinical application.

  15. Ulcer: An Antioxidative Trail Weaved with Immunomodulatory Effect

    Directory of Open Access Journals (Sweden)

    Ananya Chatterjee

    2011-01-01

    Full Text Available Amla (Phyllanthus emblica L., apart from its food value, can be used as a gastroprotective agent in non steroidal anti-inflammatory drug (NSAID-induced gastropathy. It has been suggested that the antioxidative property of amla is the key to its therapeutic effect. Hence, on the basis of in vitro antioxidative potential, the ethanolic extract of amla (eAE was selected for in vivo study in NSAID-induced ulcer. Intriguingly, eAE showed biphasic activity in ulcerated mice, with healing effect observed at 60 mg/kg and an adverse effect at 120 mg/kg.The dose-dependent study revealed that switching from anti-oxidant to pro-oxidant shift and immunomodulatory property could be the major cause for its biphasic effect, as evident from the total antioxidant status, thiol concentration, lipid peroxidation, protein carbonyl content followed by mucin content, PGE2 synthesis and cytokine status. Further, Buthionine sulfoxamine (BSO pretreatment established the potential impact of antioxidative property in the healing action of eAE. However, eAE efficiently reduced pro-inflammatory cytokine (TNF- and IL-1 levels and appreciably upregulate anti-inflammatory cytokine (IL-10 concentration. In conclusion, gastric ulcer healing induced by eAE was driven in a dose-specific manner through the harmonization of the antioxidative property and modulation of anti-inflammatory cytokine level.

  16. Evaluation of the antioxidant properties of N-acetylcysteine in human platelets: prerequisite for bioconversion to glutathione for antioxidant and antiplatelet activity.

    Science.gov (United States)

    Gibson, Kyle R; Neilson, Ilene L; Barrett, Fiona; Winterburn, Tim J; Sharma, Sushma; MacRury, Sandra M; Megson, Ian L

    2009-10-01

    N-Acetylcysteine (NAC) is a frequently used "antioxidant" in vitro, but the concentrations applied rarely correlate with those encountered with oral dosing in vivo. Here, we investigated the in vitro antioxidant and antiplatelet properties of NAC at concentrations (10-100 microM) that are achievable in plasma with tolerable oral dosing. The impact of NAC pretreatment (2 hours) on aggregation of platelets from healthy volunteers in response to thrombin and adenosine diphosphate and on platelet-derived nitric oxide (NO) was examined. NAC was found to be a weak reducing agent and a poor antioxidant compared with glutathione (reduced form) (GSH). However, platelets treated with NAC showed enhanced antioxidant activity and depression of reactive oxygen species generation associated with increases in intraplatelet GSH levels. An approximately 2-fold increase in NO synthase-derived nitrite was observed with 10 microM NAC treatment, but the effect was not concentration dependent. Finally, NAC significantly reduced both thrombin-induced and adenosine diphosphate-induced platelet aggregation. NAC should be considered a weak antioxidant that requires prior conversion to GSH to convey antioxidant and antithrombotic benefit at therapeutically relevant concentrations. Our results suggest that NAC might be an effective antiplatelet agent in conditions where increased oxidative stress contributes to heightened risk of thrombosis but only if the intraplatelet machinery to convert it to GSH is functional.

  17. Protective effect of different antioxidant agents in UVB-irradiated keratinocytes

    Directory of Open Access Journals (Sweden)

    Sara Salucci

    2017-09-01

    Full Text Available Skin cells can respond to UVB-induced damage either by tolerating it, or restoring it through antioxidant activation and DNA repair mechanisms or, ultimately, undergoing programmed cell death, when damage is massive. Nutritional factors, in particular, food antioxidants, have attracted much interest because of their potential use in new preventive, protective, and therapeutic strategies for chronic degenerative diseases, including skin inflammation and cancer. Some polyphenols, present in virgin olive oil, well tolerated by organism after oral administration, show a variety of pharmacological and clinical benefits such as anti-oxidant, anti-cancer, anti-inflammatory, and neuro-protective activities. Here, the protective effects of antioxidant compounds against UV-induced apoptosis have been described in HaCat cell line. Human keratinocytes were pre-treated with antioxidants before UVB exposure and their effects have been evaluated by means of ultrastructural analyses. After UVB radiation, a known cell death trigger, typical apoptotic features, absent in control condition and in antioxidant alone-treated cells, appear. An evident numerical decrease of ultrastructural apoptotic patterns and TUNEL positive nuclei can be observed when natural antioxidants were supplied before cell death induction. These data have been confirmed by molecular investigation of caspase activity. In conclusion, this paper highlights antioxidant compound ability to prevent apoptotic cell death in human keratinocytes exposed to UVB, suggesting, for these molecules, a potential role in preventing skin damage. 

  18. Evaluation of Antioxidant and Antifungal Activities of Polyphenol-rich ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antioxidant and antifungal activities of polyphenol-rich extracts of the dried fruit pulp of Garcinia pedunculata (GP) and Garcinia morella (GM) to determine their traditional claims of therapeutic activity against certain diseases. Methods: Analysis of total phenolic (TP) and flavonoid (TF) contents of the ...

  19. Macrophage antioxidant protection within atherosclerotic plaques.

    Science.gov (United States)

    Gieseg, Steven P; Leake, David S; Flavall, Elizabeth M; Amit, Zunika; Reid, Linzi; Yang, Ya-Ting

    2009-01-01

    Macrophage cells within inflammatory lesions are exposed to a wide range of degrading and cytotoxic molecules including reactive oxygen species. Unlike neutrophils, macrophages do not normally die in this environment but continue to generate oxidants, phagocytose cellular remains, and release a range of cyto-active agents which modulate the immune response. It is this potential of the macrophage cell to survive in an oxidative environment that allows the growth and complexity of advanced atherosclerotic plaques. This review will examine the oxidants encountered by macrophages within an atherosclerotic plaque and describe some of the potential antioxidant mechanisms which enable macrophages to function within inflammatory lesions. Ascorbate, a-tocopherol, and glutathione appear to be central to the protection of macrophages yet additional antioxidant mechanisms appear to be involved. Gamma-Interferon causes macrophages to generate 7,8-dihydroneopterin, neopterin and 3-hydroxyanthranilic acid both of which have antioxidant properties. Manganese superoxide dismutase is also upregulated in macrophages. The evidence that these antioxidants provide further protection, so allowing the macrophage cells to survive within sites of chronic inflammation such as atherosclerotic plaques, will be described.

  20. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Sha Li

    2015-11-01

    Full Text Available A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  1. Identification of an antioxidant small-molecule with broad-spectrum antiviral activity.

    Science.gov (United States)

    Panchal, Rekha G; Reid, St Patrick; Tran, Julie P; Bergeron, Alison A; Wells, Jay; Kota, Krishna P; Aman, Javad; Bavari, Sina

    2012-01-01

    The highly lethal filoviruses, Ebola and Marburg cause severe hemorrhagic fever in humans and non-human primates. To date there are no licensed vaccines or therapeutics to counter these infections. Identifying novel pathways and host targets that play an essential role during infection will provide potential targets to develop therapeutics. Small molecule chemical screening for Ebola virus inhibitors resulted in identification of a compound NSC 62914. The compound was found to exhibit anti-filovirus activity in cell-based assays and in vivo protected mice following challenge with Ebola or Marburg viruses. Additionally, the compound was found to inhibit Rift Valley fever virus, Lassa virus and Venezuelan equine encephalitis virus in cell-based assays. Investigation of the mechanism of action of the compound revealed that it had antioxidant properties. Specifically, compound NSC 62914 was found to act as a scavenger of reactive oxygen species, and to up-regulate oxidative stress-induced genes. However, four known antioxidant compounds failed to inhibit filovirus infection, thus suggesting that the mechanistic basis of the antiviral function of the antioxidant NSC 62914 may involve modulation of multiple signaling pathways/targets. Published by Elsevier B.V.

  2. [The effect of exogenous antioxidants on the antioxidant status of erythrocytes and hepcidin content in blood of patients with disorders of iron metabolism regulation].

    Science.gov (United States)

    Shcherbinina, S P; Levina, A A; Lisovskaia, I L; Ataullakhanov, F I

    2013-01-01

    In many diseases associated with impairments in iron metabolism, erythrocytes exhibit an increased sensitivity to oxidative stress induced in vitro. In this study, we have examined the antioxidant status of erythrocytes from healthy donors and from 12 patients with disorders of iron homeostasis by measuring the extent of t-BHP-induced hemolysis in vitro. The extent of hemolysis observed with patient erythrocytes was significantly higher than that observed in experiment with normal cells. After therapeutic infusions of the antioxidants mexidol or emoxypin, oxidative hemolysis in patients was restored to normal values and blood hepcidin content increased significantly. A significant correlation was observed between hepcidin concentration after treatment and t-BHP-induced hemolysis before treatment. These data suggest that antioxidants may exert a favorable effect under pathological conditions associated with iron overload disease.

  3. Dry age-related macular degeneration: mechanisms, therapeutic targets, and imaging.

    Science.gov (United States)

    Bowes Rickman, Catherine; Farsiu, Sina; Toth, Cynthia A; Klingeborn, Mikael

    2013-12-13

    Age-related macular degeneration is the leading cause of irreversible visual dysfunction in individuals over 65 in Western Society. Patients with AMD are classified as having early stage disease (early AMD), in which visual function is affected, or late AMD (generally characterized as either "wet" neovascular AMD, "dry" atrophic AMD or both), in which central vision is severely compromised or lost. Until recently, there have been no therapies available to treat the disorder(s). Now, the most common wet form of late-stage AMD, choroidal neovascularization, generally responds to treatment with anti-vascular endothelial growth factor therapies. Nevertheless, there are no current therapies to restore lost vision in eyes with advanced atrophic AMD. Oral supplementation with the Age-Related Eye Disease Study (AREDS) or AREDS2 formulation (antioxidant vitamins C and E, lutein, zeaxanthin, and zinc) has been shown to reduce the risk of progression to advanced AMD, although the impact was in neovascular rather than atrophic AMD. Recent findings, however, have demonstrated several features of early AMD that are likely to be druggable targets for treatment. Studies have established that much of the genetic risk for AMD is associated with complement genes. Consequently, several complement-based therapeutic treatment approaches are being pursued. Potential treatment strategies against AMD deposit formation and protein and/or lipid deposition will be discussed, including anti-amyloid therapies. In addition, the role of autophagy in AMD and prevention of oxidative stress through modulation of the antioxidant system will be explored. Finally, the success of these new therapies in clinical trials and beyond relies on early detection, disease typing, and predicting disease progression, areas that are currently being rapidly transformed by improving imaging modalities and functional assays.

  4. Dry Age-Related Macular Degeneration: Mechanisms, Therapeutic Targets, and Imaging

    Science.gov (United States)

    Bowes Rickman, Catherine; Farsiu, Sina; Toth, Cynthia A.; Klingeborn, Mikael

    2013-01-01

    Age-related macular degeneration is the leading cause of irreversible visual dysfunction in individuals over 65 in Western Society. Patients with AMD are classified as having early stage disease (early AMD), in which visual function is affected, or late AMD (generally characterized as either “wet” neovascular AMD, “dry” atrophic AMD or both), in which central vision is severely compromised or lost. Until recently, there have been no therapies available to treat the disorder(s). Now, the most common wet form of late-stage AMD, choroidal neovascularization, generally responds to treatment with anti–vascular endothelial growth factor therapies. Nevertheless, there are no current therapies to restore lost vision in eyes with advanced atrophic AMD. Oral supplementation with the Age-Related Eye Disease Study (AREDS) or AREDS2 formulation (antioxidant vitamins C and E, lutein, zeaxanthin, and zinc) has been shown to reduce the risk of progression to advanced AMD, although the impact was in neovascular rather than atrophic AMD. Recent findings, however, have demonstrated several features of early AMD that are likely to be druggable targets for treatment. Studies have established that much of the genetic risk for AMD is associated with complement genes. Consequently, several complement-based therapeutic treatment approaches are being pursued. Potential treatment strategies against AMD deposit formation and protein and/or lipid deposition will be discussed, including anti-amyloid therapies. In addition, the role of autophagy in AMD and prevention of oxidative stress through modulation of the antioxidant system will be explored. Finally, the success of these new therapies in clinical trials and beyond relies on early detection, disease typing, and predicting disease progression, areas that are currently being rapidly transformed by improving imaging modalities and functional assays. PMID:24335072

  5. Consideration of therapeutic approach to advanced colorectal cancer in elderly patients

    Directory of Open Access Journals (Sweden)

    Yasuhiro Inoue

    2014-02-01

    Full Text Available Colorectal cancer (CRC is predominantly a disease of elderly and is a major cause of morbidity and mortality in the elderly population. The increased availability of treatment options for CRC has made it more difficult for clinicians to decide on the optimal therapeutic approach in elderly patients, because of the potential for poorer outcomes due to an increased burden of comorbidities, functional dependency, and limited life expectancy. It is necessary to determine which elderly patients are likely to benefit from active cancer therapy, and the establishment of treatment markers for multimodality approaches is eagerly awaited. Elderly cancer patients are at risk of exposure to various intrinsic inflammatory mediators, such as tumor-generating cytokines and surgery-induced pro-inflammatory cytokines. It is therefore important to understand the immunological changes occurring in the elderly and to adjust treatment strategies accordingly to reduce the morbidity and mortality associated with multimodality therapy for CRC that induce systemic inflammation. Several inflammation-based factors such as the Glasgow Prognostic Score (GPS may reflect the balance between tumor progression and host-related immunity, especially in elderly CRC patients. Appropriate selection criteria for multimodality therapy in elderly CRC patients may include not only tumor characteristics, but also host- and/or treatment-related factors such as comorbidities or surrogate markers using inflammation-based factors.----------------------------------------------Cite this article as: Inoue Y, Toiyama Y, Tanaka K, Mohri Y, Kusunoki M. Consideration of therapeutic approach to advanced colorectal cancer in elderly patients. Int J Cancer Ther Oncol 2014; 2(1:02014.DOI: http://dx.doi.org/10.14319/ijcto.0201.4

  6. Electrochemotherapy as a new therapeutic strategy in advanced Merkel cell carcinoma of head and neck region

    International Nuclear Information System (INIS)

    Scelsi, Daniele; Mevio, Niccolò; Bertino, Giulia; Occhini, Antonio; Brazzelli, Valeria; Morbini, Patrizia; Benazzo, Marco

    2013-01-01

    Merkel Cell Carcinoma (MCC) is a rare and aggressive tumour, arising from a cutaneous mechanoceptor cell located in the basal layer of epidermis, with poor prognosis. The treatment of choice for the initial stage of the disease is surgery and/or radiotherapy. The treatment of recurrent or advanced disease is still controversial. We report a case of 84 years old woman with a recurrent MCC of the chin treated with electrochemotherapy (ECT). During the period of 20 months, four sessions of ECT were employed, which resulted in an objective response of the tumour and good quality of residual life. Our case shows the effectiveness of ECT in the treatment of locally advanced MCC of the head and neck region in a patient not suitable for standard therapeutic options

  7. The role of the antioxidant system during intense endurance exercise: lessons from migrating birds.

    Science.gov (United States)

    Cooper-Mullin, Clara; McWilliams, Scott R

    2016-12-01

    During migration, birds substantially increase their metabolic rate and burn fats as fuel and yet somehow avoid succumbing to overwhelming oxidative damage. The physiological means by which vertebrates such as migrating birds can counteract an increased production of reactive species (RS) are rather limited: they can upregulate their endogenous antioxidant system and/or consume dietary antioxidants (prophylactically or therapeutically). Thus, birds can alter different components of their antioxidant system to respond to the demands of long-duration flights, but much remains to be discovered about the complexities of RS production and antioxidant protection throughout migration. Here, we use bird migration as an example to discuss how RS are produced during endurance exercise and how the complex antioxidant system can protect against cellular damage caused by RS. Understanding how a bird's antioxidant system responds during migration can lend insights into how antioxidants protect birds during other life-history stages when metabolic rate may be high, and how antioxidants protect other vertebrates from oxidative damage during endurance exercise. © 2016. Published by The Company of Biologists Ltd.

  8. Frontiers in nano-therapeutics

    CERN Document Server

    Tasnim, Nishat; Sai Krishna, Katla; Kalagara, Sudhakar; Narayan, Mahesh; Noveron, Juan C; Joddar, Binata

    2017-01-01

    This brief highlights recent research advances in the area of nano-therapeutics. Nanotechnology holds immense potential for application in a wide range of biological and engineering applications such as molecular sensors for disease diagnosis, therapeutic agents for the treatment of diseases, a vehicle for delivering therapeutics and imaging agents for theranostic applications, both in-vitro and in-vivo. The brief is grouped into the following sections namely, A) Discrete Nanosystems ; B) Anisotropic Nanoparticles; C) Nano-films/coated/layered and D) Nano-composites.

  9. Pharmacokinetics and toxicology of therapeutic proteins: Advances and challenges

    Science.gov (United States)

    Vugmeyster, Yulia; Xu, Xin; Theil, Frank-Peter; Khawli, Leslie A; Leach, Michael W

    2012-01-01

    Significant progress has been made in understanding pharmacokinetics (PK), pharmacodynamics (PD), as well as toxicity profiles of therapeutic proteins in animals and humans, which have been in commercial development for more than three decades. However, in the PK arena, many fundamental questions remain to be resolved. Investigative and bioanalytical tools need to be established to improve the translation of PK data from animals to humans, and from in vitro assays to in vivo readouts, which would ultimately lead to a higher success rate in drug development. In toxicology, it is known, in general, what studies are needed to safely develop therapeutic proteins, and what studies do not provide relevant information. One of the major complicating factors in nonclinical and clinical programs for therapeutic proteins is the impact of immunogenicity. In this review, we will highlight the emerging science and technology, as well as the challenges around the pharmacokinetic- and safety-related issues in drug development of mAbs and other therapeutic proteins. PMID:22558487

  10. Antiparkinson drug--Mucuna pruriens shows antioxidant and metal chelating activity.

    Science.gov (United States)

    Dhanasekaran, Muralikrishnan; Tharakan, Binu; Manyam, Bala V

    2008-01-01

    Parkinson's disease is a neurodegenerative disorder for which no neurorestorative therapeutic treatment is currently available. Oxidative stress plays an important role in the pathophysiology of Parkinson's disease. The ancient Indian medical system, Ayurveda, traditionally uses Mucuna pruriens to treat Parkinson's disease. In our earlier studies, Mucuna pruriens has been shown to possess antiparkinson and neuroprotective effects in animal models of Parkinson's disease. The antioxidant activity of Mucuna pruriens was demonstrated by its ability to scavenge DPPH radicals, ABTS radicals and reactive oxygen species. Mucuna pruriens significantly inhibited the oxidation of lipids and deoxyribose sugar. Mucuna pruriens exhibited divalent iron chelating activity and did not show any genotoxic/mutagenic effect on the plasmid DNA. These results suggest that the neuroprotective and neurorestorative effect of Mucuna pruriens may be related to its antioxidant activity independent of the symptomatic effect. In addition, the drug appears to be therapeutically safe in the treatment of patients with Parkinson's disease. Copyright (c) 2007 John Wiley & Sons, Ltd.

  11. Therapeutic Results of Concurrent Chemoradiation in Locally Advanced Uterine Cervical Cancer

    International Nuclear Information System (INIS)

    Kang, Seung Hee; Suh, Hyun Suk; Yang, Kwang Mo; Lee, Eung Soo; Park, Sung Kwon

    1995-01-01

    Purpose : Despite a development for therapeutic machines and advance in modern radiation therapy techniques, locally advanced cervical carcinoma has shown high rate of local failure and poor survival rate. Combination of chemotherapy and radiotherapy demonstrated benefit in improving local control and possibly the overall survival. Our study was performed to evaluate effect of concurrent chemoradiation on locally advanced uterine cervical cancer. Methods and Materials : Twenty six patients with locally advanced stage(FIGO stage IIB with ≥ 5 cm in diameter, III, IVA) were treated with combination of radiation therapy and concurrent cisplatinum between May of 1988 and September of 1993 at our hospital. Radiation therapy consisted of external irradiation and 1-2 sessions of intracavitary irradiation, Cisplatinum was administered in bolus injection of 25mg/m 2 at weekly intervals during the course of external radiation therapy. Results : Of the 26 patients, twenty-five patients were evaluable for estimation of response. Median follow-up period was 25 months with ranges from 3 to 73 months. Stage IIB, III, and IVA were 16, 5,4 patients, respectively. Twenty patients were squamous cell carcinoma. Response was noted in all 25 patients: complete response(CR) in 17/25(68%), partial response(PR) in 8/25(32%). Of the 24 patients except one who died of sepsis at 3 months follow-up, seventeen patients(70.8%) maintained local control in the pelvis: 16/17(94.1%) in CR, 1/17(14.3%) in PR. Fourteen of the 17 patients with CR are alive disease free on the completion of follow-up. Median survival is 28 months for CR and 15 months for PR. Analysis of 5-year survival by stage shows 11/16(59.8) in IIB, 3/5(60.6%) in III, and 1/4(25.0%) in IVA. Overall 5-year survival rate was 55.2%. Ten Patients recurred: 4 at locoregional, 3 in distant metastasis and 3 with locoregional and distant site. Toxicity by addition of cisplatinum was not excessive. Conclusion : Although the result of this

  12. The Antioxidant Additive Approach for Alzheimer's Disease Therapy: New Ferulic (Lipoic) Acid Plus Melatonin Modified Tacrines as Cholinesterases Inhibitors, Direct Antioxidants, and Nuclear Factor (Erythroid-Derived 2)-Like 2 Activators.

    Science.gov (United States)

    Benchekroun, Mohamed; Romero, Alejandro; Egea, Javier; León, Rafael; Michalska, Patrycja; Buendía, Izaskun; Jimeno, María Luisa; Jun, Daniel; Janockova, Jana; Sepsova, Vendula; Soukup, Ondrej; Bautista-Aguilera, Oscar M; Refouvelet, Bernard; Ouari, Olivier; Marco-Contelles, José; Ismaili, Lhassane

    2016-11-10

    Novel multifunctional tacrines for Alzheimer's disease were obtained by Ugi-reaction between ferulic (or lipoic acid), a melatonin-like isocyanide, formaldehyde, and tacrine derivatives, according to the antioxidant additive approach in order to modulate the oxidative stress as therapeutic strategy. Compound 5c has been identified as a promising permeable agent showing excellent antioxidant properties, strong cholinesterase inhibitory activity, less hepatotoxicity than tacrine, and the best neuroprotective capacity, being able to significantly activate the Nrf2 transcriptional pathway.

  13. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Bryant C. Nelson

    2016-05-01

    Full Text Available Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1 To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS and to act as antioxidant enzyme-like mimetics in solution; (2 To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3 To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine.

  14. Rethinking Therapeutic Misconception in Biobanking

    DEFF Research Database (Denmark)

    Tupasela, Aaro; Snell, Karoliina; Cañada, Jose

    2017-01-01

    Some authors have noted that in biobank research participants may be guided by what is called therapeutic misconception, whereby participants attribute therapeutic intent to research procedures.This article argues that the notion of therapeutic misconception is increasingly less justified when...... underpinnings for the need to separate research and treatment, and thus the notion of therapeutic misconception in the fi rst place. We call this tension between research and treatment ambivalent research advancement to highlight the difficulties that various actors have in managing such shifts within...

  15. Isolation of 62 kda protein with antioxidant properties from natural honey

    International Nuclear Information System (INIS)

    Mohammed, S.E.A.R.

    2014-01-01

    Fourteen natural honey samples from Libya, Sudan and Pakistan were evaluated for their antioxidant activity by employing 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical assay. The scavenging activity of honey samples were in the range of 18-32% when compared to control. A 62 kDa protein was isolated from honey by gel filtration chromatography followed by reverse phase HPLC showed significant radical scavenging activity. The research pointed out the antioxidative role of honey proteins and possibility of their contribution to the therapeutic value of the natural honey. (author)

  16. Innovatively Therapeutic Strategy on Lung Cancer by Daily Drinking Antioxidative Plasmon-Induced Activated Water.

    Science.gov (United States)

    Wang, Chien-Kai; Chen, Hsiao-Chien; Fang, Sheng-Uei; Ho, Chia-Wen; Tai, Cheng-Jeng; Yang, Chih-Ping; Liu, Yu-Chuan

    2018-04-20

    Many human diseases are inflammation-related, such as cancer and those associated with aging. Previous studies demonstrated that plasmon-induced activated (PIA) water with electron-doping character, created from hot electron transfer via decay of excited Au nanoparticles (NPs) under resonant illumination, owns reduced hydrogen-bonded networks and physchemically antioxidative properties. In this study, it is demonstrated PIA water dramatically induced a major antioxidative Nrf2 gene in human gingival fibroblasts which further confirms its cellular antioxidative and anti-inflammatory properties. Furthermore, mice implanted with mouse Lewis lung carcinoma (LLC-1) cells drinking PIA water alone or together with cisplatin treatment showed improved survival time compared to mice which consumed only deionized (DI) water. With the combination of PIA water and cisplatin administration, the survival time of LLC-1-implanted mice markedly increased to 8.01 ± 0.77 days compared to 6.38 ± 0.61 days of mice given cisplatin and normal drinking DI water. This survival time of 8.01 ± 0.77 days compared to 4.62 ± 0.71 days of mice just given normal drinking water is statistically significant (p = 0.009). Also, the gross observations and eosin staining results suggested that LLC-1-implanted mice drinking PIA water tended to exhibit less metastasis than mice given only DI water.

  17. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia.

    Science.gov (United States)

    McCarthy, Cathal; Kenny, Louise C

    2016-09-08

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates.

  18. Antioxidant enzymes as potential targets in cardioprotection and treatment of cardiovascular diseases. Enzyme antioxidants: the next stage of pharmacological counterwork to the oxidative stress

    Directory of Open Access Journals (Sweden)

    Alexander V. Vavaev

    2012-02-01

    Full Text Available The focus in antioxidant research is on enzyme derivative investigations. Extracellular superoxide dismutase (EC-SOD is of particular interest, as it demonstrates in vivo the protective action against development of atherosclerosis, hypertension, heart failure, diabetes mellitus. The reliable association of coronary artery disease with decreased level of heparin-released EC-SOD was established in clinical research. To create a base for and to develop antioxidant therapy, various SOD isozymes, catalase (CAT, methods of gene therapy, and combined applications of enzymes are used. Covalent bienzyme SOD-CHS-CAT conjugate (CHS, chondroitin sulphate showed high efficacy and safety as the drug candidate. There is an evident trend to use the components of glycocalyx and extracellular matrix for target delivery of medical substances. Development of new enzyme antioxidants for therapeutic application is closely connected with progress in medical biotechnology, pharmaceutical industry, and bioeconomy.

  19. Reconvene and reconnect the antioxidant hypothesis in human health and disease.

    Science.gov (United States)

    Singh, P P; Chandra, Anu; Mahdi, Farzana; Roy, Ajanta; Sharma, Praveen

    2010-07-01

    human tissues ever experience the torrent of reactive species and that in chronic conditions with mildly enhanced generation of reactive species, the body can meet them squarely if antioxidants defense system in tissues is biochemically optimized. We are not yet certain about optimal levels of antioxidants in tissues. Two ways have been used to assess them: first by dietary intake and second by measuring plasma levels. Lately determination of plasma/serum level of antioxidants is considered better index for diagnostic and prognostic purposes. The recommended levels for vitamin A, E and C and beta carotene are 2.2-2.8 μmol/l; 27.5-30 μmol/l; 40-50 μmol/l and 0.4-0.5 μmol/l, respectively. The requirement and recommended blood levels of other dietary antioxidants are not established. The resolved issues are (1) essential to scavenge excess of radical species (2) participants in redox homeostasis (3) selective antioxidants activity against radical species (4) there is no universal antioxidant and 5) therapeutic value in case of deficiency. The overarching issues are (1) therapeutic value as adjuvant therapy in management of diseases (2) supplemental value in developing population (3) selective interactivity of antioxidant in different tissues and on different substrates (4) quantitative contribution in redox balance (5) mechanisms of adverse action on excess supplementation (6) advantages and disadvantages of prooxidant behavior of antioxidants (7) behavior in cohorts with polymorphic differences (8) interaction and intervention in radiotherapy, diabetes and diabetic complications and cardiovascular diseases (9) preventive behavior in neurological disorders (10) benefits of non-nutrient dietary antioxidants (11) markers to assess optimized antioxidants status (12) assessment of benefits of supplementation in alcoholics and heavy smokers. The unresolved and intriguing issues are (1) many compounds such as vitamin A and many others possessing both antioxidant and non-antioxidant

  20. Antioxidant activity of insect gall extracts of Pistacia integerrima.

    Science.gov (United States)

    Eshwarappa, Ravi Shankara Birur; Lakshmikantha, Ramachandra Yarappa; Subaramaihha, Sundara Rajan; Subbaiah, Sujan Ganapathy Pasura; Surendranath, Austin Richard; Dhananjaya, Bhadrapura Lakkappa

    2015-01-01

    Pistacia integerrima (P. integerrina) insect galls are widely used in ayurveda and siddha system of medicine as karkatasringi. The use of leaf galls as a rejuvenator may be attributed to antioxidant property, however there is less scientific evidence. Therefore, the aim of this study was to evaluate the chemical composition and the antioxidant potential of leaf gall extracts (aqueous and ethanol) of P. integerrina, which is extensively used in the preparation of traditional medications. The antioxidant activities of aqueous and ethanolic leaf gall extracts were examined using diphenylpicrylhydrazyl (DPPH), hydroxyl scavenging and ferric reducing power (FRAP) methods. The presences of phenolics, tannins, phytosterols, triterpenoids, saponins, flavonoids and reducing sugars were identified in both the extracts. In comparison to the aqueous extract, the ethanolic extract had the highest total phenolic and flavonoid content at 234 ±2.4 mg of GAE/g d.w. and 95.5 ±3.2 mg of QUE/g d.w., respectively. This higher content of total phenolics and flavonoids found in the ethanolic extract was directly associated with higher antioxidant activity. This study demonstrates the poetnet antioxidant activities of P. integerrima leaf gall extracts. Further, there was a strong association between the higher antioxidant activities with that of higher total phenolic and flavonoid content in the ethanolic leaf gall extracts of P. integerrima. The results encourage the use of P. integerrima leaf gall extracts for medicinal health, functional food and nutraceuticals applications, due to their antioxidant properties. Future work will be interesting to learn the chemical composition and better understand the mechanism of action of the antioxidants present in the extract for development as a drug for therapeutic application.

  1. Mitochondria: Targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants.

    Science.gov (United States)

    Teixeira, José; Deus, Cláudia M; Borges, Fernanda; Oliveira, Paulo J

    2018-04-01

    Mitochondrial function and regulation of redox balance is fundamental in controlling cellular life and death pathways. Antioxidants have been used to counteract disruption of redox networks, normally associated with progressive loss of cell homeostasis and disease pathophysiology, although therapeutic success is limited mainly due to pharmacokinetic drawbacks. Attempts to improve mitochondrial function in a range of diseases spurred active drug discovery efforts. Currently, the most effective strategy to deliver drugs to mitochondria is the covalent link of lipophilic cations to the bioactive compound. Although targeting mitochondrial oxidative stress with antioxidants has been demonstrated, clinical use has been hampered by several challenges, with no FDA-approved drug so far. Development of new mitochondriotropic antioxidant agents based on dietary polyphenols has recently gained momentum. Due to their nature, mitochondria-targeted multi-functional antioxidants can trigger stress responses and contribute to tissue protection through hormesis mechanisms, inhibiting excessive mitochondrial ROS production and associated diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Curcumin Stimulates the Antioxidant Mechanisms in Mouse Skin Exposed to Fractionated γ-Irradiation

    Directory of Open Access Journals (Sweden)

    Ganesh Chandra Jagetia

    2015-01-01

    Full Text Available Fractionated irradiation is one of the important radiotherapy regimens to treat different types of neoplasia. Despite of the immense therapeutic gains accrued by delivering fractionated irradiation to tumors, the radiation burden on skin increases significantly. Low doses of irradiation to skin adversely affect its molecular and metabolic status. The use of antioxidant/s may help to alleviate the radiation-induced changes in the skin and allow delivering a higher dose of radiation to attain better therapeutic gains. Curcumin is an antioxidant and a free radical scavenging dietary supplement, commonly used as a flavoring agent in curries. Therefore, the effect of 100 mg/kg body weight curcumin was studied on the antioxidant status of mice skin exposed to a total dose of 10, 20 and 40 Gy γ-radiation below the rib cage delivered as a single fraction of 2 Gy per day for 5, 10 or 20 days. Skin biopsies from both the curcumin treated or untreated irradiated groups were collected for the biochemical estimations at various post-irradiation times. The irradiation of animals caused a dose dependent decline in the glutathione concentration, glutathione peroxidase, and superoxide dismutase activities and increased the lipid peroxidation in the irradiated skin. Curcumin treatment before irradiation resulted in a significant rise in the glutathione concentration and activities of both the glutathione peroxidase and superoxide dismutase enzymes in mouse skin, whereas lipid peroxidation declined significantly. The present study indicates that curcumin treatment increased the antioxidant status of mouse exposed to different doses of fractionated γ-radiation.

  3. Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications.

    Science.gov (United States)

    Kratz, Jeremy D; Chaddha, Ashish; Bhattacharjee, Somnath; Goonewardena, Sascha N

    2016-02-01

    Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD.

  4. Oxidation of urate by a therapeutic nitric oxide/air mixture

    International Nuclear Information System (INIS)

    Hicks, M.; Nguyen, L.; Day, R.; Rogers, P.

    1996-01-01

    Full text: Little is known about the potential toxicological consequences of therapeutic exposure of lung tissue to inhaled nitric oxide (NO). This route of administration is currently being successfully employed for the treatment of pulmonary hypertension and other lung pathologies including acute reperfusion injury in lung transplant patients. The toxicity of NO lies in its ability to act as an oxidant either in its own right or in concert with oxygen or with the superoxide free radical. One important interaction may be the reaction of these products with protective antioxidants in the lung epithelial lining fluid. One such antioxidant found in significant concentrations in both upper and lower airways is uric acid. In the present study, urate solutions (30μM) were exposed to a therapeutic concentration of NO gas, (35 ppm in air), for up to 90 minutes. Oxidative changes were followed spectrophotometrically and by HPLC. Significant loss of uric acid was observed with a concomitant formation of nitrite and allantoin, the stable oxidation product of NO and the major oxidation product of uric acid, respectively. No oxidation of urate was observed in the presence of air alone or when urate was incubated with nitrite. Uric acid oxidation could also be prevented by passing the NO / air stream through 10% KOH before the uric acid solution. This strategy removed trace amounts of higher oxides of nitrogen, (especially NO 2 ), from the NO / air stream. Thus, therapeutic inhalation of NO may deplete soluble antioxidants such as uric acid, especially during long-term chronic exposure unless care is taken to minimise formation of higher oxides of nitrogen

  5. Binge-eating disorder: Clinical and therapeutic advances.

    Science.gov (United States)

    Hutson, Peter H; Balodis, Iris M; Potenza, Marc N

    2018-02-01

    Binge-eating disorder (BED) is the most prevalent eating disorder with estimates of 2-5% of the general adult population. Nonetheless, its pathophysiology is poorly understood. Furthermore, there exist few therapeutic options for its effective treatment. Here we review the current state of binge-eating neurobiology and pharmacology, drawing from clinical therapeutic, neuroimaging, cognitive, human genetic and animal model studies. These studies, which are still in their infancy, indicate that while there are many gaps in our knowledge, several key neural substrates appear to underpin binge-eating and may be conserved between human and animals. This observation suggests that behavioral intermediate phenotypes or endophenotypes relevant to BED may be modeled in animals, facilitating the identification and testing of novel pharmacological targets. The development of novel, safe and effective pharmacological therapies for the treatment of BED will enhance the ability of clinicians to provide optimal care for people with BED. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The anti-oxidant effects of melatonin derivatives on human gingival fibroblasts.

    Science.gov (United States)

    Phiphatwatcharaded, Chawapon; Puthongking, Ploenthip; Chaiyarit, Ponlatham; Johns, Nutjaree Pratheepawanit; Sakolchai, Sumon; Mahakunakorn, Pramote

    2017-07-01

    Aim of this in vitro study was to evaluate the anti-oxidant activity of indole ring modified melatonin derivatives as compared with melatonin in primary human gingival fibroblast (HGF) cells. Anti-oxidant activity of melatonin (MLT), acetyl-melatonin (AMLT) and benzoyl-melatonin (BMLT) was evaluated by5 standard methods as follows: 2, 2-diphenyl-1-picrylhydrazyl (DPPH); ferric ion reducing antioxidant power (FRAP); superoxide anion scavenging; nitric oxide (NO) scavenging; and thiobarbituric acid reactive substances (TBARs).Evaluation of cellular antioxidant activity (CAA) and protectivity against H 2 O 2 induced cellular damage was performed via MTT assay in HGF cells. According to the standard anti-oxidant assays, the antioxidant power of AMLT and BMLT were slightly less than MLT in FRAP and superoxide scavenging assays. In the NO scavenging and TBARs assays, BMLT and AMLT were more potent than MLT, whereas DPPH assays demonstrated that MLT was more potent than others. BMLT and AMLT had more potent anti-oxidant and protective activities against H 2 O 2 in HGF cells as compared with MLT. MLT derivatives demonstrated different anti-oxidant activities as compared with MLT, depending upon assays. These findings imply that N-indole substitution of MLT may help to improve hydrogen atom transfer to free radicals but electron transfer property is slightly decreased. Anti-oxidant and protective effects of melatonin derivatives (AMLT and BMLT) on human gingival fibroblasts imply the potential use of these molecules as alternative therapeutics for chronic inflammatory oral diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Phenolic profiling and therapeutic potential of local flora of Azad Kashmir; In vitro enzyme inhibition and antioxidant

    Directory of Open Access Journals (Sweden)

    Raza Muhammad Asam

    2017-12-01

    Full Text Available The current study supports the phytochemical screening, evaluation of antioxidant and enzyme inhibition potential and correlations between antioxidant activities and phenolics of Rumex dentatus (Family: Polygonaceae, Mentha spicata (Family: Lamiaceae, Withania somnifera (Family: Solanaceae, Nerium indicum (Family: Apocynaceae and Artemisia scoparia (Family: Asteraceae. The herbal materials were extracted in ethanol (90% and partitioned between several solvents based on polarities. Total phenols were determined with FC method and ranged 21.33 ± 1.53 - 355.67 ± 6.03 mg GAE/ mg of the extract. Antioxidant activities (DPPH, total iron reducing capacity, phosphomolybdate assay & FRAP and enzyme inhibition potential (Protease, AChE & BChE were performed by the standard protocols. The results showed that all extracts exhibited significant DPPH activity ranging from 12.67 ± 2.08 - 92.67 ± 1.53%. The extracts that were active in DPPH activity also potrayed marvelous FRAP, total iron reducing and phosphomolybdate values. Correlation studies of antioxidant activities and the content of phenolic compounds in plant materials exhibited positive correlation between them. The outcome of enzyme inhibition activity exhibited that about 80% of the fractions under surveillance plants intimated more than 50% inhibition. Isolation of bioactive compounds from these plants is in progress.

  8. Bioactive screening and in vitro antioxidant assessment of Nauclea latifolia leaf decoction

    Science.gov (United States)

    Iheagwam, Franklyn Nonso; Nsedu, Emmanuel Israel; Kayode, Kazeem Oyindamola; Emiloju, Opeyemi Christianah; Ogunlana, Olubanke Olujoke; Chinedu, Shalom Nwodo

    2018-04-01

    The phytochemical constituents and antioxidant properties of Nauclea latifolia leaf decoction were investigated. Dried leaves were extracted in ethanol. Qualitative and quantitative phytochemical analysis was determined spectrometrically. The antioxidant activities were examined in vitro using 2,2-diphenyl-1-picrylhydrazyl radical, total antioxidant capacity and ferric reducing antioxidant power assays. Phytochemical screening confirmed the presence of flavonoids, alkaloids, anthocyanins, betacyanins, phenols, saponins, terpenoids, cardiac glycosides and quinones. The total lycopene, β-carotene, phenolics, flavonoid and alkaloid content were found to be 0.038 ± 0.01 mg CAE/g, 0.120 ± 0.04 mg CAE/g, 58.08 ± 0.58 mg GAE/g, 10.75 ± 0.17 mg RE/g and 0.32 ± 0.08% respectively. N. latifolia ethanol leaf extract demonstrated effective antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl with an IC50 of 2.58 ± 0.08 mg/mL compared to 0.86 ± 0.02 mg/mL and < 0.01 ± 0.01 mg/mL for butylated hydroxytoluene and ascorbic acid respectively. Total antioxidant capacity and ferric reducing antioxidant power of the extract were 73.81 ± 2.27 and 1314.45 ± 197.64 mg AAE/g respectively. Excellent positive correlations between the phenolic content and antioxidant activities of the extract were observed. The leaf of N. latifolia is of therapeutic value and may be exploited for its rich antioxidant components.

  9. In vitro enzyme-mimic activity and in vivo therapeutic potential of HSJ-0017, a novel Mn porphyrin-based antioxidant enzyme mimic.

    Science.gov (United States)

    Li, Bao-qiu; Dong, Xin; Li, Na; Gao, Ji-you; Yuan, Qiang; Fang, Shi-hong; Gong, Xian-chang; Wang, Shu-juan; Wang, Feng-shan

    2014-10-01

    Manganese (III) 5, 10, 15, 20-tetrakis [3-(2-(2-methoxy)-ethoxy) ethoxy] phenyl porphyrin chloride, designated HSJ-0017, is a novel antioxidant enzyme mimic. The aim of the present study was to investigate the enzyme-mimic activity and the therapeutic potential of HSJ-0017 in free radical-related diseases. Superoxide dismutase (SOD) mimic activity was measured by the nitroblue tetrazolium chloride monohydrate reduction assay. Catalase (CAT) mimic activity was measured based on the decomposition of hydrogen peroxide. The antitumor, radioprotective and chemoprotective effects of HSJ-0017 were evaluated in H22 or S180 tumor-bearing Kunming mice. The anti-inflammatory and hepatoprotective effects were, respectively, evaluated in histamine-induced edema model and CCl4-induced hepatic damage model in Wistar rats. HSJ-0017 over a concentration range of 0.001-10 µmol/L significantly inhibited the generation of superoxide anion. Significant hydrogen peroxide scavenging activity was observed when the concentration of HSJ-0017 was higher than 0.01 µmol/L. HSJ-0017 at a dose of 3.0 mg/kg exhibited significant antitumor effect on S180 tumor xenografts, whereas no significant antitumor effect was observed in H22 tumor xenografts. HSJ-0017 at a dose of 3.0 mg/kg enhanced the antitumor effects of radiotherapy and chemotherapy, and reduced their toxicity. However, HSJ-0017 counteracted the antitumor effects of radiotherapy when administered simultaneously with radiotherapy. HSJ-0017 showed significant anti-inflammatory and hepatoprotective effects. Our results demonstrate that HSJ-0017 exhibits antioxidant, antitumor, anti-inflammatory, radioprotective, chemoprotective, and hepatoprotective effects. It is a potent dual SOD/CAT mimic. © 2014 by the Society for Experimental Biology and Medicine.

  10. Influence of naturally occurring antioxidants on magnetic nanoparticles: risks, benefits, and possible therapeutic applications.

    Science.gov (United States)

    Durdík, Stefan; Vrbovská, Hanka; Olas, Adam; Babincová, Melánia

    2013-06-01

    We have studied interaction of well known antioxidant L-ascorbic acid with magnetic nanoparticles containing insoluble Fe(III) in their core. In analogy with ferritin, mobilization of iron in the form of water soluble Fe(II) was observed, especially pronounced at higher temperatures. In the presence of hydrogen peroxide cytotoxic hydroxyl radicals are produced. These results suggest possible harmful effects of widely used magnetic nanoparticles as a MRI contrast agents in combination with overload of organism with ascorbic acid in some specific conditions, like fever of patient. On the other hand combination of magnetic nanoparticles and ascorbic acid may be used for a cancer therapy using alternating magnetic field for the release of Fe(II) via Néel relaxation of magnetic moment of used nanoparticles. We have further found that lipoic acid is an efficient antioxidant scavenging hydroxyl radicals produced by Fenton reaction from Fe(II).

  11. In Vitro and In Vivo Antioxidant Activities of the Flowers and Leaves from Paeonia rockii and Identification of Their Antioxidant Constituents by UHPLC-ESI-HRMSn via Pre-Column DPPH Reaction

    Directory of Open Access Journals (Sweden)

    Yating Bao

    2018-02-01

    Full Text Available The genus Paeonia, also known as the “King of Flowers” in China, is an important source of traditional Chinese medicine (TCM. Plants of this genus have been used to treat a range of cardiovascular and gynecological diseases. However, the potential pharmacological activity of one particular species, Paeonia rockii, has not been fully investigated. In the first part of the present study, 2,2-diphenyl-1-picrylhydrazyl (DPPH, 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS, reducing power assays, and metal ion chelating assays were used to investigate the in vitro antioxidant activities of Paeonia rockii. In the second portion of the study, a mouse model of d-galactose-induced aging was used to validate the antioxidant effects of the flowers from Paeonia rockii in vivo. Lastly, potential antioxidant constituents were screened and identified by ultra-high pressure liquid chromatography and electrospray ionization coupled with high-resolution mass spectrometry (UHPLC-ESI-HRMSn combined with the DPPH assay. Results indicated that the flowers and leaves exhibited stronger antioxidant activity than ascorbic acid in vitro. The therapeutic effect of Paeonia rockii was determined in relation to the levels of biochemical indicators, such as 8-iso-prostaglandin F2α (8-iso PGF2α in the serum, superoxide dismutase (SOD, protein carbonyl, malondialdehyde (MDA, and glutathione (GSH in the liver and brain, after daily intra-gastric administration of different concentrations of extracts (100, 200 and 400 mg/kg for three weeks. The levels of 8-iso PGF2α (p < 0.01 and protein carbonyl groups (p < 0.01 were significantly reduced, whereas those of SOD (p < 0.05 had significantly increased, indicating that components of the flowers of Paeonia rockii had favorable antioxidant activities in vivo. Furthermore, UHPLC-ESI-HRMSn, combined with pre-column DPPH reaction, detected 25 potential antioxidant compounds. Of these, 18 compounds were tentatively

  12. Effects of antioxidant supplementation on the aging process

    Directory of Open Access Journals (Sweden)

    Domenico Fusco

    2007-10-01

    Full Text Available Domenico Fusco1, Giuseppe Colloca1, Maria Rita Lo Monaco1, Matteo Cesari1,21Department of Gerontology, Geriatrics and Physiatry; Catholic University of Sacred Heart, Rome, Italy; 2Department of Aging and Geriatric Research, College of Medicine, Institute on Aging, University of Florida, Gainesville, FLAbstract: The free radical theory of aging hypothesizes that oxygen-derived free radicals are responsible for the age-related damage at the cellular and tissue levels. In a normal situation, a balanced-equilibrium exists among oxidants, antioxidants and biomolecules. Excess generation of free radicals may overwhelm natural cellular antioxidant defences leading to oxidation and further contributing to cellular functional impairment. The identification of free radical reactions as promoters of the aging process implies that interventions aimed at limiting or inhibiting them should be able to reduce the rate of formation of aging changes with a consequent reduction of the aging rate and disease pathogenesis. Even if antioxidant supplementation is receiving growing attention and is increasingly adopted in Western countries, supporting evidence is still scarce and equivocal. Major limitations in literature are still needed to be addressed to better evaluate the potential benefits from antioxidant supplementation: 1 an improved understanding of oxidation mechanisms possibly at the basis of the aging process, 2 the determination of reliable markers of oxidative damage and antioxidant status, 3 the identification of a therapeutic window in which an eventual antioxidant supplementation may be beneficial, 4 a deeper knowledge of the antioxidant molecules which in several conditions act as pro-oxidants. In the present paper, after a preliminary introduction to the free radical theory of aging and the rationale of antioxidant supplementation as an anti-aging intervention, we will present an overview of evidence relating antioxidant supplementations with

  13. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity – Exploring the armoury of obscurity

    Directory of Open Access Journals (Sweden)

    Kanchanlata Singh

    2018-02-01

    The effect of supplementation of thirteen different antioxidants and their analogues as a single agent or in combination with chemotherapy has been compiled in this article. The present review encompasses a total of 174 peer-reviewed original articles from 1967 till date comprising 93 clinical trials with a cumulative number of 18,208 patients, 56 animal studies and 35 in vitro studies. Our comprehensive data suggests that antioxidant has superior potential of ameliorating chemotherapeutic induced toxicity. Antioxidant supplementation during chemotherapy also promises higher therapeutic efficiency and increased survival times in patients.

  14. Structural, Chemical and Biological Aspects of Antioxidants for Strategies Against Metal and Metalloid Exposure

    Directory of Open Access Journals (Sweden)

    Swaran J. S. Flora

    2009-01-01

    Full Text Available Oxidative stress contributes to the pathophysiology of exposure to heavy metals/metalloid. Beneficial renal effects of some medications, such as chelation therapy depend at least partially on the ability to alleviate oxidative stress. The administration of various natural or synthetic antioxidants has been shown to be of benefit in the prevention and attenuation of metal induced biochemical alterations. These include vitamins, N-acetylcysteine, α-lipoic acid, melatonin, dietary flavonoids and many others. Human studies are limited in this regard. Under certain conditions, surprisingly, the antioxidant supplements may exhibit pro-oxidant properties and even worsen metal induced toxic damage. To date, the evidence is insufficient to recommend antioxidant supplements in subject with exposure to metals. Prospective, controlled clinical trials on safety and effectiveness of different therapeutic antioxidant strategies either individually or in combination with chelating agent are indispensable. The present review focuses on structural, chemical and biological aspects of antioxidants particularly related to their chelating properties.

  15. Berry Phenolic Antioxidants – Implications for Human Health?

    Science.gov (United States)

    Olas, Beata

    2018-01-01

    Antioxidants present in the diet may have a significant effect on the prophylaxis and progression of various diseases associated with oxidative stress. Berries contain a range of chemical compounds with antioxidant properties, including phenolic compounds. The aim of this review article is to provide an overview of the current knowledge of such phenolic antioxidants, and to discuss whether these compounds may always be natural gifts for human health, based on both in vitro and in vivo studies. It describes the antioxidant properties of fresh berries (including aronia berries, grapes, blueberries, sea buckthorn berries, strawberries and other berries) and their various products, especially juices and wines. Some papers report that these phenolic compounds may sometimes behave like prooxidants, and sometimes demonstrate both antioxidant and prooxidant activity, while others note they do not behave the same way in vitro and in vivo. However, no unwanted or toxic effects (i.e., chemical, hematological or urinary effect) have been associated with the consumption of berries or berry juices or other extracts, especially aronia berries and aronia products in vivo, and in vitro, which may suggest that the phenolic antioxidants found in berries are natural gifts for human health. However, the phenolic compound content of berries and berry products is not always well described, and further studies are required to determine the therapeutic doses of different berry products for use in future clinical studies. Moreover, further experiments are needed to understand the beneficial effects reported so far from the mechanistic point of view. Therefore, greater attention should be paid to the development of well-controlled and high-quality clinical studies in this area. PMID:29662448

  16. Therapeutic Significance of Loligo vulgaris (Lamarck, 1798) ink Extract: A Biomedical Approach

    Science.gov (United States)

    Nadarajah, Sri Kumaran; Vijayaraj, Radha; Mani, Jayaprakashvel

    2017-01-01

    Background: The squid ink extract is well known for its biomedical properties. Objective: In this study, squid Loligo vulgaris was collected from Tuticorin costal water, Bay of Bengal, India. Materials and Methods: Proximate composition of the crude squid ink was studied and found to have protein as the major component over lipid and carbohydrates. Further, bioactive fractions of squid ink were extracted with ethanol, and therapeutic applications such as hemolytic, antioxidant, antimicrobial, and in vitro anti-inflammatory properties were analyzed using standard methods. Results: In hemolytic assay, the squid ink extract exhibited a maximum hemolytic activity of 128 hemolytic unit against tested erythrocytes. In DPPH assay, the ethanolic extract of squid ink has exhibited an antioxidant activity of 83.5%. The squid ink was found to be potent antibacterial agent against the pathogens tested. 200 μL of L. vulgaris ink extract showed remarkable antibacterial activity as zone of inhibition against Escherichia coli (28 mm), Klebsiella pneumoniae (22 mm), Pseudomonas aeruginosa (21 mm), and Staphylococcus aureus (24 mm). The 68.9% inhibition of protein denaturation by the squid ink extract indicated that it has very good in vitro anti-inflammatory properties. The Fourier transform infrared spectroscopy analysis of the ethanolic extracts of the squid ink indicated the presence of functional groups such as 1° and 2° amines, amides, alkynes (terminal), alkenes, aldehydes, nitriles, alkanes, aliphatic amines, carboxylic acids, and alkyl halides, which complements the biochemical background of therapeutic applications. Conclusion: Hence, results of this study concluded that the ethanolic extract of L. vulgaris has many therapeutic applications such as antimicrobial, antioxidant, and anti-inflammatory activities. SUMMARY Squid ink is very high in a number of important nutrients. It’s particularly high in antioxidants for instance, which as well all know help to protect

  17. Measuring the influence of a mental health training module on the therapeutic optimism of advanced nurse practitioner students in the United Kingdom.

    Science.gov (United States)

    Hemingway, Steve; Rogers, Melanie; Elsom, Stephen

    2014-03-01

    To evaluate the influence of a mental health training module on the therapeutic optimism of advanced nurse practitioner (ANP) students in primary care (family practice). Three cohorts of ANPs who undertook a Mental Health Problems in Primary Care Module as part of their MSc ANP (primary care) run by the University of Huddersfield completed the Elsom Therapeutic Optimism Scale (ETOS), in a pre- and postformat. The ETOS is a 10-item, self-administered scale, which has been used to evaluate therapeutic optimism previously in mental health professionals. All three cohorts who completed the scale showed an improvement in their therapeutic optimism scores. With stigma having such a detrimental effect for people diagnosed with a mental health problem, ANPs who are more mental health literate facilitated by education and training in turn facilitates them to have the skills and confidence to engage and inspire hope for the person diagnosed with mental health problems. ©2013 The Author(s) ©2013 American Association of Nurse Practitioners.

  18. Novel vanillin derivatives: Synthesis, anti-oxidant, DNA and cellular protection properties.

    Science.gov (United States)

    Scipioni, Matteo; Kay, Graeme; Megson, Ian; Kong Thoo Lin, Paul

    2018-01-01

    Antioxidants have been the subject of intense research interest mainly due to their beneficial properties associated with human health and wellbeing. Phenolic molecules, such as naturally occurring Resveratrol and Vanillin, are well known for their anti-oxidant properties, providing a starting point for the development of new antioxidants. Here we report, for the first time, the synthesis of a number of new vanillin through the reductive amination reaction between vanillin and a selection of amines. All the compounds synthesised, exhibited strong antioxidant properties in DPPH, FRAP and ORAC assays, with compounds 1b and 2c being the most active. The latter also demonstrated the ability to protect plasmid DNA from oxidative damage in the presence of the radical initiator AAPH. At cellular level, neuroblastoma SH-SY5Y cells were protected from oxidative damage (H 2 O 2 , 400 μM) with both 1b and 2c. The presence of a tertiary amino group, along with the number of vanillin moieties in the molecule contribute for the antioxidant activity. Furthermore, the delocalization of the electron pair of the nitrogen and the presence of an electron donating substituent to enhance the antioxidant properties of this new class of compounds. In our opinion, vanillin derivatives 1b and 2c described in this work can provide a viable platform for the development of antioxidant based therapeutics. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Sinigrin and Its Therapeutic Benefits

    Directory of Open Access Journals (Sweden)

    Anisha Mazumder

    2016-03-01

    Full Text Available Sinigrin (allyl-glucosinolate or 2-propenyl-glucosinolate is a natural aliphatic glucosinolate present in plants of the Brassicaceae family, such as broccoli and brussels sprouts, and the seeds of Brassica nigra (mustard seeds which contain high amounts of sinigrin. Since ancient times, mustard has been used by mankind for its culinary, as well as medicinal, properties. It has been systematically described and evaluated in the classical Ayurvedic texts. Studies conducted on the pharmacological activities of sinigrin have revealed anti-cancer, antibacterial, antifungal, antioxidant, anti-inflammatory, wound healing properties and biofumigation. This current review will bring concise information about the known therapeutic activities of sinigrin. However, the information on known biological activities is very limited and, hence, further studies still need to be conducted and its molecular mechanisms also need to be explored. This review on the therapeutic benefits of sinigrin can summarize current knowledge about this unique phytocompounds.

  20. Streptomyces sp. MUM212 as a Source of Antioxidants with Radical Scavenging and Metal Chelating Properties

    Directory of Open Access Journals (Sweden)

    Loh Teng-Hern Tan

    2017-05-01

    Full Text Available Reactive oxygen species and other radicals potentially cause oxidative damage to proteins, lipids, and DNA which may ultimately lead to various complications including mutations, carcinogenesis, neurodegeneration, cardiovascular disease, aging, and inflammatory disease. Recent reports demonstrate that Streptomyces bacteria produce metabolites with potent antioxidant activity that may be developed into therapeutic drugs to combat oxidative stress. This study shows that Streptomyces sp. MUM212 which was isolated from mangrove soil in Kuala Selangor, Malaysia, could be a potential source of antioxidants. Strain MUM212 was characterized and determined as belonging to the genus Streptomyces using 16S rRNA gene phylogenetic analysis. The MUM212 extract demonstrated significant antioxidant activity through DPPH, ABTS and superoxide radical scavenging assays and also metal-chelating activity of 22.03 ± 3.01%, 61.52 ± 3.13%, 37.47 ± 1.79%, and 41.98 ± 0.73% at 4 mg/mL, respectively. Moreover, MUM212 extract was demonstrated to inhibit lipid peroxidation up to 16.72 ± 2.64% at 4 mg/mL and restore survival of Vero cells from H2O2-induced oxidative damages. The antioxidant activities from the MUM212 extract correlated well with its total phenolic contents; and this in turn was in keeping with the gas chromatography–mass spectrometry analysis which revealed the presence of phenolic compounds that could be responsible for the antioxidant properties of the extract. Other chemical constituents detected included hydrocarbons, alcohols and cyclic dipeptides which may have contributed to the overall antioxidant capacity of MUM212 extract. As a whole, strain MUM212 seems to have potential as a promising source of novel molecules for future development of antioxidative therapeutic agents against oxidative stress-related diseases.

