WorldWideScience

Sample records for antioxidant n-acetyl-l-cysteine ameliorates

  1. Effects of N-acetyl-L-cysteine on gene expression of antioxidant enzymes in yeast cells after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Park, Ji Young; Ryu, Tae Ho; Roh, Chang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Ionizing radiation induces water radiolysis, which generates highly reactive hydroxyl radicals. Reactive oxygen species (ROS) cause apoptosis and cell damage. When exposed to ionizing radiation, cells activates ROS scavenging detoxifying enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase. SOD scavenges superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen. Yeast has two catalase and three GPx proteins. The biochemical function of GPx is to reduce lipid-hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water. N-acetylL-cysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity and alkaline phosphatase. In this study, the role of NAC as an antioxidant and a radioprotector was examined on cell survival, transcriptional level, and protein level. through observing viability of cells, analyzing the gene expression of antioxidant enzyme, measuring the SOD activity and intracellular GSH levels in yeast W303-1A strain The cell viability of haploid S. cerevisiae W303-1A strain was reduced significantly at the low dose (10∼30 Gy). The half-lethal dose of the strain was about 20 Gy. The CFU assay result confirmed that NAC could not rescue the cells from radiation-induced death. When irradiated with 100 Gy, an increase in the transcriptional expression was observed in the antioxicant genes. The expression of these genes decreased by treatment of NAC in irradiated cells. NAC decline SOD activity and intracellular GSH levels. The present study shows that NAC can directly scavenge

  2. Effect of N-Acetyl-L-Cysteine and alpha-Tocopherol Administration on Endogenous Antioxidant Protection of Liver DNA and RNA and plasma Lipid Profile in gamma-Irradiated Rats

    International Nuclear Information System (INIS)

    Abou-Safi, H.M.; Ashry, O.M.; Kafafy, Y.A.

    2005-01-01

    The present study wasundertaken to evaluate the combined antioxidative capacity of N-acetyl-L-cysteine (NAC, 120 mg/100g b. wt) and alpha tocopherol (10mg/100g b. wt.) injected intra peritoneally one h before irradiation of male rats. Whole body gamma irradiation (2Gy) induced significant elevation in liver DNA and significant drop in liver protein content, while liver RNA showed no significant changes. Triglycerides and LDL-cholesterol elevated significantly after irradiation, whereas no significant changes were observed in total cholesterol, while HDL-cholesterol significantly decreased. Blood and liver glutathione were significantly decreased, whereas plasma MDA was significantly increased. NAC and alpha-tocopherol injection elevated RNA and blood glutathione levels compared to control and depressed total cholesterol and LDL-cholesterol levels, as well as MDA in the liver. The combined treatment prior to irradiation decreased DNA, elevated RNA and normalized liver protein content. Triglycerides were decreased after 1 and 3 days and total cholesterol dropped significantly on the 1 st and 7 th days. LDL was ameliorated while HDL was significantly declined then elevated after 7 days. Blood glutathione was normalized while liver glutathione was significantly elevated and MDA was reduced both in liver and plasma. This combined treatment has proven to be recommended to enhance the natural defenses against deleterious effects of oxidative stress

  3. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Seung-Il Oh

    2015-05-01

    Full Text Available OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV, was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors.

  4. Protective effect of N-acetyl-L-cysteine against disulfiram-induced oxidative stress and apoptosis in V79 cells

    International Nuclear Information System (INIS)

    Grosicka-Maciag, Emilia; Kurpios-Piec, Dagmara; Grzela, Tomasz; Czeczot, Hanna; Skrzycki, Michal; Szumilo, Maria; Rahden-Staron, Iwonna

    2010-01-01

    This work investigated the effect of N-acetyl-L-cysteine (NAC) on disulfiram (DSF) induced oxidative stress in Chinese hamster fibroblast cells (V79). An increase in oxidative stress induced by DSF was observed up to a 200 μM concentration. It was evidenced by a statistically significant increase of both GSH t and GSSG levels, as well as elevated protein carbonyl (PC) content. There was no increase in lipid peroxidation (measured as TBARS). DSF increased CAT activity, but did not change SOD1 and SOD2 activities. Analysis of GSH related enzymes showed that DSF significantly increased GR activity, did not change Se-dependent GPx, but statistically significantly decreased non-Se-dependent GPx activity. DSF showed also pro-apoptotic activity. NAC alone did not produce any significant changes, besides an increase of GSH t level, in any of the variables measured. However, pre-treatment of cells with NAC ameliorated DSF-induced changes. NAC pre-treatment restored the viability of DSF-treated cells evaluated by Trypan blue exclusion assay and MTT test, GSSG level, and protein carbonyl content to the control values as well as it reduced pro-apoptotic activity of DSF. The increase of CAT and GR activity was not reversed. Activity of both GPx was significantly increased compared to their values after DSF treatment. In conclusion, oxidative properties are at least partially attributable to the cellular effects of disulfiram and mechanisms induced by NAC pre-treatment may lower or even abolish the observed effects. These observations illustrate the importance of the initial cellular redox state in terms of cell response to disulfiram exposure. -- Research Highlights: →This report explores biological properties of disulfiram under a condition of modulated intra-cellular GSH level. It shows a protective role of N-acetyl-L-cysteine in V79 cells exposed to disulfiram (in GSH metabolism as well as in changes of antioxidant enzyme activity).

  5. N-acetyl-L-cysteine prevents stress-induced desmin aggregation in cellular models of desminopathy.

    Directory of Open Access Journals (Sweden)

    Bertrand-David Segard

    Full Text Available Mutations within the human desmin gene are responsible for a subcategory of myofibrillar myopathies called desminopathies. However, a single inherited mutation can produce different phenotypes within a family, suggesting that environmental factors influence disease states. Although several mouse models have been used to investigate organ-specific desminopathies, a more general mechanistic perspective is required to advance our knowledge toward patient treatment. To improve our understanding of disease pathology, we have developed cellular models to observe desmin behaviour in early stages of disease pathology, e.g., upon formation of cytoplasmic desmin aggregates, within an isogenic background. We cloned the wildtype and three mutant desmin cDNAs using a Tet-On Advanced® expression system in C2C12 cells. Mutations were selected based on positioning within desmin and capacity to form aggregates in transient experiments, as follows: DesS46Y (head domain; low aggregation, DesD399Y (central rod domain; high aggregation, and DesS460I (tail domain; moderate aggregation. Introduction of these proteins into a C2C12 background permitted us to compare between desmin variants as well as to determine the role of external stress on aggregation. Three different types of stress, likely encountered during muscle activity, were introduced to the cell models-thermal (heat shock, redox-associated (H2O2 and cadmium chloride, and mechanical (stretching stresses-after which aggregation was measured. Cells containing variant DesD399Y were more sensitive to stress, leading to marked cytoplasmic perinuclear aggregations. We then evaluated the capacity of biochemical compounds to prevent this aggregation, applying dexamethasone (an inducer of heat shock proteins, fisetin or N-acetyl-L-cysteine (antioxidants before stress induction. Interestingly, N-acetyl-L-cysteine pre-treatment prevented DesD399Y aggregation during most stress. N-acetyl-L-cysteine has recently been

  6. Protective Activity of N-acetyl-L-cysteine (NAC) against Cellular Oxidative Stress Induced by Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Hyun, Kyung Man; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain); Aroutiounian, Rouben [Yerevan State University, Yerevan (Armenia)

    2009-10-15

    Oxidative stress occurs due to numerous factors such as irradiation, redox decomposition by ions of hydroperoxides or hydrogen peroxide, and thermal decomposition of free radical initiators including peroxides and hyponitrites. The antioxidant and free-radical scavenger N-acetyl- L-cysteine (NAC) is used extensively as a conditional nutrient. NAC acts as a cysteine donor and maintains or even increases the intracellular levels of glutathione (GSH), a tripeptide which protects cells from toxins such as free-radicals. With regard to the radioprotective effects of NAC, the majority of studies have been performed in vitro. NAC were used to protect the Chinese hamster ovary (CHO) cells from radiationinduced apoptosis by controlling the enzyme that triggers programmed cell death. Some studies have successfully demonstrated sporadic radioprotection following low-level chronic administration of NAC, though the mode and optimal dose of NAC are yet to be fully determined. This study was designed to evaluate the effects of NAC in different doses on the activity levels of GSH and the cell viability in the fish cell line against ionizing radiation.

  7. Indirect flow injection determination of N-acetyl-L-cysteine using cerium(IV) and ferroin

    International Nuclear Information System (INIS)

    Vieira, Heberth Juliano; Fatibello-Filho, Orlando

    2005-01-01

    An indirect flow injection spectrophotometric procedure is proposed for the determination of N-acetyl-L-cysteine in pharmaceutical formulations. In this system, ferroin ([Fe(II)-(fen) 2 ] 2+ ) in excess, with a strong absorption at 500 nm, is oxidized by cerium(IV) yielding cerium(III) and [Fe(III)-(fen) 2 ] 3+ (colorless), thus producing a baseline. When N-acetyl-L-cysteine solution is introduced into the flow injection system, it reacts with cerium(IV) increasing the analytical signal in proportion to the drug concentration. Under optimal experimental conditions, the linearity of the analytical curve for N-acetyl-L-cysteine ranged from 6.5x10 -6 to 1.3x10 -4 mol L -1 . The detection limit was 5.0x10 -6 mol L -1 and recoveries between 98.0 and 106% were obtained. The sampling frequency was 60 determinations per hour and the RSD was smaller than 1.4% for 2.2x10 -5 mol L -1 N-acetyl-L-cysteine. (author)

  8. The effect of N-acetyl-L-cysteine on the viscosity of ileal neobladder mucus.

    NARCIS (Netherlands)

    Schrier, B.P.; Lichtendonk, W.J.; Witjes, J.A.

    2002-01-01

    N-acetyl-L-cysteine (NAC) proved to be an effective mucolytic in pulmonary secretions. Our goal was to investigate the in vitro effect of NAC on viscosity of ileal neobladder mucus. The urine of a patient with an ileal neobladder was collected during the first 7 days postoperatively and stored in a

  9. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    Science.gov (United States)

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  10. A Preliminary Study: N-acetyl-L-cysteine Improves Semen Quality following Varicocelectomy

    Directory of Open Access Journals (Sweden)

    Foroogh Barekat

    2016-05-01

    Full Text Available Background: Surgery is considered the primary treatment for male infertility from clinical varicocele. One of the main events associated with varicocele is excessive production of reactive oxygen species (ROS. N-acetyl-L-cysteine (NAC, an antioxidant that scavenges free radicals, is considered a supplement to alleviate glutathione (GSH depletion during oxidative stress. Despite beneficial effects of NAC in other pathological events, there is no report on the effect of NAC in individuals with varicocele. Therefore, the aim of this study is to evaluate the outcome of NAC on semen quality, protamine content, DNA damage, oxidative stress and fertility following varicocelectomy. Materials and Methods: This prospective clinical trial included 35 infertile men with varicocele randomly divided into control (n=20 and NAC (n=15 groups. We assessed semen parameters, protamine content [chromomycin A3 (CMA3], DNA integrity [terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL] and oxidative stress [2', 7'-dichlorodihydrofluorescein-diacetate (DCFH-DA] before and three months after varicocelectomy. Results: Percentage of abnormal semen parameters, protamine deficiency, DNA fragmentation and oxidative stress were significantly decreased in both groups compared to before surgery. We calculated the percentage of improvement in these parameters compared to before surgery for each group, then compared the results between the groups. Only percentage of protamine deficiency and DNA fragmentation significantly differed between the NAC and control groups. Conclusion: The results of this study, for the first time, revealed that NAC improved chromatin integrity and pregnancy rate when administered as adjunct therapy post-varicocelectomy (Registeration Number: IRCT201508177223N5.

  11. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiupei, E-mail: xiupeiyang@163.com [Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Nanchong 637000 (China); College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000 (China); Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan [College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000 (China)

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.

  12. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    International Nuclear Information System (INIS)

    Yang, Xiupei; Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan

    2015-01-01

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH 3 + moiety of doxorubicin and the −COO − moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum

  13. The inhibition of NF-kappaB activation pathways and the induction of apoptosis by dithiocarbamates in T cells are blocked by the glutathione precursor N-acetyl-L-cysteine

    OpenAIRE

    Fernandez, P C; Machado, J; Heussler, Volker; Botteron, C; Palmer, G H; Dobbelaere, D A

    1999-01-01

    Nuclear factor-kappaB regulates genes that control immune and inflammatory responses and are involved in the pathogenesis of several diseases, including AIDS and cancer. It has been proposed that reactive oxygen intermediates participate in NF-kappaB activation pathways, and compounds with putative antioxidant activity such as N-acetyl-L-cysteine (NAC) and pyrrolidine dithiocarbamate (PDTC) have been used interchangeably to demonstrate this point. We examined their effects, separately and com...

  14. Effects of oral administration of N-acetyl-L-cysteine: a multi-biomarker study in smokers

    NARCIS (Netherlands)

    van Schooten, Frederik Jan; Besaratinia, Ahmad; Besarati Nia, Ahmad; de Flora, Silvio; D'Agostini, Francesco; Izzotti, Alberto; Camoirano, Anna; Balm, Alfons J. M.; Dallinga, Jan Willem; Bast, Aalt; Haenen, Guido R. M. M.; van't Veer, Laura; Baas, Paul; Sakai, Harumasa; van Zandwijk, Nico

    2002-01-01

    N-Acetyl-L-cysteine (NAC) has been shown to exert cancer-protective mechanisms and effects in experimental models. We report here the results of a randomized, double-blind, placebo-controlled, Phase II chemoprevention trial with NAC in healthy smoking volunteers. The subjects were supplemented daily

  15. N-Acetyl-L-cysteine protects thyroid cells against DNA damage induced by external and internal irradiation.

    Science.gov (United States)

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2017-11-01

    We evaluated the effect of the antioxidant N-acetyl-L-cysteine (NAC) on the levels of reactive oxygen species (ROS), DNA double strand breaks (DSB) and micronuclei (MN) induced by internal and external irradiation using a rat thyroid cell line PCCL3. In internal irradiation experiments, ROS and DSB levels increased immediately after 131 I addition and then gradually declined, resulting in very high levels of MN at 24 and 48 h. NAC administration both pre- and also post- 131 I addition suppressed ROS, DSB and MN. In external irradiation experiments with a low dose (0.5 Gy), ROS and DSB increased shortly and could be prevented by NAC administration pre-, but not post-irradiation. In contrast, external irradiation with a high dose (5 Gy) increased ROS and DSB in a bimodal way: ROS and DSB levels increased immediately after irradiation, quickly returned to the basal levels and gradually rose again after >24 h. The second phase was in parallel with an increase in 4-hydroxy-2-nonenal. The number of MN induced by the second wave of ROS/DSB elevations was much higher than that by the first peak. In this situation, NAC administered pre- and post-irradiation comparably suppressed MN induced by a delayed ROS elevation. In conclusion, a prolonged ROS increase during internal irradiation and a delayed ROS increase after external irradiation with a high dose caused serious DNA damage, which were efficiently prevented by NAC. Thus, NAC administration even both after internal or external irradiation prevents ROS increase and eventual DNA damage.

  16. Protective Effects of N-Acetyl-L-cystein on 3,4-Methylene Dioxymethamphetamie-Induced Neurotoxicity in Cerebellum of Male Rats

    Directory of Open Access Journals (Sweden)

    Sara Soleimani Asl

    2011-10-01

    Full Text Available Objective(s: 3-4, methylenedioxymethamphetamine (MDMA causes apoptosis in nervous system and several studies suggest that oxidative stress contributes to MDMA-induced neurotoxicity. The aim of this study is to examine the effects of N-acetyl-L-Cystein (NAC as an antioxidant on MDMA-induced apoptosis. Materials and Methods: 21 Sprague dawley male rats (200-250mg were treated with MDMA (2×0,5mg/kg or MDMA plus NAC (100mg/kg IP for 7 day. After last administration of MDMA, rats were killed, cerebellum was removed and Bax and Bcl-2 expression was assessed by western blotting method. Results: The results of this study showed that MDMA causes up-regulation of Bax and down-regulation of Bcl-2 and NAC administration attenuated MDMA-induced apoptosis. Conclusion: The present study suggests that NAC treatment may improve MDMA-induced neurotoxicity.

  17. Protective Effects of N-Acetyl-L-cystein on 3,4-Methylene Dioxymethamphetamie-Induced Neurotoxicity in Cerebellum of Male Rats

    Directory of Open Access Journals (Sweden)

    Sara Soleimani Asl

    2011-10-01

    Full Text Available Introduction: 3-4, methylenedioxymethamphetamine (MDMA causes apoptosis in nervous system and several studies suggest that oxidative stress contributes to MDMA-induced neurotoxicity. The aim of this study is to examine the effects of N-acetyl-L-Cystein (NAC as an antioxidant on MDMA-induced apoptosis. Methods: 21 Sprague dawley male rats (200-250mg were treated with MDMA (2×0,5mg/kg or MDMA plus NAC (100mg/kg IP for 7 day. After last administration of MDMA, rats were killed, cerebellum was removed and Bax and Bcl-2 expression was assessed by western blotting method. Results: The results of this study showed that MDMA causes up-regulation of Bax and down-regulation of Bcl-2 and NAC administration attenuated MDMA-induced apoptosis. Discussion: The present study suggests that NAC treatment may improve MDMA-induced neurotoxicity.

  18. N-Acetyl-l-Cysteine Affects Growth, Extracellular Polysaccharide Production, and Bacterial Biofilm Formation on Solid Surfaces

    OpenAIRE

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-01-01

    N-Acetyl-l-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Usi...

  19. Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages.

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohnishi

    Full Text Available N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1β and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.

  20. Protective Effects of N-Acetyl-L-Cysteine in Human Oligodendrocyte Progenitor Cells and Restoration of Motor Function in Neonatal Rats with Hypoxic-Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Dongsun Park

    2015-01-01

    Full Text Available Objective. Since oligodendrocyte progenitor cells (OPCs are the target cells of neonatal hypoxic-ischemic encephalopathy (HIE, the present study was aimed at investigating the protective effects of N-acetyl-L-cysteine (NAC, a well-known antioxidant and precursor of glutathione, in OPCs as well as in neonatal rats. Methods. In in vitro study, protective effects of NAC on KCN cytotoxicity in F3.Olig2 OPCs were investigated via MTT assay and apoptotic signal analysis. In in vivo study, NAC was administered to rats with HIE induced by hypoxia-ischemia surgery at postnatal day 7, and their motor functions and white matter demyelination were analyzed. Results. NAC decreased KCN cytotoxicity in F3.Olig2 cells and especially suppressed apoptosis by regulating Bcl2 and p-ERK. Administration of NAC recovered motor functions such as the using ratio of forelimb contralateral to the injured brain, locomotor activity, and rotarod performance of neonatal HIE animals. It was also confirmed that NAC attenuated demyelination in the corpus callosum, a white matter region vulnerable to HIE. Conclusion. The results indicate that NAC exerts neuroprotective effects in vitro and in vivo by preserving OPCs, via regulation of antiapoptotic signaling, and that F3.Olig2 human OPCs could be a good tool for screening of candidates for demyelinating diseases.

  1. N-acetyl-l-cysteine and Mn2+ attenuate Cd2+-induced disturbance of the intracellular free calcium homeostasis in cultured cerebellar granule neurons.

    Science.gov (United States)

    Isaev, Nickolay K; Avilkina, Svetlana; Golyshev, Sergey A; Genrikhs, Elisaveta E; Alexandrova, Olga P; Kapkaeva, Marina R; Stelmashook, Elena V

    2018-01-15

    Cadmium is a highly toxic heavy metal that is capable of accumulating in the body via direct exposure or through the alimentary and respiratory tract, leading to neurodegeneration. In this article, we show that the application of CdCl 2 (0.001-0.005mM) for 48h induced high dose-dependent death rate of cultured cerebellar granule neurons (CGNs). Unlike Trolox or vitamin E, antioxidant N-acetyl-l-cysteine (NAC, 1mM) and Mn 2+ (0.0025-0.005mM) significantly protected CGNs from this toxic effect. Using Fluo-4 AM, measurements of intracellular calcium ions demonstrated that 24h-exposure to Cd 2+ induced intensive increase of Fluo-4 fluorescence in neurons accompanied by mitochondria swelling. These data imply that the cadmium-induced Ca 2+ increase is an important element in the death of neurons due to toxic effect of cadmium and the mechanism of protective action of manganese and NAC is mediated by the prevention of increase in calcium levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Water-Soluble N-Acetyl-L-cysteine-Capped CdTe Quantum Dots Application for Hg(II Detection

    Directory of Open Access Journals (Sweden)

    Tianming Yang

    2013-01-01

    Full Text Available A simple, rapid, and specific method for Hg(II detection has been proposed based on the fluorescence change of N-acetyl-L-cysteine-capped CdTe quantum dots (QDs. The presence of Hg(II ions could quench the fluorescence of QDs at 565 nm and meanwhile produce new peak in 700–860 nm wavelength range. The linear response range is 20–430 nM with the detection limit at 8.0 nM Hg(II. It was found that the position of the new peak was irrelevant to the size of QDs. Furthermore, the mechanism of the quenching of QDs fluorescence by Hg(II and the appearance of new peak in near-infrared area were also discussed and deduced through ultraviolet absorption spectrum, fluorescence spectrum, and X-ray photoelectron spectrum.

  3. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    International Nuclear Information System (INIS)

    Deng Xiaopeng; Xia Yan; Hu Wei; Zhang Hongxiao; Shen Zhenguo

    2010-01-01

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H 2 O 2 ) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 μM significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H 2 O 2 and superoxide anion (O 2 · - ), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN 3 as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 μM NAC decreased the contents of TBARS and production of H 2 O 2 and O 2 · - , but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  4. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xiaopeng; Xia Yan; Hu Wei [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Zhang Hongxiao, E-mail: hxzhang@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Shen Zhenguo, E-mail: zgshen@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China)

    2010-08-15

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H{sub 2}O{sub 2}) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 {mu}M significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H{sub 2}O{sub 2} and superoxide anion (O{sub 2}{center_dot}{sup -}), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN{sub 3} as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 {mu}M NAC decreased the contents of TBARS and production of H{sub 2}O{sub 2} and O{sub 2}{center_dot}{sup -}, but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  5. N-Acetyl-L-Cysteine Affords Protection against Lead-Induced Cytotoxicity and Oxidative Stress in Human Liver Carcinoma (HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2007-06-01

    Full Text Available Although lead exposure has declined in recent years as a result of change to lead-free gasoline, several epidemiological have pointed out that it represents a medical and public health emergency, especially in young children consuming high amounts of lead-contaminated flake paints. A previous study in our laboratory indicated that lead exposure induces cytotoxicity in human liver carcinoma cells. In the present study, we evaluated the role of oxidative stress in lead-induced toxicity, and the protective effect of the anti-oxidant n-acetyl-l-cysteine (NAC. We hypothesized that oxidative stress plays a role in lead-induced cytotoxicity, and that NAC affords protection against this adverse effect. To test this hypothesis, we performed the MTT [3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide] assay and the trypan blue exclusion test for cell viability. We also performed the thiobarbituric acid test for lipid peroxidation. Data obtained from the MTT assay indicated that NAC significantly increased the viability of HepG2 cells in a dosedependent manner upon 48 hours of exposure. Similar trend was obtained with the trypan blue exclusion test. Data generated from the thiobarbituric acid test showed a significant (p ≤ 0.05 increase of MDA levels in lead nitrate-treated HepG2 cells compared to control cells. Interestingly, the addition of NAC to lead nitrate-treated HepG2 cells significantly decreased cellular content of reactive oxygen species (ROS, as evidenced by the decrease in lipid peroxidation byproducts. Overall, findings from this study suggest that NAC inhibits lead nitrate-induced cytotoxicity and oxidative stress in HepG2 cells. Hence, NAC may be used as a salvage therapy for lead-induced toxicity in exposed persons.

  6. Aqueous based synthesis of N-acetyl-L-cysteine capped ZnSe nanocrystals with intense blue emission

    Science.gov (United States)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2016-10-01

    In this work a very simple reflux route for preparation of ZnSe nanocrystals with minor modification and faster preparation over conventional ones is introduced. X-ray diffraction analysis indicated that the ZnSe nanocrystals have a cubic structure. The complete disappearance of the S-H band in FT-IR spectrum of N-acetyl-L-cysteine capped ZnSe nanocrystals was an indication over formation of Zn-thiol covalent bonds at the surface of the nanocrystals which results in passivation of small nanocrystals. The strong size-quantization regime was responsible of significant blue shift in absorption/emission spectra. Using the well-known calculations, band gap and Urbach energy of the ZnSe nanocrystals were measured and their average size was estimated optically to be around 4.6 nm along with the TEM image. A dark blue emission with higher relative intensity of excitonic to trap emissions (compared to conventional method), very narrow excitonic emission peak of about 16 nm and remarkable stability was obtained from the ZnSe nanocrystals.

  7. Nuclear coupling of 33S and the nature of free radicals in irradiated crystals of N-acetyl-L-cysteine

    International Nuclear Information System (INIS)

    Hadley, J.H. Jr.; Gordy, W.

    1977-01-01

    Hyperfine structure due to 33 S in its natural abundance of 0.76% has been measured in the electron spin resonance of free radicals produced by x-irradiation of single crystals of N-acetyl-L-cysteine at 77 K. These measurements proved that the radicals produced at 77 K with principal g values of 1.990, 2.006, and 2.214 are monosulfide radicals with the 3p unpaired electron density of 0.70 on the S. They are believed to be negatively charged molecules RCH 2 S - H or neutral RCH 2 SH 2 radicals in which 90% of the spin density of the captured electron is concentrated in a d-p hybrid orbital on the S. As the temperature is raised to 300 0 K, these, as well as the carbon-centered radicals produced at the lower temperature, are mostly converted to neutral disulfide radicals RCH 2 SS like those observed in irradiated cysteine

  8. Facile synthesis of N-acetyl-L-cysteine capped CdHgSe quantum dots and selective determination of hemoglobin.

    Science.gov (United States)

    Wang, Qingqing; Zhan, Guoqing; Li, Chunya

    2014-01-03

    Using N-acetyl-L-cysteine (NAC) as a stabilizer, well water-dispersed, high-quality and stable CdHgSe quantum dots were facilely synthesized via a simple aqueous phase method. The as-prepared NAC capped CdHgSe quantum dots were thoroughly characterized by fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. A novel method for the selective determination of hemoglobin (Hb) was developed based on fluorescence quenching of the NAC capped CdHgSe quantum dots. A number of key factors including pH value of phosphate buffer solution, quantum dots concentration, the adding sequence of reagents and reaction time that influence the analytical performance of the NAC capped CdHgSe quantum dots in Hb determination were investigated. Under the optimal experimental conditions, the change of fluorescence intensity (ΔI) was linearly proportional to the concentration of Hb in the range of 4.0×10(-9)-4.4×10(-7) mol L(-1) with a detection limit of 2.0×10(-9) mol L(-1). The developed method has been successfully employed to determine Hb in human urine samples. Copyright © 2013. Published by Elsevier B.V.

  9. Spectroscopic investigations on the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots on catalase

    Science.gov (United States)

    Sun, Haoyu; Yang, Bingjun; Cui, Erqian; Liu, Rutao

    2014-11-01

    Quantum dots (QDs) are recognized as some of the most promising semiconductor nanocrystals in biomedical applications. However, the potential toxicity of QDs has aroused wide public concern. Catalase (CAT) is a common enzyme in animal and plant tissues. For the potential application of QDs in vivo, it is important to investigate the interaction of QDs with CAT. In this work, the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots with fluorescence emission peak at 612 nm (QDs-612) on CAT was investigated by fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet-visible (UV-vis) absorption and circular dichroism (CD) techniques. Binding of QDs-612 to CAT caused static quenching of the fluorescence, the change of the secondary structure of CAT and the alteration of the microenvironment of tryptophan residues. The association constants K were determined to be K288K = 7.98 × 105 L mol-1 and K298K = 7.21 × 105 L mol-1. The interaction between QDs-612 and CAT was spontaneous with 1:1 stoichiometry approximately. The CAT activity was also inhibited for the bound QDs-612. This work provides direct evidence about enzyme toxicity of QDs-612 to CAT in vitro and establishes a new strategy to investigate the interaction between enzyme and QDs at a molecular level, which is helpful for clarifying the bioactivities of QDs in vivo.

  10. The influence of N-acetyl-L-cysteine on damage of porcine oocyte exposed to zearalenone in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Fang-Nong [College of Life Sciences, Qingdao Agricultural University, Qingdao 266109 (China); Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109 (China); Ma, Jun-Yu [Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109 (China); Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109 (China); Liu, Jing-Cai [College of Life Sciences, Qingdao Agricultural University, Qingdao 266109 (China); Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109 (China); Wang, Jun-Jie; Cheng, Shun-Feng [Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109 (China); Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109 (China); Sun, Xiao-Feng [College of Life Sciences, Qingdao Agricultural University, Qingdao 266109 (China); Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109 (China); Li, Lan [Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109 (China); Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109 (China); Li, Bo [Chengguo Station of Animal Husbandry and Veterinary, Laizhou 261437 (China); Nyachoti, Charles Martin [Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Shen, Wei, E-mail: wshen@qau.edu.cn [Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109 (China); Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109 (China)

    2015-12-01

    Zearalenone (ZEA), one of the mycotoxins produced by Fusarium fungi, impacts porcine reproduction by interfering with the estrogen signaling pathway. Previous studies have shown that ZEA inhibits porcine oocyte maturation through the formation of aberrant spindle. To explore the effect of ZEA on porcine oocyte meiotic maturation, the extent of both nuclear and cytoplasmic maturation was examined in this study. Compared with control group, presence of ZEA (3 μM) during oocyte maturation, significantly inhibited the polar body extrusions from 71% to 51%, and significantly increased intracellular reactive oxygen species (ROS) level (12.01 vs. 5.89). Intracellular glutathione (GSH) content in ZEA treatment group was lower than in the control group (1.08 pmol/oocyte vs. 0.18 pmol/oocyte), and cortical granules of cortical area distributed oocytes were reduced (88% vs. 62%). ZEA decreases cumulus expansion in both morphology and mRNA level (HAS2, PTX3, TNFAIP6 and CX43). Addition of N-acetyl-L-cysteine (NAC) to the oocyte maturation media reversed the ZEA-induced inhibition of polar body extrusion (from 69% to 81%), up-regulated ROS (from 7.9 to 6.5), down-regulated GSH content (from 0.16 to 0.82 pmol/oocyte) and recovered cumulus cells expansion in morphology and mRNA level. It is concluded that ZEA affects both oocyte nucleus and cytoplasmic maturation during in vitro maturation, and NAC can reverse these damages to some extent. - Highlights: • ZEA significantly inhibited the polar body extrusions during oocyte maturation. • ZEA significantly increased intracellular ROS level and reduced GSH content. • ZEA disturbed cortical granules of cortical area distributed oocytes. • NAC reversed the ZEA-induced inhibition of oocyte maturation.

  11. Iodate oxidation of N-Acetyl L-Cysteine: Application in drug determination and characterization of its oxidation and degradation product by mass spectrometry

    International Nuclear Information System (INIS)

    Siddiqui, Masom Raza; Wabaiduri, Saikh Mohammas; Alothman, Zied A; Rahman, Habibur; Alam, Sarfarah; Ali, Sajid

    2014-01-01

    A kinetic spectrophotometric method based on the initial rate measurement has been developed for the determination of N-acetyl L-cysteine. The developed method is based on the oxidation of N-acetyl L-cysteine with iodate. The reaction product was studied and characterized using the mass spectrometry and the structure of the product was proposed. From the mass spectrometric studies it was concluded that the oxidation of the drug resulted in the formation of a disulfide. The developed method was validated as per the guidelines of international conference on harmonization. The developed initial rate method was found to be linear in the concentration range of 1.25 - 30μg ml-1. The detection and quantitation limits were found to be 0.018 and 0.056 μG ml -1 . In the current study, the degradation product of N-acetyl L cysteine was also prepared and identified using mass spectrometry. Keywords: N- acetyl cysteine, Initial rate method, Spectrophotometry, mass spectrometry

  12. Inhibition of Methylglyoxal-Induced AGEs/RAGE Expression Contributes to Dermal Protection by N-Acetyl-L-Cysteine

    Directory of Open Access Journals (Sweden)

    Chun-tao Yang

    2017-02-01

    Full Text Available Background/Aim: Accumulation of advanced glycation end products (AGEs is a major cause of diabetes mellitus (DM skin complications. Methylglyoxal (MGO, a reactive dicarbonyl compound, is a crucial intermediate of AGEs generation. N-acetyl-L-cysteine (NAC, an active ingredient of some medicines, can induce endogenous GSH and hydrogen sulfide generation, and set off a condensation reaction with MGO. However, there is rare evidence to show NAC can alleviate DM-induced skin injury through inhibition of AGEs generation or toxicity. The present study aimed to observe the effects of NAC on MGO-induced inflammatory injury and investigate the roles of AGEs and its receptor (RAGE in NAC’s dermal protection in human HaCaT keratinocytes. Methods: The cells were exposed to MGO to simulate a high MGO status in diabetic blood or tissues. The content of AGEs in serum or cell medium was measured with ELISA. The protective effects of NAC against MGO-induce injury were evaluated by administration before MGO one hour, in virtue of cell viability, mitochondrial membrane potential, inflammation reaction, nuclear factor (NF-κB activation, matrix metalloproteinase (MMP-9 expression, as well as cellular behavioral function. Results: We found the AGEs levels of patients with DM were elevated comparing with healthy volunteers. The in vitro AGEs generation was also able to be enhanced by the exposure of HaCaT cells to MGO, which reduced dose-dependently cellular viability, damaged mitochondrial function, triggered secretion of interleukin (IL-6 and IL-8, activated NF-κB and upregulated MMP-9 expression. Furthermore, the exposure caused cellular adhesion and migration dysfunction, as well as collagen type I inhibition. Importantly, before the exposure to MGO, the preconditioning with NAC significantly attenuated MGO-induced AGEs generation, improved cellular viability and mitochondrial function, partially reversed the overexpression of proinflammatory factors and MMP-9

  13. Dual effects of N-acetyl-L-cysteine dependent on NQO1 activity: Suppressive or promotive of 9,10-phenanthrenequinone-induced toxicity

    International Nuclear Information System (INIS)

    Toyooka, Tatsushi; Shinmen, Takuya; Aarts, Jac M.M.J.G.; Ibuki, Yuko

    2012-01-01

    A typical antioxidant, N-acetyl-L-cysteine (NAC) generally protects cells from oxidative damage induced by reactive oxygen species (ROS). 9,10-Phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust particles, produces ROS in redox cycling following two-electron reduction by NAD(P)H:quinone oxidoreductase 1 (NQO1), which has been considered as a cause of its cyto- and genotoxicity. In this study, we show that NAC unexpectedly augments the toxicity of 9,10-PQ in cells with low NQO1 activity. In four human skin cell lines, the expression and the activity of NQO1 were lower than in human adenocarcinoma cell lines, A549 and MCF7. In the skin cells, the cytotoxicity of 9,10-PQ was significantly enhanced by addition of NAC. The formation of DNA double strand breaks accompanying phosphorylation of histone H2AX, was also remarkably augmented. On the other hand, the cyto- and genotoxicity were suppressed by addition of NAC in the adenocarcinoma cells. Two contrasting experiments: overexpression of NQO1 in CHO-K1 cells which originally expressed low NQO1 levels, and knock‐down of NQO1 in the adenocarcinoma cell line A549 by transfection of RNAi, also showed that NAC suppressed 9,10-PQ-induced toxicity in cell lines expressing high NQO1 activity and enhanced it in cell lines with low NQO1 activity. The results suggested that dual effects of NAC on the cyto- and genotoxicity of 9,10-PQ were dependent on tissue-specific NQO1 activity. -- Highlights: ► NAC augmented the cytotoxicity of 9,10-PQ in skin cell lines. ► 9,10-PQ-induced DSBs accompanying γ-H2AX were also augmented by NAC. ► NAC suppressed the cyto- and genotoxicity of 9,10-PQ in adenocarcinoma cell lines. ► The dual effects of NAC on toxicity of 9,10-PQ were dependent on NQO1 activity.

  14. The influence of N-acetyl-L-cysteine on oxidative stress and nitric oxide synthesis in stimulated macrophages treated with a mustard gas analogue

    Directory of Open Access Journals (Sweden)

    Smith Milton

    2008-06-01

    Full Text Available Abstract Background Sulphur mustard gas, 2, 2'-dichlorodiethyl sulphide (HD, is a chemical warfare agent. Both mustard gas and its monofunctional analogue, 2-chloroethyl ethyl sulphide (CEES, are alkylating agents that react with and diminish cellular thiols and are highly toxic. Previously, we reported that lipopolysaccharide (LPS significantly enhances the cytotoxicity of CEES in murine RAW 264.7 macrophages and that CEES transiently inhibits nitric oxide (NO production via suppression of inducible NO synthase (iNOS protein expression. NO generation is an important factor in wound healing. In this paper, we explored the hypotheses that LPS increases CEES toxicity by increasing oxidative stress and that treatment with N-acetyl-L-cysteine (NAC would block LPS induced oxidative stress and protect against loss of NO production. NAC stimulates glutathione (GSH synthesis and also acts directly as a free radical scavenger. The potential therapeutic use of the antibiotic, polymyxin B, was also evaluated since it binds to LPS and could thereby block the enhancement of CEES toxicity by LPS and also inhibit the secondary infections characteristic of HD/CEES wounds. Results We found that 10 mM NAC, when administered simultaneously or prior to treatment with 500 μM CEES, increased the viability of LPS stimulated macrophages. Surprisingly, NAC failed to protect LPS stimulated macrophages from CEES induced loss of NO production. Macrophages treated with both LPS and CEES show increased oxidative stress parameters (cellular thiol depletion and increased protein carbonyl levels. NAC effectively protected RAW 264.7 cells simultaneously treated with CEES and LPS from GSH loss and oxidative stress. Polymyxin B was found to partially block nitric oxide production and diminish CEES toxicity in LPS-treated macrophages. Conclusion The present study shows that oxidative stress is an important mechanism contributing to CEES toxicity in LPS stimulated macrophages and

  15. EPR investigation of gamma-irradiated L-citrulline, α-methyl-DL-serine, 3-fluoro-DL-valine and N-acetyl-L-cysteine

    Science.gov (United States)

    Osmanoğlu, Y. Emre; Sütçü, Kerem; Başkan, M. Halim

    2017-02-01

    The spectroscopic parameters of the paramagnetic species produced in gamma-irradiated L-citrulline, α-methyl-DL-serine, 3-fluoro-DL-valine and N-acetyl-L-cysteine were investigated at room temperature at a dose of 20 kGy by using EPR technique. The paramagnetic species were attributed to NH2CONH(CH2)3ĊNH2COOH, HOCH2ĊCH3COOH and HOĊHCCH3NH2COOH, CH3CH3ĊCHNH2COOH and SHCH2ĊNHCOCH3COOH radicals, respectively. EPR data of the unpaired electron with the environmental protons and 14N nucleus were used to characterize the contributing radicals produced in gamma irradiated compounds. In this paper, the stability of these compounds at room temperature after irradiation was also studied.

  16. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine

    International Nuclear Information System (INIS)

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2016-01-01

    The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in previous publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC's effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1 focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC's biological effect might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds

  17. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine.

    Science.gov (United States)

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2016-06-01

    The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in previous publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC's effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1 focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC's biological effect might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  18. Preventive effects of fructose and N-acetyl-L-cysteine against cytotoxicity induced by the psychoactive compounds N-methyl-5-(2-aminopropyl)benzofuran and 3,4-methylenedioxy-N-methamphetamine in isolated rat hepatocytes.

    Science.gov (United States)

    Nakagawa, Yoshio; Suzuki, Toshinari; Inomata, Akiko

    2018-02-01

    Psychoactive compounds, N-methyl-5-(2-aminopropyl)benzofuran (5-MAPB) and 3,4-methylenedioxy-N-methamphetamine (MDMA), are known to be hepatotoxic in humans and/or experimental animals. As previous studies suggested that these compounds elicited cytotoxicity via mitochondrial dysfunction and/or oxidative stress in rat hepatocytes, the protective effects of fructose and N-acetyl-l-cysteine (NAC) on 5-MAPB- and MDMA-induced toxicity were studied in rat hepatocytes. These drugs caused not only concentration-dependent (0-4 mm) and time-dependent (0-3 hours) cell death accompanied by the depletion of cellular levels of adenosine triphosphate (ATP) and glutathione (reduced form; GSH) but also an increase in the oxidized form of GSH. The toxic effects of 5-MAPB were greater than those of MDMA. Pretreatment of hepatocytes with either fructose at a concentration of 10 mm or NAC at a concentration of 2.5 mm prevented 5-MAPB-/MDMA-induced cytotoxicity. In addition, the exposure of hepatocytes to 5-MAPB/MDMA caused the loss of mitochondrial membrane potential, although the preventive effect of fructose was weaker than that of NAC. These results suggest that: (1) 5-MAPB-/MDMA-induced cytotoxicity is linked to mitochondrial failure and depletion of cellular GSH; (2) insufficient cellular ATP levels derived from mitochondrial dysfunction were ameliorated, at least in part, by the addition of fructose; and (3) GSH loss via oxidative stress was prevented by NAC. Taken collectively, these results indicate that the onset of toxic effects caused by 5-MAPB/MDMA may be partially attributable to cellular energy stress as well as oxidative stress. Copyright © 2017 John Wiley & Sons, Ltd.

  19. The Effects of Subchronic Methionine Overload Administered Alone or Simultaneously with L-cysteine or N-acetyl-L-cysteine on Body Weight, Homocysteine Levels and Biochemical Parameters in the Blood of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Micovic Zarko

    2016-09-01

    Full Text Available Hyperhomocysteinemia (HHC, both basal and after methionine load, may occur due to genetic disorders or deficiencies of nutrients that affect the remethylation or trans-sulphuration pathways during methionine metabolism. HHC is involved in the pathogenesis of many illnesses as a result of its prooxidative effect and its impairment of antioxidative protection. The aim was to examine the effects of subchronic methionine overload on the body weight and standard biochemical parameters in rat serum and to examine whether simultaneous subchronic intraperotoneal administration of methionine alone or together with L-cysteine or N-acetyl-cysteine resulted in a change in the body weight and biochemical parameters in the rat serum. The research was conducted during a three-week period (male Wistar albino rats, n=36, body weight of approximately 160 g, age of 15-20 days, and the animals were divided into a control group and three experimental groups of 8-10 animals each: a control group (0.9% sodium chloride 0.1-0.2 ml/day; b methionine (0.8 mmol/kg/bw/day (MET group; c methionine (0.8 mmol/kg/bw/day + L-cysteine (7 mg/kg/bw/day (L-cys+MET group; and d methionine (0.8 mmol/kg/bw/day + N-acetyl-L-cysteine (50 mg/kg/bw/day (NAC+MET group. In addition to the body weight monitoring, the levels of total homocysteine and the standard biochemical parameters in blood samples (plasma or serum were determined. The results indicated that monitoring the homocysteine levels and standard biochemical parameters in blood could be used for analysis and could provide an excellent guideline for distinguishing between toxic and non-toxic doses of methionine intake, which may be meaningful for clinical applications.

  20. Chiral recognition of phenylglycinol enantiomers based on N-acetyl-L-cysteine capped CdTe quantum dots in the presence of Ag+

    Science.gov (United States)

    Guo, Yuan; Zeng, Xiaoqing; Yuan, Haiyan; Huang, Yunmei; Zhao, Yanmei; Wu, Huan; Yang, Jidong

    2017-08-01

    In this study, a novel method for chiral recognition of phenylglycinol (PG) enantiomers was proposed. Firstly, water-soluble N-acetyl-L-cysteine (NALC)-capped CdTe quantum dots (QDs) were synthesized and experiment showed that the fluorescence intensity of the reaction system slightly enhancement when added PG enantiomers to NALC-capped CdTe quantum dots (QDs), but the R-PG and S-PG could not be distinguished. Secondly, when there was Ag+ presence in the reaction system, the experiment result was extremely interesting, the PG enantiomers cloud make NALC-capped CdTe QDs produce different fluorescence signal, in which the fluorescence of S-PG + Ag+ + NALC-CdTe system was significantly enhanced, and the fluorescence of R-PG + Ag+ + NALC-CdTe system was markedly decreased. Thirdly, all the enhanced and decreased of the fluorescence intensity were directly proportional to the concentration of R-PG and S-PG in the linearly range 10- 5-10- 7 mol·L- 1, respectively. So, the new method for simultaneous determination of the PG enantiomers was built too. The experiment result of the method was satisfactory with the detection limit of PG can reached 10- 7 mol·L- 1 and the related coefficient of S-PG and R-PG are 0.995 and 0.980, respectively. The method was highly sensitive, selective and had wider detection range compared with other methods.

  1. Synthesis of N-acetyl-L-cysteine capped Mn:doped CdS quantum dots for quantitative detection of copper ions

    Science.gov (United States)

    Yang, Xiupei; Jia, Zhihui; Cheng, Xiumei; Luo, Na; Choi, Martin M. F.

    2018-06-01

    In this work, a new assembled copper ions sensor based on the Mn metal-enhanced fluorescence of N-acetyl-L-cysteine protected CdS quantum dots (NAC-Mn:CdS QDs) was developed. The NAC and Mn:CdS QDs nanoparticles were assembled into NAC-Mn:CdS QDs complexes through the formation of Cdsbnd S and Mnsbnd S bonds. As compared to NAC capped CdS QDs, higher fluorescence quantum yields of NAC-Mn:CdS QDs was observed, which is attributed to the surface plasmon resonance of Mn metal. In addition, the fluorescence intensity of as-formed complexes weakened in the presence of copper ions. The decrease in fluorescence intensity presented a linear relationship with copper ions concentration in the range from 0.16-3.36 μM with a detection limit of 0.041 μM . The characterization of as-formed QDs was analyzed by photoluminescence (PL), ultra violet-visible (UV-vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and energy dispersive spectroscopy (EDS) respectively. Furthermore, the recoveries and relative standard deviations of Cu2+ spiked in real water samples for the intra-day and inter-day analyses were 88.20-117.90, 95.20-109.90, 0.80-5.80 and 1.20-3.20%, respectively. Such a metal-enhanced QDs fluorescence system may have promising application in chemical and biological sensors.

  2. Expression of Genes Related to Oxidative Stress in Yeast Treated with Ionizing Radiation and N-acetyl -L-cysteine

    International Nuclear Information System (INIS)

    Park, Ji Young; Kim, Jin Kyu; Nili, Mohammad

    2010-01-01

    Ionizing radiation (IR) induces water radiolysis, which generates highly reactive hydroxyl radicals. Reactive oxygen species (ROS) cause apoptosis and cell damage including DNA strand breaks (DSBs), base damage, protein damage and lipid-hydroperoxide. Detoxifying enzymes are immediately triggered for ROS scavenging. Yeast contains two forms of superoxide dismutase (SOD). SOD1 as a cytosolic copper-zinc superoxide dismutase is located in the cytoplasm and cytosol. SOD2 as a manganese containing enzyme is act in mitochondria matrix and mitochondrion. These enzymes scavenge superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen. Yeast contains two catalases. Catalase A (CTA1) and Cytosolic catalase T (CTT1) is located in peroxisome and cytoplasm, respectively. Yeast has two glutathione (GSH) peroxidases, which are GPX1 and GPX2. GPX1 and GPX2 are component of cellular component and cytoplasm, respectively. The biochemical function of GSH peroxidase is to reduce lipid-hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water. Otherwise, chemicals and materials help ROS detoxification against oxidative damage. N-acetyl-Lcysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. In this study, we examined the effect of NAC through gene expressions related to protective enzyme against oxidative stress in yeast

  3. Expression of Genes Related to Oxidative Stress in Yeast Treated with Ionizing Radiation and N-acetyl -L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Young; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-10-15

    Ionizing radiation (IR) induces water radiolysis, which generates highly reactive hydroxyl radicals. Reactive oxygen species (ROS) cause apoptosis and cell damage including DNA strand breaks (DSBs), base damage, protein damage and lipid-hydroperoxide. Detoxifying enzymes are immediately triggered for ROS scavenging. Yeast contains two forms of superoxide dismutase (SOD). SOD1 as a cytosolic copper-zinc superoxide dismutase is located in the cytoplasm and cytosol. SOD2 as a manganese containing enzyme is act in mitochondria matrix and mitochondrion. These enzymes scavenge superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen. Yeast contains two catalases. Catalase A (CTA1) and Cytosolic catalase T (CTT1) is located in peroxisome and cytoplasm, respectively. Yeast has two glutathione (GSH) peroxidases, which are GPX1 and GPX2. GPX1 and GPX2 are component of cellular component and cytoplasm, respectively. The biochemical function of GSH peroxidase is to reduce lipid-hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water. Otherwise, chemicals and materials help ROS detoxification against oxidative damage. N-acetyl-Lcysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. In this study, we examined the effect of NAC through gene expressions related to protective enzyme against oxidative stress in yeast

  4. Enhanced paracellular and transcellular paclitaxel permeation by chitosan-vitamin E succinate- N-acetyl- l-cysteine copolymer on Caco-2 cell monolayer

    Science.gov (United States)

    Lian, He; Zhang, Tianhong; Sun, Jin; Pu, Xiaohui; Tang, Yilin; Zhang, Youxi; He, Zhonggui

    2014-04-01

    The aim of this study was to evaluate the underlying mechanism of enhanced oral absorption of paclitaxel (PTX)-loaded chitosan-vitamin E succinate- N-acetyl- l-cysteine (CS-VES-NAC) nanomicelles from the cellular level. In aqueous solution, CS-VES-NAC copolymer self-assembled into the polymeric nanomicelles, with the size ranging from 190 to 240 nm and the drug loading content as high as 20.5 %. Cytotoxicity results showed that the PTX-loaded nanomicelles exhibited the similar effect to PTX solution (PTX-Sol) on Caco-2 cells, but no toxicity observed for blank CS-VES-NAC nanomicelles. The cellular uptake of PTX was significantly increased by CS-VES-NAC nanomicelles, compared with that of PTX-Sol, due to the possible escapement of P-glycoprotein (P-gp) efflux pumps by endocytosis pathway. Confocal laser scanning microscope (CLSM) images also confirmed CS-VES-NAC nanomicelles could be effectively internalized by Caco-2 cells. More importantly, P app value of PTX-loaded CS-VES-NAC nanomicelles was 2.3-fold higher than that of PTX-Sol, and the efflux ratio decreased by more than 10.8-fold for the nanomicelles. As a consequence of opening of tight junctions and P-gp inhibition induced by free CS-VES-NAC copolymer, the P app value of PTX was almost increased up to 19.5-fold. All the results indicate that CS-VES-NAC copolymer hold great promises as nanocarrier for antitumor drug oral delivery by improving paracellular and transcellular permeation.

  5. Insights into the effect of N-acetyl-L-cysteine-capped CdTe quantum dots on the structure and activity of human serum albumin by spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Haoyu; Yang, Xudan; Li, Meng; Han, Songlin; Liu, Yingxue [School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100 (China); Tan, Xuejie [School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong Province 250353 (China); Liu, Chunguang, E-mail: chunguangliu2013@sdu.edu.cn [School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100 (China); Liu, Rutao [School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100 (China)

    2015-11-15

    Quantum dots (QDs) are a kind of nanostructured semiconductor crystals with the size range of 1–10 nm. Their unique photophysical properties and potential toxicity to human health have aroused wide concern of scientists and general public. However, the interaction mechanism of QDs on human serum albumin (HSA, the vital protein in human blood) from both structural and functional perspectives is rarely reported. In the present work, effects of N-acetyl-L-cysteine-capped CdTe quantum dots with fluorescence emission peak at 612 nm (QDs-612) on the conformation and function of HSA were investigated by spectroscopic methods, molecular docking study and esterase activity assay. The hydrophobic interaction between HSA and QDs-612 was spontaneous with the binding constants calculated to be 6.85×10{sup 5} L mol{sup −1} (298 K) and 8.89×10{sup 5} L mol{sup −1} (308 K). The binding of QDs-612 to HSA induced the static quenching of fluorescence and the changes of secondary structure and microenvironment of Tyr-411 residue, which resulted in serious decrease on the hydrolysis of substrate p-nitrophenylacetate in esterase activity assay of HSA. This work confirms the possibility on direct interaction of QDs-612 with HSA and obtains a possible mechanism of relationship between conformation and function of HSA. - Highlights: • The interaction between CdTe QDs (QDs-612) and HSA is spontaneous. • The predominant force of the binding is hydrophobic interaction. • The interaction changes the secondary structure of HSA. • Tyr-411 residue of HSA expose to a hydrophilic environment. • The esterase activity of HSA decreases by adding QDs-612.

  6. pH-dependent optical properties of N-acetyl-L-cysteine-capped ZnSe(S) nanocrystals with intense/stable emissions

    Science.gov (United States)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2017-03-01

    In the present study, a series of aqueous-based ZnSe(S) nanocrystals (NCs) was prepared at different solution pH ranging from 8 to 11.9, and using N-acetyl-L-cysteine (NAC) as capping agent. In addition to zinc blende structure, the X-ray diffraction studies demonstrated the quantum size regime of the ZnSe(S) NCs. To gain further insight toward the influence of the quantum confinement and pH values on optical properties of the as-prepared NCs, their UV-visible absorption and photoluminescence spectra were systematically analyzed. The absorption spectra experienced a red shift from 340 to 382 nm as the pH increased from 8.0 to 11.9, indicating the growth of the as-prepared ZnSe(S) NCs. The emission spectra also show the obvious red shift and the relative area of excitonic to trap emission, firstly increases from pH = 8.0 to 10.7, and then decreases by further increasing of the solution pH. The initial behavior might be due to the improved surface passivation of the trap dangling states by better deprotonation of thiol groups in NAC, whereas at pH >10.7, the faster growth rate of the ZnSe(s) NCs may lead to the formation of many defect sites. All of these phenomena were combined in the scheme which displays the effect of quantum confinement and solution pH on variation of the excitonic and trap-related emissions.

  7. Synthesis and characterization of high-quality water-soluble CdMnTe quantum dots capped by N-acetyl-L-cysteine through hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fang; Li, Jiaotian; Wang, Fengxue; Yang, Tanming; Zhao, Dan, E-mail: wqzhdpai@163.com

    2015-03-15

    High-quality water-soluble Mn{sup 2+} doped CdTe quantum dots (QDs) with N-acetyl-L-cysteine (NAC) as capping reagent have been synthesized through hydrothermal route, allowing a rapid preparation time (<1 h), tunable emitting peaks (from 530 to 646 nm) and excellent quantum yields (approximately 50%). The influences of various experimental variables, including Mn-to-Cd ratio, Te-to-Cd ratio, pH value, and reaction time on the growth rate and luminescent properties of the obtained QDs have been systematically investigated. And the optimum reaction conditions (Cd:Mn:NAC:Te=1.0:1.0:2.4:0.2, pH=9.5, 35 min, 200 °C) are found out. The optical features and structure of the obtained CdMnTe QDs have been characterized through fluorescence spectroscopy, UV absorption spectroscopy and TEM. In particular, we realized qualitative, semi-quantitative and quantitative studies on the doping of Mn to CdTe QDs through XPS, EDS, and AAS. The actual molar ratio of Mn to Cd in CdMnTe QDs (551 nm) is 1.166:1.00, very close to the feed ratios (1:1). - Highlights: • Mn doped CdTe QDs have been synthesized through one-pot hydrothermal route. • The prepared QDs possess excellent quantum yields as high as 63.1% and tunable emitting peaks from 530 to 646 nm. • We found out that the enhancement of Mn:Cd will decrease the QY of the prepared QDs and lead to the blueshift of emission peaks. • The QDs have been characterized through TEM, EDS, XPS, and AAS.

  8. pH-dependent optical properties of N-acetyl-L-cysteine-capped ZnSe(S) nanocrystals with intense/stable emissions

    Energy Technology Data Exchange (ETDEWEB)

    Soheyli, Ehsan [University of Arak, Department of Physics, Faculty of Science (Iran, Islamic Republic of); Sahraei, Reza, E-mail: r.sahraei@ilam.ac.ir [University of Ilam, Department of Chemistry, Faculty of Science (Iran, Islamic Republic of); Nabiyouni, Gholamreza [University of Arak, Department of Physics, Faculty of Science (Iran, Islamic Republic of)

    2017-03-15

    In the present study, a series of aqueous-based ZnSe(S) nanocrystals (NCs) was prepared at different solution pH ranging from 8 to 11.9, and using N-acetyl-L-cysteine (NAC) as capping agent. In addition to zinc blende structure, the X-ray diffraction studies demonstrated the quantum size regime of the ZnSe(S) NCs. To gain further insight toward the influence of the quantum confinement and pH values on optical properties of the as-prepared NCs, their UV-visible absorption and photoluminescence spectra were systematically analyzed. The absorption spectra experienced a red shift from ~340 to ~382 nm as the pH increased from 8.0 to 11.9, indicating the growth of the as-prepared ZnSe(S) NCs. The emission spectra also show the obvious red shift and the relative area of excitonic to trap emission, firstly increases from pH = 8.0 to 10.7, and then decreases by further increasing of the solution pH. The initial behavior might be due to the improved surface passivation of the trap dangling states by better deprotonation of thiol groups in NAC, whereas at pH >10.7, the faster growth rate of the ZnSe(s) NCs may lead to the formation of many defect sites. All of these phenomena were combined in the scheme which displays the effect of quantum confinement and solution pH on variation of the excitonic and trap-related emissions.

  9. Effects of L-cysteine and N-acetyl-L-cysteine on 4-hydroxy-2, 5-dimethyl-3(2H)-furanone (furaneol), 5-(hydroxymethyl)furfural, and 5-methylfurfural formation and browning in buffer solutions containing either rhamnose or glucose and arginine.

    Science.gov (United States)

    Haleva-Toledo, E; Naim, M; Zehavi, U; Rouseff, R L

    1999-10-01

    Solutions of L-cysteine (Cys) and N-acetyl-L-cysteine (AcCys), containing glucose or rhamnose, with or without arginine, were buffered to pH 3, 5, and 7 and incubated at 70 degrees C for 48 h. Cys and AcCys inhibited the formation of (hydroxymethyl)furfural (HMF) from glucose and methylfurfural (MF) from rhamnose under acidic conditions. AcCys inhibited the accumulation of 4-hydroxy-2, 5-dimethyl- 3(2H)-furanone (DMHF, Furaneol) from rhamnose, but Cys, under our experimental conditions, enhanced Furaneol accumulation from rhamnose. Cys and AcCys reacted directly with Furaneol but not with HMF or MF. Both Cys and AcCys inhibited nonenzymatic browning at pH 7. At pH 3, however, Cys reacted with both glucose and rhamnose to produce unidentified compounds that increased the visible absorbency.

  10. Ganoderma atrum polysaccharide ameliorates anoxia/reoxygenation-mediated oxidative stress and apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Zhang, Yan-Song; Li, Wen-Juan; Zhang, Xian-Yi; Yan, Yu-Xin; Nie, Shao-Ping; Gong, De-Ming; Tang, Xiao-Fang; He, Ming; Xie, Ming-Yong

    2017-05-01

    Ganoderma atrum polysaccharide (PSG-1), a main polysaccharide from Ganoderma atrum, possesses potent antioxidant capacity and cardiovascular benefits. The aim of this study was to investigate the role of PSG-1 in oxidative stress and apoptosis in human umbilical vein endothelial cells (HUVECs) under anoxia/reoxygenation (A/R) injury conditions. The results showed that exposure of HUVECs to A/R triggered cell death and apoptosis. Administration of PSG-1 significantly inhibited A/R-induced cell death and apoptosis in HUVECs. PSG-1-reduced A/R injury was mediated via mitochondrial apoptotic pathway, as evidenced by elevation of mitochondrial Bcl-2 protein and mitochondrial membrane potential, and attenuation of Bax translocation, cytochrome c release and caspases activation. Furthermore, PSG-1 enhanced the activities of superoxide dismutase, catalase and glutathione peroxidase and glutathione content, and concomitantly attenuated reactive oxygen species generation, lipid peroxidation and glutathione disulfide content. The antioxidant, N-acetyl-l-cysteine, significantly ameliorated all of these endothelial injuries caused by A/R, suggesting that antioxidant activities might play a key role in PSG-1-induced endothelial protection. Taken together, these findings suggested that PSG-1 could be as a promising adjuvant against endothelial dysfunction through ameliorating oxidative stress and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Use of antioxidants for the prophylaxis of cold-induced peripheral nerve injury.

    Science.gov (United States)

    Teixeira, Fernanda; Pollock, Martin; Karim, Alveera; Jiang, Yuying

    2002-09-01

    "Trench foot" is a particular risk for those involved in adventure tourism, for soldiers in winter mountain training exercises, and for the homeless. Nonfreezing cold nerve injury is characterized by axonal degeneration, which is attributed to free radicals released during cycles of ischemia and reperfusion. This pilot study sought to determine whether the administration of antioxidants might prevent or ameliorate the development of cold nerve injury. Twenty-six rats were divided into two groups. Group 1 animals received, by gavage, a mixture of vitamin C (150 mg/kg/d), vitamin E (100 mg/kg/d), and N-acetyl-L-cysteine (250 mg/kg/d) daily for 4 weeks. Allopurinol (20 mg/kg/d) was added in the last 4 days of treatment. Group 2 animals served as controls and did not receive any antioxidant supplements. After 1 month, two cycles of sciatic nerve cooling (0 degrees C) were induced in 10 controls and 10 experimental animals using circulating water through a nerve cuff. Six additional control animals were subjected to surgery but did not undergo nerve cooling. All animals were killed on the third postoperative day, and their nerves were processed for ultrastructural and quantitative studies. The proportion of degenerated myelinated and unmyelinated axons showed no significant difference between treated and untreated animals. We conclude that the administration of commonly used antioxidants does not prevent cold nerve injury.

  12. Perfluorooctanoic acid exposure induces endoplasmic reticulum stress in the liver and its effects are ameliorated by 4-phenylbutyrate.

    Science.gov (United States)

    Yan, Shengmin; Zhang, Hongxia; Wang, Jianshe; Zheng, Fei; Dai, Jiayin

    2015-10-01

    Perfluoroalkyl acids (PFAAs) are a group of widely used anthropogenic compounds. As one of the most dominant PFAAs, perfluorooctanoic acid (PFOA) has been suggested to induce hepatotoxicity and several other toxicological effects. However, details on the mechanisms for PFOA-induced hepatotoxicity still need to be elucidated. In this study, we observed the occurrence of endoplasmic reticulum (ER) stress in mouse livers and HepG2 cells after PFOA exposure using several familiar markers for the unfolded protein response (UPR). ER stress in HepG2 cells after PFOA exposure was not significantly influenced by autophagy inhibition or stimulation. The antioxidant defense system was significantly disturbed in mouse livers after PFOA exposure, and reactive oxygen species (ROS) were increased in cells exposed to PFOA for 24 h. However, N-acetyl-L-cysteine (NAC) pretreatment did not satisfactorily alleviate the UPR in cells exposed to PFOA even though the increase of ROS was less evident. Furthermore, exposure of HepG2 cells to PFOA in the presence of sodium 4-phenylbutyrate (4-PBA), a chemical chaperone and ER stress inhibitor, suggested that 4-PBA alleviated the UPR and autophagosome accumulation induced by PFOA in cells. In addition, several toxicological effects attributed to PFOA exposure, including cell cycle arrest, proteolytic activity impairment, and neutral lipid accumulation, were also improved by 4-PBA cotreatment in cells. In vivo study demonstrated that PFOA-induced lipid metabolism perturbation and liver injury were partially ameliorated by 4-PBA in mice after 28 days of exposure. These findings demonstrated that PFOA-induced ER stress leading to UPR might play an important role in PFOA-induced hepatotoxic effects, and chemical chaperone 4-PBA could ameliorate the effects. Copyright © 2015. Published by Elsevier Inc.

  13. Sulfotanshinone IIA Sodium Ameliorates Glucose Peritoneal Dialysis Solution-Induced Human Peritoneal Mesothelial Cell Injury via Suppression of ASK1-P38-mediated Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yao Zhou

    2018-05-01

    Full Text Available Background/Aims: Long-term use of high-glucose peritoneal dialysis solution (PDS induces peritoneal mesothelial cell (PMC injury, peritoneal dysfunction, and peritoneal dialysis (PD failure in patients with end-stage renal disease. How to preserve PMCs in PD is a major challenge for nephrologists worldwide. In this study, we aimed to elucidate the efficacy and mechanisms of sulfotanshinone IIA sodium (Tan IIa in ameliorating high-glucose PDS-induced human PMC injury. Methods: The human PMC line HMrSV5 was incubated with 4.25% PDS in vitro to mimic the high-glucose conditions in PD. Cellular viability was measured by Cell Counting Kit 8. Generation of superoxide and reactive oxygen species (ROS was assessed using a Total ROS/Superoxide Detection Kit. Oxidative modification of protein was evaluated by OxyBlot Protein Oxidation Detection Kit. TUNEL (dT-mediated dUTP nick end labeling assay and DAPI (4,6-diamidino-2-phenylindole staining were used to evaluate apoptosis. Western blot analysis was performed to evaluate the efficacy and mechanisms of Tan IIa. Results: Tan IIa protected PMCs against PDS-induced injury as evidenced by alleviating changes in morphology and loss of cell viability. Consistent with their antioxidant properties, N-acetyl-L-cysteine (NAC and Tan IIa suppressed superoxide and ROS production, protein oxidation, and apoptosis elicited by PDS. Apoptosis signal-regulating kinase 1 (ASK1-p38 signaling was activated by PDS. Both Tan IIa and NAC suppressed ASK1 and p38 phosphorylation elicited by PDS. Moreover, genetic downregulation of ASK1 ameliorated cell injury and inhibited the phosphorylation of p38 and activation of caspase 3. Conclusion: Tan IIa protects PMCs against PDS-induced oxidative injury through suppression of ASK1-p38 signaling.

  14. Ameliorative effect of antioxidants (vitamins C and E against abamectin toxicity in liver, kidney and testis of male albino rats

    Directory of Open Access Journals (Sweden)

    B. Wilson Magdy

    2016-10-01

    In conclusion, it appears that vitamins C and E, or in combination (as antioxidants ameliorate the hepato-renal and testicular toxicity of abamectin, but are not completely protective, especially in liver tissue.

  15. Effects of antioxidants on apoptosis induced by dasatinib and nilotinib in K562 cells.

    Science.gov (United States)

    Damiano, Sara; Montagnaro, Serena; Puzio, Maria V; Severino, Lorella; Pagnini, Ugo; Barbarino, Marcella; Cesari, Daniele; Giordano, Antonio; Florio, Salvatore; Ciarcia, Roberto

    2018-06-01

    In clinical practice for the treatment of chronic myeloid leukemia, second generation of tyrosine kinase inhibitors such as Nilotinib (NIL) specific and potent inhibitor of the BCR/ABL kinase and Dasatinib (DAS) a inhibitor of BCR/ABL and Src family kinase were developed to clinically overcome imatinib resistance. In this study, we wanted to test the ability of some antioxidants such Resveratrol (RES) or a new recombinant mitochondrial manganese containing superoxide dismutase (rMnSOD) or δ-tocotrienol (δ-TOCO) to interact with DAS and NIL on viability, reactive oxygen species (ROS) production, lipid peroxidation, and apoptosis. To test the possible mechanisms of action of such antioxidants, we utilized N-acetyl-L-cysteine (NAC) a specific inhibitor ROS production or PP1 a specific Src tyrosine kinase inhibitor or BAPTA a specific chelator of intracellular calcium. Our data demonstrated: 1) RES, rMnSOD, δ-TOCO, and NAC, at dose used, significantly reduced the intracellular levels of MDA induced by DAS or NIL; 2) RES, rMnSOD, and δ-TOCO increased the intracellular ROS levels; 3) The increase ROS levels is related to higher levels of oligonucleosomesi induced by DAS and NIL and that NAC significantly reduced this activity. Interestingly, our data showed that apoptotic activity of DAS and NIL have significantly increased the production of oligonucleosomes by triggering excessive ROS generation as well as functionality of SERCA receptors. © 2018 Wiley Periodicals, Inc.

  16. Amino acid solutions for premature neonates during the first week of life: the role of N-acetyl-L-cysteine and N-acetyl-L-tyrosine

    NARCIS (Netherlands)

    van Goudoever, J. B.; Sulkers, E. J.; Timmerman, M.; Huijmans, J. G.; Langer, K.; Carnielli, V. P.; Sauer, P. J.

    1994-01-01

    Tyrosine and cyst(e)ine are amino acids that are thought to be essential for preterm neonates. These amino acids have low stability (cyst(e)ine) or low solubility (tyrosine) and are therefore usually present only in small amounts in amino acid solutions. Acetylation improves the stability and

  17. Role of hydrotherapy in the amelioration of oxidant-antioxidant status in rheumatoid arthritis patients.

    Science.gov (United States)

    Mateen, Somaiya; Moin, Shagufta; Khan, Abdul Q; Zafar, Atif; Fatima, Naureen; Shahzad, Sumayya

    2017-06-14

    Rheumatoid arthritis (RA) is an inflammatory autoimmune disease. Reactive oxygen species (ROS) are involved in the pathophysiology of RA. Moderate intensity exercises have been reported to have anti-oxidant and anti-inflammatory effects. The aim of this study was to evaluate the effect of hydrotherapy on oxidant-antioxidant status in RA patients. Forty RA patients and 30 age- and sex-matched healthy controls were included in this study. RA patients were subdivided into two groups: the first group (n = 20) received treatment with conventional RA drugs, while the second group (n = 20) received hydrotherapy along with the conventional drugs for a period of 12 weeks. Disease Activity Score of 28 joints (DAS-28), ROS level, protein oxidation, lipid peroxidation, DNA damage and the activities of antioxidant enzymes were evaluated before and after 12 weeks of treatment. RA patients showed a significant change in the oxidative stress biomarkers (ROS, P hydrotherapy has decreased protein, lipid and DNA oxidation by increasing the activities of antioxidant enzymes (SOD and GPx). Our results indicate that hydrotherapy along with drugs has reduced the severity of disease (DAS-28) by ameliorating the oxidant-antioxidant status in RA patients. Thus, in addition to conventional drugs, RA patients should be advised to have hydrotherapy (moderate intensity exercise) in their treatment regimen. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  18. Is the use of antioxidants mixture ameliorating the double stress effect of radiation and hyperlipidaemia?

    International Nuclear Information System (INIS)

    Michael, M.I.; Amer, M.M.

    2010-01-01

    Radiation hazards, due to free radical generation, present an enormous challenge for biological and medical safety. In the same time, hyperlipidaemia represents one of the most important and recognized risk factor for atherosclerosis development as an event of accumulation of cells containing excess lipids within the arterial wall. Under normal physiological conditions, there is a critical balance in the generation of oxygen free radicals and antioxidant defense systems. In this study, we assumed that a subject encountered to both radiation and hyperlipidaemia oxidative stress and inquired if a mixture of three well known antioxidants can ameliorate this dramatically disorder. To answer the question, four groups of adult male albino rats were used; the control group (A) fed and drank ad libitum normal laboratory diet, the second group (B) fed normally and exposed to 5 Gy gamma radiation, the third group (C) fed high-fat diet (HFD) for two months then exposed to the same dose of radiation and the fourth group (D) subjected to the same treatment as group (C) and administrated a mixture of tryptophan (100 mg/kg b.w.), hawthorn extract (50 mg/100 g b.w.) and coenzyme Q10 (50 mg/kg b.w.) for one month. Body weight was recorded twice a week during the experimental period then all the animals were decapitated after one month and sera were collected to estimate total lipids, triglycerides, total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), T3, T4, testosterone and corticosterone hormones besides glutathione. The results declared that radiation-hyperlipidaemia double stressors inadequately distorted the lipogram, hormonal and antioxidant status and the antioxidants mixture administrated could ameliorate these alterations and successfully brought back all the parameters investigated nearly to the control level.