  1. The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway.

    Science.gov (United States)

    Delanian, Sylvie; Lefaix, Jean-Louis

    2004-11-01

    The radiation-induced fibroatrophic process (RIF) constitutes a late, local and unavoidable sequela to high-dose radiotherapy, traditionally considered irreversible. Today, this process is partly reversible, thanks to recent progress in understanding the physiopathology of the lesions it causes and the results of recent clinical trials using antioxidant therapy. This review includes a synthetic description of the static and dynamic features of the RIF process, as reflected by its clinical, instrumental and histopathological characteristics, and by its cellular and molecular regulation. Schematically, three successive clinical and histopathological phases can be distinguished: a pre-fibrotic aspecific inflammatory phase, a constitutive fibrotic cellular phase, and a matrix densification and remodelling phase, possibly ending in terminal tissular necrosis. The respective roles of the chief actors in the RIF process are defined, as well as their development with time. A fibroblastic stromal hypothesis is suggested revolving around a 'gravitational effect' exerted by the couple ROS (reactive oxygen species)--fibroblasts, and partly mediated by TGF-beta1. A variety of strategies have been tested for the management of RIF. In the light of the mechanisms described, a curative procedure has been proposed via the antioxidant pathway. In particular, it was showed that superoxide dismutase and combined pentoxifylline-tocopherol treatment enables the process of established radiation-induced fibroatrophy to be greatly reduced or even reversed, both in clinical practice and animal experiments. The efficacy of combined pentoxifylline-tocopherol treatment in superficial RIF was confirmed in a randomised clinical trial, and then in successful phase II trials especially in uterine fibroatrophy and osteoradionecrosis. It is of critical importance to evaluate these new management approaches in larger clinical trials and to improve the recording of results for better outcome analysis

  2. The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway

    International Nuclear Information System (INIS)

    Delanian, Sylvie; Lefaix, Jean-Louis

    2004-01-01

    The radiation-induced fibroatrophic process (RIF) constitutes a late, local and unavoidable sequela to high-dose radiotherapy, traditionally considered irreversible. Today, this process is partly reversible, thanks to recent progress in understanding the physiopathology of the lesions it causes and the results of recent clinical trials using antioxidant therapy. This review includes a synthetic description of the static and dynamic features of the RIF process, as reflected by its clinical, instrumental and histopathological characteristics, and by its cellular and molecular regulation. Schematically, three successive clinical and histopathological phases can be distinguished: a pre-fibrotic aspecific inflammatory phase, a constitutive fibrotic cellular phase, and a matrix densification and remodelling phase, possibly ending in terminal tissular necrosis. The respective roles of the chief actors in the RIF process are defined, as well as their development with time. A fibroblastic stromal hypothesis is suggested revolving around a 'gravitational effect' exerted by the couple ROS (reactive oxygen species)--fibroblasts, and partly mediated by TGF-β1. A variety of strategies have been tested for the management of RIF. In the light of the mechanisms described, a curative procedure has been proposed via the antioxidant pathway. In particular, it was showed that superoxide dismutase and combined pentoxifylline-tocopherol treatment enables the process of established radiation-induced fibroatrophy to be greatly reduced or even reversed, both in clinical practice and animal experiments. The efficacy of combined pentoxifylline-tocopherol treatment in superficial RIF was confirmed in a randomised clinical trial, and then in successful phase II trials especially in uterine fibroatrophy and osteoradionecrosis. It is of critical importance to evaluate these new management approaches in larger clinical trials and to improve the recording of results for better outcome analysis

  3. Antioxidants

    Science.gov (United States)

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  4. Relationships between Age, Daily Physical Activity, Antioxidant Capacity and Oxidative Stress among Middle-aged and Elderly People

    OpenAIRE

    Tanabe, Kai; Masuda, Kazumi; Ajisaka, Ryuichi; Matsuda, Mitsuo; Hirayama, Aki; Nagase, Shoji; Kono, Ichiro; Kuno, Shinya

    2006-01-01

    The effects of age and daily physical activity (PA) on antioxidant capacity and oxidative stress remains unclear, especially among advanced age population. Thus the present study evaluated antioxidant capacity and oxidative stress status, taking into account age and PA in healthy middle-aged and elderly people (45-92 years, n=436; 166 males and 270 females). The advanced age subjects were classified in groups according to their age. Data collected from young male subjects (18-26 years, n=36) ...

  5. Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity

    International Nuclear Information System (INIS)

    Oliveira, Paulo J.; Bjork, James A.; Santos, Maria S.; Leino, Richard L.; Froberg, M. Kent; Moreno, Antonio J.; Wallace, Kendall B.

    2004-01-01

    The cardiotoxicity associated with doxorubicin (DOX) therapy limits the total cumulative dose and therapeutic success of active anticancer chemotherapy. Cardiac mitochondria are implicated as primary targets for DOX toxicity, which is believed to be mediated by the generation of highly reactive free radical species of oxygen from complex I of the mitochondrial electron transport chain. The objective of this study was to determine if the protection demonstrated by carvedilol (CV), a β-adrenergic receptor antagonist with strong antioxidant properties, against DOX-induced mitochondrial-mediated cardiomyopathy [Toxicol. Appl. Pharmacol. 185 (2002) 218] is attributable to its antioxidant properties or its β-adrenergic receptor antagonism. Our results confirm that DOX induces oxidative stress, mitochondrial dysfunction, and histopathological lesions in the cardiac tissue, all of which are inhibited by carvedilol. In contrast, atenolol (AT), a β-adrenergic receptor antagonist lacking antioxidant properties, preserved phosphate energy charge but failed to protect against any of the indexes of DOX-induced oxidative mitochondrial toxicity. We therefore conclude that the cardioprotective effects of carvedilol against DOX-induced mitochondrial cardiotoxicity are due to its inherent antioxidant activity and not to its β-adrenergic receptor antagonism

  6. Profiling Prostate Cancer Therapeutic Resistance

    OpenAIRE

    Cameron A. Wade; Natasha Kyprianou

    2018-01-01

    The major challenge in the treatment of patients with advanced lethal prostate cancer is therapeutic resistance to androgen-deprivation therapy (ADT) and chemotherapy. Overriding this resistance requires understanding of the driving mechanisms of the tumor microenvironment, not just the androgen receptor (AR)-signaling cascade, that facilitate therapeutic resistance in order to identify new drug targets. The tumor microenvironment enables key signaling pathways promoting cancer cell survival ...

  7. Advancing Stem Cell Biology toward Stem Cell Therapeutics

    OpenAIRE

    Scadden, David; Srivastava, Alok

    2012-01-01

    Here, the International Society for Stem Cell Research (ISSCR) Clinical Translation Committee introduces a series of articles outlining the current status, opportunities, and challenges surrounding the clinical translation of stem cell therapeutics for specific medical conditions.

  8. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity.

    Science.gov (United States)

    Sreelatha, S; Padma, P R

    2009-12-01

    Antioxidants play an important role in inhibiting and scavenging free radicals, thus providing protection to human against infections and degenerative diseases. Current research is now directed towards natural antioxidants originated from plants due to safe therapeutics. Moringa oleifera is used in Indian traditional medicine for a wide range of various ailments. To understand the mechanism of pharmacological actions, antioxidant properties of the Moringa oleifera leaf extracts were tested in two stages of maturity using standard in vitro models. The successive aqueous extract of Moringa oleifera exhibited strong scavenging effect on 2, 2-diphenyl-2-picryl hydrazyl (DPPH) free radical, superoxide, nitric oxide radical and inhibition of lipid per oxidation. The free radical scavenging effect of Moringa oleifera leaf extract was comparable with that of the reference antioxidants. The data obtained in the present study suggests that the extracts of Moringa oleifera both mature and tender leaves have potent antioxidant activity against free radicals, prevent oxidative damage to major biomolecules and afford significant protection against oxidative damage.

  9. Star-Shaped Polypeptides: Synthesis and Opportunities for Delivery of Therapeutics.

    Science.gov (United States)

    Byrne, Mark; Murphy, Robert; Kapetanakis, Antonios; Ramsey, Joanne; Cryan, Sally-Ann; Heise, Andreas

    2015-09-17

    Significant advances in the synthesis of polypeptides by N-carboxyanhydride (NCA) polymerisation over the last decade have enabled the design of advanced polypeptide architectures such as star-shaped polypeptides. These materials combine the functionality offered by amino acids with the flexibility of creating stable nanoparticles with adjustable cargo space for therapeutic delivery. This review highlights recent advances in the synthesis of star polypeptides by NCA polymerisation followed by a critical review of the applications of this class of polymer in the delivery of therapeutic agents. This includes examples of traditional small-molecule drugs as well as the emerging class of biologics such as genetic therapeutics (gene delivery). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Melatonin: Action as antioxidant and potential applications in human disease and aging

    International Nuclear Information System (INIS)

    Bonnefont-Rousselot, Dominique; Collin, Fabrice

    2010-01-01

    This review aims at describing the beneficial properties of melatonin related to its antioxidant effects. Oxidative stress, i.e., an imbalance between the production of reactive oxygen species and antioxidant defences, is involved in several pathological conditions such as cardiovascular or neurological disease, and in aging. Therefore, research for antioxidants has developed. However, classical antioxidants often failed to exhibit beneficial effects, especially in metabolic diseases. Melatonin has been shown as a specific antioxidant due to its amphiphilic feature that allows it to cross physiological barriers, thereby reducing oxidative damage in both lipid and aqueous cell environments. Studies on the antioxidant action of melatonin are reported, with a special mention to water gamma radiolysis as a method to produce oxygen-derived free radicals, and on structure-activity relationships of melatonin derivatives. Mass spectrometry-based techniques have been developed to identify melatonin oxidation products. Besides its ability to scavenge several radical species, melatonin regulates the activity of antioxidant enzymes (indirect antioxidant properties). Efficient detection methods confirmed the presence of melatonin in several plant products. Therapeutic potential of melatonin relies either on increasing melatonin dietary intake or on supplementation with supraphysiological dosages. Clinical trials showed that melatonin could be efficient in preventing cell damage, as well under acute (sepsis, asphyxia in newborns) as under chronic (metabolic and neurodegenerative diseases, cancer, inflammation, aging). Its global action on oxidative stress, together with its rhythmicity that plays a role in several metabolic functions, lead melatonin to be of great interest for future clinical research in order to improve public health.

  11. Antioxidant effect of aqueous extract of four plants with therapeutic potential on gynecological diseases; Semen persicae, Leonurus cardiaca, Hedyotis diffusa, and Curcuma zedoaria.

    Science.gov (United States)

    Ji, Shaojian; Fattahi, Amir; Raffel, Nathalie; Hoffmann, Inge; Beckmann, Matthias W; Dittrich, Ralf; Schrauder, Michael

    2017-11-25

    Little information is available concerning antioxidant effects of plant teas (water boiled) which are used more commonly in traditional Chinese medicine than other extracts. Thus, we addressed this issue by evaluating the ability of teas from four different plants with therapeutic potential on gynecological diseases. The aqueous extracts of Semen persicae, Leonurus cardiaca, Hedyotis diffusa, and Curcuma zedoaria rhizome were prepared and then their effects on copper-induced low-density lipoprotein cholesterol (LDL-C) oxidation were evaluated by spectrophotometric method. Density gradient ultracentrifugation method was recruited to isolate LDL-C from healthy individuals. Our results showed that adding 10, 20, and 30 µl S. persicae could increase the lag phase duration of LDL-C oxidation compared with control reaction 12, 21, and 33%, respectively. The most effective delay (87%) was observed when 30 µl H. diffusa was added to the reaction. In cases of L. cardiaca and C. zedoaria, we found no significant influence on the lag phase duration (p > 0.05). Moreover, our findings about starting point of the decomposition phase were almost in parallel with the lag phase results, as 30 µl of S. persicae or H. diffusa teas could significantly increase the initiation time of decomposition (p < 0.05). In conclusion our results showed that both S. persicae and H. diffusa teas and not L. cardiaca and C. zedoaria could have medicinal therapeutic effects partly through direct oxidation prevention.

  12. Recent advances in therapeutic recruitment of mammalian RNAi and bacterial CRISPR-Cas DNA interference pathways as emerging antiviral strategies.

    Science.gov (United States)

    Chin, Wei-Xin; Ang, Swee Kim; Chu, Justin Jang Hann

    2017-01-01

    In invertebrate eukaryotes and prokaryotes, respectively, the RNAi and clustered regularly interspaced short palindromic repeats-CRISPR-associated (CRISPR-Cas) pathways are highly specific and efficient RNA and DNA interference systems, and are well characterised as potent antiviral systems. It has become possible to recruit or reconstitute these pathways in mammalian cells, where they can be directed against desired host or viral targets. The RNAi and CRISPR-Cas systems can therefore yield ideal antiviral therapeutics, capable of specific and efficient viral inhibition with minimal off-target effects, but development of such therapeutics can be slow. This review covers recent advances made towards developing RNAi or CRISPR-Cas strategies for clinical use. These studies address the delivery, toxicity or target design issues that typically plague the in vivo or clinical use of these technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Chemical Profiling and Evaluation of Antioxidant and Anti-Microbial Properties of Selected Commercial Essential Oils: A Comparative Study

    OpenAIRE

    Lu?s, ?ngelo; Duarte, Ana Paula; Pereira, Lu?sa; Domingues, Fernanda

    2017-01-01

    Background: The last decades have seen an increased awareness by the scientific community of the extent of resistance to conventional antibiotics, particularly with respect to the emerging multidrug-resistant pathogenic microbes. Additionally, natural antioxidants have received significant attention among food professionals and consumers because of their assumed safety and potential therapeutic value. The aim of this work was to assess the antioxidant activities of eight selected commercial e...

  14. Therapeutic application of 99Tc-MDP in advanced nodose rheumatoid patients with multiple arthrosis erosion and malfunctioning

    International Nuclear Information System (INIS)

    Yuan Jiming

    2001-01-01

    Objective: To evaluate clinical effect of 99 Tc-MDP in treating arthrosis erosion in advanced nodose rheumatism. Methods: Therapy was performed undisrupted for 1 to 2 years in each patient at a high dose of 1.0-1.5 g/month. Results: After more than 1 year's 99 Tc-MDP therapy, 10 patients with multiple arthrosis erosion and serious malfunctioning had function recovery and arthral reformation of different extent. Patients with obvious therapeutic effects were able to walk, travel and completely or partially took care of themselves. Cortisone was prohibited or permitted at a lower dose of 1.25 mg/day in 3 patients who were dependant on prednisone. As results from 99 Tc-MDP therapy, X-ray photography revealed broadened arthral gap, reformation of previously eroded arthrosis and even improvement in osteoporosis. Conclusion: Reversible changes resulted from 99 Tc-MDP therapy showed breakthrough in treatment of advanced nodose rheumatism and serious ostearthritis, whose pathological changes were previously considered irreversible

  15. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes.

    Science.gov (United States)

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-07

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway.

  16. Constituents and Antioxidant Activity of Bleeding Sap from Various Xinjiang Grapes.

    Science.gov (United States)

    Le, Lv; Umar, Anwar; Iburaim, Arkin; Moore, Nicholas

    2017-10-01

    Wine grape sap or bleeding sap of grapes (GBS) is commonly used in Xinjiang (China) for therapeutic aims. Do variations in composition related to region and variety affect its properties? GBS samples originating in various parts of Xinjiang (Turpan, Hotan, Kashgar, and Atush) were tested for phenols and polyphenols, polysaccharides, saponin, proteins, individual amino acids, and minerals. Their antioxidant activity was measured using ascorbic acid as reference. Polyphenol content varied from 2.6 to 6.6 mg/L, polysaccharides 18.3-816 mg/L, saponin 6.25-106 mg/L, and protein 3.0-22.4 mg/L. Mineral elements and amino acids ranged from 6.20 to 201.2 mg/L and 0.06-118.7 mg/L, respectively. ·OH scavenging ability varied from 70% to over 90%, higher than Vitamin C. Grapes from Turpan had lower antioxidant activity than other grapes even though the polyphenol content was generally higher. Bleeding sap of Xinjiang grape is rich in amino acids, polysaccharides, polyphenols, and protein. The contents are different according to the origin, related possibly to species, climate, and environment. Antioxidant effects were not correlated with polyphenol content. Antioxidant activity of plants or plant extracts is often associated with polyphenolsBleeding sap of grapes has strong antioxidant propertiesBleeding sap from different grape varieties from different parts of Xinjiang (China) had different polyphenol concentrationsThere was no correlation of polyphenol concentrations with antioxidant activity. Abbreviations used: GBS: Bleeding sap of grapes; PITC: phenyl isothiocyanate.

  17. Antioxidant Activity of Purified Active Peptide Derived from Spirulina platensis Enzymatic Hydrolysates

    Directory of Open Access Journals (Sweden)

    Nur Maulida Safitri

    2017-08-01

    Full Text Available The aim of this study is to isolate the antioxidative peptide from Spirulina platensis. Peptide was obtained by proteolytic digestion, ultrafiltration, fractionation by RP-HPLC, identified by LC-MS/MS—MASCOT Distiller and measured its antioxidant activity by DPPH (2.2-Diphenyl-1-picrylhydrazyl assay. Results showed that thermolysin was the most effective enzyme to digest this algae. The active peptide Phe-Ser-Glu-Ser-Ser-Ala-Pro-Glu-Gln-His-Tyr (m/z 1281.51 was identified and synthetized, which exhibited 45.98 ± 1.7% at concentration 128.15 µg/mL. Therefore, S. platensis is indicated as a potential therapeutic source for combating oxidative stress.

  18. Antioxidants and Autism: Teachers' Perceptions of Behavioral Changes.

    Science.gov (United States)

    Sadek, Amy; Berk, Lee S; Mainess, Karen; Daher, Noha S

    2018-06-05

    BACKGROUND- Children with Autism Spectrum Disorder (ASD) demonstrate a physiological imbalance between free radicals, resultant from oxidative stress, and antioxidants. Oxidative stress is linked to the pathogenesis of this neurocognitive disorder. The aim of this pilot feasibility study was to examine the effect of consumption of high concentration antioxidant cacao on behavior of children with ASD. METHODS- This was a 4-week pre-test post-test experimental pilot study of high antioxidant cacao and children with ASD. Participants consumed 8 squares (or 16 grams) per day of the dark chocolate which had a concentration of 70% cacao and 30% organic cane sugar (total antioxidant concentration was 8,320). The two main behavioral measures were the Aberrant Behavior Checklist- 2nd Edition and the Autism Spectrum Rating Scale which were completed by the child's teacher at baseline and end of week four. RESULTS- Sixteen participants were recruited for this study. Follow up data was available on 12 participants (9 males, 3 females, mean age of 10.9 ±3.9 years). Significant improvements on the Autism Spectrum Rating Scale were noted in Social/Communication (p=0.03, η2=0.79), Unusual Behaviors (p=0.02, η2=0.70), and Self-Regulation (p=0.04, η2=0.59). No significant changes were noted on any of the Aberrant Behavior Checklist-2 subscales (p>.05). CONCLUSION- Results from this study support the potential therapeutic benefit of antioxidants in improving social communication, unusual behaviors, and self-regulation behaviors of children with ASD. Further robust randomized controlled trials are now necessary to elaborate the validity of these findings.

  19. Antioxidant, antihyperglycemic, and antidiabetic activity of Apis mellifera bee tea.

    Directory of Open Access Journals (Sweden)

    Janielle da Silva Melo da Cunha

    Full Text Available Diabetes has emerged as one of the largest global epidemics; it is estimated that by 2035, there will be 592 million diabetic people in the world. Brazilian biodiversity and the knowledge of traditional peoples have contributed to the treatment of several diseases, including diabetes. Apis mellifera bee tea is used by indigenous Brazilians to treat diabetes, and this traditional knowledge needs to be recorded and studied.The objective of this study was to record the use and to evaluate the antioxidant, antihyperglycemic, and antidiabetic activity of Apis mellifera bee tea, which is used by the Guarani and Kaiowá indigenous people for the treatment of diabetes. Semi-structured interviews were performed with Guarani and Kaiowá ethnic indigenous people from the State of Mato Grosso do Sul, Brazil, seeking to identify the animal species used for medicinal purposes. For the experimental procedures, tea prepared with macerated Apis mellifera bees was used. In vitro assays were performed to evaluate antioxidant activity; direct free radical scavenging, protection against oxidative hemolysis, lipid peroxidation were evaluated in human erythrocytes and potential in inhibiting the formation of advanced glycation end products (AGEs. In vivo, normoglycemic Swiss male mice treated with Apis mellifera tea (AmT were subjected to the oral glucose tolerance test and compared with control and metformin-treated groups. Diet-induced diabetic mice were treated for 21 days with AmT and evaluated for glycemia and malondialdehyde levels in the blood, liver, nervous system, and eyes. During interviews, the indigenous people described the use of Apis mellifera bee tea for the treatment of diabetes. In in vitro assays, AmT showed direct antioxidant activity and reduced oxidative hemolysis and malondialdehyde generation in human erythrocytes. The AmT inhibited the formation of AGEs by albumin-fructose pathways and methylglyoxal products. In vivo, after oral glucose

  20. Antioxidant, antihyperglycemic, and antidiabetic activity of Apis mellifera bee tea.

    Science.gov (United States)

    Melo da Cunha, Janielle da Silva; Alfredo, Tamaeh Monteiro; Dos Santos, Jéssica Maurino; Alves Junior, Valter Vieira; Rabelo, Luiza Antas; Lima, Emerson Silva; Boleti, Ana Paula de Araújo; Carollo, Carlos Alexandre; Dos Santos, Edson Lucas; de Picoli Souza, Kely

    2018-01-01

    Diabetes has emerged as one of the largest global epidemics; it is estimated that by 2035, there will be 592 million diabetic people in the world. Brazilian biodiversity and the knowledge of traditional peoples have contributed to the treatment of several diseases, including diabetes. Apis mellifera bee tea is used by indigenous Brazilians to treat diabetes, and this traditional knowledge needs to be recorded and studied.The objective of this study was to record the use and to evaluate the antioxidant, antihyperglycemic, and antidiabetic activity of Apis mellifera bee tea, which is used by the Guarani and Kaiowá indigenous people for the treatment of diabetes. Semi-structured interviews were performed with Guarani and Kaiowá ethnic indigenous people from the State of Mato Grosso do Sul, Brazil, seeking to identify the animal species used for medicinal purposes. For the experimental procedures, tea prepared with macerated Apis mellifera bees was used. In vitro assays were performed to evaluate antioxidant activity; direct free radical scavenging, protection against oxidative hemolysis, lipid peroxidation were evaluated in human erythrocytes and potential in inhibiting the formation of advanced glycation end products (AGEs). In vivo, normoglycemic Swiss male mice treated with Apis mellifera tea (AmT) were subjected to the oral glucose tolerance test and compared with control and metformin-treated groups. Diet-induced diabetic mice were treated for 21 days with AmT and evaluated for glycemia and malondialdehyde levels in the blood, liver, nervous system, and eyes. During interviews, the indigenous people described the use of Apis mellifera bee tea for the treatment of diabetes. In in vitro assays, AmT showed direct antioxidant activity and reduced oxidative hemolysis and malondialdehyde generation in human erythrocytes. The AmT inhibited the formation of AGEs by albumin-fructose pathways and methylglyoxal products. In vivo, after oral glucose overload, normoglycemic

  1. Impact of Antioxidants on Cardiolipin Oxidation in Liposomes: Why Mitochondrial Cardiolipin Serves as an Apoptotic Signal?

    Science.gov (United States)

    Lokhmatikov, Alexey V.; Voskoboynikova, Natalia; Cherepanov, Dmitry A.; Skulachev, Maxim V.; Steinhoff, Heinz-Jürgen; Skulachev, Vladimir P.; Mulkidjanian, Armen Y.

    2016-01-01

    Molecules of mitochondrial cardiolipin (CL) get selectively oxidized upon oxidative stress, which triggers the intrinsic apoptotic pathway. In a chemical model most closely resembling the mitochondrial membrane—liposomes of pure bovine heart CL—we compared ubiquinol-10, ubiquinol-6, and alpha-tocopherol, the most widespread naturally occurring antioxidants, with man-made, quinol-based amphiphilic antioxidants. Lipid peroxidation was induced by addition of an azo initiator in the absence and presence of diverse antioxidants, respectively. The kinetics of CL oxidation was monitored via formation of conjugated dienes at 234 nm. We found that natural ubiquinols and ubiquinol-based amphiphilic antioxidants were equally efficient in protecting CL liposomes from peroxidation; the chromanol-based antioxidants, including alpha-tocopherol, were 2-3 times less efficient. Amphiphilic antioxidants, but not natural ubiquinols and alpha-tocopherol, were able, additionally, to protect the CL bilayer from oxidation by acting from the water phase. We suggest that the previously reported therapeutic efficiency of mitochondrially targeted amphiphilic antioxidants is owing to their ability to protect those CL molecules that are inaccessible to natural hydrophobic antioxidants, being trapped within respiratory supercomplexes. The high susceptibility of such occluded CL molecules to oxidation may have prompted their recruitment as apoptotic signaling molecules by nature. PMID:27313834

  2. Towards further understanding on the antioxidative activities of Prunus persica fruit: A comparative study with four different fractions

    Science.gov (United States)

    Dhingra, Naveen; Sharma, Rajesh; Kar, Anand

    2014-11-01

    In the present study we have evaluated the antioxidant activities of different fractions (hexane, ethyl acetate, n-butanol and aqueous fractions) of Prunus persica fruit. For extraction simple warring blender method was employed and total phenolic and flavonoid contents were correlated with different antioxidant activities (total antioxidant, 2,2-diphenyl-1-picrylhydrazyl (DPPH), H2O2 scavenging, superoxide radical scavenging, iron chelating and their reducing power properties). Different in vitro antioxidant studies showed that ethyl acetate and n-butanol fractions had the maximum activities that were well correlated with total phenolic and flavonoid contents. Maximum yield (25.14 ± 2.2%) was obtained in its aqueous fraction. Both ethyl acetate and n-butanol fractions showed significant inhibitory effects on different antioxidant activities. A significantly high correlation coefficient existed between total antioxidant activities and with total phenolic as well as total flavonoid contents. It appears that ethyl acetate and n-butanol fractions of P. persica may serve as new potential sources of natural antioxidants and could be of therapeutic use in treating several diseases.

  3. Therapeutic options in pediatric non alcoholic fatty liver disease: current status and future directions

    Directory of Open Access Journals (Sweden)

    Vajro Pietro

    2012-10-01

    Full Text Available Abstract The epidemics of overweight and obesity has resulted in a significant increase of non alcoholic fatty liver disease (NAFLD, a potentially progressive condition. Currently, obesity related hepatopathy represents therefore the main cause of pediatric chronic liver disease. The first choice treatment at all ages is weight loss and/or lifestyle changes, however compliance is very poor and a pharmacological approach has become necessary. In the present article we present a systematic literature review focusing on established pediatric NALFD drugs (ursodeoxycholic acid, insulin sensitizers, and antioxidants and on innovative therapeutic options as well. Regarding the former ones, a pediatric pilot study highlighted that ursodeoxycholic acid is not efficient on transaminases levels and bright liver. Similarly, a recent large scale, multicenter randomized clinical trial (TONIC study showed that also insulin sensitizers and antioxidant vitamin E have scarce effects on serum transaminase levels. Among a large series of novel therapeutic approaches acting on recently proposed different pathomechanisms, probiotics seem hitherto the most interesting and reasonable option for their safety and tolerability. Toll-like receptors modifiers, Pentoxifylline, and Farnesoid X receptors agonists have been still poorly investigated, and will need further studies before becoming possible promising innovative therapeutic strategies.

  4. Correlation between heavy metal contents and antioxidants in medicinal plants grown in mining areas

    International Nuclear Information System (INIS)

    Maharia, R.; Dutta, R.K.; Acharya, R.; Reddy, A.V.R.

    2010-01-01

    Full texts: Medicinal plants are widely used as alternate therapeutic agents for various diseases. Three medicinal plants grown in copper mining regions of Khetri in Rajasthan was analyzed for heavy metal contents by instrumental neutron activation analysis. The copper levels were found to be two to three folds higher in these plant leaves as compared to the reported copper levels in the medicinal plants grown in environmentally friendly regions. In our previous study on heavy metals in soil and medicinal plant of Khetri region we have shown bioaccumulation of Cu in the medicinal plants. In addition, the levels of Cr, Fe and Zn were also higher. Antioxidant properties of medicinal plants are one of their major therapeutic functionalities. The role of elevated levels of heavy metals in the medicinal plants was studied with respect to their antioxidant properties. Standard procedures were used for measuring total phenols, flavanoids and DPPH assay of these medicinal plants which were correlated with the heavy metals contents of these plants

  5. Overview of Nrf2 as Therapeutic Target in Epilepsy

    Directory of Open Access Journals (Sweden)

    Liliana Carmona-Aparicio

    2015-08-01

    Full Text Available Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2, which plays a central role in the regulation of antioxidant response elements (ARE and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.

  6. Therapeutic advances in multiple system atrophy and progressive supranuclear palsy.

    Science.gov (United States)

    Poewe, Werner; Mahlknecht, Philipp; Krismer, Florian

    2015-09-15

    Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) are relentlessly progressive neurodegenerative diseases leading to severe disability and ultimately death within less than 10 y. Despite increasing efforts in basic and clinical research, effective therapies for these atypical parkinsonian disorders are lacking. Although earlier small clinical studies in MSA and PSP mainly focused on symptomatic treatment, advances in the understanding of the molecular underpinnings of these diseases and in the search for biomarkers have paved the way for the first large and well-designed clinical trials aiming at disease modification. Targets of intervention in these trials have included α-synuclein inclusion pathology in the case of MSA and tau-related mechanisms in PSP. Since 2013, four large randomized, placebo-controlled, double-blind disease-modification trials have been completed and published, using rasagiline (MSA), rifampicin (MSA), tideglusib (PSP), or davunetide (PSP). All of these failed to demonstrate signal efficacy with regard to the primary outcome measures. In addition, two randomized, placebo-controlled, double-blind trials have studied the efficacy of droxidopa in the symptomatic treatment of neurogenic orthostatic hypotension, including patients with MSA, with positive results in one trial. This review summarizes the design and the outcomes of these and other smaller trials published since 2013 and attempts to highlight priority areas of future therapeutic research in MSA and PSP. © 2015 International Parkinson and Movement Disorder Society. © 2015 International Parkinson and Movement Disorder Society.

  7. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2017-01-01

    Full Text Available Diabetic retinopathy (DR is one of the most common microvascular complications of diabetes and is the leading cause of blindness in young adults. Oxidative stress has been implicated as a critical cause of DR. Metabolic abnormalities induced by high-glucose levels are involved in the development of DR and appear to be influenced by oxidative stress. The imbalance between reactive oxygen species (ROS production and the antioxidant defense system activates several oxidative stress-related mechanisms that promote the pathogenesis of DR. The damage caused by oxidative stress persists for a considerable time, even after the blood glucose concentration has returned to a normal level. Animal experiments have proved that the use of antioxidants is a beneficial therapeutic strategy for the treatment of DR, but more data are required from clinical trials. The aims of this review are to highlight the improvements to our understanding of the oxidative stress-related mechanisms underlying the development of DR and provide a summary of the main antioxidant therapy strategies used to treat the disease.

  8. Natural antioxidant activity of commonly consumed plant foods in India: effect of domestic processing.

    Science.gov (United States)

    Sreeramulu, D; Reddy, C V K; Chauhan, Anitha; Balakrishna, N; Raghunath, M

    2013-01-01

    Phytochemicals protect against oxidative stress which in turn helps in maintaining the balance between oxidants and antioxidants. In recent times natural antioxidants are gaining considerable interest among nutritionists, food manufacturers, and consumers because of their perceived safety, potential therapeutic value, and long shelf life. Plant foods are known to protect against degenerative diseases and ageing due to their antioxidant activity (AOA) attributed to their high polyphenolic content (PC). Data on AOA and PC of Indian plant foods is scanty. Therefore we have determined the antioxidant activity in 107 commonly consumed Indian plant foods and assessed their relation to their PC. Antioxidant activity is presented as the range of values for each of the food groups. The foods studied had good amounts of PC and AOA although they belonged to different food groups. Interestingly, significant correlation was observed between AOA (DPPH and FRAP) and PC in most of the foods, corroborating the literature that polyphenols are potent antioxidants and that they may be important contributors to the AOA of the plant foods. We have also observed that common domestic methods of processing may not affect the PC and AOA of the foods studied in general. To the best of our knowledge, these are the first results of the kind in commonly consumed Indian plant foods.

  9. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion*

    Science.gov (United States)

    Bao, Tao; Wang, Ye; Li, Yu-ting; Gowd, Vemana; Niu, Xin-he; Yang, Hai-ying; Chen, Li-shui; Chen, Wei; Sun, Chong-de

    2016-01-01

    Oxidative stress and diabetes have a tendency to alter protein, lipid, and DNA moieties. One of the strategic methods used to reduce diabetes-associated oxidative stress is to inhibit the carbohydrate-digesting enzymes, thereby decreasing gastrointestinal glucose production. Plant-derived natural antioxidant molecules are considered a therapeutic tool in the treatment of oxidative stress and diabetes. The objective of this study was to identify tartary buckwheat rice flavonoids and evaluate the effect of in vitro digestion on their antioxidant and antidiabetic properties. High performance liquid chromatography (HPLC) analysis indicated the presence of rutin as a major component and quercitrin as a minor component of both digested and non-digested flavonoids. Both extracts showed a significant antioxidant capacity, but digested flavonoids showed reduced activity compared to non-digested. There were some decreases of the antioxidant activities (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazy (DPPH) radical, and ferric reducing antioxidant power (FRAP)) of digested tartary buckwheat rice flavonoids compared with non-digested. Flavonoids from both groups significantly inhibited reactive oxygen species (ROS) production and α-glucosidase activity. Both digested and non-digested flavonoids markedly increased glucose consumption and glycogen content in HepG2 cells. Tartary buckwheat rice flavonoids showed appreciable antioxidant and antidiabetic properties, even after digestion. Tartary buckwheat rice appears to be a promising functional food with potent antioxidant and antidiabetic properties. PMID:27921399

  10. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion.

    Science.gov (United States)

    Bao, Tao; Wang, Ye; Li, Yu-Ting; Gowd, Vemana; Niu, Xin-He; Yang, Hai-Ying; Chen, Li-Shui; Chen, Wei; Sun, Chong-de

    Oxidative stress and diabetes have a tendency to alter protein, lipid, and DNA moieties. One of the strategic methods used to reduce diabetes-associated oxidative stress is to inhibit the carbohydrate-digesting enzymes, thereby decreasing gastrointestinal glucose production. Plant-derived natural antioxidant molecules are considered a therapeutic tool in the treatment of oxidative stress and diabetes. The objective of this study was to identify tartary buckwheat rice flavonoids and evaluate the effect of in vitro digestion on their antioxidant and antidiabetic properties. High performance liquid chromatography (HPLC) analysis indicated the presence of rutin as a major component and quercitrin as a minor component of both digested and non-digested flavonoids. Both extracts showed a significant antioxidant capacity, but digested flavonoids showed reduced activity compared to non-digested. There were some decreases of the antioxidant activities (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazy (DPPH) radical, and ferric reducing antioxidant power (FRAP)) of digested tartary buckwheat rice flavonoids compared with non-digested. Flavonoids from both groups significantly inhibited reactive oxygen species (ROS) production and α-glucosidase activity. Both digested and non-digested flavonoids markedly increased glucose consumption and glycogen content in HepG2 cells. Tartary buckwheat rice flavonoids showed appreciable antioxidant and antidiabetic properties, even after digestion. Tartary buckwheat rice appears to be a promising functional food with potent antioxidant and antidiabetic properties.

  11. Curcumin as potential therapeutic natural product: a nanobiotechnological perspective.

    Science.gov (United States)

    Shome, Soumitra; Talukdar, Anupam Das; Choudhury, Manabendra Dutta; Bhattacharya, Mrinal Kanti; Upadhyaya, Hrishikesh

    2016-12-01

    Nanotechnology-based drug delivery systems can resolve the poor bioavailability issue allied with curcumin. The therapeutic potential of curcumin can be enhanced by making nanocomposite preparation of curcumin with metal oxide nanoparticles, poly lactic-co-glycolic acid (PLGA) nanoparticles and solid lipid nanoparticles that increases its bioavailability in the tissue. Curcumin has manifold therapeutic effects which include antidiabetic, antihypertensive, anticancer, anti-inflammatory and antimicrobial properties. Curcumin can inhibit diabetes, heavy metal and stress-induced hypertension with its antioxidant, chelating and inhibitory effects on the pathways that lead to hypertension. Curcumin is an anticancer agent that can prevent abnormal cell proliferation. Nanocurcumin is an improved form of curcumin with enhanced therapeutic properties due to improved delivery to the diseased tissue, better internalization and reduced systemic elimination. Curcumin has multiple pharmacologic effects, but its poor bioavailability reduces its therapeutic effects. By conjugating curcumin to metal oxide nanoparticles or encapsulation in lipid nanoparticles, dendrimers, nanogels and polymeric nanoparticles, the water solubility and bioavailability of curcumin can be improved and thus increase its pharmacological effectiveness. © 2016 Royal Pharmaceutical Society.

  12. Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review.

    Science.gov (United States)

    Cör, Darija; Knez, Željko; Knez Hrnčič, Maša

    2018-03-13

    Ganoderma lucidum (Reishi) is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show antitumour, antimicrobial, anti-inflammatory, antioxidant and acetylcholinesterase inhibitory activity. Several of these substances belong to the triterpenoids and polysaccharides classes. Proteins, lipids, phenols, sterols, etc. are also present. In the present review, an extensive overview of the presence of antitumour, antimicrobial, antioxidant and antiacetylcholinesterase compounds in G. lucidum extracts will be given, along with an evaluation of their therapeutic effects.

  13. Complexity in the therapeutic delivery of RNAi medicines

    DEFF Research Database (Denmark)

    Colombo, Stefano; Zeng, Xianghui; Ragelle, Héloïse

    2014-01-01

    of this review is to reflect on the complexity in the therapeutic delivery of RNA interference-based drugs emerging from the recent clinical experiences and report the actual technological and analytical advances introduced to solve it. EXPERT OPINION: The complexity in the therapeutic delivery of nucleic acids...

  14. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact

    International Nuclear Information System (INIS)

    Freudenberg, L.S.; Jentzen, W.; Goerges, R.; Knust, J.; Bockisch, A.; Marlowe, R.J.

    2007-01-01

    Purpose: This study evaluated the impact of 124 I-positron emission tomography (PET) dosimetry on post-primary surgery therapy in radioiodine-naive patients with advanced differentiated thyroid cancer (DTC). Patients, material, methods: In each of 28 thyroidectomized patients with high-risk DTC (one or more of pT4, pN1 or pM1), we gave 23-50 MBq of 124 I as an oral capsule and performed PET dosimetry to calculate the individualized therapeutic 131 I activity that would, insofar as possible, achieve a radioiodine dose ≥ 100 Gy to all metastases without exceeding 2 Gy to the blood (a surrogate for bone marrow toxicity). We thus determined the absorbed lesion dose per GBq of administered 131 I activity (LDpA) based on serial PET (4, 24, 48, 72 and 96 h after oral 124 I intake) and PET/computed tomography (25 h after 124 I intake) and the critical blood activity (CBA) based on blood and whole-body radiation counting (2, 4, 24, 48, 72, 96 h after 124 I intake). We compared the dosimetry-based interventions with our standard empirical protocol. Results: 25 patients had a total of 126 iodine-positive metastases. 18 (72%) of the 25 had solely iodine-avid metastases, while seven (28%) had both iodine-avid and -non-avid metastases. In two patients (8%), none of the iodine-avid metastases could have been practically treated with a sufficient radiation dose. Relative to the empirical protocol, 124 I-PET dosimetry findings changed management in 7 (25%) patients, e. g. allowing application of activities >11 GBq 131 I. Further changes included implementation of hematological back-up in a patient found to be at risk of life-threatening marrow toxicity, and early multimodal therapy in 9 (32%) patients. Conclusion: 124 I-PET dosimetry is a useful routine procedure in advanced DTC and may allow safer or more effective radioiodine activities and earlier multimodal interventions than do standard empirical protocols. (orig.)

  15. Antioxidant plants and diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Hamid Nasri

    2015-01-01

    Full Text Available The incidence of diabetes mellitus (DM is increasing rapidly and it is expected to increase by 2030. Other than currently available therapeutic options, there are a lot of herbal medicines, which have been recommended for its treatment. Herbal medicines have long been used for the treatment of DM because of the advantage usually having no or less side-effects. Most of these plants have antioxidant activities and hence, prevent or treat hard curable diseases, other than having the property of combating the toxicity of toxic or other drugs. In this review other than presenting new findings of DM, the plants, which are used and have been evaluated scientifically for the treatment of DM are introduced.

  16. Therapeutic Vaccination for HPV Induced Cervical Cancers

    Directory of Open Access Journals (Sweden)

    Joeli A. Brinkman

    2007-01-01

    Full Text Available Cervical Cancer is the second leading cause of cancer–related deaths in women worldwide and is associated with Human Papillomavirus (HPV infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining therapeutic vaccination have shown limited efficacy due to examining patients with more advanced-stage cancer who tend to have decreased immune function. Current trends in clinical trials with therapeutic agents examine patients with pre-invasive lesions in order to prevent invasive cervical cancer. However, longer follow-up is necessary to correlate immune responses to lesion regression. Meanwhile, preclinical studies in this field include further exploration of peptide or protein vaccination, and the delivery of HPV antigens in DNA-based vaccines or in viral vectors. As long as pre-clinical studies continue to advance, the prospect of therapeutic vaccination to treat existing lesions seem good in the near future. Positive consequences of therapeutic vaccination would include less disfiguring treatment options and fewer instances of recurrent or progressive lesions leading to a reduction in cervical cancer incidence.

  17. Evaluation of nutritional quality and antioxidant potential of pigeonpea genotypes.

    Science.gov (United States)

    Sekhon, Japjot; Grewal, Satvir Kaur; Singh, Inderjit; Kaur, Jagmeet

    2017-10-01

    Three released cultivars, forty four advance breeding lines and three wild species of pigeonpea ( Cajanus cajan L. Millsp) were evaluated for nutritional, antinutritional traits and antioxidant potential so as to identify promising genotypes. The average content of total soluble sugars, starch and total soluble proteins was found to be 43.66, 360.51 and 204.54 mg/g, respectively. Antioxidant potential in terms of free radical scavenging activity (DPPH), ferric reducing antioxidant power (FRAP), reducing power, hydroxyl radical scavenging activity and superoxide anion radical scavenging activity was estimated. The diversity was observed in genotypes with all the traits. AL 1960, AL 2000, AL 2009 and AL 2046 had high total soluble proteins, medium antinutritional factors and good antioxidant potential. AL 201, AL 1931, AL 1932, AL 1960, AL 2046, AL 2049 and AL 2060 had good nutritional value as protein and starch content ranged from 20 to 23 and 42 to 52%, respectively. Wild species C. scarabaeoides 1CP15683/W15 had lower carbohydrates, proteins, and antinutritional traits while high antioxidant potential due to high total phenols, DPPH, FRAP and reducing power. The diversity observed in genotypes with all the traits could be further used to develop nutritionally important genotypes.

  18. Recent advances in role of chromium and its antioxidant combinations in poultry nutrition: A review

    Directory of Open Access Journals (Sweden)

    Z. Haq

    2016-12-01

    Full Text Available Poultry is reared in open side houses in most of the tropical countries, which results in huge temperature variation in shed causing stress resulting in increased demand of antioxidant supplementation. Since cooling of poultry houses or environment control is very expensive, thus methods focused on nutritional modifications appears to be the much logical approach. Stress increases mineral and vitamin mobilization from tissues and their excretion. Effect of some minerals and vitamin supplements such as chromium (Cr and ascorbic acid to elevate the negative effects of environmental stress is well documented. Cr functions as an antioxidant and its deficiency are said to disrupt carbohydrate and protein metabolism. Cr has been utilized for weight gain, to improve feed conversion ratio, increase relative organ weight, muscle development, decrease cholesterol, increase high-density lipoprotein cholesterol, and improve nutrient digestion. Therefore, the present review discusses the beneficial aspects of Cr with its effect in different doses and antioxidant combinations to explore and promote its optimum utilization in poultry nutrition and production.

  19. Antioxidant Capacities of Fractions of Bamboo Shaving Extract and Their Antioxidant Components.

    Science.gov (United States)

    Gong, Jinyan; Huang, Jun; Xiao, Gongnian; Chen, Feng; Lee, Bolim; Ge, Qing; You, Yuru; Liu, Shiwang; Zhang, Ying

    2016-07-30

    This research was conducted for evaluation of antioxidant activities of four fractions from bamboo shavings extract (BSE) and their antioxidant components. The antioxidant capacities of BSE and four fractions on ABTS, DPPH, FRAP and total antioxidant capacity assays exhibited the following descending order: DF > n-butanol fraction (BF) > BSE ≈ ethyl acetate fraction (AF) > water fraction (WF). Among the identified phenolic compounds, caffeic acid exhibited the highest antioxidant capacities on DPPH, FRAP and total antioxidant capacity assays. An extremely significant positive correlation between the antioxidant activities with the contents of total flavonoids, total phenolic acids, or total phenolics was observed in this study. The result indicated that the bamboo shaving extract and its solvent fractions could act as natural antioxidants in light of their potent antioxidant activities.

  20. Abrus precatorius Leaves: Antioxidant Activity in Food and Biological Systems, pH, and Temperature Stability

    Directory of Open Access Journals (Sweden)

    Vanitha Reddy Palvai

    2014-01-01

    Full Text Available Natural antioxidants present in foods and other biological materials have attracted considerable interest because of their presumed safety and potential nutritional and therapeutic effects. Antioxidant constituents of plant materials act as radical scavengers and convert the radicals to less reactive species. Abrus precatorius (AP was analyzed for its proximate and phytochemical composition. The leaves were extracted with methanol (ME and analyzed for antioxidant activity by radical scavenging method, reducing power, ferric reducing capacity, and in vitro inhibition of Fenton’s reagent-induced oxidation in oil emulsion and microsomes. In addition, the effect of temperature (100∘C, 15, and 30 min and pH (4.5, 7, and 9 C on the antioxidant activity of ME was investigated. The leaves were rich in total polyphenols, flavonoids, β-carotene, glutathione, α-tocopherol, and ascorbic acid. The ME exhibited varying degree of antioxidant activity in a dose-dependent manner. The AP exhibited more inhibition of oxidation in microsomes (73% than compared to oil emulsion (21%. Heat treatment resulted in an increase of radical scavenging activity of extract (28% to 43%. At pH 4.5 the extract exhibited more antioxidant activity and stability compared to pH 7 and 9. Data indicates that potential exists for the utilization of Abrus precatorius as a natural antioxidant.

  1. Antioxidant response elements: Discovery, classes, regulation and potential applications

    Directory of Open Access Journals (Sweden)

    Azhwar Raghunath

    2018-07-01

    Full Text Available Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs, which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Keywords: Antioxidant response elements, Antioxidant genes, ARE-reporter constructs, ARE SNPs, Keap1/Nrf2/ARE pathway, Oxidative stress

  2. Quercetin: A wonder bioflvonoid with therapeutic potential in disease management

    Directory of Open Access Journals (Sweden)

    Alka Gupta

    2016-03-01

    Full Text Available In the last decade, considerable efforts have been made to develop health promising nutritional supplements. Quercetin is a plant-derived bioflavonoid which is recently gaining scientific interest for its antioxidant free radical scavenging effects and anti-inflammatory properties. This wonder flavanol exhibits therapeutic potential in various ailments like cancer, coronary artery, asthma and alzheimer (neurodegeneration diseases. Additional clinical uses include treatment of inflammatory conditions like gout, pancreatitis and prostatitis. It has been extensively studied for its gastroprotective effects, anti-obesity action, immune booster, reducing risk of cataract and reduction of diabetic complications. The present review briefly discusses about biological activity, mechanism of action and therapeutic potential of quercetin in prevention and mitigation of diseases.

  3. Acute reduction of serum 8-iso-PGF2-alpha and advanced oxidation protein products in vivo by a polyphenol-rich beverage; a pilot clinical study with phytochemical and in vitro antioxidant characterization

    Directory of Open Access Journals (Sweden)

    DiSilvestro Robert

    2011-06-01

    Full Text Available Abstract Background Measuring the effects of the acute intake of natural products on human biomarker concentrations, such as those related to oxidation and inflammation, can be an advantageous strategy for early clinical research on an ingredient or product. Methods 31 total healthy subjects were randomized in a double-blinded, placebo-controlled, acute pilot study with post-hoc subgroup analysis on 20 of the subjects. The study examined the effects of a single dose of a polyphenol-rich beverage (PRB, commercially marketed as "SoZo®", on serum anti-inflammatory and antioxidant markers. In addition, phytochemical analyses of PRB, and in vitro antioxidant capacity were also performed. Results At 1 hour post-intake, serum values for 8-iso-PGF2-alpha and advanced oxidation protein products decreased significantly by 40% and 39%, respectively. Additionally, there was a trend toward decreased C-reactive protein, and increased nitric oxide levels. Both placebo and PRB treatment resulted in statistically significant increases in hydroxyl radical antioxidant capacity (HORAC compared to baseline; PRB showed a higher percent change (55-75% versus 23-74% in placebo group, but the two groups did not differ significantly from each other. Conclusions PRB produced statistically significant changes in several blood biomarkers related to antioxidant/anti-inflammatory effects. Future studies are justified to verify results and test for cumulative effects of repeated intakes of PRB. The study demonstrates the potential utility of acute biomarker measurements for evaluating antioxidant/anti-inflammatory effects of natural products.

  4. Effect of growth stages on total phenolics content and antioxidant activity of Fumaria vaillantii L.

    Directory of Open Access Journals (Sweden)

    L. Mehdizadeh*

    2017-11-01

    Full Text Available Background and objectives: Plant extracts and their constituents are known to exert biological effects, especially antioxidant activity. Fumaria vaillantii (Fumariaceae has several therapeutic effects in traditional medicine. Antioxidants are able to protect the human body from oxidative damage connected to the reaction of free radicals. Synthetic antioxidants have toxic and carcinogenic effects on human health; therefore, their application has been limited. Thus, there has been an increasing interest in the natural antioxidant compounds to prevent the foods from deterioration. In this study, the antioxidant activity of F. vaillantii extracts at three stages of growth has been evaluated. Methods: The ethanol extracts from the aerial parts of the plants at different phenological stages were prepared and the total phenolics content was determined by Folin-Ciocalteu reagent. Also, the antioxidant activity were determined by three methods as 2,2-diphenyl-1-picrylhydrazyl (DPPH, ferric-ion reducing antioxidant power (FRAP and phosphomolybdenum complex tests. All experiments were carried out in triplicate, and data were subjected to ANOVA according to the SAS software. Results: Total phenolics content of vegetative, budding and flowering stages were 68.38, 71.11 and 56.42 mg GAE/g extract, respectively. Although flowering stage showed the highest antioxidant activity in phosphomolybdenum complex, in DPPH and FRAP methods, it decreased from vegetative to flowering stages. Conclusion: According to the results, the Iranian F. vaillantii extract from vegetative stage was a potential source of natural antioxidants for food and pharmaceutical industries that can be used in different industries.

  5. Redox Control of Antioxidant and Antihepatotoxic Activities of Cassia surattensis Seed Extract against Paracetamol Intoxication in Mice: In Vitro and In Vivo Studies of Herbal Green Antioxidant

    Directory of Open Access Journals (Sweden)

    U. Seeta Uthaya Kumar

    2016-01-01

    Full Text Available The therapeutic potential of Cassia surattensis in reducing free radical-induced oxidative stress and inflammation particularly in hepatic diseases was evaluated in this study. The polyphenol rich C. surattensis seed extract showed good in vitro antioxidant. C. surattensis seed extract contained total phenolic content of 100.99 mg GAE/g dry weight and there was a positive correlation (r>0.9 between total phenolic content and the antioxidant activities of the seed extract. C. surattensis seed extract significantly (p<0.05 reduced the elevated levels of serum liver enzymes (ALT, AST, and ALP and relative liver weight in paracetamol-induced liver hepatotoxicity in mice. Moreover, the extract significantly (p<0.05 enhanced the antioxidant enzymes and glutathione (GSH contents in the liver tissues, which led to decrease of malondialdehyde (MDA level. The histopathological examination showed the liver protective effect of C. surattensis seed extract against paracetamol-induced histoarchitectural alterations by maximum recovery in the histoarchitecture of the liver tissue. Furthermore, histopathological observations correspondingly supported the biochemical assay outcome, that is, the significant reduction in elevated levels of serum liver enzymes. In conclusion, C. surattensis seed extract enhanced the in vivo antioxidant status and showed antihepatotoxic activities, which is probably due to the presence of phenolic compounds.

  6. Antioxidant and wound healing activity of Lavandula aspic L. ointment.

    Science.gov (United States)

    Ben Djemaa, Ferdaous Ghrab; Bellassoued, Khaled; Zouari, Sami; El Feki, Abdelfatteh; Ammar, Emna

    2016-11-01

    Lavandula aspic L. is a strongly aromatic shrub plant of the Lamiaceae family and traditionally used in herbal medicine for the treatment of several skin disorders, including wounds, burns, and ulcers. The present study aimed to investigate the composition and in vitro antioxidant activity of lavender essential oil. In addition, it aimed to evaluate the excision wound healing activity and antioxidant property of a Lavandula aspic L. essential oil formulated in ointment using a rat model. The rats were divided into five groups of six animals each. The test groups were topically treated with the vehicle, lavender ointment (4%) and a reference drug, while the control group was left untreated. Wound healing efficiency was determined by monitoring morphological and biochemical parameters and skin histological analysis. Wound contraction and protein synthesis were also determined. Antioxidant activity was assessed by the determination of MDA rates and antioxidant enzymes (GPx, catalase and superoxide dismutase). The treatment with lavender ointment was noted to significantly enhance wound contraction rate (98%) and protein synthesis. Overall, the results provided strong support for the effective wound healing activity of lavender ointment, making it a promising candidate for future application as a therapeutic agent in tissue repairing processes associated with skin injuries. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  7. The antioxidant master glutathione and periodontal health

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Bains

    2015-01-01

    Full Text Available Glutathione, considered to be the master antioxidant (AO, is the most-important redox regulator that controls inflammatory processes, and thus damage to the periodontium. Periodontitis patients have reduced total AO capacity in whole saliva, and lower concentrations of reduced glutathione (GSH in serum and gingival crevicular fluid, and periodontal therapy restores the redox balance. Therapeutic considerations for the adjunctive use of glutathione in management of periodontitis, in limiting the tissue damage associated with oxidative stress, and enhancing wound healing cannot be underestimated, but need to be evaluated further through multi-centered randomized controlled trials.

  8. Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review

    Directory of Open Access Journals (Sweden)

    Darija Cör

    2018-03-01

    Full Text Available Ganoderma lucidum (Reishi is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show antitumour, antimicrobial, anti-inflammatory, antioxidant and acetylcholinesterase inhibitory activity. Several of these substances belong to the triterpenoids and polysaccharides classes. Proteins, lipids, phenols, sterols, etc. are also present. In the present review, an extensive overview of the presence of antitumour, antimicrobial, antioxidant and antiacetylcholinesterase compounds in G. lucidum extracts will be given, along with an evaluation of their therapeutic effects.

  9. Intra-articular injection of an antioxidant formulation did not improve structural degeneration in a rat model of post-traumatic osteoarthritis

    Directory of Open Access Journals (Sweden)

    Yau-Chuk Cheuk

    2017-01-01

    Conclusion: Intra-articular injection of an antioxidant formulation containing quercetin, vitamin C, and deferoxamine did not retard OA progression in advanced-stage OA. Future studies should aim to determine whether giving antioxidants in early OA, with prolonged drug retention, would be effective in retarding OA progression.

  10. Effects of ascorbic acid and α-tocopherol on the therapeutic index of amphotericin B.

    Science.gov (United States)

    Belhachemi, M H; Boucherit, K; Boucherit-Otmani, Z; Belmir, S; Benbekhti, Z

    2014-12-01

    Amphotericin B (AmB) remains the antifungal polyene of choice in deep fungal infections, but its high toxicity to mammalian cells limits its use. This toxicity is partly due to lipid peroxidation exerted by amphotericin B in cell membranes. The work we have undertaken focused on the one part the evaluation of the efficacy of amphotericin B in the presence of some antioxidants vitamins (vitamin C "ascorbic acid" and vitamin E "α-tocopherol") against the yeast Candida albicans ATCC 10231. Secondly, we have tested the cytotoxicity of these formulations on human red blood cells. The results showed a significant improvement in the efficiency of our formulations tested from 7% to 12% compared with amphotericin B alone at therapeutic concentrations. Furthermore, the addition of vitamin C and vitamin E protects human red blood cells against the cytotoxicity induced by amphotericin B with 17%. This is due may be to the antioxidant power of vitamins which confer protection against the autoxidation of the molecule of amphotericin B. On the other hand, it is noticed that the yeast regrows after 24h whatever in complex with vitamin C or vitamin E of the stock solution. On completion of this study, the incorporation of antioxidant vitamins that we propose to the reaction medium of antifungal improved the therapeutic index of amphotericin B. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Evaluation of Antioxidant Activity and Phenolic Content in Different Salvia officinalis L. Extracts

    Directory of Open Access Journals (Sweden)

    Ana Viorica Pop (Cuceu

    2015-11-01

    Full Text Available The use of medicinal plants to improve health is an ancient practice and in recent years it has been observed an increasing interest of scientific researchers for the study of plants with biological properties and active principles responsible for their therapeutic effects. Salvia officinalis L. is considered the queen of herbs and belongs to the Lamiaceae (Labiatae family. Due to the increasing interest in plants health benefits, the aim of the present study was to characterize various extracts of Romanian sage regarding their content in compounds with antioxidant activity. Three different techniques and five solvents were used for extraction of bioactive compounds from Salvia officinalis L. The total phenolic content and the antioxidant activity of plant extract were determined by Folin-Ciocalteu method and respectively by the 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assay. Methanolic extract exhibited the highest content in phenolic compound (1974.89 mg GAE/100g dw as well ass the strongest antioxidant capacity (85.12%.