  19. Lifespan Extension and Sustained Expression of Stem Cell Phenotype of Human Breast Epithelial Stem Cells in a Medium with Antioxidants

    Directory of Open Access Journals (Sweden)

    Kai-Hung Wang

    2016-01-01

    Full Text Available We have previously reported the isolation and culture of a human breast epithelial cell type with stem cell characteristics (Type I HBEC from reduction mammoplasty using the MSU-1 medium. Subsequently, we have developed several different normal human adult stem cell types from different tissues using the K-NAC medium. In this study, we determined whether this low calcium K-NAC medium with antioxidants (N-acetyl-L-cysteine and L-ascorbic acid-2-phosphate is a better medium to grow human breast epithelial cells. The results clearly show that the K-NAC medium is a superior medium for prolonged growth (cumulative population doubling levels ranged from 30 to 40 of normal breast epithelial cells that expressed stem cell phenotypes. The characteristics of these mammary stem cells include deficiency in gap junctional intercellular communication, expression of Oct-4, and the ability to differentiate into basal epithelial cells and to form organoid showing mammary ductal and terminal end bud-like structures. Thus, this new method of growing Type I HBECs will be very useful in future studies of mammary development, breast carcinogenesis, chemoprevention, and cancer therapy.

  20. Effects of Ionizing Radiation and Glutathione Precursor on Antioxidant Enzyme and Cell Survival in Yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinkyu; Roh, Changhyun; Ryu, Taeho; Park, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Michael A. [Oxiage Cosmeceutical Research Institute, Virginia (United States)

    2013-05-15

    Cells react to such an induced oxidative stress through scavenging the generated reactive oxygen species to reduce oxidative damage. Antioxidant enzymes such as glutathione peroxidase, catalase, and superoxide dismutase are immediately triggered for reactive oxygen species. N-acetyl-L-cysteine (NAC), a precursor of glutathione, is one of the antioxidants. The effect of NAC as an antioxidant and/or a cell rescue agent was investigated in the present study. Glutathione (GSH) is the most abundant intracellular thiol, which involves in antioxidant defense via direct interaction with ROS or via activities of detoxication enzymes like glutathione peroxidases (GPx). NAC flowed in the cell is converted to cysteine by deacetylation, that is supplied to the depleted GSH by oxidative stress. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity such as GPx and alkaline phosphatase. Cell growth and survivorship and transcriptional level of glutathione gene are analyzed in two yeast strains exposed to combined treatment of NAC with gamma-rays. The effect of NAC on cell growth was measured during 72 hours. The cell growth was hampered by higher concentrations of NAC at stationary phase. NAC, however, didn't affect the cell division at the exponential phase. The survival of the cells decreased with radiation dose. The cell viability of the strain W303-1A was reduced significantly at the low dose (10 and 30 Gy). By comparison, the strain W303-1A was more sensitive to radiation with having a half lethal dose (LD{sub 50}) of about 20 Gy. The quantitative RT-PCR analysis showed that the transcriptional expression of antioxidant enzyme gene GPX1 increased after irradiation while the expression of the gene decreased by the combined treatment of NAC with 100 Gy radiation. The present study shows that NAC can directly scavenge ROS against oxidative stress in vivo. In conclusion, NAC can prevent radiation-induced oxidative

  1. Effects of Ionizing Radiation and Glutathione Precursor on Antioxidant Enzyme and Cell Survival in Yeast

    International Nuclear Information System (INIS)

    Kim, Jinkyu; Roh, Changhyun; Ryu, Taeho; Park, Jiyoung; Nili, Michael A.

    2013-01-01

    Cells react to such an induced oxidative stress through scavenging the generated reactive oxygen species to reduce oxidative damage. Antioxidant enzymes such as glutathione peroxidase, catalase, and superoxide dismutase are immediately triggered for reactive oxygen species. N-acetyl-L-cysteine (NAC), a precursor of glutathione, is one of the antioxidants. The effect of NAC as an antioxidant and/or a cell rescue agent was investigated in the present study. Glutathione (GSH) is the most abundant intracellular thiol, which involves in antioxidant defense via direct interaction with ROS or via activities of detoxication enzymes like glutathione peroxidases (GPx). NAC flowed in the cell is converted to cysteine by deacetylation, that is supplied to the depleted GSH by oxidative stress. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity such as GPx and alkaline phosphatase. Cell growth and survivorship and transcriptional level of glutathione gene are analyzed in two yeast strains exposed to combined treatment of NAC with gamma-rays. The effect of NAC on cell growth was measured during 72 hours. The cell growth was hampered by higher concentrations of NAC at stationary phase. NAC, however, didn't affect the cell division at the exponential phase. The survival of the cells decreased with radiation dose. The cell viability of the strain W303-1A was reduced significantly at the low dose (10 and 30 Gy). By comparison, the strain W303-1A was more sensitive to radiation with having a half lethal dose (LD 50 ) of about 20 Gy. The quantitative RT-PCR analysis showed that the transcriptional expression of antioxidant enzyme gene GPX1 increased after irradiation while the expression of the gene decreased by the combined treatment of NAC with 100 Gy radiation. The present study shows that NAC can directly scavenge ROS against oxidative stress in vivo. In conclusion, NAC can prevent radiation-induced oxidative stress by

  2. Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Nagib, Marwa M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo (Egypt); Tadros, Mariane G., E-mail: mirogeogo@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); ELSayed, Moushira I. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo (Egypt); Khalifa, Amani E. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2013-08-15

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) driven through altered immune responses with production of proinflammatory cytokines. Many therapies are used, but side effects and loss of response limit long-term effectiveness. New therapeutic strategies are thus needed for patients who don't respond to current treatments. Recently, there is suggested involvement of the proinflammatory hormone angiotensin II in inflammatory bowel disease. The aim of this study was to investigate the possible role of olmesartan medoxomil (OLM-M), an angiotensin II receptor blocker in ameliorating ulcerative colitis. Colitis was induced in male Wistar rats by administration of 5% dextran sodium sulphate (DSS) in drinking water for 5 days. OLM-M (1, 3 and 10 mg/kg) was administered orally during 21 days prior to the induction of colitis, and for 5 days after. Sulfasalazine (500 mg/kg) was used as reference drug. All animals were tested for changes in colon length, disease activity index (DAI) and microscopic damage. Colon tissue concentration/activity of tumor necrosis alpha (TNF-α), myeloperoxidase (MPO), prostaglandin E2 (PGE2), reduced glutathione (GSH) and malondialdehyde (MDA) were assessed. Results showed that the OLM-M dose-dependently ameliorated the colonic histopathological and biochemical injuries, an effect that is comparable or even better than that of the standard sulfasalazine. These results suggest that olmesartan medoxomil may be effective in the treatment of UC through its anti-inflammatory and antioxidant effects. - Highlights: • Olmesartan medoximil reduced dextran sodium sulphate- induced colitis. • Mechanism involved anti-inflammatory and antioxidant effects dose- dependently. • It suppressed malondialdehyde and restored reduced glutathione levels. • It reduced inflammatory markers levels and histological changes.

  3. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity.

    Science.gov (United States)

    Yasutake, Yuichi; Tomita, Kengo; Higashiyama, Masaaki; Furuhashi, Hirotaka; Shirakabe, Kazuhiko; Takajo, Takeshi; Maruta, Koji; Sato, Hirokazu; Narimatsu, Kazuyuki; Yoshikawa, Kenichi; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Nagao, Shigeaki; Matsuo, Hirotaka; Miura, Soichiro; Hokari, Ryota

    2017-11-01

    Uric acid is excreted from blood into the intestinal lumen, yet the roles of uric acid in intestinal diseases remain to be elucidated. The study aimed to determine whether uric acid could reduce end points associated with nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. A mouse model of NSAID-induced enteropathy was generated by administering indomethacin intraperitoneally to 8-week-old male C57BL/6 mice, and then vehicle or uric acid was administered orally. A group of mice treated with indomethacin was also concurrently administered inosinic acid, a uric acid precursor, and potassium oxonate, an inhibitor of uric acid metabolism, intraperitoneally. For in vitro analysis, Caco-2 cells treated with indomethacin were incubated in the presence or absence of uric acid. Oral administration of uric acid ameliorated NSAID-induced enteropathy in mice even though serum uric acid levels did not increase. Intraperitoneal administration of inosinic acid and potassium oxonate significantly elevated serum uric acid levels and ameliorated NSAID-induced enteropathy in mice. Both oral uric acid treatment and intraperitoneal treatment with inosinic acid and potassium oxonate significantly decreased lipid peroxidation in the ileum of mice with NSAID-induced enteropathy. Treatment with uric acid protected Caco-2 cells from indomethacin-induced oxidative stress, lipid peroxidation, and cytotoxicity. Uric acid within the intestinal lumen and in serum had a protective effect against NSAID-induced enteropathy in mice, through its antioxidant activity. Uric acid could be a promising therapeutic target for NSAID-induced enteropathy. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  4. Influence of Different Antioxidants on X-Ray Induced DNA Double-Strand Breaks (DSBs Using γ-H2AX Immunofluorescence Microscopy in a Preliminary Study.

    Directory of Open Access Journals (Sweden)

    Michael Brand

    Full Text Available Radiation exposure occurs in X-ray guided interventional procedures or computed tomography (CT and γ-H2AX-foci are recognized to represent DNA double-strand breaks (DSBs as a biomarker for radiation induced damage. Antioxidants may reduce the induction of γ-H2AX-foci by binding free radicals. The aim of this study was to establish a dose-effect relationship and a time-effect relationship for the individual antioxidants on DSBs in human blood lymphocytes.Blood samples from volunteers were irradiated with 10 mGy before and after pre-incubation with different antioxidants (zinc, trolox, lipoic acid, ß-carotene, selenium, vitamin E, vitamin C, N-acetyl-L-cysteine (NAC and Q 10. Thereby, different pre-incubation times, concentrations and combinations of drugs were evaluated. For assessment of DSBs, lymphocytes were stained against the phosphorylated histone variant γ-H2AX.For zinc, trolox and lipoic acid regardless of concentration or pre-incubation time, no significant decrease of γ-H2AX-foci was found. However, ß-carotene (15%, selenium (14%, vitamin E (12%, vitamin C (25%, NAC (43% and Q 10 (18% led to a significant reduction of γ-H2AX-foci at a pre-incubation time of 1 hour. The combination of different antioxidants did not have an additive effect.Antioxidants administered prior to irradiation demonstrated the potential to reduce γ-H2AX-foci in blood lymphocytes.

  5. Amelioration of radiation stress by antioxidants and prooxidants: role of redox transcription factors

    International Nuclear Information System (INIS)

    Sandur, Santosh Kumar

    2011-01-01

    The development of radiation countermeasures has emerged as a major area of research in radiation biology as ionizing radiation is finding wide applications in power generation, agriculture, food processing, disease diagnosis and therapy. Chemical agents used to alter tissue toxicity of radiation can be broadly divided into three categories based on the time of intervention in relation to radiation. These are: radioprotectors, mitigators, and therapeutic agents. Radiation causes injury to normal tissue by a dynamic process involving generation of reactive oxygen species (ROS), their interactions with bio-molecules, intracellular signaling, cell-to-cell communication, inflammatory responses, tissue repair and cell death. Most of the radiation-induced damage to bio-molecules is caused by the formation of free radicals resulting from the radiolysis of water. However, antioxidants that neutralize free radicals failed to reach clinic. At present, no agent, approved by the U.S. Food and Drug Administration, is available for the treatment of acute radiation syndrome (ARS), although amifostine is approved for prophylaxis of dry mouth (xerostomia) from radiotherapy of head and neck cancers. Therefore, researchers are employing new approaches to ameliorate radiation induced injury. Some of these include use of cytokines, NF-κB (Nuclear factor κB) activators, agents that induce G1 arrest, antibiotics and inhibitors of P53. We have used pro-oxidants to upregulate cytoprotective pathways as a novel strategy to protect against radiation induced hematopoietic syndrome. Different prooxidants including hydrogen peroxide, diethylmaleate, t-butylhydroperoxide and naphthoquinone and its derivatives protected lymphocytes against radiation induced cell death. Further studies were carried out with 1,4-naphthoquinone (NQ) to explore the molecular mechanism of the observed protection. Thiol containing antioxidants abrogated NQ mediated radioprotection in lymphocytes. Addition of NQ to

  6. Role of Some Antioxidants in Ameliorating Disturbances Caused by Gamma Radiation in Female Rats

    International Nuclear Information System (INIS)

    El-Sherbiny, E. M.; Bayomi, M. M.; Addel-Aziz, S. M.

    2007-01-01

    The aim of this research is to investigate the role of supplemental antioxidant vitamins against some sex hormone and trace element disturbances in female rats 1 hour post exposure to 7.0 Gy of gamma radiation as a single dose using 60 Co source. Vitamins C and E were orally administered daily for 2 weeks in doses of 100 mg/kg and 25 mg/kg body weight, respectively. Total number of 48 female albino rats were equally divided into 4 groups; irradiated group (n = 12), vitamin C administered group (n = 12), vitamin E administered group (n = 12) and rats administered vitamin C followed immediately by vitamin E (n =12) post irradiation, in addition to the normal control group (n = 10). The results of this study revealed a significant reduction in serum estradiol level and highly significant reductions in serum progesterone level, zinc and selenium concentrations of female rats exposed to gamma rays, compared to control. Concerning groups administered vitamins, rats administered vitamin C showed a significant improvement in estradiol and progesterone levels, reaching the levels of control group and a non-significant improvement in serum zinc and selenium concentrations was recorded. Vitamin E administered group revealed a high significant increase in serum estradiol level accompanied with an improvement in progesterone, whereas a significant decrease in zinc was found and a significant amelioration in selenium concentration was recorded in comparison with control values. Administration of vitamin E followed immediately by vitamin C resulted in a significant increase in estradiol level and a remarkable improvement in the level of progesterone. Slight significant reduction in zinc was noticed, whereas selenium concentrations were reached normal levels in both E and C and and E groups in comparison with the other groups

  7. Garlic Supplementation Ameliorates UV-Induced Photoaging in Hairless Mice by Regulating Antioxidative Activity and MMPs Expression.

    Science.gov (United States)

    Kim, Hye Kyung

    2016-01-08

    UV exposure is associated with oxidative stress and is the primary factor in skin photoaging. UV-induced reactive oxygen species (ROS) cause the up-regulation of metalloproteinase (MMPs) and the degradation of dermal collagen and elastic fibers. Garlic and its components have been reported to exert antioxidative effects. The present study investigated the protective effect of garlic on UV-induced photoaging and MMPs regulation in hairless mice. Garlic was supplemented in the diet, and Skh-1 hairless mice were exposed to UV irradiation five days/week for eight weeks. Mice were divided into four groups; Non-UV, UV-irradiated control, UV+1% garlic powder diet group, and UV+2% garlic powder diet group. Chronic UV irradiation induced rough wrinkling of the skin with hyperkeratosis, and administration of garlic diminished the coarse wrinkle formation. UV-induced dorsal skin and epidermal thickness were also ameliorated by garlic supplementation. ROS generation, skin and serum malondialdehyde levels were significantly increased by UV exposure and were ameliorated by garlic administration although the effects were not dose-dependent. Antioxidant enzymes such as superoxide dismutase and catalase activities in skin tissues were markedly reduced by UV irradiation and garlic treatment increased these enzyme activities. UV-induced MMP-1 and MMP-2 protein levels were suppressed by garlic administration. Furthermore, garlic supplementation prevented the UV-induced increase of MMP-1 mRNA expression and the UV-induced decrease of procollagen mRNA expression. These results suggest that garlic may be effective for preventing skin photoaging accelerated by UV irradiation through the antioxidative system and MMP regulation.

  8. Study of the anti-inflammatory effects of low-dose radiation. The contribution of biphasic regulation of the antioxidative system in endothelial cells

    International Nuclear Information System (INIS)

    Large, Martin; Hehlgans, Stephanie; Reichert, Sebastian; Roedel, Claus; Roedel, Franz; Gaipl, Udo S.; Fournier, Claudia; Weiss, Christian

    2015-01-01

    We examined (a) the expression of the antioxidative factor glutathione peroxidase (GPx) and the transcription factor nuclear factor E2-related factor 2 (Nrf2) following low-dose X-irradiation in endothelial cells (ECs) and (b) the impact of reactive oxygen species (ROS) and Nrf2 on functional properties of ECs to gain further knowledge about the anti-inflammatory mode of action of low doses of ionizing radiation. EA.hy926 ECs and primary human dermal microvascular ECs (HMVEC) were stimulated by tumor necrosis factor-α (TNF-α, 20 ng/ml) 4 h before irradiation with single doses ranging from 0.3 to 3 Gy. The expression and activity of GPx and Nrf2 were analyzed by flow cytometry, colorimetric assays, and real-time PCR. The impact of ROS and Nrf2 on peripheral blood mononuclear cell (PBMC) adhesion was assayed in the presence of the ROS scavenger N-acetyl-L-cysteine (NAC) and Nrf2 activator AI-1. Following a low-dose exposure, we observed in EA.hy926 EC and HMVECs a discontinuous expression and enzymatic activity of GPx concomitant with a lowered expression and DNA binding activity of Nrf2 that was most pronounced at a dose of 0.5 Gy. Scavenging of ROS by NAC and activation of Nrf2 by AI-1 significantly diminished a lowered adhesion of PBMC to EC at a dose of 0.5 Gy. Low-dose irradiation resulted in a nonlinear expression and activity of major compounds of the antioxidative system that might contribute to anti-inflammatory effects in stimulated ECs. (orig.) [de

  9. Role of enzymatic and non enzymatic antioxidant in ameliorating salinity induced damage in nostoc muscorum

    International Nuclear Information System (INIS)

    Hend, A.; Abeer, A.; Allah, A.

    2015-01-01

    Presence of high salt concentration in the growth medium adversely affected the plant growth and productivity by altering its metabolic activities. Experiments were conducted on cyanobacteriaum Nostoc muscorum grown in nitrogen free medium supplemented with 250 mM NaCl to evaluate the salt stress induced changes in growth, antioxidants and lipid composition. Salt stress significantly reduced the growth and physio-biochemical attributes. Salt stress increased malonaldehyde content thereby causing alterations in the lipid fraction. Significant reduction in polyunsaturated fatty acids including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI) and phosphatidylserine (PS) was observed. Where as diacylglycerol, sterol ester and non-esterified fatty acids were increased. Activities of antioxidant enzymes and contents of non-enzymatic antioxidants including glutathione enhanced due to salt stress. An increase in accumulation of proline was also observed. Hence increased activity of antioxidants and altered fatty acid composition was observed in salt stressed Nostoc muscorum. (author)

  10. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson's disease model.

    Science.gov (United States)

    Sharma, Shrestha; Narang, Jasjeet K; Ali, Javed; Baboota, Sanjula

    2016-09-16

    Oxidative stress is the leading cause in the pathogenesis of Parkinson's disease. Rutin is a naturally occurring strong antioxidant molecule with wide therapeutic applications. It suffers from the problem of low oral bioavailability which is due to its poor aqueous solubility. In order to increase the solubility self-nanoemulsifying drug delivery systems (SNEDDS) of rutin were prepared. The oil, surfactant and co-surfactant were selected based on solubility/miscibility studies. Optimization was done by a three-factor, four-level (34) Box-Behnken design. The independent factors were oil, surfactant and co-surfactant concentration and the dependent variables were globule size, self-emulsification time, % transmittance and cumulative percentage of drug release. The optimized SNEDDS formulation (RSE6) was evaluated for various release studies. Antioxidant activity was assessed by various in vitro tests such as 2,2-diphenyl-1-picrylhydrazyl and reducing power assay. Oxidative stress models which had Parkinson's-type symptoms were used to determine the antioxidant potential of rutin SNEDDS in vivo. Permeation was assessed through confocal laser scanning microscopy. An optimized SNEDDS formulation consisting of Sefsol + vitamin E-Solutol HS 15-Transcutol P at proportions of 25:35:17.5 (w/w) was prepared and characterized. The globule size and polydispersity index of the optimized formulation was found to be 16.08 ± 0.02 nm and 0.124 ± 0.01, respectively. A significant (p < 0.05) increase in the percentage of drug release was achieved in the case of the optimized formulation as compared to rutin suspension. Pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability. The optimized formulation had significant in vitro and in vivo antioxidant activity. Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing the oral bioavailability and efficacy of rutin, thus helping in ameliorating oxidative stress in

  11. Study of the anti-inflammatory effects of low-dose radiation. The contribution of biphasic regulation of the antioxidative system in endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Large, Martin; Hehlgans, Stephanie; Reichert, Sebastian; Roedel, Claus; Roedel, Franz [Goethe University Frankfurt, Department of Radiotherapy and Oncology, Frankfurt am Main (Germany); Gaipl, Udo S. [University Hospital Erlangen, Department of Radiation Oncology, Erlangen (Germany); Fournier, Claudia [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt (Germany); Weiss, Christian [Goethe University Frankfurt, Department of Radiotherapy and Oncology, Frankfurt am Main (Germany); Klinikum Darmstadt, Institute for Radiooncology and Radiotherapy, Darmstadt (Germany)

    2015-09-15

    We examined (a) the expression of the antioxidative factor glutathione peroxidase (GPx) and the transcription factor nuclear factor E2-related factor 2 (Nrf2) following low-dose X-irradiation in endothelial cells (ECs) and (b) the impact of reactive oxygen species (ROS) and Nrf2 on functional properties of ECs to gain further knowledge about the anti-inflammatory mode of action of low doses of ionizing radiation. EA.hy926 ECs and primary human dermal microvascular ECs (HMVEC) were stimulated by tumor necrosis factor-α (TNF-α, 20 ng/ml) 4 h before irradiation with single doses ranging from 0.3 to 3 Gy. The expression and activity of GPx and Nrf2 were analyzed by flow cytometry, colorimetric assays, and real-time PCR. The impact of ROS and Nrf2 on peripheral blood mononuclear cell (PBMC) adhesion was assayed in the presence of the ROS scavenger N-acetyl-L-cysteine (NAC) and Nrf2 activator AI-1. Following a low-dose exposure, we observed in EA.hy926 EC and HMVECs a discontinuous expression and enzymatic activity of GPx concomitant with a lowered expression and DNA binding activity of Nrf2 that was most pronounced at a dose of 0.5 Gy. Scavenging of ROS by NAC and activation of Nrf2 by AI-1 significantly diminished a lowered adhesion of PBMC to EC at a dose of 0.5 Gy. Low-dose irradiation resulted in a nonlinear expression and activity of major compounds of the antioxidative system that might contribute to anti-inflammatory effects in stimulated ECs. (orig.) [German] Ziel der Studie war die Untersuchung der Expression des antioxidativen Enzyms Glutathionperoxidase (GPx) und des Transkriptionsfaktors ''nuclear factor E2-related factor 2'' (Nrf2) in Endothelzellen nach niedrigdosierter Roentgenbestrahlung. Des Weiteren wurde der Einfluss von reaktiven Sauerstoffmetaboliten (ROS) und von Nrf2 auf funktionelle Eigenschaften von Endothelzellen analysiert, um weitere Erkenntnisse ueber die antientzuendliche Wirkung von niedrigdosierten Roentgenstrahlen

  12. Nitrosonifedipine ameliorates the progression of type 2 diabetic nephropathy by exerting antioxidative effects.

    Directory of Open Access Journals (Sweden)

    Keisuke Ishizawa

    Full Text Available Diabetic nephropathy (DN is the major cause of end-stage renal failure. Oxidative stress is implicated in the pathogenesis of DN. Nitrosonifedipine (NO-NIF is a weak calcium channel blocker that is converted from nifedipine under light exposure. Recently, we reported that NO-NIF has potential as a novel antioxidant with radical scavenging abilities and has the capacity to treat vascular dysfunction by exerting an endothelial protective effect. In the present study, we extended these findings by evaluating the efficacy of NO-NIF against DN and by clarifying the mechanisms of its antioxidative effect. In a model of type 2 DN (established in KKAy mice, NO-NIF administration reduced albuminuria and proteinuria as well as glomerular expansion without affecting glucose metabolism or systolic blood pressure. NO-NIF also suppressed renal and systemic oxidative stress and decreased the expression of intercellular adhesion molecule (ICAM-1, a marker of endothelial cell injury, in the glomeruli of the KKAy mice. Similarly, NO-NIF reduced albuminuria, oxidative stress, and ICAM-1 expression in endothelial nitric oxide synthase (eNOS knockout mice. Moreover, NO-NIF suppressed urinary angiotensinogen (AGT excretion and intrarenal AGT protein expression in proximal tubular cells in the KKAy mice. On the other hand, hyperglycemia-induced mitochondrial superoxide production was not attenuated by NO-NIF in cultured endothelial cells. These findings suggest that NO-NIF prevents the progression of type 2 DN associated with endothelial dysfunction through selective antioxidative effects.

  13. Evaluation of phytochemicals, antioxidant activity and amelioration of pulmonary fibrosis with Phyllanthus emblica leaves.

    Science.gov (United States)

    Tahir, Irsa; Khan, Muhammad Rashid; Shah, Naseer Ali; Aftab, Maryam

    2016-10-24

    In the present study the antioxidant potential of a methanol extract of Phyllanthus emblica leaves (PELE) was determined by in vitro methods as well as by an in vivo animal model, along with HPLC-DAD screening for phyto-constituents. The in vitro antioxidant potential of PELE was assessed by scavenging of DPPH, nitric oxide and anti-lipid peroxidation assays. For in vivo evaluation, a 60-day experimental plan was followed in which Sprague Dawley rats were administered with 1 mL/kg of CCl 4 (CCl 4 : DMSO + Olive oil; 30 % v/v) alone or with different doses of PELE (200, 400 mg/kg p.o.). Silymarin (100 mg/kg) as standard drug was also administered to CCl 4 treated rats. HPLC-DAD analysis was performed to quantify polyphenolic phytochemicals. PELE exhibited an appreciable in vitro antioxidant activity and scavenged the DPPH radical (IC 50  = 39.73 ± 2.12 μg/mL) and nitric oxide (IC 50  = 39.14 ± 2.31 μg/mL) while for anti-lipid peroxidation moderate antioxidant activity was noticed. Reduced levels of antioxidant enzyme activities viz., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and reduced glutathione (GSH) whereas enhanced levels of total extractable proteins, lipid peroxides (TBARS), nitrite and H 2 O 2 were induced by CCl 4 administration in lungs of rat. Co-administration of PELE to rats exhibited a dose dependent decline in the oxidative injuries induced in these parameters. Histopathological damages such as disrupted alveoli, infiltration of macrophages and modified architecture of Clara cells was reversed to the normal state with co-administration of PELE. HPLC-DAD analysis indicated the presence of gallic acid, rutin, kaempferol and caffeic acid in the PELE. The findings of this study demonstrate that presence of polyphenolics and other active constituents in PELE might play a significant role in repairing the pulmonary damages instigated with CCl 4 .

  14. Oxidative Stress in The Hippocampus During Experimental Seizures Can Be Ameliorated With The Antioxidant Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Ítala Mônica Sales Santos

    2009-01-01

    Full Text Available Ascorbic acid has many nonenzymatic actions and is a powerful water-soluble antioxidant. It protects low density lipoproteins from oxidation and reduces harmful oxidants in the central nervous system. Pilocarpine-induced seizures have been suggested to be mediated by increases in oxidative stress. Current studies have suggested that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures. The objective of the present study was to evaluate the neuroprotective effects of ascorbic acid (AA in rats, against the observed oxidative stress during seizures induced by pilocarpine. Wistar rats were treated with 0.9% saline (i.p., control group, ascorbic acid (500 mg/kg, i.p., AA group, pilocarpine (400 mg/kg, i.p., pilocarpine group, and the association of ascorbic acid (500 mg/kg, i.p. plus pilocarpine (400 mg/kg, i.p., 30 min before of administration of ascorbic acid (AA plus pilocarpine group. After the treatments all groups were observed for 6 h. The enzyme activities as well as the lipid peroxidation and nitrite concentrations were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Protective effects of ascorbic acid were also evaluated on the same parameters. In pilocarpine group there was a significant increase in lipid peroxidation and nitrite level. However, no alteration was observed in superoxide dismutase and catalase activities. Antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content as well as increased the superoxide dismutase and catalase activities in hippocampus of adult rats after seizures induced by pilocarpine. Our findings strongly support the hypothesis that oxidative stress in hippocampus occurs during seizures induced by pilocarpine, proving that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and also imply that a

  15. CCR1, an enzyme required for lignin biosynthesis in Arabidopsis, mediates cell proliferation exit for leaf development

    DEFF Research Database (Denmark)

    Xue, Jingshi; Luo, Dexian; Xu, Deyang

    2015-01-01

    A level was dramatically reduced. Cell proliferation in comt ccoaomt leaves was decreased, accompanied by elevated ROS levels, and the mutant phenotypes were partially rescued by treatment with FeA or another antioxidant (N-acetyl-L-cysteine). Taken together, our results suggest that CCR1, FeA and ROS...

  16. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity

    DEFF Research Database (Denmark)

    Jiang, Xiumei; Miclaus, Teodora; Wang, Liming

    2015-01-01

    . Subsequent cytotoxicity studies show that Ag NPs decrease cell viability and increase ROS production. Pre-incubation with N-acetyl-l-cysteine, an efficient antioxidant and Ag+ chelator, diminished the cytotoxicity caused by Ag NPs or Ag+ exposure. Our study suggests that the cytotoxicity mechanism of Ag NPs...

  17. Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy

    International Nuclear Information System (INIS)

    Horton, Jureta W.

    2003-01-01

    (ascorbic acid, glutathione, N-acetyl-L-cysteine, or vitamins A, E, and C alone or in combination) have been shown to reduce burn and burn/sepsis mediated mortality, to attenuate changes in cellular energetics, to protect microvascular circulation, reduce tissue lipid peroxidation, improve cardiac output, and to reduce the volume of required fluid resuscitation. Antioxidant vitamin therapy with fluid resuscitation has also been shown to prevent burn related cardiac NF-κB nuclear migration, to inhibit cardiomyocyte secretion of TNF-α, IL-1β, and IL-6, and to improve cardiac contractile function. These data collectively support the hypothesis that cellular oxidative stress is a critical step in burn-mediated injury, and suggest that antioxidant strategies designed to either inhibit free radical formation or to scavage free radicals may provide organ protection in patients with burn injury

  18. Combined application of compost and Bacillus sp. CIK-512 ameliorated the lead toxicity in radish by regulating the homeostasis of antioxidants and lead.

    Science.gov (United States)

    Ahmad, Iftikhar; Akhtar, Muhammad Javed; Mehmood, Shehzad; Akhter, Kalsoom; Tahir, Muhammad; Saeed, Muhammad Farhan; Hussain, Muhammad Baqir; Hussain, Saddam

    2018-02-01

    Lead (Pb) contamination is ubiquitous and usually causes toxicity to plants. Nevertheless, application of compost and plant growth promoting rhizobacteria synergistically may ameliorate the Pb toxicity in radish. The present study assessed the effects of compost and Bacillus sp. CIK-512 on growth, physiology, antioxidants and uptake of Pb in contaminated soil and explored the possible mechanism for Pb phytotoxicity amelioration. Treatments comprised of un-inoculated control, compost, CIK-512, and compost + CIK-512; plants were grown in soil contaminated with Pb (500mgkg -1 ) and without Pb in pot culture. Lead caused reduction in shoot dry biomass, photosynthetic rate, stomatal conductance, relative water contents, whereas enhanced root dry biomass, ascorbate peroxidase, catalase, malondialdehyde and electrolyte leakage in comparison with non-contaminated control. Plants inoculated with strain CIK-512 and compost produced significantly higher dry biomass, photosynthetic rate and stomatal conductance in normal and contaminated soils. Bacterial strain CIK-512 and compost synergy improved growth and physiology of radish in contaminated soil possibly through homeostasis of antioxidant activities, reduced membrane leakage and Pb accumulation in shoot. Possibly, Pb-induced production of reactive oxygen species resulted in increased electrolyte leakage and malondialdehyde contents (r = 0.88-0.92), which led to reduction in growth (r = -0.97) and physiology (r = -0.38 to -0.80), however, such negative effects were ameliorated by the regulation of antioxidants (r = 0.78-0.87). The decreased activity of antioxidants coupled with Pb accumulation in aerial part of the radish indicates the Pb-phytotoxicity amelioration through synergistic application of compost and Bacillus sp. CIK-512. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Hepatoprotective, antioxidant, and ameliorative effects of ginger (Zingiber officinale Roscoe) and vitamin E in acetaminophen treated rats.

    Science.gov (United States)

    Abdel-Azeem, Amal S; Hegazy, Amany M; Ibrahim, Khadiga S; Farrag, Abdel-Razik H; El-Sayed, Eman M

    2013-09-01

    Ginger is a remedy known to possess a number of pharmacological properties. This study investigated efficacy of ginger pretreatment in alleviating acetaminophen-induced acute hepatotoxicity in rats. Rats were divided into six groups; negative control, acetaminophen (APAP) (600 mg/kg single intraperitoneal injection); vitamin E (75 mg/kg), ginger (100 mg/kg), vitamin E + APAP, and ginger + APAP. Administration of APAP elicited significant liver injury that was manifested by remarkable increase in plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), arginase activities, and total bilirubin concentration. Meanwhile, APAP significantly decreased plasma total proteins and albumin levels. APAP administration resulted in substantial increase in each of plasma triacylglycerols (TAGs), malondialdhyde (MDA) levels, and total antioxidant capacity (TAC). However, ginger or vitamin E treatment prior to APAP showed significant hepatoprotective effect by lowering the hepatic marker enzymes (AST, ALT, ALP, and arginase) and total bilirubin in plasma. In addition, they remarkably ameliorated the APAP-induced oxidative stress by inhibiting lipid peroxidation (MDA). Pretreatment by ginger or vitamin E significantly restored TAGs, and total protein levels. Histopathological examination of APAP treated rats showed alterations in normal hepatic histoarchitecture, with necrosis and vacuolization of cells. These alterations were substantially decreased by ginger or vitamin E. Our results demonstrated that ginger can prevent hepatic injuries, alleviating oxidative stress in a manner comparable to that of vitamin E. Combination therapy of ginger and APAP is recommended especially in cases with hepatic disorders or when high doses of APAP are required.

  20. Amelioration of Heat Stress Induced Disturbances of Antioxidant Defense System in Chicken by Brahma Rasayana

    Directory of Open Access Journals (Sweden)

    V. Ramnath

    2008-01-01

    Full Text Available Since the range of comfort zone or thermo neutral zone of domestic chickens is narrow, they become easily susceptible to heat and cold environmental stress. We evaluated Brahma Rasayana (BR supplementation on concentrations of certain oxidative stress markers associated with heat stress. A total of 48 egg type male chickens of local strain were divided into six groups (n = 8 for the study. Three groups were fed with BR orally at the rate of 2 g/kg bw daily for 10 days prior to and during the period of experiment. Two of the four groups that were exposed to heat stress (HST i.e. to a temperature of 40 ± 1°C and relative humidity of 80 ± 5% in an environmental chamber for 4 h daily for 5 or 10 days, received BR orally. The other two groups remained as BR treated and untreated non-heat stressed (NHST controls. There was a significant (P < 0.05 increase in the activities of antioxidant enzymes in blood such as catalase (CAT and superoxide dismutase (SOD, as well as liver CAT, glutathione peroxidase (GPX and glutathione reductase (GR in NHST-BR treated and HST-BR treated (both 5 and 10 days chickens when compared with untreated controls. A great deal of significant (P < 0.05 variations were seen in serum and liver reduced glutathione (GSH concentration in NHST-BR treated and HST-BR treated (both 5 and 10 days chickens. Serum and liver lipid peroxidation levels were found to be significantly (P < 0.05 higher in HST-untreated (both 5 and 10 days chickens when compared with other groups. Thus BR supplementation during HST brings about enhanced action of enzymatic and non-enzymatic antioxidants, which nullified the undesired side effects of free radicals that are generated during HST.

  1. Antioxidant ameliorating effects against H2O2-induced cytotoxicity in primary endometrial cells.

    Science.gov (United States)

    Zal, F; Khademi, F; Taheri, R; Mostafavi-Pour, Z

    2018-02-01

    Oxidative stress and a disrupted antioxidant system are involved in a variety of pregnancy complications. In the present study, the role of vitamin E (Vit E) and folate as radical scavengers on the GSH homeostasis in stress oxidative induced in rat endometrial cells was investigated. Primary endometrial stromal cell cultures treated with 50 and 200 µM of H 2 O 2 and evaluated the cytoprotective effects of Vit E (5 µM) and folate (0.01 µM) in H 2 O 2 -treated cells for 24 h. Following the exposure of endometrial cells to H 2 O 2 alone and in the presence of Vit E and/or folate, cell survival, glutathione peroxidase (GPx) and glutathione reductase activities and the level of reduced glutathione (GSH) were measured. Cell adhesions comprise of cell attachment and spreading on collagen were determined. Flow cytometric analysis using annexin V was used to measure apoptosis. H 2 O 2 treatment showed a marked decrease in cell viability, GPx and GR activities and the level of GSH. Although Vit E or folate had some protective effect, combination therapy with Vit E and folate attenuated all the changes due to H 2 O 2 toxicity. An increasing number of alive cells was showed in the cells exposed to H 2 O 2 (50 µM) accompanied by co-treatment with Vit E and folic acid. The present findings indicate that co-administration of Vit E and folate before and during pregnancy may maintain a viable pregnancy and contribute to its clinical efficacy for the treatment of some idiopathic infertility.

  2. Role of antioxidant therapy in ameliorating the side effects of post-operative radiotherapy on genetic material of cancer cervix patients

    International Nuclear Information System (INIS)

    Korraa, S.; Elmaghraby, T.; Arian, F.; Mahfouz, M.

    2003-01-01

    The oxidative stress found in cancer patients and radiotherapy was resulted from the increased production of oxidants in the body and the inefficiency of endogenous antioxidant system to eliminate such oxidants. The present study was carried out to investigated whether supplementation of cancer cervix patients during radiotherapy with antioxidants can ameliorate the damaging effects of radiation on DNA of circulating lymphocytes or not. Accordingly, apoptosis, DNA-fragmentation, lipid peroxidation and the frequency of micronuclei among cancer cervix patient undergoing post-operative radiotherapy (n=40) were measured with and without the administration course of antioxidant antox (including 60 mg vitamin C 10 mg vitamin E, 1000 U I vitamin A and 50 mg selenium). Patients were divided into 2 groups each of 20 patients. The first group was administered the antioxidant antox, 200 mg per day, during radiotherapy and one week more post-cessation of radiotherapy , while the second group did not supplemented with antox. All parameters were investigated in a control group of 20 normal healthy women and in the 40 patient ones

  3. Antioxidants

    Science.gov (United States)

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  4. Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behaviour and reduces oxidative stress in brain and pancreas.

    Science.gov (United States)

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Titus, Stephanie E; Carlessi, Anelise S; Matias, Beatriz I; Bruchchen, Livia; Florentino, Drielly; Vieira, Andriele; Petronilho, Fabricia; Ceretta, Luciane B; Zugno, Alexandra I; Quevedo, João

    2016-03-01

    Studies have shown a relationship between diabetes mellitus (DM) and the development of major depressive disorder. Alterations in oxidative stress are associated with the pathophysiology of both diabetes mellitus and major depressive disorder. This study aimed to evaluate the effects of antioxidants N-acetylcysteine and deferoxamine on behaviour and oxidative stress parameters in diabetic rats. To this aim, after induction of diabetes by a single dose of alloxan, Wistar rats were treated with N-acetylcysteine or deferoxamine for 14 days, and then depressive-like behaviour was evaluated. Oxidative stress parameters were assessed in the prefrontal cortex, hippocampus, amygdala, nucleus accumbens and pancreas. Diabetic rats displayed depressive-like behaviour, and treatment with N-acetylcysteine reversed this alteration. Carbonyl protein levels were increased in the prefrontal cortex, hippocampus and pancreas of diabetic rats, and both N-acetylcysteine and deferoxamine reversed these alterations. Lipid damage was increased in the prefrontal cortex, hippocampus, amygdala and pancreas; however, treatment with N-acetylcysteine or deferoxamine reversed lipid damage only in the hippocampus and pancreas. Superoxide dismutase activity was decreased in the amygdala, nucleus accumbens and pancreas of diabetic rats. In diabetic rats, there was a decrease in catalase enzyme activity in the prefrontal cortex, amygdala, nucleus accumbens and pancreas, but an increase in the hippocampus. Treatment with antioxidants did not have an effect on the activity of antioxidant enzymes. In conclusion, animal model of diabetes produced depressive-like behaviour and oxidative stress in the brain and periphery. Treatment with antioxidants could be a viable alternative to treat behavioural and biochemical alterations induced by diabetes. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Schizandrin, an Antioxidant Lignan from Schisandra chinensis, Ameliorates Aβ1–42-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Di Hu

    2012-01-01

    Full Text Available In the present study, we examined the effect of schisandrin (SCH of Schisandra chinensis on the amyloid-beta1–42- (Aβ1–42- induced memory impairment in mice and elucidated the possible antioxidative mechanism. Mice were intracerebroventricular (i.c.v. injected with the aggregated Aβ1–42 and then treated with SCH (4, 12, and 36 mg/kg body weight or donepezil (DPZ, a reference drug (0.65 mg/kg by intragastric infusion for 14 days. Noncognitive disturbances and cognitive performance were evaluated by locomotor activity test, Y-maze test, and water maze test. Antioxidative enzyme activities including superoxide dismutase (SOD and glutathione peroxidase (GSH-px and levels of malondialdehyde (MDA, glutathione (GSH, and oxidized glutathione (GSSG within the cerebral cortex and hippocampus of mice were measured to elucidate the mechanism. Our results showed that SCH significantly improved Aβ1–42-induced short-term and spatial reference memory impairments in Y-maze test and water maze test. Furthermore, in the cerebral cortex and hippocampus of mice, SOD and GSH-px activities, GSH level, and GSH/GSSG ratio were increased, and levels of MDA and GSSG were decreased by the treatment of SCH. These results suggest that SCH is a potential cognitive enhancer against Alzheimer’s disease through antioxidative action.

  6. Melatonin and schistosomal antigens ameliorate the anti-oxidative and biochemical response to Schistosoma mansoni infection in hamster

    Directory of Open Access Journals (Sweden)

    Omema SALAH

    2009-04-01

    Full Text Available The present study was designed to investigate the potential protective effect of melatonin as an antioxidant separately or in combination with antigens (cercarial; CAP or soluble worm; SWAP against Schistosoma mansoni infection in hamsters. Each hamster was sensitized with an initial immunization of 0.6 ml of the extracted antigen (30 μg protein/mL. After four days, a second injection of 0.4 mL was given (20 μg protein/mL. Then, each hamster was exposed to 260 ± 20 S.mansoni cercariae followed with melatonin treatment (3.5 mg/kg for thirty days from the 1st day of post infection. Levels of lipid peroxidation (LPO products, catalase (CAT activity, hepatic glutathione (GSH and biochemical changes in the liver and kidneys functions were investigated. The results revealed a high significant increasing of LPO and decreasing of CAT and GSH in liver of infected hamsters. Biochemical observations showed severe damage in the liver enzyme activities and increasing cholesterol level in infected animals. Melatonin co-treatment with antigen to the infected-hamster attenuated the increase of LPO and restored the activity of CAT and levels of hepatic GSH. Also, the biochemical damages in the liver and kidneys functions were reduced. The present study suggests that melatonin may be useful in combating free radical-induced damage due to infection toxicity. The immunization with previous antigens resulted in a remarkable improvement on the liver enzyme activities, which were increased after infection. Thus, vaccination of hamsters with antigens (both CAP and SWAP and melatonin treatment has more potent effect on the enhancement of antioxidant and biochemical of S. mansoni infected-hamster than each treatment separately. Immunization of the hamster with SWAP followed by melatonin was the best way among the other regime treatments to improve the biochemical and antioxidant parameters of the infected-hamsters

  7. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Directory of Open Access Journals (Sweden)

    Denis N Silachev

    Full Text Available BACKGROUND: Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. METHODOLOGY/PRINCIPAL FINDINGS: We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated

  8. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Science.gov (United States)

    Silachev, Denis N; Isaev, Nikolay K; Pevzner, Irina B; Zorova, Ljubava D; Stelmashook, Elena V; Novikova, Svetlana V; Plotnikov, Egor Y; Skulachev, Vladimir P; Zorov, Dmitry B

    2012-01-01

    Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced

  9. Ameliorating Effects of Bacillus subtilis ANSB060 on Growth Performance, Antioxidant Functions, and Aflatoxin Residues in Ducks Fed Diets Contaminated with Aflatoxins

    Directory of Open Access Journals (Sweden)

    Liyuan Zhang

    2016-12-01

    Full Text Available Bacillus subtilis ANSB060 isolated from fish gut is very effective in detoxifying aflatoxins in feed and feed ingredients. The purpose of this research was to investigate the effects of B. subtilis ANSB060 on growth performance, body antioxidant functions, and aflatoxin residues in ducks fed moldy maize naturally contaminated with aflatoxins. A total of 1500 18-d-old male Cherry Valley ducks with similar body weight were randomly assigned to five treatments with six replicates of 50 ducks per repeat. The experiment design consisted of five dietary treatments labeled as C0 (basal diet containing 60% normal maize, M0 (basal diet containing 60% moldy maize contaminated with aflatoxins substituted for normal maize, M500, M1000, and M2000 (M0 +500, 1000 or 2000 g/t aflatoxin biodegradation preparation mainly consisted of B. subtilis ANSB060. The results showed that ducks fed 22.44 ± 2.46 μg/kg of AFB1 (M0 exhibited a decreasing tendency in average daily gain (ADG and total superoxide dismutase (T-SOD activity in serum, and T-SOD and glutathione peroxidase (GSH-Px activities in the liver significantly decreased along with the appearance of AFB1 and AFM1 compared with those in Group C0. The supplementation of B. subtilis ANSB060 into aflatoxin-contaminated diets increased the ADG of ducks (p > 0.05, significantly improved antioxidant enzyme activities, and reduced aflatoxin accumulation in duck liver. In conclusion, Bacillus subtilis ANSB060 in diets showed an ameliorating effect to duck aflatoxicosis and may be a promising feed additive.

  10. Ameliorating Effects of Bacillus subtilis ANSB060 on Growth Performance, Antioxidant Functions, and Aflatoxin Residues in Ducks Fed Diets Contaminated with Aflatoxins.

    Science.gov (United States)

    Zhang, Liyuan; Ma, Qiugang; Ma, Shanshan; Zhang, Jianyun; Jia, Ru; Ji, Cheng; Zhao, Lihong

    2016-12-22

    Bacillus subtilis ANSB060 isolated from fish gut is very effective in detoxifying aflatoxins in feed and feed ingredients. The purpose of this research was to investigate the effects of B. subtilis ANSB060 on growth performance, body antioxidant functions, and aflatoxin residues in ducks fed moldy maize naturally contaminated with aflatoxins. A total of 1500 18-d-old male Cherry Valley ducks with similar body weight were randomly assigned to five treatments with six replicates of 50 ducks per repeat. The experiment design consisted of five dietary treatments labeled as C0 (basal diet containing 60% normal maize), M0 (basal diet containing 60% moldy maize contaminated with aflatoxins substituted for normal maize), M500, M1000, and M2000 (M0 +500, 1000 or 2000 g/t aflatoxin biodegradation preparation mainly consisted of B. subtilis ANSB060). The results showed that ducks fed 22.44 ± 2.46 μg/kg of AFB₁ (M0) exhibited a decreasing tendency in average daily gain (ADG) and total superoxide dismutase (T-SOD) activity in serum, and T-SOD and glutathione peroxidase (GSH-Px) activities in the liver significantly decreased along with the appearance of AFB₁ and AFM₁ compared with those in Group C0. The supplementation of B. subtilis ANSB060 into aflatoxin-contaminated diets increased the ADG of ducks ( p > 0.05), significantly improved antioxidant enzyme activities, and reduced aflatoxin accumulation in duck liver. In conclusion, Bacillus subtilis ANSB060 in diets showed an ameliorating effect to duck aflatoxicosis and may be a promising feed additive.

  11. The Extract of D. dasycarpus Ameliorates Oxazolone-Induced Skin Damage in Mice by Anti-Inflammatory and Antioxidant Mechanisms

    Directory of Open Access Journals (Sweden)

    Tsong-Min Chang

    2018-06-01

    Full Text Available Dictamni dasycarpus is a type of Chinese medicine made from the root bark of D. dasycarpus. It has been reported to show a wide spectrum of biological and pharmacological effects, for example, it has been used widely for the treatment of rheumatism, nettle rash, itching, jaundice, chronic hepatitis and skin diseases. In the current study, D. dasycarpus extract was investigated for its antioxidant and anti-inflammatory effects, as well as its capability to alleviate oxazolone-induced skin damage in mice. The possible anti-inflammatory mechanism of D. dasycarpus extract against oxidative challenge was elucidated by measuring the levels of reactive oxygen species (ROS production, interleukin-6, Tumor necrosis factor-α, NLRP3 (NACHT, LRR and PYD domains-containing protein 3 (NALP3 inflammasome and interleukin-1β in HaCaT cells. D. dasycarpus extract did not affect cell viability in basal conditions. The extract significantly reduced oxazolone-induced epidermal swelling compared to untreated animal in the hairless albino mice (ICR mice model. At the molecular level, Western blot assays indicated that the D. dasycarpus extract attenuated oxazolone-induced activation of apoptosis-associated speck-like protein containing CARD (ASC, procaspase-1, NF-κB and mitogen-activated protein kinase (MAPKs such as c-Jun N-terminal protein kinase (JNK and p38. This study demonstrates that D. dasycarpus extract could protect skin cells against oxidative and inflammatory insult by modulating the intracellular levels of ROS, TNF-α, interleukin-1, interleukin-6, NLR family pyrin domain containing 3 (NLRP3 inflammasome generation, antioxidant enzyme activity and cell signaling pathways. D. dasycarpus extract also attenuated the expression of NF-κB in HaCaT keratinocytes and thereby effectively downregulated inflammatory responses in the skin. Furthermore, D. dasycarpus extract alleviated oxazolone-induced damage in mice. Our results suggest the potential application

  12. The Extract of D. dasycarpus Ameliorates Oxazolone-Induced Skin Damage in Mice by Anti-Inflammatory and Antioxidant Mechanisms.

    Science.gov (United States)

    Chang, Tsong-Min; Yang, Ting-Ya; Niu, Yu-Lin; Huang, Huey-Chun

    2018-06-15

    Dictamni dasycarpus is a type of Chinese medicine made from the root bark of D. dasycarpus . It has been reported to show a wide spectrum of biological and pharmacological effects, for example, it has been used widely for the treatment of rheumatism, nettle rash, itching, jaundice, chronic hepatitis and skin diseases. In the current study, D. dasycarpus extract was investigated for its antioxidant and anti-inflammatory effects, as well as its capability to alleviate oxazolone-induced skin damage in mice. The possible anti-inflammatory mechanism of D. dasycarpus extract against oxidative challenge was elucidated by measuring the levels of reactive oxygen species (ROS) production, interleukin-6, Tumor necrosis factor-α, NLRP3 (NACHT, LRR and PYD domains-containing protein 3 (NALP3)) inflammasome and interleukin-1β in HaCaT cells. D. dasycarpus extract did not affect cell viability in basal conditions. The extract significantly reduced oxazolone-induced epidermal swelling compared to untreated animal in the hairless albino mice (ICR mice) model. At the molecular level, Western blot assays indicated that the D. dasycarpus extract attenuated oxazolone-induced activation of apoptosis-associated speck-like protein containing CARD (ASC), procaspase-1, NF-κB and mitogen-activated protein kinase (MAPKs) such as c-Jun N-terminal protein kinase (JNK) and p38. This study demonstrates that D. dasycarpus extract could protect skin cells against oxidative and inflammatory insult by modulating the intracellular levels of ROS, TNF-α, interleukin-1, interleukin-6, NLR family pyrin domain containing 3 (NLRP3) inflammasome generation, antioxidant enzyme activity and cell signaling pathways. D. dasycarpus extract also attenuated the expression of NF-κB in HaCaT keratinocytes and thereby effectively downregulated inflammatory responses in the skin. Furthermore, D. dasycarpus extract alleviated oxazolone-induced damage in mice. Our results suggest the potential application of D

  13. EVALUATION OF THE POSSIBLE ANTIOXIDANT EFFECTS OF NIGELLA SATIVA AND CURCUMA LONGA IN AMELIORATING DIABETIC NEPHROPATHY IN RATS

    International Nuclear Information System (INIS)

    OSMAN, N.N.; FARAG, M.F.S.; DARWISH, M.M

    2009-01-01

    Chronic hyperglycemia in diabetes leads to the overproduction of free radicals and the evidence is increasing because these radicals are responsible for the development of diabetic nephropathy. Diabetic nephropathy is an important microvascular complication and one of the main causes of end stage renal disease. The aim of the present study was to test the hypothesis that combined treatment with Nigella sativa (NS) and Curcuma longa (CL) is more effective than each of them alone in improving renal function and oxidative stress in alloxan-induced diabetic rats.Diabetes was induced in male albino rats with a single intravenous injection of alloxan (150 mg/kg). Two weeks after alloxan injection, rats were divided into five groups; control, diabetic and diabetic rats received either NS (10ml/kg/day), or CL (80mg/kg/day) and their combination by gastric intubation for 4 weeks.Diabetic rats exhibited many symptoms including loss of body weight, hyperglycemia, polyuria, renal enlargement and renal dysfunction. Significant increase in TBARS (lipid peroxidation marker) was observed in diabetic kidney. This was accompanied by a significant decrease in GSH content, SOD and CAT activities in the kidneys. Daily oral ingestion of NS and/or CL extract for 4 weeks has attenuated the oxidative stress in the kidney and reversed the adverse effect of diabetes in rats by lowering blood glucose levels, increased plasma insulin and restored body weight loss and renal function.These results confirm the role of oxidative stress in the development of diabetic nephropathy and point to the possible anti-oxidative mechanism being responsible for the nephroprotective action of NS and CL.

  14. Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Yihan Zhang

    2016-01-01

    Full Text Available Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI and the underlying mechanisms. Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R after high (25 mM or low (5.5 mM glucose culture. Cell viability, reactive oxygen species (ROS, and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2 and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB were determined. Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified. Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system.

  15. Spermicidal and contraceptive properties of azauirachtin-A on rats and the possible amelioration effects of some antioxidants on their sexual efficiency

    International Nuclear Information System (INIS)

    Hebashy, M.I.A.; Mazen, G.M.A.; Amer, M.M.

    2006-01-01

    This investigation was conducted to evaluate the spermicidal properties of azadirachtin-A to immobilize (in male) and kill (in female) spermatozoa of rats. Also, the ability of coenzyme Q10 or taurine or their mixture to improve anti-fertility action of azadirachtin-A and to ameliorate perturbation in fertility of normal rats. The obtained results revealed that normal sperms, testosterone, testis and ovary GSH and GPx, estradiol and progesterone were declined significantly in azadirachtin-A rats. On the other hand, azadirachtin-A caused significant elevation in the total number of abnormal sperm, sperm malformed head or tail, head and tail and serum lipid peroxidation (malonaldehyde) in comparison to the normal control rats. The administration of coenzyme Q10 or taurine led to correction in all previous parameters and the maximum ameliorating effects were exhibited in the rats treated with the mixture of coenzyme Q10 and taurine depending on certain mechanisms

  16. Studies on the Effect of E-Selen as Antioxidant in Ameliorating the Physiological Status of Gamma-Irradiated Mediterranean Fruit Fly,Ceratits capitata (Wied.)

    International Nuclear Information System (INIS)

    Zaghloul, Y.S.; Abbassy, S.A.; Elakhdar, E.A.H.

    2013-01-01

    Biologically based control methods, such as the Sterile Insect Technique (SIT), which relies on the sterilization by irradiation of large numbers of insects, is gaining an increasing role in the control of medfly in Mediterranean areas. However, the exposure of cells to ionizing radiation leads to the formation of reactive oxygen species (ROS) that are associated with radiation-induced cytotoxicity. Because of the serious damaging potential of ROS, cells depend on the elaboration of the antioxidant defense system (AODS), both enzymatic and non enzymatic oxidant defense mechanisms. Enzymes of antioxidative defense system – peroxidase, esterasase and alcohol dehydrogenase are known to play an important main role in endogenous cell protection from oxidative damage.The antioxidant Eselenis an exogenous antioxidant containing both selenium and vitamin E. It was added to the larval artificial diets of the Mediterranean fruit fly, C. capitata in various concentrations. The produced full grown pupae were exposed to gamma rays at dose rate of 90Gy (sterilizing dose) and are used during this experiment. The purpose of this study was to determine the effects of gamma-irradiation on C. capitata endogenous antioxidant activity (peroxidase, esterase and alcohol dehydrogenase and to examine whether the presence of eselen has the influence on activity of antioxidant and in reducing consequently the oxidative stress and tissue injury induced by gamma radiation in thefruit fly, C. capitata (Wied.). The results indicated that antioxidant pretreatments to the larval rearing dietand irradiation of the produced full grown pupae may have some beneficial effects against irradiation-induced injury to success the application of the sterile insect technique (SIT) for controlling the Med fly, C. capitata .

  17. Effects of foliar dressing of selenite and silicate alone or combined with different soil ameliorants on the accumulation of As and Cd and antioxidant system in Brassica campestris.

    Science.gov (United States)

    Ding, Yongzhen; Wang, Yongjiu; Zheng, Xiangqun; Cheng, Weimin; Shi, Rongguang; Feng, Renwei

    2017-08-01

    This study was conducted to investigate the possibility of using a combined technology to synchronously reduce As and Cd accumulation in the edible parts of Brassica campestris. The results showed that a foliar application of selenite (Se) and silicon (Si) combined with soil ameliorants (including Ca-Mg-P fertilizer, sodium silicate and red mud) showed limited effects on the growth of B. campestris. The As concentration in the leaves of B. campestris in all treatments was below the Chinese safety standard. When sodium silicate and Ca-Mg-P fertilizer were added to the soil, the additional foliar application of Se and Si could in some cases help further reduce the concentrations of As and Cd in the leaves of B. campestris. However, when red mud was applied to the soil, the foliar application of Se and Si enhanced the Cd concentration in the leaves of B. campestris. In most cases, high levels of soil ameliorants plus foliar application of Se and Si significantly enhanced the As concentrations in both the soil solution and the roots of B. campestris but reduced the soil solution Cd concentration and the leaf As concentration. Most of the treatments reduced the thiobarbituric acid reactive substances (TBARS) concentration in the leaves of B. campestris, and the foliar application of Se and Si helped the soil ameliorants alleviate the oxidative stress resulting from As and Cd exposure. In this study, several treatments significantly increased the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX). However, the enzymes peroxidase (POD) and catalase (CAT) were not induced by most treatments. In summary, the combined treatment of 1gkg -1 Ca-Mg-P fertilizer plus foliar spraying 2mmolL -1 sodium selenite was most effective in reducing the Cd concentration and a rather strong ability to reduce the As concentration and trigger the activities of SOD and APX in the leaves of B. campestris. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Submaximal exercise training, more than dietary selenium supplementation, improves antioxidant status and ameliorates exercise-induced oxidative damage to skeletal muscle in young equine athletes.

    Science.gov (United States)

    White, S H; Warren, L K

    2017-02-01

    Exercise is associated with increased production of reactive oxygen species (ROS) as metabolism is upregulated to fuel muscle activity. If antioxidant systems become overwhelmed, ROS can negatively affect health and performance. Adaptation to exercise through regular training has been shown to improve defense against oxidative insult. Given selenium's role as an antioxidant, we hypothesized that increased Se intake would further enhance skeletal muscle adaptations to training. Quarter Horse yearlings (18 ± 0.2 mo; 402 ± 10 kg) were randomly assigned to receive either 0.1 or 0.3 mg Se/kg DM and placed in either an untrained or a trained (30 min walk-trot-canter, 4 d/wk) group for 14 wk. Phase 1 (wk 1 to 8) consisted of 4 treatments: trained and fed 0.1 mg Se/kg DM through wk 14 (CON-TR; n = 10), trained and fed 0.3 mg Se/kg DM through wk 14 (HIGH-TR; n = 10), untrained and fed 0.1 mg Se/kg DM through wk 14 (CON-UN; n = 5), or untrained and fed 0.3 mg Se/kg DM through wk 14 (HIGH-UN; n = 5). During Phase 2 (wk 9 to 14), dietary Se level in half of the trained horses was reversed, resulting in 6 treatments: CON-TR (n = 5), trained and fed 0.1 mg/kg Se in Phase 1 and then switched to 0.3 mg/kg Se for Phase 2 (ADD-TR; n = 5), trained and fed 0.3 mg/kg Se in Phase 1 and then switched to 0.1 mg/kg Se for Phase 2 (DROP-TR; n = 5), HIGH-TR (n = 5), CON-UN (n = 5), or HIGH-UN (n = 5). All horses underwent a 120-min submaximal exercise test (SET) at the end of Phase 1 (SET 1) and 2 (SET 2). Blood samples and biopsies from the middle gluteal muscle were collected before and after each phase of the study and in response to each SET and analyzed for markers of oxidative damage and antioxidant enzyme activity. In both phases, serum Se was higher (P creatine kinase (CK) activity was lower in trained horses than in untrained horses (P < 0.0001), indicating less muscle damage, but plasma lipid hydroperoxides (LPO) and muscle GPx and SOD activities were unaffected by training or Se

  19. Ameliorative Effects of Grape Seed Proanthocyanidin Extract on Growth Performance, Immune Function, Antioxidant Capacity, Biochemical Constituents, Liver Histopathology and Aflatoxin Residues in Broilers Exposed to Aflatoxin B₁.

    Science.gov (United States)

    Ali Rajput, Shahid; Sun, Lvhui; Zhang, Niya; Mohamed Khalil, Mahmoud; Gao, Xin; Ling, Zhao; Zhu, Luoyi; Khan, Farhan Anwar; Zhang, Jiacai; Qi, Desheng

    2017-11-15

    Aflatoxicosis is a grave threat to the poultry industry. Dietary supplementation with antioxidants showed a great potential in enhancing the immune system; hence, protecting animals against aflatoxin B₁-induced toxicity. Grape seed proanthocyanidin extract (GSPE) one of the most well-known and powerful antioxidants. Therefore, the purpose of this research was to investigate the effectiveness of GSPE in the detoxification of AFB₁ in broilers. A total of 300 one-day-old Cobb chicks were randomly allocated into five treatments of six replicates (10 birds per replicate), fed ad libitum for four weeks with the following dietary treatments: 1. Basal diet (control); 2. Basal diet + 1 mg/kg AFB₁ contaminated corn (AFB₁); 3. Basal diet + GSPE 250 mg/kg; (GSPE 250 mg/kg) 4. Basal diet + AFB₁ (1 mg/kg) + GSPE 250 mg/kg; (AFB₁ + GSPE 250 mg/kg) 5. Basal diet + AFB₁ (1mg/kg) + GSPE 500 mg/kg, (AFB₁ + GSPE 500 mg/kg). When compared with the control group, feeding broilers with AFB₁ alone significantly reduced growth performance, serum immunoglobulin contents, negatively altered serum biochemical contents, and enzyme activities, and induced histopathological lesion in the liver. In addition, AFB₁ significantly increased malondialdehyde content and decreased total superoxide dismutase, catalase, glutathione peroxide, glutathione-S transferase, glutathione reductase activities, and glutathione concentration within the liver and serum. The supplementation of GSPE (250 and 500 mg/kg) to AFB₁ contaminated diet reduced AFB₁ residue in the liver and significantly mitigated AFB₁ negative effects. From these results, it can be concluded that dietary supplementation of GSPE has protective effects against aflatoxicosis caused by AFB₁ in broiler chickens.

  20. Ameliorative Effects of Grape Seed Proanthocyanidin Extract on Growth Performance, Immune Function, Antioxidant Capacity, Biochemical Constituents, Liver Histopathology and Aflatoxin Residues in Broilers Exposed to Aflatoxin B1

    Science.gov (United States)

    Sun, Lvhui; Zhang, Niya; Ling, Zhao; Zhu, Luoyi; Khan, Farhan Anwar; Zhang, Jiacai; Qi, Desheng

    2017-01-01

    Aflatoxicosis is a grave threat to the poultry industry. Dietary supplementation with antioxidants showed a great potential in enhancing the immune system; hence, protecting animals against aflatoxin B1-induced toxicity. Grape seed proanthocyanidin extract (GSPE) one of the most well-known and powerful antioxidants. Therefore, the purpose of this research was to investigate the effectiveness of GSPE in the detoxification of AFB1 in broilers. A total of 300 one-day-old Cobb chicks were randomly allocated into five treatments of six replicates (10 birds per replicate), fed ad libitum for four weeks with the following dietary treatments: 1. Basal diet (control); 2. Basal diet + 1 mg/kg AFB1 contaminated corn (AFB1); 3. Basal diet + GSPE 250 mg/kg; (GSPE 250 mg/kg) 4. Basal diet + AFB1 (1 mg/kg) + GSPE 250 mg/kg; (AFB1 + GSPE 250 mg/kg) 5. Basal diet + AFB1 (1mg/kg) + GSPE 500 mg/kg, (AFB1 + GSPE 500 mg/kg). When compared with the control group, feeding broilers with AFB1 alone significantly reduced growth performance, serum immunoglobulin contents, negatively altered serum biochemical contents, and enzyme activities, and induced histopathological lesion in the liver. In addition, AFB1 significantly increased malondialdehyde content and decreased total superoxide dismutase, catalase, glutathione peroxide, glutathione-S transferase, glutathione reductase activities, and glutathione concentration within the liver and serum. The supplementation of GSPE (250 and 500 mg/kg) to AFB1 contaminated diet reduced AFB1 residue in the liver and significantly mitigated AFB1 negative effects. From these results, it can be concluded that dietary supplementation of GSPE has protective effects against aflatoxicosis caused by AFB1 in broiler chickens. PMID:29140290

  1. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence.

    Directory of Open Access Journals (Sweden)

    Bidya Dhar Sahu

    Full Text Available Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine; degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65 nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use.

  2. Ameliorative Effect of Fisetin on Cisplatin-Induced Nephrotoxicity in Rats via Modulation of NF-κB Activation and Antioxidant Defence

    Science.gov (United States)

    Sahu, Bidya Dhar; Kalvala, Anil Kumar; Koneru, Meghana; Mahesh Kumar, Jerald; Kuncha, Madhusudana; Rachamalla, Shyam Sunder; Sistla, Ramakrishna

    2014-01-01

    Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine); degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65) nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use. PMID:25184746

  3. Huperzine A ameliorates damage induced by acute myocardial infarction in rats through antioxidant, anti-apoptotic and anti-inflammatory mechanisms.

    Science.gov (United States)

    Sui, Xizhong; Gao, Changqing

    2014-01-01

    Huperzine A (HupA), an alkaloid used in traditional Chinese medicine and isolated from Huperzia serrata, has been shown to possess diverse biological activities. The present study was undertaken to evaluate the cardioprotective potential of HupA in myocardial ischemic damage using a rat model of acute myocardial infarction. HupA significantly diminished the infarct size and inhibited the activities of myocardial enzymes, including creatine kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT). A significantly reduced activity of malondialdehyde (MDA) and elevated activities of superoxide dismutase (SOD), of the non-enzymatic scavenger enzyme, glutathione (GSH), as well as of glutathione peroxidase (GSH-PX) were found in the HupA-treated groups. Furthermore, decreased protein levels of caspase-3 and Bax, and increased levels of Bcl-2 were observed in the infarcted hearts of the rats treated with various concentrations of HupA. In addition, treatment with HupA markedly inhibited the expression of the nuclear factor-κB (NF-κB) subunit p65, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). These findings suggest that the cardioprotective potential of HupA is associated with its antioxidant, anti-apoptotic and anti-inflammatory properties in acute myocardial infarction in rats.

  4. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties.

    Science.gov (United States)

    Liu, Miao; Zheng, Mingjing; Xu, Hanying; Liu, Lianqing; Li, Yanchun; Xiao, Wei; Li, Jianchun; Ma, Enlong

    Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Neuroprotective effect of bilberry extract in a murine model of photo-stressed retina.

    Directory of Open Access Journals (Sweden)

    Hideto Osada

    Full Text Available Excessive exposure to light promotes degenerative and blinding retinal diseases such as age-related macular degeneration and retinitis pigmentosa. However, the underlying mechanisms of photo-induced retinal degeneration are not fully understood, and a generalizable preventive intervention has not been proposed. Bilberry extract is an antioxidant-rich supplement that ameliorates ocular symptoms. However, its effects on photo-stressed retinas have not been clarified. In this study, we examined the neuroprotective effects of bilberry extract against photo-stress in murine retinas. Light-induced visual function impairment recorded by scotopic and phototopic electroretinograms showing respective rod and cone photoreceptor function was attenuated by oral administration of bilberry extract through a stomach tube in Balb/c mice (750 mg/kg body weight. Bilberry extract also suppressed photo-induced apoptosis in the photoreceptor cell layer and shortening of the outer segments of rod and cone photoreceptors. Levels of photo-induced reactive oxygen species (ROS, oxidative and endoplasmic reticulum (ER stress markers, as measured by real-time reverse transcriptase polymerase chain reaction, were reduced by bilberry extract treatment. Reduction of ROS by N-acetyl-L-cysteine, a well-known antioxidant also suppressed ER stress. Immunohistochemical analysis of activating transcription factor 4 expression showed the presence of ER stress in the retina, and at least in part, in Müller glial cells. The photo-induced disruption of tight junctions in the retinal pigment epithelium was also attenuated by bilberry extract, repressing an oxidative stress marker, although ER stress markers were not repressed. Our results suggest that bilberry extract attenuates photo-induced apoptosis and visual dysfunction most likely, and at least in part, through ROS reduction, and subsequent ER stress attenuation in the retina. This study can help understand the mechanisms of photo

  6. Signaling molecule methylglyoxal ameliorates cadmium injury in wheat (Triticum aestivum L) by a coordinated induction of glutathione pool and glyoxalase system.

    Science.gov (United States)

    Li, Zhong-Guang; Nie, Qian; Yang, Cong-Li; Wang, Yue; Zhou, Zhi-Hao

    2018-03-01

    Methylglyoxal (MG) now is found to be an emerging signaling molecule. It can relieve the toxicity of cadmium (Cd), however its alleviating mechanism still remains unknown. In this study, compared with the Cd-stressed seedlings without MG treatment, MG treatment could stimulate the activities of glutathione reductase (GR) and gamma-glutamylcysteine synthetase (γ-ECS) in Cd-stressed wheat seedlings, which in turn induced an increase of reduced glutathione (GSH). Adversely, the activated enzymes related to GSH biosynthesis and increased GSH were weakened by N-acetyl-L-cysteine (NAC, MG scavenger), 2,4-dihydroxy-benzylamine (DHBA) and 1,3-bischloroethyl-nitrosourea (BCNU, both are specific inhibitors of GR), buthionine sulfoximine (BSO, a specific inhibitors of GSH biosynthesis), and N-ethylmaleimide (NEM, GSH scavenger), respectively. In addition, MG increased the activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) in Cd-treated seedlings, followed by declining an increase in endogenous MG as comparision to Cd-stressed seedlings alone. On the contrary, the increased glyoxalase activity and decreased endogenous MG level were reversed by NAC and specific inhibitors of Gly I (isoascorbate, IAS; squaric acid, SA). Furthermore, MG alleviated an increase in hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) in Cd-treated wheat seedlings. These results indicated that MG could alleviate Cd toxicity and improve the growth of Cd-stressed wheat seedlings by a coordinated induction of glutathione pool and glyoxalase system. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. N-n-butyl haloperidol iodide ameliorates hypoxia/reoxygenation injury through modulating the LKB1/AMPK/ROS pathway in cardiac microvascular endothelial cells.

    Science.gov (United States)

    Lu, Binger; Wang, Bin; Zhong, Shuping; Zhang, Yanmei; Gao, Fenfei; Chen, Yicun; Zheng, Fuchun; Shi, Ganggang

    2016-06-07

    Endothelial cells are highly sensitive to hypoxia and contribute to myocardial ischemia/reperfusion injury. We have reported that N-n-butyl haloperidol iodide (F2) can attenuate hypoxia/reoxygenation (H/R) injury in cardiac microvascular endothelial cells (CMECs). However, the molecular mechanisms remain unclear. Neonatal rat CMECs were isolated and subjected to H/R. Pretreatment of F2 leads to a reduction in H/R injury, as evidenced by increased cell viability, decreased lactate dehydrogenase (LDH) leakage and apoptosis, together with enhanced AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1) phosphorylation in H/R ECs. Blockade of AMPK with compound C reversed F2-induced inhibition of H/R injury, as evidenced by decreased cell viability, increased LDH release and apoptosis. Moreover, compound C also blocked the ability of F2 to reduce H/R-induced reactive oxygen species (ROS) generation. Supplementation with the ROS scavenger N-acetyl-L-cysteine (NAC) reduced ROS levels, increased cell survival rate, and decreased both LDH release and apoptosis after H/R. In conclusion, our data indicate that F2 may mitigate H/R injury by stimulating LKB1/AMPK signaling pathway and subsequent suppression of ROS production in CMECs.

  8. Antioxidant Mechanism of Rutin on Hypoxia-Induced Pulmonary Arterial Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Qian Li

    2014-11-01

    Full Text Available Reactive oxygen species (ROS are involved in the pathologic process of pulmonary arterial hypertension as either mediators or inducers. Rutin is a type of flavonoid which exhibits significant scavenging properties on oxygen radicals both in vitro and in vivo. In this study, we proposed that rutin attenuated hypoxia-induced pulmonary artery smooth muscle cell (PASMC proliferation by scavenging ROS. Immunofluorescence data showed that rutin decreased the production of ROS, which was mainly generated through mitochondria and NADPH oxidase 4 (Nox4 in pulmonary artery endothelial cells (PAECs. Western blot results provided further evidence on rutin increasing expression of Nox4 and hypoxia-inducible factor-1α (HIF-1α. Moreover, cell cycle analysis by flow cytometry indicated that proliferation of PASMCs triggered by hypoxia was also repressed by rutin. However, N-acetyl-L-cysteine (NAC, a scavenger of ROS, abolished or diminished the capability of rutin in repressing hypoxia-induced cell proliferation. These data suggest that rutin shows a potential benefit against the development of hypoxic pulmonary arterial hypertension by inhibiting ROS, subsequently preventing hypoxia-induced PASMC proliferation.

  9. Antioxidant mechanism of Rutin on hypoxia-induced pulmonary arterial cell proliferation.

    Science.gov (United States)

    Li, Qian; Qiu, Yanli; Mao, Min; Lv, Jinying; Zhang, Lixin; Li, Shuzhen; Li, Xia; Zheng, Xiaodong

    2014-11-18

    Reactive oxygen species (ROS) are involved in the pathologic process of pulmonary arterial hypertension as either mediators or inducers. Rutin is a type of flavonoid which exhibits significant scavenging properties on oxygen radicals both in vitro and in vivo. In this study, we proposed that rutin attenuated hypoxia-induced pulmonary artery smooth muscle cell (PASMC) proliferation by scavenging ROS. Immunofluorescence data showed that rutin decreased the production of ROS, which was mainly generated through mitochondria and NADPH oxidase 4 (Nox4) in pulmonary artery endothelial cells (PAECs). Western blot results provided further evidence on rutin increasing expression of Nox4 and hypoxia-inducible factor-1α (HIF-1α). Moreover, cell cycle analysis by flow cytometry indicated that proliferation of PASMCs triggered by hypoxia was also repressed by rutin. However, N-acetyl-L-cysteine (NAC), a scavenger of ROS, abolished or diminished the capability of rutin in repressing hypoxia-induced cell proliferation. These data suggest that rutin shows a potential benefit against the development of hypoxic pulmonary arterial hypertension by inhibiting ROS, subsequently preventing hypoxia-induced PASMC proliferation.

  10. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Miao; Zheng, Mingjing; Xu, Hanying [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Liu, Lianqing [Shenyang Institute of Automation China Academy of Sciences, Shenyang, 110016 (China); Li, Yanchun [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Xiao, Wei [Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing, 222001 (China); Li, Jianchun, E-mail: lijianchun0317@sina.com.cn [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Ma, Enlong, E-mail: enlong_ma2014@hotmail.com [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing, 222001 (China)

    2015-12-04

    Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. - Highlights: • Fibrogenesis was accompanied with the changes of cyto-biophysical properties. • Cyto-biophysical properties could be markers for anti-fibrotic drugs screening. • Stiffness is a leading index among all biophysical markers. • SalB was

  11. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties

    International Nuclear Information System (INIS)

    Liu, Miao; Zheng, Mingjing; Xu, Hanying; Liu, Lianqing; Li, Yanchun; Xiao, Wei; Li, Jianchun; Ma, Enlong

    2015-01-01

    Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. - Highlights: • Fibrogenesis was accompanied with the changes of cyto-biophysical properties. • Cyto-biophysical properties could be markers for anti-fibrotic drugs screening. • Stiffness is a leading index among all biophysical markers. • SalB was

  12. Copper exposure induces toxicity to the antioxidant system via the destruction of Nrf2/ARE signaling and caspase-3-regulated DNA damage in fish muscle: Amelioration by myo-inositol

    International Nuclear Information System (INIS)

    Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Feng, Lin; Zhou, Xiao-Qiu

    2015-01-01

    Highlights: • Cu stress decreased fish muscle CuZnSOD, GPx1a, GPx1b and PKCδ mRNA levels. • Cu stress caused fish muscle lower nuclear Nrf2 levels and poor ARE binding ability. • Cu stress induced caspase-3 signaling-modulated DNA fragmentation in fish muscle. • Pre-treatment with MI prevented fish muscle from Cu-induced oxidative damages. - Abstract: The muscle is the main portion of fish that is consumed by humans. Copper (Cu) can induce oxidative damage in fish muscle. However, the effects of Cu exposure on the muscle antioxidant system and molecular patterns and preventive measures against these effects remain unclear. In this study, ROS production, enzymatic and mRNA levels of antioxidant enzymes and NF-E2-related factor 2 (Nrf2) signaling-related molecules, antioxidant response element (ARE) binding ability, DNA fragmentation and caspase-3 activities were analyzed in fish muscle following Cu exposure or myo-inositol (MI) pre-administration. The results indicated that contamination due to copper exposure caused an approximately three-fold increase in ROS production, induced lipid peroxidation and protein oxidation, and resulted in depletion of the glutathione (GSH) content of fish muscle. Moreover, Cu exposure caused decreases in the activities of total superoxide dismutase (T-SOD), CuZnSOD, and glutathione peroxidase (GPx) that were accompanied by decreases in CuZnSOD, GPx1a, GPx1b and signaling factor protein kinase C delta mRNA levels. The decreases in the antioxidant enzyme gene mRNA levels were confirmed to be partly due to the reduced nuclear Nrf2 protein levels, poor ARE binding ability and increased caspase-3 signaling-modulated DNA fragmentation in the fish muscle. Interestingly, MI pre-treatment prevented fish muscle from Cu-induced oxidative damages mainly through increasing the GSH content, and increasing the CuZnSOD and GPx activities and corresponding mRNA levels and ARE binding ability. Taken together, our results show for the first

  13. Copper exposure induces toxicity to the antioxidant system via the destruction of Nrf2/ARE signaling and caspase-3-regulated DNA damage in fish muscle: Amelioration by myo-inositol

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei-Dan; Liu, Yang [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Jiang, Jun [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Wu, Pei [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Feng, Lin, E-mail: fenglin@sicau.edu.cn [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Zhou, Xiao-Qiu, E-mail: zhouxq@sicau.edu.cn [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China)

    2015-02-15

    Highlights: • Cu stress decreased fish muscle CuZnSOD, GPx1a, GPx1b and PKCδ mRNA levels. • Cu stress caused fish muscle lower nuclear Nrf2 levels and poor ARE binding ability. • Cu stress induced caspase-3 signaling-modulated DNA fragmentation in fish muscle. • Pre-treatment with MI prevented fish muscle from Cu-induced oxidative damages. - Abstract: The muscle is the main portion of fish that is consumed by humans. Copper (Cu) can induce oxidative damage in fish muscle. However, the effects of Cu exposure on the muscle antioxidant system and molecular patterns and preventive measures against these effects remain unclear. In this study, ROS production, enzymatic and mRNA levels of antioxidant enzymes and NF-E2-related factor 2 (Nrf2) signaling-related molecules, antioxidant response element (ARE) binding ability, DNA fragmentation and caspase-3 activities were analyzed in fish muscle following Cu exposure or myo-inositol (MI) pre-administration. The results indicated that contamination due to copper exposure caused an approximately three-fold increase in ROS production, induced lipid peroxidation and protein oxidation, and resulted in depletion of the glutathione (GSH) content of fish muscle. Moreover, Cu exposure caused decreases in the activities of total superoxide dismutase (T-SOD), CuZnSOD, and glutathione peroxidase (GPx) that were accompanied by decreases in CuZnSOD, GPx1a, GPx1b and signaling factor protein kinase C delta mRNA levels. The decreases in the antioxidant enzyme gene mRNA levels were confirmed to be partly due to the reduced nuclear Nrf2 protein levels, poor ARE binding ability and increased caspase-3 signaling-modulated DNA fragmentation in the fish muscle. Interestingly, MI pre-treatment prevented fish muscle from Cu-induced oxidative damages mainly through increasing the GSH content, and increasing the CuZnSOD and GPx activities and corresponding mRNA levels and ARE binding ability. Taken together, our results show for the first

  14. Ameliorative percutaneous lumbar discectomy

    International Nuclear Information System (INIS)

    Xiao Chengjiang; Su Huanbin; He Xiaofeng; Li Yanhao

    2005-01-01

    Objective: To ameliorate the percutaneous lumbar discectomy (APLD) for improving the effectiveness and amplifying the indicative range of PLD. Methods: To ameliorate percutaneous punctured route based on classic PLD and discectomy of extracting pulp out of the herniated disc with special pulpforceps. The statistical analysis of the therapeutic results on 750 disc protrusions of 655 cases undergone APLD following up from 6 to 54 months retrospectively. Results: The effective ratios were excellent in 40.2%, good for 46.6% and bad of 13.3%. No occurrance of intervertebral inflammation and paradiscal hematoma, there were only 1 case complicated with injuried cauda equina, and 4 cases with broken appliance within disc. Conclusions: APLD is effective and safe, not only indicative for inclusion disc herniation, but also for noninclusion herniation. (authors)

  15. Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload.

    Science.gov (United States)

    Preziosi, Morgan E; Singh, Sucha; Valore, Erika V; Jung, Grace; Popovic, Branimir; Poddar, Minakshi; Nagarajan, Shanmugam; Ganz, Tomas; Monga, Satdarshan P

    2017-08-01

    Iron overload disorders such as hereditary hemochromatosis and iron loading anemias are a common cause of morbidity from liver diseases and increase risk of hepatic fibrosis and hepatocellular carcinoma (HCC). Treatment options for iron-induced damage are limited, partly because there is lack of animal models of human disease. Therefore, we investigated the effect of iron overload in liver-specific β-catenin knockout mice (KO), which are susceptible to injury, fibrosis and tumorigenesis following chemical carcinogen exposure. Iron overload diet was administered to KO and littermate control (CON) mice for various times. To ameliorate an oxidant-mediated component of tissue injury, N-Acetyl-L-(+)-cysteine (NAC) was added to drinking water of mice on iron overload diet. KO on iron diet (KO +Fe) exhibited remarkable inflammation, followed by steatosis, oxidative stress, fibrosis, regenerating nodules and occurrence of occasional HCC. Increased injury in KO +Fe was associated with activated protein kinase B (AKT), ERK, and NF-κB, along with reappearance of β-catenin and target gene Cyp2e1, which promoted lipid peroxidation and hepatic damage. Addition of NAC to drinking water protected KO +Fe from hepatic steatosis, injury and fibrosis, and prevented activation of AKT, ERK, NF-κB and reappearance of β-catenin. The absence of hepatic β-catenin predisposes mice to hepatic injury and fibrosis following iron overload, which was reminiscent of hemochromatosis and associated with enhanced steatohepatitis and fibrosis. Disease progression was notably alleviated by antioxidant therapy, which supports its chemopreventive role in the management of chronic iron overload disorders. Lack of animal models for iron overload disorders makes it hard to study the disease process for improving therapies. Feeding high iron diet to mice that lack the β-catenin gene in liver cells led to increased inflammation followed by fat accumulation, cell death and wound healing that mimicked

  16. Marine Natural Product Honaucin A Attenuates Inflammation by Activating the Nrf2-ARE Pathway.

    Science.gov (United States)

    Mascuch, Samantha J; Boudreau, Paul D; Carland, Tristan M; Pierce, N Tessa; Olson, Joshua; Hensler, Mary E; Choi, Hyukjae; Campanale, Joseph; Hamdoun, Amro; Nizet, Victor; Gerwick, William H; Gaasterland, Teresa; Gerwick, Lena

    2018-03-23

    The cyanobacterial marine natural product honaucin A inhibits mammalian innate inflammation in vitro and in vivo. To decipher its mechanism of action, RNA sequencing was used to evaluate differences in gene expression of cultured macrophages following honaucin A treatment. This analysis led to the hypothesis that honaucin A exerts its anti-inflammatory activity through activation of the cytoprotective nuclear erythroid 2-related factor 2 (Nrf2)-antioxidant response element/electrophile response element (ARE/EpRE) signaling pathway. Activation of this pathway by honaucin A in cultured human MCF7 cells was confirmed using an Nrf2 luciferase reporter assay. In vitro alkylation experiments with the natural product and N-acetyl-l-cysteine suggest that honaucin A activates this pathway through covalent interaction with the sulfhydryl residues of the cytosolic repressor protein Keap1. Honaucin A presents a potential therapeutic lead for diseases with an inflammatory component modulated by Nrf2-ARE.

  17. Administration of red ginseng ameliorates memory decline in aged mice.

    Science.gov (United States)

    Lee, Yeonju; Oh, Seikwan

    2015-07-01

    It has been known that ginseng can be applied as a potential nutraceutical for memory impairment; however, experiments with animals of old age are few. To determine the memory enhancing effect of red ginseng, C57BL/6 mice (21 mo old) were given experimental diet pellets containing 0.12% red ginseng extract (approximately 200 mg/kg/d) for 3 mo. Young and old mice (4 mo and 21 mo old, respectively) were used as the control group. The effect of red ginseng, which ameliorated memory impairment in aged mice, was quantified using Y-maze test, novel objective test, and Morris water maze. Red ginseng ameliorated age-related declines in learning and memory in older mice. In addition, red ginseng's effect on the induction of inducible nitric oxide synthase and proinflammatory cytokines was investigated in the hippocampus of aged mice. Red ginseng treatment suppressed the production of age-processed inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, and interleukin-1β expressions. Moreover, it was observed that red ginseng had an antioxidative effect on aged mice. The suppressed glutathione level in aged mice was restored with red ginseng treatment. The antioxidative-related enzymes Nrf2 and HO-1 were increased with red ginseng treatment. The results revealed that when red ginseng is administered over long periods, age-related decline of learning and memory is ameliorated through anti-inflammatory activity.

  18. Ginger and alpha lipoic acid ameliorate age-related ultrastructural changes in rat liver.

    Science.gov (United States)

    Mahmoud, Y I; Hegazy, H G

    2016-01-01

    Because of the important role that oxidative stress is thought to play in the aging process, antioxidants could be candidates for preventing its related pathologies. We investigated the ameliorative effects of two antioxidant supplements, ginger and alpha lipoic acid (ALA), on hepatic ultrastructural alterations in old rats. Livers of young (4 months) and old (24 months) Wistar rats were studied using transmission electron microscopy. Livers of old rats showed sinusoidal collapse and congestion, endothelial thickening and defenestration, and inconsistent perisinusoidal extracellular matrix deposition. Aged hepatocytes were characterized by hypertrophy, cytoplasmic vacuolization and a significant increase in the volume densities of the nuclei, mitochondria and dense bodies. Lipofuscin accumulation and decreased microvilli in bile canaliculi and space of Disse also were observed. The adverse alterations were ameliorated significantly by both ginger and ALA supplementation; ALA was more effective than ginger. Ginger and ALA appear to be promising anti-aging agents based on their amelioration of ultrastructural alterations in livers of old rats.

  19. Amelioration of altered antioxidant status and membrane linked ...

    Indian Academy of Sciences (India)

    Unknown

    oxidant enzymes and membrane-linked functions in diabetic rat brains. ... high blood glucose (P < 0⋅001), decreased activities of SOD, catalase and Na+/K+ ATPase (P < 0⋅01, ... as an index of membrane physical properties and controls.

  20. Chronic antioxidant therapy fails to ameliorate hypertension: potential mechanisms behind

    Czech Academy of Sciences Publication Activity Database

    Pecháňová, Olga; Šimko, F.

    2009-01-01

    Roč. 27, Suppl.6 (2009), S32-S36 ISSN 0263-6352 R&D Projects: GA ČR(CZ) GA305/08/0139 Institutional research plan: CEZ:AV0Z50110509 Keywords : endothelial dysfunction * NADP(H) oxidase * reactive oxygen species Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.988, year: 2009

  1. Emerging Role of Antioxidants in the Protection of Uveitis Complications

    Science.gov (United States)

    Yadav, Umesh C S; Kalariya, Nilesh M; Ramana, Kota V

    2011-01-01

    Current understanding of the role of oxidative stress in ocular inflammatory diseases indicates that antioxidant therapy may be important to optimize the treatment. Recently investigated antioxidant therapies for ocular inflammatory diseases include various vitamins, plant products and reactive oxygen species scavengers. Oxidative stress plays a causative role in both non-infectious and infectious uveitis complications, and novel strategies to diminish tissue damage and dysfunction with antioxidant therapy may ameliorate visual complications. Preclinical studies with experimental animals and cell culture demonstrate significance of anti-inflammatory effects of a number of promising antioxidant agents. Many of these antioxidants are under clinical trial for various inflammatory diseases other than uveitis such as cardiovascular, rheumatoid arthritis and cancer. Well planned interventional clinical studies of the ocular inflammation will be necessary to sufficiently investigate the potential medical benefits of antioxidant therapies for uveitis. This review summarizes the recent investigation of novel antioxidant agents for ocular inflammation, with selected studies focused on uveitis. PMID:21182473

  2. Ameliorating effect of hawthorn ( Crataegus oxyacantha ) and ...

    African Journals Online (AJOL)

    Ameliorating effect of hawthorn ( Crataegus oxyacantha ) and physical exercise on ... Conclusion: Crataegus oxyacantha extract has shown positive affect to ameliorate on ... Key words: Crataegus oxyacantha, physical activity, epilepsy, gerbil, ...

  3. Sylwan manuscript revised

    African Journals Online (AJOL)

    이영준

    mature adipocytes and accumulate lipids, as an obesity model with cytotoxicity and ... 2,5-diphenyltetrazolium Bromide; NAC = N-acetyl-L-cysteine; NADPH = Nicotinamide adenine dinucleotide phosphate; OD = ..... ovariectomized rats.

  4. Hypolipidemic and Antioxidant Activity of Camel Milk on Poloxamer ...

    African Journals Online (AJOL)

    The aim of this study is to investigate the ameliorative and antioxidant effect of camel milk on poloxamer 407 (P407) induced hyperlipidemia in albino rats. Methods: Thirty male wistar rats were subdivided into six groups (Group 1-6) with each containing five animals (n=5). Group 1 served as normal control, while Groups 2-6 ...

  5. Black ginseng extract ameliorates hypercholesterolemia in rats.

    Science.gov (United States)

    Saba, Evelyn; Jeon, Bo Ra; Jeong, Da-Hye; Lee, Kija; Goo, Youn-Kyoung; Kim, Seung-Hyung; Sung, Chang-Keun; Roh, Seong-Soo; Kim, Sung Dae; Kim, Hyun-Kyoung; Rhee, Man-Hee

    2016-04-01

    Ginseng (Panax ginseng Meyer) is a well-characterized medicinal herb listed in the classic oriental herbal dictionary as "Shin-nong-bon-cho-kyung." Ginseng has diverse pharmacologic and therapeutic properties. Black ginseng (BG, Ginseng Radix nigra) is produced by repeatedly steaming fresh ginseng nine times. Studies of BG have shown that prolonged heat treatment enhances the antioxidant activity with increased radical scavenging activity. Several recent studies have showed the effects of BG on increased lipid profiles in mice. In this study report the effects of water and ethanol extracts of BG on hypercholesterolemia in rats. To our knowledge, this is the first time such an effect has been reported. Experiments were conducted on male Sprague Dawley rats fed with a high-cholesterol diet supplemented with the water and ethanol extracts of BG (200 mg/kg). Their blood cholesterol levels, serum white blood cell levels, and cholesterol-metabolizing marker genes messenger RNA (mRNA) expression were determined. Liver and adipose tissues were histologically analyzed. We found that BG extracts efficiently reduced the total serum cholesterol levels, low-density lipoprotein (LDL) levels with increased food efficiency ratio and increased number of neutrophil cells. It also attenuated the key genes responsible for lipogenesis, that is, acetyl-coenzyme A (CoA) acetyltransferase 2, 3-hydroxy-3-methyl-glutaryl-CoA reductase, and sterol regulatory element-binding protein 2, at the mRNA level inside liver cells. Furthermore, the BG extract also reduced the accumulation of fat in adipose tissues, and inhibited the neutral fat content in liver cells stained with hematoxylin and eosin and oil red O. Administration of BG extracts to Sprague Dawley rats fed with high-cholesterol diet ameliorated hypercholesterolemia, which was mediated via modulation of cholesterol-metabolizing marker genes. This data throw a light on BG's cardioprotective effects.

  6. Specific immunotherapy ameliorates ulcerative colitis.

    Science.gov (United States)

    Cai, Min; Zeng, Lu; Li, Lin-Jing; Mo, Li-Hua; Xie, Rui-Di; Feng, Bai-Sui; Zheng, Peng-Yuan; Liu, Zhi-Gang; Liu, Zhan-Ju; Yang, Ping-Chang

    2016-01-01

    Hypersensitivity reaction to certain allergens plays a role in the pathogenesis of inflammatory bowel disease (IBD). This study aims to observe the effect of specific immunotherapy in a group of IBD patients. Patients with both ulcerative colitis (UC) and food allergy were recruited into this study. Food allergy was diagnosed by skin prick test and serum specific IgE. The patients were treated with specific immunotherapy (SIT) and Clostridium butyricum (CB) capsules. After treating with SIT and CB, the clinical symptoms of UC were markedly suppressed as shown by reduced truncated Mayo scores and medication scores. The serum levels of specific IgE, interleukin (IL)-4 and tumor necrosis factor (TNF)-α were also suppressed. Treating with SIT alone or CB alone did not show appreciable improvement of the clinical symptoms of UC. UC with food allergy can be ameliorated by administration with SIT and butyrate-production probiotics.

  7. Amelioration of Gamma-hexachlorocyclohexane (Lindane induced renal toxicity by Camellia sinensis in Wistar rats

    Directory of Open Access Journals (Sweden)

    W. L. N. V. Vara Prasad

    2016-11-01

    Full Text Available Aim: A study to assess the toxic effects of gamma-hexachlorocyclohexane (γ-HCH (lindane and ameliorative effects of Camellia sinensis on renal system has been carried out in male Wistar rats. Materials and Methods: Four groups of rats with 18 each were maintained under standard laboratory hygienic conditions and provided feed and water ad libitum. γ-HCH was gavaged at 20 mg/kg b.wt. using olive oil as vehicle to Groups II. C. sinensis at 100 mg/kg b.wt. was administered orally in distilled water to Group IV in addition to γ-HCH 20 mg/kg b.wt. up to 45 days to study ameliorative effects. Groups I and III were treated with distilled water and C. sinensis (100 mg/kg b.wt., respectively. Six rats from each group were sacrificed at fortnight intervals. Serum was collected for creatinine estimation. The kidney tissues were collected in chilled phosphate buffer saline for antioxidant profile and in also 10% buffered formalin for histopathological studies. Results: γ-HCH treatment significantly increased serum creatinine and significantly reduced the renal antioxidative enzymes catalase, superoxide dismutase, and glutathione peroxidase. Grossly, severe congestion was noticed in the kidneys. Microscopically, kidney revealed glomerular congestion, atrophy, intertubular hemorrhages, degenerative changes in tubular epithelium with vacuolated cytoplasm, desquamation of epithelium and urinary cast formation. A significant reduction in serum creatinine levels, significant improvement in renal antioxidant enzyme activities and near to normal histological appearance of kidneys in Group IV indicated that the green tea ameliorated the effects of γ-HCH, on renal toxicity. Conclusion: This study suggested that C. sinensis extract combined with γ-HCH could enhance antioxidant/detoxification system which consequently reduced the oxidative stress thus potentially reducing γ-HCH toxicity and tissue damage.

  8. Ameliorative Effect of Different Concentration of Mushroom ...

    African Journals Online (AJOL)

    Prof. Ogunji

    ameliorative effect of mushroom in the post-experimental stage. Samples of liver and ... except in the liver which showed mild periportal chronic inflammatory cell. However, the .... alcohol for 12 hours and through absolute alcohol to remove ...

  9. Portulaca oleracea Linn seed extract ameliorates hydrogen ...

    African Journals Online (AJOL)

    Portulaca oleracea Linn seed extract ameliorates hydrogen ... induced cell death by inhibiting oxidative stress and ROS generation. Keywords: ... culture medium; therefore the stock solutions of ... acetic acid (1 %) and ethanol (50 %) to extract.

  10. Ameliorative effects of selenium and zinc

    African Journals Online (AJOL)

    Methidathion-induced hematological, biochemical and hepatohistological alterations in rat: Ameliorative effects of selenium and zinc. L Barkat, A Boumendjel, C Abdennour, MS Boulakoud, A El Feki, M Messarah ...

  11. Black ginseng extract ameliorates hypercholesterolemia in rats

    Directory of Open Access Journals (Sweden)

    Evelyn Saba

    2016-04-01

    Conclusion: Administration of BG extracts to Sprague Dawley rats fed with high-cholesterol diet ameliorated hypercholesterolemia, which was mediated via modulation of cholesterol-metabolizing marker genes. This data throw a light on BG's cardioprotective effects.

  12. Dietary Amelioration of Helicobacter Infection

    Science.gov (United States)

    Fahey, Jed W.; Stephenson, Katherine K.; Wallace, Alison J.

    2015-01-01

    We review herein the basis for using dietary components to treat and/or prevent Helicobacter pylori infection, with emphasis on: (a) work reported in the last decade, (b) dietary components for which there is mechanism-based plausibility, and (c) components for which clinical results on H. pylori amelioration are available. There is evidence that a diet-based treatment may reduce the levels and/or the virulence of H. pylori colonization without completely eradicating the organism in treated individuals. This concept was endorsed a decade ago by the participants in a small international consensus conference held in Honolulu, Hawaii, USA, and interest in such a diet-based approach has increased dramatically since then. This approach is attractive in terms of cost, treatment, tolerability and cultural acceptability. This review therefore highlights specific foods, food components, and food products, grouped as follows: bee products (e.g. honey and propolis), probiotics, dairy products, vegetables, fruits, oils, essential oils, and herbs, spices and other plants. A discussion of the small number of clinical studies that are available is supplemented by supportive in vitro and animal studies. This very large body of in vitro and pre-clinical evidence must now be followed up with rationally designed, unambiguous human trials. PMID:25799054

  13. Micronutrient Antioxidants and Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Guanliang Chen

    2016-08-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is one of the most important chronic liver diseases worldwide and has garnered increasing attention in recent decades. NAFLD is characterized by a wide range of liver changes, from simple steatosis to nonalcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. The blurred pathogenesis of NAFLD is very complicated and involves lipid accumulation, insulin resistance, inflammation, and fibrogenesis. NAFLD is closely associated with complications such as obesity, diabetes, steatohepatitis, and liver fibrosis. During the progression of NAFLD, reactive oxygen species (ROS are activated and induce oxidative stress. Recent attempts at establishing effective NAFLD therapy have identified potential micronutrient antioxidants that may reduce the accumulation of ROS and finally ameliorate the disease. In this review, we present the molecular mechanisms involved in the pathogenesis of NAFLD and introduce some dietary antioxidants that may be used to prevent or cure NAFLD, such as vitamin D, E, and astaxanthin.

  14. Pyrroloquinoline quinone ameliorates l-thyroxine-induced hyperthyroidism and associated problems in rats.

    Science.gov (United States)

    Kumar, Narendra; Kar, Anand; Panda, Sunanda

    2014-08-01

    Pyrroloquinoline quinone (PQQ) is believed to be a strong antioxidant. In this study, we have evaluated its hitherto unknown role in l-thyroxin (L-T4 )-induced hyperthyroidism considering laboratory rat as a model. Alterations in the serum concentration of thyroxin (T4 ) and triiodothyronine (T3 ); lipid peroxidation (LPO) of liver, kidney, heart, muscles and brain; in the endogenous antioxidants such as superoxide dismutase, catalase and glutathione and in serum total cholesterol, high-density lipoprotien, triglycerides, serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) and urea were evaluated. Administration of l-T4 (500-µg kg(-1) body weight) enhanced not only the serum T3 and T4 levels but also the tissue LPO, serum SGOT, SGPT and urea with a parallel decrease in the levels of antioxidants and serum lipids. However, on simultaneous administration of PQQ (5 mg kg(-1) for 6 days), all these adverse effects were ameliorated, indicating the potential of PQQ in the amelioration of hyperthyroidism and associated problems. Possibly, the curative effects were mediated through inhibition of oxidative stress. We suggest that PQQ may be considered for therapeutic use for hyperthyroidism after dose standardization. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Evaluation of ameliorative potential of supranutritional selenium on enrofloxacin-induced testicular toxicity.

    Science.gov (United States)

    Rungsung, Soya; Khan, Adil Mehraj; Sood, Naresh Kumar; Rampal, Satyavan; Singh Saini, Simrat Pal

    2016-05-25

    The study was designed to assess the ameliorative potential of selenium (Se) on enrofloxacin-induced testicular toxicity in rats. There was a significant decrease in body weight and non-significant decrease in mean testicular weight of enrofloxacin treated rats. In enrofloxacin treated rats, total sperm count and viability decreased where as sperm abnormalities increased. Testicular histopathology revealed dose dependent dysregulation of spermatogenesis and presence of necrotic debris in seminiferous tubules which was marginally improved with Se. Enrofloxacin also produced a dose dependent decrease in testosterone level. The activity of testicular antioxidant enzymes decreased where as lipid peroxidation increased in a dose-dependent manner. Se supplementation partially restored oxidative stress and sperm damage and did not affect the plasma concentrations of enrofloxacin or ciprofloxacain. The results indicate that enrofloxacin produces a dose-dependent testicular toxicity in rats that is moderately ameliorated with supranutritional Se. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Reactive Oxygen Species Are Required for Human Mesenchymal Stem Cells to Initiate Proliferation after the Quiescence Exit

    Directory of Open Access Journals (Sweden)

    O. G. Lyublinskaya

    2015-01-01

    Full Text Available The present study focuses on the involvement of reactive oxygen species (ROS in the process of mesenchymal stem cells “waking up” and entering the cell cycle after the quiescence. Using human endometrial mesenchymal stem cells (eMSCs, we showed that intracellular basal ROS level is positively correlated with the proliferative status of the cell cultures. Our experiments with the eMSCs synchronized in the G0 phase of the cell cycle revealed a transient increase in the ROS level upon the quiescence exit after stimulation of the cell proliferation. This increase was registered before the eMSC entry to the S-phase of the cell cycle, and elimination of this increase by antioxidants (N-acetyl-L-cysteine, Tempol, and Resveratrol blocked G1–S-phase transition. Similarly, a cell cycle arrest which resulted from the antioxidant treatment was observed in the experiments with synchronized human mesenchymal stem cells derived from the adipose tissue. Thus, we showed that physiologically relevant level of ROS is required for the initiation of human mesenchymal stem cell proliferation and that low levels of ROS due to the antioxidant treatment can block the stem cell self-renewal.

  17. Hepatoprotective Effect of Opuntia robusta and Opuntia streptacantha Fruits against Acetaminophen-Induced Acute Liver Damage

    Directory of Open Access Journals (Sweden)

    Herson Antonio González-Ponce

    2016-10-01

    Full Text Available Acetaminophen (APAP-induced acute liver failure (ALF is a serious health problem in developed countries. N-acetyl-L-cysteine (NAC, the current therapy for APAP-induced ALF, is not always effective, and liver transplantation is often needed. Opuntia spp. fruits are an important source of nutrients and contain high levels of bioactive compounds, including antioxidants. The aim of this study was to evaluate the hepatoprotective effect of Opuntia robusta and Opuntia streptacantha extracts against APAP-induced ALF. In addition, we analyzed the antioxidant activities of these extracts. Fruit extracts (800mg/kg/day, orally were given prophylactically to male Wistar rats before intoxication with APAP (500 mg/kg, intraperitoneally. Rat hepatocyte cultures were exposed to 20mmol/LAPAP, and necrosis was assessed by LDH leakage. Opuntia robusta had significantly higher levels of antioxidants than Opuntia streptacantha. Both extracts significantly attenuated APAP-induced injury markers AST, ALT and ALP and improved liver histology. The Opuntia extracts reversed APAP-induced depletion of liver GSH and glycogen stores. In cultured hepatocytes, Opuntia extracts significantly reduced leakage of LDH and cell necrosis, both prophylactically and therapeutically. Both extracts appeared to be superior to NAC when used therapeutically. We conclude that Opuntia extracts are hepatoprotective and can be used as a nutraceutical to prevent ALF.

  18. Silymarin and Nigella sativa extract ameliorate paracetamol induced oxidative stress and renal dysfunction in male mice

    Directory of Open Access Journals (Sweden)

    Reham Zakaria Hamza

    2015-06-01

    Full Text Available Objective: To evaluate the ameliorative role of silymarin or/and Nigella sativa (N. sativa water extract against N-acetyl-p-aminophenol (APAP-induced renal function deterioration in male mice at the biochemical levels. Methods: The mice were divided into seven groups (10/group. The first group was served as control. The second group was treated with dose of APAP. The third and fourth groups were treated with silymarin alone and N. sativa water extract alone, respectively. The fifth and sixth groups were treated with combination of APAP with silymarin and APAP with N. sativa water extract, respectively. The seventh group was treated with a combination of both ameliorative compounds (silymarin and N. sativa water extract with APAP and all animals were treated for a period of 30 days. Results: Exposure to APAP at the treated dose for mice led to an alteration of kidney function parameters, increase in the level of serum urea and creatinine. Also, paracetamol administration induced oxidative stress in kidney homogenates by increasing malondialdhyde level and decreasing superoxide dismutase and catalase activities and this stress was ameliorated by administration of either silymarin or N. sativa water extract. Conclusions: Administration of silymarin or/and N. sativa water extract to APAP-treated mice alleviate the toxicity of APAP, and this appeared clearly by biochemical improvement of kidney function parameters and antioxidant parameters. But, the alleviation is more pronounced with the both antioxidants. Thus, the pronounce effect of silymarin and N. sativa water extract is most effective in reducing the toxicity induced by APAP and improving the kidney function parameters and antioxidant status of kidney of male mice.

  19. Curcumin ameliorates cardiac dysfunction induced by mechanical trauma.

    Science.gov (United States)

    Li, Xintao; Cao, Tingting; Ma, Shuo; Jing, Zehao; Bi, Yue; Zhou, Jicheng; Chen, Chong; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2017-11-05

    Curcumin, a phytochemical component derived from turmeric (Carcuma longa), has been extensively investigated because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play critical roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This research was designed to identify the protective effect of curcumin on posttraumatic cardiac dysfunction and investigate its underlying mechanism. Noble-Collip drum was used to prepare a mechanical trauma (MT) model of rats, and the hemodynamic responses of traumatized rats were observed by ventricular intubation 12h after trauma. Myocardial apoptosis was determined through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay. Tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) generated by monocytes and myocardial cells were identified through enzyme-linked immunosorbent assay (ELISA), and the intracellular alteration of Ca 2+ in cardiomyocytes was examined through confocal microscopy. In vivo, curcumin effectively ameliorated MT-induced secondary cardiac dysfunction and significantly decreased the apoptotic indices of the traumatized myocardial cells. In vitro, curcumin inhibited TNF-α production by monocytes and reduced the circulating TNF-α levels. With curcumin pretreatment, ROS production and Ca 2+ overload in H9c2 cells were attenuated when these cells were incubated with traumatic plasma. Therefore, curcumin can effectively ameliorate MT-induced cardiac dysfunction mainly by inhibiting systemic inflammatory responses and by weakening oxidative stress reaction and Ca 2+ overload in cardiomyocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Antioxidant treatment with N-acetylcysteine during adult respiratory distress syndrome

    DEFF Research Database (Denmark)

    Jepsen, S; Herlevsen, P; Knudsen, P

    1992-01-01

    OBJECTIVE: To examine whether the antioxidant N-acetylcysteine could ameliorate the course of the adult respiratory distress syndrome (ARDS) in man. DESIGN: Randomized, double-blind, placebo-controlled study. SETTING: Medical and surgical ICU in a regional hospital. PATIENTS: Sixty-six ICU patients...

  1. Impact of diabetes on gingival wound healing via oxidative stress.

    Directory of Open Access Journals (Sweden)

    Daisuke Kido

    Full Text Available The aim of this study is to investigate the mechanisms linking high glucose to gingival wound healing. Bilateral wounds were created in the palatal gingiva adjacent to maxillary molars of control rats and rats with streptozotocin-induced diabetes. After evaluating postsurgical wound closure by digital imaging, the maxillae including wounds were resected for histological examinations. mRNA expressions of angiogenesis, inflammation, and oxidative stress markers in the surgical sites were quantified by real-time polymerase chain reaction. Primary fibroblast culture from the gingiva of both rats was performed in high glucose and normal medium. In vitro wound healing and cell proliferation assays were performed. Oxidative stress marker mRNA expressions and reactive oxygen species production were measured. Insulin resistance was evaluated via PI3K/Akt and MAPK/Erk signaling following insulin stimulation using Western blotting. To clarify oxidative stress involvement in high glucose culture and cells of diabetic rats, cells underwent N-acetyl-L-cysteine treatment; subsequent Akt activity was measured. Wound healing in diabetic rats was significantly delayed compared with that in control rats. Nox1, Nox2, Nox4, p-47, and tumor necrosis factor-α mRNA levels were significantly higher at baseline in diabetic rats than in control rats. In vitro study showed that cell proliferation and migration significantly decreased in diabetic and high glucose culture groups compared with control groups. Nox1, Nox2, Nox4, and p47 expressions and reactive oxygen species production were significantly higher in diabetic and high glucose culture groups than in control groups. Akt phosphorylation decreased in the high glucose groups compared with the control groups. Erk1/2 phosphorylation increased in the high glucose groups, with or without insulin treatment, compared with the control groups. Impaired Akt phosphorylation partially normalized after antioxidant N-acetyl-L-cysteine

  2. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  3. Dietary antioxidants and exercise.

    Science.gov (United States)

    Powers, Scott K; DeRuisseau, Keith C; Quindry, John; Hamilton, Karyn L

    2004-01-01

    Muscular exercise promotes the production of radicals and other reactive oxygen species in the working muscle. Growing evidence indicates that reactive oxygen species are responsible for exercise-induced protein oxidation and contribute to muscle fatigue. To protect against exercise-induced oxidative injury, muscle cells contain complex endogenous cellular defence mechanisms (enzymatic and non-enzymatic antioxidants) to eliminate reactive oxygen species. Furthermore, exogenous dietary antioxidants interact with endogenous antioxidants to form a cooperative network of cellular antioxidants. Knowledge that exercise-induced oxidant formation can contribute to muscle fatigue has resulted in numerous investigations examining the effects of antioxidant supplementation on human exercise performance. To date, there is limited evidence that dietary supplementation with antioxidants will improve human performance. Furthermore, it is currently unclear whether regular vigorous exercise increases the need for dietary intake of antioxidants. Clearly, additional research that analyses the antioxidant requirements of individual athletes is needed.

  4. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  5. Reactive oxygen species as a signal in glucose-stimulated insulin secretion.

    Science.gov (United States)

    Pi, Jingbo; Bai, Yushi; Zhang, Qiang; Wong, Victoria; Floering, Lisa M; Daniel, Kiefer; Reece, Jeffrey M; Deeney, Jude T; Andersen, Melvin E; Corkey, Barbara E; Collins, Sheila

    2007-07-01

    One of the unique features of beta-cells is their relatively low expression of many antioxidant enzymes. This could render beta-cells susceptible to oxidative damage but may also provide a system that is sensitive to reactive oxygen species as signals. In isolated mouse islets and INS-1(832/13) cells, glucose increases intracellular accumulation of H2O2. In both models, insulin secretion could be stimulated by provision of either exogenous H2O2 or diethyl maleate, which raises intracellular H2O2 levels. Provision of exogenous H2O2 scavengers, including cell permeable catalase and N-acetyl-L-cysteine, inhibited glucose-stimulated H2O2 accumulation and insulin secretion (GSIS). In contrast, cell permeable superoxide dismutase, which metabolizes superoxide into H2O2, had no effect on GSIS. Because oxidative stress is an important risk factor for beta-cell dysfunction in diabetes, the relationship between glucose-induced H2O2 generation and GSIS was investigated under various oxidative stress conditions. Acute exposure of isolated mouse islets or INS-1(832/13) cells to oxidative stressors, including arsenite, 4-hydroxynonenal, and methylglyoxal, led to decreased GSIS. This impaired GSIS was associated with increases in a battery of endogenous antioxidant enzymes. Taken together, these findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function.

  6. Administration of Ketamine Causes Autophagy and Apoptosis in the Rat Fetal Hippocampus and in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Xinran Li

    2018-02-01

    Full Text Available Drug abuse during pregnancy is a serious problem. Like alcohol, anticonvulsants, sedatives, and anesthetics, such as ketamine, can pass through the placental barrier and affect the growing fetus. However, the mechanism by which ketamine causes damage to fetal rats is not well understood. Therefore, in this study, we anesthetized pregnant rats with ketamine and evaluated the Total Antioxidant Capacity (T-AOC, Reactive Oxygen Species (ROS, and Malondialdehyde (MDA. Moreover, we determined changes in the levels of Cleaved-Caspase-3 (C-Caspase-3, Beclin-1, B-cell lymphoma-2 (Bcl-2, Bcl-2 Associated X Protein (Bax, Autophagy-related gene 4 (Atg4, Atg5, p62 (SQSTM1, and marker of autophagy Light Chain 3 (LC3. In addition, we cultured PC12 cells in vitro to determine the relationship between ROS, autophagy, and apoptosis following ketamine treatment. The results showed that ketamine induced changes in autophagy- and apoptosis-related proteins, reduced T-AOC, and generated excessive levels of ROS and MDA. In vitro experiments showed similar results, indicating that apoptosis levels can be inhibited by 3-MA. We also found that autophagy and apoptosis can be inhibited by N-acetyl-L-cysteine (Nac. Thus, anesthesia with ketamine in pregnant rats may increase the rate of autophagy and apoptosis in the fetal hippocampus and the mechanism may be through inhibition of antioxidant activity and ROS accumulation.

  7. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    International Nuclear Information System (INIS)

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-01-01

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  8. Possible involvement of 12-lipoxygenase activation in glucose-deprivation/reload-treated neurons.

    Science.gov (United States)

    Nagasawa, Kazuki; Kakuda, Taichi; Higashi, Youichirou; Fujimoto, Sadaki

    2007-12-18

    The aim of this study was to clarify whether 12-lipoxygenase (12-LOX) activation was involved in reactive oxygen species (ROS) generation, extensive poly(ADP-ribose) polymerase (PARP) activation and neuronal death induced by glucose-deprivation, followed by glucose-reload (GD/R). The decrease of neuronal viability and accumulation of poly(ADP-ribose) induced by GD/R were prevented 3-aminobenzamide, a representative PARP inhibitor, demonstrating this treatment protocol caused the same oxidative stress with the previously reported one. The PARP activation, ROS generation and decrease of neuron viability induced by GD/R treatment were almost completely abolished by an extracellular zinc chelator, CaEDTA. p47(phox), a cytosolic component of NADPH oxidase was translocated the membrane fraction by GD/R, indicating its activation, but it did not generate detectable ROS. Surprisingly, pharmacological inhibition of NADPH oxidase with apocynin and AEBSF further decreased the decreased neuron viability induced by GD/R. On the other hand, AA861, a 12-LOX inhibitor, prevented ROS generation and decrease of neuron viability caused by GD/R. Interestingly, an antioxidant, N-acetyl-l-cysteine rescued the neurons from GD/R-induced oxidative stress, implying effectiveness of antioxidant administration. These findings suggested that activation of 12-LOX, but not NADPH oxidase, following to zinc release might play an important role in ROS generation and decrease of viability in GD/R-treated neurons.

  9. Antioxidant Approaches to Management of Ionizing Irradiation Injury

    Directory of Open Access Journals (Sweden)

    Joel Greenberger

    2015-01-01

    Full Text Available Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1 radiation counter measures against total or partial body irradiation; (2 normal tissue protection against acute organ specific ionizing irradiation injury; and (3 prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response.

  10. Ameliorative effect of Lentinus squarrosulus mycomeat against ...

    African Journals Online (AJOL)

    Ameliorative effect of Lentinus squarrosulus mycomeat against Pseudomonas aeruginosa infection using albino rat as animal model. ... Morphological appearance and behavior of the rats were used as the assessment method for adverse reactions. After a period of 26 days, the rats were sacrificed with the liver, spleen and ...

  11. Coenzyme Q10 treatment ameliorates acute cisplatin nephrotoxicity in mice

    International Nuclear Information System (INIS)

    Fouad, Amr A.; Al-Sultan, Ali Ibrahim; Refaie, Shereen M.; Yacoubi, Mohamed T.

    2010-01-01

    The nephroprotective effect of coenzyme Q10 was investigated in mice with acute renal injury induced by a single i.p. injection of cisplatin (5 mg/kg). Coenzyme Q10 treatment (10 mg/kg/day, i.p.) was applied for 6 consecutive days, starting 1 day before cisplatin administration. Coenzyme Q10 significantly reduced blood urea nitrogen and serum creatinine levels which were increased by cisplatin. Coenzyme Q10 significantly compensated deficits in the antioxidant defense mechanisms (reduced glutathione level and superoxide dismutase activity), suppressed lipid peroxidation, decreased the elevations of tumor necrosis factor-α, nitric oxide and platinum ion concentration, and attenuated the reductions of selenium and zinc ions in renal tissue resulted from cisplatin administration. Also, histopathological renal tissue damage mediated by cisplatin was ameliorated by coenzyme Q10 treatment. Immunohistochemical analysis revealed that coenzyme Q10 significantly decreased the cisplatin-induced overexpression of inducible nitric oxide synthase, nuclear factor-κB, caspase-3 and p53 in renal tissue. It was concluded that coenzyme Q10 represents a potential therapeutic option to protect against acute cisplatin nephrotoxicity commonly encountered in clinical practice.

  12. The Ameliorative Effects of L-2-Oxothiazolidine-4-Carboxylate on Acetaminophen-Induced Hepatotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Jun Ho Shin

    2013-03-01

    Full Text Available The aim of the study was to investigate the ameliorative effects and the mechanism of action of L-2-oxothiazolidine-4-carboxylate (OTC on acetaminophen (APAP-induced hepatotoxicity in mice. Mice were randomly divided into six groups: normal control group, APAP only treated group, APAP + 25 mg/kg OTC, APAP + 50 mg/kg OTC, APAP + 100 mg/kg OTC, and APAP + 100 mg/kg N-acetylcysteine (NAC as a reference control group. OTC treatment significantly reduced serum alanine aminotransferase and aspartate aminotransferase levels in a dose dependent manner. OTC treatment was markedly increased glutathione (GSH production and glutathione peroxidase (GSH-px activity in a dose dependent manner. The contents of malondialdehyde and 4-hydroxynonenal in liver tissues were significantly decreased by administration of OTC and the inhibitory effect of OTC was similar to that of NAC. Moreover, OTC treatment on APAP-induced hepatotoxicity significantly reduced the formation of nitrotyrosin and terminal deoxynucleotidyl transferase dUTP nick end labeling positive areas of liver tissues in a dose dependent manner. Furthermore, the activity of caspase-3 in liver tissues was reduced by administration of OTC in a dose dependent manner. The ameliorative effects of OTC on APAP-induced liver damage in mice was similar to that of NAC. These results suggest that OTC has ameliorative effects on APAP-induced hepatotoxicity in mice through anti-oxidative stress and anti-apoptotic processes.

  13. Ganoderma atrum polysaccharide ameliorates ROS generation and apoptosis in spleen and thymus of immunosuppressed mice.

    Science.gov (United States)

    Li, Wen-Juan; Li, Lu; Zhen, Weng-Ya; Wang, Le-Feng; Pan, Meng; Lv, Jia-Qian; Wang, Fan; Yao, Yu-Fei; Nie, Shao-Ping; Xie, Ming-Yong

    2017-01-01

    Ganoderma atrum polysaccharide (PSG-1) is a bioactive compound with antioxidant and immunomodulatory activities. The aim of this study was to determine the effect of PSG-1 on reactive oxygen species (ROS) generation and apoptosis in spleen and thymus of cyclophosphamide (CTX)-induced immunosuppressed mice. The results showed that PSG-1 protected mice against CTX-mediated immunosuppression, as evidenced by enhancing the ratios of thymus and spleen weights to body weight, promoting T cell and B cell survival, and increasing levels of TNF-α and IL-2. Apoptosis, ROS generation and lipid peroxidation in the immune organs of the immunosuppressed animals were ameliorated by PSG-1. The immune benefits of PSG-1 were associated with the enhancement of the activities of glutathione peroxidase, superoxide dismutase and catalase in the immune organs, implying that antioxidant activities of PSG-1 may play an important role in PSG-1-evoked immune protection. Taken together, these findings have demonstrated that PSG-1 may ameliorate CTX-induced immunosuppression through reducing apoptosis and oxidative damage in immunological system. Copyright © 2016. Published by Elsevier Ltd.

  14. Diabetic nephropathy and antioxidants.

    Science.gov (United States)

    Tavafi, Majid

    2013-01-01

    Oxidative stress has crucial role in pathogenesis of diabetic nephropathy (DN). Despite satisfactory results from antioxidant therapy in rodent, antioxidant therapy showed conflicting results in combat with DN in diabetic patients. Directory of Open Access Journals (DOAJ), Google Scholar,Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Treatment of DN in human are insufficient with rennin angiotensin system (RAS) blockers, so additional agent ought to combine with this management. Meanwhile based on DN pathogenesis and evidences in experimental and human researches, the antioxidants are the best candidate. New multi-property antioxidants may be improved human DN that show high power antioxidant capacity, long half-life time, high permeability to mitochondrion, improve body antioxidants enzymes activity and anti-inflammatory effects. Based on this review and our studies on diabetic rats, rosmarinic acid a multi-property antioxidant may be useful in DN patients, but of course, needs to be proven in clinical trials studies.

  15. Site-Specific Antioxidative Therapy for Prevention of Atherosclerosis and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Hajime Otani

    2013-01-01

    Full Text Available Oxidative stress has been implicated in pathophysiology of aging and age-associated disease. Antioxidative medicine has become a practice for prevention of atherosclerosis. However, limited success in preventing cardiovascular disease (CVD in individuals with atherosclerosis using general antioxidants has prompted us to develop a novel antioxidative strategy to prevent atherosclerosis. Reducing visceral adipose tissue by calorie restriction (CR and regular endurance exercise represents a causative therapy for ameliorating oxidative stress. Some of the recently emerging drugs used for the treatment of CVD may be assigned as site-specific antioxidants. CR and exercise mimetic agents are the choice for individuals who are difficult to continue CR and exercise. Better understanding of molecular and cellular biology of redox signaling will pave the way for more effective antioxidative medicine for prevention of CVD and prolongation of healthy life span.

  16. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    International Nuclear Information System (INIS)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy; Pillai, Ayyappan Harikrishna; Harikumar, Sankaran Kutty; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-01-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  17. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Pillai, Ayyappan Harikrishna [Division of Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Harikumar, Sankaran Kutty; Mishra, Santosh Kumar [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Sarkar, Souvendra Nath, E-mail: snsarkar1911@rediffmail.com [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India)

    2014-11-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  18. N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells.

    Science.gov (United States)

    Okada, Takashi; Morino, Katsutaro; Nakagawa, Fumiyuki; Tawa, Masashi; Kondo, Keiko; Sekine, Osamu; Imamura, Takeshi; Okamura, Tomio; Ugi, Satoshi; Maegawa, Hiroshi

    2017-06-24

    N -3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n -3 PUFAs, increased in n -3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n -3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n -3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n -3 PUFAs may contribute to their cardio-protective effect.

  19. Cortical astrocytes exposed to tributyltin undergo morphological changes in vitro.

    Science.gov (United States)

    Mizuhashi, S; Ikegaya, Y; Nishiyama, N; Matsuki, N

    2000-11-01

    We investigated the effect of tributyltin (TBT), an endocrine-disrupting chemical, on the morphology and viability of cultured rat cortical astrocytes. Cultured astrocytes exhibited smooth and planiform morphology under normal conditions. Following exposure to TBT, however, they showed rapid morphological changes that are characterized by asteriated cell bodies and process formation in a time- and concentration-dependent manner. Higher concentrations of TBT produced progressive cell death of the astrocytes. In serum-free medium, TBT at a concentration as low as 200 nM induced the stellation. Pharmacological studies revealed that the morphological changes were alleviated by application of diverse free radical scavengers or antioxidants such as catalase, superoxide dismutase, Trolox, ascorbic acid and N-acetyl-L-cysteine, suggesting that TBT-induced stellation is caused by oxidative stress involving free radicals, particularly reactive oxygen species. Furthermore, we found that the astrocyte stellation was abolished by treatment with inhibitors of phospholipase C, mitogen-activated protein kinase kinase or tyrosine phosphatase. The data suggest that TBT causes the stellation through intracellular signaling cascades rather than its non-specific toxicity. These findings provide an important insight for reconciling the problems in assumed aversive actions of this environmental pollutant for mammals.

  20. p,p′-DDE Induces Apoptosis of Rat Sertoli Cells via a FasL-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Yuqin Shi

    2009-01-01

    Full Text Available One,1-dichloro-2,2 bis(p-chlorophenyl ethylene (p,p′-DDE, the major metabolite of 2,2-bis(4-Chlorophenyl-1,1,1-trichloroethane (DDT, is a known persistent organic pollutant and male reproductive toxicant. It has antiandrogenic effect. However, the mechanism by which p,p′-DDE exposure causes male reproductive toxicity remains unknown. In the present study, rat Sertoli cells were used to investigate the molecular mechanism involved in p,p′-DDE-induced toxicity in male reproductive system. The results indicated that p,p′-DDE exposure at over 30 μM showed the induction of apoptotic cell death. p,p′-DDE could induce increases in FasL mRNA and protein, which could be blocked by an antioxidant agent, N-acetyl-l-cysteine (NAC. In addition, caspase-3 and -8 were activated by p,p′-DDE treatment in these cells. The activation of NF-κB was enhanced with the increase of p,p′-DDE dose. Taken together, these results suggested that exposure to p,p′-DDE might induce apoptosis of rat Sertoli cells through a FasL-dependent pathway.

  1. Corosolic Acid Induces Non-Apoptotic Cell Death through Generation of Lipid Reactive Oxygen Species Production in Human Renal Carcinoma Caki Cells

    Directory of Open Access Journals (Sweden)

    Seon Min Woo

    2018-04-01

    Full Text Available Corosolic acid is one of the pentacyclic triterpenoids isolated from Lagerstroemia speciose and has been reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells. In the present study, we investigated the molecular mechanisms of corosolic acid in cancer cell death. Corosolic acid induces a decrease of cell viability and an increase of cell cytotoxicity in human renal carcinoma Caki cells. Corosolic acid-induced cell death is not inhibited by apoptosis inhibitor (z-VAD-fmk, a pan-caspase inhibitor, necroptosis inhibitor (necrostatin-1, or ferroptosis inhibitors (ferrostatin-1 and deferoxamine (DFO. Furthermore, corosolic acid significantly induces reactive oxygen species (ROS levels, but antioxidants (N-acetyl-l-cysteine (NAC and trolox do not inhibit corosolic acid-induced cell death. Interestingly, corosolic acid induces lipid oxidation, and α-tocopherol markedly prevents corosolic acid-induced lipid peroxidation and cell death. Anti-chemotherapeutic effects of α-tocopherol are dependent on inhibition of lipid oxidation rather than inhibition of ROS production. In addition, corosolic acid induces non-apoptotic cell death in other renal cancer (ACHN and A498, breast cancer (MDA-MB231, and hepatocellular carcinoma (SK-Hep1 and Huh7 cells, and α-tocopherol markedly inhibits corosolic acid-induced cell death. Therefore, our results suggest that corosolic acid induces non-apoptotic cell death in cancer cells through the increase of lipid peroxidation.

  2. Calf Spleen Extractive Injection (CSEI, a small peptides enriched extraction, induces human hepatocellular carcinoma cell apoptosis via ROS/MAPKs dependent mitochondrial pathway

    Directory of Open Access Journals (Sweden)

    Dongxu Jia

    2016-10-01

    Full Text Available Calf Spleen Extractive Injection (CSEI, a small peptides enriched extraction, performs immunomodulatory activity on cancer patients suffering from radiotherapy or chemotherapy. The present study aims to investigate the anti-hepatocellular carcinoma effects of CSEI in cells and tumor-xenografted mouse models. In HepG2 and SMMC-7721 cells, CSEI reduced cell viability, enhanced apoptosis rate, caused reactive oxygen species (ROS accumulation, inhibited migration ability, and induced caspases cascade and mitochondrial membrane potential dissipation. CSEI significantly inhibited HepG2-xenografted tumor growth in nude mice. In cell and animal experiments, CSEI increased the activations of pro-apoptotic proteins including caspase 8, caspase 9 and caspase 3; meanwhile, it suppressed the expressions of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2 and anti-oxidation proteins, such as nuclear factor-erythroid 2 related factor 2 (Nrf2 and catalase (CAT. The enhanced phosphorylation of P38 and c-JunN-terminalkinase (JNK, and decreased phosphorylation of extra cellular signal-regulated protein kinase (ERKs were observed in CSEI-treated cells and tumor tissues. CSEI-induced cell viability reduction was significantly attenuated by N-Acetyl-l-cysteine (a ROS inhibitor pretreatment. All data demonstrated that the upregulated oxidative stress status and the altered mitogen-activated protein kinases (MAPKs phosphorylation contributed to CSEI-driven mitochondrial dysfunction. Taken together, CSEI exactly induced apoptosis in human hepatocellular carcinoma cells via ROS/MAPKs dependent mitochondrial pathway.

  3. Contribution of caspase-3 differs by p53 status in apoptosis induced by X-irradiation

    International Nuclear Information System (INIS)

    Kobayashi, Daisuke; Tokino, Takashi; Watanabe, Naoki

    2001-01-01

    We investigated the effect of p53 status on involvement of caspase-3 activation in cell death induced by X-irradiation, using rat embryonic fibroblasts (REFs) transduced with a temperature-sensitive mutant (mt) p53 gene. Cells with wild-type (wt) p53 showed greater resistance to X-irradiation than cells with mt p53. In cells with wt p53, X-irradiation-induced apoptosis was not inhibited by the caspase-3 inhibitor acetyl-L-aspartyl-L-methionyl-L-glutaminyl-L-aspartyl-aldehyde (Ac-DMQD-CHO) and caspase-3 activity was not elevated following X-irradiation, although induction of p53 and p21/WAF-1 protein was observed. In contrast, irradiated cells with mt p53 showed 89% inhibition of cell death with Ac-DMQD-CHO and 98% inhibition with the antioxidant N-acetyl-L-cysteine (NAC). In cells with mt p53, caspase-3 activity was increased approximately 5 times beyond baseline activity at 24 h after irradiation. This increase was almost completely inhibited by NAC. However, inhibition of caspase-3 by Ac-DMQD-CHO failed to decrease production of reactive oxygen species by cells with mt p53. Differential involvement of caspase-3 is a reason for differences in sensitivity to X-irradiation in cells with different p53 status. Caspase-3 activation appears to occur downstream from generation of reactive oxygen species occurring independently of wt p53 during X-irradiation-induced cell death. (author)

  4. OGG1 Involvement in High Glucose-Mediated Enhancement of Bupivacaine-Induced Oxidative DNA Damage in SH-SY5Y Cells

    Science.gov (United States)

    Liu, Zhong-Jie; Zhao, Wei; Zhang, Qing-Guo; Li, Le; Lai, Lu-Ying; Jiang, Shan; Xu, Shi-Yuan

    2015-01-01

    Hyperglycemia can inhibit expression of the 8-oxoG-DNA glycosylase (OGG1) which is one of the key repair enzymes for DNA oxidative damage. The effect of hyperglycemia on OGG1 expression in response to local anesthetics-induced DNA damage is unknown. This study was designed to determine whether high glucose inhibits OGG1 expression and aggravates bupivacaine-induced DNA damage via reactive oxygen species (ROS). SH-SY5Y cells were cultured with or without 50 mM glucose for 8 days before they were treated with 1.5 mM bupivacaine for 24 h. OGG1 expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. ROS was estimated using the redox-sensitive fluorescent dye DCFH-DA. DNA damage was investigated with immunostaining for 8-oxodG and comet assays. OGG1 expression was inhibited in cells exposed to high glucose with concomitant increase in ROS production and more severe DNA damage as compared to control culture conditions, and these changes were further exacerbated by bupivacaine. Treatment with the antioxidant N-acetyl-L-cysteine (NAC) prevented high glucose and bupivacaine mediated increase in ROS production and restored functional expression of OGG1, which lead to attenuated high glucose-mediated exacerbation of bupivacaine neurotoxicity. Our findings indicate that subjects with diabetes may experience more detrimental effects following bupivacaine use. PMID:26161242

  5. Activation of NF-κB is involved in 6-hydroxydopamine-but not MPP+-induced dopaminergic neuronal cell death: its potential role as a survival determinant

    International Nuclear Information System (INIS)

    Park, Seong H.; Choi, Won-Seok; Yoon, So-Young; Ahn, Young Soo; Oh, Young J.

    2004-01-01

    The nuclear factor-kappaB (NF-κB) family plays an important role in the control of the apoptotic response. Its activation has been demonstrated in both neurons and glial cells in many neurological disorders. In the present study, we specifically examined whether and to what extent NF-κB activation is involved in culture models of Parkinson's disease following exposure of MN9D dopaminergic neuronal cells to 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-4-phenylpyridinium ion (MPP + ). Both analysis by immunocytochemistry and of immunoblots revealed that NF-κB-p65 was translocated into the nuclei following 6-OHDA but not MPP + -treatment. A time-dependent activation of NF-κB induced by 6-OHDA but not MPP + was also demonstrated by an electrophoretic mobility shift assay. A competition assay indicated that not only NF-κB-p65 but also -p50 is involved in 6-OHDA-induced NF-κB activity. Co-treatment with an antioxidant, N-acetyl-L-cysteine, blocked 6-OHDA-induced activation of NF-κB signaling. In the presence of an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), 6-OHDA-induced cell death was accelerated while PDTC did not affect MPP + -induced cell death. Our data may point to a drug-specific activation of NF-κB as a survival determinant for dopaminergic neurons

  6. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  7. 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Qilong Wang

    2011-02-01

    Full Text Available Autophagy is a cellular self-digestion process activated in response to stresses such as energy deprivation and oxidative stress. However, the mechanisms by which energy deprivation and oxidative stress trigger autophagy remain undefined. Here, we report that activation of AMP-activated protein kinase (AMPK by mitochondria-derived reactive oxygen species (ROS is required for autophagy in cultured endothelial cells. AMPK activity, ROS levels, and the markers of autophagy were monitored in confluent bovine aortic endothelial cells (BAEC treated with the glycolysis blocker 2-deoxy-D-glucose (2-DG. Treatment of BAEC with 2-DG (5 mM for 24 hours or with low concentrations of H(2O(2 (100 µM induced autophagy, including increased conversion of microtubule-associated protein light chain 3 (LC3-I to LC3-II, accumulation of GFP-tagged LC3 positive intracellular vacuoles, and increased fusion of autophagosomes with lysosomes. 2-DG-treatment also induced AMPK phosphorylation, which was blocked by either co-administration of two potent anti-oxidants (Tempol and N-Acetyl-L-cysteine or overexpression of superoxide dismutase 1 or catalase in BAEC. Further, 2-DG-induced autophagy in BAEC was blocked by overexpressing catalase or siRNA-mediated knockdown of AMPK. Finally, pretreatment of BAEC with 2-DG increased endothelial cell viability after exposure to hypoxic stress. Thus, AMPK is required for ROS-triggered autophagy in endothelial cells, which increases endothelial cell survival in response to cell stress.

  8. Recovery by N-acetylcysteine from subchronic exposure to Imidacloprid-induced hypothalamic-pituitary-adrenal (HPA) axis tissues injury in male rats.

    Science.gov (United States)

    Annabi, Alya; Dhouib, Ines Bini; Lamine, Aicha Jrad; El Golli, Nargès; Gharbi, Najoua; El Fazâa, Saloua; Lasram, Mohamed Montassar

    2015-01-01

    Imidacloprid is the most important example of the neonicotinoid insecticides known to target the nicotinic acetylcholine receptor in insects, and potentially in mammals. N-Acetyl-l-cysteine (NAC) has been shown to possess curative effects in experimental and clinical investigations. The present study was designed to evaluate the recovery effect of NAC against Imidacloprid-induced oxidative stress and cholinergic transmission alteration in hypothalamic-pituitary-adrenal (HPA) axis of male rats following subchronic exposure. About 40 mg/kg of Imidacloprid was administered daily by intragastric intubation and 28 days later, the rats were sacrificed and HPA axis tissues were removed for different analyses. Imidacloprid increased adrenal relative weight and cholesterol level indicating an adaptive stage of the general alarm reaction to stress. Moreover, Imidacloprid caused a significant increase in malondialdehyde level, the antioxidants catalase, superoxide dismutase and glutathione-S-transferase showed various alterations following administration and significant depleted thiols content was only recorded in hypothalamic tissue. Furthermore, the hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased highlighting the alteration of cholinergic activity. The present findings revealed that HPA axis is a sensitive target to Imidacloprid (IMI). Interestingly, the use of NAC for only 7 days post-exposure to IMI showed a partial therapeutic effect against Imidacloprid toxicity.

  9. OGG1 Involvement in High Glucose-Mediated Enhancement of Bupivacaine-Induced Oxidative DNA Damage in SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    Zhong-Jie Liu

    2015-01-01

    Full Text Available Hyperglycemia can inhibit expression of the 8-oxoG-DNA glycosylase (OGG1 which is one of the key repair enzymes for DNA oxidative damage. The effect of hyperglycemia on OGG1 expression in response to local anesthetics-induced DNA damage is unknown. This study was designed to determine whether high glucose inhibits OGG1 expression and aggravates bupivacaine-induced DNA damage via reactive oxygen species (ROS. SH-SY5Y cells were cultured with or without 50 mM glucose for 8 days before they were treated with 1.5 mM bupivacaine for 24 h. OGG1 expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR and western blot. ROS was estimated using the redox-sensitive fluorescent dye DCFH-DA. DNA damage was investigated with immunostaining for 8-oxodG and comet assays. OGG1 expression was inhibited in cells exposed to high glucose with concomitant increase in ROS production and more severe DNA damage as compared to control culture conditions, and these changes were further exacerbated by bupivacaine. Treatment with the antioxidant N-acetyl-L-cysteine (NAC prevented high glucose and bupivacaine mediated increase in ROS production and restored functional expression of OGG1, which lead to attenuated high glucose-mediated exacerbation of bupivacaine neurotoxicity. Our findings indicate that subjects with diabetes may experience more detrimental effects following bupivacaine use.

  10. Ebselen induces reactive oxygen species (ROS-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target

    Directory of Open Access Journals (Sweden)

    Gajendra Kumar Azad

    2014-01-01

    Full Text Available Ebselen is a synthetic, lipid-soluble seleno-organic compound. The high electrophilicity of ebselen enables it to react with multiple cysteine residues of various proteins. Despite extensive research on ebselen, its target molecules and mechanism of action remains less understood. We performed biochemical as well as in vivo experiments employing budding yeast as a model organism to understand the mode of action of ebselen. The growth curve analysis and FACS (florescence activated cell sorting assays revealed that ebselen exerts growth inhibitory effects on yeast cells by causing a delay in cell cycle progression. We observed that ebselen exposure causes an increase in intracellular ROS levels and mitochondrial membrane potential, and that these effects were reversed by addition of antioxidants such as reduced glutathione (GSH or N-acetyl-l-cysteine (NAC. Interestingly, a significant increase in ROS levels was noticed in gdh3-deleted cells compared to wild-type cells. Furthermore, we showed that ebselen inhibits GDH function by interacting with its cysteine residues, leading to the formation of inactive hexameric GDH. Two-dimensional gel electrophoresis revealed protein targets of ebselen including CPR1, the yeast homolog of Cyclophilin A. Additionally, ebselen treatment leads to the inhibition of yeast sporulation. These results indicate a novel direct connection between ebselen and redox homeostasis.

  11. Application of confocal Raman micro-spectroscopy for label-free monitoring of oxidative stress in living bronchial cells

    Science.gov (United States)

    Surmacki, Jakub M.; Quirós Gonzalez, Isabel; Bohndiek, Sarah E.