  12. Modified Folin-Ciocalteu antioxidant capacity assay for measuring lipophilic antioxidants.

    Science.gov (United States)

    Berker, Kadriye Isil; Ozdemir Olgun, F Ayca; Ozyurt, Dilek; Demirata, Birsen; Apak, Resat

    2013-05-22

    The Folin-Ciocalteu (FC) method of performing a total phenolics assay, originally developed for protein determination, has recently evolved as a total antioxidant capacity assay but was found to be incapable of measuring lipophilic antioxidants due to the high affinity of the FC chromophore, that is, multivalent-charged phospho-tungsto-molybdate(V), toward water. Thus, the FC method was modified and standardized so as to enable simultaneous measurement of lipophilic and hydrophilic antioxidants in NaOH-added isobutanol-water medium. Optimal conditions were as follows: dilution ratio of aqueous FC reagent with iso-BuOH (1:2, v/v), final NaOH concentration of 3.5 × 10(-2) M, reaction time of 20 min, and maximum absorption wavelength of 665 nm. The modified procedure was successfully applied to the total antioxidant capacity assay of trolox, quercetin, ascorbic acid, gallic acid, catechin, caffeic acid, ferulic acid, rosmarinic acid, glutathione, and cysteine, as well as of lipophilic antioxidants such as α-tocopherol (vitamin E), butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, lauryl gallate, and β-carotene. The modified FC method reliably quantified ascorbic acid, whereas the conventional method could not. The modified method was reproducible and additive in terms of total antioxidant capacity values of constituents of complex mixtures such as olive oil extract and herbal tea infusion. The trolox equivalent antioxidant capacities of the tested antioxidant compounds correlated well with those found by the Cupric Reducing Antioxidant Capacity reference method.

  13. Antioxidant Role of Vitamin D in mice with Alloxan-Induced Diabetes.

    Science.gov (United States)

    Iqbal, Sarah; Khan, Saman; Naseem, Imrana

    2017-12-04

    The discovery of vitamin D receptors has revolutionized the understanding of vitamin D biology, which is now thought to influence a wide array of cell pathways. The antihyperglycemic actions of vitamin D involving calcium metabolism have been widely discussed, but studies are now suggesting a possibility of vitamin D-induced amelioration of oxidative stress. Despite its significance in disease pathogenesis, oxidative status remains poorly investigated with respect to vitamin D treatment in the biology of diabetes mellitus. The present study was aimed at assessing the antioxidant therapeutic potential of vitamin D in diabetes mellitus. Balb/c mice were induced to experimental diabetes with a single dose of alloxan. Following a 15-day treatment period, various parameters pertaining to glucose metabolism, oxidative stress, zinc concentration and DNA damage were analyzed. With the exception of superoxide dismutase and catalase, the antioxidant enzyme activities were slightly altered in various groups. However, improved glucose homeostasis and zinc concentration and reduced DNA damage were observed in the group treated with vitamin D. The present work accounts for the ubiquitous roles of vitamin D in various diseases and highlights its role as a therapeutic intervention in diabetes mellitus. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  14. Camel Milk as a Potential Therapy as an Antioxidant in Autism Spectrum Disorder (ASD

    Directory of Open Access Journals (Sweden)

    Laila Y. AL-Ayadhi

    2013-01-01

    Full Text Available Extensive studies have demonstrated that oxidative stress plays a vital role in the pathology of several neurological diseases, including autism spectrum disorder (ASD; those studies proposed that GSH and antioxidant enzymes have a pathophysiological role in autism. Furthermore, camel milk has emerged to have potential therapeutic effects in autism. The aim of the current study was to evaluate the effect of camel milk consumption on oxidative stress biomarkers in autistic children, by measuring the plasma levels of glutathione, superoxide dismutase, and myeloperoxidase before and 2 weeks after camel milk consumption, using the ELISA technique. All measured parameters exhibited significant increase after camel milk consumption (. These findings suggest that camel milk could play an important role in decreasing oxidative stress by alteration of antioxidant enzymes and nonenzymatic antioxidant molecules levels, as well as the improvement of autistic behaviour as demonstrated by the improved Childhood Autism Rating Scale (CARS.

  15. Interleukin-6 Reduces β-Cell Oxidative Stress by Linking Autophagy With the Antioxidant Response.

    Science.gov (United States)

    Marasco, Michelle R; Conteh, Abass M; Reissaus, Christopher A; Cupit V, John E; Appleman, Evan M; Mirmira, Raghavendra G; Linnemann, Amelia K

    2018-05-21

    Production of reactive oxygen species (ROS) is a key instigator of β-cell dysfunction in diabetes. The pleiotropic cytokine IL-6 has previously been linked to β-cell autophagy but has not been studied in the context of β-cell antioxidant response. We used a combination of animal models of diabetes and analysis of cultured human islets and rodent β-cells to study how IL-6 influences antioxidant response. We show that IL-6 couples autophagy to antioxidant response to reduce β-cell and human islet ROS. β cell-specific loss of IL-6 signaling in vivo renders mice more susceptible to oxidative damage and cell death by the selective β-cell toxins streptozotocin and alloxan. IL-6-driven ROS reduction is associated with an increase in the master antioxidant factor NRF2, which rapidly translocates to the mitochondria to decrease mitochondrial activity and stimulate mitophagy. IL-6 also initiates a robust transient drop in cellular cAMP, likely contributing to the stimulation of mitophagy for ROS mitigation. Our findings suggest that coupling autophagy to antioxidant response in the β cell leads to stress adaptation that can reduce cellular apoptosis. These findings have implications for β-cell survival under diabetogenic conditions and present novel targets for therapeutic intervention. © 2018 by the American Diabetes Association.

  16. Polyphenols, Antioxidants and the Sympathetic Nervous System.

    Science.gov (United States)

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2018-01-01

    A high dietary intake of polyphenols has been associated with a reduced cardiovascular mortality, due to their antioxidant properties. However, growing evidence suggests that counteracting oxidative stress in cardiovascular disease might also reduce sympathetic nervous system overactivity. This article reviews the most commonly used techniques to measure sympathetic activity in humans; the role of sympathetic activation in the pathophysiology of cardiovascular diseases; current evidence demonstrating that oxidative stress is involved in the regulation of sympathetic activity and how antioxidants and polyphenols might counteract sympathetic overactivity, particularly focusing on preliminary data from human studies. The main mechanisms by which polyphenols are cardioprotective are related to the improvement of vascular function and their anti-atherogenic effect. Furthermore, a blood pressure-lowering effect was consistently demonstrated in randomized controlled trials in humans, when the effect of flavonoid-rich foods, such as tea and chocolate, was tested. More recent studies suggest that inhibition of sympathetic overactivity might be one of the mechanisms by which these substances exert their cardioprotective effects. Indeed, an increased adrenergic traffic to the vasculature is a major mechanism of disease in a number of cardiovascular and extra-cardiac diseases, including hypertension, obesity, metabolic syndrome and heart failure. A considerable body of evidence, mostly from experimental studies, support the hypothesis that reactive oxygen species might exert sympathoexcitatory effects both at the central and at the peripheral level. Accordingly, supplementation with antioxidants might reduce adrenergic overdrive to the vasculature and blunt cardiovascular reactivity to stress. While supplementation with "classical" antioxidants such as ROS-scavengers has many limitations, increasing the intake of polyphenol-rich foods seems to be a promising novel therapeutic

  17. Development of gastroenterology and hepatology in Iran: Part II- advances in research and therapeutic modalities.

    Science.gov (United States)

    Saberifiroozi, Mehdi; Mir-Madjlessi, Seid-Hossein

    2009-09-01

    Following the establishment of Gastroenterology and Hepatology Fellowship Programs in 1987, significant developments in research and health care delivery have been achieved. The number of published articles has increased significantly and now more than 10 approved research centers are involved in several longitudinal and population based studies in GI epidemiology, viral hepatitis and GI oncology around the country. Before 1987 less than 50 gastroenterologists were working in the country, but now more than 300 gastroenterologists are involved in public and private health care delivery systems. Advanced diagnostic and therapeutic endoscopic procedures and complex surgical procedures such as liver transplantation are a routine now. These achievements are indicative of hard work and determination of dedicated physicians after the Islamic Revolution, and the support of governmental and non-governmental sectors. The future prospect of development in the discipline of gastroenterology and hepatology in Iran seems to be very encouraging.

  18. Oxidative Stress Type Influences the Properties of Antioxidants Containing Polyphenols in RINm5F Beta Cells

    Directory of Open Access Journals (Sweden)

    Nathalie Auberval

    2015-01-01

    Full Text Available The in vitro methods currently used to screen bioactive compounds focus on the use of a single model of oxidative stress. However, this simplistic view may lead to conflicting results. The aim of this study was to evaluate the antioxidant properties of two natural extracts (a mix of red wine polyphenols (RWPs and epigallocatechin gallate (EGCG with three models of oxidative stress induced with hydrogen peroxide (H2O2, a mixture of hypoxanthine and xanthine oxidase (HX/XO, or streptozotocin (STZ in RINm5F beta cells. We employed multiple approaches to validate their potential as therapeutic treatment options, including cell viability, reactive oxygen species production, and antioxidant enzymes expression. All three oxidative stresses induced a decrease in cell viability and an increase in apoptosis, whereas the level of ROS production was variable depending on the type of stress. The highest level of ROS was found for the HX/XO-induced stress, an increase that was reflected by higher expression antioxidant enzymes. Further, both antioxidant compounds presented beneficial effects during oxidative stress, but EGCG appeared to be a more efficient antioxidant. These data indicate that the efficiency of natural antioxidants is dependent on both the nature of the compound and the type of oxidative stress generated.

  19. Bioactivation antioxidant and transglycating properties of N-acetylcarnosine autoinduction prodrug of a dipeptide L-carnosine in mucoadhesive drug delivery eye-drop formulation: powerful eye health application technique and therapeutic platform.

    Science.gov (United States)

    Babizhayev, Mark A

    2012-06-01

    A considerable interest in N-acetylcarnosine ocular drug design for eye health is based on clinical strategies to improve ocular drug delivery through metabolic enzymatic activation. Human biology aspects of ocular N-acetylcarnosine deacetylation during its pass through the cornea to the aqueous humor and dipeptide hydrolyzing enzymes are characterized. Novel approaches to ocular drug delivery increasing intraocular bioavailability of N-acetylcarnosine biologically activated metabolite carnosine become an integral development ensuring prolonged retention of the medication in the mucoadhesive precorneal area and facilitating transcorneal penetration of the natural dipeptide with the corneal promoters. A comprehensive list of techniques for peptide drug design, synthesis, purification, and biological analyses was considered: liquid chromatography (LC), high performance liquid chromatography (HPLC), (1) H and (13) C nuclear magnetic resonance (NMR), electrospray ionization (ESI) mass spectroscopy, and spectrophotometry. The antioxidant activity of therapeutics-targeted molecules was studied in aqueous solution and in a lipid membrane environment. A deglycation therapeutic system was developed involving removal, by transglycation of sugar or aldehyde moieties from Schiff bases by histidyl-hydrazide compounds or aldehyde scavenger L-carnosine. Clinical studies included ophthalmoscopy, visual acuity (VA), halometer disability glare tests, slit-image, and retro-illumination photography. N-acetylcarnosine 1% lubricant eye drops are considered as an auto-induction prodrug and natural ocular redox state balance therapies with implications in prevention and treatment of serious eye diseases that involve pathways of continuous oxidative damage to ocular tissues(cataracts, primary open-angle glaucoma, age-related macular degeneration) and sight-threatening glycosylation processes (diabetic retinopathy and consequent visual impairment) important for public health. The results of

  20. Gamma irradiation improves the antioxidant activity of Aloe vera (Aloe barbadensis miller) extracts

    International Nuclear Information System (INIS)

    Lee, Eun Mi; Bai, Hyoung-Woo; Lee, Seung Sik; Hong, Sung Hyun; Cho, Jae-Young; Byung, Yeoup Chung

    2012-01-01

    Aloe has been widely used in food products, pharmaceuticals, and cosmetics because of its aromatic and therapeutic properties. In the present study, the ethanolic extracts of aloe gel were gamma-irradiated from 10 to 100 kGy. After gamma irradiation, the color of the ethanolic extracts of aloe gel changed to red; this color persisted up to 40 kGy but disappeared above 50 kGy. Liquid chromatography/mass spectrometry analysis demonstrated the production of a new, unknown compound (m/z=132) after gamma irradiation of the ethanolic extracts of aloe gel. The amount of this unknown compound increased with increasing irradiation up to 80 kGy, and it was degraded at 100 kGy. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by the 1,1-diphenyl-2-picrylhydrazyl-radical scavenging capacity. The antioxidant activity of aloe extract was dramatically increased from 53.9% in the non-irradiated sample to 92.8% in the sample irradiated at 40 kGy. This strong antioxidant activity was retained even at 100 kGy. These results indicate that gamma irradiation of aloe extract can enhance its antioxidant activity through the formation of a new compound. Based on these results, increased antioxidant activity of aloe extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  1. Gamma irradiation improves the antioxidant activity of Aloe vera (Aloe barbadensis miller) extracts

    Science.gov (United States)

    Mi Lee, Eun; Bai, Hyoung-Woo; Sik Lee, Seung; Hyun Hong, Sung; Cho, Jae-Young; Yeoup Chung, Byung

    2012-08-01

    Aloe has been widely used in food products, pharmaceuticals, and cosmetics because of its aromatic and therapeutic properties. In the present study, the ethanolic extracts of aloe gel were gamma-irradiated from 10 to 100 kGy. After gamma irradiation, the color of the ethanolic extracts of aloe gel changed to red; this color persisted up to 40 kGy but disappeared above 50 kGy. Liquid chromatography/mass spectrometry analysis demonstrated the production of a new, unknown compound (m/z=132) after gamma irradiation of the ethanolic extracts of aloe gel. The amount of this unknown compound increased with increasing irradiation up to 80 kGy, and it was degraded at 100 kGy. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by the 1,1-diphenyl-2-picrylhydrazyl-radical scavenging capacity. The antioxidant activity of aloe extract was dramatically increased from 53.9% in the non-irradiated sample to 92.8% in the sample irradiated at 40 kGy. This strong antioxidant activity was retained even at 100 kGy. These results indicate that gamma irradiation of aloe extract can enhance its antioxidant activity through the formation of a new compound. Based on these results, increased antioxidant activity of aloe extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  2. New concepts in therapeutic photomedicine: photochemistry, optical targeting and the therapeutic window

    International Nuclear Information System (INIS)

    Parrish, J.A.

    1981-01-01

    Advances in optics technology, synthetic photochemistry, and the science of photobiology make it possible to think beyond phototherapy and photochemotherapy which is dependent on direct photochemical alteration of metabolites or direct phototoxic insult to cells. This report discusses another gender of photomedicine therapy which includes in vivo photoactivation of medicines, photon-dependent drug delivery, and manipulation of host and exposure source to maximize therapeutic index. These therapeutic manipulations are made possible because the skin is highly overperfused and because non-ionizing electromagnetic radiation that enters skin and blood has adequate photon energy to cause electronic excitation. Radiation of 320-800 nm is not very directly phototoxic, is absorbed by a variety of relatively nontoxic photolabile molecules and has an internal dosimetric depth profile. This radiation can therefore be used to activate, deactivate, bind, release or biotransform medications in vivo in skin or other organs. The photochemist, synthetic chemist and photobiologist can collaborate to significantly increase therapeutic possibilities

  3. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis

    Science.gov (United States)

    Tóthová, L'ubomíra; Celec, Peter

    2017-01-01

    Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status. PMID:29311982

  4. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis

    Directory of Open Access Journals (Sweden)

    L'ubomíra Tóthová

    2017-12-01

    Full Text Available Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status.

  5. Cocoa-enriched diet enhances antioxidant enzyme activity and modulates lymphocyte composition in thymus from young rats.

    Science.gov (United States)

    Ramiro-Puig, Emma; Urpí-Sardà, Mireia; Pérez-Cano, Francisco J; Franch, Angels; Castellote, Cristina; Andrés-Lacueva, Cristina; Izquierdo-Pulido, Maria; Castell, Margarida

    2007-08-08

    Cocoa is a rich source of flavonoids, mainly (-)-epicatechin, (+)-catechin, and procyanidins. This article reports the effect of continuous cocoa intake on antioxidant capacity in plasma and tissues, including lymphoid organs and liver, from young rats. Weaned Wistar rats received natural cocoa (4% or 10% food intake) for three weeks, corresponding to their infancy. Flavonoid absorption was confirmed through the quantification of epicatechin metabolites in urine. Total antioxidant capacity (TAC) and the activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase, were examined. Cocoa intake enhanced TAC in all tissues especially in thymus. Moreover, thymus SOD and catalase activities were also dose-dependently increased by cocoa. It was also analyzed whether the enhanced antioxidant system in thymus could influence its cellular composition. An increase in the percentage of thymocytes in advanced development stage was found. In summary, cocoa diet enhances thymus antioxidant defenses and influences thymocyte differentiation.

  6. Fisetin: A Dietary Antioxidant for Health Promotion

    Science.gov (United States)

    Khan, Naghma; Syed, Deeba N.; Ahmad, Nihal

    2013-01-01

    Abstract Significance: Diet-derived antioxidants are now being increasingly investigated for their health-promoting effects, including their role in the chemoprevention of cancer. In general, botanical antioxidants have received much attention, as they can be consumed for longer periods of time without any adverse effects. Flavonoids are a broadly distributed class of plant pigments that are regularly consumed in the human diet due to their abundance. One such flavonoid, fisetin (3,3′,4′,7-tetrahydroxyflavone), is found in various fruits and vegetables, such as strawberry, apple, persimmon, grape, onion, and cucumber. Recent Advances: Several studies have demonstrated the effects of fisetin against numerous diseases. It is reported to have neurotrophic, anticarcinogenic, anti-inflammatory, and other health beneficial effects. Critical Issues: Although fisetin has been reported as an anticarcinogenic agent, further in-depth in vitro and in vivo studies are required to delineate the mechanistic basis of its observed effects. In this review article, we describe the multiple effects of fisetin with special emphasis on its anticancer activity as investigated in cell culture and animal models. Future Directions: Additional research focused toward the identification of molecular targets could lead to the development of fisetin as a chemopreventive/chemotherapeutic agent against cancer and other diseases. Antioxid. Redox Signal. 19, 151–162. PMID:23121441

  7. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases

    Science.gov (United States)

    Sarkar, Avijit; De, Ronita; Mukhopadhyay, Asish K

    2016-01-01

    Curcumin, a yellow pigment and principal polyphenolic Curcuminoid obtained from the turmeric rhizome Curcuma longa, is commonly used as a food-coloring agent. Studies suggest that curcumin has a wide range of beneficial properties e.g., anti-inflammatory, anti-oxidant, anti-cancer, anti-proliferative, anti-fungal and anti-microbial. These pleiotropic activities prompted several research groups to elucidate the role of curcumin in Helicobacter pylori (H. pylori) infection. This is the first review with this heading where we discussed regarding the role of curcumin as an anti-H. pylori agent along with its potential in other gastrointestinal diseases. Based on several in vitro, early cell culture, animal research and few pre-clinical trials, curcumin projected as a potential therapeutic candidate against H. pylori mediated gastric pathogenesis. This review sheds light on the anti-H. pylori effects of curcumin in different models with meticulous emphasis on its anti-oxidant, anti-inflammatory and anti-carcinogenic effects as well as some critical signaling and effecter molecules. Remarkably, non-toxic molecule curcumin fulfills the characteristics for an ideal chemopreventive agent against H. pylori mediated gastric carcinogenesis but the foremost challenge is to obtain the optimum therapeutic levels of curcumin, due to its low solubility and poor bioavailability. Further, we have discussed about the possibilities for improving its efficacy and bioavailability. Lastly, we concluded with the anticipation that in near future curcumin may be used to develop a therapeutic drug against H. pylori mediated gastric ailments through improved formulation or delivery systems, facilitating its enhanced absorption and cellular uptake. PMID:26973412

  8. Total antioxidant intake and prostate cancer in the Cancer of the Prostate in Sweden (CAPS) study. A case control study

    International Nuclear Information System (INIS)

    Russnes, Kjell M.; Möller, Elisabeth; Wilson, Kathryn M.; Carlsen, Monica; Blomhoff, Rune; Smeland, Sigbjørn; Adami, Hans-Olov; Grönberg, Henrik; Mucci, Lorelei A.; Bälter, Katarina

    2016-01-01

    The total intake of dietary antioxidants may reduce prostate cancer risk but available data are sparse and the possible role of supplements unclear. We investigated the potential association between total and dietary antioxidant intake and prostate cancer in a Swedish population. We used FFQ data from 1499 cases and 1112 controls in the population based case–control study Cancer of the Prostate in Sweden (CAPS). The ferric reducing antioxidant potential (FRAP) assay was used to assess the total antioxidant capacity (TAC) of diet and supplements. We calculated odds ratios (ORs) for the risk of prostate cancer across quintiles of antioxidant intake from all foods, from fruit and vegetables only, and from dietary supplements using unconditional logistic regression. Coffee comprised 62 % of the dietary antioxidant intake, tea 4 %, berries 4 %, chocolate 2 %, and boiled potatoes 2 %. In total 19 % and 13 % of the population took multivitamins and supplemental Vitamin C respectively, on a regular basis. Antioxidant intake from all foods and from fruits and vegetables separately measured by the FRAP assay was not associated with prostate cancer risk. For antioxidant intake from supplements we found a positive association with total, advanced, localized, high grade and low grade prostate cancer in those above median supplemental TAC intake of users compared to non-users (Adjusted ORs for total prostate cancer: 1.37, 95 % CI 1.08–1.73, advanced: 1.51, 95 % CI 1.11–2.06, localized: 1.36. 95 % CI 1.06–1.76, high grade 1.60, 95 % CI 1.06–2.40, low grade 1.36, 95 % CI 1.03–1.81). A high intake of coffee (≥6 cups/day) was associated with a possible risk reduction of fatal and significantly with reduced risk for high grade prostate cancer, adjusted OR: 0.45 (95 % CI: 0.22–0.90), whereas a high intake of chocolate was positively associated with risk of total, advanced, localized and low grade disease (adjusted OR for total: 1.43, 95 % CI 1.12–1.82, advanced: 1

  9. Phytochemical Compositions and In vitro Assessments of Antioxidant and Antidiabetic Potentials of Fractions from Ehretia cymosa Thonn.

    Science.gov (United States)

    Ogundajo, Akintayo; Ashafa, Anofi Tom

    2017-10-01

    Ehretia cymosa Thonn. is a popular medicinal plant used in different parts of West Africa for the treatment of various ailments including diabetes mellitus. The current study investigates bioactive constituents and in vitro antioxidant and antidiabetic potentials of fractions from extract of E. cymosa . Phytochemical investigation and antioxidant assays were carried out using standard procedures. Antidiabetic potential was assessed by evaluating the inhibitory effects of the fractions on the activities of α-amylase and α-glucosidase, while bioactive constituent's identification was carried out using gas chromatography-mass spectrometric (GC-MS) analysis. The phytochemistry tests of the fractions revealed the presence of tannins, phenols, flavonoids, steroids, terpene, alkaloid, and cardiac glycosides. Methanol fraction shows higher phenolic (27.44 mg gallic acid/g) and flavonoid (235.31 mg quercetin/g) contents, while ethyl acetate fraction revealed higher proanthocyanidins (28.31 mg catechin/g). Methanol fraction displayed higher ( P fractions displayed higher inhibition ( P fraction also inhibited α-amylase and α-glucosidase in competitive and noncompetitive modes, respectively. The GC-MS chromatogram of the methanol fraction revealed 24 compounds, which include phytol (1.78%), stearic acid (1.02%), and 2-hexadecyloxirane (34.18%), which are known antidiabetic and antioxidant agents. The results indicate E. cymosa leaves as source of active phytochemicals with therapeutic potentials in the management of diabetes. E. cymosa fractions possess antioxidant and antidiabetic activities. Hence, it is a source of active phytochemicals with therapeutic potentials in the management of diabetesThe high flavonoid, phenolic, and proanthocyanidin contents of fractions from E. cymosa also contribute to its antioxidant and antidiabetic propertiesMethanol fraction of E. cymosa displayed better antidiabetic activities compared to acarbose as revealed by their half maximal

  10. Therapeutic Effects of Blue Honeysuckle on Lesions of Hyperthyroidism in Rats.

    Science.gov (United States)

    Park, Sang-In; Lee, Young Joon; Choi, Seong Hun; Park, Soo Jin; Song, Chang-Hyun; Ku, Sae-Kwang

    2016-01-01

    Hyperthyroidism is a hypermetabolic syndrome characterized by an overproduction of thyroid hormones, which enhances the hormone-induced oxidative stress responsible for some complications in the liver, heart and muscle. Blue honeysuckle (BH) is an edible berry, rich in polyphenols, especially flavonoids or anthocyanins, known as strong antioxidants. The chemo-protective activities of the berry have been connected to the improvement of symptoms in cancer, diabetes mellitus, tumor or cardiovascular diseases. Therefore, the therapeutic effects of BH were examined in hyperthyroidism rat model. The hyperthyroidism was induced by injection with levothyroxine (LT4), and the model was treated with distilled water (LT4 control), propylthiouracil (PTU) or BH at 3 dosages of 500, 250 and 125[Formula: see text]mg/kg. The treatment was performed once a day for 15 days. Compared to LT4 control, the oral administration of BH dose-dependently ameliorated the hyperthyroidism, reducing thyroid hormones and increasing thyroid stimulating hormones. These effects were accompanied by improvement of body weight loss and atrophy in the thyroid gland, liver and epididymal fat pads. BH treatments also reduced the levels of hepatic enzymes (AST and ALT), which suggests BH exerts protective effects on hepatocytes. BH might also be involved in the augmentation of the anti-oxidant activities, supported by increased endogenous antioxidant (glutathione). In addition, the histopathological analyses revealed the beneficial effects of BH on the atrophic changes and cellular injuries in the thyroid gland, liver and epididymal fat pads. The therapeutic potentials of BH were either similar or more effective than PTU. These results provide valuable information that will guide more detailed studies to use the BH as a complementary and alternative medicine.

  11. {sup 124}I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact

    Energy Technology Data Exchange (ETDEWEB)

    Freudenberg, L.S.; Jentzen, W.; Goerges, R.; Knust, J.; Bockisch, A. [Duisburg-Essen Univ., Essen (Germany). Dept. of Nuclear Medicine; Petrich, T. [Medizinische Hochschule Hannover (Germany); Marlowe, R.J.

    2007-07-01

    Purpose: This study evaluated the impact of {sup 124}I-positron emission tomography (PET) dosimetry on post-primary surgery therapy in radioiodine-naive patients with advanced differentiated thyroid cancer (DTC). Patients, material, methods: In each of 28 thyroidectomized patients with high-risk DTC (one or more of pT4, pN1 or pM1), we gave 23-50 MBq of {sup 124}I as an oral capsule and performed PET dosimetry to calculate the individualized therapeutic {sup 131}I activity that would, insofar as possible, achieve a radioiodine dose {>=} 100 Gy to all metastases without exceeding 2 Gy to the blood (a surrogate for bone marrow toxicity). We thus determined the absorbed lesion dose per GBq of administered {sup 131}I activity (LDpA) based on serial PET (4, 24, 48, 72 and 96 h after oral {sup 124}I intake) and PET/computed tomography (25 h after {sup 124}I intake) and the critical blood activity (CBA) based on blood and whole-body radiation counting (2, 4, 24, 48, 72, 96 h after {sup 124}I intake). We compared the dosimetry-based interventions with our standard empirical protocol. Results: 25 patients had a total of 126 iodine-positive metastases. 18 (72%) of the 25 had solely iodine-avid metastases, while seven (28%) had both iodine-avid and -non-avid metastases. In two patients (8%), none of the iodine-avid metastases could have been practically treated with a sufficient radiation dose. Relative to the empirical protocol, {sup 124}I-PET dosimetry findings changed management in 7 (25%) patients, e. g. allowing application of activities >11 GBq {sup 131}I. Further changes included implementation of hematological back-up in a patient found to be at risk of life-threatening marrow toxicity, and early multimodal therapy in 9 (32%) patients. Conclusion: {sup 124}I-PET dosimetry is a useful routine procedure in advanced DTC and may allow safer or more effective radioiodine activities and earlier multimodal interventions than do standard empirical protocols. (orig.)

  12. Role of Antioxidants and Natural Products in Inflammation

    Directory of Open Access Journals (Sweden)

    Palanisamy Arulselvan

    2016-01-01

    Full Text Available Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases.

  13. Antioxidant therapies in traumatic brain injury: a review

    Directory of Open Access Journals (Sweden)

    Romero-Rivera Hector Rolando

    2017-09-01

    Full Text Available Oxidative stress constitute one of the commonest mechanism of the secondary injury contributing to neuronal death in traumatic brain injury cases. The oxidative stress induced secondary injury blockade may be considered as to be a good alternative to improve the outcome of traumatic brain injury (TBI treatment. Due to absence of definitive therapy of traumatic brain injury has forced researcher to utilize unconventional therapies and its roles investigated in the improvement of management and outcome in recent year. Antioxidant therapies are proven effective in many preclinical studies and encouraging results and the role of antioxidant mediaction may act as further advancement in the traumatic brain injury management it may represent aonr of newer moadlaity in neurosurgical aramamentorium, this kind of therapy could be a good alternative or adjuct to the previously established neuroprotection agents in TBI.

  14. Polysaccharide-based biomaterials with antimicrobial and antioxidant properties

    Directory of Open Access Journals (Sweden)

    Véronique Coma

    2013-01-01

    Full Text Available Active packaging is one of the responses to the recent food-borne microbial outbreaks and to the consumer’s demand for high quality food and for packaging that is more advanced and creative than what is currently offered. Moreover, with the recent increase in ecological awareness associated with the dramatic decrease in fossil resources, research has turned towards the elaboration of more natural materials. This paper provides a short review of biomaterials exhibiting antimicrobial and antioxidant properties for applications in food preservation. The two main concepts of active biopackaging materials are briefly introduced. The different polysaccharides potentially used in packaging materials are then presented associated with a brief overview of research works related to biopackaging, exhibiting notably antimicrobial or antioxidant properties. Finally, future trends such as the release-on-demand of bioactive agents are discussed.

  15. [Therapeutic Aggressiveness and Liquid Oncology].

    Science.gov (United States)

    Barón Duarte, F J; Rodríguez Calvo, M S; Amor Pan, J R

    2017-01-01

    Aggressiveness criteria proposed in the scientific literature a decade ago provide a quality judgment and are a reference in the care of patients with advanced cancer, but their use is not generalized in the evaluation of Oncology Services. In this paper we analyze the therapeutic aggressiveness, according to standard criteria, in 1.001 patients with advanced cancer who died in our Institution between 2010 and 2013. The results seem to show that aggressiveness at the end of life is present more frequently than experts recommend. About 25% of patients fulfill at least one criterion of aggressiveness. This result could be explained by a liquid Oncology which does not prioritize the patient as a moral subject in the clinical appointment. Medical care is oriented to necessities and must be articulated in a model focused on dignity and communication. Its implementation through Advanced Care Planning, consideration of patient's values and preferences, and Limitation of therapeutic effort are ways to reduce aggressiveness and improve clinical practice at the end of life. We need to encourage synergic and proactive attitudes, adding the best of cancer research with the best clinical care for the benefit of human being, moral subject and main goal of Medicine.

  16. In Silico Discovery of Novel Potent Antioxidants on the Basis of Pulvinic Acid and Coumarine Derivatives and Their Experimental Evaluation.

    Directory of Open Access Journals (Sweden)

    Rok Martinčič

    Full Text Available A pigment from the edible mushroom Xerocomus badius norbadione A, which is a natural derivative of pulvinic acid, was found to possess antioxidant properties. Since the pulvinic acid represents a novel antioxidant scaffold, several other derivatives were recently synthetized and evaluated experimentally, along with some structurally related coumarine derivatives. The obtained data formed the basis for the construction of several quantitative structure-activity and pharmacophore models, which were employed in the virtual screening experiments of compound libraries and for the prediction of their antioxidant activity, with the goal of discovering novel compounds possessing antioxidant properties. A final prioritization list of 21 novel compounds alongside 8 established antioxidant compounds was created for their experimental evaluation, consisting of the DPPH assay, 2-deoxyribose assay, β-carotene bleaching assay and the cellular antioxidant activity assay. Ten novel compounds from the tetronic acid and barbituric acid chemical classes displayed promising antioxidant activity in at least one of the used assays, that is comparable to or even better than some standard antioxidants. Compounds 5, 7 and 9 displayed good activity in all the assays, and were furthermore effective preventers of oxidative stress in human peripheral blood mononuclear cells, which are promising features for the potential therapeutic use of such compounds.

  17. Advanced functional polymers for regenerative and therapeutic dentistry.

    Science.gov (United States)

    Lai, W-F; Oka, K; Jung, H-S

    2015-07-01

    Use of ceramics and polymers continues to dominate clinical procedures in modern dentistry. Polymers have provided the basis for adhesives, tissue void fillers, and artificial replacements for whole teeth. They have been remarkably effective in the clinic at restoration of major dental functions after damage or loss of teeth. With the rapid development of polymer science, dental materials science has significantly lagged behind in harnessing these advanced polymer products. What they offer is new and unique properties superior to traditional polymers and crucially a range of properties that more closely match natural biomaterials. Therefore, we should pursue more vigorously the benefits of advanced polymers in dentistry. In this review, we highlight how the latest generation of advanced polymers will enhance the application of materials in the dental clinic using numerous promising examples. Polymers have a broad range of applications in modern dentistry. Some major applications are to construct frameworks that mimic the precise structure of tissues, to restore tooth organ function, and to deliver bioactive agents to influence cell behavior from the inside. The future of polymers in dentistry must include all these new enhancements to increase biological and clinical effectiveness beyond what can be achieved with traditional biomaterials. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Soluble antioxidant compounds regenerate the antioxidants bound to insoluble parts of foods.

    Science.gov (United States)

    Çelik, Ecem Evrim; Gökmen, Vural; Fogliano, Vincenzo

    2013-10-30

    This study aimed to investigate the regeneration potential of antioxidant capacity of an insoluble food matrix. Investigations were performed in vitro with several food matrices rich in dietary fiber (DF) and bound antioxidants. After removal of the soluble fraction, the antioxidant capacity (AC) of the insoluble fraction was measured by the QUENCHER procedure using ABTS(•+) or DPPH(•) radicals. After measurement, the insoluble residue was washed out to remove the excess of radicals and treated with pure antioxidant solution or antioxidant-rich beverage to regenerate depleted antioxidants on the fiber. Results revealed that the antioxidant capacity of compounds chemically bound to the insoluble moiety could be reconstituted in the presence of other hydrogen-donating substances in the liquid phase. Regeneration efficiency was found to range between 21.5 and 154.3% depending on the type of insoluble food matrix and regeneration agent. Among the food matrices studied, cereal products were found to have slightly higher regeneration efficiency, whereas antioxidant-rich beverages were more effective than pure antioxidants as regeneration agents. Taking wheat bran as reference insoluble material, the regeneration abilities of beverages were in the following order: green tea > espresso coffee > black tea > instant coffee > orange juice > red wine. These results highlighted the possible physiological relevance of antioxidants bound to the insoluble food material in the gastrointestinal tract. During the digestion process they could react with the free radicals and at the same time they can be regenerated by other soluble antioxidant compounds present in the meal.

  19. Novel therapeutic approaches to correct retinal metabolic abnormalities in primary open-angle glaucoma and age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    K. A. Mirzabekova

    2014-01-01

    Full Text Available Common pathogenic aspects of age-related macular degeneration (AMD and primary open-angle glaucoma (POAG, i.e., the role of free radicals inducing oxidative damage of the retina and optic nerve, are discussed. Factors that activate free radical reactions as well as multilevel antioxidant protection system are reviewed. Data derived from studies on current antioxidants that are used to treat and prevent dry AMD and glaucomatous optic nerve damage are compared. Neuroprotection for glaucoma will be considered soon as a basis for its treatment. B vitamins are generally included into therapeutic algorithms for glaucomatous optic neuropathy. While being metabolic therapeutics, they stimulate adaptive compensatory mechanisms and reduce the severity of various pathological processes, e.g., hypoxia, lipid peroxidation etc. Neurotrophic, antioxidant, and regenerative effects of B vitamins as wells as their involvement in metabolism, myelinsynthesis and other processes are of special importance for ophthalmologists. Currently, several vitamin and mineral supplements that differ in composition, dosage, and schedule are approved in Russia. SuperOptic, a biologically activeadditive, contains more free lutein (10 mg and zeaxanthin (500 μg as well as potent antioxidants (vitamin E and vitamin C, microelements (zinc and copper, and balanced vitamin B complex. These components play an important role in ocular health. SuperOptic can be recommended for the prevention and treatment of AMD and glaucomatous optic nerve damage.

  20. Novel therapeutic approaches to correct retinal metabolic abnormalities in primary open-angle glaucoma and age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    K. A. Mirzabekova

    2015-01-01

    Full Text Available Common pathogenic aspects of age-related macular degeneration (AMD and primary open-angle glaucoma (POAG, i.e., the role of free radicals inducing oxidative damage of the retina and optic nerve, are discussed. Factors that activate free radical reactions as well as multilevel antioxidant protection system are reviewed. Data derived from studies on current antioxidants that are used to treat and prevent dry AMD and glaucomatous optic nerve damage are compared. Neuroprotection for glaucoma will be considered soon as a basis for its treatment. B vitamins are generally included into therapeutic algorithms for glaucomatous optic neuropathy. While being metabolic therapeutics, they stimulate adaptive compensatory mechanisms and reduce the severity of various pathological processes, e.g., hypoxia, lipid peroxidation etc. Neurotrophic, antioxidant, and regenerative effects of B vitamins as wells as their involvement in metabolism, myelinsynthesis and other processes are of special importance for ophthalmologists. Currently, several vitamin and mineral supplements that differ in composition, dosage, and schedule are approved in Russia. SuperOptic, a biologically activeadditive, contains more free lutein (10 mg and zeaxanthin (500 μg as well as potent antioxidants (vitamin E and vitamin C, microelements (zinc and copper, and balanced vitamin B complex. These components play an important role in ocular health. SuperOptic can be recommended for the prevention and treatment of AMD and glaucomatous optic nerve damage.

  1. Dietary antioxidants and exercise.

    Science.gov (United States)

    Powers, Scott K; DeRuisseau, Keith C; Quindry, John; Hamilton, Karyn L

    2004-01-01

    Muscular exercise promotes the production of radicals and other reactive oxygen species in the working muscle. Growing evidence indicates that reactive oxygen species are responsible for exercise-induced protein oxidation and contribute to muscle fatigue. To protect against exercise-induced oxidative injury, muscle cells contain complex endogenous cellular defence mechanisms (enzymatic and non-enzymatic antioxidants) to eliminate reactive oxygen species. Furthermore, exogenous dietary antioxidants interact with endogenous antioxidants to form a cooperative network of cellular antioxidants. Knowledge that exercise-induced oxidant formation can contribute to muscle fatigue has resulted in numerous investigations examining the effects of antioxidant supplementation on human exercise performance. To date, there is limited evidence that dietary supplementation with antioxidants will improve human performance. Furthermore, it is currently unclear whether regular vigorous exercise increases the need for dietary intake of antioxidants. Clearly, additional research that analyses the antioxidant requirements of individual athletes is needed.

  2. Recent advances in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Smith, S.

    2000-01-01

    Full text: Radiopharmaceuticals in Nuclear Medicine may be divided into diagnostic and therapeutic agents. The diagnostic area is perceived to be mature, while the therapeutic side of nuclear medicine is still evolving. There are over 100 diagnostic radiopharmaceutical products available, the greatest number applied in cardiology followed by oncology and neurology. The greatest success in therapeutic nuclear medicine has been achieved in thyroid cancer, hyperthyroidism and bone pain palliation. Those in the field believe the future of nuclear medicine resides in the growth potential of the emerging therapeutic market, hence much of the recent research has been focussed in the development of therapeutic agents for targeting cancers. Radiopharmaceuticals under development or in clinical trials involve the use of radionuclides such as Y-90, Pd-103, Ir-192, Re-188, I-131, Sm-153, Sn-114, Sr-90, Cu-64 and In-111. Advances in cyclotron and camera technology as well as automation has enhanced and widened the potential use of positron emitting radiopharmaceuticals such as F-18 Fluorodeoxyglucose (FDG). However the relationship between FDG uptake and glucose consumption in normal and diseased tissue is still to be defined. Many challenges remain for the nuclear medicine community to apply new knowledge of human biochemistry in the development of new radiopharmaceuticals. A better understanding of effects of radiation and its role in the design of therapeutic agents is undoubtedly pivotal for advancing therapeutic Nuclear Medicine into the future

  3. Therapeutic Applications of Rose Hips from Different Rosa Species.

    Science.gov (United States)

    Mármol, Inés; Sánchez-de-Diego, Cristina; Jiménez-Moreno, Nerea; Ancín-Azpilicueta, Carmen; Rodríguez-Yoldi, María Jesús

    2017-05-25

    Rosa species, rose hips, are widespread wild plants that have been traditionally used as medicinal compounds for the treatment of a wide variety of diseases. The therapeutic potential of these plants is based on its antioxidant effects caused by or associated with its phytochemical composition, which includes ascorbic acid, phenolic compounds and healthy fatty acids among others. Over the last few years, medicinal interest in rose hips has increased as a consequence of recent research that has studied its potential application as a treatment for several diseases including skin disorders, hepatotoxicity, renal disturbances, diarrhoea, inflammatory disorders, arthritis, diabetes, hyperlipidaemia, obesity and cancer. In this review, the role of different species of Rosa in the prevention of treatment of various disorders related to oxidative stress, is examined, focusing on new therapeutic approaches from a molecular point of view.

  4. In vivo Pharmacological Evaluations of Pilocarpine-Loaded Antioxidant-Functionalized Biodegradable Thermogels in Glaucomatous Rabbits

    Science.gov (United States)

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang

    2017-02-01

    To alleviate oxidative stress-induced ocular hypertension, grafting of antioxidant molecules to drug carriers enables a dual-function mechanism to effectively treat glaucomatous intraocular pressure (IOP) dysregulation. Providing potential application for intracameral administration of antiglaucoma medications, this study, for the first time, aims to examine in vivo pharmacological efficacy of pilocarpine-loaded antioxidant-functionalized biodegradable thermogels in glaucomatous rabbits. A series of gallic acid (GA)-grafted gelatin-g-poly(N-isopropylacrylamide) (GN) polymers were synthesized via redox reactions at 20-50 °C. Our results showed that raising redox radical initiation reaction temperature maximizes GA grafting level, antioxidant activity, and water content at 40 °C. Meanwhile, increase in overall hydrophilicity of GNGA carriers leads to fast polymer degradation and early pilocarpine depletion in vivo, which is disadvantageous to offer necessary pharmacological performance at prolonged time. By contrast, sustained therapeutic drug concentrations in aqueous humor can be achieved for long-term (i.e., 28 days) protection against corneal aberration and retinal injury after pilocarpine delivery using dual-function optimized carriers synthesized at 30 °C. The GA-functionalized injectable hydrogels are also found to contribute significantly to enhancement of retinal antioxidant defense system and preservation of histological structure and electrophysiological function, thereby supporting the benefits of drug-containing antioxidant biodegradable thermogels to prevent glaucoma development.

  5. Neurobehavioral and Antioxidant Effects of Ethanolic Extract of Yellow Propolis

    Directory of Open Access Journals (Sweden)

    Cinthia Cristina Sousa de Menezes da Silveira

    2016-01-01

    Full Text Available Propolis is a resin produced by bees from raw material collected from plants, salivary secretions, and beeswax. New therapeutic properties for the Central Nervous System have emerged. We explored the neurobehavioral and antioxidant effects of an ethanolic extract of yellow propolis (EEYP rich in triterpenoids, primarily lupeol and β-amyrin. Male Wistar rats, 3 months old, were intraperitoneally treated with Tween 5% (control, EEYP (1, 3, 10, and 30 mg/kg, or diazepam, fluoxetine, and caffeine (positive controls 30 min before the assays. Animals were submitted to open field, elevated plus maze, forced swimming, and inhibitory avoidance tests. After behavioral tasks, blood samples were collected through intracardiac pathway, to evaluate the oxidative balance. The results obtained in the open field and in the elevated plus maze assay showed spontaneous locomotion preserved and anxiolytic-like activity. In the forced swimming test, EEYP demonstrated antidepressant-like activity. In the inhibitory avoidance test, EEYP showed mnemonic activity at 30 mg/kg. In the evaluation of oxidative biochemistry, the extract reduced the production of nitric oxide and malondialdehyde without changing level of total antioxidant, catalase, and superoxide dismutase, induced by behavioral stress. Our results highlight that EEYP emerges as a promising anxiolytic, antidepressant, mnemonic, and antioxidant natural product.

  6. The implantation of esophageal stent with radioactive 125I particles for advanced esophageal carcinomas: observation of therapeutic results

    International Nuclear Information System (INIS)

    Zhao Peng; Cui Hongkai; Yang Ruimin; Zhang Xizhong

    2011-01-01

    Objective: To investigate the therapeutic effect of the implantation of esophageal stent with radioactive 125 I particles in treating advanced esophageal carcinomas in aged patients. Methods: During the period from Sep. 2009 to Dec. 2010, implantation of esophageal stent was used to treat 43 aged patients with advanced esophageal cancer. Based on the patient's free will, the patients were divided into study group (n=18) receiving stent with 125 I particles and control group (n=25) receiving ordinary stent without 125 I particles. No significant difference in the age, the lesion length, the degree of stenosis and the disease stage existed between the study group and the control group. The technical success rate, the remission rate of dysphagia, the occurrence of complications and the mean survival time were calculated and analyzed. The results were compared between the two groups. Results: The technical success rate was 100% in both groups. The short-term remission rate of dysphagia was also 100% in both groups. The mean survival time in the study group and in the control group was 9.8 months and 4.8 months respectively, the difference between the two groups was statistically significant (P 0.05). Conclusion: This results of study indicate that for the treatment of advanced esophageal carcinomas the implantation of esophageal stent with radioactive 125 I particles can surely and markedly prolong the patient's survival time and relive the symptom of dysphagia. This technique is safe, feasible and effective in clinical practice. The use of the stent with radioactive 125 I particles is superior to the use of the traditional stent in treating patients with advanced esophageal cancer. (authors)

  7. Determination of antioxidant activity of Hibiscus sabdariffa and Croton caudatus in Saccharomyces cerevisiae model system.

    Science.gov (United States)

    Subhaswaraj, Pattnaik; Sowmya, M; Bhavana, V; Dyavaiah, Madhu; Siddhardha, Busi

    2017-08-01

    From ancient times, plants and plant derived products are exploited as a prominent source of folkloric medicines with tremendous therapeutic potential for an array of health disorders. In the present study, ethanolic leaf extract of Hibiscus sabdariffa and Croton caudatus were evaluated for free radical scavenging activity in Saccharomyces cerevisiae model system. H. sabdariffa and C. caudatus showed tremendous DPPH free radical scavenging potential with an IC 50 value of 184.88 and 305.39 µg/mL respectively at a concentration of 500 µg/mL. The ethanolic leaf extract of H. sabdariffa and C. caudatus also showed significant hydoxyl radical scavenging and total antioxidant activity. Ascorbic acid was used as positive control. The in vitro antioxidant activity was further supported by in vivo studies using radical scavenging mechanism in S. cerevisiae wild type and its isogenic deletion strains sod1∆ and tsa1∆ . The mutant yeast cells substantially scavenged the stress generated by H 2 O 2 when supplemented with ethanolic leaf extract of H. sabdariffa and C. caudatus as evident from spot assays followed by fluorescence assay (DCF-DA) using fluorescence microscopic and intensity studies. H. sabdariffa and C.caudatus significantly neutralize the ROS level in yeast mutants with concomitant decrease in fluorescence intensity as compared to the untreated yeast cells. The results suggested the efficacy of H. sabdariffa and C. caudatus as potent antioxidants in yeast system and thus their futuristic applications in therapeutics.

  8. Antioxidants of Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Maja Kozarski

    2015-10-01

    Full Text Available Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  9. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways.

    Science.gov (United States)

    Corrochano, Alberto R; Buckin, Vitaly; Kelly, Phil M; Giblin, Linda

    2018-03-28

    Oxidative stress contributes to cell injury and aggravates several chronic diseases. Dietary antioxidants help the body to fight against free radicals and, therefore, avoid or reduce oxidative stress. Recently, proteins from milk whey liquid have been described as antioxidants. This review summarizes the evidence that whey products exhibit radical scavenging activity and reducing power. It examines the processing and treatment attempts to increase the antioxidant bioactivity and identifies 1 enzyme, subtilisin, which consistently produces the most potent whey fractions. The review compares whey from different milk sources and puts whey proteins in the context of other known food antioxidants. However, for efficacy, the antioxidant activity of whey proteins must not only survive processing, but also upper gut transit and arrival in the bloodstream, if whey products are to promote antioxidant levels in target organs. Studies reveal that direct cell exposure to whey samples increases intracellular antioxidants such as glutathione. However, the physiological relevance of these in vitro assays is questionable, and evidence is conflicting from dietary intervention trials, with both rats and humans, that whey products can boost cellular antioxidant biomarkers. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Phytochemical Evaluation, Antioxidant Activity and Toxicity of Paeonia daurica ssp. macrophylla Root

    Directory of Open Access Journals (Sweden)

    Seyde Nargess Sadati Lamardi

    2018-03-01

    Full Text Available Background and objectives: Paeonia daurica ssp. macrophylla, is an herbaceous and perennial plant which belongs to Paeoniaceae family. Two species of this plant grow in northern parts of Iran. The roots in powder form have been used in Persian traditional medicine for treatment of epilepsy, nightmares and gynecological diseases. Several biological activities such as antioxidant and anti-tumor effects of Paeonia species have been reported. Methods: methanol-water (80-20 extract (total extract was fractionated using n-hexane, chloroform and ethyl acetate. Antioxidant activity of the total extract and fractions were evaluated using DPPH and FRAP assays. Total phenolics content of the extracts was determined by Folin-Ciocalteu method. In addition, cytotoxic activity of the fractions was determined against brine shrimp larvae. Column chromatography with normal phase silica gel and preparative TLC were also used for the isolation and purification of compounds. Results: Evaluation of the results indicated that the ethyl acetate and chloroform fractions with IC50 values of 16.55, 23.9 µg/mL, respectively showed potent radical scavenging activity. As well, the ethyl acetate and chloroform fractions indicated the highest antioxidant power by FRAP assay. Due to the potent antioxidant activity, the chloroform fraction was chosen for further investigations. Three compounds were identified as benzoic acid, veratric acid and oleanolic acid by different spectroscopic methods. Conclusion: According to our findings in this study, the root of Paeonia daurica ssp. macrophyla has beneficial antioxidant activity without toxicity and the therapeutic use of this plant in traditional medicine can be somewhat justifiable.

  11. Asparagus Root Regulates Cholesterol Metabolism and Improves Antioxidant Status in Hypercholesteremic Rats

    Directory of Open Access Journals (Sweden)

    Nishant P. Visavadiya

    2009-01-01

    Full Text Available Hyperlipidemia/hypercholesteremia are major risk factors for atherosclerosis and cardiovascular diseases. Root of Asparagus racemosus (AR is widely used in Ayurvedic system of medicine in India and is known for its steroidal saponin content. This study was designed to investigate the hypocholesteremic and antioxidant potential of AR root in both normo- and hypercholesteremic animals. Normal and hypercholesteremic male albino rats were administered with root powder of AR (5 and 10 g% dose levels along with normal and hypercholesteremic diets, respectively, for a duration of 4 weeks. Plasma and hepatic lipid profiles, fecal sterol, bile acid excretion and hepatic antioxidant activity were assessed. Inclusion of AR root powder in diet, resulted in a dose-dependant reduction in plasma and hepatic lipid profiles, increased fecal excretion of cholesterol, neutral sterol and bile acid along with increases in hepatic HMG-CoA reductase activity and bile acid content in hypercholesteremic rats. Further, AR root also improved the hepatic antioxidant status (catalase, SOD and ascorbic acid levels. No significant changes in lipid and antioxidant profiles occurred in the normocholesteremic rats administered with AR root powder. AR root appeared to be useful as a dietary supplement that offers a protection against hyperlipidemia/hypercholesteremia in hypercholesteremic animals. The results of the present study indicate that the potent therapeutic phyto-components present in AR root i.e. phytosterols, saponins, polyphenols, flavonoids and ascorbic acid, could be responsible for increased bile acid production, elimination of excess cholesterol and elevation of hepatic antioxidant status in hypercholesteremic conditions.

  12. Nutritional supplements modulate fluorescent protein-bound advanced glycation endproducts and digestive enzymes related to type 2 diabetes mellitus.

    Science.gov (United States)

    Koch, Emily R; Deo, Permal

    2016-09-01

    Chronic hyperglycemia enhances the formation of advanced glycation endproducts (AGEs) and reactive oxygen species (ROS), contributing to diabetic complications. Thus, controlling blood glucose levels, inhibiting the formation of AGEs and reducing ROS are key therapeutic targets in early stage type 2 diabetes. The inhibitory effects of seven commercial liquid nutritional supplements against carbohydrate hydrolysing enzymes, α-amylase and α-glucosidase, was determined by dinitrosalicylic (DNS) reagent and p-nitrophenyl-α-D-glucopyranoside solution, respectively. Antiglycation activity was determined using the formation of fluorescent protein-bound AGEs. Total phenolic and flavonoid content and antioxidant properties (1,1-diphenyl-2-picrylhydrazyl antioxidant activity (DPPH) and ferric reducing antioxidant power (FRAP)) were determined for correlation among these components and inhibitory activities. Samoan noni juice showed the greatest inhibitory effects against α-amylase, whereas chlorophyll extracts showed the greatest inhibitory effect against α-glucosidase. Inhibition of α-glucosidase correlated with TFC (r(2) = 0.766; p 1) and FRAP (r(2) = 0.750; p 1) whereas no correlation was observed for α-amylase inhibition. All supplements inhibited fluorescent protein-bound AGEs, with the greatest effect exerted by Olive Leaf Extract, Blood Sugar Support (IC50 = 0.5 mg/ml). The IC50 values negatively correlated with TPC (r(2) = -0.707; p 1) and DPPH scavenging activities (r(2) = 0.515; p nutritional supplements in managing and treating type 2 diabetes mellitus.

  13. Therapeutic potential of abalone and status of bioactive molecules: A comprehensive review.

    Science.gov (United States)

    Suleria, H A R; Masci, P P; Gobe, G C; Osborne, S A

    2017-05-24

    Marine organisms are increasingly being investigated as sources of bioactive molecules with therapeutic applications as nutraceuticals and pharmaceuticals. In particular, nutraceuticals are gaining popularity worldwide owing to their therapeutic potential and incorporation in functional foods and dietary supplements. Abalone, a marine gastropod, contains a variety of bioactive compounds with anti-oxidant, anti-thrombotic, anti-inflammatory, anti-microbial, and anti-cancer activities. For thousands of years different cultures have used abalone as a traditional functional food believing consumption provides health benefits. Abalone meat is one of the most precious commodities in Asian markets where it is considered a culinary delicacy. Recent research has revealed that abalone is composed of many vital moieties like polysaccharides, proteins, and fatty acids that provide health benefits beyond basic nutrition. A review of past and present research is presented with relevance to the therapeutic potential of bioactive molecules from abalone.

  14. Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Ratna Chaturvedi

    Full Text Available The water soluble matrix of nacre is a proven osteoinductive material. In spite of the differences in the biomolecular compositions of nacre obtained from multiple species of oysters, the common biochemical properties of those principles substantiate their biological activity. However, the mechanism by which nacre stimulates bone differentiation remains largely unknown. Since the positive impact of antioxidants on bone metabolism is well acknowledged, in this study we investigated the antioxidant potential of a water soluble matrix (WSM obtained from the nacre of the marine oyster Pinctada fucata, which could regulate its osteoblast differentiation activity. Enhanced levels of ALP activity observed in pre-osteoblast cells upon treatment with WSM, suggested the induction of bone differentiation events. Furthermore, bone nodule formation and up-regulation of bone differentiation marker transcripts, i.e. collagen type-1 and osteocalcin by WSM confirmed its ability to induce differentiation of the pre-osteoblasts into mature osteoblasts. Remarkably, same WSM fraction upon pre-treatment lowered the H2O2 and UV-B induced oxidative damages in keratinocytes, thus indicating the antioxidant potential of WSM. This was further confirmed from the in vitro scavenging of ABTS and DPPH free radicals and inhibition of lipid peroxidation by WSM. Together, these results indicate that WSM poses both antioxidant potential and osteoblast differentiation property. Thus, bioactivities associated with nacre holds potential in the development of therapeutics for bone regeneration and against oxidative stress induced damages in cells.

  15. Carbon nanotubes (CNTs) based advanced dermal therapeutics: current trends and future potential.

    Science.gov (United States)

    Kuche, Kaushik; Maheshwari, Rahul; Tambe, Vishakha; Mak, Kit-Kay; Jogi, Hardi; Raval, Nidhi; Pichika, Mallikarjuna Rao; Kumar Tekade, Rakesh

    2018-05-17

    The search for effective and non-invasive delivery modules to transport therapeutic molecules across skin has led to the discovery of a number of nanocarriers (viz.: liposomes, ethosomes, dendrimers, etc.) in the last few decades. However, available literature suggests that these delivery modules face several issues including poor stability, low encapsulation efficiency, and scale-up hurdles. Recently, carbon nanotubes (CNTs) emerged as a versatile tool to deliver therapeutics across skin. Superior stability, high loading capacity, well-developed synthesis protocol as well as ease of scale-up are some of the reason for growing interest in CNTs. CNTs have a unique physical architecture and a large surface area with unique surface chemistry that can be tailored for vivid biomedical applications. CNTs have been thus largely engaged in the development of transdermal systems such as tuneable hydrogels, programmable nonporous membranes, electroresponsive skin modalities, protein channel mimetic platforms, reverse iontophoresis, microneedles, and dermal buckypapers. In addition, CNTs were also employed in the development of RNA interference (RNAi) based therapeutics for correcting defective dermal genes. This review expounds the state-of-art synthesis methodologies, skin penetration mechanism, drug liberation profile, loading potential, characterization techniques, and transdermal applications along with a summary on patent/regulatory status and future scope of CNT based skin therapeutics.

  16. Plant derived antioxidants and antifibrotic drugs: past, present and future

    Directory of Open Access Journals (Sweden)

    Devaraj Ezhilarasan

    2014-09-01

    Full Text Available Hepatic fibrosis occurs as a wound-healing process after several forms of chronic hepatic injury. Activation and proliferation of hepatic stellate cells play pivotal role in the pathogenesis of hepatic fibrosis. Many researchers, from the therapeutic perspective, have focused their attention on searching for novel agents with inhibitory effects on hepatic stellate cells proliferation and activation to prevent hepatic fibrogenesis and a number of plant derived antioxidants have been tested as anti-fibrogenic agents, they generally suppress proliferation and collagen synthesis. Plants remain an imperative source of novel drugs, novel drug leads and new chemical entities. The plant based drug discovery resulted primarily in the development of antioxidant, anti-cancer and other anti-infectious agents and continues to contribute to the new leads in clinical trials. This review summarizes some of those most important plant derived anti-fibrotic drugs and their beneficial effects on experimentally induced hepatic fibrosis in vitro and in vivo. The plant derived antioxidant compounds described herein are curcumin, silymarin, silibinin, baicalein, resveratrol, salvianolic acids, tetrandine, quercetin and berberine. Studies from ours and as demonstrated by pervious workers much information has been accumulated over the past two decades through in vivo and in vitro. In light of those studies, it has been confirmed that plants derived antioxidants, particularly flavanoids, show a significant influence to block hepatic fibrosis regardless of any etiology. This review outlines recent progress in the use of plant derived drugs against experimentally induced liver fibrosis by in vitro and in vivo studies and summarizes the possible mechanisms anti-fibrotic effects of these compounds.

  17. Combination of nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy as a novel therapeutic application to manage the pain and treat many clinical conditions

    Science.gov (United States)

    Halasa, Salaheldin; Dickinson, Eva

    2014-02-01

    From hypertension to diabetes, cancer to HIV, stroke to memory loss and learning disorders to septic shock, male impotence to tuberculosis, there is probably no pathological condition where nitric oxide does not play an important role. Nitric oxide is an analgesic, immune-modulator, vasodilator, anti-apoptotic, growth modulator, angiogenetic, anti-thrombotic, anti-inflammatory and neuro-modulator. Because of the above actions of nitric oxide, many clinical conditions associated with abnormal Nitric oxide (NO) production and bioavailability. Our novel therapeutic approach is to restore the homeostasis of nitric oxide and replace the lost cells by combining nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy.

  18. Oxidative Stress in Human Atherothrombosis: Sources, Markers and Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Jose Luis Martin-Ventura

    2017-11-01

    Full Text Available Atherothrombosis remains one of the main causes of morbidity and mortality worldwide. The underlying pathology is a chronic pathological vascular remodeling of the arterial wall involving several pathways, including oxidative stress. Cellular and animal studies have provided compelling evidence of the direct role of oxidative stress in atherothrombosis, but such a relationship is not clearly established in humans and, to date, clinical trials on the possible beneficial effects of antioxidant therapy have provided equivocal results. Nicotinamide adenine dinucleotide phosphate (NADPH oxidase is one of the main sources of reactive oxygen species (ROS in human atherothrombosis. Moreover, leukocyte-derived myeloperoxidase (MPO and red blood cell-derived iron could be involved in the oxidative modification of lipids/lipoproteins (LDL/HDL in the arterial wall. Interestingly, oxidized lipoproteins, and antioxidants, have been analyzed as potential markers of oxidative stress in the plasma of patients with atherothrombosis. In this review, we will revise sources of ROS, focusing on NADPH oxidase, but also on MPO and iron. We will also discuss the impact of these oxidative systems on LDL and HDL, as well as the value of these modified lipoproteins as circulating markers of oxidative stress in atherothrombosis. We will finish by reviewing some antioxidant systems and compounds as therapeutic strategies to prevent pathological vascular remodeling.

  19. CART peptide is a potential endogenous antioxidant and preferentially localized in mitochondria.

    Directory of Open Access Journals (Sweden)

    Peizhong Mao

    Full Text Available The multifunctional neuropeptide Cocaine and Amphetamine Regulated Transcript (CART is secreted from hypothalamus, pituitary, adrenal gland and pancreas. It also can be found in circulatory system. This feature suggests a general role for CART in different cells. In the present study, we demonstrate that CART protects mitochondrial DNA (mtDNA, cellular proteins and lipids against the oxidative action of hydrogen peroxide, a widely used oxidant. Using cis-parinaric acid as a sensitive reporting probe for peroxidation in membranes, and a lipid-soluble azo initiator of peroxyl radicals, 2,2'-azobis(2,4-dimethylvaleronitrile we found that CART is an antioxidant. Furthermore, we found that CART localized to mitochondria in cultured cells and mouse brain neuronal cells. More importantly, pretreatment with CART by systemic injection protects against a mouse oxidative stress model, which mimics the main features of Parkinson's disease. Given the unique molecular structure and biological features of CART, we conclude that CART is an antioxidant peptide (or antioxidant hormone. We further propose that it may have strong therapeutic properties for human diseases in which oxidative stress is strongly involved such as Parkinson's disease.

  20. Potential therapeutic applications of biosurfactants.

    Science.gov (United States)

    Gudiña, Eduardo J; Rangarajan, Vivek; Sen, Ramkrishna; Rodrigues, Lígia R

    2013-12-01

    Biosurfactants have recently emerged as promising molecules for their structural novelty, versatility, and diverse properties that are potentially useful for many therapeutic applications. Mainly due to their surface activity, these molecules interact with cell membranes of several organisms and/or with the surrounding environments, and thus can be viewed as potential cancer therapeutics or as constituents of drug delivery systems. Some types of microbial surfactants, such as lipopeptides and glycolipids, have been shown to selectively inhibit the proliferation of cancer cells and to disrupt cell membranes causing their lysis through apoptosis pathways. Moreover, biosurfactants as drug delivery vehicles offer commercially attractive and scientifically novel applications. This review covers the current state-of-the-art in biosurfactant research for therapeutic purposes, providing new directions towards the discovery and development of molecules with novel structures and diverse functions for advanced applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Bioactive compounds of sea cucumbers and their therapeutic effects

    Science.gov (United States)

    Shi, Shujuan; Feng, Wenjing; Hu, Song; Liang, Shixiu; An, Nina; Mao, Yongjun

    2016-05-01

    Sea cucumbers belong to the Class Holothuroidea of marine invertebrates. They are commercially valuable and prized as a food and folk medicine in Asia. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as vitamins, minerals and amino acids. A number of unique biological and pharmacological activities/properties, including anticancer, anticoagulant/antithrombotic, antimicrobial, antioxidant, antihyperlipidemic, antihyperglycemic, anti-inflammatory, antihypertension and radioprotective, have been ascribed to various compounds isolated from sea cucumbers. The therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives, especially triterpene glycosides, acid mucopolysaccharide, sphingoid bases, glycolipids, fucosylated chondroitin sulfate, polysaccharides, phospholipids, cerebrosides, phosphatidylcholines, and other extracts and hydrolysates. This review highlights the valuable bioactive components as well as the multiple therapeutic properties of sea cucumbers with a view to exploring their potential uses as functional foods and a natural source of new multifunctional drugs.

  2. Diabetic nephropathy and antioxidants.

    Science.gov (United States)

    Tavafi, Majid

    2013-01-01

    Oxidative stress has crucial role in pathogenesis of diabetic nephropathy (DN). Despite satisfactory results from antioxidant therapy in rodent, antioxidant therapy showed conflicting results in combat with DN in diabetic patients. Directory of Open Access Journals (DOAJ), Google Scholar,Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Treatment of DN in human are insufficient with rennin angiotensin system (RAS) blockers, so additional agent ought to combine with this management. Meanwhile based on DN pathogenesis and evidences in experimental and human researches, the antioxidants are the best candidate. New multi-property antioxidants may be improved human DN that show high power antioxidant capacity, long half-life time, high permeability to mitochondrion, improve body antioxidants enzymes activity and anti-inflammatory effects. Based on this review and our studies on diabetic rats, rosmarinic acid a multi-property antioxidant may be useful in DN patients, but of course, needs to be proven in clinical trials studies.

  3. Preventive and Therapeutic Effects of Propolis in Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    Hamza, R.G.; El-Shahat, A.N.

    2011-01-01

    Ionizing radiation is known to stimulate the generation of oxygen radicals which destabilize organic molecules resulting in a decrease of the system's antioxidant potential. Propolis (bee glue) is a complex mixture of natural substances that exhibits a broad spectrum of biological activities. As the possibility exists that it may exert a radio protections role, the present study aimed to examine the preventive and therapeutic effects of propolis on the gamma irradiation-induced changes in antioxidant status and certain biochemical parameters. HPLC chromatography for analysis of propolis showed that the number of identified phenols was 6 compounds (natural antioxidants). Male albino rats were exposed to 6 Gy of gamma radiation. The efficiency of propolis was evaluated when propolis was administered orally to rats at a dose of 200 mg/kg as follow: non-irradiated rats received orally propolis extract for 6 weeks (positive control) and rats received orally propolis extract for 3 weeks before or after gamma irradiation. The obtained results revealed that propolis given to rats before gamma irradiation protect the hazardous effects of gamma irradiation. In addition, administration of propolis to gamma irradiated rats caused significant enhancement in hepatic antioxidant enzymes (glutathion reductase; GR and catalase; CAT) and total antioxidant capacity associated with a remarkable decrease in the level of lipid peroxidation (TBARS). Also, it significantly reduced the changes induced by gamma irradiation in the serum levels of glucose and liver enzymes; aminotransferases (AST, ALT) and alkaline phosphatase (ALP). In addition, a significant improvement was observed in the serum levels of total cholesterol (TC), triglycerides (TG), low density lipoprotein- cholesterol (LDL-C) and high density lipoprotein-cholesterol (HDL-C). In conclusion, the positive results obtained in the gamma irradiated rats given propolis indicated that propolis could be considered as effective

  4. Neuroinflammation in Alzheimer's Disease: The Preventive and Therapeutic Potential of Polyphenolic Nutraceuticals.

    Science.gov (United States)

    Sawikr, Yousef; Yarla, Nagendra Sastry; Peluso, Ilaria; Kamal, Mohammad Amjad; Aliev, Gjumrakch; Bishayee, Anupam

    2017-01-01

    Brain inflammation, characterized by increased microglia and astrocyte activation, increases during aging and is a key feature of neurodegenerative diseases, such as Alzheimer's disease (AD). In AD, neuronal death and synaptic impairment, induced by amyloid-β (Aβ) peptide, are at least in part mediated by microglia and astrocyte activation. Glial activation results in the sustained production of proinflammatory cytokines and reactive oxygen species, giving rise to a chronic inflammatory process. Astrocytes are the most abundant glial cells in the central nervous system and are involved in the neuroinflammation. Astrocytes can be activated by numerous factors, including free saturated fatty acids, pathogens, lipopolysaccharide, and oxidative stress. Activation of astrocytes produces inflammatory cytokines and the enzyme cyclooxygenase-2, enhancing the production of Aβ. Furthermore, the role of the receptor for advanced glycation end products/nuclear factor-κB (NF-κB) axis in neuroinflammation is in line with the nonenzymatic glycosylation theory of aging, suggesting a central role of the advanced glycation end products in the age-related cognitive and a possible role of nutraceuticals in the prevention of neuroinflammation and AD. However, modulation of P-glycoprotein, rather than antioxidant and anti-inflammatory effects, could be the major mechanism of polyphenolic compounds, including flavonoids. Curcumin, resvertrol, piperine, and other polyphenols have been explored as novel therapeutic and preventive agents for AD. The aim of this review is to critically analyze and discuss the mechanisms involved in neuroinflammation and the possible role of nutraceuticals in the prevention and therapy of AD by targeting neuroinflammation. © 2017 Elsevier Inc. All rights reserved.

  5. Heterogeneous role of the glutathione antioxidant system in modulating the response of ESFT to fenretinide in normoxia and hypoxia.

    Directory of Open Access Journals (Sweden)

    Tapiwanashe Magwere

    Full Text Available Glutathione (GSH is implicated in drug resistance mechanisms of several cancers and is a key regulator of cell death pathways within cells. We studied Ewing's sarcoma family of tumours (ESFT cell lines and three mechanistically distinct anticancer agents (fenretinide, doxorubicin, and vincristine to investigate whether the GSH antioxidant system is involved in the reduced sensitivity to these chemotherapeutic agents in hypoxia. Cell viability and death were assessed by the trypan blue exclusion assay and annexin V-PI staining, respectively. Hypoxia significantly decreased the sensitivity of all ESFT cell lines to fenretinide-induced death, whereas the effect of doxorubicin or vincristine was marginal and cell-line-specific. The response of the GSH antioxidant system in ESFT cell lines to hypoxia was variable and also cell-line-specific, although the level of GSH appeared to be most dependent on de novo biosynthesis rather than recycling. RNAi-mediated knockdown of key GSH regulatory enzymes γ-glutamylcysteine synthetase or glutathione disulfide reductase partially reversed the hypoxia-induced resistance to fenretinide, and increasing GSH levels using N-acetylcysteine augmented the hypoxia-induced resistance in a cell line-specific manner. These observations are consistent with the conclusion that the role of the GSH antioxidant system in modulating the sensitivity of ESFT cells to fenretinide is heterogeneous depending on environment and cell type. This is likely to limit the value of targeting GSH as a therapeutic strategy to overcome hypoxia-induced drug resistance in ESFT. Whether targeting the GSH antioxidant system in conjunction with other therapeutics may benefit some patients with ESFT remains to be seen.

  6. Zika Virus: Recent Advances towards the Development of Vaccines and Therapeutics.

    Science.gov (United States)

    McArthur, Monica A

    2017-06-13

    Zika is a rapidly emerging public health threat. Although clinical infection is frequently mild, significant neurological manifestations have been demonstrated in infants born to Zika virus (ZIKV) infected mothers. Due to the substantial ramifications of intrauterine infection, effective counter-measures are urgently needed. In order to develop effective anti-ZIKV vaccines and therapeutics, improved animal models and a better understanding of immunological correlates of protection against ZIKV are required. This review will summarize what is currently known about ZIKV, the clinical manifestations and epidemiology of Zika as well as, the development of animal models to study ZIKV infection, host immune responses against ZIKV, and the current state of development of vaccines and therapeutics against ZIKV.

  7. Soluble Antioxidant Compounds Regenerate the Antioxidants Bound to Insoluble Parts of Foods

    NARCIS (Netherlands)

    Celik, E.E.; Gökmen, V.; Fogliano, V.

    2013-01-01

    This study aimed to investigate the regeneration potential of antioxidant capacity of an insoluble food matrix. Investigations were performed in vitro with several food matrices rich in dietary fiber (DF) and bound antioxidants. After removal of the soluble fraction, the antioxidant capacity (AC) of

  8. Pre-clinical therapeutic development of a series of metalloporphyrins for Parkinson's disease

    International Nuclear Information System (INIS)

    Liang, Li-Ping; Huang, Jie; Fulton, Ruth; Pearson-Smith, Jennifer N.; Day, Brian J.; Patel, Manisha

    2017-01-01

    Reactive oxygen species are a well-defined therapeutic target for Parkinson's disease (PD) and pharmacological agents that catalytically scavenge reactive species are promising neuroprotective strategies for treatment. Metalloporphyrins are synthetic catalytic antioxidants that mimic the body's own antioxidant enzymes i.e. superoxide dismutases and catalase. The goal of this study was to determine if newly designed metalloporphyrins have enhanced pharmacodynamics including oral bioavailability, longer plasma elimination half-lives, penetrate the blood brain barrier, and show promise for PD treatment. Three metalloporphyrins (AEOL 11216, AEOL 11203 and AEOL 11114) were identified in this study as potential candidates for further pre-clinical development. Each of these compounds demonstrated blood brain barrier permeability by the i.p. route and two of three compounds (AEOL 11203 and AEOL 11114) were orally bioavailable. All of these compounds protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, including dopamine depletion in the striatum, dopaminergic neuronal loss in the substantial nigra, and increased oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain of the mice without inhibiting MPTP metabolism. Daily therapeutic dosing of these metalloporphyrins were well tolerated without accumulation of brain manganese levels or behavioral alterations assessed by open field and rotarod tests. The study identified two orally active metalloporphyrins and one injectable metalloporphyrin as clinical candidates for further development in PD. - Highlights: • A series of metalloporphyrins were optimized in a mouse model of parkinsonism. • Two novel orally active, brain permeable antioxidant metalloporphyrins were identified. • The identified metalloporphyrins were well tolerated.

  9. Pre-clinical therapeutic development of a series of metalloporphyrins for Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Li-Ping [Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); Huang, Jie [Department of Medicine, National Jewish Health, Denver, CO (United States); Fulton, Ruth; Pearson-Smith, Jennifer N. [Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); Day, Brian J. [Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); Department of Medicine, National Jewish Health, Denver, CO (United States); Patel, Manisha, E-mail: manisha.patel@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States)

    2017-07-01

    Reactive oxygen species are a well-defined therapeutic target for Parkinson's disease (PD) and pharmacological agents that catalytically scavenge reactive species are promising neuroprotective strategies for treatment. Metalloporphyrins are synthetic catalytic antioxidants that mimic the body's own antioxidant enzymes i.e. superoxide dismutases and catalase. The goal of this study was to determine if newly designed metalloporphyrins have enhanced pharmacodynamics including oral bioavailability, longer plasma elimination half-lives, penetrate the blood brain barrier, and show promise for PD treatment. Three metalloporphyrins (AEOL 11216, AEOL 11203 and AEOL 11114) were identified in this study as potential candidates for further pre-clinical development. Each of these compounds demonstrated blood brain barrier permeability by the i.p. route and two of three compounds (AEOL 11203 and AEOL 11114) were orally bioavailable. All of these compounds protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, including dopamine depletion in the striatum, dopaminergic neuronal loss in the substantial nigra, and increased oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain of the mice without inhibiting MPTP metabolism. Daily therapeutic dosing of these metalloporphyrins were well tolerated without accumulation of brain manganese levels or behavioral alterations assessed by open field and rotarod tests. The study identified two orally active metalloporphyrins and one injectable metalloporphyrin as clinical candidates for further development in PD. - Highlights: • A series of metalloporphyrins were optimized in a mouse model of parkinsonism. • Two novel orally active, brain permeable antioxidant metalloporphyrins were identified. • The identified metalloporphyrins were well tolerated.

  10. Antiradical and antioxidant activities of new bio-antioxidants.

    Science.gov (United States)

    Kancheva, V D; Saso, L; Angelova, S E; Foti, M C; Slavova-Kasakova, A; Daquino, C; Enchev, V; Firuzi, O; Nechev, J

    2012-02-01

    Antioxidants could be promising agents for management of oxidative stress-related diseases. New biologically active compounds, belonging to a rare class of natural lignans with antiangiogenic, antitumoral and DNA intercalating properties, have been recently synthesized. These compounds are benzo[kl]xanthene lignans (1,2) and dihydrobenzofuran neolignans (3,4). The radical scavenging and chain-breaking antioxidant activities of compounds 1-4 were studied by applying different methods: radical scavenging activity by DPPH rapid test, chain-breaking antioxidant activity and quantum chemical calculations. All studied compounds were found to be active as DPPH scavengers but reaction time with DPPH and compounds' concentrations influenced deeply the evaluation. The highest values of radical scavenging activity (%RSAmax) and largest rate constants for reaction with DPPH were obtained for compounds 2 and 3. Comparison of %RSAmax with that of standard antioxidants DL-α-tocopherol (TOH), caffeic acid (CA) and butylated hydroxyl toluene (BHT) give the following new order of %RSA max: TOH (61.1%) > CA (58.6%) > 3 (36.3%) > 2 (28.1%) > 4 (6.7%) > 1 (3.6%) = BHT (3.6%). Chain-breaking antioxidant activities of individual compounds (0.1-1.0 mM) and of their equimolar binary mixtures (0.1 mM) with TOH were determined from the kinetic curves of lipid autoxidation at 80 °C. On the basis of a comparable kinetic analysis with standard antioxidants a new order of the antioxidant efficiency (i.e., protection factor, PF) of compounds 1-4 were obtained: 2 (7.2) ≥ TOH (7.0) ≥ CA (6.7) > 1 (3.1) > 3 (2.2) > ferulic acid FA (1.5) > 4 (0.6); and of the antioxidant reactivity (i.e. inhibition degree, ID): 2 (44.0) > TOH (18.7) > CA (9.3) > 1 (8.4) > 3 (2.8) > FA (1.0) > 4 (0.9). The important role of the catecholic structure in these compounds, which is responsible for the high chain-breaking antioxidant activity, is discussed and a reaction

  11. Recent Advances in Stem Cell-Based Therapeutics for Stroke

    OpenAIRE

    Napoli, Eleonora; Borlongan, Cesar V.

    2016-01-01

    Regenerative medicine for central nervous system disorders, including stroke, has challenged the non-regenerative capacity of the brain. Among the many treatment strategies tailored towards repairing the injured brain, stem cell-based therapeutics have been demonstrated as safe and effective in animal models of stroke, and are being tested in limited clinical trials. We address here key lab-to-clinic translational research that relate to efficacy, safety, and mechanism of action underlying st...

  12. Paradoxical effect of a pequi oil-rich diet on the development of atherosclerosis: balance between antioxidant and hyperlipidemic properties

    International Nuclear Information System (INIS)

    Aguilar, E.C.; Jascolka, T.L.; Teixeira, L.G.; Lages, P.C.; Ribeiro, A.C.C.; Vieira, E.L.M.; Peluzio, M.C.G.; Alvarez-Leite, J.I.

    2012-01-01

    Pequi is the fruit of Caryocar brasiliense and its oil has a high concentration of monounsaturated and saturated fatty acids, which are anti- and pro-atherogenic agents, respectively, and of carotenoids, which give it antioxidant properties. Our objective was to study the effect of the intake of a cholesterol-rich diet supplemented with pequi oil, compared to the same diet containing soybean oil, on atherosclerosis development, and oxidative stress in atherosclerosis-susceptible LDL receptor-deficient mice (LDLr −/− , C57BL/6-background). Female mice were fed a cholesterol-rich diet containing 7% soybean oil (Soybean group, N = 12) or 7% pequi oil (Pequi group, N = 12) for 6 weeks. The Pequi group presented a more atherogenic lipid profile and more advanced atherosclerotic lesions in the aortic root compared to the Soybean group. However, the Pequi group presented a less advanced lesion in the aorta than the Soybean group and showed lower lipid peroxidation (Soybean group: 50.2 ± 7.1; Pequi group: 30.0 ± 4.8 µmol MDA/mg protein) and anti-oxidized LDL autoantibodies (Soybean group: 35.7 ± 9.4; Pequi group: 15.6 ± 3.7 arbitrary units). Peritoneal macrophages from the Pequi group stimulated with zymosan showed a reduction in the release of reactive oxygen species compared to the Soybean group. Our data suggest that a pequi oil-rich diet slows atherogenesis in the initial stages, possibly due to its antioxidant activity. However, the increase of serum cholesterol induces a more prominent LDL migration toward the intimae of arteries, increasing the advanced atherosclerotic plaque. In conclusion, pequi oil associated with an atherogenic diet worsens the lipid profile and accelerates the formation of advanced atherosclerotic lesions despite its antioxidant action

  13. Paradoxical effect of a pequi oil-rich diet on the development of atherosclerosis: balance between antioxidant and hyperlipidemic properties

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, E.C. [Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Jascolka, T.L. [Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Teixeira, L.G.; Lages, P.C.; Ribeiro, A.C.C.; Vieira, E.L.M. [Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Peluzio, M.C.G. [Departamento de Nutrição, Universidade Federal de Viçosa, Viçosa, MG (Brazil); Alvarez-Leite, J.I. [Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-05-11

    Pequi is the fruit of Caryocar brasiliense and its oil has a high concentration of monounsaturated and saturated fatty acids, which are anti- and pro-atherogenic agents, respectively, and of carotenoids, which give it antioxidant properties. Our objective was to study the effect of the intake of a cholesterol-rich diet supplemented with pequi oil, compared to the same diet containing soybean oil, on atherosclerosis development, and oxidative stress in atherosclerosis-susceptible LDL receptor-deficient mice (LDLr{sup −/−}, C57BL/6-background). Female mice were fed a cholesterol-rich diet containing 7% soybean oil (Soybean group, N = 12) or 7% pequi oil (Pequi group, N = 12) for 6 weeks. The Pequi group presented a more atherogenic lipid profile and more advanced atherosclerotic lesions in the aortic root compared to the Soybean group. However, the Pequi group presented a less advanced lesion in the aorta than the Soybean group and showed lower lipid peroxidation (Soybean group: 50.2 ± 7.1; Pequi group: 30.0 ± 4.8 µmol MDA/mg protein) and anti-oxidized LDL autoantibodies (Soybean group: 35.7 ± 9.4; Pequi group: 15.6 ± 3.7 arbitrary units). Peritoneal macrophages from the Pequi group stimulated with zymosan showed a reduction in the release of reactive oxygen species compared to the Soybean group. Our data suggest that a pequi oil-rich diet slows atherogenesis in the initial stages, possibly due to its antioxidant activity. However, the increase of serum cholesterol induces a more prominent LDL migration toward the intimae of arteries, increasing the advanced atherosclerotic plaque. In conclusion, pequi oil associated with an atherogenic diet worsens the lipid profile and accelerates the formation of advanced atherosclerotic lesions despite its antioxidant action.

  14. Paradoxical effect of a pequi oil-rich diet on the development of atherosclerosis: balance between antioxidant and hyperlipidemic properties

    Directory of Open Access Journals (Sweden)

    E.C. Aguilar

    2012-07-01

    Full Text Available Pequi is the fruit of Caryocar brasiliense and its oil has a high concentration of monounsaturated and saturated fatty acids, which are anti- and pro-atherogenic agents, respectively, and of carotenoids, which give it antioxidant properties. Our objective was to study the effect of the intake of a cholesterol-rich diet supplemented with pequi oil, compared to the same diet containing soybean oil, on atherosclerosis development, and oxidative stress in atherosclerosis-susceptible LDL receptor-deficient mice (LDLr-/-, C57BL/6-background. Female mice were fed a cholesterol-rich diet containing 7% soybean oil (Soybean group, N = 12 or 7% pequi oil (Pequi group, N = 12 for 6 weeks. The Pequi group presented a more atherogenic lipid profile and more advanced atherosclerotic lesions in the aortic root compared to the Soybean group. However, the Pequi group presented a less advanced lesion in the aorta than the Soybean group and showed lower lipid peroxidation (Soybean group: 50.2 ± 7.1; Pequi group: 30.0 ± 4.8 µmol MDA/mg protein and anti-oxidized LDL autoantibodies (Soybean group: 35.7 ± 9.4; Pequi group: 15.6 ± 3.7 arbitrary units. Peritoneal macrophages from the Pequi group stimulated with zymosan showed a reduction in the release of reactive oxygen species compared to the Soybean group. Our data suggest that a pequi oil-rich diet slows atherogenesis in the initial stages, possibly due to its antioxidant activity. However, the increase of serum cholesterol induces a more prominent LDL migration toward the intimae of arteries, increasing the advanced atherosclerotic plaque. In conclusion, pequi oil associated with an atherogenic diet worsens the lipid profile and accelerates the formation of advanced atherosclerotic lesions despite its antioxidant action.

  15. PHENOLIC DERIVATIVES AND ANTIOXIDANT ACTIVITY OF POLAR EXTRACTS FROM Bauhinia pulchella

    Directory of Open Access Journals (Sweden)

    Adonias Almeida Carvalho

    Full Text Available A tea made with the leaves or stem bark of Bauhinia pulchella Benth (Fabaceae is used in the treatment of diabetes. Ethanol (EEF and aqueous (EAF extracts were obtained from the leaves and the antioxidant and citotoxic activities were tested, as well as quantify the content of flavonoids and phenolic compounds (TPC. EEF and EAF showed similar profiles by HPLC, with the presence of three compounds. Column chromatography reverse phase (C18 and Sephadex LH-20, followed by semi preparative HPLC-C18 of EAF resulted in three flavonoids. Their structures were identified by 1H and 13C NMR as myricitrin (1, quercitrin (2 and afzelin (3. In assay of determination of reactive substances to thiobarbituric acid (TBARS, with DPPH, ABTS and nitric oxide (NO• free radicals, EAF showed antioxidant potential higher than the EEF. This is the first report of the occurrence of the flavonoids 1-3, in the species B. pulchella. EEF and EAF were inactive in the cytotoxicity assays. In short, the polar extracts from the leaves of B. pulchella proved to be promising sources of biomolecules phenolic, with antioxidant potential, which may, in the future, be used as chemical markers for species and validation of therapeutic use.

  16. Antioxidant properties of catechins: Comparison with other antioxidants.

    Science.gov (United States)

    Grzesik, Michalina; Naparło, Katarzyna; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela

    2018-02-15

    Antioxidant properties of five catechins and five other flavonoids were compared with several other natural and synthetic compounds and related to glutathione and ascorbate as key endogenous antioxidants in several in vitro tests and assays involving erythrocytes. Catechins showed the highest ABTS-scavenging capacity, the highest stoichiometry of Fe 3+ reduction in the FRAP assay and belonged to the most efficient compounds in protection against SIN-1 induced oxidation of dihydrorhodamine 123, AAPH-induced fluorescein bleaching and hypochlorite-induced fluorescein bleaching. Glutathione and ascorbate were less effective. (+)-catechin and (-)-epicatechin were the most effective compounds in protection against AAPH-induced erythrocyte hemolysis while (-)-epicatechin gallate, (-)-epigallocatechin gallate and (-)-epigallocatechin protected at lowest concentrations against hypochlorite-induced hemolysis. Catechins [(-)-epigallocatechin gallate and (-)-epicatechin gallate)] were most efficient in the inhibition of AAPH-induced oxidation of 2'7'-dichlorodihydroflurescein contained inside erythrocytes. Excellent antioxidant properties of catechins and other flavonoids make them ideal candidates for nanoformulations to be used in antioxidant therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. In vitro cytotoxic and antioxidant activities of phenolic components of Algerian Achillea odorata leaves

    Directory of Open Access Journals (Sweden)

    Hanane Boutennoun

    2017-03-01

    Full Text Available In this study, methanol extract from Achillea odorata was evaluated for its phenolic contents using Folin–Ciocalteu reagent, and antioxidant activity using: 1,1-diphenyl-2-picrylhidrazyl (DPPH radical scavenging activity, reducing activity of H2O2 and ferric reducing power assay. The total phenolic content was determined as gallic acid (GAE equivalent. Flavonoids and flavonols contents were determined as quercetin (QE equivalents. The cytotoxicity of the plant extract was tested against three tumor cell lines: MCF-7, Hep2 and WEHI using 3-(4,5-dimethyl thiazol-2-yl-2,5-diphynyl tetrazolium bromide (MTT assay. Preliminary screening was concluded in the presence of substances with large therapeutic values. The total phenolic content confirmed the presence of total phenolics in the extract and showed strong association with antioxidant activity. An important content of flavonoids and flavonols was also detected. The results of the antioxidant activities obtained indicate that A. odorata recorded a good capacity. For the cytotoxic activity, the results showed the plant extract significantly inhibited tumor cell growth and colony formation at various concentrations.

  18. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires

    Science.gov (United States)

    Vernekar, Amit A.; Sinha, Devanjan; Srivastava, Shubhi; Paramasivam, Prasath U.; D'Silva, Patrick; Mugesh, Govindasamy

    2014-11-01

    Nanomaterials with enzyme-like properties has attracted significant interest, although limited information is available on their biological activities in cells. Here we show that V2O5 nanowires (Vn) functionally mimic the antioxidant enzyme glutathione peroxidase by using cellular glutathione. Although bulk V2O5 is known to be toxic to the cells, the property is altered when converted into a nanomaterial form. The Vn nanozymes readily internalize into mammalian cells of multiple origin (kidney, neuronal, prostate, cervical) and exhibit robust enzyme-like activity by scavenging the reactive oxygen species when challenged against intrinsic and extrinsic oxidative stress. The Vn nanozymes fully restore the redox balance without perturbing the cellular antioxidant defense, thus providing an important cytoprotection for biomolecules against harmful oxidative damage. Based on our findings, we envision that biocompatible Vn nanowires can provide future therapeutic potential to prevent ageing, cardiac disorders and several neurological conditions, including Parkinson’s and Alzheimer’s disease.

  19. Effect of dietary antioxidants, training, and performance correlates on antioxidant status in competitive rowers.

    Science.gov (United States)

    Braakhuis, Andrea J; Hopkins, Will G; Lowe, Timothy E

    2013-09-01

    The beneficial effects of exercise and a healthy diet are well documented in the general population but poorly understood in elite athletes. Previous research in subelite athletes suggests that regular training and an antioxidant-rich diet enhance antioxidant defenses but not performance. To investigate whether habitual diet and/or exercise (training status or performance) affect antioxidant status in elite athletes. Antioxidant blood biomarkers were assessed before and after a 30-min ergometer time trial in 28 male and 34 female rowers. The antioxidant blood biomarkers included ascorbic acid, uric acid, total antioxidant capacity (TAC), erythrocyte- superoxide dismutase, glutathione peroxidase (GPx), and catalase. Rowers completed a 7-d food diary and an antioxidant-intake questionnaire. Effects of diet, training, and performance on resting biomarkers were assessed with Pearson correlations, and their effect on exercise-induced changes in blood biomarkers was assessed by a method of standardization. With the exception of GPx, there were small to moderate increases with exercise for all markers. Blood resting TAC had a small correlation with total antioxidant intake (correlation .29; 90% confidence limits, ±.27), and the exercise-induced change in TAC had a trivial to small association with dietary antioxidant intake from vitamin C (standardized effect .19; ±.22), vegetables (.20; ±.23), and vitamin A (.25; ±.27). Most other dietary intakes had trivial associations with antioxidant biomarkers. Years of training had a small inverse correlation with TAC (-.32; ±.19) and a small association with the exercise-induced change in TAC (.27; ±.24). Training status correlates more strongly with antioxidant status than diet does.

  20. Antiglycation and Antioxidant Properties of Momordica charantia.

    Directory of Open Access Journals (Sweden)

    Ali Aljohi

    Full Text Available The accumulation of advanced glycation endproducts (AGEs and oxidative stress underlie the pathogenesis of diabetic complications. In many developing countries, diabetes treatment is unaffordable, and plants such as bitter gourd (or bitter melon; Momordica charantia are used as traditional remedies because they exhibit hypoglycaemic properties. This study compared the antiglycation and antioxidant properties of aqueous extracts of M. charantia pulp (MCP, flesh (MCF and charantin in vitro. Lysozyme was mixed with methylglyoxal and 0-15 mg/ml of M. charantia extracts in a pH 7.4 buffer and incubated at 37°C for 3 days. Crosslinked AGEs were assessed using gel electrophoresis, and the carboxymethyllysine (CML content was analyzed by enzyme-linked immunosorbent assays. The antioxidant activities of the extracts were evaluated using assays to assess DPPH (1,1-diphenyl-2-picryl-hydrazyl and hydroxyl radical scavenging activities, metal-chelating activity and reducing power of the extracts. The phenolic, flavonol and flavonoid content of the extracts were also determined. All extracts inhibited the formation of crosslinked AGEs and CML in a dose-dependent manner, with MCF being the most potent. The antioxidant activity of MCF was higher than that of MCP, but MCP showed the highest metal-chelating activity. MCF had the highest phenolic and flavonoid contents, whereas MCP had the highest flavonol content. M. charantia has hypoglycaemic effects, but this study shows that M. charantia extracts are also capable of preventing AGE formation in vitro. This activity may be due to the antioxidant properties, particularly the total phenolic content of the extracts. Thus, the use of M. charantia deserves more attention, as it may not only reduce hyperglycaemia but also protect against the build-up of tissue AGEs and reduce oxidative stress in patients with diabetes.

  1. Antiglycation and Antioxidant Properties of Momordica charantia.

    Science.gov (United States)

    Aljohi, Ali; Matou-Nasri, Sabine; Ahmed, Nessar

    2016-01-01

    The accumulation of advanced glycation endproducts (AGEs) and oxidative stress underlie the pathogenesis of diabetic complications. In many developing countries, diabetes treatment is unaffordable, and plants such as bitter gourd (or bitter melon; Momordica charantia) are used as traditional remedies because they exhibit hypoglycaemic properties. This study compared the antiglycation and antioxidant properties of aqueous extracts of M. charantia pulp (MCP), flesh (MCF) and charantin in vitro. Lysozyme was mixed with methylglyoxal and 0-15 mg/ml of M. charantia extracts in a pH 7.4 buffer and incubated at 37°C for 3 days. Crosslinked AGEs were assessed using gel electrophoresis, and the carboxymethyllysine (CML) content was analyzed by enzyme-linked immunosorbent assays. The antioxidant activities of the extracts were evaluated using assays to assess DPPH (1,1-diphenyl-2-picryl-hydrazyl) and hydroxyl radical scavenging activities, metal-chelating activity and reducing power of the extracts. The phenolic, flavonol and flavonoid content of the extracts were also determined. All extracts inhibited the formation of crosslinked AGEs and CML in a dose-dependent manner, with MCF being the most potent. The antioxidant activity of MCF was higher than that of MCP, but MCP showed the highest metal-chelating activity. MCF had the highest phenolic and flavonoid contents, whereas MCP had the highest flavonol content. M. charantia has hypoglycaemic effects, but this study shows that M. charantia extracts are also capable of preventing AGE formation in vitro. This activity may be due to the antioxidant properties, particularly the total phenolic content of the extracts. Thus, the use of M. charantia deserves more attention, as it may not only reduce hyperglycaemia but also protect against the build-up of tissue AGEs and reduce oxidative stress in patients with diabetes.

  2. Protein based therapeutic delivery agents: Contemporary developments and challenges.

    Science.gov (United States)

    Yin, Liming; Yuvienco, Carlo; Montclare, Jin Kim

    2017-07-01

    As unique biopolymers, proteins can be employed for therapeutic delivery. They bear important features such as bioavailability, biocompatibility, and biodegradability with low toxicity serving as a platform for delivery of various small molecule therapeutics, gene therapies, protein biologics and cells. Depending on size and characteristic of the therapeutic, a variety of natural and engineered proteins or peptides have been developed. This, coupled to recent advances in synthetic and chemical biology, has led to the creation of tailor-made protein materials for delivery. This review highlights strategies employing proteins to facilitate the delivery of therapeutic matter, addressing the challenges for small molecule, gene, protein and cell transport. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Under Persistent Assault: Understanding the Factors that Deteriorate Human Skin and Clinical Efficacy of Topical Antioxidants in Treating Aging Skin

    Directory of Open Access Journals (Sweden)

    Patricia K. Farris

    2015-11-01

    Full Text Available Recent studies contend that the skin is subject to far more damage than just ultraviolet (UV light, with infrared radiation and pollution now clearly demonstrated to degrade cutaneous tissue. While consumers continue to strive for new ways to augment the aesthetic appeal and improve the health of their skin, awareness regarding environmental insults and effective ways to protect the skin remains low. New advances in dermatologic science have exponentially increased the available information on the underlying mechanism of cutaneous damage and potential of topical antioxidants to treat aging skin. Combining antioxidants that can work through multiple pathways holds great potential for a cumulative and synergistic way to treat aging skin. Our goal is to provide a comprehensive review on environmental factors that damage human skin, discuss scientifically proven benefits of topical antioxidants, understand challenges of formulating and administering topical antioxidants, evaluate novel mechanisms of antioxidant activity, and suggest practical ways of integrating topical antioxidants with aesthetic procedures to complement clinical outcomes.

  4. Oxidative Stress and the Use of Antioxidants in Stroke

    Directory of Open Access Journals (Sweden)

    Rachel Shirley

    2014-07-01

    Full Text Available Transient or permanent interruption of cerebral blood flow by occlusion of a cerebral artery gives rise to an ischaemic stroke leading to irreversible damage or dysfunction to the cells within the affected tissue along with permanent or reversible neurological deficit. Extensive research has identified excitotoxicity, oxidative stress, inflammation and cell death as key contributory pathways underlying lesion progression. The cornerstone of treatment for acute ischaemic stroke remains reperfusion therapy with recombinant tissue plasminogen activator (rt-PA. The downstream sequelae of events resulting from spontaneous or pharmacological reperfusion lead to an imbalance in the production of harmful reactive oxygen species (ROS over endogenous anti-oxidant protection strategies. As such, anti-oxidant therapy has long been investigated as a means to reduce the extent of injury resulting from ischaemic stroke with varying degrees of success. Here we discuss the production and source of these ROS and the various strategies employed to modulate levels. These strategies broadly attempt to inhibit ROS production or increase scavenging or degradation of ROS. While early clinical studies have failed to translate success from bench to bedside, the combination of anti-oxidants with existing thrombolytics or novel neuroprotectants may represent an avenue worthy of clinical investigation. Clearly, there is a pressing need to identify new therapeutic alternatives for the vast majority of patients who are not eligible to receive rt-PA for this debilitating and devastating disease.

  5. RNAi Therapeutics in Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Seunghee Cha

    2013-03-01

    Full Text Available Since the discovery of RNA interference (RNAi, excitement has grown over its potential therapeutic uses. Targeting RNAi pathways provides a powerful tool to change biological processes post-transcriptionally in various health conditions such as cancer or autoimmune diseases. Optimum design of shRNA, siRNA, and miRNA enhances stability and specificity of RNAi-based approaches whereas it has to reduce or prevent undesirable immune responses or off-target effects. Recent advances in understanding pathogenesis of autoimmune diseases have allowed application of these tools in vitro as well as in vivo with some degree of success. Further research on the design and delivery of effectors of RNAi pathway and underlying molecular basis of RNAi would warrant practical use of RNAi-based therapeutics in human applications. This review will focus on the approaches used for current therapeutics and their applications in autoimmune diseases, including rheumatoid arthritis and Sjögren’s syndrome.

  6. Melatonin and Nitrones As Potential Therapeutic Agents for Stroke

    Directory of Open Access Journals (Sweden)

    Alejandro Romero

    2016-11-01

    Full Text Available Stroke is a disease of aging affecting millions of people worldwide, and recombinant tissue-type plasminogen activator (r-tPA is the only treatment approved. However, r-tPA has a low therapeutic window and secondary effects which limit its beneficial outcome, urging thus the search for new more efficient therapies. Among them, neuroprotection based on melatonin or nitrones, as free radical traps, have arisen as drug candidates due to their strong antioxidant power. In this Perspective article, an update on the specific results of the melatonin and several new nitrones are presented.

  7. Post-hemorrhagic hydrocephalus: Recent advances and new therapeutic insights.

    Science.gov (United States)

    Chen, Qianwei; Feng, Zhou; Tan, Qiang; Guo, Jing; Tang, Jun; Tan, Liang; Feng, Hua; Chen, Zhi

    2017-04-15

    Post-hemorrhagic hydrocephalus (PHH), also referred to as progressive ventricular dilatation, is caused by disturbances in cerebrospinal fluid (CSF) flow or absorption following hemorrhage in the brain. As one of the most serious complications of neonatal/adult intraventricular hemorrhage (IVH), subarachnoid hemorrhage (SAH), and traumatic brain injury (TBI), PHH is associated with increased morbidity and disability of these events. Common sequelae of PHH include neurocognitive impairment, motor dysfunction, and growth impairment. Non-surgical measures to reduce increased intracranial pressure (ICP) in PHH have shown little success and most patients will ultimately require surgical management, such as external ventricular drainage and shunting which mostly by inserting a CSF drainage shunt. Unfortunately, shunt complications are common and the optimum time for intervention is unclear. To date, there remains no comprehensive strategy for PHH management and it becomes imperative that to explore new therapeutic targets and methods for PHH. Over past decades, increasing evidence have indicated that hemorrhage-derived blood and subsequent metabolic products may play a key role in the development of IVH-, SAH- and TBI-associated PHH. Several intervention strategies have recently been evaluated and cross-referenced. In this review, we summarized and discussed the common aspects of hydrocephalus following IVH, SAH and TBI, relevant experimental animal models, clinical translation of in vivo experiments, and potential preventive and therapeutic targets for PHH. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii.

    Science.gov (United States)

    Datta, Suprama; Timson, David J; Annapure, Uday S

    2017-07-01

    Saccharomyces cerevisiae var. boulardii is the only yeast species with probiotic properties. It is considered to have therapeutic significance in gastrointestinal disorders. In the present study, a comparative physiological study between this yeast and Saccharomyces cerevisiae (BY4742) was performed by evaluating two prominent traits of probiotic species, responses to different stress conditions and antioxidant capacity. A global metabolite profile was also developed aiming to identify which therapeutically important secondary metabolites are produced. Saccharomyces cerevisiae var. boulardii showed no significant difference in growth patterns but greater stress tolerance compared to S. cerevisiae. It also demonstrated a six- to 10-fold greater antioxidant potential (judged by the 1,1-diphenyl-2-picrylhydrazyl assay), with a 70-fold higher total phenolic content and a 20-fold higher total flavonoid content in the extracellular fraction. These features were clearly differentiated by principal component analysis and further indicated by metabolite profiling. The extracellular fraction of the S. cerevisiae var. boulardii cultures was found to be rich in polyphenolic metabolites: vanillic acid, cinnamic acid, phenyl ethyl alcohol (rose oil), erythromycin, amphetamine and vitamin B 6 , which results in the antioxidant capacity of this strain. The present study presents a new perspective for differentiating the two genetically related strains of yeast, S. cerevisiae and S. cerevisiae var. boulardii by assessing their metabolome fingerprints. In addition to the correlation of the phenotypic properties with the secretory metabolites of these two yeasts, the present study also emphasizes the potential to exploit S. cerevisiae var. boulardii in the industrial production of these metabolites. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Comparative study on the inhibitory effects of antioxidant vitamins and radon on carbon tetrachloride-induced hepatopathy

    International Nuclear Information System (INIS)

    Kataoka, Takahiro; Nishiyama, Yuichi; Yamato, Keiko; Teraoka, Junichi; Morii, Yuji; Taguchi, Takehito; Yamaoka, Kiyonori; Sakoda, Akihiro; Ishimori, Yuu

    2012-01-01

    We have previously reported that radon inhalation activates anti-oxidative functions and inhibits carbon tetrachloride (CCl 4 )-induced hepatopathy. It has also been reported that antioxidant vitamins can inhibit CCl 4 -induced hepatopathy. In the current study, we examined the comparative efficacy of treatment with radon, ascorbic acid and α-tocopherol on CCl 4 -induced hepatopathy. Mice were subjected to intraperitoneal injection of CCl 4 after inhaling approximately 1000 or 2000 Bq/m 3 radon for 24 h, or immediately after intraperitoneal injection of ascorbic acid (100, 300, or 500 mg/kg bodyweight) or α-tocopherol (100, 300, or 500 mg/kg bodyweight). We estimated the inhibitory effects on CCl 4 -induced hepatopathy based on hepatic function-associated parameters, oxidative damage-associated parameters and histological changes. The results revealed that the therapeutic effects of radon inhalation were almost equivalent to treatment with ascorbic acid at a dose of 500 mg/kg or α-tocopherol at a dose of 300 mg/kg. The activities of superoxide dismutase, catalase, and glutathione peroxidase in the liver were significantly higher in mice exposed to radon than in mice treated with CCl 4 alone. These findings suggest that radon inhalation has an anti-oxidative effect against CCl 4 -induced hepatopathy similar to the anti-oxidative effects of ascorbic acid or α-tocopherol due to the induction of anti-oxidative functions. (author)

  10. Comparison of the antioxidant effects of carnosic acid and synthetic antioxidants on tara seed oil.

    Science.gov (United States)

    Li, Zhan-Jun; Yang, Feng-Jian; Yang, Lei; Zu, Yuan-Gang

    2018-04-04

    In the present study, tara seed oil was obtained by supercritical fluid extraction and used to investigate the antioxidant strength of carnosic acid (CA) compared with conventional synthetic antioxidants. The antioxidants were added to the tara seed oil at 0.2 mg of antioxidant per gram of oil. The samples were then submitted to at 60 °C 15 days for an accelerated oxidation process, with samples taken regularly for analysis. After oxidation, the samples were analyzed to determine the peroxide value, thiobarbituric acid reactive substances, conjugated diene content, and free fatty acid content. CA was investigated at three purity levels (CA20, CA60, CA99), and compared with three synthetic antioxidants (butylatedhydroxyanisole, butylatedhydroxytoluene, and tert-butylhydroquinone). The oxidation indicators showed that CA was a strong antioxidant compared to the synthetic antioxidants. The antioxidant activities decreased in the order: tert-butylhydroquinone > CA99 > CA60 > CA20 > butylatedhydroxyanisole > butylatedhydroxytoluene. These results show that CA could be used to replace synthetic antioxidants in oil products, and should be safer for human consumption and the environment.

  11. Developing SyrinOX total antioxidant capacity assay for measuring antioxidants in humans.

    Science.gov (United States)

    Prasetyo, Endry N; Knes, Otto; Nyanhongo, Gibson S; Guebitz, Georg M

    2013-02-01

    Accurate monitoring of the antioxidant status or of oxidative stress in patients is still a big challenge in clinical laboratories. This study investigates the possibility of applying a newly developed total antioxidant capacity assay method based on laccase or peroxidase oxidized syringaldazine [Tetramethoxy azobismethylene quinone (TMAMQ)] which is referred to here as SyrinOX, as a diagnostic tool for monitoring both oxidative stress and antioxidant status in patients. Attempts to adapt the Randox total antioxidant procedure [simultaneous incubation of the radical generating system (metmyoglobin and H(2) O(2) ) and antioxidant sample] for SyrinOX were abandoned after it was discovered that the H(2) O(2) reacted with enzymatically generated TMAMQ and ABTS radicals at a rate of 6.4 × 10(-2) /μM/s and 5.7 × 10(-3) /μM/s respectively. Thus this study for the first time demonstrates the negative effects of H(2) O(2) in the Randox system. This leads to erroneous results because the total antioxidant values obtained are the sum of radicals reduced by antioxidants plus those reacting with the radical generating system. Therefore they should be avoided not only for this particular method but also when using other similar methods. Consequently, SyrinOX is best applied using a three-step approach involving, production of TMAMQ, recovery and purification (free from enzyme and other impurities) and then using TMAMQ for measuring the total antioxidant capacity of samples. Using this approach, the reaction conditions for application of SyrinOX when measuring the total antioxidant capacity of plasma sample were determined to be 50% (v/v) ethanol/50 mM sodium succinate buffer pH 5.5, between 20 and 25 °C for at least 1 h. © 2012 The Authors. International Journal of Experimental Pathology © 2012 International Journal of Experimental Pathology.

  12. Oxidative Stress: A Unifying Mechanism for Cell Damage Induced by Noise, (Water-Pipe) Smoking, and Emotional Stress-Therapeutic Strategies Targeting Redox Imbalance.

    Science.gov (United States)

    Golbidi, Saeid; Li, Huige; Laher, Ismail

    2018-03-20

    Modern technologies have eased our lives but these conveniences can impact our lifestyles in destructive ways. Noise pollution, mental stresses, and smoking (as a stress-relieving solution) are some environmental hazards that affect our well-being and healthcare budgets. Scrutinizing their pathophysiology could lead to solutions to reduce their harmful effects. Recent Advances: Oxidative stress plays an important role in initiating local and systemic inflammation after noise pollution, mental stress, and smoking. Lipid peroxidation and release of lysolipid by-products, disturbance in activation and function of nuclear factor erythroid 2-related factor 2 (Nrf2), induction of stress hormones and their secondary effects on intracellular kinases, and dysregulation of intracellular Ca 2+ can all potentially trigger other vicious cycles. Recent clinical data suggest that boosting the antioxidant system through nonpharmacological measures, for example, lifestyle changes that include exercise have benefits that cannot easily be achieved with pharmacological interventions alone. Indiscriminate manipulation of the cellular redox network could lead to a new series of ailments. An ideal approach requires meticulous scrutiny of redox balance mechanisms for individual pathologies so as to create new treatment strategies that target key pathways while minimizing side effects. Extrapolating our understanding of redox balance to other debilitating conditions such as diabetes and the metabolic syndrome could potentially lead to devising a unifying therapeutic strategy. Antioxid. Redox Signal. 28, 741-759.

  13. Natural phenolic antioxidants in human fluids: analytical approaches and antioxidant capacity studies

    International Nuclear Information System (INIS)

    Zhang, K.; Zuo, Y.

    2006-01-01

    Phenolic compounds are the most abundant natural antioxidants in our diet. Epidemiological studies have shown the possible prevention effects of consumption of fruits and vegetables rich in phenolic compounds on degenerative diseases, such as cardiovascular diseases and cancers. However, there is a serious lack of fundamental knowledge on the uptake and metabolism of phenolic compounds in humans. It is clear that phenolic molecules, only absorbed by humans, can exert biological effects. This review presents a current knowledge on the analytical methods, antioxidant capacity measurements, as well as research strategies related to natural phenolic antioxidants on human health. Both GC-MS and LC-MS have proved to be very useful analytical techniques that can be employed to identify and quantitate targeted phenolic antioxidants and their metabolites in biofluids. Free radical quenching tests provide a direct measurement of antioxidant capacity but lack specificity and may oversimplify the in vivo human physiological environment. Research strategies are diverse and mainly focused on positive health effect of antioxidants. In the future studies, multiple potential bioactivities, both positive and negative, should be considered. (author)

  14. On the Toxicity of Therapeutically Used Nanoparticles: An Overview

    International Nuclear Information System (INIS)

    El-Ansary, A.; Al-Daihan, S.

    2009-01-01

    Human beings have been exposed to airborne nano sized particles throughout their evolutionary stages, and such exposures have increased dramatically over the last century. The rapidly developing field of nano technology will result in new sources of this exposure, through inhalation, ingestion, and injection. Although nano materials are currently being widely used in modern technology, there is a serious lack of information concerning the human health and environmental implications of manufactured nano materials. Since these are relatively new particles, it is necessary to investigate their toxicological behavior. The objective of this review was to trace the cellular response to nano sized particle exposure. Therapeutic application of selected nanoparticles together with their range of toxic doses was also reviewed. Effect of therapeutically used nanoparticles on cell membrane, mitochondrial function, pro oxidant/antioxidant status, enzyme leakage, DNA, and other biochemical endpoints was elucidated. This paper highlights the need for caution during the use and disposal of such manufactured nano materials to prevent unintended environmental impacts.

  15. Vitamin A-aldehyde adducts: AMD risk and targeted therapeutics.

    Science.gov (United States)

    Sparrow, Janet R

    2016-04-26

    Although currently available treatment options for age-related macular degeneration (AMD) are limited, particularly for atrophic AMD, the identification of predisposing genetic variations has informed clinical studies addressing therapeutic options such as complement inhibitors and anti-inflammatory agents. To lower risk of early AMD, recommended lifestyle interventions such as the avoidance of smoking and the intake of low glycemic antioxidant-rich diets have largely followed from the identification of nongenetic modifiable factors. On the other hand, the challenge of understanding the complex relationship between aging and cumulative damage leading to AMD has fueled investigations of the visual cycle adducts that accumulate in retinal pigment epithelial (RPE) cells and are a hallmark of aging retina. These studies have revealed properties of these compounds that provide insights into processes that may compromise RPE and could contribute to disease mechanisms in AMD. This work has also led to the design of targeted therapeutics that are currently under investigation.

  16. On the Toxicity of Therapeutically Used Nanoparticles: An Overview

    Directory of Open Access Journals (Sweden)

    A. El-Ansary

    2009-01-01

    Full Text Available Human beings have been exposed to airborne nanosized particles throughout their evolutionary stages, and such exposures have increased dramatically over the last century. The rapidly developing field of nanotechnology will result in new sources of this exposure, through inhalation, ingestion, and injection. Although nanomaterials are currently being widely used in modern technology, there is a serious lack of information concerning the human health and environmental implications of manufactured nanomaterials. Since these are relatively new particles, it is necessary to investigate their toxicological behavior. The objective of this review was to trace the cellular response to nanosized particle exposure. Therapeutic application of selected nanoparticles together with their range of toxic doses was also reviewed. Effect of therapeutically used nanoparticles on cell membrane, mitochondrial function, prooxidant/antioxidant status, enzyme leakage, DNA, and other biochemical endpoints was elucidated. This paper highlights the need for caution during the use and disposal of such manufactured nanomaterials to prevent unintended environmental impacts.