    2018-02-01

    Oxidative stress in cancer is implicated in tumor progression, being associated with increased therapy resistance and metastasis. Conventional approaches for monitoring oxidative stress in tissue such as high-performance liquid chromatography and immunohistochemistry are bulk measurements and destroy the sample, meaning that longitudinal monitoring of cancer cell heterogeneity remains elusive. Raman spectroscopy has the potential to overcome this challenge, providing a chemically specific, label free readout from single living cells. Here, we applied a standardized protocol for label-free confocal Raman micro-spectroscopy in living cells to monitor oxidative stress in bronchial cells. We used a quartz substrate in a commercial cell chamber contained within a microscope incubator providing culture media for cell maintenance. We studied the effect of a potent reactive oxygen species inducer, tert-butyl hydroperoxide (TBHP), and antioxidant, N-acetyl-L-cysteine (NAC) on living cells from a human bronchial epithelial cells (HBEC). We found that the Raman bands corresponding to nucleic acids, proteins and lipids were significantly different (pmicro-spectroscopy may be able to monitor the biological impact of oxidative and reductive processes in cells, hence enabling longitudinal studies of oxidative stress in therapy resistance and metastasis at the single cell level.

  12. Asperlin induces G{sub 2}/M arrest through ROS generation and ATM pathway in human cervical carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    He, Long; Nan, Mei-Hua [Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Oh, Hyun Cheol [College of Medical and Life Sciences, Silla University, 100 Silladaehak-gil, Sasang-gu, Busan 617-736 (Korea, Republic of); Kim, Young Ho [College of Pharmacy, ChungNam National University, Yuseong, Daejeon, 305-764 (Korea, Republic of); Jang, Jae Hyuk [Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Erikson, Raymond Leo [Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 (United States); Ahn, Jong Seog, E-mail: jsahn@kribb.re.kr [Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Kim, Bo Yeon, E-mail: bykim@kribb.re.kr [Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); World Class Institute, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of)

    2011-06-10

    Highlights: {yields} A new anti-cancer effect of an antibiotics, asperlin, is exploited. {yields} Asperlin induced human cervical cancer cell apoptosis through ROS generation. {yields} Asperlin activated DNA-damage related ATM protein and cell cycle associated proteins. {yields} Asperlin could be developed as a new anti-cancer therapeutics. -- Abstract: We exploited the biological activity of an antibiotic agent asperlin isolated from Aspergillus nidulans against human cervical carcinoma cells. We found that asperlin dramatically increased reactive oxygen species (ROS) generation accompanied by a significant reduction in cell proliferation. Cleavage of caspase-3 and PARP and reduction of Bcl-2 could also be detected after asperlin treatment to the cells. An anti-oxidant N-acetyl-L-cysteine (NAC), however, blocked all the apoptotic effects of asperlin. The involvement of oxidative stress in asperlin induced apoptosis could be supported by the findings that ROS- and DNA damage-associated G2/M phase arrest and ATM phosphorylation were increased by asperlin. In addition, expression and phosphorylation of cell cycle proteins as well as G2/M phase arrest in response to asperlin were significantly blocked by NAC or an ATM inhibitor KU-55933 pretreatment. Collectively, our study proved for the first time that asperlin could be developed as a potential anti-cancer therapeutics through ROS generation in HeLa cells.

  13. Resveratrol Inhibits ROS-Promoted Activation and Glycolysis of Pancreatic Stellate Cells via Suppression of miR-21

    Directory of Open Access Journals (Sweden)

    Bin Yan

    2018-01-01

    Full Text Available Activation of pancreatic stellate cells (PSCs initiates pancreatic fibrosis in chronic pancreatitis and furnishes a niche that enhances the malignancy of pancreatic cancer cells (PCCs in pancreatic ductal adenocarcinoma (PDAC. Resveratrol (RSV, a natural polyphenol, exhibits potent antioxidant and anticancer effects. However, whether and how RSV influences the biological properties of activated PSCs and the effects of these changes on tumor remain unknown. In the present study, we found that RSV impeded hydrogen peroxide-driven reactive oxygen species- (ROS- induced activation, invasion, migration, and glycolysis of PSCs. In addition, miR-21 expression in activated PSCs was downregulated after RSV treatment, whereas the PTEN protein level increased. miR-21 silencing attenuated ROS-induced activation, invasion, migration, and glycolysis of PSCs, whereas the overexpression of miR-21 rescued the responses of PSCs treated with RSV. Moreover, RSV or N-acetyl-L-cysteine (NAC administration or miR-21 knockdown in PSCs reduced the invasion and migration of PCCs in coculture, and the effects of RSV were partly reversed by miR-21 upregulation. Collectively, RSV inhibits PCC invasion and migration through suppression of ROS/miR-21-mediated activation and glycolysis in PSCs. Therefore, targeting miR-21-mediated glycolysis by RSV in tumor stroma may serve as a new strategy for clinical PDAC prevention or treatment.

  14. Ethacrynic acid exhibits selective toxicity to chronic lymphocytic leukemia cells by inhibition of the Wnt/beta-catenin pathway.

    Directory of Open Access Journals (Sweden)

    Desheng Lu

    Full Text Available BACKGROUND: Aberrant activation of Wnt/beta-catenin signaling promotes the development of several cancers. It has been demonstrated that the Wnt signaling pathway is activated in chronic lymphocytic leukemia (CLL cells, and that uncontrolled Wnt/beta-catenin signaling may contribute to the defect in apoptosis that characterizes this malignancy. Thus, the Wnt signaling pathway is an attractive candidate for developing targeted therapies for CLL. METHODOLOGY/PRINCIPAL FINDINGS: The diuretic agent ethacrynic acid (EA was identified as a Wnt inhibitor using a cell-based Wnt reporter assay. In vitro assays further confirmed the inhibitory effect of EA on Wnt/beta-catenin signaling. Cell viability assays showed that EA selectively induced cell death in primary CLL cells. Exposure of CLL cells to EA decreased the expression of Wnt/beta-catenin target genes, including LEF-1, cyclin D1 and fibronectin. Immune co-precipitation experiments demonstrated that EA could directly bind to LEF-1 protein and destabilize the LEF-1/beta-catenin complex. N-acetyl-L-cysteine (NAC, which can react with the alpha, beta-unsaturated ketone in EA, but not other anti-oxidants, prevented the drug's inhibition of Wnt/beta-catenin activation and its ability to induce apoptosis in CLL cells. CONCLUSIONS/SIGNIFICANCE: Our studies indicate that EA selectively suppresses CLL survival due to inhibition of Wnt/beta-catenin signaling. Antagonizing Wnt signaling in CLL with EA or related drugs may represent an effective treatment of this disease.

  15. Formaldehyde Crosses the Human Placenta and Affects Human Trophoblast Differentiation and Hormonal Functions.

    Directory of Open Access Journals (Sweden)

    Guillaume Pidoux

    Full Text Available The chorionic villus of the human placenta is the source of specific endocrine functions and nutrient exchanges. These activities are ensured by the syncytiotrophobast (ST, which bathes in maternal blood. The ST arises and regenerates throughout pregnancy by fusion of underlying cytotrophoblasts (CT. Any anomaly of ST formation or regeneration can affect pregnancy outcome and fetal growth. Because of its direct interaction with maternal blood, the ST is sensitive to drugs, pollutants and xenohormones. Ex vivo assays of perfused cotyledon show that formaldehyde, a common pollutant present in furniture, paint and plastics, can accumulate in the human placenta and cross to the fetal compartment. By means of RT-qPCR, immunoblot and immunocytochemistry experiments, we demonstrate in vitro that formaldehyde exerts endocrine toxicity on human trophoblasts, including a decrease in the production of protein hormones of pregnancy. In addition, formaldehyde exposure triggered human trophoblast fusion by upregulating syncitin-1 receptor expression (ASC-type amino-acid transporter 2: ASCT2. Moreover, we show that formaldehyde-exposed trophoblasts present an altered redox status associated with oxidative stress, and an increase in ASCT2 expression intended to compensate for this stress. Finally, we demonstrate that the adverse effects of formaldehyde on trophoblast differentiation and fusion are reversed by N-acetyl-L-cysteine (Nac, an antioxidant.

  16. Xc- inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism.

    Science.gov (United States)

    Ma, Ming-zhe; Chen, Gang; Wang, Peng; Lu, Wen-hua; Zhu, Chao-feng; Song, Ming; Yang, Jing; Wen, Shijun; Xu, Rui-hua; Hu, Yumin; Huang, Peng

    2015-11-01

    Sulfasalazine (SSZ) is an anti-inflammatory drug that has been demonstrated to induce apoptosis and tumor regression through inhibition of plasma membrane cystine transporter xc(-). Cysteine is a rate-limiting precursor for intracellular glutathione (GSH) synthesis, which is vital for compound detoxification and maintaining redox balance. Platinum-based chemotherapy is an important regimen used in clinics for various cancers including colorectal cancer (CRC). We hypothesized that targeting xc(-) transporter by SSZ may annihilate cellular detoxification through interruption of GSH synthesis and may enhance the anti-cancer activity of cisplatin (CDDP) by increasing drug transport. In the present study, we revealed that xCT, the active subunit of xc(-), is highly expressed in CRC cell lines and human colorectal carcinoma tissues compared with their normal counterparts. SSZ effectively depleted cellular GSH, leading to significant accumulation of reactive oxygen species and growth inhibition in CRC cells. In contrast, the normal epithelial cells of colon origin were less sensitive to SSZ, showing a moderate ROS elevation. Importantly, SSZ effectively enhanced the intracellular platinum level and cytotoxicity of CDDP in CRC cells. The synergistic effect of SSZ and CDDP was reversed by antioxidant N-acetyl-L-cysteine (NAC). Together, these results suggest that SSZ, a relatively non-toxic drug that targets cystine transporter, may, in combination with CDDP, have effective therapy for colorectal cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Pre-Transplantation Blockade of TNF-α-Mediated Oxygen Species Accumulation Protects Hematopoietic Stem Cells.

    Science.gov (United States)

    Ishida, Takashi; Suzuki, Sachie; Lai, Chen-Yi; Yamazaki, Satoshi; Kakuta, Shigeru; Iwakura, Yoichiro; Nojima, Masanori; Takeuchi, Yasuo; Higashihara, Masaaki; Nakauchi, Hiromitsu; Otsu, Makoto

    2017-04-01

    Hematopoietic stem cell (HSC) transplantation (HSCT) for malignancy requires toxic pre-conditioning to maximize anti-tumor effects and donor-HSC engraftment. While this induces bone marrow (BM)-localized inflammation, how this BM environmental change affects transplanted HSCs in vivo remains largely unknown. We here report that, depending on interval between irradiation and HSCT, residence within lethally irradiated recipient BM compromises donor-HSC reconstitution ability. Both in vivo and in vitro we demonstrate that, among inflammatory cytokines, TNF-α plays a role in HSC damage: TNF-α stimulation leads to accumulation of reactive oxygen species (ROS) in highly purified hematopoietic stem/progenitor cells (HSCs/HSPCs). Transplantation of flow-cytometry-sorted murine HSCs reveals damaging effects of accumulated ROS on HSCs. Short-term incubation either with an specific inhibitor of tumor necrosis factor receptor 1 signaling or an antioxidant N-acetyl-L-cysteine (NAC) prevents TNF-α-mediated ROS accumulation in HSCs. Importantly, pre-transplantation exposure to NAC successfully demonstrats protective effects in inflammatory BM on graft-HSCs, exhibiting better reconstitution capability than that of nonprotected control grafts. We thus suggest that in vivo protection of graft-HSCs from BM inflammation is a feasible and attractive approach, which may lead to improved hematopoietic reconstitution kinetics in transplantation with myeloablative conditioning that inevitably causes inflammation in recipient BM. Stem Cells 2017;35:989-1002. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  18. The antidiabetic compound 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione, isolated from Averrhoa carambola L., demonstrates significant antitumor potential against human breast cancer cells.

    Science.gov (United States)

    Gao, Ying; Huang, Renbin; Gong, Yixuan; Park, Hyo Sim; Wen, Qingwei; Almosnid, Nadin Marwan; Chippada-Venkata, Uma D; Hosain, Najlaa Abdulrhman; Vick, Eric; Farone, Anthony; Altman, Elliot

    2015-09-15

    2-Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione found in the roots of Averrhoa carambola L., commonly known as starfruit. Researchers have shown that DMDD has significant therapeutic potential for the treatment of diabetes; however, the effects of DMDD on human cancers have never been reported. We investigated the cytotoxic effects of DMDD against human breast, lung and bone cancer cells in vitro and further examined the molecular mechanisms of DMDD-induced apoptosis in human breast cancer cells. DMDD suppressed the growth of breast carcinoma cells, but not normal mammary epithelial cells, via induction of G1 phase cell cycle arrest, oxidative stress and apoptosis. DMDD increased the level of intracellular reactive oxygen species (ROS) and DMDD-induced ROS generation was found to be associated with the mitochondrial activity. The cytotoxicity that was induced by DMDD was attenuated by co-treatment with the antioxidant N-acetyl-L-cysteine (NAC). DMDD-induced cell apoptosis involved the activation of both the intrinsic mitochondrial pathway and the extrinsic receptor pathway. In addition, DMDD inhibited the canonical NF-κB signaling pathway at all steps, including TNF-α production, phosphorylation of NF-κB p65 and IκBα, as well as TNF-α activated NF-κB p65 nuclear translocation.Collectively, our studies indicate that DMDD has significant potential as a safe and efficient therapeutic agent for the treatment of breast cancer.

  19. Cigarette smoke regulates the expression of TLR4 and IL-8 production by human macrophages

    Directory of Open Access Journals (Sweden)

    Rahman Irfan

    2009-05-01

    Full Text Available Abstract Background Toll-like receptors (TLRs are present on monocytes and alveolar macrophages that form the first line of defense against inhaled particles. The importance of those cells in the pathophysiology of chronic obstructive pulmonary disease (COPD has well been documented. Cigarette smoke contains high concentration of oxidants which can stimulate immune cells to produce reactive oxygen species, cytokines and chemokines. Methods In this study, we evaluated the effects of cigarette smoke medium (CSM on TLR4 expression and interleukin (IL-8 production by human macrophages investigating the involvement of ROS. Results and Discussion TLR4 surface expression was downregulated on short term exposure (1 h of CSM. The downregulation could be explained by internalization of the TLR4 and the upregulation by an increase in TLR4 mRNA. IL-8 mRNA and protein were also increased by CSM. CSM stimulation increased intracellular ROS-production and decreased glutathione (GSH levels. The modulation of TLR4 mRNA and surface receptors expression, IRAK activation, IκB-α degradation, IL-8 mRNA and protein, GSH depletion and ROS production were all prevented by antioxidants such as N-acetyl-L-cysteine (NAC. Conclusion TLR4 may be involved in the pathogenesis of lung emphysema and oxidative stress and seems to be a crucial contributor in lung inflammation.

  20. Asperlin induces G2/M arrest through ROS generation and ATM pathway in human cervical carcinoma cells

    International Nuclear Information System (INIS)

    He, Long; Nan, Mei-Hua; Oh, Hyun Cheol; Kim, Young Ho; Jang, Jae Hyuk; Erikson, Raymond Leo; Ahn, Jong Seog; Kim, Bo Yeon

    2011-01-01

    Highlights: → A new anti-cancer effect of an antibiotics, asperlin, is exploited. → Asperlin induced human cervical cancer cell apoptosis through ROS generation. → Asperlin activated DNA-damage related ATM protein and cell cycle associated proteins. → Asperlin could be developed as a new anti-cancer therapeutics. -- Abstract: We exploited the biological activity of an antibiotic agent asperlin isolated from Aspergillus nidulans against human cervical carcinoma cells. We found that asperlin dramatically increased reactive oxygen species (ROS) generation accompanied by a significant reduction in cell proliferation. Cleavage of caspase-3 and PARP and reduction of Bcl-2 could also be detected after asperlin treatment to the cells. An anti-oxidant N-acetyl-L-cysteine (NAC), however, blocked all the apoptotic effects of asperlin. The involvement of oxidative stress in asperlin induced apoptosis could be supported by the findings that ROS- and DNA damage-associated G2/M phase arrest and ATM phosphorylation were increased by asperlin. In addition, expression and phosphorylation of cell cycle proteins as well as G2/M phase arrest in response to asperlin were significantly blocked by NAC or an ATM inhibitor KU-55933 pretreatment. Collectively, our study proved for the first time that asperlin could be developed as a potential anti-cancer therapeutics through ROS generation in HeLa cells.

  1. TNF-α promotes extracellular vesicle release in mouse astrocytes through glutaminase.

    Science.gov (United States)

    Wang, Kaizhe; Ye, Ling; Lu, Hongfang; Chen, Huili; Zhang, Yanyan; Huang, Yunlong; Zheng, Jialin C

    2017-04-20

    Extracellular vesicles (EVs) are membrane-contained vesicles shed from cells. EVs contain proteins, lipids, and nucleotides, all of which play important roles in intercellular communication. The release of EVs is known to increase during neuroinflammation. Glutaminase, a mitochondrial enzyme that converts glutamine to glutamate, has been implicated in the biogenesis of EVs. We have previously demonstrated that TNF-α promotes glutaminase expression in neurons. However, the expression and the functionality of glutaminase in astrocytes during neuroinflammation remain unknown. We posit that TNF-α can promote the release of EVs in astrocytes through upregulation of glutaminase expression. Release of EVs, which was demonstrated by electron microscopy, nanoparticle tracking analysis (NTA), and Western Blot, increased in mouse astrocytes when treated with TNF-α. Furthermore, TNF-α treatment significantly upregulated protein levels of glutaminase and increased the production of glutamate, suggesting that glutaminase activity is increased after TNF-α treatment. Interestingly, pretreatment with a glutaminase inhibitor blocked TNF-α-mediated generation of reactive oxygen species in astrocytes, which indicates that glutaminase activity contributes to stress in astrocytes during neuroinflammation. TNF-α-mediated increased release of EVs can be blocked by either the glutaminase inhibitor, antioxidant N-acetyl-L-cysteine, or genetic knockout of glutaminase, suggesting that glutaminase plays an important role in astrocyte EV release during neuroinflammation. These findings suggest that glutaminase is an important metabolic factor controlling EV release from astrocytes during neuroinflammation.

  2. Ebselen induces reactive oxygen species (ROS)-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target.

    Science.gov (United States)

    Azad, Gajendra Kumar; Singh, Vikash; Mandal, Papita; Singh, Prabhat; Golla, Upendarrao; Baranwal, Shivani; Chauhan, Sakshi; Tomar, Raghuvir S

    2014-01-01

    Ebselen is a synthetic, lipid-soluble seleno-organic compound. The high electrophilicity of ebselen enables it to react with multiple cysteine residues of various proteins. Despite extensive research on ebselen, its target molecules and mechanism of action remains less understood. We performed biochemical as well as in vivo experiments employing budding yeast as a model organism to understand the mode of action of ebselen. The growth curve analysis and FACS (florescence activated cell sorting) assays revealed that ebselen exerts growth inhibitory effects on yeast cells by causing a delay in cell cycle progression. We observed that ebselen exposure causes an increase in intracellular ROS levels and mitochondrial membrane potential, and that these effects were reversed by addition of antioxidants such as reduced glutathione (GSH) or N-acetyl-l-cysteine (NAC). Interestingly, a significant increase in ROS levels was noticed in gdh3-deleted cells compared to wild-type cells. Furthermore, we showed that ebselen inhibits GDH function by interacting with its cysteine residues, leading to the formation of inactive hexameric GDH. Two-dimensional gel electrophoresis revealed protein targets of ebselen including CPR1, the yeast homolog of Cyclophilin A. Additionally, ebselen treatment leads to the inhibition of yeast sporulation. These results indicate a novel direct connection between ebselen and redox homeostasis.

  3. Glucose deprivation stimulates Cu(2+) toxicity in cultured cerebellar granule neurons and Cu(2+)-dependent zinc release.

    Science.gov (United States)

    Isaev, Nickolay K; Genrikhs, Elisaveta E; Aleksandrova, Olga P; Zelenova, Elena A; Stelmashook, Elena V

    2016-05-27

    Copper chloride (0.01mM, 2h) did not have significant influence on the survival of cerebellar granule neurons (CGNs) incubated in balanced salt solution. However, CuCl2 caused severe neuronal damage by glucose deprivation (GD). The glutamate NMDA-receptors blocker MK-801 partially and antioxidant N-acetyl-l-cysteine (NAC) or Zn(2+) chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) almost entirely protected CGNs from this toxic effect. Measurements of intracellular calcium ions using Fluo-4 AM, or zinc ions with FluoZin-3 AM demonstrated that 1 h-exposure to GD induced intensive increase of Fluo-4 but not FluoZin-3 fluorescence in neurons. The supplementation of solution with CuCl2 caused an increase of FluoZin-3, Fluo-4 and CellROX Green (reactive oxygen species probe) fluorescence by GD. The stimulation of Fluo-4 but not FluoZin-3 fluorescence by copper could be prevented partially by MK-801 and as well as CellROX Green fluorescence by NAC at GD. This data imply that during GD copper ions induce intense displacement zinc ions from intracellular stores, in addition free radical production, glutamate release and Ca(2+) overload of CGNs, that causes death of neurons as a result. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats.

    Science.gov (United States)

    Liu, Yixuan; Song, An; Zang, Shasha; Wang, Chao; Song, Guangyao; Li, Xiaoling; Zhu, Yajun; Yu, Xian; Li, Ling; Wang, Yun; Duan, Liyuan

    2015-03-13

    Jinlida (JLD) is a compound preparation formulated on the basis of traditional Chinese medicine and is officially approved for the treatment of type 2 diabetes (T2DM) in China. We aimed to elucidate the mechanism of JLD treatment, in comparison to metformin treatment, on ameliorating insulin sensitivity in insulin resistant rats and to reveal its anti-oxidant properties. Rats were fed with standard or high-fat diet for 6 weeks. After 6 weeks, the high-fat fed rats were subdivided into five groups and orally fed with JLD or metformin for 8 weeks. Fasting blood glucose (FBG), fasting blood insulin, blood lipid and antioxidant enzymes were measured. Intraperitoneal glucose tolerance test (IPGTT) and hyperinsulinemic euglycemic clamp technique were carried out to measure insulin sensitivity. Gene expression of the major signaling pathway molecules that regulate glucose uptake, including insulin receptor (INSR), insulin receptor substrate-1 (IRS-1), phosphoinositide-3-kinase (PI3K), protein kinase beta (AKT), and glucose transporter type 2 (GLUT2), were assessed by quantitative RT-PCR. The totle and phosphorylation expression of IRS-1, AKT, JNK and p38MAPK were determined by Western blot. Treatment with JLD effectively ameliorated the high-fat induced hyperglycemia, hyperinsulinemia and hyperlipidemia. Similar to metformin, the high insulin resistance in high-fat fed rats was significantly decreased by JLD treatment. JLD displayed anti-oxidant effects, coupled with up-regulation of the insulin signaling pathway. The attenuation of hepatic oxidative stress by JLD treatment was associated with reduced phosphorylation protein levels of JNK and p38MAPK. Treatment with JLD could moderate glucose and lipid metabolism as well as reduce hepatic oxidative stress, most likely through the JNK and p38MAPK pathways. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Antioxidants of Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Maja Kozarski

    2015-10-01

    Full Text Available Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  6. Ameliorative Activity of Ethanol Extract of Artocarpus heterophyllus Stem Bark on Pancreatic β-Cell Dysfunction in Alloxan-Induced Diabetic Rats.

    Science.gov (United States)

    Ajiboye, Basiru O; Ojo, Oluwafemi A; Adeyonu, Oluwatosin; Imiere, Oluwatosin D; Fadaka, Adewale O; Osukoya, Adetutu O

    2017-10-01

    This study sought to investigate the ameliorative effects of ethanol extract Artocarpus heterophyllus (EAH) in alloxan-induced diabetic rats. The rats were divided into 6 groups, with groups 1 and 2 serving as nondiabetic and diabetic control, respectively; group 3 serving as diabetic rats treated with 5 mg/kg glibenclamide; and groups 4 to 6 were diabetic rats treated with 50, 100, and 150 mg/kg of EAH, respectively. Assays determined were serum insulin, lipid peroxidation, and antioxidant enzyme activities. EAH stem bark reduced fasting blood glucose and lipid peroxidation levels and increased serum insulin levels and activities of antioxidant enzymes. Data obtained demonstrated the ability of EAH stem bark to ameliorate pancreatic β-cell dysfunction in alloxan-induced diabetic rats.

  7. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    Directory of Open Access Journals (Sweden)

    Zacharias E. Suntres

    2011-01-01

    Full Text Available Reactive oxygen species (ROS, including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress.

  8. Real-time quantification of oxidative stress and the protective effect of nitroxide antioxidants.

    Science.gov (United States)

    Rayner, Cassie L; Bottle, Steven E; Gole, Glen A; Ward, Micheal S; Barnett, Nigel L

    2016-01-01

    Nitroxides have been exploited as profluorescent probes for the detection of oxidative stress. In addition, they deliver potent antioxidant action and attenuate reactive oxygen species (ROS) in various models of oxidative stress, with these results ascribed to superoxide dismutase or redox and radical-scavenging actions. Our laboratory has developed a range of novel, biostable, isoindoline nitroxide-based antioxidants, DCTEIO and CTMIO. In this study we compared the efficiency of these novel compounds as antioxidant therapies in reducing ROS both in vivo (rat model) and in vitro (661W photoreceptor cells), with the established antioxidant resveratrol. By assessing changes in fluorescence intensity of a unique redox-responsive probe in the rat retina in vivo, we evaluated the ability of antioxidant therapy to (1) ameliorate ROS production and (2) reverse the accumulation of ROS after complete, acute ischemia followed by reperfusion (I/R). I/R injury induced a marked decrease in fluorescence intensity over 60 min of reperfusion, which was successfully ameliorated with each of the antioxidants. DCTEIO and CTMIO reversed the accumulation of ROS when administered intraocularly post ischemic insult, whereas, the effect of resveratrol was not significant. We also investigated our novel agents' capacity to prevent ROS-mediated metabolic dysfunction in the 661W photoreceptor cell line. Cellular stress induced by the oxidant, tert-butyl hydroperoxide, resulted in a loss of spare mitochondrial respiratory capacity (SMRC) and in the extracellular acidification rate in 661W cells. DCTEIO antioxidant administration successfully reduced the loss of SMRC. Together, these findings show we can quantify dynamic changes in cellular oxidative status in vivo and suggest that nitroxide-based antioxidants may provide greater protection against oxidative stress than the current state-of-the-art antioxidant treatments for ROS-mediated diseases. Copyright © 2015 Elsevier Ltd. All rights

  9. Ameliorative Effects of Herbal Combinations in Hyperlipidemia

    Directory of Open Access Journals (Sweden)

    Nishant P. Visavadiya

    2011-01-01

    Full Text Available The roots of Glycyrrhiza glabra, Withania somnifera, Asparagus racemosus, and Chlorophytum borivilianum and seeds of Sesamum indicum are ayurvedic medicinal plants used in India to treat several ailments. Our previous studies indicated that these plants possess hypolipidemic and antioxidant potential. The present study was aimed at investigating the composite effects of these plants on hypercholesterolemic rats. Three different combinations (5 gm%, given for four weeks used in this study effectively reduced plasma and hepatic lipid profiles and increased fecal excretion of cholesterol, neutral sterol, and bile acid along with increasing the hepatic HMG-CoA reductase activity and bile acid content in hypercholesterolemic rats. Further, all three combinations also improved the hepatic antioxidant status (catalase, SOD, and ascorbic acid levels and plasma total antioxidant capacity with reduced hepatic lipid peroxidation. Overall, combination I had the maximum effect on hypercholesterolemic rats followed by combinations II and III due to varying concentrations of the different classes of phytocomponents.

  10. Sida rhomboidea.Roxb leaf extract ameliorates gentamicin induced nephrotoxicity and renal dysfunction in rats.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Devkar, Ranjitsinh V; Ramachandran, A V

    2010-10-28

    Sida rhomboidea.Roxb (SR) known as "Mahabala" in Ayurveda and marketed as "Shahadeyi" is used in ethnomedicine to treat ailments such as dysuria and urinary disorders. To evaluate nephroprotective potential of SR against gentamicin (GM) induced nephrotoxicity and renal dysfunction. Nephrotoxicity was induced in rats with GM (100 mg/kg bodyweight (i.p.) for 8 days) and were treated with SR extract (200 and 400 mg/kg bodyweight (p.o.) for 8 days) or 0.5% carboxymethyl cellulose (vehicle). Plasma and urine urea and creatinine, renal enzymatic and non-enzymatic antioxidants along with lipid peroxidation were evaluated in various experimental groups. GM treatment induced significant elevation (p<0.05) in plasma and urine urea, creatinine, renal lipid peroxidation along with significant decrement (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR treatment to GM treated rats (GM+SR) recorded significant decrement (p<0.05) in plasma and urine urea and creatinine, renal lipid peroxidation along with significant increment (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR leaf extract ameliorates GM induced nephrotoxicity and renal dysfunction and thus validates its ethnomedicinal use. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice

    Directory of Open Access Journals (Sweden)

    Joo Wan Kim

    2015-01-01

    Full Text Available The objective of this study was to assess the possible beneficial skeletal muscle preserving effects of ethanol extract of Schisandrae Fructus (EESF on sciatic neurectomy- (NTX- induced hindlimb muscle atrophy in mice. Here, calf muscle atrophy was induced by unilateral right sciatic NTX. In order to investigate whether administration of EESF prevents or improves sciatic NTX-induced muscle atrophy, EESF was administered orally. Our results indicated that EESF dose-dependently diminished the decreases in markers of muscle mass and activity levels, and the increases in markers of muscle damage and fibrosis, inflammatory cell infiltration, cytokines, and apoptotic events in the gastrocnemius muscle bundles are induced by NTX. Additionally, destruction of gastrocnemius antioxidant defense systems after NTX was dose-dependently protected by treatment with EESF. EESF also upregulated muscle-specific mRNAs involved in muscle protein synthesis but downregulated those involved in protein degradation. The overall effects of 500 mg/kg EESF were similar to those of 50 mg/kg oxymetholone, but it showed more favorable antioxidant effects. The present results suggested that EESF exerts a favorable ameliorating effect on muscle atrophy induced by NTX, through anti-inflammatory and antioxidant effects related to muscle fiber protective effects and via an increase in protein synthesis and a decrease in protein degradation.

  12. Extract of Moringa oleifera leaves ameliorates streptozotocin-induced Diabetes mellitus in adult rats.

    Science.gov (United States)

    Yassa, Hanan Dawood; Tohamy, Adel Fathy

    2014-06-01

    Medicinal plants attract growing interest in the therapeutic management of Diabetes mellitus. Moringa oleifera is a remarkably nutritious vegetable with several antioxidant properties. The present study assessed the possible antioxidant and antidiabetic effects of an aqueous extract of M. oleifera leaves in treating streptozotocin-induced diabetic albino rats. The antidiabetic effects of aqueous extract of M. oleifera leaves were assessed histomorphometrically, ultrastructurally and biochemically. Fasting plasma glucose (FPG) was monitored and morphometric measurements of β-cells of islets of Langerhans (modified Gomori's stain) and collagen fibers (Mallory's trichrome stain) were performed. The antioxidant effects of M. oleifera leaves were determined by measuring the reduced glutathione and lipid peroxidation product, malondialdehyde, in pancreatic tissue. M. oleifera treatment significantly ameliorated the altered FPG (from 380% to 145%), reduced glutathione (from 22% to 73%) and malondialdehyde (from 385% to 186%) compared to control levels. The histopathological damage of islet cells was also markedly reversed. Morphometrically, M. oleifera significantly increased the areas of positive purple modified Gomori stained β-cells (from 60% to 91%) and decreased the area percentage of collagen fibers (from 199% to 120%) compared to control values. Experimental findings clearly indicate the potential benefits of using the aqueous extract of M. oleifera leaves as a potent antidiabetic treatment. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice

    Science.gov (United States)

    Kim, Joo Wan; Ku, Sae-Kwang; Kim, Ki Young; Kim, Sung Goo; Han, Min Ho; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Kim, Cheol Min

    2015-01-01

    The objective of this study was to assess the possible beneficial skeletal muscle preserving effects of ethanol extract of Schisandrae Fructus (EESF) on sciatic neurectomy- (NTX-) induced hindlimb muscle atrophy in mice. Here, calf muscle atrophy was induced by unilateral right sciatic NTX. In order to investigate whether administration of EESF prevents or improves sciatic NTX-induced muscle atrophy, EESF was administered orally. Our results indicated that EESF dose-dependently diminished the decreases in markers of muscle mass and activity levels, and the increases in markers of muscle damage and fibrosis, inflammatory cell infiltration, cytokines, and apoptotic events in the gastrocnemius muscle bundles are induced by NTX. Additionally, destruction of gastrocnemius antioxidant defense systems after NTX was dose-dependently protected by treatment with EESF. EESF also upregulated muscle-specific mRNAs involved in muscle protein synthesis but downregulated those involved in protein degradation. The overall effects of 500 mg/kg EESF were similar to those of 50 mg/kg oxymetholone, but it showed more favorable antioxidant effects. The present results suggested that EESF exerts a favorable ameliorating effect on muscle atrophy induced by NTX, through anti-inflammatory and antioxidant effects related to muscle fiber protective effects and via an increase in protein synthesis and a decrease in protein degradation. PMID:26064425

  14. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity – Exploring the armoury of obscurity

    Directory of Open Access Journals (Sweden)

    Kanchanlata Singh

    2018-02-01

    The effect of supplementation of thirteen different antioxidants and their analogues as a single agent or in combination with chemotherapy has been compiled in this article. The present review encompasses a total of 174 peer-reviewed original articles from 1967 till date comprising 93 clinical trials with a cumulative number of 18,208 patients, 56 animal studies and 35 in vitro studies. Our comprehensive data suggests that antioxidant has superior potential of ameliorating chemotherapeutic induced toxicity. Antioxidant supplementation during chemotherapy also promises higher therapeutic efficiency and increased survival times in patients.

  15. Antioxidants of edible mushrooms

    NARCIS (Netherlands)

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M.; Griensven, Van Leo

    2015-01-01

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic

  16. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    Science.gov (United States)

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  17. Esculetin Ameliorates Carbon Tetrachloride-Mediated Hepatic Apoptosis in Rats

    Directory of Open Access Journals (Sweden)

    Chuan-Sung Chiu

    2011-06-01

    Full Text Available Esculetin (ESC is a coumarin that is present in several plants such as Fraxinus rhynchophylla and Artemisia capillaris. Our previous study found that FR ethanol extract (FREtOH significantly ameliorated rats’ liver function. This study was intended to investigate the protective mechanism of ESC in hepatic apoptosis in rats induced by carbon tetrachloride. Rat hepatic apoptosis was induced by oral administration of CCl4. All rats were administered orally with CCl4 (20%, 0.5 mL/rat twice a week for 8 weeks. Rats in the ESC groups were treated daily with ESC, and silymarin group were treated daily with silymarin. Serum alanine aminotransferase (ALT, aspartate aminotransferase (AST as well as the activities of the anti-oxidative enzymes glutathione peroxidase (GPx, superoxide dismutase (SOD, and catalase in the liver were measured. In addition, expression of liver apoptosis proteins and anti-apoptotic proteins were detected. ESC (100, 500 mg/kg significantly reduced the elevated activities of serum ALT and AST caused by CCl4 and significantly increased the activities of catalase, GPx and SOD. Furthermore, ESC (100, 500 mg/kg significantly decreased the levels of the proapoptotic proteins (t-Bid, Bak and Bad and significantly increased the levels of the anti-apoptotic proteins (Bcl-2 and Bcl-xL. ESC inhibited the release of cytochrome c from mitochondria. In addition, the levels of activated caspase-9 and activated caspase-3 were significantly decreased in rats treated with ESC than those in rats treated with CCl4 alone. ESC significantly reduced CCl4-induced hepatic apoptosis in rats.

  18. Natural antioxidants in chemoprevention

    Energy Technology Data Exchange (ETDEWEB)

    Dragsted, L.O. [Danish Veterinary and Food Administration, Soeberg (Denmark). Inst. of Toxicology

    1998-12-31

    It is well documented that diets rich in fruits and vegetables can reduce the risk of most common cancers, and that some food items from this class may be protective against heart disease. Several explanations have been offered, one of which relates to the natural presence of potent antioxidants in plant products. Destructive oxidation of lipids, proteins, DNA, and other important biomolecules, often involving radical chain reactions, affect vital cellular structures and their normal functions. Such processes are involved in the development of cancer as well as heart disease, and it seems logical to assume that antioxidants might be preventive. Large human trials with natural antioxidants have not provided a uniform support, however, for the hypothesis that antioxidation per se may prevent cancer or coronary heart disease (CHD). One reason is that other effects, unrelated to antioxidation, may compromise their preventive effects. Another reason may be that many potent antioxidants can also act as pro-oxidants under certain conditions. The interpretation of animal trials is likewise often compromised by the fact that most antioxidants have other physiological effects which might very well explain their protective action or lead to toxic side-effects. (orig.)

  19. Acetylcholinesterase inhibition ameliorates deficits in motivational drive

    Directory of Open Access Journals (Sweden)

    Martinowich Keri

    2012-03-01

    Full Text Available Abstract Background Apathy is frequently observed in numerous neurological disorders, including Alzheimer's and Parkinson's, as well as neuropsychiatric disorders including schizophrenia. Apathy is defined as a lack of motivation characterized by diminished goal-oriented behavior and self-initiated activity. This study evaluated a chronic restraint stress (CRS protocol in modeling apathetic behavior, and determined whether administration of an anticholinesterase had utility in attenuating CRS-induced phenotypes. Methods We assessed behavior as well as regional neuronal activity patterns using FosB immunohistochemistry after exposure to CRS for 6 h/d for a minimum of 21 d. Based on our FosB findings and recent clinical trials, we administered an anticholinesterase to evaluate attenuation of CRS-induced phenotypes. Results CRS resulted in behaviors that reflect motivational loss and diminished emotional responsiveness. CRS-exposed mice showed differences in FosB accumulation, including changes in the cholinergic basal forebrain system. Facilitating cholinergic signaling ameliorated CRS-induced deficits in initiation and motivational drive and rescued immediate early gene activation in the medial septum and nucleus accumbens. Conclusions Some CRS protocols may be useful for studying deficits in motivation and apathetic behavior. Amelioration of CRS-induced behaviors with an anticholinesterase supports a role for the cholinergic system in remediation of deficits in motivational drive.

  20. Conservative Nonhormonal Options for the Treatment of Male Infertility: Antibiotics, Anti-Inflammatory Drugs, and Antioxidants.

    Science.gov (United States)

    Calogero, Aldo E; Condorelli, Rosita A; Russo, Giorgio Ivan; La Vignera, Sandro

    2017-01-01

    The nonhormonal medical treatment can be divided into empirical, when the cause has not been identified, and nonempirical, if the pathogenic mechanism causing male infertility can be solved or ameliorated. The empirical nonhormonal medical treatment has been proposed for patients with idiopathic or noncurable oligoasthenoteratozoospermia and for normozoospermic infertile patients. Anti-inflammatory, fibrinolytic, and antioxidant compounds, oligo elements, and vitamin supplementation may be prescribed. Infection, inflammation, and/or increased oxidative stress often require a specific treatment with antibiotics, anti-inflammatory drugs, and/or antioxidants. Combined therapies can contribute to improve sperm quality.

  1. Pycnogenol Ameliorates Depression-Like Behavior in Repeated Corticosterone-Induced Depression Mice Model

    Directory of Open Access Journals (Sweden)

    Lin Mei

    2014-01-01

    Full Text Available Oxidative stress is considered to be a mechanism of major depression. Pycnogenol (PYC is a natural plant extract from the bark of Pinus pinaster Aiton and has potent antioxidant activities. We studied the ameliorative effect of PYC on depression-like behavior in chronic corticosterone- (CORT- treated mice for 20 days. After the end of the CORT treatment period, PYC (0.2 mg/mL was orally administered in normal drinking water. Depression-like behavior was investigated by the forced swimming test. Immobility time was significantly longer by CORT exposure. When the CORT-treated mice were supplemented with PYC, immobility time was significantly shortened. Our results indicate that orally administered PYC may serve to reduce CORT-induced stress by radical scavenging activity.

  2. Mitochondrial dysfunction in H9c2 cells during ischemia and amelioration with Tribulus terrestris L.

    Science.gov (United States)

    Reshma, P L; Sainu, Neethu S; Mathew, Anil K; Raghu, K G

    2016-05-01

    The present study investigates the protective effect of partially characterized Tribulus terrestris L. fruit methanol extract against mitochondrial dysfunction in cell based (H9c2) myocardial ischemia model. To induce ischemia, the cells were maintained in an ischemic buffer (composition in mM -137 NaCl, 12 KCl, 0.5 MgCl2, 0.9 CaCl2, 20 HEPES, 20 2-deoxy-d-glucose, pH-6.2) at 37°C with 0.1% O2, 5% CO2, and 95% N2 in a hypoxia incubator for 1h. Cells were pretreated with various concentrations of T. terrestris L. fruit methanol extract (10 and 25μg/ml) and Cyclosporin A (1μM) for 24h prior to the induction of ischemia. Different parameters like lactate dehydrogenase release, total antioxidant capacity, glutathione content and antioxidant enzymes were investigated. Studies were conducted on mitochondria by analyzing alterations in mitochondrial membrane potential, integrity, and dynamics (fission and fusion proteins - Mfn1, Mfn2, OPA1, Drp1 and Fis1). Various biochemical processes in mitochondria like activity of electron transport chain (ETC) complexes, oxygen consumption and ATP production was measured. Ischemia for 1h caused a significant (p≤0.05) increase in LDH leakage, decrease in antioxidant activity and caused mitochondrial dysfunction. T. terrestris L. fruit methanol extract pretreatment was found effective in safeguarding mitochondria via its antioxidant potential, mediated through various bioactives. HPLC of T. terrestris L. fruit methanol extract revealed the presence of ferulic acid, phloridzin and diosgenin. T. terrestris L. fruit ameliorate ischemic insult in H9c2 cells by safeguarding mitochondrial function. This validates the use of T. terrestris L. against heart disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Conservative Nonhormonal Options for the Treatment of Male Infertility: Antibiotics, Anti-Inflammatory Drugs, and Antioxidants

    OpenAIRE

    Calogero, Aldo E.; Condorelli, Rosita A.; Russo, Giorgio Ivan; La Vignera, Sandro

    2017-01-01

    The nonhormonal medical treatment can be divided into empirical, when the cause has not been identified, and nonempirical, if the pathogenic mechanism causing male infertility can be solved or ameliorated. The empirical nonhormonal medical treatment has been proposed for patients with idiopathic or noncurable oligoasthenoteratozoospermia and for normozoospermic infertile patients. Anti-inflammatory, fibrinolytic, and antioxidant compounds, oligo elements, and vitamin supplementation may be pr...

  4. The performance of maize crop during acid amelioration with ...

    African Journals Online (AJOL)

    Tanzania Journal of Science ... This study evaluated acid ameliorative potential and their effects on maize growth of four organic residues namely wild spikenard, cordia, cowpea and pigeon peas ... The finding suggests different acid ameliorating potential of residues, pigeon peas and cordia being the most effective.

  5. Plumbagin, a vitamin K3 analogue ameliorate malaria pathogenesis by inhibiting oxidative stress and inflammation.

    Science.gov (United States)

    Gupta, Amit Chand; Mohanty, Shilpa; Saxena, Archana; Maurya, Anil Kumar; Bawankule, Dnyaneshwar U

    2018-03-22

    Plumbagin, a vitamin K3 analogue is the major active constituent in several plants including root of Plumbago indica Linn. This compound has been shown to exhibit a wide spectrum of pharmacological activities. The present investigation was to evaluate the ameliorative effects of plumbagin (PL) against severe malaria pathogenesis due to involvement of oxidative stress and inflammatory response in Plasmodium berghei infected malaria in mice. Malaria pathogenesis was induced by intra-peritoneal injection of P. berghei infected red blood cells into the Swiss albino mice. PL was administered orally at doses of 3, 10 and 30 mg/kg/day following Peter's 4 day suppression test. Oral administration of PL showed significant reduction of parasitaemia and increase in mean survival time. PL treatment is also attributed to significant increase in the blood glucose and haemoglobin level when compared with vehicle-treated infected mice. Significant inhibition in level of oxidative stress and pro-inflammation related markers were observed in PL treated group. The trend of inhibition in oxidative stress markers level after oral treatment of PL was MPO > LPO > ROS in organ injury in P. berghei infected mice. This study showed that plumbagin is able to ameliorate malaria pathogenesis by augmenting anti-oxidative and anti-inflammatory mechanism apart from its effect on reducing parasitaemia and increasing mean survival time of malaria-induced mice.

  6. Honey Supplementation in Spontaneously Hypertensive Rats Elicits Antihypertensive Effect via Amelioration of Renal Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Omotayo O. Erejuwa

    2012-01-01

    Full Text Available Oxidative stress is implicated in the pathogenesis and/or maintenance of elevated blood pressure in hypertension. This study investigated the effect of honey on elevated systolic blood pressure (SBP in spontaneously hypertensive rats (SHR. It also evaluated the effect of honey on the amelioration of oxidative stress in the kidney of SHR as a possible mechanism of its antihypertensive effect. SHR and Wistar Kyoto (WKY rats were randomly divided into 2 groups and administered distilled water or honey by oral gavage once daily for 12 weeks. The control SHR had significantly higher SBP and renal malondialdehyde (MDA levels than did control WKY. The mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2 and glutathione S-transferase (GST were significantly downregulated while total antioxidant status (TAS and activities of GST and catalase (CAT were higher in the kidney of control SHR. Honey supplementation significantly reduced SBP and MDA levels in SHR. Honey significantly reduced the activities of GST and CAT while it moderately but insignificantly upregulated the Nrf2 mRNA expression level in the kidney of SHR. These results indicate that Nrf2 expression is impaired in the kidney of SHR. Honey supplementation considerably reduces elevated SBP via amelioration of oxidative stress in the kidney of SHR.

  7. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury.

    Science.gov (United States)

    Kim, Eun Nim; Lim, Ji Hee; Kim, Min Young; Ban, Tae Hyun; Jang, In-Ae; Yoon, Hye Eun; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2018-01-11

    Two important issues in the aging kidney are mitochondrial dysfunction and oxidative stress. An Nrf2 activator, resveratrol, is known to have various effects. Resveratrol may prevent inflammation and oxidative stress by activating Nrf2 and SIRT1 signaling. We examined whether resveratrol could potentially ameliorate the cellular condition, such as renal injury due to cellular oxidative stress and mitochondrial dysfunction caused by aging. Male 18-month-old C57BL/6 mice were used. Resveratrol (40 mg/kg) was administered to aged mice for 6 months. We compared histological changes, oxidative stress, and aging-related protein expression in the kidney between the resveratrol-treated group (RSV) and the control group (cont). We performed experiments using small-interfering RNAs (siRNAs) for Nrf2 and SIRT1 in cultured HK2 cells. Resveratrol improved renal function, proteinuria, histological changes and inflammation in aging mice. Also, expression of Nrf2-HO-1-NOQ-1 signaling and SIRT1-AMPK-PGC-1α signaling was increased in the RSV group. Transfection with Nrf2 and SIRT1 siRNA prevented resveratrol-induced anti-oxidative effect in HK2 cells in media treated with H 2 O 2 . Activation of the Nrf2 and SIRT1 signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Pharmacological targeting of Nrf2 signaling molecules may reduce the pathologic changes of aging in the kidney.

  8. Ameliorative Effect of Honey and Propolis Mixture on Rats Exposed to Gamma Irradiation

    International Nuclear Information System (INIS)

    Hemieda, S.F.; Abd-El Nour, K.N.; Hassan, A.I.; Abdou, M.I.; Khalil, W.A.

    2016-01-01

    This study aims to evaluate the ameliorative effect of honey and propolis mixture treatment on some biochemical and biophysical parameters in rats exposed to oxidative stress of gamma irradiation. Male rats were exposed to a fractionated dose gamma irradiation of total 5 Gy in five successive days. A mixture of dose 250 mg/kg/day honey and 90 mg/kg/day propolis was administrated to rats, ten days before irradiation, five days during irradiation and 14 days post irradiation. Blood samples were collected at 1 st , 7 th and 14 th day post the 5 th day of irradiation. Biochemical parameters such as serum liver enzymes (ALT and AST), serum renal function as (BUN and Creatinine) and serum total antioxidants were estimated. Also biophysical studies including hemoglobin investigations (Hb absorption spectra and dielectric measurements) were investigated.The results demonstrated that the levels of AST, ALT, BUN and creatinine were significantly elevated, while levels of total antioxidants were significantly reduced post irradiation. Moreover the absolute values of permittivity ε', dielectric loss ε'' and ac - conductivity σ ac increased in addition to a pronounced decrease in the absorbance at Sort band after irradiation compared to control group.Treatment of the irradiated group with honey and propolis mixture showed significant amelioration in the levels of the biochemical parameters. Also, the values of ε', ε'' and σ ac were nearly close to those of control group. Finally, the average value of peak height of Sort band was significantly increased compared to irradiated rat.

  9. Antioxidative properties of flavonoids

    NARCIS (Netherlands)

    Bowedes, T.C.F.; Luttikhold, J.; Stijn, van M.F.M.; Visser, M.; Norren, van K.; Vermeulen, M.A.R.; Leeuwen, P.A.M.

    2011-01-01

    Evidence accumulates that a family of plant compounds, known as flavonoids, can prevent or slow down the progression of cardiovascular diseases, cancer, inflammatory and neurodegenerative diseases. Flavonoids are considered beneficial, this is often attributed to their powerful antioxidant

  10. Atmospheric oxidation and antioxidants

    CERN Document Server

    Meurant, Gerard

    1993-01-01

    Volume I reviews current understanding of autoxidation, largely on the basis of the reactions of oxygen with characterised chemicals. From this flows the modern mechanism of antioxidant actions and their application in stabilisation technology.

  11. Use of Coffee Pulp and Minerals for Natural Soil Ameliorant

    Directory of Open Access Journals (Sweden)

    Pujiyanto Pujiyanto

    2007-05-01

    Full Text Available In coffee plantation, solid waste of coffee pulp is usually collected as heap nearby processing facilities for several months prior being used as compost. The practice is leading to the formation of odor and liquid which contaminate the environment. Experiments to evaluate the effect of natural soil ameliorant derived from coffee pulp and minerals were conducted at The Indonesian Coffee and Cocoa Research Institute in Jember, East Java. The experiments were intended to optimize the use of coffee pulp to support farming sustainability and minimize negative impacts of solid waste disposal originated from coffee cherry processing. Prior to applications, coffee pulp was hulled to organic paste. The paste was then mixed with 10% minerals (b/b. Composition of the minerals was 50% zeolite and 50% rock phosphate powder. The ameliorant was characterized for their physical and chemical properties. Agronomic tests were conducted on coffee and cocoa seedling. The experiments were arranged according to Randomized Completely Design with 2 factors, consisted of natural ameliorant and inorganic fertilizer respectively. Natural ameliorant derived from coffee pulp was applied at 6 levels: 0, 30, 60, 90, 120 and 150 g dry ameliorant/seedling of 3 kg soil, equivalent to 0, 1, 2, 3, 4 and 5% (b/b of ameliorant respectively. Inorganic fertilizer was applied at 2 levels: 0 and 2 g fertilizer/application of N-P-K compound fertilizer of 15-15-15 respectively. The inorganic fertilizer was applied 4 times during nursery of coffee and cocoa. The result of the experiment indicated that coffee pulp may be used as natural soil ameliorant. Composition of ameliorant of 90% coffee pulp and 10% of minerals has good physical and chemical characteristics for soil amelioration. The composition has high water holding capacity; cations exchange capacity, organic carbon and phosphorus contents which are favorable to increase soil capacity to support plant growth. Application of

  12. Antioxidants in food

    Directory of Open Access Journals (Sweden)

    Đilas Sonja M.

    2002-01-01

    Full Text Available This paper attempts to lead the reader an understanding of what free radicals are and how they can form during lipid oxidation. Also, it provides some information out natural antioxidants (tocopherols and tocotrienols flavonoids, polyphenols, tannines, melanoidihes, carotenoids, ascorbates and the echanisms of their protection from radical damage. The sources of natural antioxidants are: oil seeds, teas, vegetables, fruits, spices and herbs.

  13. Plasma antioxidants from chocolate

    OpenAIRE

    Serafini, M.; Bugianesi, R.; Maiani, G.; Valtuena, S.; De Santis, S.; Crozier, A.

    2003-01-01

    There is some speculation that dietary flavonoids from chocolate, in particular (-)epicatechin, may promote cardiovascular health as a result of direct antioxidant effects or through antithrombotic mechanisms. Here we show that consumption of plain, dark chocolate results in an increase in both the total antioxidant capacity and the (-)epicatechin content of blood plasma, but that these effects are markedly reduced when the chocolate is consumed with milk or if milk is incorporated as milk ch...

  14. Antioxidant supplements and mortality

    DEFF Research Database (Denmark)

    Bjelakovic, Goran; Nikolova, Dimitrinka; Gluud, Christian

    2014-01-01

    Oxidative damage to cells and tissues is considered involved in the aging process and in the development of chronic diseases in humans, including cancer and cardiovascular diseases, the leading causes of death in high-income countries. This has stimulated interest in the preventive potential of a...... of antioxidant supplements. Today, more than one half of adults in high-income countries ingest antioxidant supplements hoping to improve their health, oppose unhealthy behaviors, and counteract the ravages of aging....

  15. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    Science.gov (United States)

    Ahmed, Romana; Hossen, Md. Sakib; Ahmmed, Istiyak; Rumpa, Nur-E-Noushin; Sulaiman, Siti Amrah

    2017-01-01

    Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats (n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation. PMID:28261310

  16. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    Directory of Open Access Journals (Sweden)

    Romana Ahmed

    2017-01-01

    Full Text Available Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH radical-scavenging activity and ferric reducing antioxidant power (FRAP values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO- induced myocardial infarction in rats. Male Wistar rats (n=32 were pretreated orally with an ethanol extract of MP (100 mg/kg/day for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  17. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature

    Directory of Open Access Journals (Sweden)

    Abbaszadeh A.

    2017-06-01

    Full Text Available Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/ biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses

  18. Curcumin ameliorates doxorubicin-induced cardiotoxicity by abrogation of inflammation, apoptosis, oxidative DNA damage, and protein oxidation in rats.

    Science.gov (United States)

    Benzer, Fulya; Kandemir, Fatih Mehmet; Ozkaraca, Mustafa; Kucukler, Sefa; Caglayan, Cuneyt

    2018-02-01

    Doxorubicin (DXR) is a highly effective drug for chemotherapy. However, cardiotoxicity reduces its clinical utility in humans. The present study aimed to assess the ameliorative effect of curcumin against DXR-induced cardiotoxicity in rats. Rats were subjected to oral treatment of curcumin (100 and 200 mg/kg body weight) for 7 days. Cardiotoxicity was induced by single intraperitoneal injection of DXR (40 mg/kg body weight) on the 5th day and the rats sacrificed on 8th day. Curcumin ameliorated DXR-induced lipid peroxidation, glutathione depletion, decrease in antioxidant (superoxide dismutase, catalase, and glutathione peroxidase) enzyme activities, and cardiac toxicity markers (CK-MB, LDH, and cTn-I). Curcumin also attenuated activities of Caspase-3, cyclooxygenase-2, inducible nitric oxide synthase, and levels of nuclear factor kappa-B, tumor necrosis factor-α, and interleukin-1β, and cardiac tissue damages that were induced by DXR. Moreover, curcumin decreased the expression of 8-OHdG and 3,3'-dityrosine. This study demonstrated that curcumin has a multi-cardioprotective effect due to its antioxidant, anti-inflammatory, and antiapoptotic properties. © 2018 Wiley Periodicals, Inc.

  19. Amelioration of Diabetes and Painful Diabetic Neuropathy by Punica granatum L. Extract and Its Spray Dried Biopolymeric Dispersions

    Directory of Open Access Journals (Sweden)

    K. Raafat

    2014-01-01

    Full Text Available Aims. To evaluate the effect of Punica granatum (Pg rind extract and its spray dried biopolymeric dispersions with casein (F1 or chitosan (F2 against Diabetes mellitus (DM and diabetic neuropathy (DN. Methods. We measured the acute (6 h and subacute (8 days effect of various doses of Pg, F1, and F2 and the active compounds on alloxan-induced DM mouse model. We evaluated DN utilizing latency tests for longer period of time (8 weeks. In addition, the in vivo antioxidant activity was assessed utilizing serum catalase level. Results. The results proved that the highest dose levels of Pg extract, F1, F2 exerted remarkable hypoglycemic activity with 48, 52, and 40% drop in the mice glucose levels after 6 hours, respectively. The tested compounds also improved peripheral nerve function as observed from the latency tests. Bioguided fractionation suggested that gallic acid (GA was Pg main active ingredient responsible for its actions. Conclusion. Pg extract, F1, F2, and GA could be considered as a new therapeutic potential for the amelioration of diabetic neuropathic pain and the observed in vivo antioxidant potential may be involved in its antinociceptive effect. It is highly significant to pay attention to Pg and GA for amelioration and control of DM and its complications.

  20. Amelioration of Diabetes and Painful Diabetic Neuropathy by Punica granatum L. Extract and Its Spray Dried Biopolymeric Dispersions

    Science.gov (United States)

    Raafat, K.; Samy, W.

    2014-01-01

    Aims. To evaluate the effect of Punica granatum (Pg) rind extract and its spray dried biopolymeric dispersions with casein (F1) or chitosan (F2) against Diabetes mellitus (DM) and diabetic neuropathy (DN). Methods. We measured the acute (6 h) and subacute (8 days) effect of various doses of Pg, F1, and F2 and the active compounds on alloxan-induced DM mouse model. We evaluated DN utilizing latency tests for longer period of time (8 weeks). In addition, the in vivo antioxidant activity was assessed utilizing serum catalase level. Results. The results proved that the highest dose levels of Pg extract, F1, F2 exerted remarkable hypoglycemic activity with 48, 52, and 40% drop in the mice glucose levels after 6 hours, respectively. The tested compounds also improved peripheral nerve function as observed from the latency tests. Bioguided fractionation suggested that gallic acid (GA) was Pg main active ingredient responsible for its actions. Conclusion. Pg extract, F1, F2, and GA could be considered as a new therapeutic potential for the amelioration of diabetic neuropathic pain and the observed in vivo antioxidant potential may be involved in its antinociceptive effect. It is highly significant to pay attention to Pg and GA for amelioration and control of DM and its complications. PMID:24982685

  1. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu; Xie, Fei; Ma, Xuemei, E-mail: xmma@bjut.edu.cn; Zhao, Pengxiang; Liu, Yunqi; Li, Jiala; Wang, Minglian; Yang, Zhaona; Zhang, Yutong

    2014-10-01

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo

  2. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    International Nuclear Information System (INIS)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu; Xie, Fei; Ma, Xuemei; Zhao, Pengxiang; Liu, Yunqi; Li, Jiala; Wang, Minglian; Yang, Zhaona; Zhang, Yutong

    2014-01-01

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD 50 ) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo and in

  3. Role of Antioxidants in Horse Serum-mediated Vasculitis in Swine: Potential Relevance to Early Treatment in Mitigation of Coronary Arteritis in Kawasaki Disease

    Directory of Open Access Journals (Sweden)

    Saji Philip

    2017-08-01

    Conclusion: Serum sickness is a prototype of immune complex vasculitis, and the severity can be ameliorated with antioxidants. A trial of therapeutic dosages of vitamins A, E, and C in acute phase of Kawasaki disease, may be effective in mitigation of coronary artery lesion in addition to intravenous immunoglobulin and aspirin.

  4. Curcumin ameliorates skeletal muscle atrophy in type 1 diabetic mice by inhibiting protein ubiquitination.

    Science.gov (United States)

    Ono, Taisuke; Takada, Shingo; Kinugawa, Shintaro; Tsutsui, Hiroyuki

    2015-09-01

    What is the central question of this study? We sought to examine whether curcumin could ameliorate skeletal muscle atrophy in diabetic mice by inhibiting protein ubiquitination, inflammatory cytokines and oxidative stress. What is the main finding and its importance? We found that curcumin ameliorated skeletal muscle atrophy in streptozotocin-induced diabetic mice by inhibiting protein ubiquitination without affecting protein synthesis. This favourable effect of curcumin was possibly due to the inhibition of inflammatory cytokines and oxidative stress. Curcumin may be beneficial for the treatment of muscle atrophy in type 1 diabetes mellitus. Skeletal muscle atrophy develops in patients with diabetes mellitus (DM), especially in type 1 DM, which is associated with chronic inflammation. Curcumin, the active ingredient of turmeric, has various biological actions, including anti-inflammatory and antioxidant properties. We hypothesized that curcumin could ameliorate skeletal muscle atrophy in mice with streptozotocin-induced type 1 DM. C57BL/6 J mice were injected with streptozotocin (200 mg kg(-1) i.p.; DM group) or vehicle (control group). Each group of mice was randomly subdivided into two groups of 10 mice each and fed a diet with or without curcumin (1500 mg kg(-1) day(-1)) for 2 weeks. There were significant decreases in body weight, skeletal muscle weight and cellular cross-sectional area of the skeletal muscle in DM mice compared with control mice, and these changes were significantly attenuated in DM+Curcumin mice without affecting plasma glucose and insulin concentrations. Ubiquitination of protein was increased in skeletal muscle from DM mice and decreased in DM+Curcumin mice. Gene expressions of muscle-specific ubiquitin E3 ligase atrogin-1/MAFbx and MuRF1 were increased in DM and inhibited in DM+Curcumin mice. Moreover, nuclear factor-κB activation, concentrations of the inflammatory cytokines tumour necrosis factor-α and interleukin-1β and oxidative

  5. Skin and antioxidants.

    Science.gov (United States)

    Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar

    2013-04-01

    It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.

  6. Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2015-06-01

    Full Text Available Advanced glycation end products (AGEs, the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg and orally treated with sesamin (160 mg/kg for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM and then exposed to AGEs (200 mg/L for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67phox and p22phox, and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress.

  7. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress.

    Science.gov (United States)

    Dehdashtian, Ehsan; Mehrzadi, Saeed; Yousefi, Bahman; Hosseinzadeh, Azam; Reiter, Russel J; Safa, Majid; Ghaznavi, Habib; Naseripour, Masood

    2018-01-15

    Diabetic retinopathy (DR), a microvascular complication of diabetes mellitus (DM), remains as one of the major causes of vision loss worldwide. The release of pro-inflammatory cytokines and the adhesion of leukocytes to retinal capillaries are initial events in DR development. Inflammation, ER stress, oxidative stress and autophagy are major causative factors involved in the pathogenesis of DR. Diabetes associated hyperglycemia leads to mitochondrial electron transport chain dysfunction culminating in a rise in ROS generation. Since mitochondria are the major source of ROS production, oxidative stress induced by mitochondrial dysfunction also contributes to the development of diabetic retinopathy. Autophagy increases in the retina of diabetic patients and is regulated by ER stress, oxidative stress and inflammation-related pathways. Autophagy functions as a double-edged sword in DR. Under mild stress, autophagic activity can lead to cell survival while during severe stress, dysregulated autophagy results in massive cell death and may have a role in initiation and exacerbation of DR. Melatonin and its metabolites play protective roles against inflammation, ER stress and oxidative stress due to their direct free radical scavenger activities and indirect antioxidant activity via the stimulation antioxidant enzymes including glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. Melatonin also acts as a cell survival agent by modulating autophagy in various cell types and under different conditions through amelioration of oxidative stress, ER stress and inflammation. Herein, we review the possible effects of melatonin on diabetic retinopathy, focusing on its ability to regulate autophagy processes. Copyright © 2017. Published by Elsevier Inc.

  8. Salvia officinalis l. (sage) Ameliorates Radiation-Induced Oxidative Brain Damage In Rats

    International Nuclear Information System (INIS)

    Osman, N. N.; Abd El Azime, A.Sh.

    2013-01-01

    The present study was designed to investigate the oxidative stress and the role of antioxidant system in the management of gamma irradiation induced whole brain damage in rats . Also, to elucidate the potential role of Salvia officinalis (sage) in alleviating such negative effects. Rats were subjected to gamma radiation (6 Gy). Sage extract was daily given to rats during 14 days before starting irradiation and continued after radiation exposure for another 14 days. The results revealed that the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and nitric oxide (NO) content were significantly increased, while the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the reduced glutathione (GSH) content were significantly decreased in the brain homogenate of irradiated rats. Additionally, brain acetylcholinesterase (AChE) as well as alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) activities were significantly increased. On the other hand, the results showed that, administration of sage extract to rats was able to ameliorate the mentioned parameters and the values returned close to the normal ones. It could be concluded that sage extract, by its antioxidant constituents, could modulate radiation induced oxidative stress and enzyme activities in the brain.

  9. Using of Coffee and Cardamom Mixture to Ameliorate Oxidative Stress Induced in irradiated Rats

    International Nuclear Information System (INIS)

    Hamza, R.G.; Osman, N.N.

    2013-01-01

    Human exposure to ionizing radiation induced overproduction of free radicals leading to oxidative stress. This study aimed to evaluate the possibility of using of coffee and cardamom mixture; as natural antioxidant compounds ; to ameliorate oxidative stress in rats induced by exposure to ionizing radiation. Phenolic contents in coffee and essential oils in cardamom were identified by using HPLC chromatography and GC/MS analysis. Four groups of adult male rats were used; the control group (A), the second group (B) received orally the mixture extract of coffee and cardamom (60 mg/100g body weight) for 8 weeks, the third group (C) irradiated (6 Gy) and the fourth group (D) received orally the mixture extract for 8 weeks and exposed to radiation at the 4th week. The results revealed that the administration of mixture extract of coffee and cardamom to rats significantly reduced the damage effect induced by irradiation via the adjustment of the antioxidant status, decreasing of malondialdehyde content and the subsequent amending of different biochemical parameters as well as some hormones. Accordingly, it is possible to indicate that coffee-cardamom reduced the radiation exposure induced oxidative stress.

  10. Ameliorative effects of pine bark extract on cisplatin-induced acute kidney injury in rats.

    Science.gov (United States)

    Lee, In-Chul; Ko, Je-Won; Park, Sung-Hyeuk; Shin, Na-Rae; Shin, In-Sik; Kim, Yun-Bae; Kim, Jong-Choon

    2017-11-01

    This study investigated the dose-response effects of pine bark extract (PBE, pycnogenol ® ) on oxidative stress-mediated apoptotic changes induced by cisplatin (Csp) in rats. The ameliorating potential of PBE was evaluated after orally administering PBE at doses of 10 or 20 mg/kg for 10 days. Acute kidney injury was induced by a single intraperitoneal injection of Csp at 7 mg/kg on test day 5. Csp treatment caused acute kidney injury manifested by elevated levels of serum blood urea nitrogen (BUN) and creatinine (CRE) with corresponding histopathological changes, including degeneration of tubular epithelial cells, hyaline casts in the tubular lumen, and inflammatory cell infiltration (interstitial nephritis). Csp also induced significant apoptotic changes in renal tubular cells. In addition, Csp treatment induced high levels of oxidative stress, as evidenced by an increased level of malondialdehyde, depletion of the reduced glutathione (GSH) content, and decreased activities of glutathione S-transferase, superoxide dismutase, and catalase in kidney tissues. On the contrary, PBE treatment lowered BUN and CRE levels and effectively attenuated histopathological alterations and apoptotic changes induced by Csp. Additionally, treatment with PBE suppressed lipid peroxidation, prevented depletion of GSH, and enhanced activities of the antioxidant enzymes in kidney tissue. These results indicate that PBE has a cytoprotective effect against oxidative stress-mediated apoptotic changes caused by Csp in the rat kidney, which may be attributed to both increase of antioxidant enzyme activities and inhibition of lipid peroxidation.

  11. Virgin olive oil ameliorates deltamethrin-induced nephrotoxicity in mice: A biochemical and immunohistochemical assessment.

    Science.gov (United States)

    Khalatbary, Ali Reza; Ahmadvand, Hassan; Ghabaee, Davood Nasiry Zarrin; Malekshah, Abbasali Karimpour; Navazesh, Azam

    2016-01-01

    A major class of synthetic pyrethroid insecticide, deltamethrin (DM), can elicit pathophysiological effects through oxidative stress in non-targeted organisms such as mammals. There is accumulating evidence that virgin olive oil (VOO), a rich source of polyphenolic components, have anti-oxidant, anti-inflammatory, and anti-apoptotic properties. This study aimed to determine the protective and ameliorative effects of VOO against DM-induced nephrotoxicity. Mice were randomly divided into four equal groups: DM group, DM plus VOO group, VOO group, and vehicle group. Five weeks after gavaging, kidney samples were taken for biochemical assessment of malondialdehyde (MDA), glutathione (GSH) and catalase (CAT), and for immunohistochemical assessment of caspase-3, cyclooxygenase-2 (cox-2) and poly (ADP-ribose) polymerase (PARP). The MDA level in kidney was increased in the DM group, which was significantly decreased after VOO administration in the DM plus VOO group. The GSH level and CAT activiy in kidney were decreased in the DM group, which were significantly increased after VOO administration in the DM plus VOO group. Greater expression of caspase-3, cox-2, and PARP could be detected in the DM group, which was significantly attenuated in the DM plus VOO group. Also, the histopathological changes which were detected in the DM group attenuated after VOO consumption. Virgin olive oil exerted protective effects against deltamethrin-induced nephrotoxicity, which might be associated with its anti-apoptotic, anti-inflammatory, and anti-oxidative properties.

  12. Celastrol ameliorates liver metabolic damage caused by a high-fat diet through Sirt1

    Directory of Open Access Journals (Sweden)

    Yinliang Zhang

    2017-01-01

    . Conclusions: Celastrol ameliorates NAFLD by decreasing lipid synthesis and improving the anti-oxidative and anti-inflammatory status. And Sirt1 has an important role in Celastrol-ameliorating liver metabolic damage caused by HFD. Keywords: Nonalcoholic fatty liver disease, Celastrol, Sirt1, Lipid metabolism, Chronic inflammation, Oxidative stress

  13. Timing of antioxidant supplementation is critical in improving anorexia in an experimental model of cancer.

    Science.gov (United States)

    Molfino, Alessio; De Luca, Simona; Muscaritoli, Maurizio; Citro, Gennaro; Fazi, Lucia; Mari, Alessia; Ramaccini, Cesarina; Rossi Fanelli, Filippo; Laviano, Alessandro

    2013-08-01

    Increased oxidative stress may contribute to cancer anorexia, which could be ameliorated by antioxidant supplementation. methylcholanthrene (MCA) sarcoma-bearing Fisher rats were studied. After tumour inoculation, rats were randomly assigned to standard diet (CTR group, n = 6), or to an antioxidant-enriched diet (AOX group, n = 8). Eight more rats (STD-AOX group) switched from standard to antioxidant diet when anorexia developed. At the end of the study, food intake (FI, g/d), body weight and tumour weight (g) were recorded, and plasma samples were obtained. On day 16, anorexia has appeared only in CTR and STD-AOX animals. At the end of the study, FI in AOX animals was still higher than in the other groups (p = 0.08). No differences in body and tumour weights were observed among groups. However, hydrogen peroxide and interleukin-1β levels were significantly reduced only in AOX rats. Data obtained suggest that early antioxidant supplementation improves cancer anorexia, ameliorates oxidative stress and reduces inflammation.

  14. From Radiation to Antioxidants

    International Nuclear Information System (INIS)

    Thongphasak, J.