  17. Natural antioxidants in chemoprevention

    Energy Technology Data Exchange (ETDEWEB)

    Dragsted, L.O. [Danish Veterinary and Food Administration, Soeberg (Denmark). Inst. of Toxicology

    1998-12-31

    It is well documented that diets rich in fruits and vegetables can reduce the risk of most common cancers, and that some food items from this class may be protective against heart disease. Several explanations have been offered, one of which relates to the natural presence of potent antioxidants in plant products. Destructive oxidation of lipids, proteins, DNA, and other important biomolecules, often involving radical chain reactions, affect vital cellular structures and their normal functions. Such processes are involved in the development of cancer as well as heart disease, and it seems logical to assume that antioxidants might be preventive. Large human trials with natural antioxidants have not provided a uniform support, however, for the hypothesis that antioxidation per se may prevent cancer or coronary heart disease (CHD). One reason is that other effects, unrelated to antioxidation, may compromise their preventive effects. Another reason may be that many potent antioxidants can also act as pro-oxidants under certain conditions. The interpretation of animal trials is likewise often compromised by the fact that most antioxidants have other physiological effects which might very well explain their protective action or lead to toxic side-effects. (orig.)

  18. Quantitative combination of natural anti-oxidants prevents metabolic syndrome by reducing oxidative stress.

    Science.gov (United States)

    Gao, Mingjing; Zhao, Zhen; Lv, Pengyu; Li, YuFang; Gao, Juntao; Zhang, Michael; Zhao, Baolu

    2015-12-01

    Insulin resistance and abdominal obesity are present in the majority of people with the metabolic syndrome. Antioxidant therapy might be a useful strategy for type 2 diabetes and other insulin-resistant states. The combination of vitamin C (Vc) and vitamin E has synthetic scavenging effect on free radicals and inhibition effect on lipid peroxidation. However, there are few studies about how to define the best combination of more than three anti-oxidants as it is difficult or impossible to test the anti-oxidant effect of the combination of every concentration of each ingredient experimentally. Here we present a math model, which is based on the classical Hill equation to determine the best combination, called Fixed Dose Combination (FDC), of several natural anti-oxidants, including Vc, green tea polyphenols (GTP) and grape seed extract proanthocyanidin (GSEP). Then we investigated the effects of FDC on oxidative stress, blood glucose and serum lipid levels in cultured 3T3-L1 adipocytes, high fat diet (HFD)-fed rats which serve as obesity model, and KK-ay mice as diabetic model. The level of serum malondialdehyde (MDA) in the treated rats was studied and Hematoxylin-Eosin (HE) staining or Oil red slices of liver and adipose tissue in the rats were examined as well. FDC shows excellent antioxidant and anti-glycation activity by attenuating lipid peroxidation. FDC determined in this investigation can become a potential solution to reduce obesity, to improve insulin sensitivity and be beneficial for the treatment of fat and diabetic patients. It is the first time to use the math model to determine the best ratio of three anti-oxidants, which can save much more time and chemical materials than traditional experimental method. This quantitative method represents a potentially new and useful strategy to screen all possible combinations of many natural anti-oxidants, therefore may help develop novel therapeutics with the potential to ameliorate the worldwide metabolic

  19. The proper time for antioxidant consumption.

    Science.gov (United States)

    Beaulieu, Michaël; Schaefer, H Martin

    2014-04-10

    Consuming food rich in antioxidants may help organisms to increase their antioxidant defences and avoid oxidative damage. Under the hypothesis that organisms actively consume food for its antioxidant properties, they would need to do so in view of other physiological requirements, such as energy requirements. Here, we observed that Gouldian finches (Erythrura gouldiae) consumed most seeds rich in antioxidants in the middle of the day, while their consumption of staple seeds more profitable in energy intake (and poor in antioxidants) was maximal in the morning and the evening. This consumption of seeds rich in antioxidants in the middle of the day may be explicable (1) because birds took advantage of a time window associated with relaxed energy requirements to ingest antioxidant resources, or (2) because birds consumed antioxidant resources as a response to the highest antioxidant requirements in the middle of the day. If the latter hypothesis holds true, having the possibility to ingest antioxidants should be most beneficial in terms of oxidative balance in the middle of the day. Even though feeding on seeds rich in antioxidants improved Gouldian finches' overall antioxidant capacity, we did not detect any diurnal effect of antioxidant intake on plasma oxidative markers (as measured by the d-ROM and the OXY-adsorbent tests). This indicates that the diurnal pattern of antioxidant intake that we observed was most likely constrained by the high consumption of staple food to replenish or build up body reserves in the morning and in the evening, and not primarily determined by elevated antioxidant requirements in the middle of the day. Consequently, animals appear to have the possibility to increase antioxidant defences by selecting food rich in antioxidants, only when energetic constraints are relaxed. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Antioxidant and antiglycation properties of two mango (Mangifera indica L. cultivars from Senegal

    Directory of Open Access Journals (Sweden)

    Samba Fama Ndoye

    2018-01-01

    Full Text Available Objective: To evaluate the total phenolic contents, antioxidant and antiglycation activities of leaves, barks, roots and kernels from two cultivars of Mangifera indica (Anacardiaceae. Methods: Total phenolic contents were determined by using Folin-Ciocalteu's method. The antioxidant activities were assessed by three different protocols including DPPH, oxygen radical absorbance capacity and iron (II chelation assays. In addition, in vitro bovine serum albumin/D-ribose assay was chosen to evaluate the antiglycation properties of the extracts. Results: All the investigated extracts were found to contain high level of total phenols as well as potent antioxidant activities. Kernel extracts showed the highest total phenol contents and DPPH radical scavenging activities whereas higher oxygen radical absorbance capacity values were observed for leave, root and bark extracts. Besides, extracts from leaves, roots and barks from both cultivars exhibited potent inhibitory effects against the formation of advanced glycation end products, with IC50 values lower than the standard positive control aminoguanidine. Conclusions: The potent antiglycation and antioxidative activities of these two Mangifera indica cultivars suggest a possible role in targeting aging, diabetic complications and oxidative stress related diseases.

  1. Elucidating the Structure-Activity Relationships of the Vasorelaxation and Antioxidation Properties of Thionicotinic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2010-01-01

    Full Text Available Nicotinic acid, known as vitamin B3, is an effective lipid lowering drug and intense cutaneous vasodilator. This study reports the effect of 2-(1-adamantylthionicotinic acid (6 and its amide 7 and nitrile analog 8 on phenylephrine-induced contraction of rat thoracic aorta as well as antioxidative activity. It was found that the tested thionicotinic acid analogs 6-8 exerted maximal vasorelaxation in a dose-dependent manner, but their effects were less than acetylcholine (ACh-induced nitric oxide (NO vasorelaxation. The vasorelaxations were reduced, apparently, in both NG-nitro-L-arginine methyl ester (L-NAME and indomethacin (INDO. Synergistic effects were observed in the presence of L-NAME plus INDO, leading to loss of vasorelaxation of both the ACh and the tested nicotinic acids. Complete loss of the vasorelaxation was noted under removal of endothelial cells. This infers that the vasorelaxations are mediated partially by endothelium-induced NO and prostacyclin. The thionicotinic acid analogs all exhibited antioxidant properties in both 2,2-diphenyl-1-picrylhydrazyl (DPPH and superoxide dismutase (SOD assays. Significantly, the thionicotinic acid 6 is the most potent vasorelaxant with ED50 of 21.3 nM and is the most potent antioxidant (as discerned from DPPH assay. Molecular modeling was also used to provide mechanistic insights into the vasorelaxant and antioxidative activities. The findings reveal that the thionicotinic acid analogs are a novel class of vasorelaxant and antioxidant compounds which have potential to be further developed as promising therapeutics.

  2. Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity.

    Science.gov (United States)

    Abedi, Abdol-Samad; Rismanchi, Marjan; Shahdoostkhany, Mehrnoush; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-11-01

    It has been previously reported that the essential oil of Nigella sativa L. seeds and its major active component, thymoquinone (TQ), possess a broad variety of biological activities and therapeutic properties. In this work, microwave-assisted extraction (MAE) of the essential oil from Nigella sativa L. seeds and its antioxidant activity were studied. Response surface methodology based on central composite design was used to evaluate the effects of extraction time, irradiation power and moisture content on extraction yield and TQ content. Optimal parameters obtained by CCD and RSM were extraction time 30 min, irradiation power 450 W, and moisture content 50%. The extraction yield and TQ content of the essential oil were 0.33 and 20% under the optimum conditions, respectively. In contrast, extraction yield and TQ amount of oil obtained by hydrodistillation (HD) were 0.23 and 3.71%, respectively. The main constituents of the essential oil extracted by MAE and HD were p -cymene, TQ, α-thujene and longifolene, comprising more than 60% of total peak area. The antioxidant capacity of essential oils extracted by different methods were evaluated using 2,2-diphenyl-1-picrylhydrazyl and Ferric reducing antioxidant power assays, and compared with traditional antioxidants. The results showed that MAE method was a viable alternative to HD for the essential oil extraction from N. sativa seeds due to the excellent extraction efficiency, higher thymoquinone content, and stronger antioxidant activity.

  3. Synthesis and Biological Investigation of Antioxidant Pyrrolomorpholine Spiroketal Natural Products

    Science.gov (United States)

    Verano, Alyssa Leigh

    The pyrrolomorpholine spiroketal natural product family is comprised of epimeric furanose and pyranose isomers. These compounds were isolated from diverse plant species, all of which are used as traditional Chinese medicines for the treatment of a variety of diseases. Notably, the spiroketal natural products acortatarins A and B exhibit antioxidant activity in a diabetic renal cell model, significantly attenuating hyperglycemia-induced production of reactive oxygen species (ROS), a hallmark of diabetic nephropathy. The xylapyrrosides, additional members of the family, also inhibit t-butyl hydroperoxide-induced cytotoxicity in rat vascular smooth muscle cells. Accordingly, these natural products have therapeutic potential for the treatment of oxidative stress-related pathologies, and synthetic access would provide an exciting opportunity to investigate bioactivity and mechanism of action. Herein, we report the stereoselective synthesis of acortatarins A and B, furanose members of the pyrrolomorpholine spiroketal family. Our synthetic route was expanded to synthesize the pyranose congeners, thus completing entire D-enantiomeric family of natural products. Efficient access towards these scaffolds enabled systematic analogue synthesis, investigation of mechanism-of-action, and the discovery of novel antioxidants.

  4. Anti-Diabetic, Anti-Oxidant and Anti-Hyperlipidemic Activities of Flavonoids from Corn Silk on STZ-Induced Diabetic Mice.

    Science.gov (United States)

    Zhang, Yan; Wu, Liying; Ma, Zhongsu; Cheng, Jia; Liu, Jingbo

    2015-12-23

    Corn silk is a well-known ingredient frequently used in traditional Chinese herbal medicines. This study was designed to evaluate the anti-diabetic, anti-oxidant and anti-hyperlipidemic activities of crude flavonoids extracted from corn silk (CSFs) on streptozotocin (STZ)-induced diabetic mice. The results revealed that treatment with 300 mg/kg or 500 mg/kg of CSFs significantly reduced the body weight loss, water consumption, and especially the blood glucose (BG) concentration of diabetic mice, which indicated their potential anti-diabetic activities. Serum total superoxide dismutase (SOD) and malondialdehyde (MDA) assays were also performed to evaluate the anti-oxidant effects. Besides, several serum lipid values including total cholesterol (TC), triacylglycerol (TG), low density lipoprotein cholesterol (LDL-C) were reduced and the high density lipoprotein cholesterol level (HDL-C) was increased. The anti-diabetic, anti-oxidant and anti-hyperlipidemic effect of the CSFs suggest a potential therapeutic treatment for diabetic conditions.

  5. Skin and antioxidants.

    Science.gov (United States)

    Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar

    2013-04-01

    It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.

  6. Prophylactic and therapeutic effect of Punica granatum in trinitrobenzene sulfonic acid induced inflammation in rats.

    Science.gov (United States)

    Riaz, Azra; Khan, Rafeeq Alam; Afroz, Syeda; Mallick, Neelam

    2017-01-01

    Pomegranate (Punica granatum L., Punicaceae) contains varieties of antioxidants and phytochemicals; there are evidences that phytochemicals and antioxidants play a vital role in reducing inflammation. Hence this investigation was planned to assess the outcome of Punica granatum on trinitrobenzene sulfonic acid provoked colitis in rats at 2, 5 and 8ml/kg of the body weight. The effect of P. granatum was assessed in two group i.e. prophylaxis as pre-colitis and therapeutic as post-colitis. After completion of dosing in both the groups, macroscopic and histological examination of colon was carried out along with estimation of serum myeloperoxidase, glutathione, alkaline phosphate, fibrinogen and C-reactive protein. In prophylactic procedure P. granatum revealed significant (Pgranatum have a role in prevention as well as treatment of inflammation.

  7. Therapeutic effects of intensive inpatient rehabilitation in advanced Parkinson's disease

    OpenAIRE

    Kaseda, Yumiko; Ikeda, Junko; Sugihara, Katsunobu; Yamawaki, Takemori; Kohriyama, Tatsuo; Matsumoto, Masayasu

    2016-01-01

    Abstract Background The importance of rehabilitation therapy in Parkinson's disease is well recognized. However, the effects of an inpatient rehabilitation program for advanced Parkinson's disease have not been fully investigated. Aim To assess the effects of intensive inpatient rehabilitation. Methods We enrolled 31 patients (mean age 69.5 ? 9.4 years; mean disease duration 8.8 ? 6.4 years) with advanced Parkinson's disease, without severe cognitive impairment. The median Hoehn?Yahr stage wa...

  8. Therapeutic Efficacy of Ginger, Cisplatin and Radiation on Chemically-Induced Cancer in Male Albino Rats

    International Nuclear Information System (INIS)

    El-Beih, N.M.; Galal, S.M.; Fahmy, N.M.; Abd El-Azime, M.G.

    2015-01-01

    This study aimed to investigate the in vivo effect of dietary supplementation with ginger to evaluate its therapeutic effect against lung and kidney cancer and in combination with cisplatin as chemotherapy and radiotherapy in male albino rats. 54 male albino rats were divided into nine groups of 6 animals each, all animals were allowed to food and water ad libitum . Group I was treated with 0.5 ml saline, orlly for 12 consecutive weeks serve as con - trol group Group II injected with N-nitrosodimethylamine (NDMA) and carbon tetrachloride (CCl 4 ); all groups were injected with NDMA + CCl 4 for 6 weeks. Group III were given ginger for 6 consecutive weeks (200 mg/kg, b.wt./day). Group IV animals received cisplatin, group V irradiated with 2 Gy, group VI treated with ginger then irradiated, group VII treated with ginger then injected with cisplatin, group VIII injected with cisplatin then irradiated and group IX treated with ginger and cisplatin then irradiated. Antioxidant status in both kidney and lung tissues were estimated by determining the activity of antioxidant enzyme superoxide dismutase (SOD); as well as the level of reduced glutathione (GSH), Malondialdehyde (MDA) and Nitric oxide (NO). In parallel to histopathological investigations of lung and kidney tissues. In addition, Tumor Necrosis Factor Alpha (TNF-α) level, advanced oxidative protein product (AOPP), urea, creatinine and uric acid. Remarkable disturbances were observed in the levels of all tested parameters in NDMA + CCl 4 group. On the other hand, rats injected with the cancer agents then treated with cisplatin+radiation showed moderate improvements in the studied parameters while, treatment with ginger + cisplatin + radiation ameliorated the levels of the disturbed bio

  9. Study of Maca (Lepidium meyenii Walp., Andean crop with therapeutic properties

    Directory of Open Access Journals (Sweden)

    Gabriel Sifuentes-Penagos

    2015-06-01

    Full Text Available The maca is a native product of the Central Andes of Peru, it is resistant to hail, to frost and to prolonged droughts. It is cultivated from the Inca period in altitudes between 3800 - 4500 meters above sea level. This herbaceous plant, has not only a high nutritional value, but it is also valued for its medicinal role. Among the chemical components of this andean crop that have been related with therapeutic actions the increasing fertility and the energy levels, the antioxidant actions, the improving sexual desire and the growth rate. There are glucosinolates, sterols, fatty acids (macaene and their corresponding amides (macamides, alkaloids (lepidilines A and B, macaridine and polyphenols. This article presents a compilation of the researches that has been performed on the therapeutic properties of maca and its compounds responsible of them.

  10. Advances in therapeutic Fc engineering - modulation of IgG associated effector functions and serum half-life

    Directory of Open Access Journals (Sweden)

    Abhishek Saxena

    2016-12-01

    Full Text Available Today monoclonal immunoglobulin gamma (IgG antibodies have become a major option in cancer therapy especially for the patients with advanced or metastatic cancers. Efficacy of monoclonal antibodies (mAbs are achieved through both its antigen binding fragment (Fab and crystallizable fragment (Fc. Fab can specifically recognize tumor associated antigen (TAA and thus modulate TAA-linked downstream signaling pathways that may lead to inhibition of tumor growth, induction of tumor apoptosis and differentiation. The Fc region can further improve mAbs’ efficacy by mediating effector functions such as antibody-dependent cellular cytotoxicity (ADCC, complement-dependent cytotoxicity (CDC and antibody dependent cell-mediated phagocytosis (ADCP. Moreover, Fc is the region interacting with the neonatal Fc receptor (FcRn in a pH-dependent manner that can slow down IgG’s degradation and extend its serum half-life. Loss of the antibody Fc region dramatically shortens its serum half-life and weakens its anti-cancer effects. Given the essential roles that the Fc region plays in the modulation of the efficacy of mAb in cancer treatment, Fc engineering has been extensively studied in the past years. This review focuses on the recent advances in therapeutic Fc engineering that modulates its related effector functions and serum half-life. We also discuss the progress made in aglycosylated mAb development that may substantially reduce cost of manufacture but maintain similar efficacies as conventional glycosylated mAb. Finally, we highlight several Fc engineering based mAbs under clinical trials.

  11. Reactive metabolites and antioxidant gene polymorphisms in Type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Monisha Banerjee

    2014-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM, by definition is a heterogeneous, multifactorial, polygenic syndrome which results from insulin receptor dysfunction. It is an outcome of oxidative stress caused by interactions of reactive metabolites (RMs interactions with lipids, proteins and other mechanisms of human body. Production of RMs mainly superoxide (O2·− has been found in a variety of predominating cellular enzyme systems including NAD(PH oxidase, xanthine oxidase (XO, cyclooxygenase (COX, uncoupled endothelial nitric oxide synthase (eNOS and myeloperoxidase (MPO. The four main RM related molecular mechanisms are: increased polyol pathway flux; increased advanced glycation end-product (AGE formation; activation of protein kinase C (PKC isoforms and increased hexosamine pathway flux which have been implicated in glucose-mediated vascular damage. Superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione-S-transferase (GST, nitric oxide synthase (NOS are antioxidant enzymes involved in scavenging RMs in normal individuals. Functional polymorphisms of these antioxidant enzymes have been reported to be involved in pathogenesis of T2DM individuals. The low levels of antioxidant enzymes or their non-functionality results in excessive RMs which initiate stress related pathways thereby leading to insulin resistance and T2DM. An attempt has been made to review the role of RMs and antioxidant enzymes in oxidative stress resulting in T2DM.

  12. Antioxidants in bakery products: a review.

    Science.gov (United States)

    Nanditha, B; Prabhasankar, P

    2009-01-01

    Fats impart taste and texture to the product but it is susceptible to oxidation leading to the development of rancidity and off-flavor. Since ancient times it has been in practice to use antioxidants in foods. Discovery of synthetic antioxidants has revolutionized the use of antioxidants in food. The effect of these antioxidants in bakery products were reviewed and found to be effective in enhancing the shelf life. Animal experimental studies have shown that some of the synthetic antioxidants had toxigenic, mutagenic, and carcinogenic effects. Hence there is an increasing demand for the use of natural antioxidants in foods, especially in bakery products. Some of the natural antioxidants such as alpha-tocopherol, beta-carotene, and ascorbic acid were already used in bakery products. These natural antioxidants are found to be effective in enhancing the shelf life of bakery products but not to the extent of synthetic antioxidants. Baking processing steps may lower the antioxidative activity but techniques such as encapsulation of antioxidants can retain their activity. Antioxidative activity of the plant extracts such as garcinia, curcumin, vanillins, and mint were reviewed but studies on their role in bakery products were limited or very few. Hence there is a wide scope for study under this direction in depth.

  13. Recent Progress Toward Hydrogen Medicine: Potential of Molecular Hydrogen for Preventive and Therapeutic Applications

    Science.gov (United States)

    Ohta, Shigeo

    2011-01-01

    Persistent oxidative stress is one of the major causes of most lifestyle-related diseases, cancer and the aging process. Acute oxidative stress directly causes serious damage to tissues. Despite the clinical importance of oxidative damage, antioxidants have been of limited therapeutic success. We have proposed that molecular hydrogen (H2) has potential as a “novel” antioxidant in preventive and therapeutic applications [Ohsawa et al., Nat Med. 2007: 13; 688-94]. H2 has a number of advantages as a potential antioxidant: H2 rapidly diffuses into tissues and cells, and it is mild enough neither to disturb metabolic redox reactions nor to affect reactive oxygen species (ROS) that function in cell signaling, thereby, there should be little adverse effects of consuming H2. There are several methods to ingest or consume H2, including inhaling hydrogen gas, drinking H2-dissolved water (hydrogen water), taking a hydrogen bath, injecting H2-dissolved saline (hydrogen saline), dropping hydrogen saline onto the eye, and increasing the production of intestinal H2 by bacteria. Since the publication of the first H2 paper in Nature Medicine in 2007, the biological effects of H2 have been confirmed by the publication of more than 38 diseases, physiological states and clinical tests in leading biological/medical journals, and several groups have started clinical examinations. Moreover, H2 shows not only effects against oxidative stress, but also various anti-inflammatory and anti-allergic effects. H2 regulates various gene expressions and protein-phosphorylations, though the molecular mechanisms underlying the marked effects of very small amounts of H2 remain elusive. PMID:21736547

  14. Phenolic content, antioxidant and antibacterial activity of selected natural sweeteners available on the Polish market.

    Science.gov (United States)

    Grabek-Lejko, Dorota; Tomczyk-Ulanowska, Kinga

    2013-01-01

    Seventeen natural sweeteners available on the Polish market were screened for total phenolic content, by the Folin-Ciocalteu method, and for antioxidant activity, using the ferric reducing antioxidant power (FRAP) assay and the 2,2'-Azinobis (3-ethylbenzthiazoline-6-sulphonic acid) radical cation decolorization assay (ABTS(·+)). In addition, we analyzed antibacterial activities against Staphylococcus aureus strains: both those susceptible and those resistant to methicillin (MRSA). The results of the study showed that total phenolic content, antioxidant activity and antibacterial activity differ widely among different samples of sweeteners. Phenolic content, expressed as a gallic acid equivalent, ranged from 0 mg kg(-1) in white, refined sugar, xylitol and wheat malt syrup to 11.4 g kg(-1) in sugarcane molasses. Antioxidant activity was lowest in refined white sugar, xylitol, brown beet sugar, liquid fructose, and rape honey; it was average in spelt syrup and corn syrup, and highest in sugar cane, beet molasses, date and barley syrups. Despite the great variety of sweeteners, a strong correlation was noted between the concentration of phenolics and antioxidant properties, as determined by the ABTS(·+) method (r = 0.97) and the FRAP assay (r = 0.77). The strongest antibacterial activity was observed in sugarcane molasses, which was lethal to S. aureus strains at 2 and 4% concentrations in medium for susceptible and MRSA strains respectively. Other sweeteners kill bacteria in 6-15% solutions, whereas some did not show any antibacterial activities against S. aureus strains, even at 20% concentrations. Due to their high antioxidant and antibacterial activities, some of the tested sweeteners have potential therapeutic value as supporting agents in antibiotic therapy.

  15. Antimicrobial, antioxidant and cytotoxic activities of propolis from Melipona orbignyi (Hymenoptera, Apidae).

    Science.gov (United States)

    Campos, Jaqueline Ferreira; dos Santos, Uilson Pereira; Macorini, Luis Fernando Benitez; de Melo, Adriana Mary Mestriner Felipe; Balestieri, José Benedito Perrella; Paredes-Gamero, Edgar Julian; Cardoso, Claudia Andrea Lima; de Picoli Souza, Kely; dos Santos, Edson Lucas

    2014-03-01

    Propolis from stingless bees is well known for its biologic properties; however, few studies have demonstrated these effects. Therefore, this study aimed to investigate the chemical composition and antimicrobial, antioxidant and cytotoxic activities of propolis from the stingless bee Melipona orbignyi, found in Mato Grosso do Sul, Brazil. The chemical composition of the ethanol extract of propolis (EEP) indicated the presence of aromatic acids, phenolic compounds, alcohols, terpenes and sugars. The EEP was active against the bacterium Staphylococcus aureus and the fungus Candida albicans. The EEP showed antioxidant activity by scavenging free radicals and inhibiting hemolysis and lipid peroxidation in human erythrocytes incubated with an oxidizing agent. Additionally, EEP promoted cytotoxic activity and primarily necrotic death in K562 erythroleukemia cells. Taken together, these results indicate that propolis from M. orbignyi has therapeutic potential for the treatment and/or prevention of diseases related to microorganism activity, oxidative stress and tumor cell proliferation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Melipona mondury produces a geopropolis with antioxidant, antibacterial and antiproliferative activities.

    Science.gov (United States)

    Santos, Tássia L A Dos; Queiroz, Raphael F; Sawaya, Alexandra C H F; Lopez, Begoña Gimenez-Cassina; Soares, Milena B P; Bezerra, Daniel P; Rodrigues, Ana Carolina B C; Paula, Vanderlúcia F DE; Waldschmidt, Ana Maria

    2017-01-01

    Geopropolis is a special type of propolis produced by stingless bees. Several pharmacological properties have been described for different types of geopropolis, but there have been no previous studies of the geopropolis from Melipona mondury. In this study, we investigated the antioxidant, antibacterial, and antiproliferative activities of M. mondury geopropolis, and determined its chemical profile. The antioxidant activity was determined using in vitro ABTS·+, ·DPPH, and β-carotene/linoleic acid co-oxidation methods. The antibacterial activity was determined using a microdilution method with Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant S. aureus. The antiproliferative effect was determined in tumor cell lines using the Alamar Blue assay. The chemical profile was obtained using UHPLC-MS and UHPLC-MS/MS. The butanolic fraction had the highest concentration of phenolic compounds and more potent antioxidant properties in all assays. This fraction also had bacteriostatic and bactericidal effects against all bacterial strains at low concentrations, especially S. aureus. The hexane fraction had the highest antiproliferative potential, with IC50 values ranging from 24.2 to 46.6 µg/mL in HL-60 (human promyelocytic leukemia cell) and K562 (human chronic myelocytic leukemia cell), respectively. Preliminary chemical analysis indicates the presence of terpenes and gallic acid in the geopropolis. Our results indicate the therapeutic potential of geopropolis from M. mondury against inflammatory, oxidative, infectious, and neoplastic diseases.

  17. Melipona mondury produces a geopropolis with antioxidant, antibacterial and antiproliferative activities

    Directory of Open Access Journals (Sweden)

    TÁSSIA L.A. DOS SANTOS

    Full Text Available ABSTRACT Geopropolis is a special type of propolis produced by stingless bees. Several pharmacological properties have been described for different types of geopropolis, but there have been no previous studies of the geopropolis from Melipona mondury. In this study, we investigated the antioxidant, antibacterial, and antiproliferative activities of M. mondury geopropolis, and determined its chemical profile. The antioxidant activity was determined using in vitro ABTS·+, ·DPPH, and β-carotene/linoleic acid co-oxidation methods. The antibacterial activity was determined using a microdilution method with Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant S. aureus. The antiproliferative effect was determined in tumor cell lines using the Alamar Blue assay. The chemical profile was obtained using UHPLC-MS and UHPLC-MS/MS. The butanolic fraction had the highest concentration of phenolic compounds and more potent antioxidant properties in all assays. This fraction also had bacteriostatic and bactericidal effects against all bacterial strains at low concentrations, especially S. aureus. The hexane fraction had the highest antiproliferative potential, with IC50 values ranging from 24.2 to 46.6 µg/mL in HL-60 (human promyelocytic leukemia cell and K562 (human chronic myelocytic leukemia cell, respectively. Preliminary chemical analysis indicates the presence of terpenes and gallic acid in the geopropolis. Our results indicate the therapeutic potential of geopropolis from M. mondury against inflammatory, oxidative, infectious, and neoplastic diseases.

  18. Biochemical Studies on Rosemary Extracts as an Antioxidant in Irradiated Rats

    International Nuclear Information System (INIS)

    Abady, M.M.; Zahran, A.M.; Mansour, S.Z.; Ragab, E.A.

    2003-01-01

    The antioxidant properties of rosemary (Rosmarinus officinalis) essential oil and crude ethanolic extract, have been attributed to its phenolic diterpene, carnosol, carnosic acid, caffeic acid and its derivatives such as rosmarinic acid. These aroma compounds were identified to protect biological membranes from oxidative stress in addition to divers pharmacological and therapeutic activities. This study was undertaken to investigate the effect of natural extract derived from rosemary herb, as an antioxidant defensive element in irradiated rats. Mixture of essential oil and hydroalcoholic extract was orally administered to rats by gavage (150 mg/kg B.w.) for 35 days before exposure to the first fraction of irradiation exposure and during the whole period of irradiation treatment (12 days). Whole body irradiation was delivered as fractionated doses at 1 Gy increment every other day up to total cumulative dose of 6 Gy. Changes in the content of reduced glutathion (GSH), glutathion peroxidase (GSHPx), glucose -6- phosphate dehydrogenase (G-6-PD), superoxide dismutase (SOD) and catalase (Cat.) in blood, liver and spleen were evaluated in different rat groups. The results revealed that transient noticeable increase during the 1st hour post irradiation in the aforementioned parameters, followed by significant decrease recorded after 7 days. Rats supplemented rosemary extract before irradiation have significantly ameliorate the radiation induced depletion in the antioxidant component system

  19. Study on preparation of new antioxidants for radiation vulcanized natural rubber latex product. Antioxidant from keratin

    International Nuclear Information System (INIS)

    Nguyen Quoc Hien; Nguyen Van Toan; Vo Tan Thien; Le Hai

    2000-01-01

    The thermo-oxidative aging resistance of radiation vulcanization of natural rubber latex (RVNRL) products should be adequately by using suitable antioxidants or new kind of effective antioxidant. This work presents the results of preparation of natural antioxidant from hair keratin. Characteristics and effectiveness of resultant antioxidant are also presented. The results obtained indicates that antioxidant made from hair keratin is safe and effective for rubber products from RVNRL. (author)

  20. Neuroprotective effect of STAZN, a novel azulenyl nitrone antioxidant, in focal cerebral ischemia in rats: dose-response and therapeutic window

    Science.gov (United States)

    Ley, James J.; Belayev, Ludmila; Saul, Isabel; Becker, David A.; Ginsberg., Myron D.

    2007-01-01

    Stilbazulenyl nitrone (STAZN) is a potent antioxidant that, in a rat model of transient focal cerebral ischemia, confers significant enduring functional and morphological neuroprotection. This study investigated the influence of dose and time of administration on the neuroprotective effects of STAZN in the intraluminal-suture model of middle cerebral artery occlusion (MCAo). Dose-Response At 2 and 4h after the onset of MCAo, animals received intravenously either STAZN (low dose=0.07 mg/kg, n=8), (medium dose=0.7 mg/kg, n=9), (high dose=3.5 mg/kg, n=9), an equivalent volume of vehicle (30% Solutol HS15 and 70% isotonic saline, 0.37 ml/kg, n=5), or saline (0.37 ml/kg, n=5). Only the medium dose improved scores (p<0.05) on a standardized neurobehavioral test at 1, 2 and 3d after MCAo. Only the medium dose reduced the total infarction (51%, p=0.014) compared to controls. These results indicate that STAZN exhibits maximal neuroprotection at the 0.7 mg/kg dose. Therapeutic Window STAZN (0.6 mg/kg) dissolved in dimethylsulfoxide was given intra-peritoneally at 2 and 4h (n=11), 3 and 5h (n=10), 4 and 6h (n=10), or 5 and 7h (n=7) after the onset of MCAo. Additional doses were given at 24 and 48h. Vehicle (dimethylsulfoxide, 2.0 ml/kg, n=6) was administered at 3, 5, 24 and 48h. STAZN treatment initiated at 2 or 3h after the onset of MCAo improved neurological scores (p<0.001) and reduced total infarction (42.2%, p<0.05) compared to controls. PMID:17945201

  1. Therapeutic effects of hydrogen on chronic graft-versus-host disease.

    Science.gov (United States)

    Qian, Liren; Liu, Xiaopeng; Shen, Jianliang; Zhao, Defeng; Yin, Wenjie

    2017-10-01

    The incidence of chronic graft-versus-host disease (cGVHD) is rising recent years, which has been the leading cause of non-transplantation mortality post allogenetic hematopoietic stem cell transplantation (HSCT). Imbalance of inflammatory cytokines and fibrosis plays critical roles in the pathogenesis of cGVHD. Recent studies showed that molecular hydrogen has anti-inflammatory, antioxidant, anti-fibrosis effects. Therefore, we hypothesized that molecular hydrogen may have therapeutic effects on cGVHD. To determine whether hydrogen could protect mice from cGVHD in an MHC-incompatible murine bone marrow transplantation (BMT) model, survival rates of mice were calculated, and skin lesions were also evaluated after BMT. This article demonstrated that administration of hydrogen-rich saline increased survival rate of cGVHD mice. Administration of hydrogen-rich saline after transplantation also reduced skin lesions of cGVHD mice. Previously, we reported the therapeutic effects of hydrogen on acute GVHD. However, there was no report on the therapeutic effects of hydrogen on cGVHD mice. It is suggested that hydrogen has a potential as an effective and safe therapeutic agent on cGVHD. This study will provide new ideas on the treatment of cGVHD and has important theoretical values. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Antioxidant, antimicrobial, cell viability and enzymatic inhibitory of antioxidant polymers as biological macromolecules.

    Science.gov (United States)

    Hashemi Gahruie, Hadi; Niakousari, Mehrdad

    2017-11-01

    Polymeric antioxidants such as Catechinaldehyde Polycondensates, Catechin-acelaldehydepolycondensates, Flavonoid-grafted chitosan fibers, Ferulate hydrogel, Dextran ferulate hydrogel, Starch-quercetin conjugate, Gallic acid- and Caffeic acid-functionalized chitosan, Gallic acid - chitosan conjugate, Poly(rutin), Gallic acid grafted chitosan, Dextran-Catechin Conjugate belong to biological macromolecules. These kinds of compounds have stronger antioxidant potential and pharmacokinetic activities, as compared to similar low molecular weight preservatives. Most of these compounds sources are either antioxidants with low molecules polymerization, or polymers conjugation such as synthetic or natural preservatives. Additives are well known as being an important ingredient of food products due to their strong preservative potential. Many researchers and industries attempt to find synthesize materials with the same antioxidant potential and higher stability than the similar compounds with low molecular weight. Recently, macromolecular antioxidants have received wide attention as food additives and dietary supplements in functional foods. It seems that the main usage of these compounds is in the food packaging industry. Most of these compounds have strong antioxidant, antimicrobial, cell viability and enzymatic inhibitory properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Why we should stop inferring simple correlations between antioxidants and plant stress resistance: towards the antioxidomic era.

    Science.gov (United States)

    Loiacono, F Vanessa; De Tullio, Mario C

    2012-04-01

    A large number of studies have investigated the relationship between different forms of abiotic stress and antioxidants. However, misconceptions and technical flaws often affect studies on this important topic. Reactive oxygen species (ROS) generated under stress conditions should not be considered just as potential threats, because they are essential components of the signaling mechanism inducing plant defenses. Similarly, the complexity of the antioxidant system should be considered, to avoid misleading oversimplifications. Recent literature is discussed, highlighting the importance of accurate experimental setups for obtaining reliable results in this delicate field of research. A tentative "troubleshooting guide" is provided to help researchers interested in improving the quality of their work on the role of antioxidants in plant stress resistance. Significant advancements in the field could be reached with the development of antioxidomics, defined here as a new branch of research at the crossroads of other disciplines including metabolomics and proteomics, studying the complex relationship among antioxidants and their functions.

  4. Maca polysaccharides: A review of compositions, isolation, therapeutics and prospects.

    Science.gov (United States)

    Li, Yujuan; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Cui, Xiaowei; Han, Chunchao

    2018-05-01

    Maca polysaccharides, some of the major bioactive substances in Lepidium meyenii (Walp.) (Maca), have various biological properties, including anti-oxidant, anti-fatigue, anti-tumor, and immunomodulatory effects, as well as hepatoprotective activity and regulation function. Although many therapeutics depend on multiple structures of maca polysaccharides in addition to providing sufficient foundations for maca polysaccharide products in industrial applications, the relationships between the pharmacological effects and structures have not been established. Therefore, this article summarizes the extraction and purification methods, compositions, pharmacological effects, prospects and industrial applications of maca polysaccharides. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Antidiabetic Effects of Aronia melanocarpa and Its Other Therapeutic Properties

    Directory of Open Access Journals (Sweden)

    Ines Banjari

    2017-11-01

    Full Text Available Diabetes is a global pandemic which warrants urgent attention due to its rising prevalence and economic burden. Thus, many alternative therapies are being researched for antidiabetic properties, given the inefficacy of current medicinal treatments. From this perspective, Aronia melanocarpa or black chokeberry has been investigated for its therapeutic properties in many studies, especially for its ability to combat hyperglycemia-induced oxidative stress and the macrovascular complications of diabetes including cardiovascular disease. Though A. melanocarpa is native to the eastern areas of North America, it has been planted extensively in Europe and Asia as well. Several in vivo studies have displayed the antioxidant properties of A. melanocarpa berry juice and plant extract in rat models where oxidative stress markers were observed to have significant reductions. Some of the potent bioactive compounds present in the fruits and other parts of the plant were identified as (−-epicatechin, chlorogenic acid, neochlorogenic acid, and cyanidin-3-galactoside. Overall, A. melanocarpa could be considered a good source of antioxidants which is effective in combating hyperglycemia-induced oxidative stress.

  6. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  7. Effect of natural antioxidants on the quality of frozen sardine fillets (Sardina pilchardus

    Directory of Open Access Journals (Sweden)

    Rui Manuel Maneta Ganhão

    2014-06-01

    Full Text Available The use of new technologies / processes provides different benefits on seafood sector, namely by enhanced the shelf-life of fish products with high polyunsaturated fatty acid composition. This is particularly critical during some months of the year when fish (e.g. sardines are larger supply than demand by consumers. The aim of this study was to performed the optimization process of adding natural antioxidants on frozen sardine fillets and evaluated the effect of addition of two natural antioxidants on the lipid oxidation process during storage at -200C. To evaluate the effect of the addition of antioxidants in sardine fillets, the product matrix was chemical characterized, including by the evaluation of the fatty acid profile. The lipid oxidation process was followed by the primary products (peroxide value and secondary products (TBARS quantification, and also by the analysis of the sensory changes (instrumental assessment of color. Finally, it was done a hedonic preference test to know the opinion of consumers about the frozen fillets with and without antioxidant. The natural antioxidants used, tocopherol (54 mg/fillet and tocopherols (15 mg/fillet with rosemary extract (6.5 mg/fillet inhibited or retarded the oxidation over time of storage when compared with the control samples, that had advanced oxidation process. There was not statistically differences among the fillets treated with tocopherol in the presence and absence of rosemary extract. However, our laboratorial results shown slight tendency for the view that the antioxidant tocopherols and rosemary extract had a greater effect on the oxidative stability of fillets. This observation is in line with results of the hedonic test consumer preference. The use of natural antioxidants is an inexpensive solution which allows the complete use of products with less waste of fish products and with a great need for disposal. At the same time meets the consumer´s requirements.

  8. Antioxidant response elements: Discovery, classes, regulation and potential applications.

    Science.gov (United States)

    Raghunath, Azhwar; Sundarraj, Kiruthika; Nagarajan, Raju; Arfuso, Frank; Bian, Jinsong; Kumar, Alan P; Sethi, Gautam; Perumal, Ekambaram

    2018-07-01

    Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Antioxidant synergistic effects of Osmanthus fragrans flowers with green tea and their major contributed antioxidant compounds

    OpenAIRE

    Mao, Shuqin; Wang, Kaidi; Lei, Yukun; Yao, Shuting; Lu, Baiyi; Huang, Weisu

    2017-01-01

    The antioxidant synergistic effects of Osmanthus fragrans flowers with green tea were evaluated, and their major antioxidant compounds contributed to the total amount of synergy were determined. The antioxidant compounds in O. fragrans flowers with green tea were identified by LC-MS and quantified by UPLC-PDA. The synergistic antioxidant interactions between O. fragrans flowers with green tea and their antioxidant compounds were tested using the Prieto?s model after the simulated digestion. T...

  10. Anti-Diabetic, Anti-Oxidant and Anti-Hyperlipidemic Activities of Flavonoids from Corn Silk on STZ-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-12-01

    Full Text Available Corn silk is a well-known ingredient frequently used in traditional Chinese herbal medicines. This study was designed to evaluate the anti-diabetic, anti-oxidant and anti-hyperlipidemic activities of crude flavonoids extracted from corn silk (CSFs on streptozotocin (STZ-induced diabetic mice. The results revealed that treatment with 300 mg/kg or 500 mg/kg of CSFs significantly reduced the body weight loss, water consumption, and especially the blood glucose (BG concentration of diabetic mice, which indicated their potential anti-diabetic activities. Serum total superoxide dismutase (SOD and malondialdehyde (MDA assays were also performed to evaluate the anti-oxidant effects. Besides, several serum lipid values including total cholesterol (TC, triacylglycerol (TG, low density lipoprotein cholesterol (LDL-C were reduced and the high density lipoprotein cholesterol level (HDL-C was increased. The anti-diabetic, anti-oxidant and anti-hyperlipidemic effect of the CSFs suggest a potential therapeutic treatment for diabetic conditions.

  11. Microencapsulation of natural antioxidants for food application - The specific case of coffee antioxidants - A review

    OpenAIRE

    Joana Aguiar; Berta Nogueiro Estevinho; Lúcia Silveira Santos

    2016-01-01

    Background: Functional foods fortified with antioxidants are gaining more popularity since consumption alone of foods naturally rich in antioxidants is insufficient to reduce oxidative stress associated with various diseases. Despite their beneficial effects, natural antioxidants present in coffee are sensitive to heat, light and oxygen, limiting their application in the food industry. Although microencapsulation is able to protect the antioxidant from degradation, mask its taste and control ...

  12. The Effect of Hylocereus polyrhizus and Hylocereus undatus on Physicochemical, Proteolysis, and Antioxidant Activity in Yogurt

    OpenAIRE

    Zainoldin; K.H.; Baba; A.S.

    2009-01-01

    Yogurt is a coagulated milk product obtained from the lactic acid fermentation by the action of Lactobacillus bulgaricus and Streptococcus thermophilus. The additions of fruits into milk may enhance the taste and the therapeutical values of milk products. However fruits also may change the fermentation behaviour. In this present study, the changes in physicochemical, the peptide concentration, total phenolics content and the antioxidant potential of yogurt upon the additi...

  13. Antioxidant Activities of Basella alba Aqueous Leave Extract In Blood, Pancreas, and Gonadal Tissues of Diabetic Male Wistar Rats.

    Science.gov (United States)

    Arokoyo, Dennis Seyi; Oyeyipo, Ibukun Peter; Du Plessis, Stefan Simon; Aboua, Yapo Guillaume

    2018-01-01

    Oxidative stress is frequently identified as a key element in the pathophysiology of many complications of diabetes mellitus, including reproductive complications. The antioxidant potential of medicinal plants have been suggested for therapeutic focus of diseases in recent reports. To investigate the effect of Basella alba (Ba) aqueous leave extract on diabetes-induced oxidative stress. Forty male Wistar rats (8-10 weeks) were randomly divided into four groups ( n = 10) and treated as follows; Control (C + Ns) and Diabetic (D + Ns) animals received oral normal saline 0.5 ml/100 g body weight daily, while Healthy Treatment (H + Ba) and Diabetic Treatment (D + Ba) rats were given Ba extract at an oral dose of 200 mg/kg body weight daily. Treatment was by gavage and lasted 4 weeks in all groups. Diabetes was induced in D + Ns and D + Ba rats by single intraperitoneal injection of streptozotocin (55 mg/kg) and fasting blood sugar (FBS) recorded weekly in all rats afterwards. Animals were euthanized at the end of the experiment and blood samples, pancreas, testes, and epididymis were preserved for analysis of oxidative stress biomarkers. Oral administration of aqueous leave extract of Ba significantly ( P antioxidant power, but lower serum concentration of conjugated dienes and thiobarbituric acid reactive substances in D + Ba compared to D + Ns rats ( P antioxidant effects in the gonads by enhancing antioxidant parameters in circulating blood, but not necessarily in the gonadal tissues. Oral treatment of diabetic rats with aqueous leave extract of Basella alba exerts antioxidant effects in the gonads by enhancing antioxidant parameters in circulating blood, but not necessarily in the gonadal tissues. Abbreviations Used: AP - Antioxidant parameters, Ba - Basella alba , CAT - Catalase, CDs - Conjugated dienes, DM - Diabetes mellitus, FBS - Fasting blood sugar, FRAP - Ferric reducing antioxidant power, GSH - reduced glutathione, Ns - Normal saline, ORAC - oxygen radical

  14. Pan-Cancer Analysis of the Mediator Complex Transcriptome Identifies CDK19 and CDK8 as Therapeutic Targets in Advanced Prostate Cancer.

    Science.gov (United States)

    Brägelmann, Johannes; Klümper, Niklas; Offermann, Anne; von Mässenhausen, Anne; Böhm, Diana; Deng, Mario; Queisser, Angela; Sanders, Christine; Syring, Isabella; Merseburger, Axel S; Vogel, Wenzel; Sievers, Elisabeth; Vlasic, Ignacija; Carlsson, Jessica; Andrén, Ove; Brossart, Peter; Duensing, Stefan; Svensson, Maria A; Shaikhibrahim, Zaki; Kirfel, Jutta; Perner, Sven

    2017-04-01

    Purpose: The Mediator complex is a multiprotein assembly, which serves as a hub for diverse signaling pathways to regulate gene expression. Because gene expression is frequently altered in cancer, a systematic understanding of the Mediator complex in malignancies could foster the development of novel targeted therapeutic approaches. Experimental Design: We performed a systematic deconvolution of the Mediator subunit expression profiles across 23 cancer entities ( n = 8,568) using data from The Cancer Genome Atlas (TCGA). Prostate cancer-specific findings were validated in two publicly available gene expression cohorts and a large cohort of primary and advanced prostate cancer ( n = 622) stained by immunohistochemistry. The role of CDK19 and CDK8 was evaluated by siRNA-mediated gene knockdown and inhibitor treatment in prostate cancer cell lines with functional assays and gene expression analysis by RNAseq. Results: Cluster analysis of TCGA expression data segregated tumor entities, indicating tumor-type-specific Mediator complex compositions. Only prostate cancer was marked by high expression of CDK19 In primary prostate cancer, CDK19 was associated with increased aggressiveness and shorter disease-free survival. During cancer progression, highest levels of CDK19 and of its paralog CDK8 were present in metastases. In vitro , inhibition of CDK19 and CDK8 by knockdown or treatment with a selective CDK8/CDK19 inhibitor significantly decreased migration and invasion. Conclusions: Our analysis revealed distinct transcriptional expression profiles of the Mediator complex across cancer entities indicating differential modes of transcriptional regulation. Moreover, it identified CDK19 and CDK8 to be specifically overexpressed during prostate cancer progression, highlighting their potential as novel therapeutic targets in advanced prostate cancer. Clin Cancer Res; 23(7); 1829-40. ©2016 AACR . ©2016 American Association for Cancer Research.

  15. The beneficial effects of l-cysteine on brain antioxidants of rats affected by sodium valproate.

    Science.gov (United States)

    Hamza, R Z; El-Shenawy, N S

    2017-11-01

    Oxidative stress caused by sodium valproate (SV) is known to play a key role in the pathogenesis of brain tissue. The present study was designed to evaluate the protective effect of l-cysteine (LC) on the antioxidants of brain tissue of rats. The animals were divided into six groups: control group 1 was treated with saline as vehicle, groups 2 and 3 were treated with low and high doses of SV (100 and 500 mg/kg, respectively), group 4 was treated with LC (100 mg/kg), and groups 5 and 6 were treated with low-dose SV + LC and high-dose SV + LC, respectively. All the groups were treated orally by gastric tube for 30 successive days. Some antioxidant parameters were determined. Brain tissue (cerebral cortex) of SV-treated animals showed an increase in lipid peroxidation (LPO) and reduction in activity of enzymatic antioxidant and total antioxidant levels. Histopathological examination of cerebral cortex of SV rats showed astrocytic swelling, inflammation, and necrosis. After 4 weeks of the combination treatment of SV and LC daily, results showed significant improvement in the activity of cathepsin marker enzymes and restored the structure of the brain. LC was able to ameliorate oxidative stress deficits observed in SV rats. LC decreased LPO level and was also able to restore the activity of antioxidant enzymes as well as structural deficits observed in the brain of SV animals. The protective effect of LC in SV-treated rats is mediated through attenuation of oxidative stress, suggesting a therapeutic role for LC in individuals treated with SV.

  16. Amauroderma rugosum (Blume & T. Nees Torrend: Nutritional Composition and Antioxidant and Potential Anti-Inflammatory Properties

    Directory of Open Access Journals (Sweden)

    Pui-Mun Chan

    2013-01-01

    Full Text Available Amauroderma rugosum is a wild mushroom that is worn as a necklace by the indigenous communities in Malaysia to prevent fits and incessant crying by babies. The aim of this study was to investigate the nutritive composition and antioxidant potential and anti-inflammatory effects of A. rugosum extracts on LPS-stimulated RAW264.7 cells. Nutritional analysis of freeze-dried mycelia of A. rugosum (KUM 61131 from submerged culture indicated a predominant presence of carbohydrates, proteins, dietary fibre, phosphorus, potassium, and sodium. The ethanol crude extract (EE, its hexane (HF, ethyl acetate (EAF, and aqueous (AF fractions of mycelia of A. rugosum grown in submerged culture were evaluated for antioxidant potential and anti-inflammatory effects. EAF exhibited the highest total phenolic content and the strongest antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS assays. HF showed dose-dependent inhibition of NO production in LPS-stimulated RAW264.7 cells and NO radical scavenging activity. Gas chromatographic analysis of HF revealed the presence of ethyl linoleate and ergosterol, compounds with known anti-inflammatory properties. In conclusion, the nutritive compositions and significant antioxidant potential and anti-inflammatory effects of mycelia extracts of A. rugosum have the potential to serve as a therapeutic agent or adjuvant in the management of inflammatory disorders.

  17. Let the sun shine in: mechanisms and potential for therapeutics in skin photodamage.

    Science.gov (United States)

    Wondrak, Georg T

    2007-05-01

    Photoaging and photocarcinogenesis are the two Janus faces of skin photodamage. Reactivity-based design of prototype agents that antagonize, modulate and reverse the chemistry of skin photodamage holds promise in delivering unprecedented therapeutic benefit. In contrast to structure-based approaches that use selective ligands to target macromolecules, reactivity-based drug discovery uses chemical reagents as therapeutics to target reactive chemical species as key mediators of skin photo-oxidative stress. The following classes of reactivity-based agents for skin photoprotection can be distinguished based on their mechanism of action: direct antagonists of photo-oxidative stress (sunscreens, quenchers of photo-excited states, antioxidants, redox modulators and glycation inhibitors) and skin photo-adaptation inducers (nuclear factor erythroid 2-related factor 2 [Nrf2] activators, heat-shock response inducers and metallothionein inducers).

  18. Protective and Antioxidant Effects of a Chalconoid from Pulicaria incisa on Brain Astrocytes

    Directory of Open Access Journals (Sweden)

    Anat Elmann

    2013-01-01

    Full Text Available Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF. Thus, any damage to astrocytes will affect neuronal survival. In the present study, by activity-guided fractionation, we have purified from the desert plant Pulicaria incisa two protective compounds and determined their structures by spectroscopic methods. The compounds were found to be new chalcones—pulichalconoid B and pulichalconoid C. This is the first study to characterize the antioxidant and protective effects of these compounds in any biological system. Using primary cultures of astrocytes, we have found that pulichalconoid B attenuated the accumulation of ROS following treatment of these cells with hydrogen peroxide by 89% and prevented 89% of the H2O2-induced death of astrocytes. Pulichalconoid B exhibited an antioxidant effect both in vitro and in the cellular antioxidant assay in astrocytes and microglial cells. Pulichalconoid B also caused a fourfold increase in GDNF transcription in these cells. Thus, this chalcone deserves further studies in order to evaluate if beneficial therapeutic effect exists.

  19. Therapeutic effect of intra-arterial chemotherapy with DDP and 5-FU via bilateral uterine arteries for advanced uterine cervical cancer

    International Nuclear Information System (INIS)

    Zhou Kang; Li Xiaoguang; Jin Zhengyu; Yang Ning; Liu Wei; Pan Jie; Zhang Xiaobo; Shi Haifeng; Sun Hao; Wang Zhiwei

    2010-01-01

    Objective: To evaluate the therapeutic effect of intra-arterial chemotherapy with Ddp and 5-Fu via bilateral uterine arteries for advanced uterine cervical cancer. Methods: During the period of Jan. 2006-Jan. 2009, initial intra-arterial chemotherapy by using a combination of Ddp and 5-Fu via bilateral uterine arteries was performed in 72 patients (mean age 42.9 years) with advanced uterine cervical caner. Of 72 patients, stage I b2 cervical cancer was confirmed in 28, stage II a in 12 and stage II b in 32. Pathologically, cervical squamous cell carcinoma was seen in 56 and cervical adenocarcinoma in 16 patients. Ultrasonography and physical examination were conducted both before and after intra-arterial chemotherapy. The therapeutic results,complications,the surgical resection rate and the pathologic findings were observed and statistically analyzed. Results: Fifty-four patients received one treatment course and 18 patients received two treatment courses. The over all response rate was 77.8%. The response rates of patients with I b2, II a and II b cervical cancer were 92.9%, 83.3% and 62.5% respectively, the difference between three groups was statistically significant (P < 0.05). And the response rates of patients with squamous cell carcinoma and adenocarcinoma were 85.7% and 50.0% respectively, the difference between the two was statistically significant (P < 0.05). The most common side-effects included gastrointestinal symptoms and bone marrow suppression. Thirty-four patients received radical hysterectomy,among them, 22 (78.6%) had stage I b2, 8 (66.7%) had stage II a and 4 (12.5%) had stage II b cervical cancer (P < 0.05). Pathologic exam found no vaginal invasion and ovarian metastasis in all 34 patients. The occurrence of metastasis to lymph nodes and para uterine infiltration were 17.6% and 11.8% respectively. Conclusion: Intra-arterial chemotherapy with a combination of DDP and 5-Fu via bilateral uterine arteries can safely and effectively reduce the

  20. Advances in Alzheimer's Diagnosis and Therapy: The Implications of Nanotechnology.

    Science.gov (United States)

    Hajipour, Mohammad Javad; Santoso, Michelle R; Rezaee, Farhad; Aghaverdi, Haniyeh; Mahmoudi, Morteza; Perry, George

    2017-10-01

    Alzheimer's disease (AD) is a type of dementia that causes major issues for patients' memory, thinking, and behavior. Despite efforts to advance AD diagnostic and therapeutic tools, AD remains incurable due to its complex and multifactorial nature and lack of effective diagnostics/therapeutics. Nanoparticles (NPs) have demonstrated the potential to overcome the challenges and limitations associated with traditional diagnostics/therapeutics. Nanotechnology is now offering new tools and insights to advance our understanding of AD and eventually may offer new hope to AD patients. Here, we review the key roles of nanotechnologies in the recent literature, in both diagnostic and therapeutic aspects of AD, and discuss how these achievements may improve patient prognosis and quality of life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Phytochemical Analysis and Antioxidant Property of Leaf Extracts of Vitex doniana and Mucuna pruriens

    Directory of Open Access Journals (Sweden)

    K. N. Agbafor

    2011-01-01

    Full Text Available Oxidative stress and impaired antioxidant system have been implicated in the pathophysiology of diverse disease states. The phytochemical screening and antioxidant property of fresh leaves of Vitex doniana and Mucuna pruriens, used in the management and treatment of various diseases, were studied. The extracts (ethanol and distilled water were screened for the presence of phytochemicals, and their inhibition of 2,2-diphenyl-1-picryl-hydrazyl (DPPH radical was used to evaluate their free radical scavenging activity. Liver levels of malondialdehyde (MDA, superoxide dismutase (SOD, and catalase (CAT in carbon tetrachloride- (CCl4 treated albino rats were also used to assess the antioxidant activity of the extracts. The animals were treated with 250 mg/kg body weight of the extracts for six consecutive days before a single dose (2.5 mL/kg body weight of CCl4. Vitamin C was used as the standard antioxidant. Phytochemical screening revealed the presence of saponins, tannins, anthraquinones, terpenoids, and flavonoids in all the extracts, while alkaloids were detected in extracts of Vitex doniana only, and cardiac glycosides occurred in extracts of Mucuna pruriens only. All the extracts inhibited DPPH radical in a concentration-dependent manner, water extract of Vitex doniana producing highest inhibition which was not significantly different (P>.05 from vitamin C. The extracts produced a significant decrease (P<.05 in liver MDA, while the levels of SOD and CAT significantly increased (P<.05 relative to the positive control. These results are an indication of antioxidant potential of the extracts and may be responsible for some of the therapeutic uses of these plants.

  2. Phytochemical Analysis and Antioxidant Property of Leaf Extracts of Vitex doniana and Mucuna pruriens

    Science.gov (United States)

    Agbafor, K. N.; Nwachukwu, N.

    2011-01-01

    Oxidative stress and impaired antioxidant system have been implicated in the pathophysiology of diverse disease states. The phytochemical screening and antioxidant property of fresh leaves of Vitex doniana and Mucuna pruriens, used in the management and treatment of various diseases, were studied. The extracts (ethanol and distilled water) were screened for the presence of phytochemicals, and their inhibition of 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical was used to evaluate their free radical scavenging activity. Liver levels of malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) in carbon tetrachloride- (CCl4) treated albino rats were also used to assess the antioxidant activity of the extracts. The animals were treated with 250 mg/kg body weight of the extracts for six consecutive days before a single dose (2.5 mL/kg body weight) of CCl4. Vitamin C was used as the standard antioxidant. Phytochemical screening revealed the presence of saponins, tannins, anthraquinones, terpenoids, and flavonoids in all the extracts, while alkaloids were detected in extracts of Vitex doniana only, and cardiac glycosides occurred in extracts of Mucuna pruriens only. All the extracts inhibited DPPH radical in a concentration-dependent manner, water extract of Vitex doniana producing highest inhibition which was not significantly different (P > .05) from vitamin C. The extracts produced a significant decrease (P < .05) in liver MDA, while the levels of SOD and CAT significantly increased (P < .05) relative to the positive control. These results are an indication of antioxidant potential of the extracts and may be responsible for some of the therapeutic uses of these plants. PMID:21547085

  3. Long-term delivery of protein therapeutics.

    Science.gov (United States)

    Vaishya, Ravi; Khurana, Varun; Patel, Sulabh; Mitra, Ashim K

    2015-03-01

    Proteins are effective biotherapeutics with applications in diverse ailments. Despite being specific and potent, their full clinical potential has not yet been realized. This can be attributed to short half-lives, complex structures, poor in vivo stability, low permeability, frequent parenteral administrations and poor adherence to treatment in chronic diseases. A sustained release system, providing controlled release of proteins, may overcome many of these limitations. This review focuses on recent development in approaches, especially polymer-based formulations, which can provide therapeutic levels of proteins over extended periods. Advances in particulate, gel-based formulations and novel approaches for extended protein delivery are discussed. Emphasis is placed on dosage form, method of preparation, mechanism of release and stability of biotherapeutics. Substantial advancements have been made in the field of extended protein delivery via various polymer-based formulations over last decade despite the unique delivery-related challenges posed by protein biologics. A number of injectable sustained-release formulations have reached market. However, therapeutic application of proteins is still hampered by delivery-related issues. A large number of protein molecules are under clinical trials, and hence, there is an urgent need to develop new methods to deliver these highly potent biologics.

  4. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods.

    Directory of Open Access Journals (Sweden)

    Jiali Xing

    Full Text Available Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS, reducing power (RP, and inhibition of linoleic acid peroxidation (ILAP. Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs.

  5. Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women.

    Science.gov (United States)

    Wang, Ying; Yang, Meng; Lee, Sang-Gil; Davis, Catherine G; Kenny, Anne; Koo, Sung I; Chun, Ock K

    2012-12-01

    Increased plasma total antioxidant capacity (TAC) has been associated with a high consumption of fruits and vegetables. However, limited information is available on whether plasma TAC reflects the dietary intake of antioxidants and the levels of individual antioxidants in plasma. By using three different assays, the study aimed to determine if plasma TAC can effectively predict dietary intake of antioxidants and plasma antioxidant status. Forty overweight and apparently healthy postmenopausal women were recruited. Seven-day food records and 12-h fasting blood samples were collected for dietary and plasma antioxidant assessments. Plasma TAC was determined by vitamin C equivalent antioxidant capacity (VCEAC), ferric-reducing ability of plasma (FRAP) and oxygen radical absorbance capacity (ORAC) assays. TAC values determined by VCEAC were highly correlated with FRAP (r=0.79, Pantioxidants and represents more closely the plasma antioxidant levels than ORAC and FRAP. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Antioxidant activity of aqueous extract of noni in dilutent for ram semen cryopreservation

    Directory of Open Access Journals (Sweden)

    Ana Lauren Costa Nascimento

    2016-03-01

    Full Text Available Noni (Morinda citrifolia L. is a fruit consumed worldwide because of its nutritional and therapeutic properties resulting from the large amount of phenolic compounds, which has aroused interest of the scientific community. In order to identify new natural sources of antioxidants, the objective of this study was to evaluate the performance of noni in diluent for ram semen cryopreservation. A completely randomized design consisting of four treatments and three repetitions per treatment was used. The treatments differed in terms of the concentration of the aqueous extract of noni added to the diluent: control, no addition of the extract, and three concentrations (24, 72, and 120 µg/mL. The physical and chemical variables of the mature fruit were evaluated: total acidity (8.78, pH (4.12, and soluble solids (8.18%. The vitamin C content was 309.42 mg per 100 g fresh matter. The aqueous extract of noni was also evaluated regarding the quantity of total phenolic compounds, antioxidant activity, and lipid peroxidation inhibition capacity. The aqueous extract contained a moderate amount of phenolic compounds (47.96 ± 1.95 mg gallic acid equivalent/100 g extract. The concentrations of the aqueous extract of 72 and 120 µg/mL in diluent used for semen cryopreservation inhibited lipid peroxidation by 21.75% and 51.32%, respectively. There was no positive effect of the lowest concentration (24 µg/mL. The antioxidant activity index of noni was 33.33, corresponding to very strong antioxidant activity. The aqueous extract of noni exhibits very strong antioxidant activity and its addition to the diluent for semen cryopreservation at a concentration of 72 µg/mL is able to inhibit lipid peroxidation.

  7. Evaluation of Antioxidant and DNA Damage Protection Activity of the Hydroalcoholic Extract of Desmostachya bipinnata L. Stapf

    Directory of Open Access Journals (Sweden)

    Upendarrao Golla

    2014-01-01

    Full Text Available Desmostachya bipinnata Stapf (Poaceae/Gramineae is an official drug of ayurvedic pharmacopoeia. Various parts of this plant were used extensively in traditional and folklore medicine to cure various human ailments. The present study was aimed to evaluate the antioxidant and DNA damage protection activity of hydroalcoholic extract of Desmostachya bipinnata both in vitro and in vivo, to provide scientific basis for traditional usage of this plant. The extract showed significant antioxidant activity in a dose-dependent manner with an IC50 value of 264.18±3.47 μg/mL in H2O2 scavenging assay and prevented the oxidative damage to DNA in presence of DNA damaging agent (Fenton’s reagent at a concentration of 50 μg/mL. Also, the presence of extract protected yeast cells in a dose-dependent manner against DNA damaging agent (Hydroxyurea in spot assay. Moreover, the presence of extract exhibited significant antioxidant activity in vivo by protecting yeast cells against oxidative stressing agent (H2O2. Altogether, the results of current study revealed that Desmostachya bipinnata is a potential source of antioxidants and lends pharmacological credence to the ethnomedical use of this plant in traditional system of medicine, justifying its therapeutic application for free-radical-induced diseases.

  8. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics.

    Science.gov (United States)

    Wang, Lei; Li, Li-li; Fan, Yun-shan; Wang, Hao

    2013-07-26

    Extensive efforts have been devoted to the construction of functional supramolecular nanosystems for applications in catalysis, energy conversion, sensing and biomedicine. The applications of supramolecular nanosystems such as liposomes, micelles, inorganic nanoparticles, carbon materials for cancer diagnostics and therapeutics have been reviewed by other groups. Here, we will focus on the recent momentous advances in the implementation of typical supramolecular hosts (i.e., cyclodextrins, calixarenes, cucurbiturils and metallo-hosts) and their nanosystems in cancer diagnostics and therapeutics. We discuss the evolutive process of supramolecular nanosystems from the structural control and characterization to their diagnostic and therapeutic function exploitation and even the future potentials for clinical translation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Medical Management of Acute Radiation Syndromes : Comparison of Antiradiation Vaccine and Antioxidants radioprotection potency.

    Science.gov (United States)

    Maliev, Slava; Popov, Dmitri; Lisenkov, Nikolai

    Introduction: This experimental study of biological effects of the Antiradiation Vaccine and Antioxidants which were used for prophylaxis and treatment of the Acute Radiation Syndromes caused by high doses of the low-LET radiation. An important role of Reactive Oxyden Species (Singlet oxygen, hydroxyl radicals, superoxide anions and bio-radicals)in development of the Acute Radiation Syndromes could be defined as a "central dogma" of radiobiology. Oxida-tion and damages of lipids, proteins, DNA, and RNA are playing active role in development of postradiation apoptosis. However, the therapeutic role of antioxidants in modification of a postradiation injury caused by high doses of radiation remains controversial.Previous stud-ies had revealed that antioxidants did not increase a survival rate of mammals with severe forms of the Acute Radiation Syndromes caused by High Doses of the low-LET radiation. The Antiradiation Vaccine(ARV) contains toxoid forms of the Radiation Toxins(RT) from the Specific Radiation Determinants Group (SRD). The RT SRD has toxic and antigenic prop-erties at the same time and stimulates a specific antibody elaboration and humoral response form activated acquired immune system. The blocking antiradiation antibodies induce an im-munologically specific effect and have inhibiting effects on radiation induced neuro-toxicity, vascular-toxicity, gastrointestinal toxcity, hematopoietic toxicity, and radiation induced cytol-ysis of selected groups of cells that are sensitive to radiation. Methods and materials: Scheme of experiments: 1. Irradiated animals with development of Cerebrovascular ARS (Cv-ARS), Cardiovascular ARS (Cr-ARS) Gastrointestinal ARS(GI-ARS), Hematopoietic ARS (H-ARS) -control -were treated with placebo administration. 2. Irradiated animals were treated with antioxidants prophylaxisis and treatment of Cv-ARS, Cr-SRS, GI-ARS, Hp-ARS forms of the ARS. 3. irradiated animals were treated with radioprotection by Antiradiation Vaccine

  10. The History of Therapeutic Aerosols: A Chronological Review.

    Science.gov (United States)

    Stein, Stephen W; Thiel, Charles G

    2017-02-01

    In 1956, Riker Laboratories, Inc., (now 3 M Drug Delivery Systems) introduced the first pressurized metered dose inhaler (MDI). In many respects, the introduction of the MDI marked the beginning of the modern pharmaceutical aerosol industry. The MDI was the first truly portable and convenient inhaler that effectively delivered drug to the lung and quickly gained widespread acceptance. Since 1956, the pharmaceutical aerosol industry has experienced dramatic growth. The signing of the Montreal Protocol in 1987 led to a surge in innovation that resulted in the diversification of inhaler technologies with significantly enhanced delivery efficiency, including modern MDIs, dry powder inhalers, and nebulizer systems. The innovative inhalers and drugs discovered by the pharmaceutical aerosol industry, particularly since 1956, have improved the quality of life of literally hundreds of millions of people. Yet, the delivery of therapeutic aerosols has a surprisingly rich history dating back more than 3500 years to ancient Egypt. The delivery of atropine and related compounds has been a crucial inhalation therapy throughout this period and the delivery of associated structural analogs remains an important therapy today. Over the centuries, discoveries from many cultures have advanced the delivery of therapeutic aerosols. For thousands of years, therapeutic aerosols were prepared by the patient or a physician with direct oversight of the patient using custom-made delivery systems. However, starting with the Industrial Revolution, advancements in manufacturing resulted in the bulk production of therapeutic aerosol delivery systems produced by people completely disconnected from contact with the patient. This trend continued and accelerated in the 20th century with the mass commercialization of modern pharmaceutical inhaler products. In this article, we will provide a summary of therapeutic aerosol delivery from ancient times to the present along with a look to the future. We

  11. Antioxidant Properties of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-05-01

    Full Text Available Oxidative stress defines a condition in which the prooxidant–antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells’ viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  12. Antioxidant Properties of Probiotic Bacteria.

    Science.gov (United States)

    Wang, Yang; Wu, Yanping; Wang, Yuanyuan; Xu, Han; Mei, Xiaoqiang; Yu, Dongyou; Wang, Yibing; Li, Weifen

    2017-05-19

    Oxidative stress defines a condition in which the prooxidant-antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  13. Colorectal cancer: diagnostic and therapeutic strategies

    International Nuclear Information System (INIS)

    Vaillant, J.C.

    1996-01-01

    Technical advances that has been achieved during the past two decades have not dramatically improved the 35 % five-year rate observed in patients with colorectal cancer. These tumours remain one of the most challenging problems in public health policies in western countries. Screening applies to some subgroups of high-risk individuals and the general population aged over 50. In order to improve their efficacy, such screening programs imply large-scale information campaigns and a strong cooperation with the general physicians. The diagnosis is strongly suggested by any recent modification of bowel habits ad by rectal bleeding. It has to be confirmed by rectal examination and by colonoscopy which allows sampling to the tumour. Loco-regional and distant metastatic tumour spread must be assessed precisely before any therapeutic strategy is decided. Surgery, which resects the tumour en bloc with the corresponding lymphatic territories, is the only treatment that can achieve long term cure. In localized tumours, surgery alone can provide patients with 5-years survival rates close to 95 %. On the other hand, surgery alone is not sufficient to cure patients with advances cancers. In recent years, several adjuvant therapeutic modalities have been shown to improve the results of surgery in these cases (rectal cancer: pre-operative radiotherapy or post-operative radio-chemotherapy, colon cancer with nodal metastases: post-operative chemotherapy). There is a hope that a better use of our diagnostic and therapeutic armementarium would be able to avoid or to cure up to 75 % of the colorectal cancers we are dealing with. (author)

  14. Erythrocyte membrane stabilization effect and antioxidant activity of methyl methacrylate

    International Nuclear Information System (INIS)

    Popov, B.

    2004-01-01

    Methyl methacrylate (MMK) is a synthetic product with mild impact on human health that is not well studied on cellular basis. Here, human erythrocytes were used to investigate the effects MMK exerts on acid and heat-induced hemolysis. Biphasic effect of MMK was observed for acid-induced hemolysis; i.e., protection at low (0 - 0.05% v/v) and stimulation at higher (0.1- 0.4% v/v) concentrations. The maximal protective effect was produced at 0.03% (v/v). At this concentration MMK increased the temperatures of heat denaturation of erythrocyte membrane proteins, spectrin and integral proteins, by about 2 0 C and inhibited the heat-induced hemolysis by 20 %. This membrane stabilization effect of MMK is similar to that produced by some anti-inflammatory and antirheumatic drugs. The increased acid resistance possibly indicated anti-oxidant properties of MMK. The nonenzymatic antioxidant activity test evidenced that MMK has no superoxide dismutase-like activity but demonstrates strong catalase-like activity (about 900 kU/mmol at 0.05-0.1 mmol/l concentration). The results indicate that at low concentration MMK exerts benign effect on cellular membrane that could find therapeutic usage. (author)

  15. Antioxidants in Raspberry: On-line analysis links antioxidant activity to a diversity of individual metabolites

    NARCIS (Netherlands)

    Beekwilder, M.J.; Jonker, H.H.; Hall, R.D.; Meer, van der I.M.; Vos, de C.H.

    2005-01-01

    The presence of antioxidant compounds can be considered as a quality parameter for edible fruit. In this paper, we studied the antioxidant compounds in raspberry (Rubus idaeus) fruits by high-performance liquid chromatography (HPLC) coupled to an on-line postcolumn antioxidant detection system. Both

  16. Abnormal Mitochondrial Dynamics and Synaptic Degeneration as Early Events in Alzheimer’s Disease: Implications to Mitochondria-Targeted Antioxidant Therapeutics

    Science.gov (United States)

    Reddy, P. Hemachandra; Tripathy, Raghav; Troung, Quang; Thirumala, Karuna; Reddy, Tejaswini P.; Anekonda, Vishwanath; Shirendeb, Ulziibat P.; Calkins, Marcus J.; Reddy, Arubala P.; Mao, Peizhong; Manczak, Maria

    2011-01-01

    Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer’s disease (AD) progression. Loss of synapses and synaptic damage are the best correlate of cognitive deficits found in AD patients. Recent research on amyloid bet (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed that reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. PMID:22037588

  17. Antioxidant activity of lichen Cetraria aculeata

    Directory of Open Access Journals (Sweden)

    Tomović Jovica

    2016-01-01

    Full Text Available The aim of the present study is to investigate the antioxidant properties of the lichen Cetraria aculeata. Antioxidant activity of the methanol and ethyl acetate extracts of lichen was tested by different methods including determination of total phenolics content, determination of total antioxidant capacity, DPPH free radical scavenging activity, inhibitory activity towards lipid peroxidation, ferrous ion chelating ability and hydroxyl radical scavenging activity. The extracts of the lichen C. aculeata showed significant antioxidant activity. The methanol extract showed higher values for total phenolics and total antioxidant capacity compared to the ethyl acetate extract, while the ethyl acetate extract demonstrated better results for DPPH radical scavenging, inhibitory activity towards lipid peroxidation, chelating ability and hydroxyl radical scavenging than the methanol extract. This is the first report of the antioxidant properties of Cetraria aculeata growing in Serbia. The results of antioxidant activity indicate the application of this lichen as source of natural antioxidants that could be used as a possible food supplement, in the pharmaceutical industry and in the treatment of various diseases.

  18. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice

    Directory of Open Access Journals (Sweden)

    Eom SooHyun

    2010-07-01

    Full Text Available Abstract Background Oxidative stress is imperative for its morbidity towards diabetic complications, where abnormal metabolic milieu as a result of hyperglycemia, leads to the onset of several complications. A biological antioxidant capable of inhibiting oxidative stress mediated diabetic progressions; during hyperglycemia is still the need of the era. The current study was performed to study the effect of biologically synthesized gold nanoparticles (AuNPs to control the hyperglycemic conditions in streptozotocin induced diabetic mice. Results The profound control of AuNPs over the anti oxidant enzymes such as GSH, SOD, Catalase and GPx in diabetic mice to normal, by inhibition of lipid peroxidation and ROS generation during hyperglycemia evidence their anti-oxidant effect during hyperglycemia. The AuNPs exhibited an insistent control over the blood glucose level, lipids and serum biochemical profiles in diabetic mice near to the control mice provokes their effective role in controlling and increasing the organ functions for better utilization of blood glucose. Histopathological and hematological studies revealed the non-toxic and protective effect of the gold nanoparticles over the vital organs when administered at dosage of 2.5 mg/kilogram.body.weight/day. ICP-MS analysis revealed the biodistribution of gold nanoparticles in the vital organs showing accumulation of AuNPs in the spleen comparatively greater than other organs. Conclusion The results obtained disclose the effectual role of AuNPs as an anti-oxidative agent, by inhibiting the formation of ROS, scavenging free radicals; thus increasing the anti-oxidant defense enzymes and creating a sustained control over hyperglycemic conditions which consequently evoke the potential of AuNPs as an economic therapeutic remedy in diabetic treatments and its complications.

  19. Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors.

    Science.gov (United States)

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J; Borges, Fernanda

    2018-01-01

    Alzheimer's disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN 1 (catechol derivative), and AntiOxBEN 2 (pyrogallol derivative) and compounds 15-18 , which have longer spacers. Compounds AntiOxBEN 1 and 15 , with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC 50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC 50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively). Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17 , no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN 1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases.

  20. Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Catarina Oliveira

    2018-04-01

    Full Text Available Alzheimer's disease (AD is a multifactorial age-related disease associated with oxidative stress (OS and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative, and AntiOxBEN2 (pyrogallol derivative and compounds 15–18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively, while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively. Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y and human hepatocarcinoma (HepG2 cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases.

  1. Hydroxybenzoic acid derivatives as dual-target ligands: mitochondriotropic antioxidants and cholinesterase inhibitors

    Science.gov (United States)

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J.; Borges, Fernanda

    2018-04-01

    Alzheimer’s disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy towards AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative), and AntiOxBEN2 (pyrogallol derivative) and compounds 15-18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a ten-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 nM, respectively). Interestingly, molecular modelling data pointed towards bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Αβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favourable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related disease

  2. Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation.

    Science.gov (United States)

    Mo, Jiao; Yang, Renhua; Li, Fan; Zhang, Xiaochao; He, Bo; Zhang, Yue; Chen, Peng; Shen, Zhiqiang

    2018-03-15

    Scutellarin is the major constituent responsible for the clinical benefits of Erigeron breviscapus (Vant.) Hand.-Mazz which finds a long history of ethnopharmacological use in Traditional Chinese Medicine. Scutellarin as a pure compound is now under investigation for its protections against various tissue injuries. This study aims to examine the effects of scutellarin on oxidative stress-induced vascular endothelial dysfunction and endothelial cell damage, and then to evaluate the therapeutic efficacy of scutellarin in preventing atherosclerosis in rats. Radical scavenging ability of scutellarin was determined in vitro. Impact of scutellarin on endothelium-dependent relaxation (EDR) of rabbit thoracic aortic rings upon 1, 1-diphenyl-2-picrylhydrazyl (DPPH) challenge was measured. Influences of scutellarin pre-treatment on the levels of reactive oxygen species (ROS), activities of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase and catalase, and the expression of SOD1 and NADPH oxidase 4 (Nox4) in human umbilical vein endothelial cells (HUVECs) injured by H 2 O 2 were examined. Anti-atherosclerotic effect of scutellarin was evaluated in rats fed with high fat diet (HFD). Scutellarin showed potent antioxidant activity in vitro. Pretreatment of scutellarin retained the EDR of rabbit thoracic aortic rings damaged by DPPH. In H 2 O 2 injured-HUVECs the deleterious alterations in ROS levels and antioxidant enzymes activity were reversed by scutellarin and the mRNA and protein expression of SOD1 and Nox4 were restored also. Oral administration of scutellarin dose-dependently ameliorated hyperlipidemia in HFD-fed rats and alleviated oxidative stress in rat serum, mimicking the effects of reference drug atorvastatin. Scutellarin protects against oxidative stress-induced vascular endothelial dysfunction and endothelial cell damage in vitro and prevents atherosclerosis in vivo through antioxidation. The results rationalize further investigation into the

  3. Resveratrol, Potential Therapeutic Interest in Joint Disorders: A Critical Narrative Review

    Directory of Open Access Journals (Sweden)

    Christelle Nguyen

    2017-01-01

    Full Text Available Trans-resveratrol (t-Res is a natural compound of a family of hydroxystilbenes found in a variety of spermatophyte plants. Because of its effects on lipids and arachidonic acid metabolisms, and its antioxidant activity, t-Res is considered as the major cardioprotective component of red wine, leading to the “French Paradox” health concept. In the past decade, research on the effects of resveratrol on human health has developed considerably in diverse fields such as cancer, neurodegenerative and cardiovascular diseases, and metabolic disorders. In the field of rheumatic disorders, in vitro evidence suggest anti-inflammatory, anti-catabolic, anti-apoptotic and anti-oxidative properties of t-Res in various articular cell types, including chondrocytes and synoviocytes, along with immunomodulation properties on T and B lymphocytes. In preclinical models of osteoarthritis and rheumatoid arthritis, resveratrol has shown joint protective effects, mainly mediated by decreased production of pro-inflammatory and pro-degradative soluble factors, and modulation of cellular and humoral responses. Herein, we comprehensively reviewed evidence supporting a potential therapeutic interest of t-Res in treating symptoms related to rheumatic disorders.

  4. Recent Advances on the Role of Neurogenesis in the Adult Brain: Therapeutic Potential in Parkinson's and Alzheimer's Diseases.

    Science.gov (United States)

    Radad, Khaled; Moldzio, Rudolf; Al-Shraim, Mubarak; Kranner, Barbara; Krewenka, Christopher; Rausch, Wolf-Dieter

    2017-01-01

    Generation of nascent functional neurons from neural stem cells in the adult brain has recently become largely accepted by the neuroscience community. In adult mammals including humans, the process of neurogenesis has been well documented in two brain regions; the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. Some evidence has indicated neurogenesis in other regions of the adult mammalian brain such as the neocortex, cerebellum, striatum, amygdala and hypothalamus. These discoveries question a long standing dogma on nervous system regeneration and provide medical science with potential new strategies to harness the process of neurogenesis for treating neurological disabilities and neurodegenerative diseases. In this current review, we address the most recent advances on the role of neurogenesis in the adult brain and therapeutic potential in the two most common neurodegenerative disorders, Parkinson's and Alzheimer's diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Aged garlic has more potent antiglycation and antioxidant properties compared to fresh garlic extract in vitro

    Science.gov (United States)

    Elosta, Abdulhakim; Slevin, Mark; Rahman, Khalid; Ahmed, Nessar

    2017-01-01

    Protein glycation involves formation of early (Amadori) and late advanced glycation endproducts (AGEs) together with free radicals via autoxidation of glucose and Amadori products. Glycation and increased free radical activity underlie the pathogenesis of diabetic complications. This study investigated whether aged garlic has more potent antiglycation and antioxidant properties compared to fresh garlic extract in vitro in a cell-free system. Proteins were glycated by incubation with sugars (glucose, methylglyoxal or ribose) ±5–15 mg/mL of aged and fresh garlic extracts. Advanced glycation endproducts were measured using SDS-PAGE gels and by ELISA whereas Amadori products were assessed by the fructosamine method. Colorimetric methods were used to assess antioxidant activity, free radical scavenging capacity, protein-bound carbonyl groups, thiol groups and metal chelation activities in addition to phenolic, total flavonoid and flavonol content of aged and fresh garlic extracts. Aged garlic inhibited AGEs by 56.4% compared to 33.5% for an equivalent concentration of fresh garlic extract. Similarly, aged garlic had a higher total phenolic content (129 ± 1.8 mg/g) compared to fresh garlic extract (56 ± 1.2 mg/g). Aged garlic has more potent antiglycation and antioxidant properties compared to fresh garlic extract and is more suitable for use in future in vivo studies. PMID:28051097

  6. Review of antimicrobial and antioxidative activities of chitosans in food.

    Science.gov (United States)

    Friedman, Mendel; Juneja, Vijay K

    2010-09-01

    Interest in chitosan, a biodegradable, nontoxic, non-antigenic, and biocompatible biopolymer isolated from shellfish, arises from the fact that chitosans are reported to exhibit numerous health-related beneficial effects, including strong antimicrobial and antioxidative activities in foods. The extraordinary interest in the chemistry and application in agriculture, horticulture, environmental science, industry, microbiology, and medicine is attested by about 17,000 citations on this subject in the Scopus database. A special need exists to develop a better understanding of the role of chitosans in ameliorating foodborne illness. To contribute to this effort, this overview surveys and interprets our present knowledge of the chemistry and antimicrobial activities of chitosan in solution, as powders, and in edible films and coating against foodborne pathogens, spoilage bacteria, and pathogenic viruses and fungi in several food categories. These include produce, fruit juices, eggs and dairy, cereal, meat, and seafood products. Also covered are antimicrobial activities of chemically modified and nanochitosans, therapeutic properties, and possible mechanisms of the antimicrobial, antioxidative, and metal chelating effects. Further research is suggested in each of these categories. The widely scattered data on the multifaceted aspects of chitosan microbiology, summarized in the text and in 10 tables and 8 representative figures, suggest that low-molecular-weight chitosans at a pH below 6.0 presents optimal conditions for achieving desirable antimicrobial and antioxidative-preservative effects in liquid and solid foods. We are very hopeful that the described findings will be a valuable record and resource for further progress to improve microbial food safety and food quality.

  7. Antioxidant capacity of hesperidin from citrus peel using electron spin resonance and cytotoxic activity against human carcinoma cell lines.

    Science.gov (United States)

    Al-Ashaal, Hanan A; El-Sheltawy, Shakinaz T

    2011-03-01

    Hesperidin is a flavonoid that has various pharmacological activities including anti-inflammatory, antimicrobial and antiviral activities. The aim of the study is the isolation of hesperidin from the peel of Citrus sinensis L. (Rutaceae), and the evaluation of its antioxidant capacity and cytotoxicity against different human carcinoma cell lines. In the present work, hesperidin is identified and confirmed using chromatographic and spectral analysis. To correlate between hesperidin concentration and antioxidant capacity of peel extracts, extraction was carried out using 1% HCl-MeOH, MeOH, alkaline solution, the concentration of hesperidin determined qualitatively and quantitatively using high performance thin layer chromatography (HPTLC), high performance liquid chromatography (HPLC) analysis, in vitro antioxidant capacity of hesperidin and the extracts against free radical diphenylpicrylhydrazyl (DPPH•) performed using an electron spin resonance spectrophotometer (ESR). Cytotoxic assay against larynx, cervix, breast and liver carcinoma cell lines was performed. Hesperidin was found to be moderately active as an antioxidant agent; its capacity reached 36%. In addition, the results revealed that hesperidin exhibited pronounced anticancer activity against the selected cell lines. IC₅₀ were 1.67, 3.33, 4.17, 4.58 µg/mL, respectively. Orange peels are considered to be a cheap source for hesperidin which may be used in the pharmaceutical industry as a natural chemopreventive agent. Hesperidin and orange peel extract could possess antioxidant properties with a wide range of therapeutic applications.

  8. Antioxidant mediated response of Scoparia dulcis in noise-induced redox imbalance and immunohistochemical changes in rat brain.

    Science.gov (United States)

    Wankhar, Wankupar; Srinivasan, Sakthivel; Rajan, Ravindran; Sheeladevi, Rathinasamy

    2017-01-19

    Noise has been regarded as an environmental/occupational stressor that causes damages to both auditory and non-auditory organs. Prolonged exposure to these mediators of stress has often resulted in detrimental effect, where oxidative/nitrosative stress plays a major role. Hence, it would be appropriate to examine the possible role of free radicals in brain discrete regions and the "antioxidants" mediated response of S. dulcis. Animals were subjected to noise stress for 15 days (100 dB/4 hours/day) and estimation of endogenous free radical and antioxidant activity were carried out on brain discrete regions (the cerebral cortex, cerebellum, brainstem, striatum, hippocampus and hypothalamus). The result showed that exposure to noise could alleviate endogenous free radical generation and altered antioxidant status in brain discrete regions when compared to that of the control groups. This alleviated free radical generation (H 2 O 2 and NO) is well supported by an upregulated protein expression on immunohistochemistry of both iNOS and nNOS in the cerebral cortex on exposure to noise stress. These findings suggest that increased free radical generation and altered anti-oxidative status can cause redox imbalance in the brain discrete regions. However, free radical scavenging activity of the plant was evident as the noise exposed group treated with S. dulcis[200 mg/(kg·b·w)] displayed a therapeutic effect by decreasing the free radical level and regulate the anti-oxidative status to that of control animals. Hence, it can be concluded that the efficacy of S. dulcis could be attributed to its free radical scavenging activity and anti-oxidative property.

  9. Solid-substrate fermentation of wheat grains by mycelia of indigenous species of the genus Ganoderma (higher Basidiomycetes) to enhance the antioxidant activities.

    Science.gov (United States)

    Subramaniam, Sarasvathy; Sabaratnam, Vikineswary; Kuppusamy, Umah Rani; Tan, Yee Shin

    2014-01-01

    Species of the genus Ganoderma are a cosmopolitan wood decaying white rot fungi, which has been used by the Asians for therapeutic purposes for centuries. In the present study, solid-substrate fermentation (SSF) of wheat grains (Triticum aestivum L.) was carried out with indigenous Ganoderma australe (KUM60813) and G. neo-japonicum (KUM61076) selected based on ethnomycological knowledge. G. lucidum (VITA GL) (a commercial strain) was also included in the study. Antioxidant activities of the crude ethanol and aqueous extracts of the fermented and unfermented wheat grains were investigated by ferric reducing antioxidant power (FRAP), Trolox equivalent antioxidant capacity (TEAC), diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging ability, and lipid peroxidation assay. Among the six mycelia extracts tested, the ethanol extract from wheat fermented with KUM61076 mycelia showed the most potent antioxidant activities, whereas the ethanol extract of wheat grains fermented with KUM60813 mycelia has a good potential in protecting frying oils against oxidation. Total phenolic content (TPC) in the ethanol extracts were higher than that in the aqueous extract. The wheat grains fermented with G. australe (KUM60813) and G. neo-japonicum KUM61076 have greater antioxidant potential compared to the commercially available G. lucidum (VITA GL). The antioxidant activities of the mycelia extracts had a positive correlation with their phenolic contents. Thus phenolic compounds may play a vital role in the antioxidant activities of the selected Ganoderma spp.

  10. Therapeutic Uses of Triphala in Ayurvedic Medicine.

    Science.gov (United States)

    Peterson, Christine Tara; Denniston, Kate; Chopra, Deepak

    2017-08-01

    The aim of this article is to review the current literature on the therapeutic uses and efficacy of Triphala. Herbal remedies are among the most ancient medicines used in traditional systems of healthcare such as Ayurveda. Triphala, a well-recognized and highly efficacious polyherbal Ayurvedic medicine consisting of fruits of the plant species Emblica officinalis (Amalaki), Terminalia bellerica (Bibhitaki), and Terminalia chebula (Haritaki), is a cornerstone of gastrointestinal and rejuvenative treatment. A search of the PubMed database was conducted. In addition, numerous additional therapeutic uses described both in the Ayurvedic medical literature and anecdotally are being validated scientifically. In addition to laxative action, Triphala research has found the formula to be potentially effective for several clinical uses such as appetite stimulation, reduction of hyperacidity, antioxidant, anti-inflammatory, immunomodulating, antibacterial, antimutagenic, adaptogenic, hypoglycemic, antineoplastic, chemoprotective, and radioprotective effects, and prevention of dental caries. Polyphenols in Triphala modulate the human gut microbiome and thereby promote the growth of beneficial Bifidobacteria and Lactobacillus while inhibiting the growth of undesirable gut microbes. The bioactivity of Triphala is elicited by gut microbiota to generate a variety of anti-inflammatory compounds. This review summarizes recent data on pharmacological properties and clinical effects of Triphala while highlighting areas in need of additional investigation and clinical development.

  11. The therapeutic journey of benzimidazoles: a review.

    Science.gov (United States)

    Bansal, Yogita; Silakari, Om

    2012-11-01

    Presence of benzimidazole nucleus in numerous categories of therapeutic agents such as antimicrobials, antivirals, antiparasites, anticancer, anti-inflammatory, antioxidants, proton pump inhibitors, antihypertensives, anticoagulants, immunomodulators, hormone modulators, CNS stimulants as well as depressants, lipid level modulators, antidiabetics, etc. has made it an indispensable anchor for development of new therapeutic agents. Varied substitutents around the benzimidazole nucleus have provided a wide spectrum of biological activities. Importance of this nucleus in some activities like, Angiotensin I (AT(1)) receptor antagonism and proton-pump inhibition is reviewed separately in literature. Even some very short reviews on biological importance of this nucleus are also known in literature. However, owing to fast development of new drugs possessing benzimidazole nucleus many research reports are generated in short span of time. So, there is a need to couple the latest information with the earlier information to understand the current status of benzimidazole nucleus in medicinal chemistry research. In the present review, various derivatives of benzimidazole with different pharmacological activities are described on the basis of substitution pattern around the nucleus with an aim to help medicinal chemists for developing an SAR on benzimidazole derived compounds for each activity. This discussion will further help in the development of novel benzimidazole compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Technological advances in precision medicine and drug development.

    Science.gov (United States)

    Maggi, Elaine; Patterson, Nicole E; Montagna, Cristina

    New technologies are rapidly becoming available to expand the arsenal of tools accessible for precision medicine and to support the development of new therapeutics. Advances in liquid biopsies, which analyze cells, DNA, RNA, proteins, or vesicles isolated from the blood, have gained particular interest for their uses in acquiring information reflecting the biology of tumors and metastatic tissues. Through advancements in DNA sequencing that have merged unprecedented accuracy with affordable cost, personalized treatments based on genetic variations are becoming a real possibility. Extraordinary progress has been achieved in the development of biological therapies aimed to even further advance personalized treatments. We provide a summary of current and future applications of blood based liquid biopsies and how new technologies are utilized for the development of biological therapeutic treatments. We discuss current and future sequencing methods with an emphasis on how technological advances will support the progress in the field of precision medicine.

  13. Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation.

    Science.gov (United States)

    Noctor, Graham; Mhamdi, Amna; Foyer, Christine H

    2016-05-01

    Oxidative stress and reactive oxygen species (ROS) are common to many fundamental responses of plants. Enormous and ever-growing interest has focused on this research area, leading to an extensive literature that documents the tremendous progress made in recent years. As in other areas of plant biology, advances have been greatly facilitated by developments in genomics-dependent technologies and the application of interdisciplinary techniques that generate information at multiple levels. At the same time, advances in understanding ROS are fundamentally reliant on the use of biochemical and cell biology techniques that are specific to the study of oxidative stress. It is therefore timely to revisit these approaches with the aim of providing a guide to convenient methods and assisting interested researchers in avoiding potential pitfalls. Our critical overview of currently popular methodologies includes a detailed discussion of approaches used to generate oxidative stress, measurements of ROS themselves, determination of major antioxidant metabolites, assays of antioxidative enzymes and marker transcripts for oxidative stress. We consider the applicability of metabolomics, proteomics and transcriptomics approaches and discuss markers such as damage to DNA and RNA. Our discussion of current methodologies is firmly anchored to future technological developments within this popular research field. © 2016 John Wiley & Sons Ltd.

  14. Natural Antioxidants: Fascinating or Mythical Biomolecules?

    Directory of Open Access Journals (Sweden)

    Johannes Van Staden

    2010-10-01

    Full Text Available Research on the use, properties, characteristics and sources of antioxidants especially phenolic compounds, flavonoids, vitamins, synthetic chemicals and some micronutrients began in the late 18th century. Since then antioxidant research has received considerable attention and over a hundred thousand papers have been published on the subject. This has led to a rampant use of antioxidants in order to try to obtain and preserve optimal health. A number of nutraceuticals and food supplements are frequently fortified with synthetic or natural antioxidants. However, some research outcomes have led to the belief that antioxidants exist as mythical biomolecules. This review provides a critical evaluation of some common in vitro antioxidant capacity methods, and a discussion on the role and controversies surrounding non-enzymatic biomolecules, in particular phenolic compounds and non-phenolic compounds, in oxidative processes in an attempt of stemming the tidal wave that is threatening to swamp the concept of natural antioxidants.

  15. Role of Antioxidants in Horse Serum-mediated Vasculitis in Swine: Potential Relevance to Early Treatment in Mitigation of Coronary Arteritis in Kawasaki Disease

    Directory of Open Access Journals (Sweden)

    Saji Philip

    2017-08-01

    Conclusion: Serum sickness is a prototype of immune complex vasculitis, and the severity can be ameliorated with antioxidants. A trial of therapeutic dosages of vitamins A, E, and C in acute phase of Kawasaki disease, may be effective in mitigation of coronary artery lesion in addition to intravenous immunoglobulin and aspirin.

  16. High coffee intake is associated with lower grade nonalcoholic fatty liver disease: the role of peripheral antioxidant activity.

    Science.gov (United States)

    Gutiérrez-Grobe, Ylse; Chávez-Tapia, Norberto; Sánchez-Valle, Vicente; Gavilanes-Espinar, Juan Gabriel; Ponciano-Rodríguez, Guadalupe; Uribe, Misael; Méndez-Sánchez, Nahum

    2012-01-01

    Some phytochemicals present in coffee have a potential antioxidant role which seems to protect the human body against cardiovascular diseases, liver disease and malignancies. Nonalcoholic fatty liver disease is a common disease with limited therapeutic options. This study investigated the antioxidant effect of coffee by measuring antioxidant enzymes and lipid peroxidation markers in patients with nonalcoholic fatty liver disease. We performed a case-control study at the University Hospital, Mexico City. Anthropometric, metabolic, dietary and biochemical variables of all patients were determined and compared. The presence of nonalcoholic fatty liver disease was established by ultrasonography. All patients completed a dietary questionnaire in order to determine their of coffee consumption. Catalase, superoxide dismutase and thiobarbituric acid reactive substances were measured in all of the patients. Seventy-three subjects with and 57 without nonalcoholic fatty liver disease were included. Patients with nonalcoholic fatty liver disease had significantly higher body mass index, blood glucose, homeostasis model of assessment-insulin resistance and insulin values in comparison to patients without nonalcoholic fatty liver disease. On the one hand, there was a significant difference in coffee intake between the groups (p coffee has a protective effect against nonalcoholic fatty liver disease however there was no significant difference in the antioxidant variables analyzed.

  17. Antioxidants for female subfertility.

    Science.gov (United States)

    Showell, Marian G; Mackenzie-Proctor, Rebecca; Jordan, Vanessa; Hart, Roger J

    2017-07-28

    A couple may be considered to have fertility problems if they have been trying to conceive for over a year with no success. This may affect up to a quarter of all couples planning a child. It is estimated that for 40% to 50% of couples, subfertility may result from factors affecting women. Antioxidants are thought to reduce the oxidative stress brought on by these conditions. Currently, limited evidence suggests that antioxidants improve fertility, and trials have explored this area with varied results. This review assesses the evidence for the effectiveness of different antioxidants in female subfertility. To determine whether supplementary oral antioxidants compared with placebo, no treatment/standard treatment or another antioxidant improve fertility outcomes for subfertile women. We searched the following databases (from their inception to September 2016) with no language or date restriction: Cochrane Gynaecology and Fertility Group (CGFG) specialised register, the Cochrane Central Register of Studies (CENTRAL CRSO), MEDLINE, Embase, PsycINFO, CINAHL and AMED. We checked reference lists of appropriate studies and searched for ongoing trials in the clinical trials registers. We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment or treatment with another antioxidant, among women attending a reproductive clinic. We excluded trials comparing antioxidants with fertility drugs alone and trials that only included fertile women attending a fertility clinic because of male partner infertility. Two review authors independently selected eligible studies, extracted the data and assessed the risk of bias of the included studies. The primary review outcome was live birth; secondary outcomes included clinical pregnancy rates and adverse events. We pooled studies using a fixed-effect model, and calculated odds ratios (ORs) with 95% confidence intervals (CIs) for the dichotomous

  18. Antioxidant Potential of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes) Cultivated on Artocarpus heterophyllus Sawdust Substrate in India.

    Science.gov (United States)

    Rani, P; Lal, Merlin Rajesh; Maheshwari, Uma; Krishnan, Sreeram

    2015-01-01

    The artificial cultivation of Ganoderma lucidum (MTCC1039) using Artocarpus heterophyllus as sawdust substrate was optimized and free radical scavenging activities of the generated fruiting bodies were investigated. The choice of A. heterophyllus as substrate was due to its easy availability in South India. Sawdust supplemented with dextrose medium yielded better spawn hyphae and early fruiting body initiation (15 days). The biological yield obtained was 42.06 ± 2.14 g/packet and the biological efficiency was 8.41 ± 0.48%. Both aqueous and methanolic extracts of fruiting body were analyzed for radical scavenging activity. Methanolic extract showed maximum scavenging activity for 1,1-diphenyl-2-picrylhydrazyl (IC50 = 290 μg/ml) and 2,2'-azino-bis(3-ethylbenzothiazoline- 6-sulphonic acid (IC50 = 580 μg/ml), whereas aqueous extract had better scavenging for ferric reducing antioxidant power (IC50 = 5 μg/ml). Total phenolic content and total antioxidant capacity were significantly higher in methanolic extract (p < 0.01). A positive correlation existed between the phenolic content and antioxidant activity. Our results indicated that fruiting bodies of G. lucidum cultivated in sawdust medium possess antioxidant property, which can be exploited for therapeutic application.

  19. Antioxidants and the Comet assay.

    Science.gov (United States)

    Cemeli, Eduardo; Baumgartner, Adolf; Anderson, Diana

    2009-01-01

    It is widely accepted that antioxidants, either endogenous or from the diet, play a key role in preserving health. They are able to quench radical species generated in situations of oxidative stress, either triggered by pathologies or xenobiotics, and they protect the integrity of DNA from genotoxicants. Nevertheless, there are still many compounds with unclear or unidentified prooxidant/antioxidant activities. This is of concern since there is an increase in the number of compounds synthesized or extracted from vegetables to which humans might be exposed. Despite the well-established protective effects of fruit and vegetables, the antioxidant(s) responsible have not all been clearly identified. There might also be alternative mechanisms contributing to the protective effects for which a comprehensive description is lacking. In the last two decades, the Comet assay has been extensively used for the investigation of the effects of antioxidants and many reports can be found in the literature. The Comet assay, a relatively fast, simple, and sensitive technique for the analysis of DNA damage in all cell types, has been applied for the screening of chemicals, biomonitoring and intervention studies. In the present review, several of the most well-known antioxidants are considered. These include: catalase, superoxide dismutase, glutathione peroxidase, selenium, iron chelators, melatonin, melanin, vitamins (A, B, C and E), carotenes, flavonoids, isoflavones, tea polyphenols, wine polyphenols and synthetic antioxidants. Investigations showing beneficial as well as non-beneficial properties of the antioxidants selected, either at the in vitro, ex vivo or in vivo level are discussed.

  20. A Metadata Analysis of Oxidative Stress Etiology in Preclinical Amyotrophic Lateral Sclerosis: Benefits of Antioxidant Therapy

    Directory of Open Access Journals (Sweden)

    Leila Bond

    2018-01-01

    . Nonetheless, antioxidant-treated SOD1-G93A ALS mice have significantly increased motor performance (p < 0.05 measured via rotarod. With a colossal aggregate preclinical effect size average of 59.6%, antioxidants are promising for increasing function/quality of life in clinical ALS patients, a premise worth exploration via low-risk nutritional supplements. Finally, more direct, quantitative measures of oxidative stress, antioxidant levels and bioavailability are key to developing powerful antioxidant therapeutics that can assert measurable impacts on redox homeostasis in the brain and spinal cord.

  1. In vitro Hypolipidemic and Antioxidant Effects of Leaf and Root Extracts of Taraxacum Officinale

    Directory of Open Access Journals (Sweden)

    Belén García-Carrasco

    2015-06-01

    Full Text Available Adipose tissue dysfunction constitutes a primary defect in obesity and might link this disease to severe chronic health problems. We aimed to evaluate the antioxidant activity of three extracts from Taraxacum officinale (dandelion as well as their effects on mature 3T3-L1 adipocytes concerning intracellular lipid accumulation and cytotoxicity, this would give indications regarding therapeutic interest of dandelion as potential anti-obesity candidate. Antioxidant activities of extracts from dandelion roots and leaves were evaluated in vitro using 1,1-diphenyl-2-picrylhyorazyl (DPPH and Ferric Reducing Antioxidant Power (FRAP methods at the concentration range used in cellular assays (300–600 µg/mL. The influence of the extracts on mature 3T3-L1 adipocyte viability was determined by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Lipid content was determined by Oil-red-O staining. The extracts showed effective antioxidant activity correlating with total flavonoid and polyphenol contents. However, the functionality level was weakly associated with the antioxidant activity. Further, our data demonstrated that mature 3T3-L1 adipocytes reduced in size and number when incubated with the extracts, which suggests a significant increase in lipolysis activity. Particularly, leaf extract and crude powdered root of dandelion reduced triglyceride accumulation in mature 3T3-L1 adipocytes to a greater extent that the extract from the root. Our study shows anti-lipogenic effects of dandelion extracts on adipocytes as well as radical scavenging and reducing activity. Importantly, along with previous results indicating that cell populations cultivated in the presence of the dandelion extracts decrease in 3T3-L1 adipogenesis capacity, these results suggests that these extracts might represent a treatment option for obesity-related diseases by affecting different processes during the adipocyte life cycle.

  2. Polyphenols and Red Wine as Antioxidants against Peroxynitrite and other Oxidants

    Directory of Open Access Journals (Sweden)

    LAURA B VALDEZ

    2004-01-01

    Full Text Available The antioxidant capacity of polyphenols (+-catechin, (--epicatechin and myricetin, and of different types of red wines (Cabernet Sauvignon, Malbec and blended wine was evaluated by three assays. (a NADH oxidation by peroxynitrite (ONOO-: the ONOO- scavenging activity was higher for myricetin (IC50=35 µM than for (+-catechin (IC50=275 µM and (--epicatechin (IC50=313 µM. (b Peroxynitrite initiated chemiluminescence in rat liver homogenate: (--epicatechin (IC50=7.0 µM and (+-catechin (IC50=13 µM were more potent than myricetin (IC50=20 µM in inhibiting the chemiluminescence signal. (c Lucigenin chemiluminescence in aortic rings: (--epicatechin (IC50=15 µM and (+-catechin (IC50=18 µM showed higher antioxidant capacity than myricetin (IC50=32 µM. All the assayed red wines were able to scavenge the oxidants and free radical species that generate the signal in each assay. Cabernet Sauvignon was the red wine with the highest antioxidant capacity in comparison with Malbec and blended wine. It is concluded that the use of sensitive biological systems (as the aortic ring chemiluminescence provides important information in addition to the results from chemical (NADH oxidation by peroxynitrite and biochemical (homogenate chemiluminescence assays and offers advances in the physiological role of polyphenols

  3. Serum Antioxidative Enzymes Levels and Oxidative Stress Products in Age-Related Cataract Patients

    Directory of Open Access Journals (Sweden)

    Dong Chang

    2013-01-01

    Full Text Available Purpose. To investigate the activity of antioxidative enzymes and the products of oxidative stress in patients with age-related cataracts and compare the findings with those in healthy control subjects. Method. Sixty patients with age-related cataract and sixty healthy controls of matched age and gender were included in this study. Serum samples were obtained to detect the antioxidative enzymes of superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px, and oxidation degradation products of malondialdehyde (MDA, 4-hydroxynonenal (4-HNE, conjugated diene (CD, advanced oxidation protein products (AOPP, protein carbonyl (PC, and 8-hydroxydeoxyguanosine (8-OHdG. Results. Serum SOD, GSH-Px, and CAT activities in cataract group were significantly decreased as compared to the control subjects (P<0.05. The levels of MDA, 4-HNE, and CD in cataract patients were significantly higher than those in the control subjects (P<0.05, P<0.01. Cataract patients had higher levels of 8-OHdG, AOPP, and PC with respect to the comparative group of normal subjects (P<0.01. And there was no statistical significance in concentration of antioxidative enzymes and oxidative stress products in patients with different subtype cataract. Conclusions. Oxidative stress is an important risk factor in the development of age-related cataract, and augmentation of the antioxidant defence systems may be of benefit to prevent or delay cataractogenesis.

  4. Targeting of the Glutathione, Thioredoxin, and Nrf2 Antioxidant Systems in Head and Neck Cancer.

    Science.gov (United States)

    Roh, Jong-Lyel; Jang, Hyejin; Kim, Eun Hye; Shin, Daiha

    2017-07-10

    The glutathione (GSH), thioredoxin (Trx), and Nrf2 systems represent a major defense against reactive oxygen species (ROS), the cellular imbalance of which in cancer promotes growth and therapeutic resistance. This study investigated whether targeting the GSH, Trx, and Nrf2 antioxidant systems effectively eliminated head and neck cancer (HNC). At high concentrations, auranofin, but not buthionine sulfoximine (BSO) alone, decreased the viability of HNC, whereas even at low concentrations, auranofin plus BSO synergized to kill HNC cells. Dual silencing of the genes for GCLM and TrxR1 induced GSH depletion, Trx activity inhibition, and ROS accumulation, synergistically killing HNC cells. Inhibition of the GSH and Trx systems resulted in activation of the Nrf2-antioxidant response element (ARE) pathway, which may result in suboptimal GSH and Trx inhibition where HNC is resistant. Genetic inhibition of Nrf2 and/or HO-1 or trigonelline enhanced growth suppression, ROS accumulation, and cell death from GSH and Trx inhibition. The in vivo effects of GSH, Trx, and Nrf2 system inhibition were confirmed in a mouse HNC xenograft model by achieving growth inhibition >60% compared with those of control. Innovations: This study is the first to show that triple inhibition of GSH, Trx, and Nrf2 pathways could be an effective method to overcome the resistance of HNC. Inhibition of the Nrf2-ARE pathway in addition to dual inhibition of the GSH and Trx antioxidant systems can effectively eliminate resistant HNC. Antioxid. Redox Signal. 27, 106-114.

  5. Therapeutic Effects of Bupleurum Polysaccharides in Streptozotocin Induced Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Lingyu Pan

    Full Text Available Diabetes mellitus is related to low-grade chronic inflammation and oxidative stress. Bupleurum Polysaccharides (BPs, isolated from Bupleurum smithii var. parvifolium has anti-inflammatory and anti-oxidative properties. However, little is known about its therapeutic effects on diabetes. In this experiment, the effects of BPs on alleviation of diabetes and the underlying mechanisms were investigated. Diabetic mice model was established via successive intraperitoneal injections of streptozotocin (100 mg/kg body weight for two days. Mice with blood glucose levels higher than 16.8mmol/L were selected for experiments. The diabetic mice were orally administered with BPs (30 and 60 mg/kg once a day for 35 days. BPs not only significantly decreased levels of blood glucose, but also increased those of serum insulin and liver glycogen in diabetic mice compared to model mice. Additionally, BPs adminstration improved the insulin expression and suppressed the apoptosis in pancreas of the diabetic mice. Histopathological observations further demonstrated that BPs protected the pancreas and liver from oxidative and inflammatory damages. These results suggest that BPs protect pancreatic β cells and liver hepatocytes and ameliorate diabetes, which is associated with its anti-oxidative and anti-inflammatory properties.

  6. Stimuli-responsive nanomaterials for therapeutic protein delivery.

    Science.gov (United States)

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-11-28

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Cancer stem cells in hepatocellular carcinoma: Therapeutic implications based on stem cell biology.

    Science.gov (United States)

    Chiba, Tetsuhiro; Iwama, Atsushi; Yokosuka, Osamu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology. © 2015 The Japan Society of Hepatology.

  8. Antioxidant Capacity of Flavonoids in Hepatic Microsomes Is not Reflected by Antioxidant Effects In Vivo

    Directory of Open Access Journals (Sweden)

    Garry Duthie

    2012-01-01

    Full Text Available Flavonoids are polyphenolic compounds with potential antioxidant activity via multiple reduction capacities. Oxidation of cellular lipids has been implicated in many diseases. Consequently, this study has assessed the ability of several dietary flavonoid aglycones to suppress lipid peroxidation of hepatic microsomes derived from rats deficient in the major lipid soluble antioxidant, dα-tocopherol. Antioxidant effectiveness was galangin > quercetin > kaempferol > fisetin > myricetin > morin > catechin > apigenin. However, none of the flavonoids were as effective as dα-tocopherol, particularly at the lowest concentrations used. In addition, there appears to be an important distinction between the in vitro antioxidant effectiveness of flavonoids and their ability to suppress indices of oxidation in vivo. Compared with dα-tocopherol, repletion of vitamin E deficient rats with quercetin, kaempferol, or myricetin did not significantly affect indices of lipid peroxidation and tissue damage. Direct antioxidant effect of flavonoids in vivo was not apparent probably due to low bioavailability although indirect redox effects through stimulation of the antioxidant response element cannot be excluded.

  9. Dietary antioxidants for the athlete.

    Science.gov (United States)

    Atalay, Mustafa; Lappalainen, Jani; Sen, Chandan K

    2006-06-01

    Physical exercise induces oxidative stress and tissue damage. Although a basal level of reactive oxygen species (ROS) is required to drive redox signaling and numerous physiologic processes, excess ROS during exercise may have adverse implications on health and performance. Antioxidant nutrients may be helpful in that regard. Caution should be exercised against excess antioxidant supplements, however. This article presents a digest for sports practitioners. The following three recommendations are made: 1) it is important to determine the individual antioxidant need of each athlete performing a specific sport; 2) multinutrient preparations, as opposed to megadoses of any single form of nutrient, seem to be a more prudent path to choose; and 3) for outcomes of antioxidant supplementation, performance should not be the only criteria. Overall well being of the athlete, faster recovery, and minimization of injury time could all be affected by antioxidant therapy.

  10. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach.

    Science.gov (United States)

    Glorieux, Christophe; Calderon, Pedro Buc

    2017-09-26

    This review is centered on the antioxidant enzyme catalase and will present different aspects of this particular protein. Among them: historical discovery, biological functions, types of catalases and recent data with regard to molecular mechanisms regulating its expression. The main goal is to understand the biological consequences of chronic exposure of cells to hydrogen peroxide leading to cellular adaptation. Such issues are of the utmost importance with potential therapeutic extrapolation for various pathologies. Catalase is a key enzyme in the metabolism of H2O2 and reactive nitrogen species, and its expression and localization is markedly altered in tumors. The molecular mechanisms regulating the expression of catalase, the oldest known and first discovered antioxidant enzyme, are not completely elucidated. As cancer cells are characterized by an increased production of reactive oxygen species (ROS) and a rather altered expression of antioxidant enzymes, these characteristics represent an advantage in terms of cell proliferation. Meanwhile, they render cancer cells particularly sensitive to an oxidant insult. In this context, targeting the redox status of cancer cells by modulating catalase expression is emerging as a novel approach to potentiate chemotherapy.

  11. Phenolic composition, antioxidant and anti-proliferative activities of edible and medicinal plants from the Peruvian Amazon

    Directory of Open Access Journals (Sweden)

    Jan Tauchen

    Full Text Available ABSTRACT Among 23 extracts of medicinal and edible plants tested, Mauritia flexuosa L.f., Arecaceae, showed significant antioxidant ability (DPPH and ORAC = 1062.9 and 645.9 ± 51.4 µg TE/mg extract, respectively, while Annona montana Macfad., Annonaceae, demonstrated the most promising anti-proliferative effect (IC50 for Hep-G2 and HT-29 = 2.7 and 9.0 µg/ml, respectively. However, combinatory antioxidant/anti-proliferative effect was only detected in Oenocarpus bataua Mart., Arecaceae (DPPH = 903.8 and ORAC = 1024 µg TE/mg extract; IC50 for Hep-G2 and HT-29 at 102.6 and 38.8 µg/ml, respectively and Inga edulis Mart., Fabaceae (DPPH = 337.0 and ORAC = 795.7 µg TE/mg extract; IC50 for Hep-G2 and HT-29 at 36.3 and 57.9 µg/ml, respectively. Phenolic content was positively correlated with antioxidant potential, however not with anti-proliferative effect. None of these extracts possessed toxicity towards normal foetal lung cells, suggesting their possible use in development of novel plant-based agents with preventive and/or therapeutic action against oxidative stress-related diseases.