    1998-01-01

    Radiation induces the formation of reactive oxygen species (ROS), which can damage cells. Antioxidants (AO) can decrease these damage. In addition to radiation, ROS is normally generated by metabolic processes in our bodies. Alteration of ROS and AO levels is related to several diseases and pathologic conditions e.g. cancer, diabetes, Alzheimer, AIDS, and aging. In addition, emotion such as stress can change ROS and AO levels. Antioxidants from nutrient and happy mind will make us healthy, decrease radiation-induced damage, reduce the medical cost, and consequently assist in the development of our economy

  15. Mercapturic acids as biomarkers of exposure to electrophilic chemicals: applications to environmental and industrial chemicals.

    NARCIS (Netherlands)

    de Rooij, B.M.; Commandeur, J.N.M.; Vermeulen, N.P.E.

    1998-01-01

    The use of mercapturic acids (N-acetyl-L-cysteine S-conjugates, MAs) in the biological monitoring of human exposure to environmental and industrial chemicals is receiving more and more attention. Mercapturic acids (MAs) are formed from glutathione (GSH) S-conjugates via the MA-pathway. Although this

  16. Hepatoprotective Effect of Opuntia robusta and Opuntia streptacantha Fruits against Acetaminophen-Induced Acute Liver Damage

    NARCIS (Netherlands)

    Gonzalez Ponce, Herson Antonio; Consolacion Martinez-Saldana, Maria; Rosa Rincon-Sanchez, Ana; Teresa Sumaya-Martinez, Maria; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han; Jaramillo-Juarez, Fernando

    2016-01-01

    Acetaminophen (APAP)-induced acute liver failure (ALF) is a serious health problem in developed countries. N-acetyl-L-cysteine (NAC), the current therapy for APAP-induced ALF, is not always effective, and liver transplantation is often needed. Opuntia spp. fruits are an important source of nutrients

  17. Synthesis, isolation and identification of glucuronides and mercapturic acids of a novel antiparasitic agent, licochalcone A

    DEFF Research Database (Denmark)

    Nadelmann, L.; Tjornelund, J.; Hansen, S. H.

    1997-01-01

    -glucuronide conjugate of a beta-hydroxylated Lica metabolite. The metabolites were identified by hplc-nmr (one and two-dimensional nmr) as well as hplc-ms. 3. At pH 8.5 Lica reacted with N-acetyl-L-cysteine giving the two epimeric conjugates, which were then isolated by preparative hplc and identified by one and two...

  18. Mutagenicity and cytotoxicity of two regioisomeric mercapturic acids and cysteine S-conjugates of trichloroethylene.

    NARCIS (Netherlands)

    Commandeur, J.N.M.; Boogaard, P.J.; Mulder, G.J.; Vermeulen, N.P.E.

    1991-01-01

    The mutagenicity, cytotoxicity and metabolism of two regioisomic l-cysteine- and N-acetyl-l-cysteine-S-conjugates of trichloroethylene were studied. The 1,2-dichlorovinyl(1,2-DCV) isomers of both the cysteine conjugate and the mercapturate were much stronger mutagens in the Ames test with Salmonella

  19. Determinação indireta de N-acetil-L-cisteína por injeção em fluxo empregando Ce(IV e ferroína

    Directory of Open Access Journals (Sweden)

    Vieira Heberth Juliano

    2005-01-01

    Full Text Available An indirect flow injection spectrophotometric procedure is proposed for the determination of N-acetyl-L-cysteine in pharmaceutical formulations. In this system, ferroin ([Fe(II-(fen2]2+ in excess, with a strong absorption at 500 nm, is oxidized by cerium(IV yielding cerium(III and [Fe(III-(fen2]3+ (colorless, thus producing a baseline. When N-acetyl-L-cysteine solution is introduced into the flow injection system, it reacts with cerium(IV increasing the analytical signal in proportion to the drug concentration. Under optimal experimental conditions, the linearity of the analytical curve for N-acetyl-L-cysteine ranged from 6.5x10-6 to 1.3x10-4 mol L-1. The detection limit was 5.0x10-6 mol L-1and recoveries between 98.0 and 106% were obtained. The sampling frequency was 60 determinations per hour and the RSD was smaller than 1.4% for 2.2x10-5 mol L-1 N-acetyl-L-cysteine.

  20. Taurine Ameliorates Renal Oxidative Damage and Thyroid Dysfunction in Rats Chronically Exposed to Fluoride.

    Science.gov (United States)

    Adedara, Isaac A; Ojuade, Temini Jesu D; Olabiyi, Bolanle F; Idris, Umar F; Onibiyo, Esther M; Ajeigbe, Olufunke F; Farombi, Ebenezer O

    2017-02-01

    Excessive exposure to fluoride poses several detrimental effects to human health particularly the kidney which is a major organ involved in its elimination from the body. The influence of taurine on fluoride-induced renal toxicity was investigated in a co-exposure paradigm for 45 days using five groups of eight rats each. Group I rats received normal drinking water alone, group II rats were exposed to sodium fluoride (NaF) in drinking water at 15 mg/L alone, group III received taurine alone at a dose of 200 mg/kg group IV rats were co-administered with NaF and taurine (100 mg/kg), while group V rats were co-administered with NaF and taurine (200 mg/kg). Administration of taurine significantly reversed the fluoride-mediated decrease in absolute weight and organo-somatic index of the kidney in the exposed rats. Taurine significantly prevented fluoride-induced elevation in plasma urea and creatinine levels in the exposed rats. Moreover, taurine restored fluoride-mediated decrease in the circulatory concentrations of triiodothyronine, thyroxine, and the ratio of triiodothyronine to thyroxine. Taurine ameliorated fluoride-mediated decrease in renal antioxidant status by significantly enhancing the antioxidant enzyme activities as well as glutathione level in the exposed rats. Additionally, taurine inhibited fluoride-induced renal oxidative damage by markedly decreasing the hydrogen peroxide and malondialdehyde levels as well as improved the kidney architecture in the treated rats. Collectively, taurine protected against fluoride-induced renal toxicity via enhancement of thyroid gland function, renal antioxidant status, and histology in rats.

  1. Virgin olive oil ameliorates deltamethrin-induced nephrotoxicity in mice: A biochemical and immunohistochemical assessment

    Directory of Open Access Journals (Sweden)

    Ali Reza khalatbary

    Full Text Available Objective: A major class of synthetic pyrethroid insecticide, deltamethrin (DM, can elicit pathophysiological effects through oxidative stress in non-targeted organisms such as mammals. There is accumulating evidence that virgin olive oil (VOO, a rich source of polyphenolic components, have anti-oxidant, anti-inflammatory, and anti-apoptotic properties. This study aimed to determine the protective and ameliorative effects of VOO against DM-induced nephrotoxicity. Methods & materials: Mice were randomly divided into four equal groups: DM group, DM plus VOO group, VOO group, and vehicle group. Five weeks after gavaging, kidney samples were taken for biochemical assessment of malondialdehyde (MDA, glutathione (GSH and catalase (CAT, and for immunohistochemical assessment of caspase-3, cyclooxygenase-2 (cox-2 and poly (ADP-ribose polymerase (PARP. Results: The MDA level in kidney was increased in the DM group, which was significantly decreased after VOO administration in the DM plus VOO group. The GSH level and CAT activiy in kidney were decreased in the DM group, which were significantly increased after VOO administration in the DM plus VOO group. Greater expression of caspase-3, cox-2, and PARP could be detected in the DM group, which was significantly attenuated in the DM plus VOO group. Also, the histopathological changes which were detected in the DM group attenuated after VOO consumption. Conclusion: Virgin olive oil exerted protective effects against deltamethrin-induced nephrotoxicity, which might be associated with its anti-apoptotic, anti-inflammatory, and anti-oxidative properties. Keywords: Deltamethrin, Virgin olive oil, Antioxidant, Apoptosis, Inflammation, Nephrotoxicity

  2. Bacterial mediated amelioration of drought stress in drought tolerant ...

    African Journals Online (AJOL)

    Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice ( Oryza sativa L.) ... and IR-64 (drought sensitive) cultivars of rice (Oryza sativa L.) under different level of drought stress. ... from 32 Countries:.

  3. Improvement for Amelioration Inventory Model with Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Han-Wen Tuan

    2017-01-01

    Full Text Available Most inventory models dealt with deteriorated items. On the contrary, just a few papers considered inventory systems under amelioration environment. We study an amelioration inventory model with Weibull distribution. However, there are some questionable results in the amelioration paper. We will first point out those questionable results in the previous paper that did not derive the optimal solution and then provide some improvements. We will provide a rigorous analytical work for different cases dependent on the size of the shape parameter. We present a detailed numerical example for different ranges of the sharp parameter to illustrate that our solution method attains the optimal solution. We developed a new amelioration model and then provided a detailed analyzed procedure to find the optimal solution. Our findings will help researchers develop their new inventory models.

  4. Riboflavin ameliorates cisplatin induced toxicities under photoillumination.

    Directory of Open Access Journals (Sweden)

    Iftekhar Hassan

    Full Text Available BACKGROUND: Cisplatin is an effective anticancer drug that elicits many side effects mainly due to induction of oxidative and nitrosative stresses during prolonged chemotherapy. The severity of these side effects consequently restricts its clinical use under long term treatment. Riboflavin is an essential vitamin used in various metabolic redox reactions in the form of flavin adenine dinucleotide and flavin mononucleotide. Besides, it has excellent photosensitizing property that can be used to ameliorate these toxicities in mice under photodynamic therapy. METHODS AND FINDINGS: Riboflavin, cisplatin and their combinations were given to the separate groups of mice under photoilluminated condition under specific treatment regime. Their kidney and liver were excised for comet assay and histopathological studies. Furthermore, Fourier Transform Infrared Spectroscopy of riboflavin-cisplatin combination in vitro was also conducted to investigate any possible interaction between the two compounds. Their comet assay and histopathological examination revealed that riboflavin in combination with cisplatin was able to protect the tissues from cisplatin induced toxicities and damages. Moreover, Fourier Transform Infrared Spectroscopy analysis of the combination indicated a strong molecular interaction among their constituent groups that may be assigned for the protective effect of the combination in the treated animals. CONCLUSION: Inclusion of riboflavin diminishes cisplatin induced toxicities which may possibly make the cisplatin-riboflavin combination, an effective treatment strategy under chemoradiotherapy in pronouncing its antineoplastic activity and sensitivity towards the cancer cells as compared to cisplatin alone.

  5. Antioxidants for female subfertility.

    Science.gov (United States)

    Showell, Marian G; Mackenzie-Proctor, Rebecca; Jordan, Vanessa; Hart, Roger J

    2017-07-28

    A couple may be considered to have fertility problems if they have been trying to conceive for over a year with no success. This may affect up to a quarter of all couples planning a child. It is estimated that for 40% to 50% of couples, subfertility may result from factors affecting women. Antioxidants are thought to reduce the oxidative stress brought on by these conditions. Currently, limited evidence suggests that antioxidants improve fertility, and trials have explored this area with varied results. This review assesses the evidence for the effectiveness of different antioxidants in female subfertility. To determine whether supplementary oral antioxidants compared with placebo, no treatment/standard treatment or another antioxidant improve fertility outcomes for subfertile women. We searched the following databases (from their inception to September 2016) with no language or date restriction: Cochrane Gynaecology and Fertility Group (CGFG) specialised register, the Cochrane Central Register of Studies (CENTRAL CRSO), MEDLINE, Embase, PsycINFO, CINAHL and AMED. We checked reference lists of appropriate studies and searched for ongoing trials in the clinical trials registers. We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment or treatment with another antioxidant, among women attending a reproductive clinic. We excluded trials comparing antioxidants with fertility drugs alone and trials that only included fertile women attending a fertility clinic because of male partner infertility. Two review authors independently selected eligible studies, extracted the data and assessed the risk of bias of the included studies. The primary review outcome was live birth; secondary outcomes included clinical pregnancy rates and adverse events. We pooled studies using a fixed-effect model, and calculated odds ratios (ORs) with 95% confidence intervals (CIs) for the dichotomous

  6. Role of antioxidant supplements in adult male albino rats intoxicated with methomyl

    International Nuclear Information System (INIS)

    Tawfik, S.M.F.M.; EI-Sherbiny, E.M.; Afifi, E.A.A.

    2007-01-01

    The present investigation was undertaken to evaluate and determine the protective effect of intraperitoneal administration of trace mineral selenium (Se) and antioxidant vitamins E and pantothenic acid (PA) to male albino rats intoxicated with methomyl pesticide. Four groups of rats were used in this study. The data obtained revealed that methomyl caused disturbances in liver functions, which were elucidated through ALT and AST levels, and in the levels of serum glucose and insulin. Also, the levels of serum total protein, albumin, total lipids, triglycerides, cholesterol and acethylcholinesterase activity were significantly changed from those found in control rats for different periods. Treatment of rats with the antioxidant supplements ameliorated to some extent most of the disturbances in the mentioned biochemical parameter levels. The data concluded that such antioxidants could provide some protection against pesticide-induced toxicity

  7. Antioxidant effects of carotenoids

    NARCIS (Netherlands)

    Bast, A.; Haenen, G.R.M.M.; Berg, R. van den; Berg, H. van den

    1998-01-01

    Surprisingly, neither the precise pharmacological effect nor the toxicological profile is usually established for food components. Carotenoids are no exception in this regard. Only limited insight into the pharmacology and toxicology of carotenoids exists. It is known that the antioxidant action of

  8. Physical performance and antioxidant effects in triathletes

    Directory of Open Access Journals (Sweden)

    M Dékány

    2008-06-01

    Full Text Available Exercise results in an increased production of reactive oxygen species. Two major classes of endogenous protective mechanisms work together to ameliorate the harmful effects of oxidants in the cell: (1 components of the enzymatic scavenging system such as superoxide dismutase, glutathione-peroxidase and catalase and (2 nonenzymatic antioxidants. The purpose of this study was to identify any relationship between duration and intensity of prolonged physical exercise and markers of oxidative stress with the primary antioxidant system. Eleven triathletes performed a field test, which consisted of 1.9 km swimming, 60 km cycling and 21 km running. Venous and arterialized blood enzymatic activities of SOD, CAT, GPX, and creatine kinase and concentrations of glucose, lactate, malondialdehyde and bilirubin were determined. Athletes were divided into two groups: the more efficient group (A, and the less efficient group (B, according to their duration of the field test. The activity of GPX was significantly higher in Group A than Group B, irrespective of the duration of the exercise, but bilirubin concentration was lower. For Group B, SOD activity increased during running while CAT activity decreased after cycling and after running. Upon completion of the test, CK activity was elevated in both groups. The free radical scavenging system appears to be directly related to individiual physiological efficiency with prolonged submaximal physical exercise. According to our estimation of the individual training status and the adequate adaptation level, it is important to take into consideration the markers of free radical production and the activities of the scavenging compounds. Abbreviations: SOD - superoxide dismutase, GPX - glutathione peroxidase, CAT - catalase, MDA - malondialdehyde, CK - creatine kinase.

  9. Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid

    International Nuclear Information System (INIS)

    Pi Jingbo; Zhang Qiang; Woods, Courtney G.; Wong, Victoria; Collins, Sheila; Andersen, Melvin E.

    2008-01-01

    Hypochlorous acid (HOCl), a potent oxidant generated when chlorine gas reacts with water, is important in the pathogenesis of many disorders. Transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism that serves to maintain intracellular redox homeostasis and limit oxidative damage. In the present study, the effect of HOCl on Nrf2 activation was investigated in macrophages, one of the target cells of chlorine gas exposure. Exposure of RAW 264.7 macrophages to HOCl resulted in increased protein levels of Nrf2 in nuclear extractions, as well as a time- and dose-dependent increase in the expression of Nrf2 target genes, including heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 (NQO-1), glutamate cysteine ligase catalytic subunit (GCLC), and glutathione synthetase (GS). Additionally, intracellular glutathione (GSH), which is the prime scavenger for HOCl in cells, decreased within the first hour of HOCl exposure. The decline was followed by a GSH rebound that surpassed the initial basal levels by up to 4-fold. This reversal in GSH levels closely correlated with the gene expression profile of GCLC and GS. To study the mechanisms of Nrf2 activation in response to HOCl exposure, we examined the effects of several antioxidants on Nrf2-mediated response. Pretreatment with cell-permeable catalase, N-acetyl-L-cysteine or GSH-monoethyl ester markedly reduced expression of NQO-1 and GCLC under HOCl challenge conditions, suggesting intracellular ROS-scavenging capacity affects HOCl-induced Nrf2 activation. Importantly, pre-activation of Nrf2 with low concentrations of pro-oxidants protected the cells against HOCl-induced cell damage. Taken together, we provide direct evidence that HOCl activates Nrf2-mediated antioxidant response, which protects cells from oxidative damage

  10. MAPK/JNK1 activation protects cells against cadmium-induced autophagic cell death via differential regulation of catalase and heme oxygenase-1 in oral cancer cells.

    Science.gov (United States)

    So, Keum-Young; Kim, Sang-Hun; Jung, Ki-Tae; Lee, Hyun-Young; Oh, Seon-Hee

    2017-10-01

    Antioxidant enzymes are related to oral diseases. We investigated the roles of heme oxygenase-1 (HO-1) and catalase in cadmium (Cd)-induced oxidative stress and the underlying molecular mechanism in oral cancer cells. Exposing YD8 cells to Cd reduced the expression levels of catalase and superoxide dismutase 1/2 and induced the expression of HO-1 as well as autophagy and apoptosis, which were reversed by N-acetyl-l-cysteine (NAC). Cd-exposed YD10B cells exhibited milder effects than YD8 cells, indicating that Cd sensitivity is associated with antioxidant enzymes and autophagy. Autophagy inhibition via pharmacologic and genetic modulations enhanced Cd-induced HO-1 expression, caspase-3 cleavage, and the production of reactive oxygen species (ROS). Ho-1 knockdown increased autophagy and apoptosis. Hemin treatment partially suppressed Cd-induced ROS production and apoptosis, but enhanced autophagy and CHOP expression, indicating that autophagy induction is associated with cellular stress. Catalase inhibition by pharmacological and genetic modulations increased Cd-induced ROS production, autophagy, and apoptosis, but suppressed HO-1, indicating that catalase is required for HO-1 induction. p38 inhibition upregulated Cd-induced phospho-JNK and catalase, but suppressed HO-1, autophagy, apoptosis. JNK suppression exhibited contrary results, enhancing the expression of phospho-p38. Co-suppression of p38 and JNK1 failed to upregulate catalase and procaspase-3, which were upregulated by JNK1 overexpression. Overall, the balance between the responses of p38 and JNK activation to Cd appears to have an important role in maintaining cellular homeostasis via the regulation of antioxidant enzymes and autophagy induction. In addition, the upregulation of catalase by JNK1 activation can play a critical role in cell protection against Cd-induced oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Role of phenolics from Spondias pinnata bark in amelioration of iron overload induced hepatic damage in Swiss albino mice.

    Science.gov (United States)

    Chaudhuri, Dipankar; Ghate, Nikhil Baban; Panja, Sourav; Mandal, Nripendranath

    2016-07-26

    Crude Spondias pinnata bark extract was previously assessed for its antioxidant, anticancer and iron chelating potentials. The isolated compounds gallic acid (GA) and methyl gallate (MG) were evaluated for their curative potential against iron overload-induced liver fibrosis and hepatocellular damage. In vitro iron chelation property and in vivo ameliorating potential from iron overload induced liver toxicity of GA and MG was assessed by different biochemical assays and histopathological studies. MG and GA demonstrated excellent reducing power activities but iron chelation potential of MG is better than GA. Oral MG treatment in mice displayed excellent efficacy (better than GA) to significantly restore the levels of liver antioxidants, serum markers and cellular reactive oxygen species in a dose-dependent fashion. Apart from these, MG exceptionally prevented lipid peroxidation and protein oxidation whereas GA demonstrated better activity to reduce collagen content, thereby strengthening its position as an efficient drug against hepatic damage/fibrosis, which was further supported by histopathological studies. Alongside, MG efficiently eliminated the cause of liver damage, i.e., excess iron, by chelating free iron and reducing the ferritin-bound iron. The present study confirmed the curative effect of GA and MG against iron overload hepatic damage via their potent antioxidant and iron-chelating potential.

  12. Anacardic Acids from Cashew Nuts Ameliorate Lung Damage Induced by Exposure to Diesel Exhaust Particles in Mice

    Directory of Open Access Journals (Sweden)

    Ana Laura Nicoletti Carvalho

    2013-01-01

    Full Text Available Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP- induced lung inflammation. BALB/c mice received an intranasal instillation of 50 μg of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100 μL of cashew nut oil for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF, and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs.

  13. Exercise training and antioxidant supplementation independently improve cognitive function in adult male and female GFAP-APOE mice

    OpenAIRE

    Kiran Chaudhari; Jessica M. Wong; Philip H. Vann; Nathalie Sumien

    2014-01-01

    Purpose: The purpose of this study was to determine if antioxidant supplementation, moderate exercise, and the combination of both treatments could ameliorate cognitive performance in adult mice and whether the apolipoprotein E (APOE) genotype as well as sex could influence the functional outcomes of the treatments. Methods: For a period of 16 weeks, separate groups of male and female mice expressing either the human APOE3 or APOE4 isoforms were fed either a control diet (NIH-31) or the co...

  14. GARLIC AMELIORATES THE HEPATOTOXIC EFFECT INDUCED BY THIOACETAMIDE IN FEMALE RATS

    International Nuclear Information System (INIS)

    OSMAN, H.F.; TAHA, M.S.

    2008-01-01

    The purpose of this study was to investigate the pretreatment effect of garlic on hepatotoxicity and oxidative stress induced by thioacetamide (TAA) in female albino rats.Sixty female adult albino rats were assigned equally into four groups; control group: animals without treatment, group ?: rats given daily oral dose of 250 mg/ kg garlic for 28 days, group ??: rats injected intraperitonealy by thioacetamide 20 mg ? kg for two weeks and group III: rats given 250 mg / kg garlic orally for 28 day followed by intrapertoneal injection of 20 mg / kg thioacetamide for two weeks. Liver enzymes were evaluated by measurements of AST, ALT and alkaline phosphatase and also trace elements (Cu and Zn) were estimated. Superoxide dismutase, glutathione peroxidase, malondialdehyde and thyroid hormones (T3 and T4) were assessed. Also, histological studies on liver and stomach were carried out. The results indicated that treatment with garlic significantly decreased liver enzymes (AST, ALT and ALP). Cu showed high significant increase in groups treated with garlic and also garlic + TAA, while Zn was increased significantly in TAA group. Superoxide dismutase (SOD) was increased significantly in group I while TAA decreased it significantly. Glutathione peroxidase was decreased significantly in group II while its level in group IV reached near the control value. Similarly, malondialdehyde was decreased significantly in garlic group and garlic ameliorated the thioacetamide effect in garlic + TAA group. The treatment with TAA led to significant increase in T3 and significant decrease in T4 hormones. Garlic ameliorated T3 level to reach the control level. Histologically, pre-treatment with garlic induced a prophylactic activity against the thioacetamide in liver and stomach tissues.According to the obtained results, it could be conclude that garlic treatment may act as antioxidant or pro-oxidant in TAA treated animals besides decreasing the TAA toxic effects on liver enzymes, liver and

  15. The free radical scavenger, edaravone, ameliorates delayed neuropsychological sequelae after acute carbon monoxide poisoning in rabbits.

    Science.gov (United States)

    Qingsong, Wang; Yeming, Guan; Xuechun, Liu; Hongjuan, Liu; Jing, Wang

    2013-01-01

    The mechanism underlying delayed neuropsychological sequelae (DNS) after acute carbon monoxide (CO) poisoning is unclear. There are no effective treatments for DNS. As part of a new generation of antioxidants, edaravone has been reported to improve clinical outcomes in patients exhibiting ischemic strokes. There has been little data about edaravone in relationship to DNS prevention and treatment. We hypothesized that edaravone could ameliorate DNS: Here we test that hypothesis in rabbits Rabbits were randomly divided into sham control,DNS group, saline group and edaravone group. DNS model was made by intraperitoneal injection of CO. Normal saline or edaravone (1 mg/kg, twice daily, a total of one course for 14 days) was infused through the ear vein from Day 15 since the DNS model was established. Serum superoxide dismutase (SOD) activity and malondialdehyde (MDA) were measured in each group. Magnetic resonance spectroscopy (MRS) was used to examine regions of the brain for various compounds. The apoptotic index and neuronal density in the hippocampal CA1 area were also investigated. SOD activity decreased significantly and MDA content increased substantially in the DNS group and saline group when compared with the sham control (p edaravone group, serum SOD activity significantly increased and MDA levels significantly decreased when compared with DNS and saline group (p edaravone group (p edaravone group was significantly lower than that of the DNS and saline groups (p edaravone group was significantly higher than that of the DNS and saline group in the hippocampal CA1 area (p edaravone could ameliorate DNS after acute carbon monoxide poisoning in rabbits. These results suggest free radicals could be involved in the underlying mechanisms of DNS. Furthermore, brain MRS shows promise as a tool for early diagnosis for DNS.

  16. Nigella sativa oil Ameliorates ionizing Radiation induced cellular injury in Male Albino Rats

    International Nuclear Information System (INIS)

    Mohamed, E.T.; El-Kady, A.A.

    2013-01-01

    Nigella sativa (NS), commonly known as black seed, is a plant spices in which thymoquinone is the main active ingredient isolated from the black seeds. The seeds of Nigella sativa are used in herbal medicine all over the world for the treatment and prevention of a number of diseases. The aim of this study was focused on investigating the possible protective effect of NS against gamma radiation induced nephrotoxicity and inflammatory changes in male albino rats. Twenty four albino rats were divided into four equal groups as follows: control group, irradiated group (animals subjected to whole body gamma irradiation at a dose of 6 Gy), treated group (rats treated with 0.2 ml/kg, i.p., NS oil for 4 weeks), and treated irradiated group (animals treated with 0.2 mL/kg, i.p., NS oil for 4 weeks then exposed to whole body gamma irradiation at a dose of 6 Gy). The obtained results revealed that the administration of Nigella sativa oil to irradiated rats significantly ameliorated the changes induced in kidney antioxidant system; catalase and glutathione peroxidase activities as well as reduced glutathione concentration. Also, NS oil restored the kidney function indices (urea and creatinine) near normal level when compared with their equivalent values in irradiated rats. In addition, the changes in serum tumor necrosis factor alpha (TNF-α), Interleukin-1β (IL-1β) and Interleukin-6 (IL-6) activities were markedly improved compared to the corresponding values of irradiated group. The histopathological results showed distinctive pattern of ischemic renal injury in irradiated group, while in treated- irradiated group the renal tissues showed relatively well-preserved architecture with or without focal degeneration. In conclusion, NS acts in the kidney as a potent scavenger of free radicals to prevent or ameliorates the toxic effects of gamma irradiation as shown in the biochemical and histopathological study and also NS oil might provide substantial protection against

  17. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma.

    Science.gov (United States)

    Kim, Dong Eon; Lee, Yonghyun; Kim, MinGyo; Lee, Soyoung; Jon, Sangyong; Lee, Seung-Hyo

    2017-09-01

    Although asthma, a chronic inflammatory airway disease, is relatively well-managed by inhaled corticosteroids, the side effects associated with the long-term use of these agents precipitate the need for alternative therapeutic options based on differing modes of action. Bilirubin, a potent endogenous antioxidant, and anti-inflammatory molecule have been shown to ameliorate asthmatic symptoms; however, its clinical translation has been limited owing to its water insolubility and associated potential toxicity. Here we report the first application of bilirubin-based nanoparticles (BRNPs) as a nanomedicine for the treatment of allergic lung inflammatory disease. BRNPs were prepared directly from self-assembly of PEGylated bilirubin in aqueous solution and had a hydrodynamic diameter of ∼100 nm. Because allergen-specific type 2 T-helper (Th2) cells play a key role in the pathogenesis and progression of allergic asthma, the effects of BRNPs on Th2 immune responses were investigated both in vivo and in vitro. BRNPs after intravenous injection (i.v.) showed much higher serum concentration and a longer circulation time of bilirubin than the intraperitoneal injection (i.p.) of BRNPs or unconjugated bilirubin (UCB). The anti-asthmatic effects of BRNPs were assessed in a mouse model of allergen-induced asthma. Compared with UCB, treatment with BRNPs suppressed the symptoms of experimental allergic asthma and dramatically ameliorated Th2-related allergic lung inflammation. Consistent with these results, BRNPs caused a reduction of Th2 cell populations and the expression of related cytokines by antibody-stimulated CD4 + T cells in vitro. Therefore, our results establish BRNPs as an important immunomodulatory agent that may be useful as a therapeutic for allergic lung inflammatory disease and other immune-mediated disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Propofol ameliorates doxorubicin-induced oxidative stress and cellular apoptosis in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, H.C. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Yeh, Y.C. [Graduate Institute of Natural Healing Sciences, Nanhua University, Chiayi, Taiwan (China); Wang, L.C. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Ting, C.T.; Lee, W.L. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Lee, H.W. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, K.Y. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine, Chung-Shan Medical University, Taichung, Taiwan (China); Wu, A. [College of Biological Science, University of California, Davis (United States); Su, C.S. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Liu, T.J., E-mail: trliu@vghtc.gov.tw [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China)

    2011-12-15

    Background: Propofol is an anesthetic with pluripotent cytoprotective properties against various extrinsic insults. This study was designed to examine whether this agent could also ameliorate the infamous toxicity of doxorubicin, a widely-used chemotherapeutic agent against a variety of cancer diseases, on myocardial cells. Methods: Cultured neonatal rat cardiomyocytes were administrated with vehicle, doxorubicin (1 {mu}M), propofol (1 {mu}M), or propofol plus doxorubicin (given 1 h post propofol). After 24 h, cells were harvested and specific analyses regarding oxidative/nitrative stress and cellular apoptosis were conducted. Results: Trypan blue exclusion and MTT assays disclosed that viability of cardiomyocytes was significantly reduced by doxorubicin. Contents of reactive oxygen and nitrogen species were increased and antioxidant enzymes SOD1, SOD2, and GPx were decreased in these doxorubicin-treated cells. Mitochondrial dehydrogenase activity and membrane potential were also depressed, along with activation of key effectors downstream of mitochondrion-dependent apoptotic signaling. Besides, abundance of p53 was elevated and cleavage of PKC-{delta} was induced in these myocardial cells. In contrast, all of the above oxidative, nitrative and pro-apoptotic events could be suppressed by propofol pretreatment. Conclusions: Propofol could extensively counteract oxidative/nitrative and multiple apoptotic effects of doxorubicin in the heart; hence, this anesthetic may serve as an adjuvant agent to assuage the untoward cardiac effects of doxorubicin in clinical application. -- Highlights: Black-Right-Pointing-Pointer We evaluate how propofol prevents doxorubicin-induced toxicity in cardiomyocytes. Black-Right-Pointing-Pointer Propofol reduces doxorubicin-imposed nitrative and oxidative stress. Black-Right-Pointing-Pointer Propofol suppresses mitochondrion-, p53- and PKC-related apoptotic signaling. Black-Right-Pointing-Pointer Propofol ameliorates apoptosis and

  19. Whole cell Deinococcus radiodurans ameliorates salt stress in Indian mustard through pyrroloquinoline quinone

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Jadhav, P.; Suprasanna, P.; Rajpurohit, Y.S.; Misra, H.S.

    2015-01-01

    Salinity stress is considered as one of the major abiotic stresses limiting crop productivity. A variety of symbiotic and non-symbiotic bacteria are currently being used worldwide with the aim to boost built-in defense system in plants. Deinococcus radiodurans is a highly desiccation and radiation tolerant bacterium which synthesizes PQQ (pyrroloquinoline quinone) that has been shown to have a versatile role in crop productivity and as a general stress response regulator in bacteria and mammals. PQQ also acts as scavenger of reactive oxygen species and hence, can module redox signaling, one of the major regulator of stress tolerance in plants. In view of this, present research was conducted to evaluate the potential of whole cell D. radiodurans for ameliorating salt stress in plants. The soil colonization with wild-type cells led to partial amelioration of salt stress. The PQQ mutant showed an intermediate phenotype between wild-type seedlings and those grown on non-colonized soils which confirmed that the effects are largely associated with PQQ. The differential phenotype was also correlated with ROS level and ABA accumulation. The flame photometry data showed that there was no significant reduction in water soluble Na + level in control plant and those treated with either wild-type or PQQ mutant. Further, the elevated levels of antioxidant enzymes and reduced ascorbate in the plants treated with bacterial cells indicated its positive role in oxidative stress management. Although, the exact molecular basis to these effects is yet to be understood, present findings support the use of whole cell D. radiodurans for managing the growth and productivity of Indian mustard in salt affected fields. (author)

  20. Zinc Deficiency in Humans and its Amelioration

    Directory of Open Access Journals (Sweden)

    Yashbir Singh Shivay

    2015-01-01

    Full Text Available Zinc (Zn deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in blood does not decrease in proportion of the Zn deficiency. Adverse effects of Zn deficiency vary with age: low weight gain, diarrhoea, aneroxia and neurobehavioral disturbances are observed in infants, while skin changes and dwarfism are frequent in toddlers and adolescents. Common manifestations of Zn deficiency among elderly include hypogeusia, chronic non-healing ulcers and recurrent infections.Ameliorative measures of Zn deficiency in humans can be classified in two groups, namely, nutraceutical and biofortification of food grains. Nutraceutical interventions include pharmaceutical supplements, dietary supplements and dietary diversification, while biofortification of food grains can be achieved by genetic modification (GM of crops or by agronomic techniques that include soil or/and foliar fertilization of crops.The major disadvantage of nutraceutical approaches is that the major beneficiaries are urban people and the poor rural masses that need adequate Zn nutrition most are left out. Genetic biofortification of food grains requires large amounts of funds and a fairly long-period of time. Further, a large number of countries have not yet accepted genetically modified (GM foods. On the other hand agronomic biofortification of food grains yields immediate effects and rural and urban people are equally benefitted. Our studies have shown that Zn concentration in cereals (rice, wheat etc and pulses can be considerably increased by soil or/and foliar

  1. Zinc Deficiency in Humans and its Amelioration

    Directory of Open Access Journals (Sweden)

    Yashbir Singh Shivay

    2015-12-01

    Full Text Available Zinc (Zn deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in blood does not decrease in proportion of the Zn deficiency. Adverse effects of Zn deficiency vary with age: low weight gain, diarrhoea, aneroxia and neurobehavioral disturbances are observed in infants, while skin changes and dwarfism are frequent in toddlers and adolescents. Common manifestations of Zn deficiency among elderly include hypogeusia, chronic non-healing ulcers and recurrent infections. Ameliorative measures of Zn deficiency in humans can be classified in two groups, namely, nutraceutical and biofortification of food grains. Nutraceutical interventions include pharmaceutical supplements, dietary supplements and dietary diversification, while biofortification of food grains can be achieved by genetic modification (GM of crops or by agronomic techniques that include soil or/and foliar fertilization of crops. The major disadvantage of nutraceutical approaches is that the major beneficiaries are urban people and the poor rural masses that need adequate Zn nutrition most are left out. Genetic biofortification of food grains requires large amounts of funds and a fairly long-period of time. Further, a large number of countries have not yet accepted genetically modified (GM foods. On the other hand agronomic biofortification of food grains yields immediate effects and rural and urban people are equally benefitted. Our studies have shown that Zn concentration in cereals (rice, wheat etc and pulses can be considerably increased by soil or/and foliar

  2. The Role of Biotransformation and Oxidative Stress in 3,5-Dichloroaniline (3,5-DCA) Induced Nephrotoxicity in Isolated Renal Cortical Cells from Male Fischer 344 Rats

    Science.gov (United States)

    Racine, Christopher R.; Ferguson, Travis; Preston, Debbie; Ward, Dakota; Ball, John; Anestis, Dianne; Valentovic, Monica; Rankin, Gary O.

    2016-01-01

    Among the mono- and dichloroanilines, 3,5-Dichloroaniline (3,5-DCA) is the most potent nephrotoxicant in vivo and in vitro. However, the role of renal biotransformation in 3,5-DCA induced nephrotoxicity is unknown. The current study was designed to determine the in vitro nephrotoxic potential of 3,5-DCA in isolated renal cortical cells (IRCC) obtained from male Fischer 344 rats, and the role of renal bioactivation and oxidative stress in 3,5-DCA nephrotoxicity. IRCC (~4 million cells/ml) from male rats were exposed to 3,5-DCA (0-1.0 mM) for up to 120 min. In IRCC, 3,5-DCA was cytotoxic at 1.0 mM by 60 min as evidenced by the increased release of lactate dehydrogenase (LDH), but 120 min was required for 3,5-DCA 0.5 mM to increase LDH release. In subsequent studies, IRCC were exposed to a pretreatment (antioxidant or enzyme inhibitor) prior to exposure to 3,5-DCA (1.0 mM) for 90 min. Cytotoxicity induced by 3,5-DCA was attenuated by pretreatment with inhibitors of flavin-containing monooxygenase (FMO; methimazole, N-octylamine), cytochrome P450 (CYP; piperonyl butoxide, metyrapone), or peroxidase (indomethacin, mercaptosuccinate) enzymes. Use of more selective CYP inhibitors suggested that the CYP 2C family contributed to 3,5-DCA bioactivation. Antioxidants (glutathione, N-acetyl-L-cysteine, α-tocopherol, ascorbate, pyruvate) also attenuated 3,5-DCA nephrotoxicity, but oxidized glutathione levels and the oxidized/reduced glutathione ratios were not increased. These results indicate that 3,5-DCA may be activated via several renal enzyme systems to toxic metabolites, and that free radicals, but not oxidative stress, contribute to 3,5-DCA induced nephrotoxicity in vitro. PMID:26808022

  3. Effects of N-acetyl-cysteine treatment on glutathione depletion and a short-term spatial memory deficit in 2-cyclohexene-1-one-treated rats.

    Science.gov (United States)

    Choy, Kwok Ho Christopher; Dean, Olivia; Berk, Michael; Bush, Ashley I; van den Buuse, Maarten

    2010-12-15

    Glutathione (GSH) is the primary antioxidant in the body and is present in high levels in the brain. Levels of GSH and other antioxidants are significantly altered in major psychiatric illnesses, such as schizophrenia. Recent clinical trials have demonstrated that chronic treatment with N-acetyl-l-cysteine (NAC), a GSH precursor, improved symptoms in individuals with this illness. We previously showed in rats and mice that depletion of GSH by treatment with 2-cyclohexene-1-one (CHX) induced short-term spatial memory deficits in the Y-maze test. The aim of present study was to characterise the effect of NAC in this CHX-induced glutathione depletion model. Consistent with our previous studies, CHX treatment induced approximately 50% reduction of GSH levels in striatum, hippocampus and frontal cortex tissue. GSH depletion was significantly rescued by either 1.2 g/kg or 1.6 g/kg of NAC administration, with a full recovery observed in the frontal cortex after the high dose of NAC. CHX treatment also induced a disruption in short-term spatial recognition memory in Y-maze test, as measured by the duration of time spent in the novel arm. This disruption was reversed by treatment with 1.6 g/kg of NAC. In conclusion, this study suggests that rescue of depleted levels of GSH in the brain restores cognitive deficits, as measured by the Y-maze. These effects appear to be dose-dependent and region-specific. These results may be relevant to the understanding and management of the cognitive symptoms of schizophrenia and bipolar disorder. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. E-Cigarette Aerosol Exposure Induces Reactive Oxygen Species, DNA Damage, and Cell Death in Vascular Endothelial Cells.

    Science.gov (United States)

    Anderson, Chastain; Majeste, Andrew; Hanus, Jakub; Wang, Shusheng

    2016-12-01

    Cigarette smoking remains one of the leading causes of preventable death worldwide. Vascular cell death and dysfunction is a central or exacerbating component in the majority of cigarette smoking related pathologies. The recent development of the electronic nicotine delivery systems known as e-cigarettes provides an alternative to conventional cigarette smoking; however, the potential vascular health risks of e-cigarette use remain unclear. This study evaluates the effects of e-cigarette aerosol extract (EAE) and conventional cigarette smoke extract (CSE) on human umbilical vein endothelial cells (HUVECs). A laboratory apparatus was designed to produce extracts from e-cigarettes and conventional cigarettes according to established protocols for cigarette smoking. EAE or conventional CSE was applied to human vascular endothelial cells for 4-72 h, dependent on the assay. Treated cells were assayed for reactive oxygen species, DNA damage, cell viability, and markers of programmed cell death pathways. Additionally, the anti-oxidants α-tocopherol and n-acetyl-l-cysteine were used to attempt to rescue e-cigarette induced cell death. Our results indicate that e-cigarette aerosol is capable of inducing reactive oxygen species, causing DNA damage, and significantly reducing cell viability in a concentration dependent fashion. Immunofluorescent and flow cytometry analysis indicate that both the apoptosis and programmed necrosis pathways are triggered by e-cigarette aerosol treatment. Additionally, anti-oxidant treatment provides a partial rescue of the induced cell death, indicating that reactive oxygen species play a causal role in e-cigarette induced cytotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Role of oxygen free radicals in the proliferation of myofibroblasts induced by AngII

    Directory of Open Access Journals (Sweden)

    Liying Wang

    2013-02-01

    Full Text Available Previous studies have demonstrated the important role of angiotension II (AngII in promoting proliferation of myofibroblasts (myoFbs and myocardial fibrosis. However, the underlying mechanisms and the role of oxygen free radicals in the proliferation of myofibroblasts induced by AngII are unclear. The present study was designed to shed light on this issue through exploration of AngII signaling pathways via in vitro experiments. Primary cultures of neonatal rat myoFbs were divided into five groups which were treated with AngII (10−8 to 10−6 M, AngII with the antioxidant N-acetyl-L-cysteine (NAC, or normal culture medium. We observed the proliferation of myoFbs as induced by AngII at different concentrations with MTT. Reactive oxygen species (ROS levels in myoFbs were detected by monitoring the fluorescence of 2′,7′-dichlorofluorescein. The contents and levels of oxygen free radicals (OH· in the three groups were detected by spectrophotometer, immunocytochemical staining, and confocal fluorescence. Western blot and image analysis were used to measure membrane translocation and expression of phospho-protein kinase Cα. MyoFbs incubated with AngII (10−8 to 10−6 M for 24 h increased their rate of proliferation, the content of OH·, and expression of ROS (P<0.01 vs. control group, whereas these parameters decreased in the presence of NAC. Immunocytochemistry, confocal fluorescence staining and image analysis showed that AngII could promote the translocation and expression of p-PKCα in membrane, and the antioxidant NAC blocked this increase (P<0.01. Western blot results also showed that NAC could inhibit the expression of p-PKCα.

  6. Antioxidant Properties of Probiotic Bacteria.

    Science.gov (United States)

    Wang, Yang; Wu, Yanping; Wang, Yuanyuan; Xu, Han; Mei, Xiaoqiang; Yu, Dongyou; Wang, Yibing; Li, Weifen

    2017-05-19

    Oxidative stress defines a condition in which the prooxidant-antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  7. Association of antioxidant nutraceuticals and acetaminophen (paracetamol: Friend or foe?

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel-Daim

    2018-04-01

    Full Text Available Acetaminophen (paracetamol or APAP is an analgesic and antipyretic drug that can induce oxidative stress-mediated hepatotoxicity at high doses. Several studies reported that antioxidant nutraceuticals, in particular phenolic phytochemicals from dietary food, spices, herbs and algae have hepatoprotective effects. Others, however, suggested that they may negatively impact the metabolism, efficacy and toxicity of APAP. The aim of this review is to discuss the pros and cons of the association of antioxidant nutraceuticals and APAP by reviewing the in vivo evidence, with particular reference to APAP pharmacokinetics and hepatotoxicity. Results from the murine models of APAP-induced hepatotoxicity showed amelioration of liver damage with nutraceuticals coadministration, as well as reductions in tissue markers of oxidative stress, and serum levels of hepatic enzymes, bilirubin, cholesterol, triglycerides and inflammatory cytokines. On the other hand, both increased and decreased APAP plasma levels have been reported, depending on the nutraceutical type and route of administration. For example, studies showed that repeated administration of flavonoids causes down-regulation of cytochrome P450 enzymes and up-regulation of uridine diphosphate glucuronosyltransferases (UGT. Moreover, nutraceuticals can alter the levels of APAP metabolites, such as mercapturate glucuronide, sulfate and cysteine conjugates. Overall, the reviewed in vivo studies indicate that interactions between APAP and nutraceuticals or plant foods exist. However, the majority of data come from animal models with doses of phytochemicals far from dietary ones. Human studies should investigate gene-diet interactions, as well as ethnic variability in order to clarify the pros and cons of co-administering antioxidant nutraceuticals and APAP. Keywords: Acetaminophen, Antioxidants, Food-drug interaction, Nutraceuticals, Paracetamol

  8. Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response.

    Science.gov (United States)

    Chen, Menghao; Li, Xiaojing; Fan, Ruifeng; Cao, Changyu; Yao, Haidong; Xu, Shiwen

    2017-11-01

    The nuclear transcription factor NF-E2-related factor 2 (Nrf2) binds to antioxidant response elements (AREs) and is involved in the regulation of genes participated in defending cells against oxidative damage, which have been confirmed in animal models. Selenium (Se), known as an important element in the regulation of antioxidant activity, can antagonize Cadmium (Cd) toxicity in birds. However, the role of Nrf2 in selenium-cadmium interaction has not been reported in birds. To further explore the mechanism of selenium attenuating spleen toxicity induced by cadmium in chickens, cadmium chloride (CdCl 2 , 150mg/kg) and sodium selenite (Na 2 SeO 3 , 2mg/kg) were co-administrated or individually administered in the diet of chickens for 90 days. The results showed that Cd exposure increased the level of hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) and decreased the antioxidant enzyme activities, including superoxide dismutase (SOD), glutathione peroxidase (Gpx), total antioxidative capacity (T-AOC), catalase (CAT). Cd exposure increased obviously nuclear accumulation of Nrf2, and the expression of Nrf2 downstream heme oxygenase-1 (HO-1) and NAD(P)H: quinine oxidoreductase 1 (NQO1), reduced the expression of Kelch-like ECH-associated protein (keap1), Gpx-1 and thioredoxin reductase-1 (TrxR1). In addition, Cd induced the increase of bak, caspase9, p53, Cyt c mRNA levels, increased bax/bcl-2 ratio, increased caspase3 mRNA and protein levels. Selenium treatment reduced the accumulation of Cd in the spleen, attenuates Cd-induced Nrf2 nuclear accumulation, enhanced antioxidant enzyme activities, ameliorated Cd-induced oxidative stress and apoptosis in the spleen. In summary, our results demonstrate that Se ameliorated spleen toxicity induced by cadmium by modulating the antioxidant system, independently of Nrf2-regulated antioxidant response pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The Protective Effect of Antioxidants on Oxidative Stress in Rats Exposed to the 950 MHz Electromagnetic Field

    International Nuclear Information System (INIS)

    Ibrahim, N.K.; Gharib, O.A.

    2010-01-01

    Studies have linked cell phone radiation to health problems such as headaches, high blood pressure, cancer and more. There is a latency period for most diseases and it may take years and more studies before the required weight of evidence is established. But the effects are cumulative and precautions should be taken now before it is too late. The aim of the present study was to investigate if supplementation with antioxidants would protect heart and liver tissues from harmful radiation emitted by cell phone. Thirty two male albino rats were randomly divided into four equal groups: I- Control, II- Antioxidants treated group, III- 950 MHz EMR, IV- 950 MHz EMR + antioxidants. A 950 MHz EMR radiation (217-Hz pulse rate, 2-W maximum peak power, SAR Specific Absorption Rate 1 .6 W/Kg) was applied to groups III and IV 60 min/day, for 30 days using an experimental exposure device. Antioxidants supplement (Vitamins A, E and C + Se) was administered to rats daily, by gavages, during the period of exposure to EMR. Malondialdehyde (MDA) and nitric oxide (NO) were used as markers of oxidative damage. Catalase (CAT), and glutathione peroxidase (GSHPx) activities were studied to evaluate the changes of antioxidant status. Biochemical analysis performed at the end of EMR exposure showed that supplementation with antioxidants has significantly attenuated EMR-induced oxidative stress signified by a decrease in the amount of MDA and an increase the activity of CAT and GSHPx in heart and liver tissues. Amelioration of oxidative damage was substantiated by significant amelioration in the activity of serum enzymes creatine phosphokinase (CPK), lactate dehydrogenase (LDH), aspartate amino-transferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). According to the results obtained in the present study, it could be concluded that antioxidants supplementation may protect from mobile phone-induced oxidative damage in heart and liver tissues

  10. Andrographolide Ameliorates Beta-Naphthoflavone-Induced CYP1A Enzyme Activity and Lipid Peroxidation in Hamsters with Acute Opisthorchiasis.

    Science.gov (United States)

    Udomsuk, Latiporn; Chatuphonprasert, Waranya; Jarukamjorn, Kanokwan; Sithithaworn, Paiboon

    2016-01-01

    Opisthorchis viverrini (OV) infection generates oxidative stress/free radicals and is considered as a primary cause ofcholangiocarcinoma since it primarily triggers sclerosing cholangitis. In this study, the impacts of andrographolide on acute opisthorchaisis in β-naphthoflavone (BNF)-exposed hamsters were investigated. Ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) activities and Thiobarbituric acid reaction substances (TBARS) assay of andrographolide in acute opisthorchiasis in the BNF-exposed hamsters were assessed. The results showed that andrographolide ameliorated the hepatic CYP1A1 and CYP1A2 activities by decreases of the specific enzymatic reactions of EROD and MROD, respectively, in the BNF-exposed hamsters. Moreover, andrographolide lowered the formation of malondialdehyde in the livers and brains of the hamsters. These observations revealed the promising chemo-protective and antioxidant activities of andrographolide via suppression of the specific EROD and MROD reactions and lipid peroxidation against acute opisthorchiasis in the BNF-exposed hamsters.

  11. Ameliorative Effect of Arctium lappa Against Cadmium Genotoxicity and Histopathology in Kidney of Wistar Rat.

    Science.gov (United States)

    Suliman Al-Gebaly, Asma

    2017-01-01

    Cadmium (Cd) is a non-essential metal whose dispersion in the environment has increased recently, Cd may enhance cell oxidative stress that leads to DNA damage and apoptotic cell death. The study aimed to evaluate the antioxidative capability of Burdock root 'Arctium lappa' on cadmium-induced oxidative stress and histopathology of the kidney of Wistar rats. Cadmium was applied in a form of cadmium chloride to three groups (15 mg Cd kg-1) for five weeks with two groups pre-treated with 'Arctium lappa' administration, 100 and 200 mg kg-1 b.wt. Data were analyzed using one way analysis of variance (ANOVA) followed by Least Significant Difference (LSD) test to determine the difference among means using the JMP version 12. Results revealed that cadmium induced a significant disorganization (pArctium lappa kg-1 b.wt., showed a slightly less hypercellularity of glomerulus and reduction in the cell tail (59 μm). Furthermore, histological sections of kidney of rats pre-treated with 200 mg Arctium lappa kg-1 b.wt., showed high improvement of renal tubules and glomerulus with a prominent urinary space beside tail length of cells was recorded as 39 μm which was lower in comparison to other groups. Moreover, cadmium induced cellular destruction of the kidney was resumed with the pre-treatment of the secondary metabolites as an antioxidant compounds that produced from plant extracts. Arctium lappa leaf extract was efficient at both applied doses while 200 mg Arctium lappa kg-1 b.wt., had the most ameliorative effect.

  12. Tribulus terrestris ameliorates metronidazole-induced spermatogenic inhibition and testicular oxidative stress in the laboratory mouse

    Science.gov (United States)

    Kumari, Mrinalini; Singh, Poonam

    2015-01-01

    Objective: The present study was undertaken to evaluate the protective effects of the fruit extract of Tribulus terrestris (TT) on the metronidazole (MTZ)-induced alterations in spermatogenesis, sperm count, testicular functions, and oxidative stress. Materials and Methods: Thirty adult Swiss strain mice were divided into six groups. Animals of Groups I and II served as untreated and vehicle-treated controls, while that of Groups III and IV were administered with MTZ (500 mg/kg BW/day) and TT (200 mg/kg BW/day) alone for 28 days, respectively. Low (100 mg/kg BW/day) and high (200 mg/kg BW/day) doses of TT along with MTZ (500 mg/kg BW/day) were administered for 28 days in the mice of Groups V and VI, respectively. Twenty four hours after the last treatment, all the animals were euthanized to study the histological changes in the testis and sperm count in the epididymis. Testicular functional markers, lipid peroxidation (LPO) and the activities of antioxidant enzymes, e.g., superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, were also assessed in the mice of all the groups. Results: Metronidazole caused marked alterations in the testicular weight, spermatogenesis, activities of antioxidant enzymes, lactate dehydrogenase, alkaline phosphatase, and the level of LPO. The epididymal sperm count also declined significantly in MTZ-treated group. These changes were partially restored following co-administration of 500 mg/kg BW/day of MTZ and 100 mg/kg BW/day of TT. However, in the mice co-administered with 500 mg/kg BW/day of MTZ and 200 mg/kg BW/day of TT, the changes reverted back completely, similar to that of the controls. Conclusion: The fruit extract of TT ameliorates the MTZ-induced alterations in the testis. PMID:26069369

  13. Ameliorative effects of rutin against metabolic, biochemical and hormonal disturbances in polycystic ovary syndrome in rats.

    Science.gov (United States)

    Jahan, Sarwat; Munir, Faryal; Razak, Suhail; Mehboob, Anam; Ain, Qurat Ul; Ullah, Hizb; Afsar, Tayyaba; Shaheen, Ghazala; Almajwal, Ali

    2016-12-07

    Polycystic ovary syndrome (PCOS) is the most prevalent endocrinopathy in women of reproductive age. The study was commenced to assess the favorable effects of Rutin against metabolic, biochemical, histological, and androgenic aspects of polycystic ovary syndrome in rats. Female Sprague-Dawley rats were administered letrozole (1 mg/kg) per orally (p.o) for a period of 21 days for the induction of PCOS, followed by dose of rutin (100 mg/kg and 150 mg/kg, p.o) for 15 days using 0.5% w/v CMC as vehicle. Metformin was also given as a standard control to one of the rat groups. Serum estradiol, progesterone, testosterone, serum lipid parameters, CRP and glucose levels were evaluated. Furthermore, antioxidant activity was tested using superoxide dismutase, catalase, glutathione per-oxidase and reactive-oxygen species level. Rutin flavonoid had a dose-dependent effect on androgenic levels depicting more recovery in the rutin-I treated group, while rutin-II treated groups showed better antioxidant and lipid profiles as compared with PCOS groups. A decrease in the value of C reactive protein (CRP) and a restoration in the proportion of estrous phase smears were observed in the rutin treated groups. Histopathological examination of ovary revealed a significant decrease in the number of cystic follicles in post treated groups. The effects observed with rutin were moderately similar to that with standard metformin, a widely used treatment drug for PCOS. The study provides evidence for the potential ameliorative effects of rutin against clinical and biochemical features of PCOS.

  14. Amelioration of carbon tetrachloride-induced hepatic injury by emulsified Antrodia extract

    Directory of Open Access Journals (Sweden)

    Wei-Chih Chang

    2018-03-01

    Full Text Available Objective(s: Antrodia cinnamomea (AC is found with anti-inflammatory and immunomodulatory biological activities. In this study, we investigated the anti-hepatitis effect of the emulsified AC extract from RO water or supercritical fluid CO2 with ethanol co-solvent extract methods of AC preparations. Materials and Methods: Five groups of eight to ten weeks male rats with a count of ten for each group were studied to evaluate the protection of two kinds of AC extract from hepatic injury. Acute liver injury of rats was induced by injecting 40% carbon tetrachloride (CCl4 1 mg/kg intraperitoneally. Positive and negative control groups rats were perfused with CCl4 or isotonic saline, respectively. Experimental groups received oral administration once/day of AC preparations before CCl4 treatment: water AC extract (WAE group, or emulsified AC extract from supercritical fluid extraction (EAE group for 5 days, and sacrificed on the 6th day and the blood and liver samples were collected under chloral hydrate anesthesia. The anti-inflammatory, antioxidant markers, and relevant signaling pathways were measured (AST, ALT, ROS, IL-1, IL-6, NO, and COX-2, MAPKs, and caspase-3. Results: EAE at 50 mg/kg significantly decreased the serum AST, ALT, IL-1, IL-6, NO, and ROS levels. Both extracts reduced the activation of p-ERK in the liver samples, but EAE inhibited COX-2 and caspase-3 protein expression better than WAE. The EAE ameliorated CCl4-induced hepatic injury significantly; as compared with WAE and the positive control. Conclusion: The hepatoprotection of EAE could be attributed to the antioxidant and anti-inflammatory effects of Antrodia.

  15. Saccharomyces boulardii ameliorates clarithromycin- and methotrexate-induced intestinal and hepatic injury in rats.

    Science.gov (United States)

    Duman, Deniz Güney; Kumral, Zarife Nigâr Özdemir; Ercan, Feriha; Deniz, Mustafa; Can, Güray; Cağlayan Yeğen, Berrak

    2013-08-28

    Saccharomyces boulardii is a probiotic used for the prevention of antibiotic-associated diarrhoea. We aimed to investigate whether S. boulardii could alter the effects of clarithromycin (CLA) and methotrexate (MTX) on oro-caecal intestinal transit and oxidative damage in rats. Rats were divided into two groups receiving a single dose of MTX (20 mg/kg) or CLA (20 mg/kg per d) for 1 week. Groups were treated with either saline or S. boulardii (500 mg/kg) twice per d throughout the experiment. The control group was administered only saline. Following decapitation, intestinal transit and inflammation markers of glutathione (GSH), malondialdehyde and myeloperoxidase were measured in intestinal and hepatic tissues. CLA and MTX increased intestinal transit, while S. boulardii treatment slowed down CLA-facilitated transit back to control level. Both MTX and CLA increased lipid peroxidation while depleting the antioxidant GSH content in the hepatic and ileal tissues. Conversely, lipid peroxidation was depressed and GSH levels were increased in the ileal and hepatic tissues of S. boulardii-treated rats. Increased ileal neutrophil infiltration due to MTX and CLA treatments was also reduced by S. boulardii treatment. Histological analysis supported that S. boulardii protected intestinal tissues against the inflammatory effects of both agents. These findings suggest that S. boulardii ameliorates intestinal injury and the accompanying hepatic inflammation by supporting the antioxidant state of the tissues and by inhibiting the recruitment of neutrophils. Moreover, a preventive effect on MTXinduced toxicity is a novel finding of S. boulardii, proposing it as an adjunct to chemotherapy regimens.

  16. Uncaria rhynchophylla ameliorates cognitive deficits induced by D-galactose in mice.

    Science.gov (United States)

    Xian, Yan-Fang; Lin, Zhi-Xiu; Zhao, Ming; Mao, Qing-Qiu; Ip, Siu-Po; Che, Chun-Tao

    2011-12-01

    The stem with hooks of Uncaria rhynchophylla is a component herb of many traditional formulae for the treatment of neurodegenerative diseases. However, scientific evidence of the efficacy of Uncaria rhynchophylla in the treatment of Alzheimer's disease (AD) in animal models is lacking. Thus, in the present study, we investigated whether the 70 % aqueous ethanol extract of Uncaria rhynchophylla (EUR) could protect against D-galactose (D-gal)-induced cognitive deficits in mice. Mice were given a subcutaneous injection of D-gal (50 mg/kg) and orally administered EUR (100, 200, or 400 mg/kg) daily for 8 weeks. The effect of EUR on D-gal-induced cognitive deficits was evaluated by measuring behavioral and neurochemical parameters of AD and the antioxidant status of brain tissue. The results showed that EUR (200 or 400 mg/kg) significantly increased exploratory behavior (assessed by an open-field test) and improved spatial learning and memory function (assessed by the Morris water maze test) in D-gal-treated mice. In addition, EUR (200 or 400 mg/kg) significantly increased the levels of acetylcholine and glutathione and decreased the activity of acetylcholinesterase and the level of malondialdehyde in the brains of D-gal-treated mice. These results indicate that EUR ameliorates cognitive deficits induced by D-gal in mice, and that this action may be mediated, at least in part, by the inhibition of acetylcholinesterase activity and the enhancement of the antioxidant status of brain tissue. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Tribulus terrestris ameliorates metronidazole-induced spermatogenic inhibition and testicular oxidative stress in the laboratory mouse.

    Science.gov (United States)

    Kumari, Mrinalini; Singh, Poonam

    2015-01-01

    The present study was undertaken to evaluate the protective effects of the fruit extract of Tribulus terrestris (TT) on the metronidazole (MTZ)-induced alterations in spermatogenesis, sperm count, testicular functions, and oxidative stress. Thirty adult Swiss strain mice were divided into six groups. Animals of Groups I and II served as untreated and vehicle-treated controls, while that of Groups III and IV were administered with MTZ (500 mg/kg BW/day) and TT (200 mg/kg BW/day) alone for 28 days, respectively. Low (100 mg/kg BW/day) and high (200 mg/kg BW/day) doses of TT along with MTZ (500 mg/kg BW/day) were administered for 28 days in the mice of Groups V and VI, respectively. Twenty four hours after the last treatment, all the animals were euthanized to study the histological changes in the testis and sperm count in the epididymis. Testicular functional markers, lipid peroxidation (LPO) and the activities of antioxidant enzymes, e.g., superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, were also assessed in the mice of all the groups. Metronidazole caused marked alterations in the testicular weight, spermatogenesis, activities of antioxidant enzymes, lactate dehydrogenase, alkaline phosphatase, and the level of LPO. The epididymal sperm count also declined significantly in MTZ-treated group. These changes were partially restored following co-administration of 500 mg/kg BW/day of MTZ and 100 mg/kg BW/day of TT. However, in the mice co-administered with 500 mg/kg BW/day of MTZ and 200 mg/kg BW/day of TT, the changes reverted back completely, similar to that of the controls. The fruit extract of TT ameliorates the MTZ-induced alterations in the testis.

  18. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes.

    Science.gov (United States)

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-07

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway.

  19. The Brewed Rice Vinegar Kurozu Increases HSPA1A Expression and Ameliorates Cognitive Dysfunction in Aged P8 Mice.

    Directory of Open Access Journals (Sweden)

    Hiroaki Kanouchi

    Full Text Available Kurozu is a traditional Japanese rice vinegar. During fermentation and aging of the Kurozu liquid in an earthenware jar over 1 year, a solid residue called Kurozu Moromi is produced. In the present study, we evaluated whether concentrated Kurozu or Kurozu Moromi could ameliorate cognitive dysfunction in the senescence-accelerated P8 mouse. Senescence-accelerated P8 mice were fed 0.25% (w/w concentrated Kurozu or 0.5% (w/w Kurozu Moromi for 4 or 25 weeks. Kurozu suppressed cognitive dysfunction and amyloid accumulation in the brain, while Kurozu Moromi showed a tendency to ameliorate cognitive dysfunction, but the effect was not significant. We hypothesize that concentrated Kurozu has an antioxidant effect; however, the level of lipid peroxidation in the brain did not differ in senescence-accelerated P8 mice. DNA microarray analysis indicated that concentrated Kurozu increased HSPA1A mRNA expression, a protein that prevents protein misfolding and aggregation. The increase in HSPA1A expression by Kurozu was confirmed using quantitative real-time PCR and immunoblotting methods. The suppression of amyloid accumulation by concentrated Kurozu may be associated with HSPA1A induction. However, concentrated Kurozu could not increase HSPA1A expression in mouse primary neurons, suggesting it may not directly affect neurons.

  20. Ginsenoside Re Ameliorates Brain Insulin Resistance and Cognitive Dysfunction in High Fat Diet-Induced C57BL/6 Mice.

    Science.gov (United States)

    Kim, Jong Min; Park, Chang Hyeon; Park, Seon Kyeong; Seung, Tae Wan; Kang, Jin Yong; Ha, Jeong Su; Lee, Du Sang; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2017-04-05

    The ameliorating effects of ginsenoside Re (G Re) on high fat diet (HFD)-induced insulin resistance in C57BL/6 mice were investigated to assess its physiological function. In the results of behavioral tests, G Re improved cognitive dysfunction in diabetic mice using Y-maze, passive avoidance, and Morris water maze tests. G Re also significantly recovered hyperglycemia and fasting blood glucose level. In the results of serum analysis, G Re decreased triglyceride (TG), total cholesterol (TCHO), low-density lipoprotein cholesterol (LDLC), glutamic-oxaloacetic transaminase (GOT), and glutamic-pyruvic transaminase (GPT) and increased the ratio of high-density lipoprotein cholesterol (HDLC). G Re regulated acetylcholine (ACh), acetylcholinesterase (AChE), malondialdehyde (MDA), superoxide dismutase (SOD), and oxidized glutathione (GSH)/total GSH by regulating the c-Jun N-terminal protein kinase (JNK) pathway. These findings suggest that G Re could be used to improve HFD-induced insulin resistance condition by ameliorating hyperglycemia via protecting the cholinergic and antioxidant systems in the mouse brains.

  1. Ameliorative Effect of Grape Seed Proanthocyanidin Extract on Cadmium-Induced Meiosis Inhibition During Oogenesis in Chicken Embryos.

    Science.gov (United States)

    Hou, Fuyin; Xiao, Min; Li, Jian; Cook, Devin W; Zeng, Weidong; Zhang, Caiqiao; Mi, Yuling

    2016-04-01

    Cadmium (Cd) is an environmental endocrine disruptor that has toxic effects on the female reproductive system. Here the ameliorative effect of grape seed proanthocyanidin extract (GSPE) on Cd-induced meiosis inhibition during oogenesis was explored. As compared with controls, chicken embryos exposed to Cd (3 µg/egg) displayed a changed oocyte morphology, decreased number of meiotic germ cells, and decreased expression of the meiotic marker protein γH2AX. Real time RT-PCR also revealed a significant down-regulation in the mRNA expressions of various meiosis-specific markers (Stra8, Spo11, Scp3, and Dmc1) together with those of Raldh2, a retinoic acid (RA) synthetase, and of the receptors (RARα and RARβ). In addition, exposure to Cd increased the production of H2 O2 and malondialdehyde in the ovaries and caused a corresponding reduction in glutathione and superoxide dismutase. Simultaneous supplementation of GSPE (150 µg/egg) markedly alleviated the aforementioned Cd-induced embryotoxic effects by upregulating meiosis-related proteins and gene expressions and restoring the antioxidative level. Collectively, the findings provided novel insights into the underlying mechanism of Cd-induced meiosis inhibition and indicated that GSPE might potentially ameliorate related reproductive disorders. © 2016 Wiley Periodicals, Inc.

  2. Zinc Ameliorate Oxidative Stress and Hormonal Disturbance Induced by Methomyl, Abamectin, and Their Mixture in Male Rats

    Directory of Open Access Journals (Sweden)

    Sameeh A. Mansour

    2017-12-01

    Full Text Available Exposure to mixtures of toxicants (e.g., pesticides is common in real life and a subject of current concern. The present investigation was undertaken to assess some toxicological effects in male rats following exposure to methomyl (MET, abamectin (ABM, and their combination (MET+ABM, and to evaluate the ameliorative effect of zinc co-administration. Three groups of rats were designated for MET, ABM, and the mixture treatments. Three other groups were designated for zinc in conjunction with the pesticides. Additionally, one group received water only (control, and the other represented a positive zinc treatment. The obtained results revealed that MET was acutely more toxic than ABM. The tested pesticides induced significant elevation in lipid peroxidation and catalase levels, while declined the levels of the other tested parameters e.g., Superoxide dismutase (SOD, Glutathione-S-transferase (GST, Glutathione peroxidase (GPx, Glutathione reductase (GR, Cytochrome P450 (CYP450, testosterone, and thyroxine. Biochemical alterations induced by the mixture were greater than those recorded for each of the individual insecticides. The joint action analysis, based on the obtained biochemical data, revealed the dominance of antagonistic action among MET and ABM. Zinc supplementation achieved noticeable ameliorative effects. It was concluded that zinc may act as a powerful antioxidant, especially in individuals who are occupationally exposed daily to low doses of such pesticides.

  3. Ameliorative potential of Vernonia cinerea on chronic constriction injury of sciatic nerve induced neuropathic pain in rats

    Directory of Open Access Journals (Sweden)

    VENKATA R.K. THIAGARAJAN

    2014-09-01

    Full Text Available The aim of the present study is to investigate the ameliorative potential of ethanolic extract of whole plant of Vernonia cinerea in the chronic constriction injury (CCI of sciatic nerve induced neuropathic pain in rats. Behavioral parameters such as a hot plate, acetone drop, paw pressure, Von Frey hair and tail immersion tests were performed to assess the degree of thermal, chemical and mechanical hyperalgesia and allodynia. Biochemical changes in sciatic nerve tissue were ruled out by estimating thiobarbituric acid reactive substances (TBARS, reduced glutathione (GSH and total calcium levels. Ethanolic extract of Vernonia cinerea and pregabalin were administered for 14 consecutive days starting from the day of surgery. CCI of sciatic nerve has been shown to induce significant changes in behavioral, biochemical and histopathological assessments when compared to the sham control group. Vernonia cinerea attenuated in a dose dependent manner the above pathological changes induced by CCI of the sciatic nerve, which is similar to attenuation of the pregabalin pretreated group. The ameliorating effect of ethanolic extract of Vernonia cinerea against CCI of sciatic nerve induced neuropathic pain may be due to the presence of flavonoids and this effect is attributed to anti-oxidative, neuroprotective and calcium channel modulator actions of these compounds.

  4. Assessment of changes in plasma total antioxidant status in gamma irradiated rats treated with eugenol

    International Nuclear Information System (INIS)

    Azab, Kh. SH.

    2002-01-01

    Eugenol, a volatile phenolic phyto chemical, is a major constituent of clove oil. The present study was carried out to evaluate the antioxidant effect of eugenol on certain lipid metabolites and variations in the antioxidant status. In vitro study (oxidative susceptibility of lipoprotein) revealed that eugenol elongates the lag phase for the induction of conjugated diene and decreased the rate of lipid peroxidation (production of thiobarbituric reactive substances; TBARS) during the propagation phase. In vivo study on rats revealed a significant increase in plasma total antioxidant status after eugenol regime. Furthermore, eugenol water emulsion delivered to rats by garage in a concentration of 1 g/kg body weight for 15 days before and during exposure to fractionated whole body gamma radiation (1.5 Gy every other day) up to a total dose of 7.5 Gy showed that, administration of eugenol reduces significantly the concentration of plasma TBARS and minimize the decrease in plasma antioxidants. Amelioration in the concentration of reduced glutathione (GSH) in blood and liver and the activities of cytosolic glutathione-S-transferase (GST) in the liver were also observed. Furthermore, the changes in the concentrations of total cholesterol, triglycerides, LDL-cholesterol and HDL-cholesterol were less pronounced. It could be postulated that by minimizing the decrease in antioxidant status, eugenol could prevents the radiation induce alterations in lipid metabolism

  5. The Effect of Vitamin E on Ameliorating Primary Dysmenorrhea: A ...

    African Journals Online (AJOL)

    Dysmenorrhea or painful menstruation is one of the most common problems of women. Using systematic review and meta‑analysis, this study aimed to determine the effect of vitamin E on ameliorating the intensity of pain of primary dysmenorrhea. Available databases comprising PubMed, Google Scholar, ISI, Science ...

  6. Designing urban parks that ameliorate the effects of climate change

    NARCIS (Netherlands)

    Brown, R.D.; Vanos, J.; Kenny, N.; Lenzholzer, S.