  12. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals

    Science.gov (United States)

    Georgiev, Vasil; Ananga, Anthony; Tsolova, Violeta

    2014-01-01

    Grape is one of the oldest fruit crops domesticated by humans. The numerous uses of grape in making wine, beverages, jelly, and other products, has made it one of the most economically important plants worldwide. The complex phytochemistry of the berry is characterized by a wide variety of compounds, most of which have been demonstrated to have therapeutic or health promoting properties. Among them, flavonoids are the most abundant and widely studied, and have enjoyed greater attention among grape researchers in the last century. Recent studies have shown that the beneficial health effects promoted by consumption of grape and grape products are attributed to the unique mix of polyphenolic compounds. As the largest group of grape polyphenols, flavonoids are the main candidates considered to have biological properties, including but not limited to antioxidant, anti-inflammatory, anti-cancer, antimicrobial, antiviral, cardioprotective, neuroprotective, and hepatoprotective activities. Here, we discuss the recent scientific advances supporting the beneficial health qualities of grape and grape-derived products, mechanisms of their biological activity, bioavailability, and their uses as nutraceuticals. The advantages of modern plant cell based biotechnology as an alternative method for production of grape nutraceuticals and improvement of their health qualities are also discussed. PMID:24451310

  13. Xanthone and Flavone Derivatives as Dual Agents with Acetylcholinesterase Inhibition and Antioxidant Activity as Potential Anti-Alzheimer Agents

    Directory of Open Access Journals (Sweden)

    Inês Cruz

    2017-01-01

    Full Text Available Alzheimer’s disease (AD is a multifactorial neurodegenerative disorder that is associated with the elderly. The current therapy that is used to treat AD is based mainly on the administration of acetylcholinesterase (AChE inhibitors. Due to their low efficacy there is a considerable need for other therapeutic strategies. Considering that the malfunctions of different, but interconnected, biochemical complex pathways play an important role in the pathogenesis of this disease, a promising therapy may consist in administration of drugs that act on more than a target on biochemical scenery of AD. In this work, the synthesis and evaluation of xanthone and flavone derivatives as antioxidants with AChE inhibitory activity were accomplished. Among the obtained compounds, Mannich bases 3 and 14 showed capacity to inhibit AChE and antioxidant property, exerting dual activity. Moreover, for the most promising AChE inhibitors, docking studies on the target have been performed aiming to predict the binding mechanism. The results presented here may help to identify new xanthone and flavone derivatives as dual anti-Alzheimer agents with AChE inhibitory and antioxidant activities.

  14. Genome Engineering for Personalized Arthritis Therapeutics.

    Science.gov (United States)

    Adkar, Shaunak S; Brunger, Jonathan M; Willard, Vincent P; Wu, Chia-Lung; Gersbach, Charles A; Guilak, Farshid

    2017-10-01

    Arthritis represents a family of complex joint pathologies responsible for the majority of musculoskeletal conditions. Nearly all diseases within this family, including osteoarthritis, rheumatoid arthritis, and juvenile idiopathic arthritis, are chronic conditions with few or no disease-modifying therapeutics available. Advances in genome engineering technology, most recently with CRISPR-Cas9, have revolutionized our ability to interrogate and validate genetic and epigenetic elements associated with chronic diseases such as arthritis. These technologies, together with cell reprogramming methods, including the use of induced pluripotent stem cells, provide a platform for human disease modeling. We summarize new evidence from genome-wide association studies and genomics that substantiates a genetic basis for arthritis pathogenesis. We also review the potential contributions of genome engineering in the development of new arthritis therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers.

    Science.gov (United States)

    Apak, Reşat; Güçlü, Kubilay; Ozyürek, Mustafa; Bektaşoğlu, Burcu; Bener, Mustafa

    2010-01-01

    Tests measuring the combined antioxidant effect of the nonenzymatic defenses in biological fluids may be useful in providing an index of the organism's capability to counteract reactive species known as pro-oxidants, resist oxidative damage, and combat oxidative stress-related diseases. The selected chromogenic redox reagent for the assay of human serum should be easily accessible, stable, selective, and respond to all types of biologically important antioxidants such as ascorbic acid, alpha-tocopherol, beta-carotene, reduced glutathione (GSH), uric acid, and bilirubin, regardless of chemical type or hydrophilicity. Our recently developed cupric reducing antioxidant capacity (CUPRAC) spectrophotometric method for a number of polyphenols and flavonoids using the copper(II)-neocuproine reagent in ammonium acetate buffer is now applied to a complete series of plasma antioxidants for the assay of total antioxidant capacity of serum, and the resulting absorbance at 450 nm is recorded either directly (e.g., for ascorbic acid, alpha-tocopherol, and glutathione) or after incubation at 50 degrees C for 20 min (e.g., for uric acid, bilirubin, and albumin), quantitation being made by means of a calibration curve. The lipophilic antioxidants, alpha-tocopherol and beta-carotene, are assayed in dichloromethane. Lipophilic antioxidants of serum are extracted with n-hexane from an ethanolic solution of serum subjected to centrifugation. Hydrophilic antioxidants of serum are assayed in the centrifugate after perchloric acid precipitation of proteins. The CUPRAC molar absorptivities, linear ranges, and TEAC (trolox equivalent antioxidant capacity) coefficients of the serum antioxidants are established, and the results are evaluated in comparison with the findings of the ABTS/TEAC reference method. The intra- and inter-assay coefficients of variation (CVs) are 0.7 and 1.5%, respectively, for serum. The CUPRAC assay proved to be efficient for glutathione and thiol-type antioxidants

  16. Immunomodulatory and antioxidant protective effect of Sarcocornia perennis L. (swampfire) in lead intoxicated rat.

    Science.gov (United States)

    Gargouri, Manel; Hamed, Houda; Akrouti, Amel; Christian, Magné; Ksouri, Riadh; El Feki, Abdelfattah

    2017-11-01

    Lead (Pb) is a very toxic metal present in the environment, causing disturbances of several functions. Preventive or curative effects of halophytic plants against these disorders may be a promising and safe therapeutic strategy. Thus, this study was designed to evaluate in vivo immunomodulatory and antioxidant effects of Sarcocornia perennis extract (Sp) against lead toxicity in rats. Groups of six animals each were treated with plant extract (via food), 6 g/L lead acetate (via drinking water) or a combination of both. At the end of the three-week period, rat exposure to lead caused reduction of liver weight but an increase of that of kidney. Moreover, lead intoxication-induced oxidative stress manifested by significant increases of inflammatory cytokines (except IL-10) and lipid peroxidation (TBARS), compared with the control group. Meanwhile, interleukin-10 (IL-10) and glutathione levels (GSH), as well as antioxidant activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), were decreased. Considering liver and renal markers, lead treatment induced a significant increase in the activities of aminotransferases (AST, ALT), and in the levels of urea, creatinine and phosphorous, whereas total plasma protein, albumin and calcium levels were significantly decreased. S. perennis extract alone did not induce any significant changes in hepatic or renal markers, whereas the antioxidant markers were significantly increased. S. perennis supplementation significantly reduced the lead-induced elevation of serum IL-1ß, IL-6, TNF-α, IFN-γ and TBARS but increased the IL-10 and antioxidant enzyme activities. Overall, plant components ameliorated hepatorenal damages caused by lead.

  17. Imaging enabled platforms for development of therapeutics

    Science.gov (United States)

    Celli, Jonathan; Rizvi, Imran; Blanden, Adam R.; Evans, Conor L.; Abu-Yousif, Adnan O.; Spring, Bryan Q.; Muzikansky, Alona; Pogue, Brian W.; Finkelstein, Dianne M.; Hasan, Tayyaba

    2011-03-01

    Advances in imaging and spectroscopic technologies have enabled the optimization of many therapeutic modalities in cancer and noncancer pathologies either by earlier disease detection or by allowing therapy monitoring. Amongst the therapeutic options benefiting from developments in imaging technologies, photodynamic therapy (PDT) is exceptional. PDT is a photochemistry-based therapeutic approach where a light-sensitive molecule (photosensitizer) is activated with light of appropriate energy (wavelength) to produce reactive molecular species such as free radicals and singlet oxygen. These molecular entities then react with biological targets such as DNA, membranes and other cellular components to impair their function and lead to eventual cell and tissue death. Development of PDT-based imaging also provides a platform for rapid screening of new therapeutics in novel in vitro models prior to expensive and labor-intensive animal studies. In this study we demonstrate how an imaging platform can be used for strategizing a novel combination treatment strategy for multifocal ovarian cancer. Using an in vitro 3D model for micrometastatic ovarian cancer in conjunction with quantitative imaging we examine dose and scheduling strategies for PDT in combination with carboplatin, a chemotherapeutic agent presently in clinical use for management of this deadly form of cancer.

  18. Therapeutic and cosmetic applications of mangiferin: a patent review.

    Science.gov (United States)

    Telang, Manasi; Dhulap, Sivakami; Mandhare, Anita; Hirwani, Rajkumar

    2013-12-01

    Mangiferin, a natural C-glucoside xanthone [2-C-β-D-glucopyranosyl-1, 3, 6, 7-tetrahydroxyxanthone], is abundantly present in young leaves and stem bark of the mango tree. The xanthonoid structure of mangiferin with C-glycosyl linkage and polyhydroxy components contributes to its free radical-scavenging ability, leading to a potent antioxidant effect as well as multiple biological activities. An extensive search was carried out to collect patent information on mangiferin and its derivatives using various patent databases spanning all priority years to date. The patents claiming therapeutic and cosmetic applications of mangiferin and its derivatives were analyzed in detail. The technology areas covered in this article include metabolic disorders, cosmeceuticals, multiple uses of the same compound, miscellaneous uses, infectious diseases, inflammation, cancer and autoimmune disorders, and neurological disorders. Mangiferin has the potential to modulate multiple molecular targets including nuclear factor-kappa B (NF-κB) signaling and cyclooxygenase-2 (COX-2) protein expression. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities. The molecular structure of mangiferin fulfils the four Lipinski's requisites reported to favor high bioavailability by oral administration. There is no evidence of adverse side effects of mangiferin so far. Mangiferin could thus be a promising candidate for development of a multipotent drug.

  19. Plasma total anti-oxidant capacity correlates inversely with the extent of acute appendicitis: a case control study

    Directory of Open Access Journals (Sweden)

    Devay Seda

    2006-03-01

    Full Text Available Abstract Background The role of free oxygen radicals in inflammatory conditions is well known. Free radicals cause lipid peroxidation of cellular membranes resulting in cell death. The purpose of this study was to investigate the levels of total anti-oxidant status (TAS, as a marker of anti-oxidant defense system and malondialdehyde (MDA, as a marker of oxidative stress, in the plasma of patients with acute appendicitis. Methods Fifty-one adult patients with a median age of 31 years who underwent operations with a preoperative diagnosis of acute appendicitis were included in this prospective study. Blood samples for C-reactive protein (CRP, MDA and TAS were collected preoperatively. Groups were compared by using the Mann-Whitney U test. Results There were 27 patients with acute phlagmenous appendicitis and 19 patients with advanced appendicitis (10 gangrenous and 9 perforated appendicitis, while 5 negative explorations were documented. No significant differences in WBC counts and MDA levels between groups were encountered. Plasma CRP was significantly higher in patients with perforated appendicitis, but not in the other groups. In advanced appendicitis group, TAS level was significantly lower than the other groups. On the other hand, plasma TAS level in acute phlagmenous appendicitis group was significantly higher. Conclusion A decrease in plasma total anti-oxidant capacity might be a predictor of the progression of inflammation to the perforation in acute appendicitis.

  20. Recent advances in understanding vitiligo [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Prashiela Manga

    2016-09-01

    Full Text Available Vitiligo, an acquired depigmentation disorder, manifests as white macules on the skin and can cause significant psychological stress and stigmatization. Recent advances have shed light on key components that drive disease onset and progression as well as therapeutic approaches. Vitiligo can be triggered by stress to the melanin pigment-producing cells of the skin, the melanocytes. The triggers, which range from sunburn to mechanical trauma and chemical exposures, ultimately cause an autoimmune response that targets melanocytes, driving progressive skin depigmentation. The most significant progress in our understanding of disease etiology has been made on three fronts: (1 identifying cellular responses to stress, including antioxidant pathways and the unfolded protein response (UPR, as key players in disease onset, (2 characterizing immune responses that target melanocytes and drive disease progression, and (3 identifying major susceptibility genes. The current model for vitiligo pathogenesis postulates that oxidative stress causes cellular disruptions, including interruption of protein maturation in the endoplasmic reticulum (ER, leading to the activation of the UPR and expression of UPR-regulated chemokines such as interleukin 6 (IL-6 and IL-8. These chemokines recruit immune components to the skin, causing melanocytes to be targeted for destruction. Oxidative stress can further increase melanocyte targeting by promoting antigen presentation. Two key components of the autoimmune response that promote disease progression are the interferon (IFN-γ/CXCL10 axis and IL-17-mediated responses. Several genome-wide association studies support a role for these pathways, with the antioxidant gene NRF2, UPR gene XBP1, and numerous immune-related genes including class I and class II major histocompatibility genes associated with a risk for developing vitiligo. Novel approaches to promote repigmentation in vitiligo are being investigated and may yield

  1. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Abrahim Noor

    2012-11-01

    dismutase in the treated cells could alter the antioxidant defense system, potentially contributing towards the anti-proliferative effect. There is great potential for the ethyl acetate extract of P. betle leaf as a source of natural antioxidants and to be developed as therapeutics in cancer treatment.

  2. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase.

    Science.gov (United States)

    Abrahim, Noor Nazirahanie; Kanthimathi, M S; Abdul-Aziz, Azlina

    2012-11-15

    system, potentially contributing towards the anti-proliferative effect. There is great potential for the ethyl acetate extract of P. betle leaf as a source of natural antioxidants and to be developed as therapeutics in cancer treatment.

  3. Comparison of Antioxidant Evaluation Assays for Investigating Antioxidative Activity of Gallic Acid and Its Alkyl Esters in Different Food Matrices.

    Science.gov (United States)

    Phonsatta, Natthaporn; Deetae, Pawinee; Luangpituksa, Pairoj; Grajeda-Iglesias, Claudia; Figueroa-Espinoza, Maria Cruz; Le Comte, Jérôme; Villeneuve, Pierre; Decker, Eric A; Visessanguan, Wonnop; Panya, Atikorn

    2017-08-30

    The addition of antioxidants is one of the strategies to inhibit lipid oxidation, a major cause of lipid deterioration in foods leading to rancidity development and nutritional losses. However, several studies have been reported that conventional antioxidant assays, e.g., TPC, ABTS, FRAP, and ORAC could not predict antioxidant performance in several foods. This study aimed to investigate the performance of two recently developed assays, e.g., the conjugated autoxidizable triene (CAT) and the apolar radical-initiated conjugated autoxidizable triene (ApoCAT) assays to predict the antioxidant effectiveness of gallic acid and its esters in selected food models in comparison with the conventional antioxidant assays. The results indicated that the polarities of the antioxidants have a strong impact on antioxidant activities. In addition, different oxidant locations demonstrated by the CAT and ApoCAT assays influenced the overall antioxidant performances of the antioxidants with different polarities. To validate the predictability of the assays, the antioxidative performance of gallic acid and its alkyl esters was investigated in oil-in-water (O/W) emulsions, bulk soybean oils, and roasted peanuts as the lipid food models. The results showed that only the ApoCAT assay could be able to predict the antioxidative performances in O/W emulsions regardless of the antioxidant polarities. This study demonstrated that the relevance of antioxidant assays to food models was strongly dependent on physical similarities between the tested assays and the food structure matrices.

  4. Therapeutic Efficacy Comparison of 5 Major EGFR-TKIs in Advanced EGFR-positive Non-Small-cell Lung Cancer: A Network Meta-analysis Based on Head-to-Head Trials.

    Science.gov (United States)

    Zhang, Yaxiong; Zhang, Zhonghan; Huang, Xiaodan; Kang, Shiyang; Chen, Gang; Wu, Manli; Miao, Siyu; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2017-09-01

    Five major first- and second-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), including erlotinib, gefitinib, icotinib, afatinib, and dacomitinib, are currently optional for patients with advanced non-small-cell lung cancer (NSCLC) who harbor EGFR mutations. However, there was no head-to-head-based network meta-analysis among all the TKIs in EGFR-mutated populations. Eligible literature was searched from an electronic database. Data of objective response rate, disease control rate, progression-free survival, and overall survival were extracted from enrolled studies. Multiple treatment comparisons based on Bayesian network integrated the efficacy of all included treatments. Six phase III randomized trials involving 1055 EGFR-mutated patients with advanced NSCLC were enrolled. Multiple treatment comparisons showed that 5 different EGFR-TKIs shared equivalent therapeutic efficacy in terms of all outcome measures. Rank probabilities indicated that dacomitinib and afatinib had potentially better efficacy compared with erlotinib, gefitinib, and icotinib in the EGFR-mutated patients. When compared with other agents, potential survival benefits (progression-free and overall survival) were observed in dacomitinib, whereas afatinib showed a better rank probability in overall response rate and disease control rate. Our study indicated a preferable therapeutic efficacy in the second-generation TKIs (dacomitinib and afatinib) when compared with the first-generation TKIs (erlotinib, gefitinib, and icotinib). Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Antioxidants of edible mushrooms

    NARCIS (Netherlands)

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M.; Griensven, Van Leo

    2015-01-01

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic

  6. Harnessing the Therapeutic Potential of Capsaicin and Its Analogues in Pain and Other Diseases

    Directory of Open Access Journals (Sweden)

    Shaherin Basith

    2016-07-01

    Full Text Available Capsaicin is the most predominant and naturally occurring alkamide found in Capsicum fruits. Since its discovery in the 19th century, the therapeutic roles of capsaicin have been well characterized. The potential applications of capsaicin range from food flavorings to therapeutics. Indeed, capsaicin and few of its analogues have featured in clinical research covered by more than a thousand patents. Previous records suggest pleiotropic pharmacological activities of capsaicin such as an analgesic, anti-obesity, anti-pruritic, anti-inflammatory, anti-apoptotic, anti-cancer, anti-oxidant, and neuro-protective functions. Moreover, emerging data indicate its clinical significance in treating vascular-related diseases, metabolic syndrome, and gastro-protective effects. The dearth of potent drugs for management of such disorders necessitates the urge for further research into the pharmacological aspects of capsaicin. This review summarizes the historical background, source, structure and analogues of capsaicin, and capsaicin-triggered TRPV1 signaling and desensitization processes. In particular, we will focus on the therapeutic roles of capsaicin and its analogues in both normal and pathophysiological conditions.

  7. Antioxidants in food

    Directory of Open Access Journals (Sweden)

    Đilas Sonja M.

    2002-01-01

    Full Text Available This paper attempts to lead the reader an understanding of what free radicals are and how they can form during lipid oxidation. Also, it provides some information out natural antioxidants (tocopherols and tocotrienols flavonoids, polyphenols, tannines, melanoidihes, carotenoids, ascorbates and the echanisms of their protection from radical damage. The sources of natural antioxidants are: oil seeds, teas, vegetables, fruits, spices and herbs.

  8. Curcumin, a potential therapeutic candidate for retinal diseases.

    Science.gov (United States)

    Wang, Lei-Lei; Sun, Yue; Huang, Kun; Zheng, Ling

    2013-09-01

    Curcumin, the major extraction of turmeric, has been widely used in many countries for centuries both as a spice and as a medicine. In the last decade, researchers have found the beneficial effects of curcumin on multiple disorders are due to its antioxidative, anti-inflammatory, and antiproliferative properties, as well as its novel function as an inhibitor of histone aectyltransferases. In this review, we summarize the recent progress made on studying the beneficial effects of curcumin on multiple retinal diseases, including diabetic retinopathy, glaucoma, and age-related macular degeneration. Recent clinical trials on the effectiveness of phosphatidylcholine formulated curcumin in treating eye diseases have also shown promising results, making curcumin a potent therapeutic drug candidate for inflammatory and degenerative retinal and eye diseases. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Changes in chemical composition and antioxidative properties of rye ginger cakes during their shelf-life.

    Science.gov (United States)

    Zieliński, Henryk; del Castillo, Maria Dolores; Przygodzka, Małgorzata; Ciesarova, Zuzana; Kukurova, Kristina; Zielińska, Danuta

    2012-12-15

    Changes in chemical composition and antioxidative properties of rye ginger cakes during their shelf-life were investigated in this study. In particular, the changes in antioxidants content, antioxidative and reducing capacity, and Maillard reaction development in rye ginger cakes after long-term storage were addressed. Ginger cakes produced according to the traditional and current recipe were stored for 5 years at room temperature in a dark place. The total phenolic compounds (TPC), inositol hexaphosphate (IP6), reduced (GSH) and oxidised glutathione (GSSG) contents, antioxidant and reducing capacity and Maillard reaction products (MRPs) were determined in ginger cakes after storage and then compared to those measured after baking. After long-term storage a decrease in TPC and IP6 contents in cakes was noted. In contrast, an increase in antioxidative and reducing capacity of stored cakes was observed. Long-term storage induced formation of furosine, advanced and final Maillard reaction products and caused changes in both reduced and oxidised forms of glutathione. After long-term storage the modest changes in furosine, FAST index and browning in ginger cake formulated with dark rye flour may suggest that this product is the healthiest among others. Therefore, traditional rye ginger cakes can be considered as an example of a healthy food that is also relatively stable during long term storage as noted by the small chemical changes observed in its composition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Grafting functional antioxidants on highly crosslinked polyethylene

    Science.gov (United States)

    Al-Malaika, S.; Riasat, S.; Lewucha, C.

    2016-05-01

    The problem of interference of antioxidants, such as hindered phenols, with peroxide-initiated crosslinking of polyethylene was addressed through the use of functional (reactive) graftable antioxidants (g-AO). Reactive derivatives of hindered phenol and hindered amine antioxidants were synthesised, characterised and used to investigate their grafting reactions in high density polyethylene; both non-crosslinked (PE) and highly peroxide-crosslinked (PEXa). Assessment of the extent of in-situ grafting of the antioxidants, their retention after exhaustive solvent extraction in PE and PEXa, and the stabilising performance of the grafted antioxidants (g-AO) in the polymer were examined and benchmarked against conventionally stabilised crosslinked & non-crosslinked polyethylene. It was shown that the functional antioxidants graft to a high extent in PEXa, and that the level of interference of the g-AOs with the polymer crosslinking process was minimal compared to that of conventional antioxidants which bear the same antioxidant function. The much higher level of retention of the g-AOs in PEXa after exhaustive solvent extraction, compared to that of the corresponding conventional antioxidants, accounts for their superior long-term thermal stabilising performance under severe extractive conditions.

  11. Design of clinical trials for therapeutic cancer vaccines development.

    Science.gov (United States)

    Mackiewicz, Jacek; Mackiewicz, Andrzej

    2009-12-25

    Advances in molecular and cellular biology as well as biotechnology led to definition of a group of drugs referred to as medicinal products of advanced technologies. It includes gene therapy products, somatic cell therapeutics and tissue engineering. Therapeutic cancer vaccines including whole cell tumor cells vaccines or gene modified whole cells belong to somatic therapeutics and/or gene therapy products category. The drug development is a multistep complex process. It comprises of two phases: preclinical and clinical. Guidelines on preclinical testing of cell based immunotherapy medicinal products have been defined by regulatory agencies and are available. However, clinical testing of therapeutic cancer vaccines is still under debate. It presents a serious problem since recently clinical efficacy of the number of cancer vaccines has been demonstrated that focused a lot of public attention. In general clinical testing in the current form is very expensive, time consuming and poorly designed what may lead to overlooking of products clinically beneficial for patients. Accordingly regulatory authorities and researches including Cancer Vaccine Clinical Trial Working Group proposed three regulatory solutions to facilitate clinical development of cancer vaccines: cost-recovery program, conditional marketing authorization, and a new development paradigm. Paradigm includes a model in which cancer vaccines are investigated in two types of clinical trials: proof-of-principle and efficacy. The proof-of-principle trial objectives are: safety; dose selection and schedule of vaccination; and demonstration of proof-of-principle. Efficacy trials are randomized clinical trials with objectives of demonstrating clinical benefit either directly or through a surrogate. The clinical end points are still under debate.

  12. Implications for Advanced Nursing Practice in the Use of Therapeutic Touch.

    Science.gov (United States)

    1993-01-01

    care units, where reliance on machines and technology have isolated and depersonalized patients. Before the boon of technology in health care, so...adjunctive therapies. Meehan (1990) recommends TT be taught as part of undergraduate or graduate nursing curricula or in a continuing education program of...staff (ANA, 1986). The CNS may serve as a resource person, preceptor and role model to staff Therapeutic Touch 47 nurses and nursing students , or member

  13. Influence of Chemotherapy on the Lipid Peroxidation and Antioxidant Status in Patients with Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Zohreh Sanaat

    2012-07-01

    Full Text Available Chemotherapeutic agents used in patients with cancer cause to generate the enormous amounts of free radicals associated with cell injury. In this study we assess the effects of chemotherapy regimen on oxidant/antioxidant status in patients with acute myeloid leukemia (AML. 38 newly diagnosed patients with acute myeloid leukemia were recruited in this study. All patients received cytarabine and daunorubicin as chemotherapy regimen. Plasma levels of malondialdehyde (MDA, total antioxidant status (TAS, and the levels of erythrocyte activity of superoxide dismutase (SOD and glutathione peroxidase (GPx were determined before chemotherapy and 14 days after chemotherapy with cytarabine and daunorubicin. Plasma MDA concentrations increased significantly (from 2.68±0.89 nmol/L to 3.14±1.29 nmol/L during the 14days post-chemotherapy period (P=0.04. Plasma TAS concentrations changed with chemotherapy from 1.09±0.15 mmol/L to 1.02±0.14 mmol/L with P=0.005. Erythrocyte SOD and GPX activity decreased overtime from 1157.24±543.61 U/g Hb to 984.01±419.09 U/g Hb (P=0.04 and 46.96±13.70 U/g Hb to 41.40±6.44 U/g Hb (P=0.02 respectively. We report here that there is an increase in malondialdehyde levels and a decrease in the levels of antioxidant enzymes and total antioxidant status. This suggests that chemotherapy causes these changes as a result of enormous production of reactive oxygen species in the patients with AML. Antioxidant supplementation must be approached with caution because of the probability of reduction the therapeutic efficacy of these cytotoxic drugs.

  14. Editorial perspective--advances in B-cell non-Hodgkin's lymphoma

    NARCIS (Netherlands)

    Hagenbeek, A.; Bischof Delaloye, A.

    2003-01-01

    Radioimmunotherapy (RIT) represents an exciting new therapeutic option for the treatment of B-cell non-Hodgkin's lymphoma (NHL), emerging at a time when significant advances have been made in NHL classification, molecular genetics and treatment. Despite recent treatment advances, including the use

  15. Advances in Alzheimer's Diagnosis and Therapy : The Implications of Nanotechnology

    NARCIS (Netherlands)

    Hajipour, Mohammad Javad; Santoso, Michelle R.; Rezaee, Farhad; Aghaverdi, Haniyeh; Mahmoudi, Morteza; Perry, George

    2017-01-01

    Alzheimer's disease (AD) is a type of dementia that causes major issues for patients' memory, thinking, and behavior. Despite efforts to advance AD diagnostic and therapeutic tools, AD remains incurable due to its complex and multifactorial nature and lack of effective diagnostics/therapeutics.

  16. Antioxidant activity and protective effect of banana peel against oxidative hemolysis of human erythrocyte at different stages of ripening.

    Science.gov (United States)

    Sundaram, Shanthy; Anjum, Shadma; Dwivedi, Priyanka; Rai, Gyanendra Kumar

    2011-08-01

    Phytochemicals such as polyphenols and carotenoids are gaining importance because of their contribution to human health and their multiple biological effects such as antioxidant, antimutagenic, anticarcinogenic, and cytoprotective activities and their therapeutic properties. Banana peel is a major by-product in pulp industry and it contains various bioactive compounds like polyphenols, carotenoids, and others. In the present study, effect of ripening, solvent polarity on the content of bioactive compounds of crude banana peel and the protective effect of peel extracts of unripe, ripe, and leaky ripe banana fruit on hydrogen peroxide-induced hemolysis and their antioxidant capacity were investigated. Banana (Musa paradisica) peel at different stages of ripening (unripe, ripe, leaky ripe) were treated with 70% acetone, which were partitioned in order of polarity with water, ethyl acetate, chloroform (CHCl₃), and hexane sequentially. The antioxidant activity of the samples was evaluated by the red cell hemolysis assay, free radical scavenging (1,1-diphenyl-2-picrylhydrazyl free radical elimination) and superoxide dismutase activities. The Folin-Ciocalteu's reagent assay was used to estimate the phenolic content of extracts. The findings of this investigation suggest that the unripe banana peel sample had higher antioxidant potency than ripe and leaky ripe. Further on fractionation, ethyl acetate and water soluble fractions of unripe peel displayed high antioxidant activity than CHCl₃ and hexane fraction, respectively. A positive correlation between free radical scavenging capacity and the content of phenolic compound were found in unripe, ripe, and leaky ripe stages of banana peel.

  17. Transcriptional up-regulation of antioxidant genes by PPARδ inhibits angiotensin II-induced premature senescence in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin; Hwang, Jung Seok; Jung, Si Young; Kim, Min Young; Jin, Hanna; Kang, Eun Sil; Woo, Im Sun; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl; Han, Chang Woo; Seo, Han Geuk

    2011-01-01

    Research highlights: → Activation of PPARδ by GW501516 significantly inhibited Ang II-induced premature senescence in hVSMCs. → Agonist-activated PPARδ suppressed generation of Ang II-triggered ROS with a concomitant reduction in DNA damage. → GW501516 up-regulated expression of antioxidant genes, such as GPx1, Trx1, Mn-SOD and HO-1. → Knock-down of these antioxidant genes abolished the effects of GW501516 on ROS production and premature senescence. -- Abstract: This study evaluated peroxisome proliferator-activated receptor (PPAR) δ as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPARδ by GW501516, a specific agonist of PPARδ, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPARδ suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPARδ-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II.

  18. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants.

    Science.gov (United States)

    Sanmartín-Suárez, Carolina; Soto-Otero, Ramón; Sánchez-Sellero, Inés; Méndez-Álvarez, Estefanía

    2011-01-01

    Dimethyl sulfoxide is an amphiphilic compound whose miscibility with water and its ability to dissolve lipophilic compounds make it an appreciated solvent in biomedical research. However, its reported antioxidant properties raise doubts about its use as a solvent in evaluating new antioxidants. The goal of this investigation was to evaluate its antioxidant properties and carry out a comparative study on the antioxidant properties of some known neuroprotective antioxidants in the presence and absence of dimethyl sulfoxide. The antioxidant properties of dimethyl sulfoxide were studied in rat brain homogenates by determining its ability to reduce both lipid peroxidation (TBARS formation) and protein oxidation (increase in protein carbonyl content and decrease in free thiol content) induced by ferrous chloride/hydrogen peroxide. Its ability to reduce the production of hydroxyl radicals by 6-hydroxydopamine autoxidation was also estimated. The same study was also performed with three known antioxidants (α-phenyl-N-tert-butylnitrone; 2-methyl-2-nitrosopropane; 5,5-dimethyl-1-pyrroline N-oxide) in the presence and absence of dimethyl sulfoxide. Our results showed that dimethyl sulfoxide is able to reduce both lipid peroxidation and protein carbonyl formation induced by ferrous chloride/hydrogen peroxide in rat brain homogenates. It can also reduce the production of hydroxyl radicals during 6-hydroxydopamine autoxidation. However, it increases the oxidation of protein thiol groups caused by ferrous chloride/hydrogen peroxide in rat brain homogenate. Despite the here reported antioxidant and pro-oxidant properties of dimethyl sulfoxide, the results obtained with α-phenyl-N-tert-butylnitrone, 2-methyl-2-nitrosopropane, and 5,5-dimethyl-1-pyrroline N-oxide corroborate the antioxidant properties attributed to these compounds and support the potential use of dimethyl sulfoxide as a solvent in the study of the antioxidant properties of lipophilic compounds. Dimethyl sulfoxide

  19. Effect of balneotherapy on the antioxidant system--a controlled pilot study.

    Science.gov (United States)

    Bender, Tamás; Bariska, János; Vághy, Richárd; Gomez, Roberto; Imre Kovács

    2007-01-01

    Balneotherapy is among the most widely used modalities of physical therapy in countries rich in mineral waters. This trial was intended to ascertain whether balneotherapy (i.e., therapeutic bath in mineral water) has any influence on the antioxidant system and whether there are any differences compared to bathing in tap water. The ten subjects in Group I bathed in alkaline thermal water, Group II used alkaline, chlorine-containing mineral water, whereas Group III bathed in tap water. Catalase, superoxide dismutase, malondialdehyde protein and glutathione peroxidase levels were measured at baseline and after concluding the course of balneotherapy. Balneotherapy with either of the two mineral waters reduced the activity of all four enzymes studied. Using tap water, however, had no influence on either catalase or superoxide dismutase activity after one session or glutathione peroxidase levels after a course of ten balneotherapy treatments. Thermal water may have a beneficial effect on the formation of free radicals. The therapeutic efficacy of mineral vs. tap water is different, although bathing in hot water itself reduces enzyme activity.

  20. Phytochemical analysis of Passiflora loefgrenii Vitta, a rich source of luteolin-derived flavonoids with antioxidant properties.

    Science.gov (United States)

    Argentieri, Maria Pia; Levi, Marisa; Guzzo, Flavia; Avato, Pinarosa

    2015-11-01

    The paper describes the flavonoid composition of the aerial parts (young leaves, YL; adult leaves, AL; stems, ST) of Passiflora loefgrenii Vitta, a rare species native to Brazil, where it is traditionally used as food. Antioxidant potential has also been evaluated. To the best of our knowledge, no phytochemical and biological study on this species has been reported previously. Compositional data have been acquired combining HPLC-diode array detector (DAD) and Electrospary ionization-tandem mass spectrometry (ESI-MS/MS) analyses. Antioxidant activity has been evaluated by the 2,2'-di-phenyl-1-picrylhydrazyl method. Glycosylated flavones, with luteolin as the main aglycone, can be regarded as biomarkers for this drug. Qualitative composition of the extracts from YL, AL and ST was similar. The bulk of the constituents was made up by 8-C-ß-glucosyl luteolin (orientin), 7-O-α-rhamnosyl-6-C-ß-glucosyl luteolin and 6-C-α-rhamnosyl luteolin, which totally amounted to 16.57 (73%), 10.77 (74%) and 5.07 (77%) μg/mg in YL, AL and ST, respectively. P. loefgrenii showed a good antioxidant activity (IC50 of 350 μg/ml), higher than generally reported for other passifloras. P. loefgrenii, rich in luteolin glycosides, can be regarded as a good candidate to be explored for therapeutic properties other than the sedative one since it represents a rich source of valuable flavonoids with antioxidant potential. © 2015 Royal Pharmaceutical Society.

  1. Antioxidant Capacity, Cytotoxicity, and Acute Oral Toxicity of Gynura bicolor

    Directory of Open Access Journals (Sweden)

    Wuen Yew Teoh

    2013-01-01

    Full Text Available Gynura bicolor (Compositae which is widely used by the locals as natural remedies in folk medicine has limited scientific studies to ensure its efficacy and nontoxicity. The current study reports the total phenolic content, antioxidant capacity, cytotoxicity, and acute oral toxicity of crude methanol and its fractionated extracts (hexane, ethyl acetate, and water of G. bicolor leaves. Five human colon cancer cell lines (HT-29, HCT-15, SW480, Caco-2, and HCT 116, one human breast adenocarcinoma cell line (MCF7, and one human normal colon cell line (CCD-18Co were used to evaluate the cytotoxicity of G. bicolor. The present findings had clearly demonstrated that ethyl acetate extract of G. bicolor with the highest total phenolic content among the extracts showed the strongest antioxidant activity (DPPH radical scavenging assay and metal chelating assay, possessed cytotoxicity, and induced apoptotic and necrotic cell death, especially towards the HCT 116 and HCT-15 colon cancer cells. The acute oral toxicity study indicated that methanol extract of G. bicolor has negligible level of toxicity when administered orally and has been regarded as safe in experimental rats. The findings of the current study clearly established the chemoprevention potential of G. bicolor and thus provide scientific validation on the therapeutic claims of G. bicolor.

  2. Advances in Virus-Directed Therapeutics against Epstein-Barr Virus-Associated Malignancies

    Directory of Open Access Journals (Sweden)

    Sajal K. Ghosh

    2012-01-01

    Full Text Available Epstein-Barr virus (EBV is the causal agent in the etiology of Burkitt’s lymphoma and nasopharyngeal carcinoma and is also associated with multiple human malignancies, including Hodgkin’s and non-Hodgkin’s lymphoma, and posttransplantation lymphoproliferative disease, as well as sporadic cancers of other tissues. A causal relationship of EBV to these latter malignancies remains controversial, although the episomic EBV genome in most of these cancers is clonal, suggesting infection very early in the development of the tumor and a possible role for EBV in the genesis of these diseases. Furthermore, the prognosis of these tumors is invariably poor when EBV is present, compared to their EBV-negative counterparts. The physical presence of EBV in these tumors represents a potential “tumor-specific” target for therapeutic approaches. While treatment options for other types of herpesvirus infections have evolved and improved over the last two decades, however, therapies directed at EBV have lagged. A major constraint to pharmacological intervention is the shift from lytic infection to a latent pattern of gene expression, which persists in those tumors associated with the virus. In this paper we provide a brief account of new virus-targeted therapeutic approaches against EBV-associated malignancies.

  3. Recent progress in the therapeutic applications of nanotechnology.

    Science.gov (United States)

    Solomon, Melani; D'Souza, Gerard G M

    2011-04-01

    The field of pharmaceutical and medical nanotechnology has grown rapidly in recent decades and offers much promise for therapeutic advances. This review is intended to serve as a quick summary of the major areas in the therapeutic application of nanotechnology. Nanotechnology for therapeutic application falls into two broad categories of particulate systems and nanoengineered devices. Recent studies appear to focus on the development of multifunctional particles for drug delivery and imaging and the development of nanotechnology-based biosensors for diagnostic applications. Cancer treatment and diagnosis appears to be the principal focus of many of these applications, but nanotechnology is also finding application in tissue engineering and surface engineering of medical implants. Particulate drug delivery systems in general appear to be poised for increased use in the clinic, whereas nanoengineered implants and diagnostic sensors might well be the next major wave in the medical use of nanotechnology.

  4. Bioactive Antimicrobial Peptides as Therapeutics for Corneal Wounds and Infections.

    Science.gov (United States)

    Griffith, Gina L; Kasus-Jacobi, Anne; Pereira, H Anne

    2017-06-01

    Significance: More than 2 million eye injuries and infections occur each year in the United States that leave civilians and military members with reduced or complete vision loss due to the lack of effective therapeutics. Severe ocular injuries and infections occur in varied settings including the home, workplace, and battlefields. In this review, we discuss the potential of developing antimicrobial peptides (AMPs) as therapeutics for the treatment of corneal wounds and infections for which the current treatment options are inadequate. Recent Advances: Standard-of-care employs the use of fluorescein dye for the diagnosis of ocular defects and is followed by the use of antibiotics and/or steroids to treat the infection and reduce inflammation. Recent advances for treating corneal wounds include the development of amniotic membrane therapies, wound chambers, and drug-loaded hydrogels. In this review, we will discuss an innovative approach using AMPs with the dual effect of promoting corneal wound healing and clearing infections. Critical Issues: An important aspect of treating ocular injuries is that treatments need to be effective and administered expeditiously. This is especially important for injuries that occur during combat and in individuals who demonstrate delayed wound healing. To overcome gaps in current treatment modalities, bioactive peptides based on naturally occurring cationic antimicrobial proteins are being investigated as new therapeutics. Future Directions: The development of new therapeutics that can treat ocular infections and promote corneal wound healing, including the healing of persistent corneal epithelial defects, would be of great clinical benefit.

  5. Antioxidant Activity from Various Tomato Processing

    Directory of Open Access Journals (Sweden)

    Retno Sri Iswari

    2016-04-01

    Full Text Available Tomato is one of the high antioxidant potential vegetables. Nowadays, there are many techniques of tomato processings instead of fresh consumption, i.e. boiled, steamed, juiced and sauteed. Every treatment of cooking will influence the chemical compound inside the fruits and the body's nutrition intake. It is important to conduct the research on antioxidant compound especially lycopene, β-carotene, vitamin C, α-tocopherol, and its activity after processing. This research has been done using the experimental method. Tomatoes were cooked into six difference ways, and then it was extracted using the same procedure continued with antioxidant measurement. The research results showed that steaming had promoted the higher antioxidant numbers (lycopene. α-tocopherol, β-carotene and vitamin C and higher TCA and antioxidant activities in the tomatoes than other processings. It was indicated that steaming was the best way to enhance amount, capacity and activities of antioxidants of the tomatoes.

  6. Potential Antioxidant Role of Tridham in Managing Oxidative Stress against Aflatoxin-B1-Induced Experimental Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Vijaya Ravinayagam

    2012-01-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most fatal cancers due to delayed diagnosis and lack of effective treatment options. Significant exposure to Aflatoxin B1 (AFB1, a potent hepatotoxic and hepatocarcinogenic mycotoxin, plays a major role in liver carcinogenesis through oxidative tissue damage and p53 mutation. The present study emphasizes the anticarcinogenic effect of Tridham (TD, a polyherbal traditional medicine, on AFB1-induced HCC in male Wistar rats. AFB1-administered HCC-bearing rats (Group II showed increased levels of lipid peroxides (LPOs, thiobarbituric acid substances (TBARs, and protein carbonyls (PCOs and decreased levels of enzymic and nonenzymic antioxidants when compared to control animals (Group I. Administration of TD orally (300 mg/kg body weight/day for 45 days to HCC-bearing animals (Group III significantly reduced the tissue damage accompanied by restoration of the levels of antioxidants. Histological observation confirmed the induction of tumour in Group II animals and complete regression of tumour in Group III animals. This study highlights the potent antioxidant properties of TD which contribute to its therapeutic effect in AFB1-induced HCC in rats.

  7. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods.

    Science.gov (United States)

    Celik, Saliha Esin; Ozyürek, Mustafa; Güçlü, Kubilay; Apak, Reşat

    2010-06-15

    Antioxidants are health beneficial compounds that can protect cells and macromolecules (e.g., fats, lipids, proteins, and DNA) from the damage of reactive oxygen species (ROS). Solvent effect is a crucial parameter on the chemical behaviour of antioxidant compounds but there has been limited information regarding its role on antioxidant capacity and its assays. Therefore, the present study was undertaken to investigate the total antioxidant capacity (TAC) of some certain lipophilic and hydrophilic antioxidants, measured in different solvent media such as ethanol (EtOH) (100%), methanol (MeOH) (100%), methanol/water (4:1, v/v), methanol/water (1:1, v/v), dichloromethane (DCM)/EtOH (9:1, v/v). The cupric reducing antioxidant capacity (CUPRAC) values of selected antioxidants were experimentally reported in this work as trolox equivalent antioxidant capacity (TEAC), and compared to those found by reference TAC assays, i.e., 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)/persulphate (ABTS/persulphate) and ferric reducing antioxidant power (FRAP) methods. The TAC values of synthetic mixtures of antioxidants were experimentally measured as trolox equivalents and compared to those theoretically found by making use of the principle of additivity of absorbances assuming no chemical interaction between the mixture constituents. Possible synergistic (e.g., BHT and BHA in DCM/EtOH) or antagonistic behaviours of these synthetic mixtures were investigated in relation to solvent selection.

  8. Partitioning of selected antioxidants in mayonnaise

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Schwarz, K.; Stockmann, H.

    1999-01-01

    This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise...... acid and catechin) to 83% (Trolox). Accordingly, proportions of 6% (Trolox) to 80% (gallic acid and catechin) were found in the aqueous phase. Similar trends were observed after dialysis. After ultracentrifugation, large proportions of polar antioxidants were found in the "emulsion phase...... by either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic...

  9. Antioxidant Protection in Blood against Ionising Radiation

    International Nuclear Information System (INIS)

    Bognar, G.; Meszaros, G.; Koteles, G. J.

    2001-01-01

    Full text: The quantities of the antioxidants in the human blood are important indicators of health status. The routine determinations of activities/capacities of antioxidant compounds would be of great importance in assessing individual sensitivities against oxidative effects. We have investigated the sensitivities of those antioxidant elements against various doses of ionising radiation tested by the RANDOX assays. Our results show dose-dependent decreases of antioxidant activities caused by the different doses. The total antioxidant status value linearly decreased up to 1 Gy, but further increase of dose (2 Gy) did not influence the respective values although the test system still indicated their presence. It means that the human blood retains 60-70% of its total antioxidant capacity. Radiation induced alterations of the antioxidant enzymes: glutathione peroxidase and superoxide dismutase have been also investigated. The activities of glutathione peroxidase and superoxide dismutase decreased linearly upon the effects of various doses of ionising radiation till 1 Gy. Between 1 and 2 Gy only further mild decreases could be detected. In this case the human blood retained 40-60% of these two antioxidant enzymes. These observations suggest either the limited response of antioxidant system against ionising radiation, or the existence of protection system of various reactabilities. (author)

  10. Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: Analysis from the retroEMBRACE study

    DEFF Research Database (Denmark)

    LU, Fokdal; Sturdza, Alina; Mazeron, Renaud

    2016-01-01

    Background and purpose Image guided adaptive brachytherapy (IGABT) using intracavitary applicators (IC) has led to a significant improvement of local control in locally advanced cervical cancer (LACC). Further improvement has been obtained with combined intracavitary/interstitial (IC/IS) applicat...... IC/IS brachytherapy improves the therapeutic ratio in LACC by enabling a tumour specific dose escalation resulting in significantly higher local control in large tumours without adding treatment related late morbidity.......Background and purpose Image guided adaptive brachytherapy (IGABT) using intracavitary applicators (IC) has led to a significant improvement of local control in locally advanced cervical cancer (LACC). Further improvement has been obtained with combined intracavitary/interstitial (IC....../IS) applicators. The aim of this analysis was to evaluate the impact on local control and late morbidity of application of combined IS/IC brachytherapy in a large multicentre population. Material/methods 610 patients with LACC from the retroEMBRACE study were included. Patients were divided into an IC group (N...

  11. Phytochemical and therapeutic potential of cucumber.

    Science.gov (United States)

    Mukherjee, Pulok K; Nema, Neelesh K; Maity, Niladri; Sarkar, Birendra K

    2013-01-01

    Cucumber (Cucumis sativus L.) is a member of the Cucurbitaceae family like melon, squash and pumpkins. It is a popular vegetable crop used in Indian traditional medicine since ancient times. This vegetable is very high in water content and very low in calories. It has potential antidiabetic, lipid lowering and antioxidant activity. Cucumber has a cleansing action within the body by removing accumulated pockets of old waste materials and chemical toxins. Fresh fruit juice is used for nourishing the skin. It gives a soothing effect against skin irritations and reduces swelling. Cucumber also has the power to relax and alleviate the sunburn's pain. The fruit is refrigerant, haemostatic, tonic and useful in hyperdipsia, thermoplegia etc. The seeds also have a cooling effect on the body and they are used to prevent constipation. Several bioactive compounds have been isolated from cucumber including cucurbitacins, cucumegastigmanes I and II, cucumerin A and B, vitexin, orientin, isoscoparin 2″-O-(6‴-(E)-p-coumaroyl) glucoside, apigenin 7-O-(6″-O-p-coumaroylglucoside) etc. Despite huge exploration of cucumber in agricultural field, comparatively very few studies have been published about its chemical profile and its therapeutic potential. This article reviews the therapeutic application, pharmacological and phytochemical profile of different parts of C. sativus. In this review we have explored the current phytochemical and pharmacological knowledge available with this well known plant and several promising aspects for research on cucumber. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Carvedilol and antioxidant proteins in a type I diabetes animal model.

    Science.gov (United States)

    Diogo, Cátia V; Deus, Cláudia M; Lebiedzinska-Arciszewska, Magdalena; Wojtala, Aleksandra; Wieckowski, Mariusz R; Oliveira, Paulo J

    2017-01-01

    Patients with diabetes are at a high risk of developing both micro- and macrovascular disease. Hyperglycaemia seems to be the main factor in the pathogenesis of diabetic cardiomyopathy, often based on increased oxidative stress. Carvedilol, a β-adrenergic blocker, has intrinsic antioxidant properties and was previously described to be effective in the protection of cardiac mitochondria against oxidative stress. The objective of this study was to evaluate the effect of carvedilol on hyperglycaemia-induced oxidative damage and mitochondrial abnormalities in cardiac and skeletal muscle in streptozotocin-treated rats. Body mass, blood glucose, the level of protein carbonylation, caspase-9- and caspase-3-like activities, mitochondrial proteins, the status of antioxidant defence system and stress-related proteins were evaluated in streptozotocin vs streptozotocin + carvedilol (1 mg/kg/day)-treated rats. The results showed that carvedilol decreased blood glucose in streptozotocin-treated animals. Content of catalase in the heart and SOD2, SOD1 and catalase in skeletal muscle were increased by carvedilol treatment in streptozotocin-treated animals. At this particular time point, streptozotocin-induced hyperglycaemia did not cause caspase activation or increase in protein carbonylation status. The data showed that carvedilol increased the level of antioxidant enzymes, what may contribute to preserve cell redox balance during hyperglycaemia. We also showed here for the first time that carvedilol effects on streptozotocin-treated rats are tissue dependent, with a more predominant effect on skeletal muscle. Based on data showing modulation of the antioxidant network in the heart, carvedilol may be beneficial in diabetic patients without advanced disease complications, delaying their progression. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  13. Nanotechnology solutions for Alzheimer's disease: advances in research tools, diagnostic methods and therapeutic agents.

    Science.gov (United States)

    Nazem, Amir; Mansoori, G Ali

    2008-03-01

    A century of research has passed since the discovery and definition of Alzheimer's disease (AD), the primary common dementing disorder worldwide. However, AD lacks definite diagnostic approaches and effective cure at the present. Moreover, the currently available diagnostic tools are not sufficient for an early screening of AD in order to start preventive approaches. Recently the emerging field of nanotechnology has promised new techniques to solve some of the AD challenges. Nanotechnology refers to the techniques of designing and manufacturing nanosize (1-100 nm) structures through controlled positional and/or self-assembly of atoms and molecules. In this report, we present the promises that nanotechnology brings in research on the AD diagnosis and therapy. They include its potential for the better understanding of the AD root cause molecular mechanisms, AD's early diagnoses, and effective treatment. The advances in AD research offered by the atomic force microscopy, single molecule fluorescence microscopy and NanoSIMS microscopy are examined here. In addition, the recently proposed applications of nanotechnology for the early diagnosis of AD including bio-barcode assay, localized surface plasmon resonance nanosensor, quantum dot and nanomechanical cantilever arrays are analyzed. Applications of nanotechnology in AD therapy including neuroprotections against oxidative stress and anti-amyloid therapeutics, neuroregeneration and drug delivery beyond the blood brain barrier (BBB) are discussed and analyzed. All of these applications could improve the treatment approach of AD and other neurodegenerative diseases. The complete cure of AD may become feasible by a combination of nanotechnology and some other novel approaches, like stem cell technology.

  14. In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica.

    Science.gov (United States)

    Barapatre, Anand; Meena, Avtar Singh; Mekala, Sowmya; Das, Amitava; Jha, Harit

    2016-05-01

    Lignin is one of the most important phytomacromolecule with diverse therapeutic properties such as anticancer, antimicrobial, anti-inflammatory and immune-stimulatory. The present study was carried out to evaluate the in vitro antioxidant, free radical scavenging and anti-proliferative/cytotoxic activities of eleven different lignin fractions, extracted from the wood of Acacia nilotica by pressurized solvent extraction (PSE) and successive solvent extraction (SSE) methods. Results indicate that the PSE fractions have high polyphenolic content and reducing power. However, the antioxidant efficiency examined by DPPH and ABTS radical scavenging assay was higher in SSE fractions. All lignin fractions revealed a significant ability to scavenge nitric oxide, hydroxyl and superoxide radicals. The extracted lignin fractions display high ferric ion reducing capacity and also possess excellent antioxidant potential in the hydrophobic (linoleic acid) system. Fractions extracted by polar solvent has the highest iron (Fe(2+)) chelating activity as compared to other factions, indicating their effect on the redox cycling of iron. Four lignin fractions depicted higher cytotoxic potential (IC50: 2-15 μg/mL) towards breast cancer cell line (MCF-7) but were ineffective (IC50: ≥ 100 μg/mL) against normal primary human hepatic stellate cells (HHSteCs). These findings suggest that the lignin extracts of A. nilotica wood has a remarkable potential to prevent disease caused by the overproduction of radicals and also seem to be a promising candidate as natural antioxidant and anti-cancer agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Caffeic Acid Phenethyl Ester Is a Potential Therapeutic Agent for Oral Cancer

    Directory of Open Access Journals (Sweden)

    Ying-Yu Kuo

    2015-05-01

    Full Text Available Head and neck cancers, which affect 650,000 people and cause 350,000 deaths per year, is the sixth leading cancer by cancer incidence and eighth by cancer-related death worldwide. Oral cancer is the most common type of head and neck cancer. More than 90% of oral cancers are oral and oropharyngeal squamous cell carcinoma (OSCC. The overall five-year survival rate of OSCC patients is approximately 63%, which is due to the low response rate to current therapeutic drugs. In this review we discuss the possibility of using caffeic acid phenethyl ester (CAPE as an alternative treatment for oral cancer. CAPE is a strong antioxidant extracted from honeybee hive propolis. Recent studies indicate that CAPE treatment can effectively suppress the proliferation, survival, and metastasis of oral cancer cells. CAPE treatment inhibits Akt signaling, cell cycle regulatory proteins, NF-κB function, as well as activity of matrix metalloproteinase (MMPs, epidermal growth factor receptor (EGFR, and Cyclooxygenase-2 (COX-2. Therefore, CAPE treatment induces cell cycle arrest and apoptosis in oral cancer cells. According to the evidence that aberrations in the EGFR/phosphoinositide 3-kinase (PI3K/protein kinase B (Akt signaling, NF-κB function, COX-2 activity, and MMPs activity are frequently found in oral cancers, and that the phosphorylation of Akt, EGFR, and COX-2 correlates to oral cancer patient survival and clinical progression, we believe that CAPE treatment will be useful for treatment of advanced oral cancer patients.

  16. Bioactive Flavonoids, Antioxidant Behaviour, and Cytoprotective Effects of Dried Grapefruit Peels (Citrus paradisi Macf.)

    Science.gov (United States)

    Castro-Vazquez, Lucia; Alañón, María Elena; Rodríguez-Robledo, Virginia; Pérez-Coello, María Soledad; Hermosín-Gutierrez, Isidro; Díaz-Maroto, María Consuelo; Jordán, Joaquín; Galindo, María Francisca; Arroyo-Jiménez, María del Mar

    2016-01-01

    Grapefruit (Citrus paradisi Macf.) is an important cultivar of the Citrus genus which contains a number of nutrients beneficial to human health. The objective of the present study was to evaluate changes in bioactive flavonoids, antioxidant behaviour, and in vitro cytoprotective effect of processed white and pink peels after oven-drying (45°C–60°C) and freeze-drying treatments. Comparison with fresh grapefruit peels was also assessed. Significant increases in DPPH, FRAPS, and ABTS values were observed in dried grapefruit peel samples in comparison with fresh peels, indicating the suitability of the treatments for use as tools to greatly enhance the antioxidant potential of these natural byproducts. A total of thirteen flavonoids were quantified in grapefruit peel extracts by HPLC-MS/MS. It was found that naringin, followed by isonaringin, was the main flavonoid occurring in fresh, oven-dried, and freeze-dried grapefruit peels. In vivo assay revealed that fresh and oven-dried grapefruit peel extracts (45°C) exerted a strong cytoprotective effect on SH-SY5Y neuroblastoma cell lines at concentrations ranging within 0.1–0.25 mg/mL. Our data suggest that grapefruit (Citrus paradisi Macf.) peel has considerable potential as a source of natural bioactive flavonoids with outstanding antioxidant activity which can be used as agents in several therapeutic strategies. PMID:26904169

  17. Analytical profiling of selected antioxidants and total antioxidant capacity of goji (Lycium spp.) berries.

    Science.gov (United States)

    Protti, Michele; Gualandi, Isacco; Mandrioli, Roberto; Zappoli, Sergio; Tonelli, Domenica; Mercolini, Laura

    2017-09-05

    Goji berries and derived products represent a relevant source of micronutrients, most of which are natural antioxidants and contribute to the high nutritional quality of these fruits. Three brands of dried goji berries have been analysed by a multidisciplinary approach to get an insight into both their content of selected antioxidants and their antioxidant capacity (AC). The former goal has been achieved by developing a liquid chromatographic method coupled to mass spectrometry and combined to a fast solid phase extraction. Several significant representative antioxidant compounds belonging to the following classes: flavonoids, flavan-3-ols, phenolic acids, amino acids and derivatives, and carotenoids have been taken into account. Quercetin and rutin were found to be the predominant flavonoids, chlorogenic acid was the most abundant phenolic acid and zeaxanthin was the major carotenoid. The AC of the goji berries has been evaluated by four analytical methods in order to estimate the contributions of different reactions involved in radicals scavenging. In particular, AC has been determined using 3 standardised methods (DPPH, ABTS, ORAC) and a recently proposed electrochemical method, which measures the scavenging activity of antioxidants towards OH radicals generated both by hydrogen peroxide photolysis and the Fenton reaction. The results obtained from chemical composition and antioxidant capacity assays confirm the high nutritional and commercial value of goji berries and highlight that the three brands do not exhibit significant differences. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. ANTIOXIDANT POTENCY OF WATER KEFIR

    Directory of Open Access Journals (Sweden)

    Muneer Alsayadi M.S.