    2015-01-01

    Many inhabitants of cities throughout the world suffer from health problems and discomfort that are caused by overheating of urban areas, and there is compelling evidence that these problems will be exacerbated by global climate change. Most cities are not designed to ameliorate these effects

  7. Oral Metformin-Ascorbic Acid Co-Administration Ameliorates Alcohol ...

    African Journals Online (AJOL)

    Oral Metformin-Ascorbic Acid Co-Administration Ameliorates Alcohol-Induced Hepatotoxicity In Rats. ... Nigerian Quarterly Journal of Hospital Medicine ... the present in vivo animal study was to determine whether metformin-ascorbic acid co-administration also prevents alcoholic hepatotoxicity in chronic alcohol exposure.

  8. Antibiotics can ameliorate circulatory complications of liver cirrhosis

    DEFF Research Database (Denmark)

    Madsen, Bjørn Stæhr; Schaffalitzky de Muckadell, Ove B

    2011-01-01

    . This review focuses on how broad spectrum antibiotics can ameliorate the haemodynamic consequences of bacterial translocation. It is possible that the use of broad spectrum antibiotics in the future may be used to prevent other complications of liver cirrhosis than spontaneous bacterial peritonitis...

  9. Ameliorative effect of the hydroethanolic whole plant extract of ...

    African Journals Online (AJOL)

    At the end of the study, biochemical markers of nitrosative and oxidative stress status were determined. Results: DH (12.5, 50 and 100 mg/kg) significantly ameliorated haloperidol-induced catalepsy (bar test), spontaneous motor and working memory deficits (open field and elevated plus maze tests, respectively), ...

  10. Ameliorative effects of Cnidoscolus aconitifolius on anaemia and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... This study was designed to evaluate the ameliorative effect of ... The group fed with 20% C. aconitifolius in place of 20% soya protein also ... to cholesterol enrichment of the erythrocytes membrane, ... rabbit and horse erythrocytes membrane with 1,2- .... various substances such as iron, vitamins and protein.

  11. Ameliorative effects of Cnidoscolus aconitifolius on anaemia and ...

    African Journals Online (AJOL)

    This study was designed to evaluate the ameliorative effect of dietary supplementation of Cnidoscolus aconitifolius leaf on anaemia and changes in erythrocyte osmotic fragility in protein energy malnourished rats. Protein energy malnutrition has been associated with anaemia and changes in osmotic fragility, deformability ...

  12. Antioxidants and the Comet assay.

    Science.gov (United States)

    Cemeli, Eduardo; Baumgartner, Adolf; Anderson, Diana

    2009-01-01

    It is widely accepted that antioxidants, either endogenous or from the diet, play a key role in preserving health. They are able to quench radical species generated in situations of oxidative stress, either triggered by pathologies or xenobiotics, and they protect the integrity of DNA from genotoxicants. Nevertheless, there are still many compounds with unclear or unidentified prooxidant/antioxidant activities. This is of concern since there is an increase in the number of compounds synthesized or extracted from vegetables to which humans might be exposed. Despite the well-established protective effects of fruit and vegetables, the antioxidant(s) responsible have not all been clearly identified. There might also be alternative mechanisms contributing to the protective effects for which a comprehensive description is lacking. In the last two decades, the Comet assay has been extensively used for the investigation of the effects of antioxidants and many reports can be found in the literature. The Comet assay, a relatively fast, simple, and sensitive technique for the analysis of DNA damage in all cell types, has been applied for the screening of chemicals, biomonitoring and intervention studies. In the present review, several of the most well-known antioxidants are considered. These include: catalase, superoxide dismutase, glutathione peroxidase, selenium, iron chelators, melatonin, melanin, vitamins (A, B, C and E), carotenes, flavonoids, isoflavones, tea polyphenols, wine polyphenols and synthetic antioxidants. Investigations showing beneficial as well as non-beneficial properties of the antioxidants selected, either at the in vitro, ex vivo or in vivo level are discussed.

  13. Antioxidant supplements for liver diseases

    DEFF Research Database (Denmark)

    Bjelakovic, Goran; Gluud, Lise Lotte; Nikolova, Dimitrinka

    2011-01-01

    Several liver diseases have been associated with oxidative stress. Accordingly, antioxidants have been suggested as potential therapeutics for various liver diseases. The evidence supporting these suggestions is equivocal.......Several liver diseases have been associated with oxidative stress. Accordingly, antioxidants have been suggested as potential therapeutics for various liver diseases. The evidence supporting these suggestions is equivocal....

  14. The Green Tea Catechin Epigallocatechin Gallate Ameliorates Graft-versus-Host Disease.

    Directory of Open Access Journals (Sweden)

    Sabine Westphal

    Full Text Available Allogeneic hematopoetic stem cell transplantation (allo-HSCT is a standard treatment for leukemia and other hematologic malignancies. The major complication of allo-HSCT is graft-versus-host-disease (GVHD, a progressive inflammatory illness characterized by donor immune cells attacking the organs of the recipient. Current GVHD prevention and treatment strategies use immune suppressive drugs and/or anti-T cell reagents these can lead to increased risk of infections and tumor relapse. Recent research demonstrated that epigallocatechin gallate (EGCG, a component found in green tea leaves at a level of 25-35% at dry weight, may be useful in the inhibition of GVHD due to its immune modulatory, anti-oxidative and anti-angiogenic capacities. In murine allo-HSCT recipients treated with EGCG, we found significantly reduced GVHD scores, reduced target organ GVHD and improved survival. EGCG treated allo-HSCT recipients had significantly higher numbers of regulatory T cells in GVHD target organs and in the blood. Furthermore, EGCG treatment resulted in diminished oxidative stress indicated by significant changes of glutathione blood levels as well as glutathione peroxidase in the colon. In summary, our study provides novel evidence demonstrating that EGCG ameliorates lethal GVHD and reduces GVHD-related target organ damage. Possible mechanisms are increased regulatory T cell numbers and reduced oxidative stress.

  15. Ameliorative Effect of Gallic Acid on Cyclophosphamide-Induced Oxidative Injury and Hepatic Dysfunction in Rats

    Science.gov (United States)

    Olayinka, Ebenezer Tunde; Ore, Ayokanmi; Ola, Olaniyi Solomon; Adeyemo, Oluwatobi Adewumi

    2015-01-01

    Cyclophosphamide (CP), a bifunctional alkylating agent used in chemotherapy has been reported to induce organ toxicity mediated by generation of reactive oxygen species and oxidative stress. Gallic acid (GA), a phenolic substance, is a natural antioxidant with proven free radical scavenging activity and offers protection against oxidative damage. This research study was designed to investigate the ameliorative effect of GA against CP-induced toxicity in rats. Twenty-five male Wistar rats (180–200 g) were randomized into five treatment groups: (A) control, (B) CP, 2 mg/kg body weight (b.w.), (C) pre-treatment with GA (20 mg/kg b.w.) for seven days followed by CP (2 mg/kg b.w.) for seven days, (D) co-treatment with GA (20 mg/kg b.w) and CP (2 mg/kg b.w.) for seven days, and (E) GA (20 mg/kg b.w.) for seven days. CP induced marked renal and hepatic damages as plasma levels of urea, creatinine, bilirubin and activities of AST, ALT, ALP and GGT were significantly elevated (p acid. PMID:29083393

  16. Potassium Bromate-induced Changes in the Adult Mouse Cerebellum Are Ameliorated by Vanillin.

    Science.gov (United States)

    Ben Saad, Hajer; Driss, Dorra; Jaballi, Imen; Ghozzi, Hanen; Boudawara, Ons; Droguet, Michael; Magné, Christian; Nasri, Monsef; Zeghal, Khaled Mounir; Hakim, Ahmed; Ben Amara, Ibtissem

    2018-02-01

    The current study aimed to elucidate the effect of vanillin on behavioral changes, oxidative stress, and histopathological changes induced by potassium bromate (KBrO3), an environmental pollutant, in the cerebellum of adult mice. The animals were divided into four groups: group 1 served as a control, group 2 received KBrO3, group 3 received KBrO3 and vanillin, and group 4 received only vanillin. We then measured behavioral changes, oxidative stress, and molecular and histological changes in the cerebellum. We observed significant behavioral changes in KBrO3-exposed mice. When investigating redox homeostasis in the cerebellum, we found that mice treated with KBrO3 had increased lipid peroxidation and protein oxidation in the cerebellum. These effects were accompanied by decreased Na+-K+ and Mg2+ ATPase activity and antioxidant enzyme gene expression when compared to the control group. Additionally, there was a significant increase in cytokine gene expression in KBrO3-treated mice. Microscopy revealed that KBrO3 intoxication resulted in numerous degenerative changes in the cerebellum that were substantially ameliorated by vanillin supplementation. Co-administration of vanillin blocked the biochemical and molecular anomalies induced by KBrO3. Our results demonstrate that vanillin is a potential therapeutic agent for oxidative stress associated with neurodegenerative diseases. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  17. Preventive Intra Oral Treatment of Sea Cucumber Ameliorate OVA-Induced Allergic Airway Inflammation.

    Science.gov (United States)

    Lee, Da-In; Park, Mi-Kyung; Kang, Shin Ae; Choi, Jun-Ho; Kang, Seok-Jung; Lee, Jeong-Yeol; Yu, Hak Sun

    2016-01-01

    Sea cucumber extracts have potent biological effects, including anti-viral, anti-cancer, antibacterial, anti-oxidant, and anti-inflammation effects. To understand their anti-asthma effects, we induced allergic airway inflammation in mice after 7 oral administrations of the extract. The hyper-responsiveness value in mice with ovalbumin (OVA)-alum-induced asthma after oral injection of sea cucumber extracts was significantly lower than that in the OVA-alum-induced asthma group. In addition, the number of eosinophils in the lungs of asthma-induced mice pre-treated with sea cucumber extract was significantly decreased compared to that of PBS pre-treated mice. Additionally, CD4[Formula: see text]CD25[Formula: see text]Foxp3[Formula: see text]T (regulatory T; Treg) cells significantly increased in mesenteric lymph nodes after 7 administrations of the extract. These results suggest that sea cucumber extract can ameliorate allergic airway inflammation via Treg cell activation and recruitment to the lung.

  18. Edaravone injection ameliorates cognitive deficits in rat model of Alzheimer's disease.

    Science.gov (United States)

    Yang, Rui; Wang, Qingjun; Li, Fang; Li, Jian; Liu, Xuewen

    2015-11-01

    Oxidative stress plays important role in the pathogenesis of Alzheimer's disease (AD). Edaravone is a potent free radical scavenger that exerts antioxidant effects. Therefore, in this study we aimed to investigate neuroprotective effects of edaravone for AD. Wistar rats were randomly divided into three groups (n = 15): control group, model group, and treatment group, which were injected with phosphate buffered saline, Aβ1-40, and Aβ1-40 together with 5 mg/kg edaravone, respectively, into the right hippocampal dentate gyrus. Spatial learning and memory of the rats were examined by Morris water maze test. 4-Hydroxynonenal (4-HNE) level in rat hippocampus was analyzed by immunohistochemistry. Acetylcholinesterase (AChE) and choline acetylase (ChAT) activities were assayed by commercial kits. We found that edaravone ameliorated spatial learning and memory deficits in the rats. 4-HNE level in the hippocampus as well as AChE and ChAT activities in the hippocampus was significantly lower in treatment group than in model group. In conclusion, edaravone may be developed as a novel agent for the treatment of AD for improving cholinergic system and protecting neurons from oxidative toxicity.

  19. Ameliorative effect of pumpkin seed oil against emamectin induced toxicity in mice.

    Science.gov (United States)

    Abou-Zeid, Shimaa M; AbuBakr, Huda O; Mohamed, Mostafa A; El-Bahrawy, Amanallah

    2018-02-01

    The current study was conducted to evaluate the toxic effects of emamectin insecticide in mice and the possible protective effect of pumpkin seed oil. Treated mice received emamectin benzoate in the diet at 75-ppm for 8 weeks, while another group of animals received emamectin in addition to pumpkin seed oil at a dose of 4 ml/kg. Biochemical analysis of MDA, DNA fragmentation, GSH, CAT and SOD was performed in liver, kidney and brain as oxidant/antioxidant biomarkers. In addition, gene expression of CYP2E1 and Mgst1 and histopathological alterations in these organs were evaluated. Emamectin administration induced oxidative stress in liver and kidney evidenced by elevated levels of MDA and percentage of DNA fragmentation with suppression of GSH level and CAT and SOD activities. Brain showed increase of MDA level with inhibition of SOD activity. Relative expressions of CYP2E1 and Mgst1 genes were significantly elevated in both liver and kidney. Emamectin produced several histopathological changes in liver, kidney and brain. Co-administration of pumpkin seed oil produced considerable protection of liver and kidney and complete protection of brain. In conclusion, pumpkin seed oil has valuable value in ameliorating the toxic insult produced by emamectin in mice. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Role of berberine in ameliorating Schistosoma mansoni-induced hepatic injury in mice

    Directory of Open Access Journals (Sweden)

    Mohamed A Dkhi

    2014-01-01

    Full Text Available BACKGROUND: Schistosomiasis is caused by helminth parasites of the genus Schistosoma. Berberine chloride (BER, an isoquinoline alkaloid, has been used in vivo for its antiparasitic, antioxidant and hepatoprotective properties. In this study, the protective effect of BER and praziquantel has been compared for the extent of schistosomiasis-induced oxidative stress in hepatic tissue of mice. RESULTS: S. mansoni was able to induce inflammation and injury to the liver, evidenced (i by an increase in inflammatory cellular infiltrations, dilated sinusoids and vacuolated hepatocytes, (ii by decreased levels of alanine and aspartate aminotransferases and increased levels of alkaline phosphatase, γ-glutamyl transferase in the liver homogenate, (iii by increased production of nitric oxide and thiobarbituric acid reactive substances, and (iv by lowered glutathione levels and decreased activities of catalase and superoxide dismutase, respectively. All these infection-induced parameters were significantly altered during BER treatment. In particular, berberine counteracted the S. mansoni-induced loss of glutathione and the activities of catalase and superoxide dismutase. CONCLUSION: Based on these results, it is concluded that berberine could ameliorate pre-existing liver damage and oxidative stress conditions due to schistosomiasis.

  1. Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits.

    Science.gov (United States)

    El-Awady, Mohammed S; Suddek, Ghada M

    2014-06-01

    The aim of this work was to explore possible effects of agmatine, an endogenous inhibitor of inducible nitric oxide synthase (iNOS), against hypercholesterolemia-induced lipid profile changes and endothelial dysfunction. Hypercholesterolemia was induced by feeding rabbits with a high-cholesterol diet (HCD, 0.5%) for 8 weeks. Another HCD-fed group was orally administered agmatine (10 mg/kg/day) during weeks 5 through 8. Serum lipid profile, malondialdehyde (MDA), nitric oxide (NO) and lactate dehydrogenase (LDH) were determined. Aorta was isolated to analyse vascular reactivity, atherosclerotic lesions and intima/media (I/M) ratio. HCD induced a significant increase in serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides and high-density lipoprotein cholesterol (HDL-C). Agmatine administration significantly decreased HCD-induced elevations in serum TC and LDL-C, MDA, LDH and NO while significantly increased HDL-C levels. Additionally, agmatine significantly protected against HCD-induced attenuation of rabbit aortic endothelium-dependent relaxation to acetylcholine. HCD and agmatine did not significantly influence aortic endothelium-independent relaxation to sodium nitroprusside. Moreover, agmatine significantly reduced the elevation in aortic atherosclerotic lesion area and I/M ratio. This study is the first to reveal that agmatine has the ability to ameliorate hypercholesterolemia-induced lipemic-oxidative and endothelial function injuries possibly by its antioxidant potential and/or iNOS inhibition. © 2014 Royal Pharmaceutical Society.

  2. Epigallocatechin gallate ameliorates chronic fatigue syndrome in mice: behavioral and biochemical evidence.

    Science.gov (United States)

    Sachdeva, Anand Kamal; Kuhad, Anurag; Tiwari, Vinod; Chopra, Kanwaljit

    2009-12-28

    Three decades after the coining of the term chronic fatigue syndrome, the diagnosis of this illness is still symptom based and the aetiology remains elusive. Chronic fatigue syndrome pathogenesis seems to be multifactorial and the possible involvement of immune system is supported. The present study was designed to evaluate the effects of the epigallocatechin gallate in a mouse model of immunologically induced chronic fatigue. On 19th day, after lipopolysaccharide/Brucella abortus administration, the mice showed significant increase in immobility period, post swim fatigue and thermal hyperalgesia. Behavioral deficits were coupled with enhanced oxidative-nitrosative stress as evident by increased lipid peroxidation, nitrite levels and decreased endogenous antioxidant enzymes (superoxide dismutase, reduced glutathione and catalase) and inflammation (increased levels of tumor necrosis factor-alpha and tissue growth factor-beta). Chronic treatment with epigallocatechin gallate restored these behavioral and biochemical alterations in mice. The present study points out towards the beneficial effect of epigallocatechin gallate in the amelioration of chronic fatigue syndrome and thus may provide a new, effective and powerful strategy to treat chronic fatigue syndrome.

  3. Diesel Exhaust Particles Induce Impairment of Vascular and Cardiac Homeostasis in Mice: Ameliorative Effect of Emodin

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2015-07-01

    Full Text Available Background/Aim: There is strong epidemiological and clinical evidence that components of the cardiovascular system are adversely affected by particulate air pollutants through the generation of inflammation and oxidative stress. Emodin (1,3,8-trihydroxy-6-methylanthraquinone, which is commonly found in the roots of rhubarb plant, has strong antioxidant and anti-inflammatory effects. However, its possible protective effect on the cardiovascular effect of particulate air pollutants has never been reported before. Methods: We tested, in Tuck-Ordinary mice, the possible ameliorative effect of emodin on the acute (24h cardiovascular effects of diesel exhaust particles (DEP, 1 mg/kg or saline (control. Emodin (4 mg/kg was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty four h following DEP exposure, several cardiovascular endpoints were assessed. Results: Emodin significantly prevented the increase of leukocyte (n=8, Pin vivo prothrombotic effect of DEP in pial arterioles (n=6, Pin vitro in whole blood (n=4-5, PConclusion: We conclude that emodin treatment has consistently protected against DEP-induced impairment of vascular and cardiac homeostasis in mice. Our study provides experimental evidence that the use of functional food such as emodin, pending further studies, can be considered a useful agent and may have the potential to protect or mitigate the cardiovascular detrimental effects observed in people living in cities with high concentrations of particulate air pollution.

  4. Amelioration of radiation induced oxidative stress using water soluble chitosan produced by Aspergillus niger

    International Nuclear Information System (INIS)

    EL-Sonbaty, S.M.; Swailam, H.M.; Noaman, E.

    2012-01-01

    Chitosan is a natural polysaccharide synthesized by a great number of living organisms and considered as a source of potential bioactive material and has many biological applications which are greatly affected by its solubility in neutral ph. In this study low molecular weight water soluble chitosan was prepared by chemical degradation of chitosan produced by Aspergillus niger using H 2 O 2 . Chitosan chemical structure was detected before and after treatment using FTIR spectrum, and its molecular weight was determined by its viscosity using viscometer. Its antioxidant activity against gamma radiation was evaluated in vivo using rats. Rats were divided into 4 groups; group 1: control, group 2: exposed to acute dose of gamma radiation (6 Gy), group 3: received water soluble chitosan, group 4: received water soluble chitosan then exposed to gamma radiation as group 2. Gamma radiation significantly increased malonaldehyde, decreased glutathione concentration, activity of superoxide dismutase, catalase, and glutatione peroxidase, while significantly increase the activity of alanine transferase, aspartate transferase, urea and creatinine concentration. Administration of water soluble chitosan has ameliorated induced changes caused by gamma radiation. It could be concluded that water soluble chitosan by scavenging free radicals directly or indirectly may act as a potent radioprotector against ionizing irradiation.

  5. Ameliorative effect of ethyl pyruvate in neuropathic pain induced by chronic constriction injury of sciatic nerve

    Directory of Open Access Journals (Sweden)

    Varsha J. Bansode

    2014-01-01

    Full Text Available Objective: The present study was designed to investigate the ameliorative effects of ethyl pyruvate (EP in chronic constriction injury (CCI-induced painful neuropathy in rats. Materials and Methods: EP 50 and 100 mg/kg was administered for 21 consecutive days starting from the day of surgery. The effects of EP in the paw pressure, acetone drop, and tail heat immersion tests were assessed, reflecting the degree of mechanical hyperalgesia, cold allodynia, and spinal thermal sensation, respectively. Axonal degeneration of the sciatic nerve was assessed histopathologically. The levels of thiobarbituric acid reactive species, reduced glutathione (GSH, catalase (CAT, and superoxide dismutase (SOD were determined to assess oxidative stress. Key Findings: Administration of 50 and 100 mg/kg EP attenuated the reduction of nociceptive threshold in the paw pressure, acetone drop, and tail heat immersion tests. EP 100 mg/kg significantly attenuated reactive changes in histopathology and increase in oxidative stress. Conclusion: EP 100 mg/kg showed beneficial activity against nerve trauma-induced neuropathy. Hence, it can be used as a better treatment option in neuropathic pain (NP. The observed antinociceptive effects of EP may possibly be attributed to its antioxidant and anti-inflammatory activity.

  6. Intervention of ginger or propolis ameliorates methotrexate-induced ileum toxicity.

    Science.gov (United States)

    Abdul-Hamid, Manal; Salah, Marwa

    2016-02-01

    The long-term clinical use of methotrexate (MTX) is restricted due to its severe intestinal toxicity. The protective effect of ginger or propolis on the toxicity induced by MTX is relatively less understood, so the possible protective effect of ginger or propolis, used separately, was investigated. A total of 60 male albino rats were divided into six groups as follows: (1) control group; (2) ginger group; (3) propolis group; (4) MTX group; (5) ginger + MTX group; and (6) propolis + MTX group. The present results show that MTX caused ileum injury, including shortening and fusion of the villi, inflammatory cell infiltration and goblet cell depletion. Administration of ginger or propolis ameliorated the MTX-induced ileum injury as shown by histological, immunohistochemical and ultrastructural investigations and statistical analysis. This is revealed by intact villi, which shows marked increase in brown colouration of proliferating cell nuclear antigen positive nuclei in the crypts region, improvement in the number of goblet cells and brush border length of ileum. The current results conclude the efficacy and safety of ginger and propolis, which may be due to their antioxidant properties. © The Author(s) 2013.

  7. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.

    Science.gov (United States)

    Yang, Jun; Wang, Zhao; Chen, Dong-Lin

    2017-09-01

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future. Copyright © 2017. Published by Elsevier Masson SAS.

  8. Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liver

    Directory of Open Access Journals (Sweden)

    Zeba Farooqui

    Full Text Available Cisplatin (CP is a potent anti-cancer drug widely used against solid tumors. However, it exhibits pronounced adverse effects including hepatotoxicity. Several strategies were attempted to prevent CP hepatotoxicity but were not found suitable for therapeutic application. Nigella sativa has been shown to prevent/reduce the progression of certain type of cardiovascular, kidney and liver diseases. Present study investigates whether N. sativa oil (NSO can prevent CP induced hepatotoxic effects. Rats were divided into four groups viz. control, CP, NSO and CPNSO. Animals in CPNSO and NSO group were administered NSO (2 ml/kg bwt, orally with or without single hepatotoxic dose of CP (6 mg/kg bwt, i.p. respectively. CP hepatotoxicity was recorded by increased serum ALT and AST activities. CP treatment caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased enzymatic and non-enzymatic antioxidants. Furthermore, the activities of various carbohydrate metabolism and membrane enzymes were altered by CP treatment. In contrast, NSO administration to CP treated rats, markedly ameliorated the CP elicited deleterious alterations in liver. Histopathological observations showed extensive liver damage in CP treated animals while greatly reduced tissue injury in CPNSO group. In conclusion, NSO appears to protect CP induced hepatotoxicity by improving energy metabolism and strengthening antioxidant defense mechanism. Keywords: Cisplatin, Nigella sativa oil, Carbohydrate metabolism, Antioxidant

  9. Dietary antioxidants for the athlete.

    Science.gov (United States)

    Atalay, Mustafa; Lappalainen, Jani; Sen, Chandan K

    2006-06-01

    Physical exercise induces oxidative stress and tissue damage. Although a basal level of reactive oxygen species (ROS) is required to drive redox signaling and numerous physiologic processes, excess ROS during exercise may have adverse implications on health and performance. Antioxidant nutrients may be helpful in that regard. Caution should be exercised against excess antioxidant supplements, however. This article presents a digest for sports practitioners. The following three recommendations are made: 1) it is important to determine the individual antioxidant need of each athlete performing a specific sport; 2) multinutrient preparations, as opposed to megadoses of any single form of nutrient, seem to be a more prudent path to choose; and 3) for outcomes of antioxidant supplementation, performance should not be the only criteria. Overall well being of the athlete, faster recovery, and minimization of injury time could all be affected by antioxidant therapy.

  10. Ameliorative Potentials of Cocoyam (Colocasia esculenta L. and Unripe Plantain (Musa paradisiaca L. on the Relative Tissue Weights of Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    C. O. Eleazu

    2013-01-01

    Full Text Available Aim. To investigate the ameliorating potentials of cocoyam (Colocasia esculenta L. and unripe plantain (Musa paradisiaca L. incorporated feeds on the renal and liver growths of diabetic rats, induced with 55 and 65 mg/kg body weight of Streptozotocin. Method. The blood glucose level of the rats was measured with a glucometer, the protein and glucose and specific gravity (SPGR in the urine samples of the rats were measured using urine assay strips and urinometer respectively. The chemical composition and antioxidant screening of the test feeds were carried out using standard techniques. Results. Administration of the test feeds for 21 days to the diabetic rats of groups 4 and 5, resulted in 58.75% and 38.13% decreases in hyperglycemia and amelioration of their elevated urinary protein, glucose, SPGR, and relative kidney weights. The diabetic rats administered cocoyam incorporated feeds, had 2.71% and 19.52% increases in weight and growth rates, the diabetic rats administered unripe plantain incorporated feeds had 5.12% and 29.52% decreases in weight and growth rates while the diabetic control rats had 28.69%, 29.46%, 248.9% and 250.14% decreases in weights and growth rates. The cocoyam incorporated feeds contained higher antioxidants, minerals and phytochemicals except alkaloids than unripe plantain feed. Conclusion. Cocoyam and unripe plantain could be useful in the management of diabetic nephropathy.

  11. Ameliorative potentials of cocoyam (Colocasia esculenta L.) and unripe plantain (Musa paradisiaca L.) on the relative tissue weights of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Eleazu, C O; Iroaganachi, M; Eleazu, K C

    2013-01-01

    To investigate the ameliorating potentials of cocoyam (Colocasia esculenta L.) and unripe plantain (Musa paradisiaca L.) incorporated feeds on the renal and liver growths of diabetic rats, induced with 55 and 65 mg/kg body weight of Streptozotocin. The blood glucose level of the rats was measured with a glucometer, the protein and glucose and specific gravity (SPGR) in the urine samples of the rats were measured using urine assay strips and urinometer respectively. The chemical composition and antioxidant screening of the test feeds were carried out using standard techniques. Administration of the test feeds for 21 days to the diabetic rats of groups 4 and 5, resulted in 58.75% and 38.13% decreases in hyperglycemia and amelioration of their elevated urinary protein, glucose, SPGR, and relative kidney weights. The diabetic rats administered cocoyam incorporated feeds, had 2.71% and 19.52% increases in weight and growth rates, the diabetic rats administered unripe plantain incorporated feeds had 5.12% and 29.52% decreases in weight and growth rates while the diabetic control rats had 28.69%, 29.46%, 248.9% and 250.14% decreases in weights and growth rates. The cocoyam incorporated feeds contained higher antioxidants, minerals and phytochemicals except alkaloids than unripe plantain feed. Cocoyam and unripe plantain could be useful in the management of diabetic nephropathy.

  12. Ameliorating effects of goby fish protein hydrolysates on high-fat-high-fructose diet-induced hyperglycemia, oxidative stress and deterioration of kidney function in rats.

    Science.gov (United States)

    Nasri, Rim; Abdelhedi, Ola; Jemil, Ines; Daoued, Ines; Hamden, Khaled; Kallel, Choumous; Elfeki, Abdelfattah; Lamri-Senhadji, Myriem; Boualga, Ahmed; Nasri, Moncef; Karra-Châabouni, Maha

    2015-12-05

    This study investigated the therapeutic potential of undigested goby fish (Zosterisessor ophiocephalus) muscle proteins (UGP) and their hydrolysates on high-fat-high-fructose diet (HFFD)-fed rats. HFFD induced hyperglycemia, manifested by a significant increase in the levels of glucose and glycogen as well as α-amylase activity when compared to normal rats. The administration of GPHs to HFFD-fed rats significantly decreased α-amylase activity and the contents of blood glucose and hepatic glycogen. By contrast, the UGP increased the glucose metabolic disorders in HFFD-fed rats. Furthermore, HFFD-fed rats showed oxidative stress, as evidenced by decreased antioxidant enzyme activities and glutathione (GSH) levels and increased concentration of the lipid peroxidation product malondialdehyde in liver and kidney. Interestingly, the daily gavage of UGP and GPHs improved the redox status in liver and kidney of HFFD-rats by ameliorating or reversing the above-mentioned changes. Moreover, GPHs exhibited a renal protective role by reversing the HFFD-induced decease of uric acid and increase of creatinine levels in serum and preventing some HFFD-induced changes in kidney architecture. The results demonstrate that GPHs contain bioactive peptides that possess significant hypoglycemic and antioxidant properties, and ameliorate renal damage in rats fed hypercaloric diet. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Bidya Dhar [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Tatireddy, Srujana [National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037 (India); Koneru, Meghana [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Borkar, Roshan M. [National Centre for Mass Spectrometry, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Kumar, Jerald Mahesh [CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500 007 (India); Kuncha, Madhusudana [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Srinivas, R. [National Centre for Mass Spectrometry, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Shyam Sunder, R. [Faculty of Pharmacy, Osmania University, Hyderabad 500 007 (India); Sistla, Ramakrishna, E-mail: sistla@iict.res.in [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India)

    2014-05-15

    Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100 mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in

  14. Mitochondrial-mediated apoptosis in lymphoma cells by the diterpenoid lactone Andrographolide, the active component of Andrographis paniculata

    Science.gov (United States)

    Yang, Shuo; Evens, Andrew M.; Prachand, Sheila; Singh, Amareshwar T.K; Bhalla, Savita; David, Kevin; Gordon, Leo I.

    2010-01-01

    Purpose Andrographolide is a diterpenoid lactone isolated from Andrographis paniculata (King of Bitters), an herbal medicine used in Asia. It has been reported to have anti-inflammatory, antihypertensive, anti-viral and immune-stimulant properties. Furthermore, it has been shown to inhibit cancer cell proliferation and induce apoptosis in leukemia and solid tumor cell lines. Experimental Design We studied the Burkitt p53 mutated Ramos cell line, the mantle-cell lymphoma (MCL) line Granta, the follicular lymphoma (FL) cell line HF-1 and the diffuse large B-cell lymphoma (DLBCL) cell line SUDHL4, as well as primary cells from patients with FL, DLBCL, and MCL. Results We found that andrographolide resulted in dose- and time-dependent cell death as measured by MTT. Andrographolide significantly increased reactive oxygen species (ROS) production in all cell lines. To determine mechanism of cell death, we measured apoptosis by Annexin-V/propidium iodide (PI) in the presence and absence of the antioxidant N-acetyl-L-cysteine (NAC), the glutathione-depleting agent buthionine sulfoxamine (BSO), or caspase inhibitors. We found that apoptosis was greatly enhanced by BSO, blocked by NAC, and accompanied by PARP cleavage and activation of caspases 3, 8 and 9. We measured BAX conformational change, and mitochondrial membrane potential, and using mouse embryonic fibroblast (MEF) Bax/Bak double knockouts (MEFBax−/−/Bak−/−), we found that apoptosis was mediated through mitochondrial pathways, but dependent on caspases in both cell lines and in patient samples. Conclusions Andrographolide caused ROS-dependent apoptosis in lymphoma cell lines and in primary tumor samples, which was enhanced by depletion of GSH and inhibited by NAC or the pan-caspase inhibitor Z-VAD-FMK. Further studies of diterpenoid lactones in lymphoma are warranted. PMID:20798229

  15. MRP-1 and BCRP Promote the Externalization of Phosphatidylserine in Oxalate-treated Renal Epithelial Cells: Implications for Calcium Oxalate Urolithiasis.

    Science.gov (United States)

    Li, YiFu; Yu, ShiLiang; Gan, XiuGuo; Zhang, Ze; Wang, Yan; Wang, YingWei; An, RuiHua

    2017-09-01

    To investigate the possible involvement of multidrug resistance-associated protein 1 (MRP-1) and breast cancer resistance protein (BCRP) in the oxalate-induced redistribution of phosphatidylserine (PS) in renal epithelial cell membranes. A western blot analysis was used to examine the MRP-1 and BCRP expression levels. Surface-expressed PS was detected by the annexin V-binding assay. The cell-permeable fluorogenic probe 2,7-dichlorofluorescein diacetate was used to measure the intracellular reactive oxygen species (ROS) level. A rat model of hyperoxaluria was obtained using 0.5% ethylene glycol and 1.0% ammonium chloride. In addition, certain animals received verapamil (50 mg/kg body weight), which is a common inhibitor of MRP-1 and BCRP. The degree of nephrolithiasis was assessed histomorphometrically using sections stained by Pizzolato method and by measuring the calcium oxalate crystal content in the renal tissue. Oxalate produced a concentration-dependent increase in the synthesis of MRP-1 and BCRP. Treatment with MK571 and Ko143 (MRP-1- and BCRP-specific inhibitors, respectively) significantly attenuated the oxalate-induced PS externalization. Adding the antioxidant N-acetyl-l-cysteine significantly reduced MRP-1 and BCRP expression. In vivo, markedly decreased nephrocalcinosis was observed compared with that in the rat model of hyperoxaluria without verapamil treatment. Oxalate induces the upregulation of MRP-1 and BCRP, which act as phospholipid floppases causing PS externalization in the renal epithelial cell membrane. The process is mediated by intracellular ROS production. The ROS-mediated increase in the synthesis of MRP-1 and BCRP can play an important role in hyperoxaluria-promoted calcium oxalate urolithiasis by facilitating phosphatidylserine redistribution in renal epithelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor.

    LENUS (Irish Health Repository)

    Ambrose, Monica

    2012-02-03

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1\\/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1\\/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.

  17. Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK.

    Science.gov (United States)

    Merry, Troy L; Steinberg, Gregory R; Lynch, Gordon S; McConell, Glenn K

    2010-03-01

    Reactive oxygen species (ROS) and nitric oxide (NO) have been implicated in the regulation of skeletal muscle glucose uptake during contraction, and there is evidence that they do so via interaction with AMP-activated protein kinase (AMPK). In this study, we tested the hypothesis that ROS and NO regulate skeletal muscle glucose uptake during contraction via an AMPK-independent mechanism. Isolated extensor digitorum longus (EDL) and soleus muscles from mice that expressed a muscle-specific kinase dead AMPKalpha2 isoform (AMPK-KD) and wild-type litter mates (WT) were stimulated to contract, and glucose uptake was measured in the presence or absence of the antioxidant N-acetyl-l-cysteine (NAC) or the nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-l-arginine (l-NMMA). Contraction increased AMPKalpha2 activity in WT but not AMPK-KD EDL muscles. However, contraction increased glucose uptake in the EDL and soleus muscles of AMPK-KD and WT mice to a similar extent. In EDL muscles, NAC and l-NMMA prevented contraction-stimulated increases in oxidant levels (dichloroflourescein fluorescence) and NOS activity, respectively, and attenuated contraction-stimulated glucose uptake in both genotypes to a similar extent. In soleus muscles of AMPK-KD and WT mice, NAC prevented contraction-stimulated glucose uptake and l-NMMA had no effect. This is likely attributed to the relative lack of neuronal NOS in the soleus muscles compared with EDL muscles. Contraction increased AMPKalpha Thr(172) phosphorylation in EDL and soleus muscles of WT but not AMPK-KD mice, and this was not affected by NAC or l-NMMA treatment. In conclusion, ROS and NO are involved in regulating skeletal muscle glucose uptake during contraction via an AMPK-independent mechanism.

  18. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingzhi; Qiu, Ping; Chen, Bailing; Lu, Yongju; Wu, Kai; Thakur, Chitra; Chang, Qingshan; Sun, Jiaying; Chen, Fei, E-mail: fchen@wayne.edu

    2014-05-01

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROS in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.

  19. Cytotoxicity and apoptotic inducibility of Vitex agnus-castus fruit extract in cultured human normal and cancer cells and effect on growth.

    Science.gov (United States)

    Ohyama, Kunio; Akaike, Takenori; Hirobe, Chieko; Yamakawa, Toshio

    2003-01-01

    A crude extract was prepared with ethanol from dried ripened Vitex agnus-castus fruits growing in Israel (Vitex extract). Cytotoxicity of the extract against human uterine cervical canal fibroblast (HCF), human embryo fibroblast (HE-21), ovarian cancer (MCF-7), cervical carcinoma (SKG-3a), breast carcinoma (SKOV-3), gastric signet ring carcinoma (KATO-III), colon carcinoma (COLO 201), and small cell lung carcinoma (Lu-134-A-H) cells was examined. After culture for 24 h (logarithmic growth phase) or 72 h (stationary growth phase), the cells were treated with various concentrations of Vitex extract. In both growth phases, higher growth activity of cells and more cytotoxic activity of Vitex extract were seen. The cytotoxic activity against stationary growth-phase cells was less than that against logarithmic growth-phase cells. DNA fragmentation of Vitex extract-treated cells was seen in SKOV-3, KATO-III, COLO 201, and Lu-134-A-H cells. The DNA fragmentation in Vitex extract-treated KATO-III cells was inhibited by the presence of the antioxidative reagent pyrrolidine dithiocarbamate or N-acetyl-L-cysteine (NAC). Western blotting analysis showed that in Vitex extract-treated KATO-III cells, the presence of NAC also inhibited the expression of heme oxygenase-1 and the active forms of caspases-3, -8 and -9. It is concluded that the cytotoxic activity of Vitex extract may be attributed to the effect on cell growth, that cell death occurs through apoptosis, and that this apoptotic cell death may be attributed to increased intracellular oxidation by Vitex extract treatment.

  20. Human gastric signet ring carcinoma (KATO-III) cell apoptosis induced by Vitex agnus-castus fruit extract through intracellular oxidative stress.

    Science.gov (United States)

    Ohyama, Kunio; Akaike, Takenori; Imai, Masahiko; Toyoda, Hiroo; Hirobe, Chieko; Bessho, Toshio

    2005-07-01

    We have previously reported that an ethanol extract of the dried ripe fruit of Vitex agnus-castus (Vitex) displays cytotoxic activity against certain kinds of human cancer cell line resulting in the induction of apoptosis. In this paper, we investigate the molecular mechanism of apoptosis induced by Vitex using a human gastric signet ring carcinoma cell line, KATO-III. DNA fragmentation was observed in Vitex-treated KATO-III cells in a time- and dose-dependent manner. DNA fragmentation was accompanied by the following phenomena: elevation in the level of hemeoxygenase-1 protein and thioredoxin reductase mRNA; repression of Mn-superoxide dismutase and catalase mRNAs; release of cytochrome c from mitochondria into the cytosol; activation of caspases-8, -9 and -3; decrease in the level of Bcl-2, Bcl-XL and Bid protein; increase in the level of Bad protein. The intracellular oxidized state, measured using 2',7'-dichlorofluorescin diacetate, increased after Vitex treatment. While the amount of intracellular GSH decreased significantly after treatment with Vitex, the level of GSSG was unaffected. Furthermore, no significant perturbation in the amount of proteins/mRNAs related to glutathione metabolism could be detected. These apoptotic alterations induced by exposure to Vitex were blocked by the presence of an anti-oxidative reagent, N-acetyl-l-cysteine, or the addition of exogenous GSH. Our results demonstrate that intracellular oxidative stress and mitochondrial membrane damage is responsible for Vitex-induced apoptosis, which may be mediated by a diminution of reduced type glutathione within the cell.

  1. Treatments for Biomedical Abnormalities Associated with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Richard Eugene Frye

    2014-06-01

    Full Text Available Recent studies point to the effectiveness of novel treatments that address physiological abnormalities associated with autism spectrum disorder (ASD. This is significant because safe and effective treatments for ASD remain limited. These physiological abnormalities as well as studies addressing treatments of these abnormalities are reviewed in this article. Treatments commonly used to treat mitochondrial disease have been found to improve both core and associated ASD symptoms. Double-blind, placebo-controlled studies have investigated L-carnitine and a multivitamin containing B vitamins, antioxidants, vitamin E, and coenzyme Q10 while non-blinded studies have investigated ubiquinol. Controlled and uncontrolled studies using folinic acid, a reduced form of folate, have reported marked improvements in core and associated ASD symptoms in some children with ASD and folate related pathways abnormities. Treatments that could address redox metabolism abnormalities include methylcobalamin with and without folinic acid in open-label studies and vitamin C and N-acetyl-L-cysteine in double-blind, placebo-controlled studies. These studies have reported improved core and associated symptoms with these treatments. Lastly, both open-label and double-blind, placebo-controlled studies have reported improvement in core and associated ASD symptoms with tetrahydrobiopterin. Overall, these treatments were generally well tolerated without significant adverse effects for most children, although we review the reported adverse effects in detail. This review provides evidence for potential safe and effective treatments for core and associated symptoms of ASD that target underlying known physiological abnormalities associated with ASD. Further research is needed to define subgroups of children with ASD in which these treatments may be most effective as well as confirm their efficacy in double-blind, placebo-controlled, large-scale multicenter studies.

  2. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and

  3. Atmospheric-Pressure Cold Plasma Induces Transcriptional Changes in Ex Vivo Human Corneas.

    Directory of Open Access Journals (Sweden)

    Umberto Rosani

    Full Text Available Atmospheric pressure cold plasma (APCP might be considered a novel tool for tissue disinfection in medicine since the active chemical species produced by low plasma doses, generated by ionizing helium gas in air, induces reactive oxygen species (ROS that kill microorganisms without substantially affecting human cells.In this study, we evaluated morphological and functional changes in human corneas exposed for 2 minutes (min to APCP and tested if the antioxidant n-acetyl l-cysteine (NAC was able to inhibit or prevent damage and cell death.Immunohistochemistry and western blotting analyses of corneal tissues collected at 6 hours (h post-APCP treatment demonstrated no morphological tissue changes, but a transient increased expression of OGG1 glycosylase that returned to control levels in 24 h. Transcriptome sequencing and quantitative real time PCR performed on different corneas revealed in the treated corneas many differentially expressed genes: namely, 256 and 304 genes showing expression changes greater than ± 2 folds in the absence and presence of NAC, respectively. At 6 h post-treatment, the most over-expressed gene categories suggested an active or enhanced cell functioning, with only a minority of genes specifically concerning oxidative DNA damage and repair showing slight over-expression values (<2 folds. Moreover, time-related expression analysis of eight genes up-regulated in the APCP-treated corneas overall demonstrated the return to control expression levels after 24 h.These findings of transient oxidative stress accompanied by wide-range transcriptome adjustments support the further development of APCP as an ocular disinfectant.

  4. Characterization of early events involved in human dendritic cell maturation induced by sensitizers: Cross talk between MAPK signalling pathways

    International Nuclear Information System (INIS)

    Trompezinski, Sandra; Migdal, Camille; Tailhardat, Magalie; Le Varlet, Beatrice; Courtellemont, Pascal; Haftek, Marek; Serres, Mireille

    2008-01-01

    Dendritic cells (DCs), efficient-antigen presenting cells play an important role in initiating and regulating immune responses. DC maturation following exposure to nickel or DNCB induced an up-regulation of phenotypic markers and inflammatory cytokine secretion. Early intracellular mechanisms involved in DC maturation required to be precise. To address this purpose, DCs derived from human monocytes were treated with sensitizers (nickel, DNCB or thimerosal) in comparison with an irritant (SDS). Our data confirming the up-regulation of CD86, CD54 and cytokine secretion (IL-8 and TNFα) induced by sensitizers but not by SDS, signalling transduction involved in DC maturation was investigated using these chemicals. Kinase activity measurement was assessed using two new sensitive procedures (Face TM and CBA) requiring few cells. SDS did not induce changes in signalling pathways whereas NiSO 4 , DNCB and thimerosal markedly activated p38 MAPK and JNK, in contrast Erk1/2 phosphorylation was completely inhibited by DNCB or thimerosal and only activated by nickel. A pre-treatment with p38 MAPK inhibitor (SB203580) suppressed Erk1/2 inhibition induced by DNCB or thimerosal demonstrating a direct interaction between p38 MAPK and Erk1/2. A pre-treatment with an antioxidant, N-acetyl-L-cysteine (NAC) markedly reduced Erk1/2 inhibition and p38 MAPK phosphorylation induced by DNCB and thimerosal, suggesting a direct activation of p38 MAPK via an oxidative stress and a regulation of MAPK signalling pathways depending on chemicals. Because of a high sensitivity of kinase activity measurements, these procedures will be suitable for weak or moderate sensitizer screening

  5. The flavones apigenin and luteolin induce FOXO1 translocation but inhibit gluconeogenic and lipogenic gene expression in human cells.

    Directory of Open Access Journals (Sweden)

    Christiane Bumke-Vogt

    Full Text Available The flavones apigenin (4',5,7,-trihydroxyflavone and luteolin (3',4',5,7,-tetrahydroxyflavone are plant secondary metabolites with antioxidant, antiinflammatory, and anticancer activities. We evaluated their impact on cell signaling pathways related to insulin-resistance and type 2 diabetes. Apigenin and luteolin were identified in our U-2 OS (human osteosarcoma cell screening assay for micronutrients triggering rapid intracellular translocation of the forkhead box transcription factor O1 (FOXO1, an important mediator of insulin signal transduction. Insulin reversed the translocation of FOXO1 as shown by live cell imaging. The impact on the expression of target genes was evaluated in HepG2 (human hepatoma cells. The mRNA-expression of the gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK and glucose-6-phosphatase (G6Pc, the lipogenic enzymes fatty-acid synthase (FASN and acetyl-CoA-carboxylase (ACC were down-regulated by both flavones with smaller effective dosages of apigenin than for luteolin. PKB/AKT-, PRAS40-, p70S6K-, and S6-phosphorylation was reduced by apigenin and luteolin but not that of the insulin-like growth factor receptor IGF-1R by apigenin indicating a direct inhibition of the PKB/AKT-signaling pathway distal to the IGF-1 receptor. N-acetyl-L-cysteine did not prevent FOXO1 nuclear translocation induced by apigenin and luteolin, suggesting that these flavones do not act via oxidative stress. The roles of FOXO1, FOXO3a, AKT, sirtuin1 (SIRT1, and nuclear factor (erythroid-derived2-like2 (NRF2, investigated by siRNA knockdown, showed differential patterns of signal pathways involved and a role of NRF2 in the inhibition of gluconeogenic enzyme expression. We conclude that these flavones show an antidiabetic potential due to reduction of gluconeogenic and lipogenic capacity despite inhibition of the PKB/AKT pathway which justifies detailed investigation in vivo.

  6. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro.

    Directory of Open Access Journals (Sweden)

    Fuqiang Xing

    Full Text Available Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant. Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis.

  7. The role of oxidative stress in the ochratoxin A-mediated toxicity in proximal tubular cells.

    Science.gov (United States)

    Schaaf, G J; Nijmeijer, S M; Maas, R F M; Roestenberg, P; de Groene, E M; Fink-Gremmels, J

    2002-11-20

    Balkan endemic nephropathy (BEN), a disease characterized by progressive renal fibrosis in human patients, has been associated with exposure to ochratoxin A (OTA). This mycotoxin is a frequent contaminant of human and animal food products, and is toxic to all animal species tested. OTA predominantly affects the kidney and is known to accumulate in the proximal tubule (PT). The induction of oxidative stress is implicated in the toxicity of this mycotoxin. In the present study, primary rat PT cells and LLC-PK(1) cells, which express characteristics of the PT, were used to investigate the OTA-mediated oxidative stress response. OTA exposure of these cells resulted in a concentration-dependent elevation of reactive oxygen species (ROS) levels, depletion of cellular glutathione (GSH) levels and an increase in the formation of 8-oxoguanine. The OTA-induced ROS response was significantly reduced following treatment with alpha-tocopherol (TOCO). However, this chain-braking anti-oxidant did not reduce the cytotoxicity of OTA and was unable to prevent the depletion of total GSH levels in OTA-exposed cells. In contrast, pre-incubation of the cell with N-acetyl-L-cysteine (NAC) completely prevented the OTA-induced increase in ROS levels as well as the formation of 8-oxoguanine and completely protected against the cytotoxicity of OTA. In addition, NAC treatment also limited the GSH depletion in OTA-exposed PT- and LLC-PK(1) cells. From these data, we conclude that oxidative stress contributes to the tubular toxicity of OTA. Subsequently, cellular GSH levels play a pivotal role in limiting the short-term toxicity of this mycotoxin in renal tubular cells.

  8. A novel small molecule, Rosline, inhibits growth and induces caspase-dependent apoptosis in human lung cancer cells A549 through a reactive oxygen species-dependent mechanism.

    Science.gov (United States)

    Zhao, Ting; Feng, Yang; Jin, Wenling; Pan, Hui; Li, Haizhou; Zhao, Yang

    2016-06-01

    Chemical screening using synthetic small molecule libraries has provided a huge amount of novel active molecules. It generates lead compound for drug development and brings focus on molecules for mechanistic investigations on many otherwise intangible biological processes. In this study, using non-small cell lung cancer cell A549 to screen against a structurally novel and diverse synthetic small molecule library of 2,400 compounds, we identified a molecule named rosline that has strong anti-proliferation activity on A549 cells with a 50% cell growth inhibitory concentration (IC50 ) of 2.87 ± 0.39 µM. We showed that rosline treatment increased the number of Annexin V-positive staining cell, as well as G2/M arrest in their cell cycle progression. Further, we have demonstrated that rosline induces a decrease of mitochondrial membrane potential (Δφm ) and an increase of caspases 3/7 and 9 activities in A549 cells, although having no effect on the activity of caspase 8. Moreover, we found that rosline could induce the production of reactive oxygen species (ROS) and inhibit the phosphorylation of signaling molecule Akt in A549 cells. Alternatively, an antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated rosline's effects on the mitochondrial membrane potential, caspases 3/7 and 9 activities, cell viabilities and the phosphorylation of Akt. Our results demonstrated that ROS played an important role in the apoptosis of A549 cells induced by rosline. © 2016 International Federation for Cell Biology.

  9. Nano-scaled particles of titanium dioxide convert benign mouse fibrosarcoma cells into aggressive tumor cells.

    Science.gov (United States)

    Onuma, Kunishige; Sato, Yu; Ogawara, Satomi; Shirasawa, Nobuyuki; Kobayashi, Masanobu; Yoshitake, Jun; Yoshimura, Tetsuhiko; Iigo, Masaaki; Fujii, Junichi; Okada, Futoshi

    2009-11-01

    Nanoparticles are prevalent in both commercial and medicinal products; however, the contribution of nanomaterials to carcinogenesis remains unclear. We therefore examined the effects of nano-sized titanium dioxide (TiO(2)) on poorly tumorigenic and nonmetastatic QR-32 fibrosarcoma cells. We found that mice that were cotransplanted subcutaneously with QR-32 cells and nano-sized TiO(2), either uncoated (TiO(2)-1, hydrophilic) or coated with stearic acid (TiO(2)-2, hydrophobic), did not form tumors. However, QR-32 cells became tumorigenic after injection into sites previously implanted with TiO(2)-1, but not TiO(2)-2, and these developing tumors acquired metastatic phenotypes. No differences were observed either histologically or in inflammatory cytokine mRNA expression between TiO(2)-1 and TiO(2)-2 treatments. However, TiO(2)-2, but not TiO(2)-1, generated high levels of reactive oxygen species (ROS) in cell-free conditions. Although both TiO(2)-1 and TiO(2)-2 resulted in intracellular ROS formation, TiO(2)-2 elicited a stronger response, resulting in cytotoxicity to the QR-32 cells. Moreover, TiO(2)-2, but not TiO(2)-1, led to the development of nuclear interstices and multinucleate cells. Cells that survived the TiO(2) toxicity acquired a tumorigenic phenotype. TiO(2)-induced ROS formation and its related cell injury were inhibited by the addition of antioxidant N-acetyl-l-cysteine. These results indicate that nano-sized TiO(2) has the potential to convert benign tumor cells into malignant ones through the generation of ROS in the target cells.

  10. PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent.

    Directory of Open Access Journals (Sweden)

    Chantal Ethier

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP-1 is widely involved in cell death responses. Depending on the degree of injury and on cell type, PARP activation may lead to autophagy, apoptosis or necrosis. In HEK293 cells exposed to the alkylating agent N-methyl-N'-nitro-N'-nitrosoguanine (MNNG, we show that PARP-1 activation triggers a necrotic cell death response. The massive poly(ADP-ribose (PAR synthesis following PARP-1 activation leads to the modulation of mTORC1 pathway. Shortly after MNNG exposure, NAD⁺ and ATP levels decrease, while AMP levels drastically increase. We characterized at the molecular level the consequences of these altered nucleotide levels. First, AMP-activated protein kinase (AMPK is activated and the mTORC1 pathway is inhibited by the phosphorylation of Raptor, in an attempt to preserve cellular energy. Phosphorylation of the mTORC1 target S6 is decreased as well as the phosphorylation of the mTORC2 component Rictor on Thr1135. Finally, Akt phosphorylation on Ser473 is lost and then, cell death by necrosis occurs. Inhibition of PARP-1 with the potent PARP inhibitor AG14361 prevents all of these events. Moreover, the antioxidant N-acetyl-L-cysteine (NAC can also abrogate all the signaling events caused by MNNG exposure suggesting that reactive oxygen species (ROS production is involved in PARP-1 activation and modulation of mTOR signaling. In this study, we show that PARP-1 activation and PAR synthesis affect the energetic status of cells, inhibit the mTORC1 signaling pathway and possibly modulate the mTORC2 complex affecting cell fate. These results provide new evidence that cell death by necrosis is orchestrated by the balance between several signaling pathways, and that PARP-1 and PAR take part in these events.

  11. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ruochan [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Fu, Sha; Fan, Xue-Gong [Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Lotze, Michael T.; Zeh, Herbert J. [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Tang, Daolin, E-mail: tangd2@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Kang, Rui, E-mail: kangr@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2015-03-13

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis and necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.

  12. Nano-Scaled Particles of Titanium Dioxide Convert Benign Mouse Fibrosarcoma Cells into Aggressive Tumor Cells

    Science.gov (United States)

    Onuma, Kunishige; Sato, Yu; Ogawara, Satomi; Shirasawa, Nobuyuki; Kobayashi, Masanobu; Yoshitake, Jun; Yoshimura, Tetsuhiko; Iigo, Masaaki; Fujii, Junichi; Okada, Futoshi

    2009-01-01

    Nanoparticles are prevalent in both commercial and medicinal products; however, the contribution of nanomaterials to carcinogenesis remains unclear. We therefore examined the effects of nano-sized titanium dioxide (TiO2) on poorly tumorigenic and nonmetastatic QR-32 fibrosarcoma cells. We found that mice that were cotransplanted subcutaneously with QR-32 cells and nano-sized TiO2, either uncoated (TiO2−1, hydrophilic) or coated with stearic acid (TiO2−2, hydrophobic), did not form tumors. However, QR-32 cells became tumorigenic after injection into sites previously implanted with TiO2−1, but not TiO2−2, and these developing tumors acquired metastatic phenotypes. No differences were observed either histologically or in inflammatory cytokine mRNA expression between TiO2−1 and TiO2−2 treatments. However, TiO2−2, but not TiO2−1, generated high levels of reactive oxygen species (ROS) in cell-free conditions. Although both TiO2−1 and TiO2−2 resulted in intracellular ROS formation, TiO2−2 elicited a stronger response, resulting in cytotoxicity to the QR-32 cells. Moreover, TiO2−2, but not TiO2−1, led to the development of nuclear interstices and multinucleate cells. Cells that survived the TiO2 toxicity acquired a tumorigenic phenotype. TiO2-induced ROS formation and its related cell injury were inhibited by the addition of antioxidant N-acetyl-l-cysteine. These results indicate that nano-sized TiO2 has the potential to convert benign tumor cells into malignant ones through the generation of ROS in the target cells. PMID:19815711

  13. Erythrocyte antioxidant protection of rose hips (Rosa spp.).

    Science.gov (United States)

    Widén, C; Ekholm, A; Coleman, M D; Renvert, S; Rumpunen, K

    2012-01-01

    Rose hips are popular in health promoting products as the fruits contain high content of bioactive compounds. The aim of this study was to investigate whether health benefits are attributable to ascorbic acid, phenols, or other rose-hip-derived compounds. Freeze-dried powder of rose hips was preextracted with metaphosphoric acid and the sample was then sequentially eluted on a C(18) column. The degree of amelioration of oxidative damage was determined in an erythrocyte in vitro bioassay by comparing the effects of a reducing agent on erythrocytes alone or on erythrocytes pretreated with berry extracts. The maximum protection against oxidative stress, 59.4 ± 4.0% (mean ± standard deviation), was achieved when incubating the cells with the first eluted meta-phosphoric extract. Removal of ascorbic acid from this extract increased the protection against oxidative stress to 67.9 ± 1.9%. The protection from the 20% and 100% methanol extracts was 20.8 ± 8.2% and 5.0 ± 3.2%, respectively. Antioxidant uptake was confirmed by measurement of catechin by HPLC-ESI-MS in the 20% methanol extract. The fact that all sequentially eluted extracts studied contributed to protective effects on the erythrocytes indicates that rose hips contain a promising level of clinically relevant antioxidant protection.

  14. Hepatoprotective and antioxidant activities of Tamarix nilotica flowers.

    Science.gov (United States)

    Abouzid, Sameh; Sleem, Amany

    2011-04-01

     Tamarix nilotica (Ehrenb.) Bunge (Tamaricaceae) is used in the Egyptian traditional medicine as an antiseptic agent. This plant has been known since pharaonic times and has been mentioned in medical papyri to expel fever, relieve headache, to draw out inflammation, and as an aphrodisiac. No scientific study is available about the biological effect of this plant.  This study aimed to evaluate the hydro-alcoholic extract (80%) of T. nilotica flowers for hepatoprotective and antioxidant activities.  Hepatoprotective activity was assessed using carbon tetrachloride-induced hepatic injury in rats by monitoring biochemical parameters. Antioxidant activity was evaluated in alloxan-induced diabetic rats. Biochemical markers of hepatic damage such as serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), and tissue glutathione were determined in all groups.  Carbon tetrachloride (5 mL/kg body weight) enhanced the SGOT, SGPT, and ALP levels. There was a marked reduction in tissue glutathione level in diabetic rats. The hydro-alcoholic extract of T. nilotica (100 mg/kg body weight) ameliorated the adverse effects of carbon tetrachloride and returned the altered levels of biochemical markers near to the normal levels.

  15. EGCG evokes Nrf2 nuclear translocation and dampens PTP1B expression to ameliorate metabolic misalignment under insulin resistance condition.

    Science.gov (United States)

    Mi, Yashi; Zhang, Wentong; Tian, Haoyu; Li, Runnan; Huang, Shuxian; Li, Xingyu; Qi, Guoyuan; Liu, Xuebo

    2018-03-01

    As a major nutraceutical component of green tea (-)-epigallocatechin-3-gallate (EGCG) has attracted interest from scientists due to its well-documented antioxidant and antiobesity bioactivities. In the current study, we aimed to investigate the protective effect of EGCG on metabolic misalignment and in balancing the redox status in mice liver and HepG2 cells under insulin resistance condition. Our results indicated that EGCG accelerates the glucose uptake and evokes IRS-1/Akt/GLUT2 signaling pathway via dampening the expression of protein tyrosine phosphatase 1B (PTP1B). Consistently, ectopic expression of PTP1B by Ad-PTP1B substantially impaired EGCG-elicited IRS-1/Akt/GLUT2 signaling pathway. Moreover, EGCG co-treatment stimulated nuclear translocation of Nrf2 by provoking P13K/AKT signaling pathway and thus modulated the downstream expressions of antioxidant enzymes such as HO-1 and NQO-1 in HepG2 cells. Furthermore, knockdown Nrf2 by small interfering RNA (siRNA) notably enhanced the expression of PTP1B and blunt EGCG-stimulated glucose uptake. Consistent with these results, in vivo study revealed that EGCG supplement significantly ameliorated high-fat and high-fructose diet (HFFD)-triggered insulin resistance and oxidative stress by up-regulating the IRS-1/AKT and Keap1/Nrf2 transcriptional pathways. Administration of an appropriate chemopreventive agent, such as EGCG, could potentially serve as an additional therapeutic intervention in the arsenal against obesity.

  16. Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice.

    Science.gov (United States)

    Su, Hong-Ming; Feng, Li-Na; Zheng, Xiao-Dong; Chen, Wei

    2016-06-01

    Myricetin is a naturally occurring antioxidant commonly found in various plants. However, little information is available with respect to its direct anti-obesity effects. This study was undertaken to investigate the effect of myricetin on high-fat diet (HFD)-induced obesity in C57BL/6 mice. Administration of myricetin dramatically reduced the body weight of diet-induced obese mice compared with solely HFD-induced mice. Several parameters related to obesity including serum glucose, triglyceride, and cholesterol were significantly decreased in myricetin-treated mice. Moreover, obesity-associated oxidative stress (glutathione peroxidase (GPX) activity, total antioxidant capacity (T-AOC), and malondialdehyde (MDA)) and inflammation (tumor necrosis factor-α (TNF-α)) were ameliorated in myricetin-treated mice. Further investigation revealed that the protective effect of myricetin against HFD-induced obesity in mice appeared to be partially mediated through the down-regulation of mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and lipogenic transcription factor sterol regulatory element-binding protein 1c (SREBP-1c). Consumption of myricetin may help to prevent obesity and obesity-related metabolic complications.

  17. Ameliorative properties of aqueous extract of Ficus thonningii on erythrocyte osmotic fragility induced by acetaminophen in Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    Victor Masekaven Ahur

    2013-12-01

    Full Text Available In vitro antioxidant and erythrocyte protecting activities by aqueous extract of Ficus thonningii leaves on blood cells were studied in acetaminophen treated rats. The extract was safe at limit dose of 5000 mg kg-1body weight. The extract demonstrated dose dependent antihemolytic effect at dose levels between 50 and 200 mg kg-1 body weight. The lowest antihemolytic effect was observed at dose level of 200 mg kg-1 body given the lowest percentage hemolysis of 10.53 ± 1.76%, whereas the highest percentage hemolysis at dose level of 50 mg kg-1 was 29.02 ± 7.45%. Hematology revealed erythrocytosis at dose levels of 100 and 200 mg kg-1 body weight. Hyper-globinemia and lymphocytopenia were observed at dose levels of 100 mg kg-1 and 200 mg kg-1, respectively. The extract effectively showed scavenging activity on a stable oxidative radical diphenylpicrylhydrazyl (DPPH and a significant ferric reducing antioxidant power (FRAP activity. The plausible erythrocyte membrane protective effect may be due to its free radical scavenging activity and hence the extract can be used to improve hematological parameters and ameliorate oxidative stress.

  18. Amelioration of lead-induced hepatotoxicity by Allium sativum ...

    African Journals Online (AJOL)

    2010-01-07

    Jan 7, 2010 ... The efficacy of garlic (Allium sativum) to reduce hepatotoxicity induced by ..... fatty acids having double bonds, largely present in the phospholipids of .... disulfide, and diallyl disulfide, possess antioxidant prop- erties and can ...

  19. No Evidence of Racial Differences in Endothelial Function and Exercise Blood Flow in Young, Healthy Males Following Acute Antioxidant Supplementation.

    Science.gov (United States)

    Kappus, Rebecca M; Bunsawat, Kanokwan; Rosenberg, Alexander J; Fernhall, Bo

    2017-03-01

    This study investigated the effects of acute antioxidant supplementation on endothelial function, exercise blood flow and oxidative stress biomarkers in 9 young African American compared to 10 Caucasian males (25.7±1.2 years). We hypothesized that African American males would have lower exercise blood flow and endothelial responsiveness compared to Caucasian males, and these responses would be improved following antioxidant supplementation. Ultrasonography was used to measure blood flow during handgrip exercise. Endothelial function was assessed using flow-mediated dilation, and lipid peroxidation was assessed by measuring levels of malondialdehyde-thiobarbituric acid reactive substances. African American males exhibited lower endothelial function than Caucasians at baseline (8.3±1.7 vs. 12.2±1.7%) and the difference was ameliorated with antioxidant supplementation (10.7±1.9% vs. 10.8±1.8%), but the interaction was not significant (p=0.10). There were no significant changes in malondialdehyde-thiobarbituric acid reactive substances following antioxidant supplementation. There was a significant increase in brachial blood flow and forearm vascular conductance with exercise but no differences with antioxidant supplementation. There were no group differences in exercise responses and no differences with antioxidant supplementation, suggesting a lack of influence of oxidative stress during exercise in this cohort. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Review of antimicrobial and antioxidative activities of chitosans in food.

    Science.gov (United States)

    Friedman, Mendel; Juneja, Vijay K

    2010-09-01

    Interest in chitosan, a biodegradable, nontoxic, non-antigenic, and biocompatible biopolymer isolated from shellfish, arises from the fact that chitosans are reported to exhibit numerous health-related beneficial effects, including strong antimicrobial and antioxidative activities in foods. The extraordinary interest in the chemistry and application in agriculture, horticulture, environmental science, industry, microbiology, and medicine is attested by about 17,000 citations on this subject in the Scopus database. A special need exists to develop a better understanding of the role of chitosans in ameliorating foodborne illness. To contribute to this effort, this overview surveys and interprets our present knowledge of the chemistry and antimicrobial activities of chitosan in solution, as powders, and in edible films and coating against foodborne pathogens, spoilage bacteria, and pathogenic viruses and fungi in several food categories. These include produce, fruit juices, eggs and dairy, cereal, meat, and seafood products. Also covered are antimicrobial activities of chemically modified and nanochitosans, therapeutic properties, and possible mechanisms of the antimicrobial, antioxidative, and metal chelating effects. Further research is suggested in each of these categories. The widely scattered data on the multifaceted aspects of chitosan microbiology, summarized in the text and in 10 tables and 8 representative figures, suggest that low-molecular-weight chitosans at a pH below 6.0 presents optimal conditions for achieving desirable antimicrobial and antioxidative-preservative effects in liquid and solid foods. We are very hopeful that the described findings will be a valuable record and resource for further progress to improve microbial food safety and food quality.

  1. Association of antioxidant nutraceuticals and acetaminophen (paracetamol): Friend or foe?

    Science.gov (United States)

    Abdel-Daim, Mohamed; Abushouk, Abdelrahman Ibrahim; Reggi, Raffaella; Yarla, Nagendra Sastry; Palmery, Maura; Peluso, Ilaria

    2018-04-01

    Acetaminophen (paracetamol or APAP) is an analgesic and antipyretic drug that can induce oxidative stress-mediated hepatotoxicity at high doses. Several studies reported that antioxidant nutraceuticals, in particular phenolic phytochemicals from dietary food, spices, herbs and algae have hepatoprotective effects. Others, however, suggested that they may negatively impact the metabolism, efficacy and toxicity of APAP. The aim of this review is to discuss the pros and cons of the association of antioxidant nutraceuticals and APAP by reviewing the in vivo evidence, with particular reference to APAP pharmacokinetics and hepatotoxicity. Results from the murine models of APAP-induced hepatotoxicity showed amelioration of liver damage with nutraceuticals coadministration, as well as reductions in tissue markers of oxidative stress, and serum levels of hepatic enzymes, bilirubin, cholesterol, triglycerides and inflammatory cytokines. On the other hand, both increased and decreased APAP plasma levels have been reported, depending on the nutraceutical type and route of administration. For example, studies showed that repeated administration of flavonoids causes down-regulation of cytochrome P450 enzymes and up-regulation of uridine diphosphate glucuronosyltransferases (UGT). Moreover, nutraceuticals can alter the levels of APAP metabolites, such as mercapturate glucuronide, sulfate and cysteine conjugates. Overall, the reviewed in vivo studies indicate that interactions between APAP and nutraceuticals or plant foods exist. However, the majority of data come from animal models with doses of phytochemicals far from dietary ones. Human studies should investigate gene-diet interactions, as well as ethnic variability in order to clarify the pros and cons of co-administering antioxidant nutraceuticals and APAP. Copyright © 2017. Published by Elsevier B.V.

  2. Biochar from commercially cultivated seaweed for soil amelioration

    OpenAIRE

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-01-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum ? brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma ? red seaweeds). While there is some variability in biochar properties as ...

  3. Pyrolysis temperature influences ameliorating effects of biochars on acidic soil.

    Science.gov (United States)

    Wan, Qing; Yuan, Jin-Hua; Xu, Ren-Kou; Li, Xing-Hui

    2014-02-01

    The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis.Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils.

  4. Infiltration in reclaimed mined land ameliorated with deep tillage treatments

    International Nuclear Information System (INIS)

    Chong, S.K.; Cowsert, P.T.

    1997-01-01

    Reclamation of mined land with heavy machinery can result in soil compaction, which increases soil bulk density and reduces porosity, water infiltrability, root elongation and crop productivity. This paper examines the effect on infiltration in reclaimed surface mined land of a deep tillage treatment, and the subsequent changes in infiltration after the amelioration. The experiment was conducted at the Horse Creek Mine near Conant, Ferry County, IL, USA

  5. Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus.

    Directory of Open Access Journals (Sweden)

    Ching-Yi Tsai

    Full Text Available BACKGROUND: Status epilepticus (SE is an acute, prolonged epileptic crisis with a mortality rate of 20-30%; the underlying mechanism is not completely understood. We assessed the hypothesis that brain stem cardiovascular dysregulation occurs during SE because of oxidative stress in rostral ventrolateral medulla (RVLM, a key nucleus of the baroreflex loop; to be ameliorated by brain-derived neurotrophic factor (BDNF via an antioxidant action. METHODOLOGY/PRINCIPAL FINDINGS: In a clinically relevant experimental model of temporal lobe SE (TLSE using Sprague-Dawley rats, sustained hippocampal seizure activity was accompanied by progressive hypotension that was preceded by a reduction in baroreflex-mediated sympathetic vasomotor tone; heart rate and baroreflex-mediated cardiac responses remained unaltered. Biochemical experiments further showed concurrent augmentation of superoxide anion, phosphorylated p47(phox subunit of NADPH oxidase and mRNA or protein levels of BDNF, tropomyosin receptor kinase B (TrkB, angiotensin AT1 receptor subtype (AT1R, nitric oxide synthase II (NOS II or peroxynitrite in RVLM. Whereas pretreatment by microinjection bilaterally into RVLM of a superoxide dismutase mimetic (tempol, a specific antagonist of NADPH oxidase (apocynin or an AT1R antagonist (losartan blunted significantly the augmented superoxide anion or phosphorylated p47(phox subunit in RVLM, hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during experimental TLSE, pretreatment with a recombinant human TrkB-Fc fusion protein or an antisense bdnf oligonucleotide significantly potentiated all those events, alongside peroxynitrite. However, none of the pretreatments affected the insignificant changes in heart rate and baroreflex-mediated cardiac responses. CONCLUSIONS/SIGNIFICANCE: We conclude that formation of peroxynitrite by a reaction between superoxide anion generated by NADPH oxidase in RVLM on activation by AT1R and NOS II

  6. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat.

    Science.gov (United States)

    Singh, Vishal; Jain, Manish; Misra, Ankita; Khanna, Vivek; Prakash, Prem; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-06-01

    Curcuma oil (C. oil) isolated from turmeric (Curcuma longa L.) has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Male Golden Syrian hamsters on high fructose diet (HFr) for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg) or C. oil (300 mg/kg) in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg) in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1)α and PGC-1β genes known to be involved in lipid and glucose metabolism. High fructose feeding to rats and hamsters led to the development of insulin

  7. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2015-01-01

    Full Text Available Background & objectives: Curcuma oil (C. oil isolated from turmeric (Curcuma longa L. has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Methods: Male Golden Syrian hamsters on high fructose diet (HFr for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg or C. oil (300 mg/kg in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Results: Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c, peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1α and PGC-1β genes known to be involved in lipid and glucose metabolism. Interpretation

  8. Effect Of Using Black Cumin (Nigella Sativa) As Natural Antioxidant On Hyperlipidaemia And Antioxidant Activities In Senile Rats

    International Nuclear Information System (INIS)

    HAMZA, R.G.; MAHMOUD, K.A.

    2009-01-01

    The black cumin (Nigella sativa) is one of the important herbal plants that used widely in most of human diseases and food preservation. Chemical composition of irradiated black cumin (10 kGy); moisture, ash, crude protein, crude lipid, total carbohydrate and crude fiber, were evaluated. The GC for analysis of fatty acids showed that the number of identified fatty acids was 9; the important one was linoleic (natural antioxidant). GC/MS used for analysis of essential oil showed that the number of identified compounds was 16; the important ones were thymoquinone, eugenol and linalool (natural antioxidants). Also, this study was performed to examine the efficacy of the black cumin to ameliorate the induced hyperlipidemia in senile rats. Twenty eight male rats were equally and randomly categorized into four groups. High fat diet (20g fat / 100g diet) was daily administered to rats for 6 weeks. Other animals where fed daily on either raw or irradiated black cumin diet (1% w/w) for 6 weeks. The results revealed that high fat diet fed to rats significantly induced an increase in serum phospholipids, TG, TC, LDL-C, atherogenic index and lipid peroxides (MDA). Significant decrease was observed in HDL-C, blood antioxidant enzymes activity (superoxide dismutase and catalase) and concentration of reduced glutathione (GSH). The results obtained revealed that feeding rats on diet containing either raw or irradiated black cumin (1% w/w) induced significant improvement in the above mentioned parameters. There was non- significant difference between non-irradiated and irradiated black cumin. Moreover, supplementation of black cumin in diet of rats can offer protection against free radicals generated through oxidative stress as a consequence of hyperlipidemic food.

  9. Effect Of Using Black Cumin (Nigella Sativa) As Natural Antioxidant On Hyperlipidaemia And Antioxidant Activities In Senile Rats

    Energy Technology Data Exchange (ETDEWEB)

    HAMZA, R G; MAHMOUD, K A [Food Irradiation Research Dept., National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2009-07-01

    The black cumin (Nigella sativa) is one of the important herbal plants that used widely in most of human diseases and food preservation. Chemical composition of irradiated black cumin (10 kGy); moisture, ash, crude protein, crude lipid, total carbohydrate and crude fiber, were evaluated. The GC for analysis of fatty acids showed that the number of identified fatty acids was 9; the important one was linoleic (natural antioxidant). GC/MS used for analysis of essential oil showed that the number of identified compounds was 16; the important ones were thymoquinone, eugenol and linalool (natural antioxidants). Also, this study was performed to examine the efficacy of the black cumin to ameliorate the induced hyperlipidemia in senile rats. Twenty eight male rats were equally and randomly categorized into four groups. High fat diet (20g fat / 100g diet) was daily administered to rats for 6 weeks. Other animals where fed daily on either raw or irradiated black cumin diet (1% w/w) for 6 weeks. The results revealed that high fat diet fed to rats significantly induced an increase in serum phospholipids, TG, TC, LDL-C, atherogenic index and lipid peroxides (MDA). Significant decrease was observed in HDL-C, blood antioxidant enzymes activity (superoxide dismutase and catalase) and concentration of reduced glutathione (GSH). The results obtained revealed that feeding rats on diet containing either raw or irradiated black cumin (1% w/w) induced significant improvement in the above mentioned parameters. There was non- significant difference between non-irradiated and irradiated black cumin. Moreover, supplementation of black cumin in diet of rats can offer protection against free radicals generated through oxidative stress as a consequence of hyperlipidemic food.

  10. Biochar from commercially cultivated seaweed for soil amelioration

    Science.gov (United States)

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-01-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum – brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma – red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity. PMID:25856799

  11. Biochar from commercially cultivated seaweed for soil amelioration

    Science.gov (United States)

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-04-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum - brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma - red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity.

  12. Ghrelin Ameliorates Asthma by Inhibiting Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Fu, Tian; Wang, Lei; Zeng, Qingdi; Zhang, Yan; Sheng, Baowei; Han, Liping

    2017-12-01

    This study aimed to confirm the ameliorative effect of ghrelin on asthma and investigate its mechanism. The murine model of asthma was induced by ovalbumin (OVA) treatment and assessed by histological pathology and airway responsiveness to methacholine. The total and differential leukocytes were counted. Tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 levels in bronchoalveolar lavage fluid were quantified by commercial kits. The protein levels in pulmonary tissues were measured by Western blot analysis. Ghrelin ameliorated the histological pathology and airway hyperresponsiveness in the OVA-induced asthmatic mouse model. Consistently, OVA-increased total and differential leukocytes and levels of tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 in bronchoalveolar lavage fluid were significantly attenuated by ghrelin. Ghrelin prevented the increased protein levels of the endoplasmic reticulum stress markers glucose regulated protein 78 and CCAAT/enhancer binding protein homologous protein and reversed the reduced levels of p-Akt in asthmatic mice. Ghrelin might prevent endoplasmic reticulum stress activation by stimulating the Akt signaling pathway, which attenuated inflammation and ameliorated asthma in mice. Ghrelin might be a new target for asthma therapy. Copyright © 2017. Published by Elsevier Inc.

  13. Antioxidant Properties of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-05-01

    Full Text Available Oxidative stress defines a condition in which the prooxidant–antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells’ viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  14. In Vitro Protective Effect and Antioxidant Mechanism of Resveratrol Induced by Dapsone Hydroxylamine in Human Cells.

    Directory of Open Access Journals (Sweden)

    Rosyana V Albuquerque

    Full Text Available Dapsone (DDS hydroxylamine metabolites cause oxidative stress- linked adverse effects in patients, such as methemoglobin formation and DNA damage. This study evaluated the ameliorating effect of the antioxidant resveratrol (RSV on DDS hydroxylamine (DDS-NHOH mediated toxicity in vitro using human erythrocytes and lymphocytes. The antioxidant mechanism was also studied using in-silico methods. In addition, RSV provided intracellular protection by inhibiting DNA damage in human lymphocytes induced by DDS-NHOH. However, whilst pretreatment with RSV (10-1000 μM significantly attenuated DDS-NHOH-induced methemoglobinemia, but it was not only significantly less effective than methylene blue (MET, but also post-treatment with RSV did not reverse methemoglobin formation, contrarily to that observed with MET. DDS-NHOH inhibited catalase (CAT activity and reactive oxygen species (ROS generation, but did not alter superoxide dismutase (SOD activity in erythrocytes. Pretreatment with RSV did not alter these antioxidant enzymes activities in erythrocytes treated with DDS-NHOH. Theoretical calculations using density functional theory methods showed that DDS-NHOH has a pro-oxidant effect, whereas RSV and MET have antioxidant effect on ROS. The effect on methemoglobinemia reversion for MET was significantly higher than that of RSV. These data suggest that the pretreatment with resveratrol may decrease heme-iron oxidation and DNA damage through reduction of ROS generated in cells during DDS therapy.

  15. Antioxidants Attenuate Oxidative Stress-Induced Hidden Blood Loss in Rats

    Directory of Open Access Journals (Sweden)

    Hong Qian

    2017-12-01

    Full Text Available Objective: Hidden blood loss (HBL, commonly seen after total knee or hip arthroplasty, causes postoperative anemia even after reinfusion or blood transfusion based on the visible blood loss volume. Recent studies demonstrated that oxidative stress might be involved in HBL. However, whether the antioxidants proanthocyanidin (PA or hydrogen water (HW can ameliorate HBL remains poorly understood. The aim of this study was to evaluate the effects of PA and HW on HBL. Materials and Methods: A rat HBL model was established through administration of linoleic acid with or without treatment with PA or HW. The levels of hemoglobin (Hb, red blood cell (RBC count, superoxide dismutase (SOD activity, glutathione peroxidase (GSH-PX activity, malondialdehyde (MDA, and ferryl Hb were measured. Results: RBC and Hb values as well as the activity of SOD and GSH-PX were reduced after administration of linoleic acid, which was ameliorated by treatment with PA or HW. In addition, the quantity of MDA was significantly decreased with the administration of PA or HW. Conclusion: PA and HW could ameliorate HBL in a rat model by reducing oxidative stress, suggesting that they might be used as a novel therapeutic approach in the prophylaxis or treatment of HBL in clinics.

  16. Dietary Antioxidants Effectiveness on Carbon Tetrachloride-Induced Hepatotoxicity in Adult Female Albino Rats

    International Nuclear Information System (INIS)

    EI-Sherbiny, E.M.; EI-Mahdy, A.A.

    2008-01-01

    Hepatic toxicity through carbon tetrachloride (CCI 4 ) induced lipid peroxidation was extensively used in experimental models to understand the cellular mechanisms behind oxidative damage and to evaluate the therapeutic potential of drugs and dietary antioxidants. The ameliorative effect of Aloe vera juice and carrot supplementation on hepato carcinogenesis induced by carbon tetrachloride in adult female albino rats was investigated. The carcinogenic process was determined by measuring gamma-glutamyl transpeptidase (GGT), ornithine carbamyl transferase (OCT), thiobarbituric acid reactive substances (TBARs), representing levels of lipid peroxides, and carcinoembryonic antigen (CEA) in the sera of female albino rats. Carbon tetrachloride significantly elevated the serum GGT, OCT activities and the level of TBARs. Administration of Aloe vera leaf juice filtrate after CCl 4 treatment resulted in a non-significant modification in GGT, OCT activities and significantly improved the level of TBARs in comparison with control. Supplementation of carrot to CCI 4 treated animals led to a great amelioration in OCT activity and TBARs level, whereas GGT activity was ameliorated but statistically changed compared to control. There was a non-significant alteration in the level of CEA in all treated groups compared to normal control one

  17. Cadmium exposure route affects antioxidant responses in the mayfly Centroptilum triangulifer

    Energy Technology Data Exchange (ETDEWEB)

    Xie Lingtian [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695 (United States); Buchwalter, David B., E-mail: david_buchwalter@ncsu.edu [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695 (United States)

    2011-10-15

    Highlights: Black-Right-Pointing-Pointer In the mayfly Centroptilum triangulifer, antioxidant enzymes catalase and superoxide dismutase were suppressed by dietary cadmium (Cd) exposures, but not dissolved exposures. Black-Right-Pointing-Pointer Dietary Cd reduced concentrations of active glutathione in whole insect homogenates. Black-Right-Pointing-Pointer These findings suggest that diet derived Cd is potentially more toxic than aqueous derived Cd in this mayfly, and may help explain the disconnection between laboratory and field data for aquatic insect responses to trace metal pollution. - Abstract: Aquatic organisms accumulate metals directly from water and from their diets. Exposure to metals is known to generate oxidative stress in living organisms and this stress may be ameliorated via activation of antioxidant enzymes and non-enzymatic antioxidants. To determine if antioxidant physiology is dependent on Cd exposure route in the mayfly Centroptilum triangulifer, we exposed larvae to environmentally relevant concentrations of Cd from isolated dissolved or dietary exposure routes to achieve comparable tissue concentrations. Dissolved Cd had no effect on the antioxidant enzymes examined. However, dietary Cd significantly suppressed catalase and superoxide dismutase activities, and decreased concentrations of the reduced (active) form of glutathione in C. triangulifer larvae. These findings suggest that dietary Cd is potentially more toxic than aqueously derived Cd in this mayfly. We further examined the effect of dietary Cd tissue loading rates on antioxidant enzyme suppression and found that absolute tissue load appeared more important than loading rate. These results may help explain why insects are routinely unresponsive to dissolved metal exposures in the laboratory, yet highly responsive to metal pollution in nature.

  18. Cadmium exposure route affects antioxidant responses in the mayfly Centroptilum triangulifer

    International Nuclear Information System (INIS)

    Xie Lingtian; Buchwalter, David B.

    2011-01-01

    Highlights: ► In the mayfly Centroptilum triangulifer, antioxidant enzymes catalase and superoxide dismutase were suppressed by dietary cadmium (Cd) exposures, but not dissolved exposures. ► Dietary Cd reduced concentrations of active glutathione in whole insect homogenates. ► These findings suggest that diet derived Cd is potentially more toxic than aqueous derived Cd in this mayfly, and may help explain the disconnection between laboratory and field data for aquatic insect responses to trace metal pollution. - Abstract: Aquatic organisms accumulate metals directly from water and from their diets. Exposure to metals is known to generate oxidative stress in living organisms and this stress may be ameliorated via activation of antioxidant enzymes and non-enzymatic antioxidants. To determine if antioxidant physiology is dependent on Cd exposure route in the mayfly Centroptilum triangulifer, we exposed larvae to environmentally relevant concentrations of Cd from isolated dissolved or dietary exposure routes to achieve comparable tissue concentrations. Dissolved Cd had no effect on the antioxidant enzymes examined. However, dietary Cd significantly suppressed catalase and superoxide dismutase activities, and decreased concentrations of the reduced (active) form of glutathione in C. triangulifer larvae. These findings suggest that dietary Cd is potentially more toxic than aqueously derived Cd in this mayfly. We further examined the effect of dietary Cd tissue loading rates on antioxidant enzyme suppression and found that absolute tissue load appeared more important than loading rate. These results may help explain why insects are routinely unresponsive to dissolved metal exposures in the laboratory, yet highly responsive to metal pollution in nature.

  19. Effects of chronic Rhodiola Rosea supplementation on sport performance and antioxidant capacity in trained male: preliminary results.

    Science.gov (United States)

    Parisi, A; Tranchita, E; Duranti, G; Ciminelli, E; Quaranta, F; Ceci, R; Cerulli, C; Borrione, P; Sabatini, S

    2010-03-01

    Rhodiola Rosea, is an adaptogen plant which has been reported to promote fatty acids utilisation, to ameliorate antioxidant function, and to improve body resistance to physical strenuous efforts. The purpose of the present study was to investigate the effects on physical performance as well as on the redox status of a chronic Rhodiola Rosea supplementation in a group of competitive athletes during endurance exercise. Following a chronic supplementation with Rhodiola Rosea for 4 weeks, 14 trained male athletes underwent a cardio-pulmonary exhaustion test and blood samples to evaluate their antioxidant status and other biochemical parameters. These data were compared with those coming from the same athletes after an intake of placebo. The evaluation of physical performance parameters showed that HR Max, Borg Scale level, VO(2) max and duration of the test were essentially unaffected by Rhodiola Rosea assumption. On the contrary, Rhodiola Rosea intake reduced, in a statistically significative manner, plasma free fatty acids levels. No effect on blood glucose was found. Blood antioxidant status and inflammatory parameters resulted unaffected by Rhodiola Rosea supplementation. Blood lactate and plasma creatine kinase levels were found significantly lower (P<0.05) in Rhodiola Rosea treated subjects when compared to the placebo treated group. Chronic Rhodiola Rosea supplementation is able to reduce both lactate levels and parameters of skeletal muscle damage after an exhaustive exercise session. Moreover this supplementation seems to ameliorate fatty acid consumption. Taken together those observation confirm that Rhodiola Rosea may increase the adaptogen ability to physical exercise.

  20. Terminalia pallida fruit ethanolic extract ameliorates lipids, lipoproteins, lipid metabolism marker enzymes and paraoxonase in isoproterenol-induced myocardial infarcted rats

    Directory of Open Access Journals (Sweden)

    Althaf Hussain Shaik

    2018-03-01

    Full Text Available The present study aimed to evaluate the effect of Terminalia pallida fruit ethanolic extract (TpFE on lipids, lipoproteins, lipid metabolism marker enzymes and paraoxonase (PON in isoproterenol (ISO-induced myocardial infarcted rats. PON is an excellent serum antioxidant enzyme which involves in the protection of low density lipoprotein cholesterol (LDL-C from the process of oxidation for the prevention of cardiovascular diseases. ISO caused a significant increase in the concentration of total cholesterol, triglycerides, LDL-C, very low density lipoprotein cholesterol and lipid peroxidation whereas significant decrease in the concentration of high density lipoprotein cholesterol. ISO administration also significantly decreased the activities of lecithin cholesterol acyl transferase, PON and lipoprotein lipase whereas significantly increased the activity of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase. Oral pretreatment of TpFE at doses 100, 300 and 500 mg/kg body weight (bw and gallic acid (15 mg/kg bw for 30 days challenged with concurrent injection of ISO (85 mg/kg bw on 29th and 30th day significantly attenuated these alterations and restored the levels of lipids, lipoproteins and the activities of lipid metabolizing enzymes. Also TpFE significantly elevated the serum antioxidant enzyme PON. This is the first report revealed that pretreatment with TPFE ameliorated lipid metabolic marker enzymes and increased the antioxidant PON in ISO treated male albino Wistar rats. Keywords: Terminalia pallida fruit, Gallic acid, Isoproterenol, Lipid metabolism marker enzymes, Paraoxonase, Myocardial infarction

  1. Studies on Ameliorative Effects of Polyphenolic Extract from Paullinia pinnata L. (Sapindaceae on Carbon Tetrachloride - Induced Hepatotoxicity and Oxidative Stress: an in vivo Assessment

    Directory of Open Access Journals (Sweden)

    Mikhail O. NAFIU

    2018-03-01

    Full Text Available The current study investigates the effects of polyphenolic extract from the leaf of Paullinia pinnata against CCl4 – induced oxidative stress and liver damage in female albino rats. Thirty albino rats were randomly distributed into six groups (A-F. Rats in group A were given 1 ml normal saline orally to serve as control. The rats in groups B, C, D, E, and F were respectively induced intraperitoneally with single administration of 1 ml/kg body weight (b. wt CCl4 dissolved in liquid paraffin (1:1. Thirty minutes after induction, the rats in the respective groups were orally treated with normal saline, 50 mg/kg b. wt. Silymarin, 50, 100 and 200 mg/kg b. wt. polyphenolic extract from P. pinnata respectively, once daily for 7 days.  Levels of liver function indices and the activities of antioxidant enzymes were determined. Administration of polyphenolic extract from P. pinnata significantly (p < 0.05 ameliorated CCl4- induced hepatotoxicity with respect to liver function indices, antioxidant and lipid peroxidation parameters. The biochemical changes observed were also consistent with histopathological observations on the rat liver, as architectural degeneration and severe cellular necrosis were restored after the administration of polyphenolic extract from P. pinnata in the treated groups. The study suggests that polyphenolic extract from P. pinnata is a potential hepatoprotective agent against CCl4-mediated hepatic injury through fortification of antioxidant defense mechanisms.

  2. ANTIOXIDANT POTENCY OF WATER KEFIR

    Directory of Open Access Journals (Sweden)

    Muneer Alsayadi M.S.

    2013-06-01

    Full Text Available Reactive oxygen species (ROS have strong relationship with several diseases. Many fermented foods were reported to be important sources for antioxidant compounds. Antioxidant activity of water kefir never reported in the scientific literature. The objective of this study was to detect and investigate the antioxidant potency of water kefir. Water kefir was prepared by fermentation of sugar solution with kefir grains for 24h. Antioxidant activity of fresh water kefir drink and its extract with (0.125–5 mg/ml was evaluated using 2,2,-diphenyl-1-pricrylhydrozyl (DPPH scavenging method, and inhibition of ascorbate autoxidation and the reducing power of water kefir were determined, Butylated hydroxyanisole (BHA and ascorbic acid were used for comparison. Water kefir demonstrated great ability to DPPH scavenging ranged (9.88-63.17%. And inhibit ascorbate oxidation by (6.08-25.57% increased in consequent with concentration raising. These results prime to conclude that water kefir could be promisor source of natural antioxidants with good potency in health developing.

  3. Tinospora crispa Ameliorates Insulin Resistance Induced by High Fat Diet in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mohd Nazri Abu

    2015-01-01

    Full Text Available The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC which received standard rodent diet, the high fat diet (HFD which received high fat diet only, the high fat diet treated with T. crispa (HFDTC, and the high fat diet treated with orlistat (HFDO. After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05 reduced the body weight (41.14 ± 1.40%, adiposity index serum levels (4.910 ± 0.80%, aspartate aminotransferase (AST: 161 ± 4.71 U/L, alanine aminotransferase (ALT: 100.95 ± 3.10 U/L, total cholesterol (TC: 18.55 ± 0.26 mmol/L, triglycerides (TG: 3.70 ± 0.11 mmol/L, blood glucose (8.50 ± 0.30 mmo/L, resistin (0.74 ± 0.20 ng/mL, and leptin (17.428 ± 1.50 ng/mL hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL and C-peptide (136.48 pmol/L hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet.

  4. Amelioration of azoxymethane induced-carcinogenesis by reducing oxidative stress in rat colon by natural extracts.

    Science.gov (United States)

    Waly, Mostafa I; Al-Rawahi, Amani S; Al Riyami, Marwa; Al-Kindi, Mohamed A; Al-Issaei, Halima K; Farooq, Sardar A; Al-Alawi, Ahmed; Rahman, Mohammad S

    2014-02-18

    Azoxymethane (AOM) is a potent carcinogenic agent commonly used to induce colon cancer in rats; the cytotoxicity of AOM is considered to mediate oxidative stress. This study investigated the chemopreventive effect of three natural extracts [pomegranate peel extract (PomPE), papaya peel extract (PapPE) and seaweed extract (SE)] against AOM-induced oxidative stress and carcinogenesis in rat colon. Eighty Sprague-Dawley rats (aged 4 weeks) were randomly divided into 8 groups (10 rats/group). Control group was fed a basal diet; AOM-treated group was fed a basal diet and received AOM intraperitonial injections for two weeks at a dose of 15 mg/kg bodyweight, whereas the other six groups were received oral supplementation of PomPE, PapPE or SE, in the presence or absence of AOM injection. All animals were continuously fed ad-libitum until aged 16 weeks, then all rats were sacrificed and the colon tissues were examined microscopically for pathological changes and aberrant crypt foci (ACF) development, genotoxicity (induced micronuclei (MN) cells enumeration), and glutathione and lipid peroxidation. Our results showed that AOM-induced ACF development and pathological changes in the colonic mucosal tissues, increased bone marrow MN cells and oxidative stress (glutathione depletion, lipid peroxidation) in rat colonic cells. The concomitant treatment of AOM with PomPE, PapPE or SE significantly ameliorated the cytotoxic effects of AOM. The results of this study provide in-vivo evidence that PomPE, PapPE and SE reduced the AOM-induced colon cancer in rats, through their potent anti-oxidant activities.

  5. Baccaurea angulata fruit juice ameliorates altered hematological and biochemical biomarkers in diet-induced hypercholesterolemic rabbits.

    Science.gov (United States)

    Ahmed, Idris Adewale; Mikail, Maryam Abimbola; Ibrahim, Muhammad

    2017-06-01

    Hypercholesterolemia is an important risk factor linked to the alteration of blood hematology and clinical chemistry associated with the development and progression of atherosclerosis. Previous studies have demonstrated the safety and potential health benefits of Baccaurea angulata (BA) fruit. We hypothesized that the oral administration of BA fruit juice could ameliorate the alteration in the hematological and biochemical biomarkers of diet-induced hypercholesterolemic rabbits. The aim of this study was to investigate the effects of different doses of BA juice on the hematological and biochemical biomarkers in normo- and hypercholesterolemic rabbits. Thirty-five healthy adult New Zealand White rabbits were assigned to seven different groups for 90days of diet intervention. Four atherogenic groups were fed a 1% cholesterol diet and 0, 0.5, 1.0, and 1.5mL of BA juice per kg of rabbit daily. The other three normal groups were fed a commercial rabbit pellet diet and 0, 0.5, and 1.0mL of BA juice per kg of rabbit daily. Baseline and final blood samples after 90days of repeated administration BA juice were analyzed for hematological parameters while serum, aortic and hepatic lysates were analyzed for lipid profiles and other biochemical biomarkers. The alteration of the hemopoietic system, physiological changes in serum and tissues lipid profiles and other biochemicals resulting from the consumption of a high-cholesterol diet were significantly (Pjuice. Improvements of the biomarkers in rabbits were dose-dependent, markedly enhanced at the highest dose of juice (1.5mL/kg/day). The results suggest potential health benefits of the antioxidant-rich BA fruit juice against hypercholesterolemia-associated hematological and biochemical alterations in the rabbit. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Hydrogen-rich saline ameliorates the severity of L-arginine-induced acute pancreatitis in rats

    International Nuclear Information System (INIS)

    Chen, Han; Sun, Yan Ping; Li, Yang; Liu, Wen Wu; Xiang, Hong Gang; Fan, Lie Ying; Sun, Qiang; Xu, Xin Yun; Cai, Jian Mei; Ruan, Can Ping; Su, Ning; Yan, Rong Lin; Sun, Xue Jun; Wang, Qiang

    2010-01-01

    Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the L-arginine (L-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of L-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each L-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreas were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-κB) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of L-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-κB activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-κB activation and to promote acinar cell proliferation.

  7. Britanin Ameliorates Cerebral Ischemia-Reperfusion Injury by Inducing the Nrf2 Protective Pathway.

    Science.gov (United States)

    Wu, Guozhen; Zhu, Lili; Yuan, Xing; Chen, Hao; Xiong, Rui; Zhang, Shoude; Cheng, Hao; Shen, Yunheng; An, Huazhang; Li, Tiejun; Li, Honglin; Zhang, Weidong

    2017-10-10

    Oxidative stress is considered the major cause of tissue injury after cerebral ischemia. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is one of the most important defensive mechanisms against oxidative stresses and has been confirmed as a target for stroke treatment. Thus, we desired to find new Nrf2 activators and test their neuronal protective activity both in vivo and in vitro. The herb-derived compound, Britanin, is a potent inducer of the Nrf2 system. Britanin can induce the expression of protective enzymes and reverse oxygen-glucose deprivation, followed by reperfusion (OGD-R)-induced neuronal injury in primary cortical neurons in vitro. Furthermore, the administration of Britanin significantly ameliorated middle cerebral artery occlusion-reperfusion (MCAO-R) insult in vivo. We report here the crystal structure of the complex of Britanin and the BTB domain of Keap1. Britanin selectively binds to a conserved cysteine residue, cysteine 151, of Keap1 and inhibits Keap1-mediated ubiquitination of Nrf2, leading to induction of the Nrf2 pathway. Britanin is a potent inducer of Nrf2. The complex crystal structure of Britanin and the BTB domain of Keap1 help clarify the mechanism of Nrf2 induction. Britanin was proven to protect primary cortical neurons against OGD-R-induced injury in an Nrf2-dependant way. Additionally, Britanin had excellent cerebroprotective effect in an MCAO-R model. Our results demonstrate that the natural product Britanin with potent Nrf2-activating and neural protective activities both in vitro and in vivo could be developed into a cerebroprotective therapeutic agent. Antioxid. Redox Signal. 27, 754-768.

  8. Unfolding the mechanism of cisplatin induced pathophysiology in spleen and its amelioration by carnosine.

    Science.gov (United States)

    Banerjee, Sharmistha; Sinha, Krishnendu; Chowdhury, Sayantani; Sil, Parames C

    2018-01-05

    cis-Diamminedichloroplatinum (cisplatin) is an effective chemotherapeutic and is widely used for the treatment of various types of solid tumors. Bio-distribution of cisplatin to other organs due to poor targeting towards only cancer cells constitutes the backbone of cisplatin-induced toxicity. The adverse effect of this drug on spleen is not well characterized so far. Therefore, we have set our goal to explore the mechanism of the cisplatin-induced pathophysiology of the spleen and would also like to evaluate whether carnosine, an endogenous neurotransmitter and antioxidant, can ameliorate this pathophysiological response. We found a dose and time-dependent increase of the pro-inflammatory cytokine, TNF-α, in the spleen tissue of the experimental mice exposed to 10 and 20 mg/kg body weight of cisplatin. The increase in inflammatory cytokine can be attributed to the activation of the transcription factor, NF-ĸB. This also aids in the transcription of other pro-inflammatory cytokines and cellular adhesion molecules. Exposure of animals to cisplatin at both the doses resulted in ROS and NO production leading to oxidative stress. The MAP Kinase pathway, especially JNK activation, was also triggered by cisplatin. Eventually, the persistence of inflammatory response and oxidative stress lead to apoptosis through extrinsic pathway. Carnosine has been found to restore the expression of inflammatory molecules and catalase to normal levels through inhibition of pro-inflammatory cytokines, oxidative stress, NF-ĸB and JNK. Carnosine also protected the splenic cells from apoptosis. Our study elucidated the detailed mechanism of cisplatin-induced spleen toxicity and use of carnosine as a protective agent against this cytotoxic response. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Role of Dietary Antioxidants in the Preservation of Vascular Function and the Modulation of Health and Disease

    Directory of Open Access Journals (Sweden)

    Saradhadevi Varadharaj

    2017-11-01

    Full Text Available In vascular diseases, including hypertension and atherosclerosis, vascular endothelial dysfunction (VED occurs secondary to altered function of endothelial nitric oxide synthase (eNOS. A novel redox regulated pathway was identified through which eNOS is uncoupled due to S-glutathionylation of critical cysteine residues, resulting in superoxide free radical formation instead of the vasodilator molecule, nitric oxide. In addition, the redox sensitive cofactor tetrahydrobiopterin, BH4, is also essential for eNOS coupling. Antioxidants, either individually or combined, can modulate eNOS uncoupling by scavenging free radicals or impairing specific radical generating pathways, thus preventing oxidative stress and ameliorating VED. Epidemiological evidence and dietary guidelines suggest that diets high in antioxidants, or antioxidant supplementation, could preserve vascular health and prevent cardiovascular diseases (CVDs. Therefore, the purpose of this review is to highlight the possible role of dietary antioxidants in regulating eNOS function and uncoupling which is critical for maintenance of vascular health with normal blood flow/circulation and prevention of VED. We hypothesize that a conditioned dietary approach with suitable antioxidants may limit systemic oxidation, maintain a beneficial ratio of reduced to oxidized glutathione, and other redox markers, and minimize eNOS uncoupling serving to prevent CVD and possibly other chronic diseases.

  10. Ameliorative effects of curcumin on the spermatozoon tail length, count, motility and testosterone serum level in metronidazole-treated mice.

    Science.gov (United States)

    Karbalay-Doust, S; Noorafshan, A

    2011-01-01

    Metronidazole (MTZ) is used as an antiparasitic drug. Curcumin is considered as anti-oxidant and anti-inflammatory agent. The ameliorative effects of curcumin on MTZ induced toxicity on mice spermatozoon tail length, count, motility and testosterone level were investigated. MTZ was administered in 500 and 165 (high and therapeutic doses) mg/kg/day, with and without curcumin (100 mg/kg/day). After 16 days the above parameters were assessed. Spermatozoon count and motility and serum testosterone level MTZ-treated (500 and 165) mice were reduced. In the mice treated with MTZ+curcumin these parameters decreased but in a lesser extent than the MTZ-treated animals. Mid-piece and total lengths of the spermatozoon tail in control animals were 31.6 ± 9.0 μm and 100.3 ± 15.0 μm and in the mice treated with high doses (500) of MTZ were reduced. The mid-piece and total spermatozoon tail length has been decreased in a lesser extent in the mice treated with high dose MTZ+curcumin than the mice treated with high dose MTZ (paverage increase in mid-piece and total lengths in comparison with the MTZ-treated (500) animals. Stereological estimation of the sperm tail length, including sampling of spermatozoa and also counting of the intersections of their tails with the stereological grids was a rapid technique and took only 5-10 minutes. It can be concluded that curcumin has an ameliorative effect on the spermatozoon, testosterone level and tail length in MTZ-treated mice.

  11. Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats.

    Science.gov (United States)

    Naraginti, Saraschandra; Kumari, P Lakshmi; Das, Raunak Kumar; Sivakumar, A; Patil, Sagar Hindurao; Andhalkar, Vaibhav Vilas

    2016-05-01

    Wound healing, a complex biological process, has attained a lot of attention as dermatologists are primarily interested in stimulated wound closure without formation of scar or a faint scar. The recent upsurgence of nanotechnology has provided novel therapeutic materials in the form of silver and gold nanoparticles which accelerate the wound healing process. The effect of formulated nanoparticles using Coleus forskohlii root extract (green synthesized) has been tried out for ameliorating full thickness excision wounds in albino Wistar male rats. The evaluation of in vivo activity of nanoparticles in wound healing was carried out on open wounds made by excision on the dorsal sides of albino Wistar rats under anesthesia, and the healing of the wounds was assessed. Histological aspects of the healing process were studied by a HE (Hematoxylin and Eosin) staining method to assess various degrees of re-epithelialization and the linear alignment of the granulation tissue whereas Van Gieson's histochemical staining was performed to observe collagen fibers. The healing action shown by the formulated nanoparticles was remarkable during the early stages of wound healing, which resulted in the substantial reduction of the whole healing period. Topical application of formulated gold nanoparticles was found to be more effective in suppressing inflammation and stimulating re-epithelialization compared to silver nanoparticles during the healing process. The results throw light on the amelioration of excision wounds using nanoparticles which could be a novel therapeutic way of improving wound healing in clinical practice. The mechanism of advanced healing action of both types of nanoparticles could be due to their antimicrobial, antioxidant and anti-inflammatory properties. Copyright © 2016. Published by Elsevier B.V.

  12. Ameliorative role of nano-ceria against amine coated Ag-NP induced toxicity in Labeo rohita

    Science.gov (United States)

    Khan, Muhammad Saleem; Qureshi, Naureen Aziz; Jabeen, Farhat

    2018-03-01

    Silver nanoparticles (Ag-NPs) and its byproducts can spread pollution in aquatic habitat. Liver and gills are key target for toxicity. Oxidative stress, tissue alterations, and hemotoxicity are assumed to be associated with Ag-NPs in target animals. Cerium oxide nanoparticles (nano-ceria) show antioxidant potential in scavenging the free radicals generated in Ag-NP-induced oxidative stress. We determined ameliorated role of nano-ceria against Ag-NP-induced toxicity in fresh water Labeo rohita (L. rohita). Four groups were used in study including control, nano-ceria, Ag-NPs, and Ag-NPs + nano-ceria. Ag-NPs (30 mg l-1) and nano-ceria (50 µg kg-1) were given through water and prepared feed, respectively. The samples were taken after 28 days. Results demonstrated that pre-treatment of nano-ceria recovered L. rohita from Ag-NP-induced toxicity and oxidative stress. Nano-ceria pre-treatment actively mimics the activity of GST, GSH, CAT, and SOD. Furthermore, Ag-NPs' treatment caused severe inflammation and necrosis in hepatic parenchyma which leaded to congestion of blood in hepatic tissues. Accumulation of a yellow pigment in hepatic tissue was also seen due to necrosis of affected cells. In nano-ceria pre-treatment, there was no congestion in hepatic tissue. Vacuolization of cells and necrosis in some area was recorded in nano-ceria pre-treated group, but the gill and hepatic tissue showed improvement against Ag-NP-induced damage. Nano-ceria pre-treatment also improved hematological parameters in Ag-NP-treated fish. This study concluded that Ag-NP-induced toxicity in treated fish and pre-treatment of nano-ceria show ameliorative role.

  13. The proper time for antioxidant consumption.

    Science.gov (United States)

    Beaulieu, Michaël; Schaefer, H Martin

    2014-04-10

    Consuming food rich in antioxidants may help organisms to increase their antioxidant defences and avoid oxidative damage. Under the hypothesis that organisms actively consume food for its antioxidant properties, they would need to do so in view of other physiological requirements, such as energy requirements. Here, we observed that Gouldian finches (Erythrura gouldiae) consumed most seeds rich in antioxidants in the middle of the day, while their consumption of staple seeds more profitable in energy intake (and poor in antioxidants) was maximal in the morning and the evening. This consumption of seeds rich in antioxidants in the middle of the day may be explicable (1) because birds took advantage of a time window associated with relaxed energy requirements to ingest antioxidant resources, or (2) because birds consumed antioxidant resources as a response to the highest antioxidant requirements in the middle of the day. If the latter hypothesis holds true, having the possibility to ingest antioxidants should be most beneficial in terms of oxidative balance in the middle of the day. Even though feeding on seeds rich in antioxidants improved Gouldian finches' overall antioxidant capacity, we did not detect any diurnal effect of antioxidant intake on plasma oxidative markers (as measured by the d-ROM and the OXY-adsorbent tests). This indicates that the diurnal pattern of antioxidant intake that we observed was most likely constrained by the high consumption of staple food to replenish or build up body reserves in the morning and in the evening, and not primarily determined by elevated antioxidant requirements in the middle of the day. Consequently, animals appear to have the possibility to increase antioxidant defences by selecting food rich in antioxidants, only when energetic constraints are relaxed. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Nasal Colivelin treatment ameliorates memory impairment related to Alzheimer's disease.

    Science.gov (United States)

    Yamada, Marina; Chiba, Tomohiro; Sasabe, Jumpei; Terashita, Kenzo; Aiso, Sadakazu; Matsuoka, Masaaki

    2008-07-01

    Humanin (HN) and its derivatives, such as Colivelin (CLN), suppress neuronal death induced by insults related to Alzheimer's disease (AD) by activating STAT3 in vitro. They also ameliorate functional memory impairment of mice induced by anticholinergic drugs or soluble toxic amyloid-beta (Abeta) in vivo when either is directly administered into the cerebral ventricle or intraperitoneally injected. However, the mechanism underlying the in vivo effect remains uncharacterized. In addition, from the standpoint of clinical application, drug delivery methods that are less invasive and specific to the central nervous system (CNS) should be developed. In this study, we show that intranasally (i.n.) administered CLN can be successfully transferred to CNS via the olfactory bulb. Using several behavioral tests, we have demonstrated that i.n. administered CLN ameliorates memory impairment of AD models in a dose-responsive manner. Attenuation of AD-related memory impairment by HN derivatives such as CLN appears to be correlated with an increase in STAT3 phosphorylation levels in the septohippocampal region, suggesting that anti-AD activities of HN derivatives may be mediated by activation of STAT3 in vivo as they are in vitro. We further demonstrate that CLN treatment inhibits an Abeta induced decrease in the number of choline acetyltransferase (ChAT)-positive neurons in the medial septum. Combined with the finding that HN derivatives upregulate mRNA expression of neuronal ChAT and vesicular acetylcholine transporter (VAChT) in vitro, it is assumed that CLN may ameliorate memory impairment of AD models by supporting cholinergic neurotransmission, which is at least partly mediated by STAT3-mediated transcriptional upregulation of ChAT and VAChT.

  15. A note on inventory model for ameliorating items with time dependent second order demand rate

    Directory of Open Access Journals (Sweden)

    Gobinda Chandra Panda

    2013-03-01

    Full Text Available Background: This paper is concerned with the development of ameliorating inventory models. The ameliorating inventory is the inventory of goods whose utility increases over the time by ameliorating activation. Material and Methods: This study is performed according to two areas: one is an economic order quantity (EOQ model for the items whose utility is ameliorating in accordance with Weibull distribution, and the other is a partial selling quantity (PSQ model developed for selling the surplus inventory accumulated by ameliorating activation with linear demand. The aim of this paper was to develop a mathematical model for inventory type concerned in the paper. Numerical examples were presented show the effect of ameliorating rate on inventory polices.  Results and Conclusions:  The inventory model for items with Weibull ameliorating is developed. For the case of small ameliorating rate (less than linear demand rate, EOQ model is developed, and for the case where ameliorating rate is greater than linear demand rate, PSQ model is developed.  .  

  16. ELM pace making and amelioration at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lang, P.T.; Gruber, O.; Haas, G.; Horton, L.D.; Kaufmann, M.; Mertens, V.; Neu, R.; Neuhauser, J.; Puetterich, T.; Schneider, W.; Sihler, C.; Sips, A.C.C.; Suttrop, W.; Treutterer, W. [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Garching (Germany); Bucalossi, J. [Association Euratom-Confederation Suisse, CRPP-EPFL, Lausanne (Switzerland); Kalvin, S.; Kocsis, G. [Association Euratom, KFKI-RMKI, Budapest (Hungary); Mc Carthy, P.J. [University College Cork, Physics Dept., Association Euratom-DCu, Cork (Ireland)

    2004-07-01

    Different techniques were tried to trigger ELMs (edge localized mode): injection of cryogenic solid pellets or a super-sonic molecular gas jet composed of deuterium or magnetic triggering, relying on a fast motion of the plasma column in a spatially asymmetric flux configuration. Our investigations prove externally imposed control techniques can change the ELM frequency. Frequency enhancement can result in amelioration of the single ELMs. Moreover, the approach can maintain plasma operation at a high performance level. Both pellet injection and magnetic triggering have been shown their potential to act as useful control tools. This yields the option to choose eventually the most appropriate technique for a given scenario.

  17. Curcumin ameliorates gastrointestinal dysfunction and oxidative damage in diabetic rats

    Directory of Open Access Journals (Sweden)

    Nitin Indarchandji Kochar

    2014-05-01

    Full Text Available Diabetes is known to be associated with gastrointestinal complications characterized by nausea, vomiting, early satiety, bloating, and abdominal discomfort or pain commonly occurring in the advanced stages of the disease. Curcumin is the lipid-soluble antioxidant obtained from the rhizomes of Curcuma longa Linn, also known as turmeric. Curcumin targets multiple chemotherapeutic and oxidative stress pathways and has demonstrated safety and tolerability in humans, supporting its potential as a therapeutic agent; however, literature lacks conclusive evidence supporting its use as a therapeutic agent for the treatment of diabetes induced gastrointestinal complications. Hence, Curcumin was given in different doses to SD rats after 4 weeks of diabetic GI complication induction. At the end of 4 weeks, significant GI dysfunction characterized by weight loss, delayed gastric emptying and intestinal transit associated with reduction in antioxidant enzyme levels and increased lipid peroxidation was observed.  Upon treatment with Curcumin for further 4 weeks, reversal of GI dysfunction evidenced by restoration of body weight, GI emptying, intestinal transit, and restoration of antioxidant enzyme level and lipid peroxidation proves the beneficial role of Curcumin in diabetes induced GI complications due to its antioxidant potential.     

  18. Monosodium glutamate toxicity: Sida acuta leaf extract ameliorated ...

    African Journals Online (AJOL)

    The brain is reportedly sensitive to monosodium glutamate (MSG) toxicity via oxidative stress. Sida acuta leaf ethanolic extract (SALEE) possesses antioxidant activity which can mitigate this neurotoxicity. The present study investigated the possible protective effect of SALEE on MSG-induced toxicity in rats. Twenty-six ...

  19. Ethanol stem bark extract of Rauwolfia vomitoria ameliorates MPTP ...

    African Journals Online (AJOL)

    Methods: The Parkinson's disease was induced in rats by a single intraperitoneal (IP) injection of MPTP. After 72h of induction, the young adult male rats were treated with oral administration of stem bark ethanol extract of the plant daily for 2 weeks. The blood chemistry, antioxidant markers and brain dopamine levels were ...

  20. Antioxidant Capacity, Radical Scavenging Kinetics and Phenolic ...

    African Journals Online (AJOL)

    HP

    Phenolic Profile of Methanol Extracts of Wild Plants of. Southern Sonora ... plant extracts. Phenolic compounds determination was carried out by high ... Determination of antioxidant capacity ..... In vitro antioxidant and antiproliferative activities ...

  1. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... and the nitroblue tetrazolium (NBT) assay. The cytotoxicity ... The antioxidant activity and cytotoxic effect of the extracts increased with increase ... supplements are concoctions of plants and/or plant .... In vitro antioxidant assay.

  2. Antioxidant and antimicrobial activities of polyphenols from ...

    African Journals Online (AJOL)

    the medicinal plants were screened for their antioxidant and antimicrobial activities against pathogenic micro organisms (Staphylococcus aureus, Streptococcus pyogenes, Esherichia coli and Candida albicans). The medicinal plants displayed different polyphenols contents and antioxidant activities. In addition, varying ...

  3. Antioxidant food supplements in human health

    National Research Council Canada - National Science Library

    Packer, Lester; Hiramatsu, Midori; Yoshikawa, Toshikazu

    1999-01-01

    ... of many of nature's antioxidant substances; grapes: starting source for red wine production; rich in antioxidants; onions: rich source of the bioflavonoid quercetin. This book is printed on acid-...

  4. Cardiac and renal antioxidant enzymes and effects of tempol in hyperthyroid rats.

    Science.gov (United States)

    Moreno, Juan Manuel; Rodríguez Gómez, Isabel; Wangensteen, Rosemary; Osuna, Antonio; Bueno, Pablo; Vargas, Félix

    2005-11-01

    This study evaluated the activity of cardiac and renal antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR)] and whether chronic treatment with tempol, a cell membrane-permeable SOD mimetic, ameliorates the hypertension of hyperthyroidism. Two experiments were performed. In experiment I, the following four groups of male Wistar rats were used: control group and three groups that received thyroxine (T4) at 10, 50, or 75 microg x rat(-1) x day(-1). In experiment II, tempol was orally administered (18 mg x kg(-1) x day(-1)) to control and T4-treated (75 microg x rat(-1) x day(-1)) rats. All treatments were maintained for 6 wk. Body weight, tail systolic blood pressure (BP), and heart rate were measured one time a week, and direct BP and morphological, metabolic, plasma, and renal variables were measured at the end of the experiment. Enzymatic activities were measured in renal cortex and medulla and right and left ventricles. In renal cortex, SOD activity was decreased in the T4-75 group, and there was a dose-related increase in CAT activity and decrease in GPX and GR activities in T4-treated groups. Activity of all antioxidant enzymes was reduced in left ventricle in T4-50 and T4-75 groups and in right ventricle in the T4-75 group. Tempol reduced BP, plasma malondialdehyde, and total urinary excretion of F2 isoprostanes in hypertensive hyperthyroid rats but not in controls. Tempol did not improve cardiac hypertrophy, proteinuria, or creatinine clearance in hyperthyroid rats. In conclusion, the results obtained indicate that the activity of SOD, GPX, and GR in renal and cardiac tissues is decreased in hyperthyroidism and that antioxidant treatment with tempol ameliorates T4-induced hypertension.

  5. Antioxidant properties of catechins: Comparison with other antioxidants.

    Science.gov (United States)

    Grzesik, Michalina; Naparło, Katarzyna; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela

    2018-02-15

    Antioxidant properties of five catechins and five other flavonoids were compared with several other natural and synthetic compounds and related to glutathione and ascorbate as key endogenous antioxidants in several in vitro tests and assays involving erythrocytes. Catechins showed the highest ABTS-scavenging capacity, the highest stoichiometry of Fe 3+ reduction in the FRAP assay and belonged to the most efficient compounds in protection against SIN-1 induced oxidation of dihydrorhodamine 123, AAPH-induced fluorescein bleaching and hypochlorite-induced fluorescein bleaching. Glutathione and ascorbate were less effective. (+)-catechin and (-)-epicatechin were the most effective compounds in protection against AAPH-induced erythrocyte hemolysis while (-)-epicatechin gallate, (-)-epigallocatechin gallate and (-)-epigallocatechin protected at lowest concentrations against hypochlorite-induced hemolysis. Catechins [(-)-epigallocatechin gallate and (-)-epicatechin gallate)] were most efficient in the inhibition of AAPH-induced oxidation of 2'7'-dichlorodihydroflurescein contained inside erythrocytes. Excellent antioxidant properties of catechins and other flavonoids make them ideal candidates for nanoformulations to be used in antioxidant therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Antioxidant activity of the microalga Spirulina maxima

    OpenAIRE

    Miranda M.S.; Cintra R.G.; Barros S.B.M.; Mancini-Filho J.

    1998-01-01

    Spirulina maxima, which is used as a food additive, is a microalga rich in protein and other essential nutrients. Spirulina contains phenolic acids, tocopherols and ß-carotene which are known to exhibit antioxidant properties. The aim of the present study was to evaluate the antioxidant capacity of a Spirulina extract. The antioxidant activity of a methanolic extract of Spirulina was determined in vitro and in vivo. The in vitro antioxidant capacity was tested on a brain homogenate incubated ...

  7. Antioxidants: Characterization, natural sources, extraction and analysis

    OpenAIRE

    OROIAN, MIRCEA; Escriche Roberto, Mª Isabel

    2015-01-01

    [EN] Recently many review papers regarding antioxidants fromdifferent sources and different extraction and quantification procedures have been published. However none of them has all the information regarding antioxidants (chemistry, sources, extraction and quantification). This article tries to take a different perspective on antioxidants for the new researcher involved in this field. Antioxidants from fruit, vegetables and beverages play an important role in human health, fo...

  8. Antiradical and antioxidant activities of new bio-antioxidants.

    Science.gov (United States)

    Kancheva, V D; Saso, L; Angelova, S E; Foti, M C; Slavova-Kasakova, A; Daquino, C; Enchev, V; Firuzi, O; Nechev, J

    2012-02-01

    Antioxidants could be promising agents for management of oxidative stress-related diseases. New biologically active compounds, belonging to a rare class of natural lignans with antiangiogenic, antitumoral and DNA intercalating properties, have been recently synthesized. These compounds are benzo[kl]xanthene lignans (1,2) and dihydrobenzofuran neolignans (3,4). The radical scavenging and chain-breaking antioxidant activities of compounds 1-4 were studied by applying different methods: radical scavenging activity by DPPH rapid test, chain-breaking antioxidant activity and quantum chemical calculations. All studied compounds were found to be active as DPPH scavengers but reaction time with DPPH and compounds' concentrations influenced deeply the evaluation. The highest values of radical scavenging activity (%RSAmax) and largest rate constants for reaction with DPPH were obtained for compounds 2 and 3. Comparison of %RSAmax with that of standard antioxidants DL-α-tocopherol (TOH), caffeic acid (CA) and butylated hydroxyl toluene (BHT) give the following new order of %RSA max: TOH (61.1%) > CA (58.6%) > 3 (36.3%) > 2 (28.1%) > 4 (6.7%) > 1 (3.6%) = BHT (3.6%). Chain-breaking antioxidant activities of individual compounds (0.1-1.0 mM) and of their equimolar binary mixtures (0.1 mM) with TOH were determined from the kinetic curves of lipid autoxidation at 80 °C. On the basis of a comparable kinetic analysis with standard antioxidants a new order of the antioxidant efficiency (i.e., protection factor, PF) of compounds 1-4 were obtained: 2 (7.2) ≥ TOH (7.0) ≥ CA (6.7) > 1 (3.1) > 3 (2.2) > ferulic acid FA (1.5) > 4 (0.6); and of the antioxidant reactivity (i.e. inhibition degree, ID): 2 (44.0) > TOH (18.7) > CA (9.3) > 1 (8.4) > 3 (2.8) > FA (1.0) > 4 (0.9). The important role of the catecholic structure in these compounds, which is responsible for the high chain-breaking antioxidant activity, is discussed and a reaction

  9. Antioxidant activity of Arbutus unedo leaves.

    Science.gov (United States)

    Pabuçcuoğlu, A; Kivçak, B; Baş, M; Mert, T

    2003-09-01

    The ethanol and methanol extracts of Arbutus unedo leaves were screened for antioxidant activity. The antioxidant activity was determined by an improved assay based on the decolorization of the radical monocation of [2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] (ABTS). The ethanol and methanol extract of A. unedo leaves displayed potent antioxidant activity.

  10. Antioxidants in bakery products: a review.

    Science.gov (United States)

    Nanditha, B; Prabhasankar, P

    2009-01-01

    Fats impart taste and texture to the product but it is susceptible to oxidation leading to the development of rancidity and off-flavor. Since ancient times it has been in practice to use antioxidants in foods. Discovery of synthetic antioxidants has revolutionized the use of antioxidants in food. The effect of these antioxidants in bakery products were reviewed and found to be effective in enhancing the shelf life. Animal experimental studies have shown that some of the synthetic antioxidants had toxigenic, mutagenic, and carcinogenic effects. Hence there is an increasing demand for the use of natural antioxidants in foods, especially in bakery products. Some of the natural antioxidants such as alpha-tocopherol, beta-carotene, and ascorbic acid were already used in bakery products. These natural antioxidants are found to be effective in enhancing the shelf life of bakery products but not to the extent of synthetic antioxidants. Baking processing steps may lower the antioxidative activity but techniques such as encapsulation of antioxidants can retain their activity. Antioxidative activity of the plant extracts such as garcinia, curcumin, vanillins, and mint were reviewed but studies on their role in bakery products were limited or very few. Hence there is a wide scope for study under this direction in depth.

  11. Interaction of phenolic antioxidants and hydroxyl radicals

    International Nuclear Information System (INIS)

    Wang Wenfeng; Luo Jian; Yao Side; Lian Zhirui; Zhang Jiashan; Lin Nianyun

    1992-01-01

    Based on pulse radiolysis of aqueous solutions of four phenolic antioxidants including green tea polyphenols, quercetin, caffeic acid and sinapic acid the rate constants for reactions of OH and the antioxidants were determined. And green tea polyphenols and quercetin are the strongest antioxidants

  12. Analysis of Two Methods to Evaluate Antioxidants

    Science.gov (United States)

    Tomasina, Florencia; Carabio, Claudio; Celano, Laura; Thomson, Leonor

    2012-01-01

    This exercise is intended to introduce undergraduate biochemistry students to the analysis of antioxidants as a biotechnological tool. In addition, some statistical resources will also be used and discussed. Antioxidants play an important metabolic role, preventing oxidative stress-mediated cell and tissue injury. Knowing the antioxidant content…

  13. Interaction of phenolic antioxidants and hydroxyl radicals

    International Nuclear Information System (INIS)

    Wang, W.F.; Luo, J.; Yao, S.D.; Lian, Z.R.; Zhang, J.S.; Lin, N.Y.

    1993-01-01

    Based on pulse radiolysis of aqueous solutions of four phenolic antioxidants including green tea polyphenols, quercetin, caffeic acid and sinapic acid the rate constants for reactions of OH and the antioxidants were determined. Green tea polyphenols and quercetin are the strongest antioxidants. (author)

  14. Flavonoid, hesperidine, total phenolic contents and antioxidant ...

    African Journals Online (AJOL)

    Additionally, the antioxidant activities were also determined by ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity. C. hystrix had the highest flavonoid and total phenolic contents while C. aurantifolia had the highest hesperidine content. The antioxidant activity of ...

  15. Comparative Antioxidant, Antiproliferative and Apoptotic Effects of ...

    African Journals Online (AJOL)

    Purpose: To determine and compare the antioxidant, antiproliferative and apoptotic effects of leaf infusions of Ilex laurina and Ilex paraguariensis in colon cancer cells. Methods: Antioxidant activity was determined by ORAC (Oxygen Radical Absorbance Capacity) and FRAP (Ferric Reducing Antioxidant Power). Cytotoxic ...

  16. Arginase Inhibition Ameliorates Hepatic Metabolic Abnormalities in Obese Mice

    Science.gov (United States)

    Moon, Jiyoung; Do, Hyun Ju; Cho, Yoonsu; Shin, Min-Jeong

    2014-01-01

    Objectives We examined whether arginase inhibition influences hepatic metabolic pathways and whole body adiposity in diet-induced obesity. Methods and Results After obesity induction by a high fat diet (HFD), mice were fed either the HFD or the HFD with an arginase inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA). Nor-NOHA significantly prevented HFD-induced increases in body, liver, and visceral fat tissue weight, and ameliorated abnormal lipid profiles. Furthermore, nor-NOHA treatment reduced lipid accumulation in oleic acid-induced hepatic steatosis in vitro. Arginase inhibition increased hepatic nitric oxide (NO) in HFD-fed mice and HepG2 cells, and reversed the elevated mRNA expression of hepatic genes in lipid metabolism. Expression of phosphorylated 5′ AMPK-activated protein kinase α was increased by arginase inhibition in the mouse livers and HepG2 cells. Conclusions Arginase inhibition ameliorated obesity-induced hepatic lipid abnormalities and whole body adiposity, possibly as a result of increased hepatic NO production and subsequent activation of metabolic pathways involved in hepatic triglyceride metabolism and mitochondrial function. PMID:25057910

  17. Phytoceramide Shows Neuroprotection and Ameliorates Scopolamine-Induced Memory Impairment

    Directory of Open Access Journals (Sweden)

    Seikwan Oh

    2011-10-01

    Full Text Available The function and the role phytoceramide (PCER and phytosphingosine (PSO in the central nervous system has not been well studied. This study was aimed at investigating the possible roles of PCER and PSO in glutamate-induced neurotoxicity in cultured neuronal cells and memory function in mice. Phytoceramide showed neuro-protective activity in the glutamate-induced toxicity in cultured cortical neuronal cells. Neither phytosphingosine nor tetraacetylphytosphingosine (TAPS showed neuroproective effects in neuronal cells. PCER (50 mg/kg, p.o. recovered the scopolamine-induced reduction in step-through latency in the passive avoidance test; however, PSO did not modulate memory function on this task. The ameliorating effects of PCER on spatial memory were confirmed by the Morris water maze test. In conclusion, through behavioral and neurochemical experimental results, it was demonstrated that central administration of PCER produces amelioration of memory impairment. These results suggest that PCER plays an important role in neuroprotection and memory enhancement and PCER could be a potential new therapeutic agent for the treatment of neurodegenerative diseases such as Alzheimer’s disease.

  18. IL-12p35 Inhibits Neuroinflammation and Ameliorates Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Jin Kyeong Choi

    2017-10-01

    Full Text Available Multiple sclerosis (MS is an inflammatory demyelinating disease in which cytokines produced by immune cells that infiltrate the brain and spinal cord play a central role. We show here that the IL-12p35, the alpha subunit of IL-12 or IL-35 cytokine, might be an effective biologic for suppressing neuroinflammatory responses and ameliorating the pathology of experimental autoimmune encephalomyelitis (EAE, the mouse model of human MS. We further show that IL-12p35 conferred protection from neuropathy by inhibiting the expansion of pathogenic Th17 and Th1 cells and inhibiting trafficking of inflammatory cells into the brain and spinal cord. In addition, in vitro exposure of encephalitogenic cells to IL-12p35 suppressed their capacity to induce EAE by adoptive transfer. Importantly, the IL-12p35-mediated expansion of Treg and Breg cells and its amelioration of EAE correlated with inhibition of cytokine-induced activation of STAT1/STAT3 pathways. Moreover, IL-12p35 inhibited lymphocyte proliferation by suppressing the expressions of cell-cycle regulatory proteins. Taken together, these results suggest that IL-12p35 can be exploited as a novel biologic for treating central nervous system autoimmune diseases and offers the promise of ex vivo production of large amounts of Tregs and Bregs for immunotherapy.

  19. Naltrexone ameliorates functional network abnormalities in alcohol‐dependent individuals

    Science.gov (United States)

    Baek, Kwangyeol; Tait, Roger; Elliott, Rebecca; Ersche, Karen D.; Flechais, Remy; McGonigle, John; Murphy, Anna; Nestor, Liam J.; Orban, Csaba; Passetti, Filippo; Paterson, Louise M.; Rabiner, Ilan; Reed, Laurence; Smith, Dana; Suckling, John; Taylor, Eleanor M.; Bullmore, Edward T.; Lingford‐Hughes, Anne R.; Deakin, Bill; Nutt, David J.; Sahakian, Barbara J.; Robbins, Trevor W.; Voon, Valerie

    2017-01-01

    Abstract Naltrexone, an opioid receptor antagonist, is commonly used as a relapse prevention medication in alcohol and opiate addiction, but its efficacy and the mechanisms underpinning its clinical usefulness are not well characterized. In the current study, we examined the effects of 50‐mg naltrexone compared with placebo on neural network changes associated with substance dependence in 21 alcohol and 36 poly‐drug‐dependent individuals compared with 36 healthy volunteers. Graph theoretic and network‐based statistical analysis of resting‐state functional magnetic resonance imaging (MRI) data revealed that alcohol‐dependent subjects had reduced functional connectivity of a dispersed network compared with both poly‐drug‐dependent and healthy subjects. Higher local efficiency was observed in both patient groups, indicating clustered and segregated network topology and information processing. Naltrexone normalized heightened local efficiency of the neural network in alcohol‐dependent individuals, to the same levels as healthy volunteers. Naltrexone failed to have an effect on the local efficiency in abstinent poly‐substance‐dependent individuals. Across groups, local efficiency was associated with substance, but no alcohol exposure implicating local efficiency as a potential premorbid risk factor in alcohol use disorders that can be ameliorated by naltrexone. These findings suggest one possible mechanism for the clinical effects of naltrexone, namely, the amelioration of disrupted network topology. PMID:28247526

  20. The beneficial effects of l-cysteine on brain antioxidants of rats affected by sodium valproate.

    Science.gov (United States)

    Hamza, R Z; El-Shenawy, N S

    2017-11-01

    Oxidative stress caused by sodium valproate (SV) is known to play a key role in the pathogenesis of brain tissue. The present study was designed to evaluate the protective effect of l-cysteine (LC) on the antioxidants of brain tissue of rats. The animals were divided into six groups: control group 1 was treated with saline as vehicle, groups 2 and 3 were treated with low and high doses of SV (100 and 500 mg/kg, respectively), group 4 was treated with LC (100 mg/kg), and groups 5 and 6 were treated with low-dose SV + LC and high-dose SV + LC, respectively. All the groups were treated orally by gastric tube for 30 successive days. Some antioxidant parameters were determined. Brain tissue (cerebral cortex) of SV-treated animals showed an increase in lipid peroxidation (LPO) and reduction in activity of enzymatic antioxidant and total antioxidant levels. Histopathological examination of cerebral cortex of SV rats showed astrocytic swelling, inflammation, and necrosis. After 4 weeks of the combination treatment of SV and LC daily, results showed significant improvement in the activity of cathepsin marker enzymes and restored the structure of the brain. LC was able to ameliorate oxidative stress deficits observed in SV rats. LC decreased LPO level and was also able to restore the activity of antioxidant enzymes as well as structural deficits observed in the brain of SV animals. The protective effect of LC in SV-treated rats is mediated through attenuation of oxidative stress, suggesting a therapeutic role for LC in individuals treated with SV.

  1. Antioxidant synergistic effects of Osmanthus fragrans flowers with green tea and their major contributed antioxidant compounds

    OpenAIRE

    Mao, Shuqin; Wang, Kaidi; Lei, Yukun; Yao, Shuting; Lu, Baiyi; Huang, Weisu

    2017-01-01

    The antioxidant synergistic effects of Osmanthus fragrans flowers with green tea were evaluated, and their major antioxidant compounds contributed to the total amount of synergy were determined. The antioxidant compounds in O. fragrans flowers with green tea were identified by LC-MS and quantified by UPLC-PDA. The synergistic antioxidant interactions between O. fragrans flowers with green tea and their antioxidant compounds were tested using the Prieto?s model after the simulated digestion. T...

  2. Study on preparation of new antioxidants for radiation vulcanized natural rubber latex product. Antioxidant from keratin

    International Nuclear Information System (INIS)

    Nguyen Quoc Hien; Nguyen Van Toan; Vo Tan Thien; Le Hai

    2000-01-01

    The thermo-oxidative aging resistance of radiation vulcanization of natural rubber latex (RVNRL) products should be adequately by using suitable antioxidants or new kind of effective antioxidant. This work presents the results of preparation of natural antioxidant from hair keratin. Characteristics and effectiveness of resultant antioxidant are also presented. The results obtained indicates that antioxidant made from hair keratin is safe and effective for rubber products from RVNRL. (author)

  3. Fruit antioxidants during vinegar processing

    NARCIS (Netherlands)

    Bakir, Sena; Toydemir, Gamze; Boyacioglu, Dilek; Beekwilder, Jules; Capanoglu, Esra

    2016-01-01

    Background: Vinegars based on fruit juices could conserve part of the health-associated compounds present in the fruits. However, in general very limited knowledge exists on the consequences of vinegar-making on different antioxidant compounds from fruit. In this study vinegars derived from apple

  4. ANTIOXIDANT STATUS IN DIABETIC NEUROPATHY

    Directory of Open Access Journals (Sweden)

    Giriraja Vrushabaiah Kanakapura

    2017-09-01

    Full Text Available BACKGROUND Diabetic neuropathy, retinopathy and nephropathy are the chronic complications of diabetes mellitus. Neuropathy, retinopathy and nephropathy are microvascular complication of diabetes mellitus. Antioxidant status is reduced in DM-induced retinopathy and nephropathy. Present study is undertaken to evaluate the degree of oxidative stress in diabetic neuropathy patients. The aim of the study is to study on oxidative stress as measured by lipid peroxidation marker, malondialdehyde and antienzyme status in type II DM patients with neuropathy and compared them with a controlled nondiabetic group. MATERIALS AND METHODS The study included 100 subjects from Sapthagiri Medical College, Bangalore, from January 1, 2015, to December 31, 2015, of age group 50 to 70 yrs. out of which 50 patients were non-insulin-dependent DM with neuropathy and rest 50 age and sex matched apparently healthy individuals (control group. Antioxidant status was assessed by measuring superoxide dismutase (SOD, glutathione peroxidase (GPx, glutathione reductase (GR, Catalase and Reduced Glutathione (GSH. RESULTS It showed a significant increase p<0.001 in FBS, PPBS, TC, TG, LDL, VLDL, CAT, MDA, while HDL, GSH, GPX, GR and SOD were found to be decreased significantly (p 0.001. CONCLUSION MDA was significantly elevated in diabetic group, whereas antioxidant enzymes superoxide dismutase, glutathione peroxidase, glutathione reductase and reduced glutathione were significantly decreased, which might be helpful in risk assessment of various complications of DM. The data suggests that alteration in antioxidant status and MDA may help to predict the risk of diabetic neuropathy.

  5. Antioxidant activity of banana flavonoids.

    Science.gov (United States)

    Vijayakumar, S; Presannakumar, G; Vijayalakshmi, N R

    2008-06-01

    The antioxidant activity of flavonoids from banana (Musa paradisiaca) was studied in rats fed normal as well as high fat diets. Concentrations of peroxidation products namely malondialdehyde, hydroperoxides and conjugated diens were significantly decreased whereas the activities of catalase and superoxide dismutase were enhanced significantly. Concentrations of glutathione were also elevated in the treated animals.

  6. Combination Chemoprevention with Grape Antioxidants

    OpenAIRE

    Singh, Chandra K.; Siddiqui, Imtiaz A.; El-Abd, Sabah; Mukhtar, Hasan; Ahmad, Nihal

    2016-01-01

    Antioxidant ingredients present in grape have been extensively investigated for their cancer chemopreventive effects. However, much of the work has been done on individual ingredients, especially focusing on resveratrol and quercetin. Phytochemically, whole grape represents a combination of numerous phytonutrients. Limited research has been done on the possible synergistic/additive/antagonistic interactions among the grape constituents. Among these phytochemical constituents of grapes, resver...

  7. Antioxidant activities of Parquetina nigrescens

    African Journals Online (AJOL)

    Administrator

    2011-06-06

    Jun 6, 2011 ... PUFA, polyunsaturated fatty acid. 1990 ... lifespan of animals (Cutlar, 1991; Rikans and Hornbook,. 1997). Sources of natural antioxidants are generally plant phenols. ... Mitochondria pellet equivalent to 1 g (wet weight) of liver ... flavonoid extract of P. nigrescens, dissolved in corn oil for 9 days. Group D ...

  8. Antioxidant capacity and physical exercise

    Directory of Open Access Journals (Sweden)

    A Marciniak

    2009-09-01

    Full Text Available The aim of this article is a presentation of current knowledge regarding the changes of plasma antioxidant capacity observed in response to physical exercise. Human body created the enzymatic and non-enzymatic systems, which play a protective role in the harmful impact of free radicals. Those two systems constitute what is known as the plasma total antioxidant capacity. The amount of reactive oxygen species (ROS and reactive nitrogen species (NOS in combination with oxidation processes increases in some tissues during physiological response to physical exercise. These changes are observed after single bout of exercise as well as after regular training. The response of human body to physical exercise can be analysed using various models of exercise test. Application of repeated type of exhaustion allows for characterizing the ability of human body to adjust to the increased energy loss and increased oxygen consumption. This article presents the characteristics of components of plasma antioxidant capacity, the mechanisms of free radicals production and their role in human body. It discusses also the currently used methods of detecting changes in total antioxidant capacity and its individual elements in response to single bout of exercise and regular training. It presents the review of literature about research performed in groups of both regularly training and low exercise activity individuals as well as in group of healthy subjects and patients with circulation diseases.

  9. Antioxidative activity of Geranium macrorrhizum

    NARCIS (Netherlands)

    Miliauskas, G.; Beek, van T.A.; Venskutonis, P.R.; Linssen, J.P.H.; Waard, de P.

    2004-01-01

    The composition of radical-scavenging compounds from Geranium macrorrhizum leaves was analyzed and the antioxidative activities of various extracts was determined. Seven compounds, namely gallic acid, ellagic acid, 4-galloyl quinic acid, the flavonoid quercetin and three of its glycosides,

  10. Antioxidant activity of Potentilla fruticosa

    NARCIS (Netherlands)

    Miliauskas, G.; Beek, van T.A.; Venskutonis, P.R.; Linssen, J.P.H.; Waard, de P.; Sudhölter, E.J.R.

    2004-01-01

    The molecular structures of the radical scavenging compounds present in extracts of Potentilla fruticosa blossoms were elucidated and the antioxidant activities of various extracts were determined. The activities of the different fractions were monitored by off-line and on-line RP-HPLC DPPH. and

  11. Antioxidant therapy in idiopathic oligoasthenoteratozoospermia

    Directory of Open Access Journals (Sweden)

    Ahmad Majzoub

    2017-01-01

    Conclusion: Additional randomized controlled studies are required to confirm the efficacy and safety of antioxidant supplementation in the medical treatment of idiopathic male infertility as well as the dosage required to improve semen parameters, fertilization rates, and pregnancy outcomes in iOAT.

  12. Antioxidant activities of Physalis peruviana.

    Science.gov (United States)

    Wu, Sue-Jing; Ng, Lean-Teik; Huang, Yuan-Man; Lin, Doung-Liang; Wang, Shyh-Shyan; Huang, Shan-Ney; Lin, Chun-Ching

    2005-06-01

    Physalis peruviana (PP) is a widely used medicinal herb for treating cancer, malaria, asthma, hepatitis, dermatitis and rheumatism. In this study, the hot water extract (HWEPP) and extracts prepared from different concentrations of ethanol (20, 40, 60, 80 and 95% EtOH) from the whole plant were evaluated for antioxidant activities. Results displayed that at 100 mug/ml, the extract prepared from 95% EtOH exhibited the most potent inhibition rate (82.3%) on FeCl2-ascorbic acid induced lipid peroxidation in rat liver homogenate. At concentrations 10-100 microg/ml, this extract also demonstrated the strongest superoxide anion scavenging and inhibitory effect on xanthine oxidase activities. In general, the ethanol extracts revealed a stronger antioxidant activity than alpha-tocopherol and HWEPP. Compared to alpha-tocopherol, the IC50 value of 95% EtOH PP extract was lower in thiobarbituric acid test (IC50=23.74 microg/ml vs. 26.71 microg/ml), in cytochrome c test (IC50=10.40 microg/ml vs. 13.39 microg/ml) and in xanthine oxidase inhibition test (IC50=8.97 microg/ml vs. 20.68 microg/ml). The present study concludes that ethanol extracts of PP possess good antioxidant activities, and the highest antioxidant properties were obtained from the 95% EtOH PP.