    2013-06-01

    Full Text Available Reactive oxygen species (ROS have strong relationship with several diseases. Many fermented foods were reported to be important sources for antioxidant compounds. Antioxidant activity of water kefir never reported in the scientific literature. The objective of this study was to detect and investigate the antioxidant potency of water kefir. Water kefir was prepared by fermentation of sugar solution with kefir grains for 24h. Antioxidant activity of fresh water kefir drink and its extract with (0.125–5 mg/ml was evaluated using 2,2,-diphenyl-1-pricrylhydrozyl (DPPH scavenging method, and inhibition of ascorbate autoxidation and the reducing power of water kefir were determined, Butylated hydroxyanisole (BHA and ascorbic acid were used for comparison. Water kefir demonstrated great ability to DPPH scavenging ranged (9.88-63.17%. And inhibit ascorbate oxidation by (6.08-25.57% increased in consequent with concentration raising. These results prime to conclude that water kefir could be promisor source of natural antioxidants with good potency in health developing.

  19. Recent Advances in Targetable Therapeutics in Metastatic Non-Squamous NSCLC

    Directory of Open Access Journals (Sweden)

    Pranshu eBansal

    2016-05-01

    Full Text Available Lung adenocarcinoma is the most common subtype of non-small cell lung cancer (NSCLC. With the discovery of epidermal growth factor receptor (EGFR mutations, anaplastic lymphoma kinase (ALK rearrangements and effective targeted therapies, therapeutic options are expanding for patients with lung adenocarcinoma. Here, we review novel therapies in non-squamous NSCLC, which are directed against oncogenic targets, including EGFR, ALK, ROS1, BRAF, MET, human epidermal growth factor receptor 2 (HER2, vascular endothelial growth factor receptor 2 (VEGFR2, RET and NTRK. With the rapidly evolving molecular testing and development of new targeted agents, our ability to further personalize therapy in non-squamous NSCLC is rapidly expanding.

  20. Antioxidative and antiradical properties of plant phenolics.

    Science.gov (United States)

    Sroka, Zbigniew

    2005-01-01

    The plant phenolic compounds such as flavonoids, tannins and phenolic acids appeared to be strong antiradical and antioxidant compounds. The number of hydroxy groups and the presence of a 2,3-double bond and orthodiphenolic structure enhance antiradical and antioxidative activity of flavonoids. The glycosylation, blocking the 3-OH group in C-ring, lack of a hydroxy group or the presence of only a methoxy group in B-ring have a decreasing effect on antiradical or antioxidative activity of these compounds. Tannins show strong antioxidative properties. Some tannins in red wine or gallate esters were proved to have antioxidative effect in vivo. The number of hydroxy groups connected with the aromatic ring, in ortho or para position relative to each other, enhance antioxidative and antiradical activity of phenolic acids. The substitution of a methoxy group in ortho position to the OH in monophenols seems to favour the antioxidative activity of the former.

  1. Plants as natural antioxidants for meat products

    Science.gov (United States)

    Tomović, V.; Jokanović, M.; Šojić, B.; Škaljac, S.; Ivić, M.

    2017-09-01

    The meat industry is demanding antioxidants from natural sources to replace synthetic antioxidants because of the negative health consequences or beliefs regarding some synthetic ones. Plants materials provide good alternatives. Spices and herbs, generally used for their flavouring characteristics, can be added to meat products in various forms: whole, ground, or as isolates from their extracts. These natural antioxidants contain some active compounds, which exert antioxidative potential in meat products. This antioxidant activity is most often due to phenolic acids, phenolic diterpenes, flavonoids and volatile oils. Each of these compounds often has strong H-donating activity, thus making them extremely effective antioxidants; some compounds can chelate metals and donate H to oxygen radicals, thus slowing oxidation via two mechanisms. Numerous studies have demonstrated the efficacy of natural antioxidants when used in meat products. Based on this literature review, it can be concluded that natural antioxidants are added to fresh and processed meat and meat products to delay, retard, or prevent lipid oxidation, retard development of off-flavours (rancidity), improve colour stability, improve microbiological quality and extend shelf-life, without any damage to the sensory or nutritional properties.

  2. Psychedelics and hypnosis: Commonalities and therapeutic implications.

    Science.gov (United States)

    Lemercier, Clément E; Terhune, Devin B

    2018-06-01

    Recent research on psychedelics and hypnosis demonstrates the value of both methods in the treatment of a range of psychopathologies with overlapping applications and neurophenomenological features. The potential of harnessing the power of suggestion to influence the phenomenological response to psychedelics toward more therapeutic action has remained unexplored in recent research and thereby warrants empirical attention. Here we aim to elucidate the phenomenological and neurophysiological similarities and dissimilarities between psychedelic states and hypnosis in order to revisit how contemporary knowledge may inform their conjunct usage in psychotherapy. We review recent advances in phenomenological and neurophysiological research on psychedelics and hypnosis, and we summarize early investigations on the coupling of psychedelics and hypnosis in scientific and therapeutic contexts. Results/outcomes: We highlight commonalities and differences between psychedelics and hypnosis that point to the potential efficacy of combining the two in psychotherapy. We propose multiple research paths for coupling these two phenomena at different stages in the preparation, acute phase and follow-up of psychedelic-assisted psychotherapy in order to prepare, guide and integrate the psychedelic experience with the aim of enhancing therapeutic outcomes. Harnessing the power of suggestion to modulate response to psychedelics could enhance their therapeutic efficacy by helping to increase the likelihood of positive responses, including mystical-type experiences.

  3. Antioxidant activity of Arbutus unedo leaves.

    Science.gov (United States)

    Pabuçcuoğlu, A; Kivçak, B; Baş, M; Mert, T

    2003-09-01

    The ethanol and methanol extracts of Arbutus unedo leaves were screened for antioxidant activity. The antioxidant activity was determined by an improved assay based on the decolorization of the radical monocation of [2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] (ABTS). The ethanol and methanol extract of A. unedo leaves displayed potent antioxidant activity.

  4. Systemic treatment of advanced, persistent or recurrent cervical cancer

    International Nuclear Information System (INIS)

    Reckova, M.

    2015-01-01

    The cervical cancer is the third most common malignancy in women in the world. Despite advances in screening and treatment there are a relatively large number of patients who are diagnosed with advanced stage of disease, or who have inoperable recurrence. In this group of patients, the main aim of a treatment is palliative intent. The main cytotoxic agent is cisplatin, but the responses are also observed with other chemotherapy agents. Improved therapeutic results are observed with combined platinum-based chemotherapy regimens as compared to cisplatin monotherapy. Overall, however, the treatment results in advanced, persistent and recurrent cervical cancer are unfavorable and disease is considered to be relatively chemo resistant. The new treatment approaches are searched and a significant therapeutic benefit, as far as progression-free and overall survival, has been recently demonstrated when adding bevacizumab to systemic chemotherapy. The current article is a review of systemic treatment in advanced, persistent and recurrent metastatic carcinoma of the cervix. (author)

  5. Gamma radiation effects on peanut skin antioxidants

    International Nuclear Information System (INIS)

    Camargo, Adriano Costa de; Canniatti-Brazaca, Solange Guidolin; Vieira, Thais Maria Ferreira de Souza; Regitano-d'Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia

    2011-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The viability of using natural sources of antioxidants to replace synthetic antioxidants was assessed. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays at a dose rate of 7.5 kGy/h using a 60 Co source. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached deodorized (RBD) soybean oil that was free from synthetic antioxidants. The oxidative stability of the oil samples was determined using the Rancimat method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. Ethanolic extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Rancimat method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT but lower than THBQ. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative level when added to soybean oil. The induction period of the control soybean oil was 5.7 h, while soybean oil with added ethanolic peanut skin extract had an induction period of 7.2 h, on average. (author)

  6. Gamma radiation effects on peanut skin antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Adriano Costa de [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Canniatti-Brazaca, Solange Guidolin; Vieira, Thais Maria Ferreira de Souza; Regitano-d' Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia, E-mail: sgcbraza@usp.b, E-mail: tvieira@esalq.usp.b, E-mail: mabra@esalq.usp.b, E-mail: macdomin@esalq.usp.b [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao

    2011-07-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The viability of using natural sources of antioxidants to replace synthetic antioxidants was assessed. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays at a dose rate of 7.5 kGy/h using a {sup 60}Co source. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached deodorized (RBD) soybean oil that was free from synthetic antioxidants. The oxidative stability of the oil samples was determined using the Rancimat method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. Ethanolic extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Rancimat method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT but lower than THBQ. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative level when added to soybean oil. The induction period of the control soybean oil was 5.7 h, while soybean oil with added ethanolic peanut skin extract had an induction period of 7.2 h, on average. (author)

  7. Antioxidants: Characterization, natural sources, extraction and analysis

    OpenAIRE

    OROIAN, MIRCEA; Escriche Roberto, Mª Isabel

    2015-01-01

    [EN] Recently many review papers regarding antioxidants fromdifferent sources and different extraction and quantification procedures have been published. However none of them has all the information regarding antioxidants (chemistry, sources, extraction and quantification). This article tries to take a different perspective on antioxidants for the new researcher involved in this field. Antioxidants from fruit, vegetables and beverages play an important role in human health, fo...

  8. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Yang Yufeng

    2009-09-01

    Full Text Available Abstract Background Parkinson's disease (PD is the most common movement disorder. Extrapyramidal motor symptoms stem from the degeneration of the dopaminergic pathways in patient brain. Current treatments for PD are symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Although the cause of PD remains unknown, several pathogenic factors have been identified, which cause dopaminergic neuron (DN death in the substantia nigra (SN. These include oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity. Manipulation of these factors may allow the development of disease-modifying treatment strategies to slow neuronal death. Inhibition of DJ-1A, the Drosophila homologue of the familial PD gene DJ-1, leads to oxidative stress, mitochondrial dysfunction, and DN loss, making fly DJ-1A model an excellent in vivo system to test for compounds with therapeutic potential. Results In the present study, a Drosophila DJ-1A model of PD was used to test potential neuroprotective drugs. The drugs applied are the Chinese herb celastrol, the antibiotic minocycline, the bioenergetic amine coenzyme Q10 (coQ10, and the glutamate antagonist 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f]-quinoxaline (NBQX. All of these drugs target pathogenic processes implicated in PD, thus constitute mechanism-based treatment strategies. We show that celastrol and minocycline, both having antioxidant and anti-inflammatory properties, confer potent dopaminergic neuroprotection in Drosophila DJ-1A model, while coQ10 shows no protective effect. NBQX exerts differential effects on cell survival and brain dopamine content: it protects against DN loss but fails to restore brain dopamine level. Conclusion The present study further validates Drosophila as a valuable model for preclinical testing of drugs with therapeutic potential for neurodegenerative diseases. The lower cost and amenability to high throughput testing make Drosophila PD

  9. Mangiferin - a bioactive xanthonoid, not only from mango and not just antioxidant.

    Science.gov (United States)

    Matkowski, Adam; Kuś, Piotr; Góralska, Edyta; Woźniak, Dorota

    2013-03-01

    Mangiferin is a plant natural polyphenol of C-glycosylxanthone structure and various pharmacological activities. It can be found in many plant species, among which the mango tree (Mangifera indica) is one of the primary sources. Mangiferin is also present in some medicinal herbs, influencing their therapeutic and preventive properties, and in honeybush (Cyclopia sp.), a popular South African herbal tea. Mangiferin dissolves well in water, so it can be easily extracted into infusions and decoctions. In the mangiferin molecule, four aromatic hydroxyl groups determine its strong antiradical and antioxidant properties. Mangiferin is also an efficient iron chelator, therefore preventing the generation of hydroxyl radical in Fenton-type reactions. Numerous published in vitro and in vivo pharmacological studies, demonstrated many other activities of mangiferin: analgesic, antidiabetic, antisclerotic, atimicrobial and antiviral, cardio-, hepato-, and neuroprotective, antiinflammatory, antiallergic, MAO inhibiting and memory improving, as well as radioprotective against X-ray, gamma, and UV radiation. Several studies indicated also its ability to inhibit cancerogenesis and cancer cells growth by apoptosis induction in vitro and in vivo. It is also used in cosmetics, due to antioxidant and UV-protecting properties.

  10. Phytochemical screening, antiglycation and antioxidant activities of whole plant of Boerhavia repens L. from Cholistan, Pakistan.

    Science.gov (United States)

    Nazneen, Fariha; Sheikh, Munir A; Jameel, Amir; Rahman, Ziaur

    2016-05-01

    Present study was aimed to explore a traditionally used indigenous medicinal plant Boerhavia repens (Nyctaginaceae family) of the Cholistan desert, Pakistan. Crude aqueous and methanolic extracts of the whole plant were investigated in vitro for preliminary phytochemical screening, antioxidant and antiglycation activities. Antioxidant activities were determined by total phenolic contents, 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and inhibition of lipid peroxidation. For antiglycation activities browning production was noted and thiobarbituric acid (TBA) technique was used to determine glycation level. Boerhavia repens expressed considerable amounts of phytochemicals. Extract yield was found to be 4.59%-7.85% g/100g of dry matter with total phenolics ranging from 47.9- 190.77mg/GAE per g for aqueous and methanol extract respectively. Strong inhibitory effect was exhibited by methanolic extract in linoleic acid per oxidation system (86.11%, EC50=0.99mg/mL) and DPPH assay (88.65%, EC50=212.33μg/ml). In term of browning maximum inhibition (81.50%) was exhibited by methanolic extract at 37°C at third week of incubation. Both extracts expressed significant (P>0.05) and comparable inhibition of glycation level. In conclusion, Boerhavia repens showed promising antioxidant and antiglycation activities validating its therapeutic potential.

  11. Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity.

    Science.gov (United States)

    Guo, Hong; Hu, Li-Min; Wang, Shao-Xia; Wang, Yu-Lin; Shi, Fang; Li, Hui; Liu, Yang; Kang, Li-Yuan; Gao, Xiu-Mei

    2011-12-31

    An increasing number of studies has indicated that hypoxic-ischemic-induced cerebral injury is partly mediated via oxidative stress. Recent researches have focused on searching for drug and herbal manipulations to protect against hypoxic-ischemic-induced oxidative cell damage. Scutellarin is a flavonoid derived from the Erigeron breviscapus (vant.) and has been reported to exhibit neuroprotective properties. However, its precise mechanism, particularly its antioxidation mechanism, remains elusive. In the present study, we investigated the neuroprotective effects of scutellarin on middle cerebral artery occlusion (MCAO)-induced brain damage in rats, and oxygen-glucose deprivation (OGD)-induced toxicity in primary culture of rat cortical neurons. In vivo, intraperitoneal injections of scutellarin (20 and 60 mg/kg) improved the neurological score and diminished the percentage of brain infarct volume. At the same time, scutellarin significantly increased superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) level in ischemic brain tissues, enhancing endogenous antioxidant activity. Moreover, pretreatment of scutellarin (25, 50 and 100 μM) protected neurons against lethal stimuli, decreased the percentage of apoptotic cells and inhibited reactive oxygen species (ROS) generation in OGD-induced primary cortical neurons in vitro. These results suggest that the preventive and therapeutic potential of scutellarin in cerebral injury patients is, at least in part, ascribed to augmentation of cellular antioxidant defense capacity.

  12. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents.

    Science.gov (United States)

    Ksouri, Riadh; Falleh, Hanen; Megdiche, Wided; Trabelsi, Najla; Mhamdi, Baya; Chaieb, Kamel; Bakrouf, Amina; Magné, Christian; Abdelly, Chedly

    2009-08-01

    Tamarix gallica is a halophytic species having hepatotonic and stimulant properties, as it was traditionally used in the treatment of various liver disorders. Leaf and flower infusion have anti-inflammatory and anti-diarrheic properties. In this work, we have investigated antioxidant and antimicrobial activities of leaf and flower extracts and their phenolic composition. Results showed that flowers exhibit a higher antioxidant activity as compared to the leaves, IC(50) values of the flower extracts are being 1.3 (beta-carotene bleaching) to 19 times (lipid peroxidation inhibition) lower than those for leaves. Accordingly, flower extracts exhibited the highest total phenolic content (135.35 mgGAE/gDW) and RP-HPLC analysis showed that syringic acid, isoquercitin as well as catechin were the major phenolics. Furthermore, Tamarix extracts showed appreciable antibacterial properties against human pathogen strains. The mean inhibition zone was from 0 to 6.5mm when the concentration increased from 2 to 100mg/l. The strongest activity was recorded against Micrococcus luteus and the lowest activity was observed against Escherichia coli. Moreover, organ extracts show a weakly to moderate activity against the tested Candida. These findings suggest that Tamarix may be considered as an interesting source of antioxidants for therapeutic or nutraceutical industries and for food manufactures.

  13. Antioxidant effects of herbal therapies used by patients with inflammatory bowel disease: an in vitro study.

    Science.gov (United States)

    Langmead, L; Dawson, C; Hawkins, C; Banna, N; Loo, S; Rampton, D S

    2002-02-01

    Herbal remedies used by patients for treatment of inflammatory bowel disease include slippery elm, fenugreek, devil's claw, Mexican yam, tormentil and wei tong ning, a traditional Chinese medicine. Reactive oxygen metabolites produced by inflamed colonic mucosa may be pathogenic. Aminosalicylates (5-ASA) are antioxidant and other such agents could be therapeutic. To assess the antioxidant effects of herbal remedies in cell-free oxidant-generating systems and inflamed human colorectal biopsies. Luminol-enhanced chemiluminescence in a xanthine/xanthine oxidase cell-free system was used to detect superoxide scavenging by herbs and 5-ASA, and fluorimetry to define peroxyl radical scavenging using a phycoerythrin degradation assay. Chemiluminescence was used to detect herbal effects on generation of oxygen radicals by mucosal biopsies from patients with active ulcerative colitis. Like 5-ASA, all herbs, except fenugreek, scavenged superoxide dose-dependently. All materials tested scavenged peroxyl dose-dependently. Oxygen radical release from biopsies was reduced after incubation in all herbs except Mexican yam, and by 5-ASA. All six herbal remedies have antioxidant effects. Fenugreek is not a superoxide scavenger, while Mexican yam did not inhibit radical generation by inflamed biopsies. Slippery elm, fenugreek, devil's claw, tormentil and wei tong ning merit formal evaluation as novel therapies in inflammatory bowel disease.

  14. Theoretical simulations on the antioxidant mechanism of naturally occurring flavonoid: A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Praveena, R. [Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu (India); Sadasivam, K. [Department of Physics, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu (India)

    2016-05-06

    Synthetic antioxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are found to be toxic, hence non-carcinogenic naturally occurring radical scavengers especially flavonoids have gained considerable importance in the past two decades. In the present investigation, the radical scavenging activity of C-glycosyl flavonoids is evaluated using theoretical approach which could broaden its scope in therapeutic applications. Gas and solvent phase studies of structural and molecular characteristics of C-glycosyl flavonoid, isovitexin is investigated through hydrogen atom transfer mechanism (HAT), Electron transfer-proton transfer (ET–PT) and Sequential proton loss electron transfer (SPLET) by Density functional theory (DFT) using hybrid parameters. The computed values of the adiabatic ionization potential, electron affinity, hardness, softness, electronegativity and electrophilic index indicate that isovitexin possess good radical scavenging activity. The behavior of different –OH groups in polyphenolic compounds is assessed by considering electronic effects of the neighbouring groups and the overall geometry of molecule which in turn helps in analyzing the antioxidant capacity of the polyphenolic molecule. The studies indicate that the H–atom abstraction from 4’–OH site is preferred during the radical scavenging process. From Mulliken spin density analysis and FMOs, B–ring is found to be more delocalized center and capable of electron donation. Comparison of antioxidant activity of vitexin and isovitexin leads to the conclusion that isovitexin acts as a better radical scavenger. This is an evidence for the importance of position of glucose unit in the flavonoid.

  15. Theoretical simulations on the antioxidant mechanism of naturally occurring flavonoid: A DFT approach

    International Nuclear Information System (INIS)

    Praveena, R.; Sadasivam, K.

    2016-01-01

    Synthetic antioxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are found to be toxic, hence non-carcinogenic naturally occurring radical scavengers especially flavonoids have gained considerable importance in the past two decades. In the present investigation, the radical scavenging activity of C-glycosyl flavonoids is evaluated using theoretical approach which could broaden its scope in therapeutic applications. Gas and solvent phase studies of structural and molecular characteristics of C-glycosyl flavonoid, isovitexin is investigated through hydrogen atom transfer mechanism (HAT), Electron transfer-proton transfer (ET–PT) and Sequential proton loss electron transfer (SPLET) by Density functional theory (DFT) using hybrid parameters. The computed values of the adiabatic ionization potential, electron affinity, hardness, softness, electronegativity and electrophilic index indicate that isovitexin possess good radical scavenging activity. The behavior of different –OH groups in polyphenolic compounds is assessed by considering electronic effects of the neighbouring groups and the overall geometry of molecule which in turn helps in analyzing the antioxidant capacity of the polyphenolic molecule. The studies indicate that the H–atom abstraction from 4’–OH site is preferred during the radical scavenging process. From Mulliken spin density analysis and FMOs, B–ring is found to be more delocalized center and capable of electron donation. Comparison of antioxidant activity of vitexin and isovitexin leads to the conclusion that isovitexin acts as a better radical scavenger. This is an evidence for the importance of position of glucose unit in the flavonoid.

  16. Antioxidants Potential of the Filamentous Fungi (Mucor circinelloides).

    Science.gov (United States)

    Hameed, Ahsan; Hussain, Syed Ammar; Yang, Junhuan; Ijaz, Muhammad Umair; Liu, Qing; Suleria, Hafiz Ansar Rasul; Song, Yuanda

    2017-10-07

    Three important strains of Mucor circinelloides grown in complete and minimal media for specified period (72 h, 120 h and 168 h) under submerged fermentation conditions were investigated for their potential antioxidants/secondary metabolite production. All mycelial extracts demonstrated effective antioxidant activities in terms of β-carotene/linoleic acid bleaching, radical scavenging, reduction of metal ions and chelating abilities against ferrous ions. Different extraction methods and solvent systems affected the recovery yield and antioxidant activities of the extracts significantly ( p ≤ 0.05). Ethanolic extracts were found to be rich source of antioxidant components and subsequently more effective in antioxidant properties. Fermentation period and media used also significantly affected ( p ≤ 0.05) the antioxidant production and the resulting antioxidant properties. The (ethanolic) extracts of all the strains from late exponential growth phase (120 h) showed highest antioxidant production with topmost reducing, chelating and radical scavenging capabilities. Strain MC277.49 was found to be the highest producer of antioxidants followed by MC108.16 and WJ11. Phenolic compounds were detected significantly in higher ( p ≤ 0.05) amount succeeded by the condensed tannins and flavonoids. Total phenol content of each extract was attributed to overall antioxidant capacity. Submerged fermentation with nutritional stress conditions were found to be excellent way of producing surplus amount of natural antioxidants/secondary metabolites with their vast potential commercial application in food and pharmaceutical industries.

  17. Antioxidant activity of puha (Sonchus oleraceus L.) as assessed by the cellular antioxidant activity (CAA) assay.

    Science.gov (United States)

    McDowell, Arlene; Thompson, Scott; Stark, Mirjam; Ou, Zong-Quan; Gould, Kevin S

    2011-12-01

    There is considerable interest in antioxidant dietary components that can be protective against degenerative diseases in humans. Puha (Sonchus oleraceus L.) is a rich source of polyphenols, and exhibits strong antioxidant activity as measured by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. However, the potential of puha to protect against degenerative diseases requires that low molecular weight antioxidants (LMWA) are absorbed by, and active in, human cells. The cellular antioxidant activity (CAA) assay was used to investigate the antioxidant activity of puha leaf extracts. Preparation methods of freezing and freeze-drying reduced the total polyphenolic content compared with fresh puha, but did not affect the LMWA potential as determined by the DPPH assay. The IC(50) values were 0.012 ± 0.003 mg/mL and 0.010 ± 0.005 mg/mL for freeze-dried and fresh puha leaves, respectively. Using the CAA assay, it was shown that LMWAs from foliar extracts of puha were effectively absorbed into HepG2 cells, and exerted antioxidant activity at levels comparable to those of extracts from blueberry fruits, the much-touted antioxidant superfood. Methylene blue staining of HepG2 cells indicated that puha extracts were not cytotoxic at concentrations below 100 mg DW/mL. The data indicate the potential of puha as a nutraceutical supplement for human health. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Antioxidant capacity of cornelian cherry (Cornus mas L.) - comparison between permanganate reducing antioxidant capacity and other antioxidant methods.

    Science.gov (United States)

    Popović, Boris M; Stajner, Dubravka; Slavko, Kevrešan; Sandra, Bijelić

    2012-09-15

    Ethanol extracts (80% in water) of 10 cornelian cherry (Cornus mas L.) genotypes were studied for antioxidant properties, using methods including DPPH(), ()NO, O(2)(-) and ()OH antiradical powers, FRAP, total phenolic and anthocyanin content (TPC and ACC) and also one relatively new, permanganate method (permanganate reducing antioxidant capacity-PRAC). Lipid peroxidation (LP) was also determined as an indicator of oxidative stress. The data from different procedures were compared and analysed by multivariate techniques (correlation matrix calculation and principal component analysis (PCA)). Significant positive correlations were obtained between TPC, ACC and DPPH(), ()NO, O(2)(-), and ()OH antiradical powers, and also between PRAC and TPC, ACC and FRAP. PCA found two major clusters of cornelian cherry, based on antiradical power, FRAP and PRAC and also on chemical composition. Chemometric evaluation showed close interdependence between PRAC method and FRAP and ACC. There was a huge variation between C. mas genotypes in terms of antioxidant activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Simple and fast PO-CL method for the evaluation of antioxidant capacity of hydrophilic and hydrophobic antioxidants

    Science.gov (United States)

    Zargoosh, Kiomars; Ghayeb, Yousef; Azmoon, Behnaz; Qandalee, Mohammad

    2013-08-01

    A simple and fast procedure is described for evaluating the antioxidant activity of hydrophilic and hydrophobic compounds by using the peroxyoxalate-chemiluminescence (PO-CL) reaction of Bis(2,4,6-trichlorophenyl) oxalate (TCPO) with hydrogen peroxide in the presence of di(tert-butyl)2-(tert-butylamino)-5-[(E)-2-phenyl-1-ethenyl]3,4-furandicarboxylate as a highly fluorescent fluorophore. The IC50 values of the well-known antioxidants were calculated and the results were expressed as gallic equivalent antioxidant capacity (GEAC). It was found that the proposed method is free of physical quenching and oxidant interference, for this reason, proposed method is able to determine the accurate scavenging activity of the antioxidants to the free radicals. Finally, the proposed method was applied to the evaluation of antioxidant activity of complex real samples such as soybean oil and sunflower oil (as hydrophobic samples) and honey (as hydrophilic sample). To the best of our knowledge, this is the first time that total antioxidant activity can be determined directly in soybean oil, sunflower oil and honey (not in their extracts) using PO-CL reactions.

  20. Perturbations in the antioxidant metabolism during Newcastle disease virus (NDV) infection in chicken. Protective role of vitamin E

    Science.gov (United States)

    Subbaiah, Kadiam C. Venkata; Raniprameela, D.; Visweswari, Gopalareddygari; Rajendra, Wudayagiri; Lokanatha, Valluru

    2011-12-01

    The aim of the present study was to investigate the effect of vitamin E on pro/anti-oxidant status in the liver, brain and heart of Newcastle disease virus (NDV) infected chickens. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione- S-transferase (GST) and the levels of reduced glutathione and malonaldehyde were estimated in selected tissues of uninfected, NDV-infected and NDV + vit. E-treated chickens. A significant increase in MDA levels in brain and liver ( p neuronal necrosis and degeneration of Purkinje cells were observed in brain and moderate infiltration of inflammatory cells was observed in heart. However such histological alterations were not observed in NDV + vit. E-treated animals. The results of the present study, thus demonstrated that antioxidant defense mechanism is impaired after the induction of NDV, suggesting its critical role in cellular injury in brain and liver. Further, the results also suggest that vitamin E treatment will ameliorate the antioxidant status in the infected animals. The findings could be beneficial to understand the role of oxidative stress in the pathogenesis of NDV and therapeutic interventions of antioxidants.

  1. Application of radiobiological techniques in studying antioxidant mechanisms: evaluation of their radioprotective, antioxidative and antiviral activities

    International Nuclear Information System (INIS)

    Hmamouchi, M.

    2000-01-01

    In the medical field, the oxidation phenomenon is the source of several pathologies (diabetes, cystic fibrosis, cancers,...). The natural oxidants are used as food preserving and skin ageing moderators. Several plant extracts with antioxidant activity were studied, this important antioxidant activity is probably due to their richness of compounds: polyphenols, phenolic acids, tocopherols, carotenoids, flavonoids,... Many techniques for evaluation and reactional mechanism study of the antioxidative activity are used. After selection, extraction, fractionation, activity screening, chemical analyses of molecules contained in the best active extracts, biological properties research of isolated redox pharmacophore, we have : - determined the structure of active products by spectroscopy and chromatography; - studied the antioxidative properties by EPR and spin trapping of the obtained extracts and molecules. The results of this first part of our work consists in evaluating the antioxidative degree of a great number of natural active principles, extracted from moroccan plants and pur obtained products. The second part consists in studying the action mechanisms using the LDL labelling (F. M.)

  2. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine.

    Science.gov (United States)

    Onoshima, Daisuke; Yukawa, Hiroshi; Baba, Yoshinobu

    2015-12-01

    A field of recent diagnostics and therapeutics has been advanced with quantum dots (QDs). QDs have developed into new formats of biomolecular sensing to push the limits of detection in biology and medicine. QDs can be also utilized as bio-probes or labels for biological imaging of living cells and tissues. More recently, QDs has been demonstrated to construct a multifunctional nanoplatform, where the QDs serve not only as an imaging agent, but also a nanoscaffold for diagnostic and therapeutic modalities. This review highlights the promising applications of multi-functionalized QDs as advanced nanosensors for diagnosing cancer and as innovative fluorescence probes for in vitro or in vivo stem cell imaging in regenerative medicine. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. In vitro antioxidant activity of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole.

    Science.gov (United States)

    Djukic, Mirjana; Fesatidou, Mara; Xenikakis, Iakovos; Geronikaki, Athina; Angelova, Violina T; Savic, Vladimir; Pasic, Marta; Krilovic, Branislav; Djukic, Dusan; Gobeljic, Borko; Pavlica, Marina; Djuric, Ana; Stanojevic, Ivan; Vojvodic, Danilo; Saso, Luciano

    2018-04-25

    The initial steps in preclinical drug developing research concern the synthesis of new compounds for specific therapeutic use which needs to be confirmed by in vitro and then in vivo testing. Nine thiazolidinone derivatives (numerically labeled 1-9) classified as follows: 1,3-thiazole-based compounds (1 and 2); 1,3,4-thiadiazole based compounds (3 and 4); substituted 5-benzylideno-2-adamantylthiazol[3,2-b][1,2,4]triazol-6(5H)ones (5-8); and an ethylaminothiazole-based chalcone (9), were tested for antioxidant activity (AOA) by using three in vitro assays: DPPH (1,1-diphenyl-2-picrylhydrazyl scavenging capacity test); FRAP (ferric reducing antioxidant power test); and TBARS (thiobarbituric acid reactive substances test). Compounds 1-4 and 9 in particular are newly synthesized compounds. Also, traditional antioxidants Vitamins E and C and α-lipoic acid (α-LA) were tested. The results of DPPH testing: Vitamin C 94.35%, Vitamin E 2.99% and α-LA 1.57%; compounds: 4 33.98%; 2 18.73%; 1 15.62%; 5 6.59%; 3 4.99%; 6-9 demonstrated almost no AOA. The results of TBARS testing (% of LPO inhibition): Vitamin C 62.32%; Vitamin E 36.29%; α-LA 51.36%; compounds: 1 62.11%; 5 66.71%; 9 60.93%; 4, 6 and 7 demonstrated ∼50%; 3 and 8 displayed ∼38%; 2 23.51%. By FRAP method, Vitamins E and C showed equal AOA, ∼100%, unlike α-LA (no AOA), and AOA of the tested compounds (expressed as a fraction of the AOA of Vitamin C) were: 2 and 4-75%; 8, 3 and 1-45%; 5-7 and 9-27%. Different red-ox reaction principles between these assays dictate different AOA outcomes for a single compound. Vitamin C appeared to be the superior antioxidant out of the traditional antioxidants; and compound 4 was superior to other tested thiazolidinone derivatives. Vitamin C appeared to be the superior antioxidant out of the traditional antioxidants; and compound 4 was superior to other tested thiazolidinone derivatives. Phenyl-functionalized benzylidene, amino-carbonyl functional domains and chelating

  4. Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits.

    Science.gov (United States)

    Shofian, Norshahida Mohamad; Hamid, Azizah Abdul; Osman, Azizah; Saari, Nazamid; Anwar, Farooq; Dek, Mohd Sabri Pak; Hairuddin, Muhammad Redzuan

    2011-01-01

    The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p dried fruit samples, except muskmelon. There was no significant (p > 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested.

  5. Anti-obesity and antioxidant activity of dietary flavonoids from Dioscorea steriscus tubers

    Directory of Open Access Journals (Sweden)

    Pamhidzai Dzomba

    2014-06-01

    Full Text Available Objective: To investigate antioxidant and anti-obesity activity of flavonoids extracted by solvent cold percolation and preparative thin liquid chromatography from Dioscorea steriscus tubers. Methods: 1-diphenyl-2-picrylhydrazyl (DPPH antiradical activity was employed to investigate antioxidant activity while chromogenic method was used to determine alpha amylase inhibition activity and spectrophotometric methods using triolein as a substrate was used to investigate lipase activity. Results: Thin liquid chromatography profiling revealed eight different flavonoid types. Ethyl acetate extract yielded two types, Rf values 0.38 and 0.40; chloroform extract also yielded two types Rf values 0.06 and 0.51, while ethanol extract yielded four types with Rf values 0.16, 0.33, 0.65 and 0.96. All the extracted flavonoids exhibited antioxidant activity with ethanol extracts exhibiting the greatest antiradical activity. The order of enzyme inhibition capacity was ethyl acetatetherapeuticals.

  6. Rosa canina Extracts Have Antiproliferative and Antioxidant Effects on Caco-2 Human Colon Cancer.

    Directory of Open Access Journals (Sweden)

    Sandra Jiménez

    Full Text Available The in vitro antiproliferative and antioxidant effects of different fractions of Rosa canina hips on human colon cancer cell lines (Caco-2 was studied. The compounds tested were total extract (fraction 1, vitamin C (fraction 2, neutral polyphenols (fraction 3 and acidic polyphenols (fraction 4. All the extracts showed high cytotoxicity after 72 h, both low and high concentrations. The flow cytometric analysis revealed that all the fractions produce disturbances in the cell cycle resulting in a concomitant cell death by an apoptotic pathway. Changes in the redox status of Caco-2 cells in response to Rosa canina hips were determined. Cells were exposed to hydrogen peroxide in presence of plant fractions and the production of Reactive Oxygen Species (ROS was significantly decreased. Therefore, our data demonstrate that rosehip extracts are a powerful antioxidant that produces an antiproliferative effect in Caco-2 cells. Therefore, these results predict a promising future for Rosa canina as a therapeutic agent. Thus, this natural plant could be an effective component of functional foods addressed towards colorectal carcinoma.

  7. Research on an antioxidant capacity of honeys

    Directory of Open Access Journals (Sweden)

    Elżbieta Hołderna-Kędzia

    2012-12-01

    Full Text Available Human organism is exposed to harmful action of free radicals which are produced as well endogenically as egzogenically. The oxidation activity of free radicals can lead to the conversion of systemic biomolecules. As a consequence, there is a threat of, many severe diseases. Antioxidative agents which occur in natural products (also in honey raise a possibility of protection against the harmful action of above mentioned radicals. Polyphenolic compounds - flavonoids, phenolic acids and ascorbic acid - are the most important antioxidative agents. The research of many authors proves that honey, given orally, shows an antioxidative activity. The level of antioxidative agents in serum after the consumption of honey is high and surpasses the antioxidative activity of tea. Dark honeys (honeydew and heather have considerably higher antioxidative activity in comparison to light ones (acacia, lime, polyfloral.

  8. Quercetin in Cancer Treatment, Alone or in Combination with Conventional Therapeutics?

    Science.gov (United States)

    Brito, Ana Filipa; Ribeiro, Marina; Abrantes, Ana Margarida; Pires, Ana Salomé; Teixo, Ricardo Jorge; Tralhão, José Guilherme; Botelho, Maria Filomena

    2015-01-01

    Cancer is a problem of global importance, since the incidence is increasing worldwide and therapeutic options are generally limited. Thus, it becomes imperative to find new therapeutic targets as well as new molecules with therapeutic potential for tumors. Flavonoids are polyphenolic compounds that may be potential therapeutic agents. Several studies have shown that these compounds have a higher anticancer potential. Among the flavonoids in the human diet, quercetin is one of the most important. In the last decades, several anticancer properties of quercetin have been described, such as cell signaling, pro-apoptotic, anti-proliferative and anti-oxidant effects, growth suppression. In fact, it is now well known that quercetin has diverse biological effects, inhibiting multiple enzymes involved in cell proliferation, as well as, in signal transduction pathways. On the other hand, there are also studies reporting potential synergistic effects when combined quercetin with chemotherapeutic agents or radiotherapy. In fact, several studies which aim to explore the anticancer potential of these combined treatments have already been published, the majority with promising results. Actually it is well known that quercetin can act on the chemosensitization and radiosensitization but also as chemoprotective and radioprotective, protecting normal cells of the side effects that results from chemotherapy and radiotherapy, which obviously provides notable advantages in their use in anticancer treatment. Thus, all these data indicate that quercetin may have a key role in anticancer treatment. In this context, this review is focused on the relationship between flavonoids and cancer, with special emphasis on the role of quercetin.

  9. Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier

    Science.gov (United States)

    Tan, Aaron; Chawla, Reema; Natasha, G; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R.; Seifalian, Alexander M.

    2015-01-01

    Summary The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. PMID:26422652

  10. Antioxidant Capacity of Beetroot: Traditional vs Novel Approaches.

    Science.gov (United States)

    Carrillo, Celia; Rey, Raquel; Hendrickx, Marc; Del Mar Cavia, María; Alonso-Torre, Sara

    2017-09-01

    Red beetroot has been ranked among the 10 most potent antioxidant vegetables, although only extraction-based methods have been used to evaluate its total antioxidant capacity. Therefore, the present study aims at comparing the traditional extraction-based method with two more recent approaches (QUENCHER -QUick, Easy, New, CHEap and Reproducible- and GAR -global antioxidant response method), in order to establish their suitability in the case of beetroot. Our results indicate that the total antioxidant capacity of beetroot would be underestimated when using extraction-based procedures, since both QUENCHER and GAR methods resulted in a higher total antioxidant capacity. The effect of a thermal treatment on the total antioxidant capacity of beetroot varies among the methods evaluated and our findings suggest different compounds responsible for the total antioxidant capacity detected in each pre-processing method. Remarkably, the present study demonstrates that the traditional extraction-based method seems useful to screen for (changes in) the "bioavailable" antioxidant potential of the root.

  11. Antioxidants Potential of the Filamentous Fungi (Mucor circinelloides

    Directory of Open Access Journals (Sweden)

    Ahsan Hameed

    2017-10-01

    Full Text Available Three important strains of Mucor circinelloides grown in complete and minimal media for specified period (72 h, 120 h and 168 h under submerged fermentation conditions were investigated for their potential antioxidants/secondary metabolite production. All mycelial extracts demonstrated effective antioxidant activities in terms of β-carotene/linoleic acid bleaching, radical scavenging, reduction of metal ions and chelating abilities against ferrous ions. Different extraction methods and solvent systems affected the recovery yield and antioxidant activities of the extracts significantly (p ≤ 0.05. Ethanolic extracts were found to be rich source of antioxidant components and subsequently more effective in antioxidant properties. Fermentation period and media used also significantly affected (p ≤ 0.05 the antioxidant production and the resulting antioxidant properties. The (ethanolic extracts of all the strains from late exponential growth phase (120 h showed highest antioxidant production with topmost reducing, chelating and radical scavenging capabilities. Strain MC277.49 was found to be the highest producer of antioxidants followed by MC108.16 and WJ11. Phenolic compounds were detected significantly in higher (p ≤ 0.05 amount succeeded by the condensed tannins and flavonoids. Total phenol content of each extract was attributed to overall antioxidant capacity. Submerged fermentation with nutritional stress conditions were found to be excellent way of producing surplus amount of natural antioxidants/secondary metabolites with their vast potential commercial application in food and pharmaceutical industries.

  12. Therapeutic Effects of PPARα on Neuronal Death and Microvascular Impairment

    Directory of Open Access Journals (Sweden)

    Elizabeth P. Moran

    2015-01-01

    Full Text Available Peroxisome-proliferator activated receptor-alpha (PPARα is a broadly expressed nuclear hormone receptor and is a transcription factor for diverse target genes possessing a PPAR response element (PPRE in the promoter region. The PPRE is highly conserved, and PPARs thus regulate transcription of an extensive array of target genes involved in energy metabolism, vascular function, oxidative stress, inflammation, and many other biological processes. PPARα has potent protective effects against neuronal cell death and microvascular impairment, which have been attributed in part to its antioxidant and anti-inflammatory properties. Here we discuss PPARα’s effects in neurodegenerative and microvascular diseases and also recent clinical findings that identified therapeutic effects of a PPARα agonist in diabetic microvascular complications.

  13. Antioxidant activity in cooked and simulated digested eggs.

    Science.gov (United States)

    Remanan, M K; Wu, J

    2014-07-25

    The avian egg is an excellent source of nutrients consisting of components with beneficial properties but there is limited knowledge on the effect of cooking methods and gastrointestinal digestion on the antioxidant activity of eggs. The present study was focused on the effect of cooking and simulated gastrointestinal digestion on antioxidant activity of eggs using ORAC, ABTS and DPPH assays. The results suggest that fresh egg yolk has higher antioxidant activity than fresh egg white and whole eggs. Cooking reduced whereas simulated gastrointestinal digestion increased the antioxidant activity of eggs. Boiled egg white hydrolysate showed the highest antioxidant activity; a total of 63 peptides were identified, indicative of the formation of novel antioxidant peptides upon simulated gastrointestinal digestion. This study suggests the potential role of eggs as a dietary source of antioxidants.

  14. Irradiation of polyethylene in the presence of antioxidants

    Science.gov (United States)

    Jaworska, E.; Kałuska, I.; Strzelczak-Burlińska, G.; Michalik, J.

    The radiation induced reactions in LDPE in the presence of phenolic type antioxidants have been studied. It was shown that various antioxidants can influence the polyethylene network formation and the radical yield in different ways. The dependence of network structure on absorbed doses was determined by gel analysis, hot-set test and extraction of antioxidants for samples irradiated with accelerated electrons. It was found that the antioxidants eluated from polyethylene in higher percentage influence polymer crosslinking to a smaller degree. The ESR studies of γ-irradiated blends of polyethylene with antioxidant indicate the presence of alkyl and phenoxyl radicals. The role of antioxidant molecules on radiation induced reactions in polyethylene-antioxidant systems is considered. The correlation between the network structure and the type of additive in polyethylene is also discussed.

  15. Antioxidant and Hepatoprotective Effects of Silibinin in a Rat Model of Nonalcoholic Steatohepatitis

    Directory of Open Access Journals (Sweden)

    Yara Haddad

    2011-01-01

    Full Text Available Nonalcoholic steatohepatitis (NASH is a progressive liver disease related to the metabolic syndrome, obesity and diabetes. The rising prevalence of NASH and the lack of efficient treatments have led to the exploration of different therapeutic approaches. Milk thistle (Silibum marianum is a medicinal plant used for its hepatoprotective properties in chronic liver disease since the 4th century BC. We explored the therapeutic effect of silibinin, the plant's most biologically active extract, in an experimental rat NASH model. A control group was fed a standard liquid diet for 12 weeks. The other groups were fed a high-fat liquid diet for 12 weeks without (NASH or with simultaneous daily supplement with silibinin–phosphatidylcholine complex (Silibinin 200 mg kg−1 for the last 5 weeks. NASH rats developed all key hallmarks of the pathology. Treatment with silibinin improved liver steatosis and inflammation and decreased NASH-induced lipid peroxidation, plasma insulin and TNF-α. Silibinin also decreased O2∙- release and returned the relative liver weight as well as GSH back to normal. Our results suggest that milk thistle's extract, silibinin, possesses antioxidant, hypoinsulinemic and hepatoprotective properties that act against NASH-induced liver damage. This medicinal herb thus shows promising therapeutic potential for the treatment of NASH.

  16. Acute Exercise Increases Plasma Total Antioxidant Status and Antioxidant Enzyme Activities in Untrained Men

    Directory of Open Access Journals (Sweden)

    C. Berzosa

    2011-01-01

    Full Text Available Antioxidant defences are essential for cellular redox regulation. Since free-radical production may be enhanced by physical activity, herein, we evaluated the effect of acute exercise on total antioxidant status (TAS and the plasma activities of catalase, glutathione reductase, glutathione peroxidase, and superoxide dismutase and its possible relation to oxidative stress resulting from exercise. Healthy untrained male subjects (=34 performed three cycloergometric tests, including maximal and submaximal episodes. Venous blood samples were collected before and immediately after each different exercise. TAS and enzyme activities were assessed by spectrophotometry. An increase of the antioxidant enzyme activities in plasma was detected after both maximal and submaximal exercise periods. Moreover, under our experimental conditions, exercise also led to an augmentation of TAS levels. These findings are consistent with the idea that acute exercise may play a beneficial role because of its ability to increase antioxidant defense mechanisms through a redox sensitive pathway.

  17. Obtaining of the antioxidants by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Babović Nada V.

    2011-01-01

    Full Text Available One of the important trends in the food industry today is demand for natural antioxidants from plant material. Synthetic antioxidants such as butylated hydroxytoluene (BHT, and butylated hydroxyanisole (BHA are now being replaced by the natural antioxidants because of theirs possible toxicity and as they may act as promoters of carcinogens. The natural antioxidants may show equivalent or higher antioxidant activity than the endogenous or the synthetic antioxidants. Thus, great effort is being devoted to the search for alternative and cheap sources of natural antioxidants, as well as to the development of efficient and selective extraction techniques. The supercritical fluid extraction (SFE with carbon dioxide is considered to be the most suitable method for producing natural antioxidants for the use in food industry. The supercritical extract does not contain residual organic solvents as in conventional extraction processes, which makes these products suitable for use in food, cosmetic and pharmaceutical industry. The recovery of antioxidants from plant sources involves many problematic aspects: choice of an adequate source (in terms of availability, cost, difference in phenolic content with variety and season; selection of the optimal recovery procedure (in terms of yield, simplicity, industrial application, cost; chemical analysis of extracts (for optimization purposes a fast colorimetric method is more preferable than a chromatographic one; evaluation of the antioxidant power (preferably by the different assay methods. The paper presents information about different operational methods for SFE of bioactive compounds from natural sources. It also includes the various reports on the antioxidant activity of the supercritical extracts from Lamiaceae herbs, in comparison with the activity of the synthetic antioxidants and the extracts from Lamiaceae herbs obtained by the conventional methods.

  18. Arginine and antioxidant supplement on performance in elderly male cyclists: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Carpenter Catherine L

    2010-03-01

    Full Text Available Abstract Background Human exercise capacity declines with advancing age. These changes often result in loss of physical fitness and more rapid senescence. Nitric oxide (NO has been implicated in improvement of exercise capacity through vascular smooth muscle relaxation in both coronary and skeletal muscle arteries, as well as via independent mechanisms. Antioxidants may prevent nitric oxide inactivation by oxygen free radicals. The purpose of this study was to investigate the effects of an L-arginine and antioxidant supplement on exercise performance in elderly male cyclists. Methods This was a two-arm prospectively randomized double-blinded and placebo-controlled trial. Sixteen male cyclists were randomized to receive either a proprietary supplement (Niteworks®, Herbalife International Inc., Century City, CA or a placebo powder. Exercise parameters were assessed by maximal incremental exercise testing performed on a stationary cycle ergometer using breath-by-breath analysis at baseline, week one and week three. Results There was no difference between baseline exercise parameters. In the supplemented group, anaerobic threshold increased by 16.7% (2.38 ± 0.18 L/min, p 2 max between control and intervention groups at either week 1 or week 3 by comparison to baseline. Conclusion An arginine and antioxidant-containing supplement increased the anaerobic threshold at both week one and week three in elderly cyclists. No effect on VO2 max was observed. This study indicated a potential role of L-arginine and antioxidant supplementation in improving exercise performance in elderly.

  19. Interaction of phenolic antioxidants and hydroxyl radicals

    International Nuclear Information System (INIS)

    Wang Wenfeng; Luo Jian; Yao Side; Lian Zhirui; Zhang Jiashan; Lin Nianyun

    1992-01-01

    Based on pulse radiolysis of aqueous solutions of four phenolic antioxidants including green tea polyphenols, quercetin, caffeic acid and sinapic acid the rate constants for reactions of OH and the antioxidants were determined. And green tea polyphenols and quercetin are the strongest antioxidants

  20. Interaction of phenolic antioxidants and hydroxyl radicals

    International Nuclear Information System (INIS)

    Wang, W.F.; Luo, J.; Yao, S.D.; Lian, Z.R.; Zhang, J.S.; Lin, N.Y.

    1993-01-01

    Based on pulse radiolysis of aqueous solutions of four phenolic antioxidants including green tea polyphenols, quercetin, caffeic acid and sinapic acid the rate constants for reactions of OH and the antioxidants were determined. Green tea polyphenols and quercetin are the strongest antioxidants. (author)

  1. Comparative Antioxidant, Antiproliferative and Apoptotic Effects of ...

    African Journals Online (AJOL)

    Purpose: To determine and compare the antioxidant, antiproliferative and apoptotic effects of leaf infusions of Ilex laurina and Ilex paraguariensis in colon cancer cells. Methods: Antioxidant activity was determined by ORAC (Oxygen Radical Absorbance Capacity) and FRAP (Ferric Reducing Antioxidant Power). Cytotoxic ...

  2. Hepatoprotective Effects of Chinese Medicinal Herbs: A Focus on Anti-Inflammatory and Anti-Oxidative Activities

    Directory of Open Access Journals (Sweden)

    Puiyan Lam

    2016-03-01

    Full Text Available The liver is intimately connected to inflammation, which is the innate defense system of the body for removing harmful stimuli and participates in the hepatic wound-healing response. Sustained inflammation and the corresponding regenerative wound-healing response can induce the development of fibrosis, cirrhosis and eventually hepatocellular carcinoma. Oxidative stress is associated with the activation of inflammatory pathways, while chronic inflammation is found associated with some human cancers. Inflammation and cancer may be connected by the effect of the inflammation-fibrosis-cancer (IFC axis. Chinese medicinal herbs display abilities in protecting the liver compared to conventional therapies, as many herbal medicines have been shown as effective anti-inflammatory and anti-oxidative agents. We review the relationship between oxidative stress and inflammation, the development of hepatic diseases, and the hepatoprotective effects of Chinese medicinal herbs via anti-inflammatory and anti-oxidative mechanisms. Moreover, several Chinese medicinal herbs and composite formulae, which have been commonly used for preventing and treating hepatic diseases, including Andrographis Herba, Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Lycii Fructus, Coptidis Rhizoma, curcumin, xiao-cha-hu-tang and shi-quan-da-bu-tang, were selected for reviewing their hepatoprotective effects with focus on their anti-oxidative and ant-inflammatory activities. This review aims to provide new insight into how Chinese medicinal herbs work in therapeutic strategies for liver diseases.

  3. Antioxidant activity of the microalga Spirulina maxima

    OpenAIRE

    Miranda M.S.; Cintra R.G.; Barros S.B.M.; Mancini-Filho J.

    1998-01-01

    Spirulina maxima, which is used as a food additive, is a microalga rich in protein and other essential nutrients. Spirulina contains phenolic acids, tocopherols and ß-carotene which are known to exhibit antioxidant properties. The aim of the present study was to evaluate the antioxidant capacity of a Spirulina extract. The antioxidant activity of a methanolic extract of Spirulina was determined in vitro and in vivo. The in vitro antioxidant capacity was tested on a brain homogenate incubated ...

  4. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits

    Science.gov (United States)

    Shofian, Norshahida Mohamad; Hamid, Azizah Abdul; Osman, Azizah; Saari, Nazamid; Anwar, Farooq; Dek, Mohd Sabri Pak; Hairuddin, Muhammad Redzuan

    2011-01-01

    The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05) higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05) but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested. PMID:21845104

  5. Advances in Antisense Oligonucleotide Development for Target Identification, Validation, and as Novel Therapeutics

    Directory of Open Access Journals (Sweden)

    Moizza Mansoor

    2008-01-01

    Full Text Available Antisense oligonucleotides (As-ODNs are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt, 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases.

  6. The Potential for Emerging Microbiome-Mediated Therapeutics in Asthma.

    Science.gov (United States)

    Ozturk, Ayse Bilge; Turturice, Benjamin Arthur; Perkins, David L; Finn, Patricia W

    2017-08-10

    In terms of immune regulating functions, analysis of the microbiome has led the development of therapeutic strategies that may be applicable to asthma management. This review summarizes the current literature on the gut and lung microbiota in asthma pathogenesis with a focus on the roles of innate molecules and new microbiome-mediated therapeutics. Recent clinical and basic studies to date have identified several possible therapeutics that can target innate immunity and the microbiota in asthma. Some of these drugs have shown beneficial effects in the treatment of certain asthma phenotypes and for protection against asthma during early life. Current clinical evidence does not support the use of these therapies for effective treatment of asthma. The integration of the data regarding microbiota with technologic advances, such as next generation sequencing and omics offers promise. Combining comprehensive bioinformatics, new molecules and approaches may shape future asthma treatment.

  7. Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro.

    Science.gov (United States)

    Schmid, Ursula; Stopper, Helga; Heidland, August; Schupp, Nicole

    2008-01-01

    Complications in diabetes mellitus are partially mediated by enhanced formation of reactive oxygen species. Among the factors involved in reactive oxygen species formation, advanced glycation end products play a key role. Owing to a reduced activity of the enzyme transketolase, which requires diphosphorylated thiamine (vitamin B(1)) as cofactor, an accumulation of those deleterious glucose metabolites especially in diabetic patients can be observed. Benfotiamine, a lipophilic thiamine diphosphate prodrug, prevented early renal and retinal changes in animal studies, and reduced neuropathic pain in clinical studies. Several mechanisms for these activities have been described. We investigated for the first time direct antioxidant abilities of benfotiamine. Additionally, a potential DNA protective effect of benfotiamine was analysed. Oxidative stress was detected by flow cytometry, antioxidative capacity was measured with the ferric reducing ability of plasma (FRAP) assay, two endpoints for genomic damage were assessed: the comet assay and the micronucleus test, and the expression and activity of transketolase was quantified. Benfotiamine prevented oxidative stress induced by the mutagen 4-nitroquinoline-1-oxide (NQO), the uremic toxin indoxyl sulfate, and the peptide hormone angiotensin II in three different kidney cell lines. Cell-free experiments showed a direct antioxidant effect of benfotiamine, which might account for the protective effect. Oxidative DNA damage, induced by angiotensin II, was completely prevented by benfotiamine. Incubation with benfotiamine increased transketolase expression and activity in the cells. Benfotiamine shows a direct antioxidant action. This effect of benfotiamine may be involved in the improvement of diabetic late complications, including peripheral neuropathy.

  8. Therapeutic Recreation in the Community: An Inclusive Approach. Second Edition

    Science.gov (United States)

    Carter, Marcia Jean; LeConey, Stephen P.

    2004-01-01

    The second edition of Therapeutic Recreation in the Community: An Inclusive Approach reflects the changing and evolving nature of recreation and health care services. A number of social, economic, and political directives and technological advancements have fostered recreation in the community for all individuals. Due in part to a rising awareness…

  9. Advancements in meat packaging.

    Science.gov (United States)

    McMillin, Kenneth W

    2017-10-01

    Packaging of meat provides the same or similar benefits for raw chilled and processed meats as other types of food packaging. Although air-permeable packaging is most prevalent for raw chilled red meat, vacuum and modified atmosphere packaging offer longer shelf life. The major advancements in meat packaging have been in the widely used plastic polymers while biobased materials and their integration into composite packaging are receiving much attention for functionality and sustainability. At this time, active and intelligent packaging are not widely used for antioxidant, antimicrobial, and other functions to stabilize and enhance meat properties although many options are being developed and investigated. The advances being made in nanotechnology will be incorporated into food packaging and presumably into meat packaging when appropriate and useful. Intelligent packaging using sensors for transmission of desired information and prompting of subsequent changes in packaging materials, environments or the products to maintain safety and quality are still in developmental stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. [Prognostic factors of advanced stage non-small-cell lung cancer].

    Science.gov (United States)

    Kwas, H; Guermazi, E; Khattab, A; Hrizi, C; Zendah, I; Ghédira, H

    2017-09-01

    Primary lung cancer is the leading cause of cancer death in men in the world. Although the introduction of new drugs, new therapeutic strategies and despite therapeutic advances, the prognosis is relatively improved during the last years. To evaluate the prognosis of patients with locally advanced or metastatic non-small-cell lung cancer (NSCLC) and to identify prognosti