  13. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum)

    Science.gov (United States)

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  14. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum).

    Science.gov (United States)

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.

  15. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Festuca arundinacea

    Directory of Open Access Journals (Sweden)

    Longxing eHu

    2016-02-01

    Full Text Available Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool‐season turfgrass species, tall fescue (Lolium arundinaceum, and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2 and 20 mM and two temperature levels (25/20 and 35/30 ± 0.5 ̊C, day/night treatments in growth chambers. Heat stress increased an electrolyte leakage (EL and malonaldehyde (MDA content, while reduced plant growth, chlorophyll (Chl content, photochemical efficiency (Fv/Fm, root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD. External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.

  16. Kolaviron and vitamin E ameliorate hematotoxicity and oxidative stress in brains of prepubertal rats treated with an anticonvulsant phenytoin.

    Science.gov (United States)

    Owoeye, Olatunde; Adedara, Isaac A; Bakare, Oluwafemi S; Adeyemo, Oluwatobi A; Egun, Christa; Farombi, Ebenezer O

    2014-06-01

    Phenytoin (PHT), an anticonvulsant agent, widely used for the treatment of epilepsy has been reported to exhibit toxic side effects. The present study investigated the protective effects of kolaviron and vitamin E on hematotoxicity and neurotoxicity induced by phenytoin, in prepubertal male rats. The animals were treated with PHT (75 mg/kg) separately or in combination with either kolaviron (200 mg/kg) or vitamin E (500 mg/kg) for 14 days. Phenytoin treatment significantly decreased the hemoglobin, white blood cells, lymphocytes and mean corpuscular volume levels without affecting red blood cell, packed cell volume, neutrophils, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration when compared with the control rats. There was a significant increase in lipid peroxidation and hydrogen peroxide levels with marked depletion in antioxidant status in brains of PHT-treated rats when compared with the control. Although PHT treatment had no effect on the granular layer, widest diameter of Purkinje cells and Purkinje layer of the cerebellum, it significantly reduced its molecular layer and the density of Purkinje cell. Administration of PHT significantly reduced the densities of the granule cells of the dentate gyrus and the pyramidal neurons of the cornu ammonis of hippocampus proper. Co-treatment with kolaviron and vitamin E effectively reversed the PHT-mediated alterations in the hematology, brain antioxidant status and histomorphometry when compared to PHT only. Taken together, the present data indicate the abilities of kolaviron and vitamin E to ameliorate phenytoin-induced hematotoxicity and oxidative stress in brains of rats.

  17. Quercetin ameliorates imiquimod-induced psoriasis-like skin inflammation in mice via the NF-κB pathway.

    Science.gov (United States)

    Chen, Haiming; Lu, Chuanjian; Liu, Huazhen; Wang, Maojie; Zhao, Hui; Yan, Yuhong; Han, Ling

    2017-07-01

    Quercetin (QC) is a dietary flavonoid abundant in many natural plants. A series of studies have shown that it has been shown to exhibit several biological properties, including anti-inflammatory, anti-oxidant, cardio-protective, vasodilatory, liver-protective and anti-cancer activities. However, so far the possible therapeutic effect of QC on psoriasis has not been reported. The present study was undertaken to evaluate the potential beneficial effect of QC in psoriasis using a generated imiquimod (IMQ)-induced psoriasis-like mouse model, and to further elucidate its underlying mechanisms of action. Effects of QC on PASI scores, back temperature, histopathological changes, oxidative/anti-oxidative indexes, pro-inflammatory cytokines and NF-κB pathway in IMQ-induced mice were investigated. Our results showed that QC could significantly reduce the PASI scores, decrease the temperature of the psoriasis-like lesions, and ameliorate the deteriorating histopathology in IMQ-induced mice. Moreover, QC effectively attenuated levels of TNF-α, IL-6 and IL-17 in serum, increased activities of GSH, CAT and SOD, and decreased the accumulation of MDA in skin tissue induced by IMQ in mice. The mechanism may be associated with the down-regulation of NF-κB, IKKα, NIK and RelB expression and up-regulation of TRAF3, which were critically involved in the non-canonical NF-κB pathway. In conclusion, our present study demonstrated that QC had appreciable anti-psoriasis effects in IMQ-induced mice, and the underlying mechanism may involve the improvement of antioxidant and anti-inflammatory status and inhibition on the activation of the NF-κB signaling. Hence, QC, a naturally occurring flavone with potent anti-psoriatic effects, has the potential for further development as a candidate for psoriasis treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Spirulina maxima Extract Ameliorates Learning and Memory Impairments via Inhibiting GSK-3β Phosphorylation Induced by Intracerebroventricular Injection of Amyloid-β 1-42 in Mice.

    Science.gov (United States)

    Koh, Eun-Jeong; Kim, Kui-Jin; Song, Ji-Hyeon; Choi, Jia; Lee, Hyeon Yong; Kang, Do-Hyung; Heo, Ho Jin; Lee, Boo-Yong

    2017-11-13

    Spirulina maxima , a microalga containing high levels of protein and many polyphenols, including chlorophyll a and C-phycocyanin, has antioxidant and anti-inflammatory therapeutic effects. However, the mechanisms where by Spirulina maxima ameliorates cognitive disorders induced by amyloid-β 1-42 (Aβ 1-42 ) are not fully understood. In this study, we investigated whether a 70% ethanol extract of Spirulina maxima (SM70EE) ameliorated cognitive impairments induced by an intracerebroventricular injection of Aβ 1-42 in mice. SM70EE increased the step-through latency time in the passive avoidance test and decreased the escape latency time in the Morris water maze test in Aβ 1-42 -injected mice. SM70EE reduced hippocampal Aβ 1-42 levels and inhibited amyloid precursor protein processing-associated factors in Aβ 1-42 -injected mice. Additionally, acetylcholinesterase activity was suppressed by SM70EE in Aβ 1-42 -injected mice. Hippocampal glutathione levels were examined to determine the effects of SM70EE on oxidative stress in Aβ 1-42 -injected mice. SM70EE increased the levels of glutathione and its associated factors that were reduced in Aβ 1-42 -injected mice. SM70EE also promoted activation of the brain-derived neurotrophic factor/phosphatidylinositol-3 kinase/serine/threonine protein kinase signaling pathway and inhibited glycogen synthase kinase-3β phosphorylation. These findings suggested that SM70EE ameliorated Aβ 1-42 -induced cognitive impairments by inhibiting the increased phosphorylation of glycogen synthase kinase-3β caused by intracerebroventricular injection of Aβ 1-42 in mice.

  19. 27 CFR 24.304 - Chaptalization (Brix adjustment) and amelioration record.

    Science.gov (United States)

    2010-04-01

    ... ameliorates juice or wine, or both, shall maintain a record of the operation and the transaction date. Records...; however, if liquid sugar or invert sugar syrup is used, the quantity of water in such sugar is included as... to be held after that date for completion. When the amelioration of wine included in the record for...

  20. Sulforaphane Ameliorates Bladder Dysfunction through Activation of the Nrf2-ARE Pathway in a Rat Model of Partial Bladder Outlet Obstruction

    Directory of Open Access Journals (Sweden)

    Chong Liu

    2016-01-01

    Full Text Available Purpose. We evaluated the effect of sulforaphane (SFN treatment on the function and changes of expression of Nrf2-ARE pathway in the bladder of rats with bladder outlet obstruction (BOO. Materials and Methods. A total of 18 male Sprague-Dawley rats at age of 8 weeks were divided into 3 groups (6 of each: the sham operated group, the BOO group, and the BOO+SFN group. We examined histological alterations and the changes of oxidative stress markers and the protein expression of the Nrf2-ARE pathway. Results. We found that SFN treatment could prolong micturition interval and increase bladder capacity and bladder compliance. However, the peak voiding pressure was lower than BOO group. SFN treatment can ameliorate the increase of collagen fibers induced by obstruction. SFN treatment also increased the activity of SOD, GSH-Px, and CAT compared to the other groups. The level of bladder cell apoptosis was decreased in BOO rats with SFN treatment. Moreover, SFN could reduce the ratio of Bax/Bcl-2 expression. Furthermore, SFN could activate the Nrf2 expression with elevation of its target antioxidant proteins. Conclusions. The sulforaphane-mediated decrease of oxidative stress and activation of the Nrf2-ARE pathway may ameliorate bladder dysfunction caused by bladder outlet obstruction.

  1. Sulforaphane Ameliorates Bladder Dysfunction through Activation of the Nrf2-ARE Pathway in a Rat Model of Partial Bladder Outlet Obstruction

    Science.gov (United States)

    Liu, Chong; Xu, Huan; Fu, Shi; Chen, Yanbo; Chen, Qi; Cai, Zhikang; Zhou, Juan; Wang, Zhong

    2016-01-01

    Purpose. We evaluated the effect of sulforaphane (SFN) treatment on the function and changes of expression of Nrf2-ARE pathway in the bladder of rats with bladder outlet obstruction (BOO). Materials and Methods. A total of 18 male Sprague-Dawley rats at age of 8 weeks were divided into 3 groups (6 of each): the sham operated group, the BOO group, and the BOO+SFN group. We examined histological alterations and the changes of oxidative stress markers and the protein expression of the Nrf2-ARE pathway. Results. We found that SFN treatment could prolong micturition interval and increase bladder capacity and bladder compliance. However, the peak voiding pressure was lower than BOO group. SFN treatment can ameliorate the increase of collagen fibers induced by obstruction. SFN treatment also increased the activity of SOD, GSH-Px, and CAT compared to the other groups. The level of bladder cell apoptosis was decreased in BOO rats with SFN treatment. Moreover, SFN could reduce the ratio of Bax/Bcl-2 expression. Furthermore, SFN could activate the Nrf2 expression with elevation of its target antioxidant proteins. Conclusions. The sulforaphane-mediated decrease of oxidative stress and activation of the Nrf2-ARE pathway may ameliorate bladder dysfunction caused by bladder outlet obstruction. PMID:27433291

  2. Astragalus membranaceus-Polysaccharides Ameliorates Obesity, Hepatic Steatosis, Neuroinflammation and Cognition Impairment without Affecting Amyloid Deposition in Metabolically Stressed APPswe/PS1dE9 Mice

    Directory of Open Access Journals (Sweden)

    Yung-Cheng Huang

    2017-12-01

    Full Text Available Astragalus membranaceus is commonly used in traditional Chinese medicine for strengthening the host defense system. Astragalus membranaceus-polysaccharides is an effective component with various important bioactivities, such as immunomodulation, antioxidant, anti-diabetes, anti-inflammation and neuroprotection. In the present study, we determine the effects of Astragalus membranaceus-polysaccharides on metabolically stressed transgenic mice in order to develop this macromolecules for treatment of sporadic Alzheimer’s disease, a neurodegenerative disease with metabolic risk factors. Transgenic mice, at 10 weeks old prior to the appearance of senile plaques, were treated in combination of administrating high-fat diet and injecting low-dose streptozotocin to create the metabolically stressed mice model. Astragalus membranaceus-polysaccharides was administrated starting at 14 weeks for 7 weeks. We found that Astragalus membranaceus-polysaccharides reduced metabolic stress-induced increase of body weight, insulin and insulin and leptin level, insulin resistance, and hepatic triglyceride. Astragalus membranaceus-polysaccharides also ameliorated metabolic stress-exacerbated oral glucose intolerance, although the fasting blood glucose was only temporally reduced. In brain, metabolic stress-elicited astrogliosis and microglia activation in the vicinity of plaques was also diminished by Astragalus membranaceus-polysaccharides administration. The plaque deposition, however, was not significantly affected by Astragalus membranaceus-polysaccharides administration. These findings suggest that Astragalus membranaceus-polysaccharides may be used to ameliorate metabolic stress-induced diabesity and the subsequent neuroinflammation, which improved the behavior performance in metabolically stressed transgenic mice.

  3. Melatonin and vitamin C exacerbate Cannabis sativa-induced testicular damage when administered separately but ameliorate it when combined in rats.

    Science.gov (United States)

    Alagbonsi, Isiaka A; Olayaki, Luqman A; Salman, Toyin M

    2016-05-01

    The mechanisms involved in the spermatotoxic effect of Cannabis sativa are inconclusive. The involvement of oxidative stress in male factor infertility has been well documented, and the antioxidative potential of melatonin and vitamin C in many oxidative stress conditions has been well reported. This study sought to investigate whether melatonin and vitamin C will ameliorate C. sativa-induced spermatotoxicity or not. Fifty-five (55) male albino rats (250-300 g) were randomly divided in a blinded fashion into five oral treatment groups as follows: group I (control, n=5) received 1 mL/kg of 10% ethanol for 30 days; groups IIa, IIb, and IIc (n=5 each) received 2 mg/kg C. sativa for 20, 30, and 40 days, respectively; groups IIIa, IIIb, and IIIc (n=5 each) received a combination of 2 mg/kg C. sativa and 4 mg/kg melatonin for 20, 30, and 40 days, respectively; groups IVa, IVb, and IVc (n=5 each) received a combination of 2 mg/kg C. sativa and 1.25 g/kg vitamin C for 20, 30, and 40 days, respectively; group V (n=5) received a combination of 2 mg/kg C. sativa, 4 mg/kg melatonin, and 1.25 g/kg vitamin C for 30 days. Cannabis treatments reduced the Johnsen score, sperm count, motility, morphology, paired testicular/body weight ratio, and total antioxidant capacity, but increased lactate dehydrogenase activity. In addition, supplementation of cannabis-treated rats with either melatonin or vitamin C exacerbates the effect of cannabis on those parameters, whereas combination of melatonin and vitamin C reversed the trend to the level comparable to control. This study further showed the gonadotoxic effect of C. sativa, which could be mediated by oxidative stress. It also showed that melatonin and vitamin C exacerbate C. sativa-induced testicular damage when administered separately but ameliorate it when combined in rats.

  4. Lycopene ameliorates atrazine-induced oxidative damage in adrenal cortex of male rats by activation of the Nrf2/HO-1 pathway.

    Science.gov (United States)

    Abass, Marwa Ahmed; Elkhateeb, Shereen Ahmed; Abd El-Baset, Samia Adel; Kattaia, Asmaa Alhosiny; Mohamed, Eman Mosallam; Atteia, Hebatallah Husseini

    2016-08-01

    Atrazine (ATZ) is one of the most commonly used herbicides contaminating plants, soil and water resources. Several strategies have been used to counteract ATZ toxicity. Here, we tested the hypothesis that lycopene could ameliorate ATZ-induced toxicity in the adrenal cortex. For this purpose, 35 adult male albino rats were randomized into five equal groups: untreated control, vehicle control (received 0.5 mL corn oil/day), lycopene (treated with lycopene dissolved in 0.5 mL corn oil, 10 mg/kg b.w./day), ATZ (received ATZ dissolved in 0.5 mL corn oil 300 mg/kg b.w./day), and ATZ + lycopene (treated with ATZ and lycopene at the same previously mentioned doses). All treatments were given by oral gavage for 4 weeks. We found that ATZ exposure significantly increased relative adrenal weight, plasma ACTH levels, and adrenal oxidative stress as manifested by elevated malondialdehyde levels, decreased reduced glutathione content and depressed antioxidant enzyme activities in adrenal cortex tissues with respect to control groups. Furthermore, the transcription of adrenal cortex nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B, and caspase-3 genes was increased significantly compared with the control groups. This was accompanied with DNA fragmentation and structural and ultrastructural changes in zona glomerulosa and zona fasiculata of the adrenal cortex. Notably, all these changes were partially ameliorated in rats treated concomitantly with ATZ and lycopene. Our results showed that lycopene exerts protective effects against ATZ-induced toxicity in rat adrenal cortex. These effects may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway.

  5. Fumaric acid esters can block pro-inflammatory actions of human CRP and ameliorate metabolic disturbances in transgenic spontaneously hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Jan Šilhavý

    Full Text Available Inflammation and oxidative stress have been implicated in the pathogenesis of metabolic disturbances. Esters of fumaric acid, mainly dimethyl fumarate, exhibit immunomodulatory, anti-inflammatory, and anti-oxidative effects. In the current study, we tested the hypothesis that fumaric acid ester (FAE treatment of an animal model of inflammation and metabolic syndrome, the spontaneously hypertensive rat transgenically expressing human C-reactive protein (SHR-CRP, will ameliorate inflammation, oxidative stress, and metabolic disturbances. We studied the effects of FAE treatment by administering Fumaderm, 10 mg/kg body weight for 4 weeks, to male SHR-CRP. Untreated male SHR-CRP rats were used as controls. All rats were fed a high sucrose diet. Compared to untreated controls, rats treated with FAE showed significantly lower levels of endogenous CRP but not transgenic human CRP, and amelioration of inflammation (reduced levels of serum IL6 and TNFα and oxidative stress (reduced levels of lipoperoxidation products in liver, heart, kidney, and plasma. FAE treatment was also associated with lower visceral fat weight and less ectopic fat accumulation in liver and muscle, greater levels of lipolysis, and greater incorporation of glucose into adipose tissue lipids. Analysis of gene expression profiles in the liver with Affymetrix arrays revealed that FAE treatment was associated with differential expression of genes in pathways that involve the regulation of inflammation and oxidative stress. These findings suggest potentially important anti-inflammatory, anti-oxidative, and metabolic effects of FAE in a model of inflammation and metabolic disturbances induced by human CRP.

  6. Biochemical Studies on Rosemary Extracts as an Antioxidant in Irradiated Rats

    International Nuclear Information System (INIS)

    Abady, M.M.; Zahran, A.M.; Mansour, S.Z.; Ragab, E.A.

    2003-01-01

    The antioxidant properties of rosemary (Rosmarinus officinalis) essential oil and crude ethanolic extract, have been attributed to its phenolic diterpene, carnosol, carnosic acid, caffeic acid and its derivatives such as rosmarinic acid. These aroma compounds were identified to protect biological membranes from oxidative stress in addition to divers pharmacological and therapeutic activities. This study was undertaken to investigate the effect of natural extract derived from rosemary herb, as an antioxidant defensive element in irradiated rats. Mixture of essential oil and hydroalcoholic extract was orally administered to rats by gavage (150 mg/kg B.w.) for 35 days before exposure to the first fraction of irradiation exposure and during the whole period of irradiation treatment (12 days). Whole body irradiation was delivered as fractionated doses at 1 Gy increment every other day up to total cumulative dose of 6 Gy. Changes in the content of reduced glutathion (GSH), glutathion peroxidase (GSHPx), glucose -6- phosphate dehydrogenase (G-6-PD), superoxide dismutase (SOD) and catalase (Cat.) in blood, liver and spleen were evaluated in different rat groups. The results revealed that transient noticeable increase during the 1st hour post irradiation in the aforementioned parameters, followed by significant decrease recorded after 7 days. Rats supplemented rosemary extract before irradiation have significantly ameliorate the radiation induced depletion in the antioxidant component system

  7. Heme oxygenase-1 prevents hyperthyroidism induced hepatic damage via an antioxidant and antiapoptotic pathway.

    Science.gov (United States)

    Giriş, Murat; Erbil, Yeşim; Depboylu, Bilge; Mete, Ozgür; Türkoğlu, Umit; Abbasoğlu, Semra Doğru; Uysal, Müjdat

    2010-12-01

    The exact pathogenesis of hepatic dysfunction in hyperthyroidism is still unknown. We aimed to investigate the pathogenesis of liver dysfunction caused by hyperthyroidism through inducing heme oxygenase-1 (HO-1) expression, which has antioxidant and anti-apoptotic properties. Rats were divided into six groups: untreated (group 1), treated with zinc protoporphyrin (ZnPP) (group 2), treated with hemin (group 3), treated with tri-iodothyronine (T3) (group 4), treated with T3 and ZnPP (group 5), and treated with T3 and hemin (group 6). After 22 d, oxidative stress and antioxidant enzymes and the expression of HO-1, mitochondrial permeability transition, cytochrome c, Bax, Bcl-2, caspase-3, caspase-8, and caspase-3 activity, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay were examined. Hyperthyroidism induced oxidative stress of liver tissue was ameliorated by HO-1 induction. Administration of hemin (HO-1 inducer) increased Bcl-2 expression. Decreased expression of cytochrome c was accompanied by a decrease in caspase-3, caspase-8, Bax expression, and caspase-3 activity. The apoptotic activity and oxidative damage were found to be increased by the administration of ZnPP (HO-1 inhibitor). Immunohistochemistry findings supported these results. HO-1 induction plays a protective role in the pathogenesis of the liver dysfunction in hyperthyroidism. This effect is dependent on modulation of the antiapoptotic and antioxidative pathways by HO-1 expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. The fruit extract of Berberis crataegina DC: exerts potent antioxidant activity and protects DNA integrity.

    Science.gov (United States)

    Charehsaz, Mohammad; Sipahi, Hande; Celep, Engin; Üstündağ, Aylin; Cemiloğlu Ülker, Özge; Duydu, Yalçın; Aydın, Ahmet; Yesilada, Erdem

    2015-04-17

    Dried fruits of Berberis crataegina (Berberidaceae) have been frequently consumed as food garniture in Turkish cuisine, while its fruit paste has been used to increase stamina and in particular to prevent from cardiovascular dysfunctions in Northeastern Black Sea region of Turkey. This study investigated this folkloric information in order to explain the claimed healing effects as well as to evaluate possible risks. Total phenolic, flavonoid and proanthocyanidin contents and antioxidant capacity of the methanolic fruit extract were evaluated through several in vitro assays. The cytotoxic and genotoxic effects of B. crataegina fruit extract were also assessed in both cervical cancer cell line (HeLa) and human peripheral blood lymphocytes. The extract showed protective effects against ferric-induced oxidative stress and had a relatively good antioxidant activity. It also ameliorated the H2O2 mediated DNA damage in lymphocytes, suggesting the protective effect against oxidative DNA damage. The methanolic extract of B. crataegina fruits may be a potential antioxidant nutrient and also may exert a protective role against lipid peroxidation as well as oxidative DNA damage.

  9. Zinc and antioxidant vitamin deficiency in patients with severe sickle cell anemia

    International Nuclear Information System (INIS)

    Hasanato, R.M. W.

    2006-01-01

    Patients with severe sickle cell anemia (SCA) have a higher potential for oxidative damage due to chronic redox imbalance in red blood cells that often leads to hemolysis, endothelial injury and recurrent vaso-occlusive episodes. This study evaluated the plasma levels of Vitamin A, C and E as indicators of antioxidants status. In addition, serum levels of zinc and copper were also estimated. Twenty-five adult patients with severe sickle cell anemia (12 males and 13 females aged 29.72+-12.94 years) and 25 matched controls were studied. Plasma levels of vitamin A, C and E were measured by HPLC technique. Serum zinc and copper levels were measured by atomic absorption spectrometry. There was significant decrease in plasma levels of vitamins A, C and E and in serum levels of zinc in patients with SCA as compared with controls (P<0.0001). Serum copper levels were significantly elevated compared with controls (P<0.0001). These findings emphasized the significant deficiencies of the antioxidant vitamins A, C and E and the trace element zinc along with the significant elevation of serum copper in patients with severe sickle cell disease. Further studies are needed to find out whether supplementation of antioxidant vitamins and zinc may ameliorate some sickle cell disease complications. (author)

  10. Natural Antioxidants: Fascinating or Mythical Biomolecules?

    Directory of Open Access Journals (Sweden)

    Johannes Van Staden

    2010-10-01

    Full Text Available Research on the use, properties, characteristics and sources of antioxidants especially phenolic compounds, flavonoids, vitamins, synthetic chemicals and some micronutrients began in the late 18th century. Since then antioxidant research has received considerable attention and over a hundred thousand papers have been published on the subject. This has led to a rampant use of antioxidants in order to try to obtain and preserve optimal health. A number of nutraceuticals and food supplements are frequently fortified with synthetic or natural antioxidants. However, some research outcomes have led to the belief that antioxidants exist as mythical biomolecules. This review provides a critical evaluation of some common in vitro antioxidant capacity methods, and a discussion on the role and controversies surrounding non-enzymatic biomolecules, in particular phenolic compounds and non-phenolic compounds, in oxidative processes in an attempt of stemming the tidal wave that is threatening to swamp the concept of natural antioxidants.

  11. Antioxidative and antiradical properties of plant phenolics.

    Science.gov (United States)

    Sroka, Zbigniew

    2005-01-01

    The plant phenolic compounds such as flavonoids, tannins and phenolic acids appeared to be strong antiradical and antioxidant compounds. The number of hydroxy groups and the presence of a 2,3-double bond and orthodiphenolic structure enhance antiradical and antioxidative activity of flavonoids. The glycosylation, blocking the 3-OH group in C-ring, lack of a hydroxy group or the presence of only a methoxy group in B-ring have a decreasing effect on antiradical or antioxidative activity of these compounds. Tannins show strong antioxidative properties. Some tannins in red wine or gallate esters were proved to have antioxidative effect in vivo. The number of hydroxy groups connected with the aromatic ring, in ortho or para position relative to each other, enhance antioxidative and antiradical activity of phenolic acids. The substitution of a methoxy group in ortho position to the OH in monophenols seems to favour the antioxidative activity of the former.

  12. Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress

    Directory of Open Access Journals (Sweden)

    He Peiyuan

    2017-01-01

    Full Text Available The aim of this study was to investigate the hepatoprotective effects of resveratrol in alcoholic liver disease (ALD. Alcohol was administered to healthy female rats starting from 6% (v/v and gradually increased to 20% (v/v by the fifth week. After 16 weeks of intervention, liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT] were analyzed using a chemistry analyzer, while hepatic antioxidant enzymes, oxidative stress markers, and caspase 3 activity were assessed using ELISA kits. Furthermore, hepatic CYP2E1 protein levels and mRNA levels of antioxidant and inflammation-related genes were determined using western blotting and RT-PCR, respectively. The results showed that resveratrol significantly attenuated alcohol-induced elevation of liver enzymes and improved hepatic antioxidant enzymes. Resveratrol also attenuated alcohol-induced CYP2E1 increase, oxidative stress, and apoptosis (caspase 3 activity. Moreover, genes associated with oxidative stress and inflammation were regulated by resveratrol supplementation. Taken together, the results suggested that resveratrol alleviated ALD through regulation of oxidative stress, apoptosis, and inflammation, which was mediated at the transcriptional level. The data suggests that resveratrol is a promising natural therapeutic agent against chronic ALD.

  13. Red Cabbage (Brassica oleracea Ameliorates Diabetic Nephropathy in Rats

    Directory of Open Access Journals (Sweden)

    Hazem A. H. Kataya

    2008-01-01

    Full Text Available The protective action against oxidative stress of red cabbage (Brassica oleracea extract was investigated. Diabetes was induced in male Wistar rats using streptozotocin (60 mg/kg body weight. Throughout the experimental period (60 days, diabetic rats exhibited many symptoms including loss of body weight, hyperglycemia, polyuria, polydipsia, renal enlargement and renal dysfunction. Significant increase in malondialdehyde, a lipid peroxidation marker, was observed in diabetic kidney. This was accompanied by a significant increase in reduced glutathione and superoxide dismutase activity and a decrease in catalase activity and in the total antioxidant capacity of the kidneys. Daily oral ingestion (1 g/kg body weight of B. oleracea extract for 60 days reversed the adverse effect of diabetes in rats. B. oleracea extract lowered blood glucose levels and restored renal function and body weight loss. In addition, B. oleracea extract attenuated the adverse effect of diabetes on malondialdehyde, glutathione and superoxide dismutase activity as well as catalase activity and total antioxidant capacity of diabetic kidneys. In conclusion, the antioxidant and antihyperglycemic properties of B. oleracea extract may offer a potential therapeutic source for the treatment of diabetes.

  14. Green Tea Antioxidative Potential in Irradiated Pregnant Rats

    International Nuclear Information System (INIS)

    Kafafy, Y.A.; Roushdy, H.ML.; Ashry, O.M.; Salama, S.F.; Abdel-Haliem, M.; Mossad, M.N.

    2005-01-01

    Green tea (Gt) derived from the leaves of Camellia sinensis contains polyphenolic compounds, also known as epicatechins, which are antioxidants in nature. This study aims to evaluate the possible anti oxidative potential of 2 concentrations of green tea extract in pregnant rats exposed to fractionated 3 Gy gamma irradiation of 1Gy installments at the 7 th, 11 th and 15 th days of gestation. Total and absolute white blood cells count, red blood cells count, hematocrit value, hemoglobin content and blood indices as well as glutathione were significantly decreased by irradiation at the end of the gestation period. Lipid peroxidation, serum lipid profile (total lipids, triglycerides and cholesterol cone.) were elevated. Serum Na+ decreased and K+ ions elevated. Results revealed significant protection by both green tea cone, to counts of RBCs, WBCs, Hg, Ht, as well as lymphocytes and monocytes. Glutathione decreased with both green tea cone, and dropped further with both treatments. Lipid peroxidation and lipid profile were depressed. Moreover, Na+ and K+ levels were significantly ameliorated by both green tea cone., which suggests its applicability as an effective radioprotector. The steadily increasing use of nuclear and radiation technology extended to different fields, which has been paralleled by increasing potential risk for radiation exposure (Kajioka et al, 2000). The low-level radioactivity by environmental, medical and occupational settings has been found to cause several kinds of health damage including premature births, congenital defects, infant mortality, mental retardation, heart ailments, allergies/asthma, cancer, genetic damage and chronic fatigue syndrome (Sternglass, 1986)

  15. Nrf2, the Master Regulator of Anti-Oxidative Responses

    Directory of Open Access Journals (Sweden)

    Sandra Vomund

    2017-12-01

    Full Text Available Tight regulation of inflammation is very important to guarantee a balanced immune response without developing chronic inflammation. One of the major mediators of the resolution of inflammation is the transcription factor: the nuclear factor erythroid 2-like 2 (Nrf2. Stabilized following oxidative stress, Nrf2 induces the expression of antioxidants as well as cytoprotective genes, which provoke an anti-inflammatory expression profile, and is crucial for the initiation of healing. In view of this fundamental modulatory role, it is clear that both hyper- or hypoactivation of Nrf2 contribute to the onset of chronic diseases. Understanding the tight regulation of Nrf2 expression/activation and its interaction with signaling pathways, known to affect inflammatory processes, will facilitate development of therapeutic approaches to prevent Nrf2 dysregulation and ameliorate chronic inflammatory diseases. We discuss in this review the principle mechanisms of Nrf2 regulation with a focus on inflammation and autophagy, extending the role of dysregulated Nrf2 to chronic diseases and tumor development.

  16. Antioxidant Capacities of Fractions of Bamboo Shaving Extract and Their Antioxidant Components.

    Science.gov (United States)

    Gong, Jinyan; Huang, Jun; Xiao, Gongnian; Chen, Feng; Lee, Bolim; Ge, Qing; You, Yuru; Liu, Shiwang; Zhang, Ying

    2016-07-30

    This research was conducted for evaluation of antioxidant activities of four fractions from bamboo shavings extract (BSE) and their antioxidant components. The antioxidant capacities of BSE and four fractions on ABTS, DPPH, FRAP and total antioxidant capacity assays exhibited the following descending order: DF > n-butanol fraction (BF) > BSE ≈ ethyl acetate fraction (AF) > water fraction (WF). Among the identified phenolic compounds, caffeic acid exhibited the highest antioxidant capacities on DPPH, FRAP and total antioxidant capacity assays. An extremely significant positive correlation between the antioxidant activities with the contents of total flavonoids, total phenolic acids, or total phenolics was observed in this study. The result indicated that the bamboo shaving extract and its solvent fractions could act as natural antioxidants in light of their potent antioxidant activities.

  17. Pretreatment of clinical specimens with sodium dodecyl (lauryl) sulfate is not suitable for the mycobacteria growth indicator tube cultivation method.

    OpenAIRE

    Pfyffer, G E; Welscher, H M; Kissling, P

    1997-01-01

    When using the Mycobacteria Growth Indicator Tube (MGIT), pretreatment of clinical specimens with N-acetyl-L-cysteine-NaOH is recommended by the manufacturer. Processing of clinical specimens (n = 1,000) with sodium dodecyl (lauryl) sulfate-NaOH resulted in both poor recovery and delayed mean time to detection of acid-fast bacilli. Values were comparable to those obtained on solid media.

  18. High throughput HPLC-ESI(-)-MS/MS methodology for mercapturic acid metabolites of 1,3-butadiene: Biomarkers of exposure and bioactivation.

    Science.gov (United States)

    Kotapati, Srikanth; Esades, Amanda; Matter, Brock; Le, Chap; Tretyakova, Natalia

    2015-11-05

    1,3-Butadiene (BD) is an important industrial and environmental carcinogen present in cigarette smoke, automobile exhaust, and urban air. The major urinary metabolites of BD in humans are 2-(N-acetyl-L-cystein-S-yl)-1-hydroxybut-3-ene/1-(N-acetyl-L-cystein-S-yl)-2-hydroxybut-3-ene (MHBMA), 4-(N-acetyl-L-cystein-S-yl)-1,2-dihydroxybutane (DHBMA), and 4-(N-acetyl-L-cystein-S-yl)-1,2,3-trihydroxybutyl mercapturic acid (THBMA), which are formed from the electrophilic metabolites of BD, 3,4-epoxy-1-butene (EB), hydroxymethyl vinyl ketone (HMVK), and 3,4-epoxy-1,2-diol (EBD), respectively. In the present work, a sensitive high-throughput HPLC-ESI(-)-MS/MS method was developed for simultaneous quantification of MHBMA and DHBMA in small volumes of human urine (200 μl). The method employs a 96 well Oasis HLB SPE enrichment step, followed by isotope dilution HPLC-ESI(-)-MS/MS analysis on a triple quadrupole mass spectrometer. The validated method was used to quantify MHBMA and DHBMA in urine of workers from a BD monomer and styrene-butadiene rubber production facility (40 controls and 32 occupationally exposed to BD). Urinary THBMA concentrations were also determined in the same samples. The concentrations of all three BD-mercapturic acids and the metabolic ratio (MHBMA/(MHBMA+DHBMA+THBMA)) were significantly higher in the occupationally exposed group as compared to controls and correlated with BD exposure, with each other, and with BD-hemoglobin biomarkers. This improved high throughput methodology for MHBMA and DHBMA will be useful for future epidemiological studies in smokers and occupationally exposed workers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Early Diagnosis, Treatment, and Care of Cancer Patients

    Science.gov (United States)

    2010-09-01

    W81XWH-07-1-0601 17 Key Research Accomplishments We have discovered a remarkable protective capacity of EPO against neurotoxic activities of 5...Xue, Y.Q., et al., Intrastriatal administration of erythropoietin protects dopaminergic neurons and improves neurobehavioral outcome in a rat model of...W81XWH-07-1-0601 7 begin testing to provide proof of principle for protective strategies that involve administration of N-acetyl-L-cysteine (alone or

  20. Amelioration of ongoing experimental autoimmune encephalomyelitis with fluoxetine.

    Science.gov (United States)

    Bhat, Roopa; Mahapatra, Sidharth; Axtell, Robert C; Steinman, Lawrence

    2017-12-15

    In patients with multiple sclerosis, the selective serotonin reuptake inhibitor, fluoxetine, resulted in less acute disease activity. We tested the immune modulating effects of fluoxetine in a mouse model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis (EAE). We show that fluoxetine delayed the onset of disease and reduced clinical paralysis in mice with established disease. Fluoxetine had abrogating effects on proliferation of immune cells and inflammatory cytokine production by both antigen-presenting cells and T cells. Specifically, in CD 4 T cells, fluoxetine increased Fas-induced apoptosis. We conclude that fluoxetine possesses immune-modulating effects resulting in the amelioration of symptoms in EAE. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Heregulin ameliorates the dystrophic phenotype in mdx mice

    DEFF Research Database (Denmark)

    Krag, Thomas O B; Bogdanovich, Sasha; Jensen, Claus J

    2004-01-01

    Duchenne's muscular dystrophy (DMD) is a fatal neuromuscular disease caused by absence of dystrophin. Utrophin is a chromosome 6-encoded dystrophin-related protein (DRP), sharing functional motifs with dystrophin. Utrophin's ability to compensate for dystrophin during development and when....... Therefore, this pathway offers a potential mechanism to modulate utrophin expression in muscle. We tested the ability of heregulin to improve the dystrophic phenotype in the mdx mouse model of DMD. Intraperitoneal injections of a small peptide encoding the epidermal growth factor-like region of heregulin...... ectodomain for 3 months in vivo resulted in up-regulation of utrophin, a marked improvement in the mechanical properties of muscle as evidenced by resistance to eccentric contraction mediated damage, and a reduction of muscle pathology. The amelioration of dystrophic phenotype by heregulin-mediated utrophin...

  2. Flurbiprofen ameliorates glucose deprivation-induced leptin resistance

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    2016-09-01

    Full Text Available Leptin resistance is one of the mechanisms involved in the pathophysiology of obesity. The present study showed that glucose deprivation inhibited leptin-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3 and signal transducer and activator of transcription 5 (STAT5 in neuronal cells. Flurbiprofen reversed glucose deprivation-mediated attenuation of STAT3, but not STAT5 activation, in leptin-treated cells. Glucose deprivation increased C/EBP-homologous protein (CHOP and glucose regulated protein 78 (GRP78 induction, indicating the activation of unfolded protein responses (UPR. Flurbiprofen did not affect the glucose deprivation-induced activation of UPR, but did attenuate the glucose deprivation-mediated induction of AMP-activated protein kinase (AMPK phosphorylation. Flurbiprofen may ameliorate glucose deprivation-induced leptin resistance in neuronal cells.

  3. Flemingia macrophylla Extract Ameliorates Experimental Osteoporosis in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Hui-Ya Ho

    2011-01-01

    Full Text Available Flemingia macrophylla (Leguminosae, a native plant of Taiwan, is used as folk medicine. An in vitro study showed that a 75% ethanolic extract of F. macrophylla (FME inhibited osteoclast differentiation of cultured rat bone marrow cells, and the active component, lespedezaflavanone A (LDF-A, was isolated. It was found that oral administration of FME for 13 weeks suppressed bone loss in ovariectomized rats, an experimental model of osteoporosis. In addition, FME decreased urinary deoxypyridinoline concentrations but did not inhibit serum alkaline phosphatase activities, indicating that it ameliorated bone loss via inhibition of bone resorption. These results suggest that FME may represent a useful remedy for the treatment of bone resorption diseases, such as osteoporosis. In addition, LDF-A could be used as a marker compound to control the quality of FME.

  4. Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies.

    Science.gov (United States)

    Sarkar, Chaitali; Pal, Sudipta; Das, Niranjan; Dinda, Biswanath

    2014-04-01

    Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Internalization of Staphylococcus aureus in Lymphocytes Induces Oxidative Stress and DNA Fragmentation: Possible Ameliorative Role of Nanoconjugated Vancomycin

    Directory of Open Access Journals (Sweden)

    Subhankari Prasad Chakraborty

    2011-01-01

    Full Text Available Staphylococcus aureus is the most frequently isolated pathogen causing bloodstream infections, skin and soft tissue infections and pneumonia. Lymphocyte is an important immune cell. The aim of the present paper was to test the ameliorative role of nanoconjugated vancomycin against Vancomycin-sensitive Staphylococcus aureus (VSSA and vancomycin-resistant Staphylococcus aureus (VRSA infection-induced oxidative stress in lymphocytes. VSSA and VRSA infections were developed in Swiss mice by intraperitoneal injection of 5×106 CFU/mL bacterial solutions. Nanoconjugated vancomycin was adminstrated to VSSA- and VRSA-infected mice at its effective dose for 10 days. Vancomycin was adminstrated to VSSA- and VRSA-infected mice at a similar dose, respectively, for 10 days. Vancomycin and nanoconjugated vancomycin were adminstrated to normal mice at their effective doses for 10 days. The result of this study reveals that in vivo VSSA and VRSA infection significantly increases the level of lipid peroxidation, protein oxidation, oxidized glutathione level, nitrite generation, nitrite release, and DNA damage and decreases the level of reduced glutathione, antioxidant enzyme status, and glutathione-dependent enzymes as compared to control group, which were increased or decreased significantly near to normal in nanoconjugated vancomycin-treated group. These findings suggest the potential use and beneficial role of nanoconjugated vancomycin against VSSA and VRSA infection-induced oxidative stress in lymphocytes.

  6. Ameliorative effect of riboflavin on hyperglycemia, oxidative stress and DNA damage in type-2 diabetic mice: Mechanistic and therapeutic strategies.

    Science.gov (United States)

    Alam, Md Maroof; Iqbal, Sarah; Naseem, Imrana

    2015-10-15

    Increasing evidence in both experimental and clinical studies suggests that oxidative stress play a major role in the pathogenesis of type-2 diabetes mellitus (T2DM). Abnormally high levels of free radicals and the simultaneous decline of antioxidant defence mechanisms can lead to damage of cellular organelles and enzymes. Riboflavin constitutes an essential nutrient for humans and is also an important food additive for animals. It is a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) which serves as a coenzyme for several enzymes. The aim of this study was to observe the effects of illuminated and non-illuminated riboflavin in a diabetic mice model. The protocol included treatment of diabetic mice with illuminated RF and a control set without light. To our surprise, group receiving RF without light gave better results in a dose dependent manner. Significant amelioration of oxidative stress was observed with an increased glucose uptake in skeletal muscles and white adipose tissue. Histological studies showed recovery in the liver and kidney tissue injury. Cellular DNA damage was also recovered. Therefore, it is suggested that supplementation with dietary riboflavin might help in the reduction of diabetic complications. A possible mechanism of action is also proposed. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress.

    Science.gov (United States)

    Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad

    2011-10-31

    Due to anti-diabetic and antioxidant activity of green tea epigallocatechin gallate (EGCG) and the existence of evidence for its beneficial effect on cognition and memory, this research study was conducted to evaluate, for the first time, the efficacy of chronic EGCG on alleviation of learning and memory deficits in streptozotocin (STZ)-diabetic rats. Male Wistar rats were divided into control, diabetic, EGCG-treated-control and -diabetic groups. EGCG was administered at a dose of 20 and 40 mg/kg/day for 7 weeks. Learning and memory was evaluated using Y maze, passive avoidance, and radial 8-arm maze (RAM) tests. Oxidative stress markers and involvement of nitric oxide system were also evaluated. Alternation score of the diabetic rats in Y maze was lower than that of control and a significant impairment was observed in retention and recall in passive avoidance test (pRAM task and EGCG (40 mg/kg) significantly ameliorated these changes (pmemory respectively. Meanwhile, increased levels of malondialdehyde (MDA) and nitrite in diabetic rats significantly reduced due to EGCG treatment (pmemory deficits in STZ-diabetic rats through attenuation of oxidative stress and modulation of NO. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Baicalin Ameliorates Experimental Liver Cholestasis in Mice by Modulation of Oxidative Stress, Inflammation, and NRF2 Transcription Factor

    Directory of Open Access Journals (Sweden)

    Kezhen Shen

    2017-01-01

    Full Text Available Experimental cholestatic liver fibrosis was performed by bile duct ligation (BDL in mice, and significant liver injury was observed in 15 days. Administration of baicalin in mice significantly ameliorates liver fibrosis. Experimental cholestatic liver fibrosis was associated with induced gene expression of fibrotic markers such as collagen I, fibronectin, alpha smooth muscle actin (SMA, and connective tissue growth factor (CTGF; increased inflammatory cytokines (TNFα, MIP1α, IL1β, and MIP2; increased oxidative stress and reactive oxygen species- (ROS- inducing enzymes (NOX2 and iNOS; dysfunctional mitochondrial electron chain complexes; and apoptotic/necrotic cell death markers (DNA fragmentation, caspase 3 activity, and PARP activity. Baicalin administration on alternate day reduced fibrosis along with profibrotic gene expression, proinflammatory cytokines, oxidative stress, and cell death whereas improving the function of mitochondrial electron transport chain. We observed baicalin enhanced NRF2 activation by nuclear translocation and induced its target genes HO-1 and GCLM, thus enhancing antioxidant defense. Interplay of oxidative stress/inflammation and NRF2 were key players for baicalin-mediated protection. Stellate cell activation is crucial for initiation of fibrosis. Baicalin alleviated stellate cell activation and modulated TIMP1, SMA, collagen 1, and fibronectin in vitro. This study indicates that baicalin might be beneficial for reducing inflammation and fibrosis in liver injury models.

  9. Antioxidant capacity of eugenol derivatives

    Directory of Open Access Journals (Sweden)

    María E. Hidalgo

    2009-01-01

    Full Text Available Toxicity and antioxidant capacity of eugenol derivatives (E2 = 2-Methoxy-4-[1-propenylphenyl]acetate, E3 = 4-Allyl-2-methoxyphenylacetate, E4 = 4-Allyl-2-methoxy-4-nitrophenol, E5 = 5-Allyl-3-nitrobenzene-1,2-diol, E6 = 4-Allyl-2-methoxy-5-nitrophenyl acetate were evaluated in order to determine the influence of the sustituents. E2-E6 were synthesized from eugenol (E1. E1 was extracted from cloves oil, and E2-E6 were obtained through acetylation and nitration reactions. Antioxidant capacity evaluated by DPPH (1, 1-Diphenyl-2-picrylhydrazil and ORAC fluorescein demonstrated that E1 and E5 have a higher capacity and the minor toxicity evaluated by red blood cells haemolysis and the Artemia saline test. In accordance with our results, the compound's (E1-E5 use in the pharmaceutical, cosmetic and or food industries could be suggested.

  10. Antioxidant neolignans from Cordia americana.

    Science.gov (United States)

    Fernández, Lucía R; Cirigliano, Adriana; Fabani, María P; Lima, Beatriz; Alberti, Sebastián; Kramer, Fernando; Tapia, Alejandro A; Cabrera, Gabriela; Palermo, Jorge A; Sánchez, Marianela

    2013-12-01

    Five new neolignans with a bicyclo[2.2.2]octene framework were isolated from an ethanolic extract of the bark of Cordia americana. The structures and relative configurations of the compounds were elucidated by a combination of spectroscopic methods. All the isolated compounds showed good antioxidant activities in the DPPH radical scavenging (0.5-100 µg/mL) and Ferric-reducing antioxidant power (FRAP, 1-100 µg/mL) assays. One of the compounds displayed mild fungistatic activity at 0.1 µmol/spot against Fusarium virguliforme while, at the same time, all compounds were inactive against several strains of Gram (+) and Gram (-) bacteria at all assayed concentrations (10-1,000 µg/mL). Georg Thieme Verlag KG Stuttgart · New York.

  11. Ameliorating effect of olive oil on fertility of male rats fed on genetically modified soya bean

    Directory of Open Access Journals (Sweden)

    Thanaa A. F. El-Kholy

    2015-09-01

    Full Text Available Background: Genetically modified soya bean (GMSB is a commercialized food. It has been shown to have adverse effects on fertility in animal trials. Extra virgin olive oil (EVOO has many beneficial effects including anti-oxidant properties. The aim of this study is to elucidate if addition of EVOO ameliorates the adverse effects on reproductive organs of rats fed on GMSB containing diet. Methods: Forty adult male albino rats (150–180 g of Sprague Dawley strain were separated into four groups of 10 rats each: Group 1 – control group fed on basal ration, Group 2 – fed on basal ration mixed with EVOO (30%, Group 3 – fed on basal ration mixed with GMSB (15%, and Group 4 – fed on basal ration mixed with GMSB (15% and EVOO (30%. This feeding regimen was administered for 65 days. Blood samples were collected to analyze serum zinc, vitamin E, and testosterone levels. Histopathological and weight changes in sex organs were evaluated. Results: GMSB diet reduced weight of testis (0.66±0.06 vs. 1.7±0.06, p<0.001, epididymis (0.489±0.03 vs. 0.7±0.03, p<0.001, prostate (0.04±0.009 vs. 0.68±0.04, p<0.001, and seminal vesicles (0.057±0.01 vs. 0.8±0.04, p<0.001. GMSB diet adversely affected sperm count (406±7.1 vs. 610±7.8, p<0.001, motility (p<0.001, and abnormality (p<0.001. GMSB diet also reduced serum zinc (p<0.05, vitamin E (p<0.05, and testosterone (p<0.05 concentrations. EVOO diet had no detrimental effect. Addition of EVOO to GMSB diet increased the serum zinc (p<0.05, vitamin E (p<0.05, and testosterone (p<0.05 levels and also restored the weights of testis (1.35±0.16 vs. 0.66±0.06, p<0.01, epididymis (0.614±0.13 vs. 0.489±0.03, p<0.001, prostate (0.291±0.09 vs. 0.04±0.009, p<0.001, seminal vesicle (0.516±0.18 vs. 0.057±0.01, p<0.001 along with sperm count (516±3.1 vs. 406±7.1, p<0.01, motility (p<0.01, and abnormality (p<0.05. Conclusion: EVOO ameliorates the adverse effects of GMSB on reproductive organs in adult male

  12. Antioxidant therapy: myth or reality?

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Selles, Alberto J. [Center of Pharmaceutical Chemistry, Havana (Cuba)]. E-mail: alberto@cqf.co.cu

    2005-07-15

    New terms such as oxidative stress, antioxidant products or pro-oxidant risks are becoming familiar and an increasing number of international scientific conferences and the publication of thousands of scientific articles is an indication of the growing interest that the subject awakens. The most publicized example is perhaps the French paradox, based on the apparent compatibility of a high fat diet with a low incidence of coronary atherosclerosis attributed to the regular consumption, by the French, of red wine and/or grape juice. Flavonoids, and other phenolic substances contained in red wine, are assigned with antioxidant properties, which lower the oxidation of low density lipoproteins and consequently, the risk of atherogenic diseases. Other examples are the aging process and its correlation with an increase of free radicals, and the correlation between the initiation and promotion of cancer and tissue injury by free radicals, which has induced the intake of antioxidant products as chemical factors that prevent the onset of the disease. Currently, the incidence of oxidative stress on the onset and evolution of more than 100 diseases is claimed by several researchers. All these are 'realities', which on the other hand, are lacking of more clinical evidence, are considered by both physicians and health regulatory bodies, either as 'myths' or of 'secondary' importance. In the attempts to destroy those myths, results of chemical, pre-clinical, and clinical works with a crude extract of mango (Mangifera indica L.) stem bark, which has been developed in Cuba, are reviewed, with a strong experimental evidence of its antioxidant, anti-inflammatory and immunomodulatory properties. (author)

  13. Antioxidant therapy: myth or reality?

    International Nuclear Information System (INIS)

    Nunez-Selles, Alberto J.

    2005-01-01

    New terms such as oxidative stress, antioxidant products or pro-oxidant risks are becoming familiar and an increasing number of international scientific conferences and the publication of thousands of scientific articles is an indication of the growing interest that the subject awakens. The most publicized example is perhaps the French paradox, based on the apparent compatibility of a high fat diet with a low incidence of coronary atherosclerosis attributed to the regular consumption, by the French, of red wine and/or grape juice. Flavonoids, and other phenolic substances contained in red wine, are assigned with antioxidant properties, which lower the oxidation of low density lipoproteins and consequently, the risk of atherogenic diseases. Other examples are the aging process and its correlation with an increase of free radicals, and the correlation between the initiation and promotion of cancer and tissue injury by free radicals, which has induced the intake of antioxidant products as chemical factors that prevent the onset of the disease. Currently, the incidence of oxidative stress on the onset and evolution of more than 100 diseases is claimed by several researchers. All these are 'realities', which on the other hand, are lacking of more clinical evidence, are considered by both physicians and health regulatory bodies, either as 'myths' or of 'secondary' importance. In the attempts to destroy those myths, results of chemical, pre-clinical, and clinical works with a crude extract of mango (Mangifera indica L.) stem bark, which has been developed in Cuba, are reviewed, with a strong experimental evidence of its antioxidant, anti-inflammatory and immunomodulatory properties. (author)

  14. Oxidative stress and metabolic syndrome: Effects of a natural antioxidants enriched diet on insulin resistance.

    Science.gov (United States)

    Mancini, Antonio; Martorana, Giuseppe Ettore; Magini, Marinella; Festa, Roberto; Raimondo, Sebastiano; Silvestrini, Andrea; Nicolotti, Nicola; Mordente, Alvaro; Mele, Maria Cristina; Miggiano, Giacinto Abele Donato; Meucci, Elisabetta

    2015-04-01

    Oxidative stress (OS) could play a role in metabolic syndrome-related manifestations contributing to insulin resistance (IR). The aim of the present study was to gain insight the relationships between OS, IR and other hormones involved in caloric balance, explaining the effects of a natural antioxidant-enriched diet in patients affected by metabolic syndrome. We investigated the effects of dietary antioxidants on IR, studying 53 obese (20 males and 33 females, 18-66 years old, BMI 36.3 ± 5.5 kg/m 2 ), with IR evaluated by Homeostasis Model Assessment (HOMA)-index, comparing 4 treatments: hypocaloric diet alone (group A) or plus metformin 1000 mg/daily (group B), natural antioxidants-enriched hypocaloric diet alone (group C) or plus metformin (group D). A personalized program, with calculated antioxidant intake of 800-1000 mg/daily, from fruit and vegetables, was administered to group C and D. The glycemic and insulinemic response to oral glucose load, and concentrations of total-, LDL- and HDL-cholesterol, triglycerides, uric acid, C reactive protein, fT3, fT4, TSH, insulin-like growth factor 1 were evaluated before and after 3-months. Plasma Total antioxidant capacity was determined by H 2 O 2 -metmyoglobin system, which interacting with the chromogen ABTS generates a radical with latency time (LAG) proportional to antioxidant content. Despite a similar BMI decrease, we found a significant decrease of HOMA and insulin peak only in group B and D. Insulin response (AUC) showed the greatest decrease in group D (25.60  ±  8.96%) and was significantly lower in group D vs B. No differences were observed in glucose response, lipid metabolism and TAC (expressed as LAG values). TSH values were significantly suppressed in group D vs B. These data suggest that dietary antioxidants ameliorate insulin-sensitivity in obese subjects with IR by enhancing the effect of insulin-sensitizing drugs albeit with molecular mechanisms which remain yet to be elucidated

  15. Quantitative combination of natural anti-oxidants prevents metabolic syndrome by reducing oxidative stress.

    Science.gov (United States)

    Gao, Mingjing; Zhao, Zhen; Lv, Pengyu; Li, YuFang; Gao, Juntao; Zhang, Michael; Zhao, Baolu

    2015-12-01

    Insulin resistance and abdominal obesity are present in the majority of people with the metabolic syndrome. Antioxidant therapy might be a useful strategy for type 2 diabetes and other insulin-resistant states. The combination of vitamin C (Vc) and vitamin E has synthetic scavenging effect on free radicals and inhibition effect on lipid peroxidation. However, there are few studies about how to define the best combination of more than three anti-oxidants as it is difficult or impossible to test the anti-oxidant effect of the combination of every concentration of each ingredient experimentally. Here we present a math model, which is based on the classical Hill equation to determine the best combination, called Fixed Dose Combination (FDC), of several natural anti-oxidants, including Vc, green tea polyphenols (GTP) and grape seed extract proanthocyanidin (GSEP). Then we investigated the effects of FDC on oxidative stress, blood glucose and serum lipid levels in cultured 3T3-L1 adipocytes, high fat diet (HFD)-fed rats which serve as obesity model, and KK-ay mice as diabetic model. The level of serum malondialdehyde (MDA) in the treated rats was studied and Hematoxylin-Eosin (HE) staining or Oil red slices of liver and adipose tissue in the rats were examined as well. FDC shows excellent antioxidant and anti-glycation activity by attenuating lipid peroxidation. FDC determined in this investigation can become a potential solution to reduce obesity, to improve insulin sensitivity and be beneficial for the treatment of fat and diabetic patients. It is the first time to use the math model to determine the best ratio of three anti-oxidants, which can save much more time and chemical materials than traditional experimental method. This quantitative method represents a potentially new and useful strategy to screen all possible combinations of many natural anti-oxidants, therefore may help develop novel therapeutics with the potential to ameliorate the worldwide metabolic

  16. Systemic antioxidants and skin health.

    Science.gov (United States)

    Nguyen, Gloria; Torres, Abel

    2012-09-01

    Most dermatologists agree that antioxidants help fight free radical damage and can help maintain healthy skin. They do so by affecting intracellular signaling pathways involved in skin damage and protecting against photodamage, as well as preventing wrinkles and inflammation. In today's modern world of the rising nutraceutical industry, many people, in addition to applying topical skin care products, turn to supplementation of the nutrients missing in their diets by taking multivitamins or isolated, man-made nutraceuticals, in what is known as the Inside-Out approach to skin care. However, ingestion of large quantities of isolated, fragmented nutrients can be harmful and is a poor representation of the kind of nutrition that can be obtained from whole food sources. In this comprehensive review, it was found that few studies on oral antioxidants benefiting the skin have been done using whole foods, and that the vast majority of current research is focused on the study of compounds in isolation. However, the public stands to benefit greatly if more research were to be devoted toward the impact that physiologic doses of antioxidants (obtained from fruits, vegetables, and whole grains) can have on skin health, and on health in general.

  17. Beneficial effects of TQRF and TQ nano- and conventional emulsions on memory deficit, lipid peroxidation, total antioxidant status, antioxidants genes expression and soluble Aβ levels in high fat-cholesterol diet-induced rats.

    Science.gov (United States)

    Ismail, Norsharina; Ismail, Maznah; Azmi, Nur Hanisah; Bakar, Muhammad Firdaus Abu; Yida, Zhang; Stanslas, Johnson; Sani, Dahiru; Basri, Hamidon; Abdullah, Maizaton Atmadini

    2017-09-25

    The study determined the effect of thymoquinone rich fraction (TQRF) and thymoquinone (TQ) in the forms of nano- and conventional emulsions on learning and memory, lipid peroxidation, total antioxidant status, antioxidants genes expression and soluble β-amyloid (Aβ) levels in rats fed with a high fat-cholesterol diet (HFCD). The TQRF was extracted from Nigella sativa seeds using a supercritical fluid extraction system and prepared into nanoemulsion, which later named as TQRF nanoemulsion (TQRFNE). Meanwhile, TQ was acquired commercially and prepared into thymoquinone nanoemulsion (TQNE). The TQRF and TQ conventional emulsions (CE), named as TQRFCE and TQCE, respectively were studied for comparison. Statin (simvastatin) and non-statin (probucol) cholesterol-lowering agents, and a mild-to-severe Alzheimer's disease drug (donepezil) were served as control drugs. The Sprague Dawley rats were fed with HFCD for 6 months, and treated with the intervention groups via oral gavage daily for the last 3 months. As a result, HFCD-fed rats exhibited hypercholesterolaemia, accompanied by memory deficit, increment of lipid peroxidation and soluble Aβ levels, decrement of total antioxidant status and down-regulation of antioxidants genes expression levels. TQRFNE demonstrated comparable effects to the other intervention groups and control drugs in serum biomarkers as well as in the learning and memory test. Somehow, TQRFNE was more prominent than those intervention groups and control drugs in brain biomarkers concomitant to gene and protein expression levels. Supplementation of TQRFNE into an HFCD thus could ameliorate memory deficit, lipid peroxidation and soluble Aβ levels as well as improving the total antioxidant status and antioxidants genes expression levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Antioxidative Diet Supplementation Reverses High-Fat Diet-Induced Increases of Cardiovascular Risk Factors in Mice

    Directory of Open Access Journals (Sweden)

    Hilda Vargas-Robles

    2015-01-01

    Full Text Available Obesity is a worldwide epidemic that is characterized not only by excessive fat deposition but also by systemic microinflammation, high oxidative stress, and increased cardiovascular risk factors. While diets enriched in natural antioxidants showed beneficial effects on oxidative stress, blood pressure, and serum lipid composition, diet supplementation with synthetic antioxidants showed contradictive results. Thus, we tested in C57Bl/6 mice whether a daily dosage of an antioxidative mixture consisting of vitamin C, vitamin E, L-arginine, eicosapentaenoic acid, and docosahexaenoic acid (corabion would affect cardiovascular risk factors associated with obesity. Obese mice showed increased serum triglyceride and glucose levels and hypertension after eight weeks of being fed a high-fat diet (HFD. Importantly, corabion ameliorated all of these symptoms significantly. Oxidative stress and early signs of systemic microinflammation already developed after two weeks of high-fat diet and were significantly reduced by daily doses of corabion. Of note, the beneficial effects of corabion could not be observed when applying its single antioxidative components suggesting that a combination of various nutrients is required to counteract HFD-induced cardiovascular risk factors. Thus, daily consumption of corabion may be beneficial for the management of obesity-related cardiovascular complications.

  19. The Hypoglycemic and Antioxidant Activity of Cress Seed and Cinnamon on Streptozotocin Induced Diabetes in Male Rats

    Directory of Open Access Journals (Sweden)

    Safaa Qusti

    2016-01-01

    Full Text Available The present study aimed to estimate the stimulation of pancreas of rats with streptozotocin induced diabetes using 20% (w/w garden cress seed (Lepidium sativum and cinnamon methanol extracts. The positive control diabetic group showed a significant increase in fasting blood sugar, lipid peroxide, interleukin-6, carboxymethyl lysine, serum uric acid, urea, creatinine, immunoglobulins, and urine albumin and a significant decrease in antioxidant enzymes, sodium ions, potassium ions, and urine creatinine. Severe histopathological changes in the kidney and pancreas tissues in hyperglycemic rats were also shown in the positive control diabetic group. Meanwhile, the groups that were treated with 20% garden cress seed and cinnamon methanol extracts showed a significant decrease in fasting blood sugar and all elevated abovementioned biochemical parameters and an increase in the lowered ones restoring them nearly to the normal levels of G1. Kidney and pancreas tissues were also ameliorated and restored nearly to the normal status. Both garden cress seed and cinnamon methanol extracts succeeded in controlling hyperglycemia in rats with streptozotocin induced diabetes and ameliorated the biochemical and histopathological changes because of their antioxidant activity acquired by their possession of phenolic phytochemicals.

  20. Role of cerium oxide nanoparticle-induced autophagy as a safeguard to exogenous H2O2-mediated DNA damage in tobacco BY-2 cells.

    Science.gov (United States)

    Sadhu, Abhishek; Ghosh, Ilika; Moriyasu, Yuji; Mukherjee, Anita; Bandyopadhyay, Maumita

    2018-04-13

    The effect of cerium oxide nanoparticle (CeNP) in plants has elicited substantial controversy. While some investigators have reported that CeNP possesses antioxidant properties, others observed CeNP to induce reactive oxygen species (ROS). In spite of considerable research carried out on the effects of CeNP in metazoans, fundamental studies that can unveil its intracellular consequences linking ROS production, autophagy and DNA damage are lacking in plants. To elucidate the impact of CeNP within plant cells, tobacco BY-2 cells were treated with 10, 50 and 250 µg ml-1 CeNP (Ce10, Ce50 and Ce250), for 24 h. Results demonstrated concentration-dependent accumulation of Ca2+ and ROS at all CeNP treatment sets. However, significant DNA damage and alteration in antioxidant defence systems were noted prominently at Ce50 and Ce250. Moreover, Ce50 and Ce250 induced DNA damage, analysed by comet assay and DNA diffusion experiments, complied with the concomitant increase in ROS. Furthermore, to evaluate the antioxidant property of CeNP, treated cells were washed after 24 h (to minimise CeNP interference) and challenged with H2O2 for 3 h. Ce10 did not induce genotoxicity and H2O2 exposure to Ce10-treated cells showed lesser DNA breakage than cells treated with H2O2 only. Interestingly, Ce10 provided better protection over N-acetyl-L-cysteine against exogenous H2O2 in BY-2 cells. CeNP exposure to transgenic BY-2 cells expressing GFP-Atg8 fusion protein exhibited formation of autophagosomes at Ce10. Application of vacuolar protease inhibitor E-64c and fluorescent basic dye acridine orange, further demonstrated accumulation of particulate matters in the vacuole and occurrence of acidic compartments, the autophagolysosomes, respectively. BY-2 cells co-treated with CeNP and autophagy inhibitor 3-methyladenine exhibited increased DNA damage in Ce10 and cell death at all assessed treatment sets. Thus, current results substantiate an alternative autophagy-mediated, antioxidant and

  1. EFFICACY OF TOMATO AND / OR GARLIC IN AMELIORATING CARDIAC DISORDERS INDUCED BY FEEDING RATS FRYING OIL

    International Nuclear Information System (INIS)

    OSMAN, N.N.

    2007-01-01

    Tomato (Lycopersicon esculentum) and garlic (Allium cepa) are important constituents of the human diet. Garlic and its preparations have been widely recognized as agents for prevention and treatment of cardiovascular and other metabolic diseases, atherosclerosis, hyperlipidaemia, thrombosis, hypertension and diabetes. Tomato has anti-mutagenic activities and contains lycopene (a powerful antioxidant) that appears to prevent oxidation of low density lipoprotein cholesterol (LDL-c) and reduces the risk of developing atherosclerosis and coronary heart disease. The present study was carried out to investigate the potential protective effects of tomato or garlic alone or their combination against cardiac disorders in rats fed commercial diet fortified with frying oil (15% w/w) for 30 days. Thirty male Wistar albino rats were used and were divided into five groups; group 1, control (rats fed diet containing 15% w/w fresh oil); group 2, animals fed diets fortified with frying oil; groups 3-5, rats fed as in group 2 and received tomato (500 mg/kg body weight), garlic (125 mg/kg body weight) and a combination of tomato and garlic by gavage, respectively.Total cholesterol (TC), triacylglycerols (TAG), phospholipids (PL), high density lipoprotein cholesterol (HDL-c), low density lipoprotein cholesterol (LDL-c),and very low density lipoprotein cholesterol (VLDL-c) were estimated in the serum of different animal groups. Lactic dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate aminotransferase (AST) alanine aminotransferase (ALT), triiodothyronine (T3), thyroxine (T4) and thyroid stimulating hormone (TSH) were determined in the serum as well as lipid peroxidation level (TBARS) and reduced glutathione (GSH) content were assessed in cardiac tissues.The results obtained revealed that, feeding rats on frying oil induced a notable increase in lipid profile, LDL-c, VLDL-c and TBARS associated with a marked depletion in GSH. Elevation in specific heart enzymes, LDL, CPK, ALT

  2. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway.

    Science.gov (United States)

    Wu, Juan; Liu, Xinhui; Fan, Jinjin; Chen, Wenfang; Wang, Juan; Zeng, Youjia; Feng, Xiaorang; Yu, Xueqing; Yang, Xiao

    2014-04-06

    Bardoxolone methyl (BARD) is an antioxidant modulator that acts through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This study aimed to investigate the role of BARD in protecting kidneys from aristolochic acid (AA)-induced acute kidney injury (AKI). Male C57BL/6 mice received intraperitoneal (i.p.) injections of aristolochic acid I (AAI) (5mg/kg/day) for 5 days to produce acute AA nephropathy (AAN) model. BARD (10mg/kg/day, i.p.) was applied for 7 consecutive days, starting 2 days prior to AAI administration. The mice in the AA group showed AKI as evidenced by worsening kidney function evaluated by blood urea nitrogen (BUN) and serum creatinine (SCr) levels, and severe tubulointerstitial injury marked by massive tubule necrosis in kidney tissues. BARD significantly reduced BUN and SCr levels which were elevated by AAI. Additionally, AAI-induced histopathological renal damage was ameliorated by BARD. Furthermore, the expression of Nrf2 was reduced, and its repressor Kelch-like ECH-associated protein 1 (Keap1) was increased significantly, whereas heme oxygenase-1 (HO-1) was upregulated and NAD(P)H quinone oxidoreductase-1 (NQO1) was barely increased in the cytoplasm of tubules in kidneys after treatment with AAI. BARD significantly upregulated renal Nrf2, NQO1 and HO-1 expression and downregulated Keap1 expression compared with those in the AA group. Moreover, it was found that Nrf2 was expressed both in the cytoplasm and nuclear of glomeruli and tubules, whereas NQO1 and HO-1 were localized in the cytoplasm of tubules only. In conclusion, AA-induced acute renal injury was associated with impaired Nrf2 activation and expression of its downstream target genes in renal tissues. BARD prevented renal damage induced by AAI, and this renoprotective effect may be exerted by activating the Nrf2 signaling pathway and increasing expression of the downstream target genes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Ethanolic Extract of Marsdenia condurango Ameliorates Benzo[a]pyrene-induced Lung Cancer of Rats

    Directory of Open Access Journals (Sweden)

    Sikdar Sourav

    2014-06-01

    Full Text Available Objectives:Condurango is widely used in various systems of complementary and alternative medicines (CAM against oesophageal and stomach ailments including certain types of cancer. However, until now no systematic study has been conducted to verify its efficacy and dose with proper experimental support. Therefore, we examined if ethanolic extract of Condurango could ameliorate benzo[a]pyrene (BaP-induced lung cancer in rats, in vivo to validate its use as traditional medicine. Methods:Fifteen male and 15 female Sprague-Dawley (SD rats were treated with 0.28 mg/kg of Sweet Bee Venom (SBV (high-dosage group and the same numbers of male and female SD rats were treated with 0.2 mL/kg of normal saline (control group for 13 weeks. We selected five male and five female SD rats from the high-dosage group and the same numbers of male and female SD rats from the control group, and we observed these rats for four weeks. We conducted body-weight measurements, ophthalmic examinations, urinalyses and hematology, biochemistry, histology tests. Results:A histological study revealed gradual progress in lung tissue-repair activity in Condurango-fed cancer-bearing rats, showing gradual tissue recovery after three months of drug administration. Condurango has the capacity to generate reactive oxygen species (ROS, which may contribute to a reduction in anti-oxidative activity and to an induction of oxidative stress-mediated cancer cell-death. Condurango-activated pro-apoptotic genes (Bax, caspase-3, caspase-9, p53, cytochrome-c, apaf-1, ICAD and PARP and down-regulated antiapoptotic-Bcl-2 expression were noted both at mRNA and protein levels. Studies on caspase-3 activation and PARP cleavage by western blot analysis revealed that Condurango induced apoptosis through a caspase-3-dependent pathway. Conclusion:The anticancer efficacy of an ethanolic extract of Condurango for treating BaP-induced lung cancer in rats lends support for its use in various traditional

  4. Research on an antioxidant capacity of honeys

    Directory of Open Access Journals (Sweden)

    Elżbieta Hołderna-Kędzia

    2012-12-01

    Full Text Available Human organism is exposed to harmful action of free radicals which are produced as well endogenically as egzogenically. The oxidation activity of free radicals can lead to the conversion of systemic biomolecules. As a consequence, there is a threat of, many severe diseases. Antioxidative agents which occur in natural products (also in honey raise a possibility of protection against the harmful action of above mentioned radicals. Polyphenolic compounds - flavonoids, phenolic acids and ascorbic acid - are the most important antioxidative agents. The research of many authors proves that honey, given orally, shows an antioxidative activity. The level of antioxidative agents in serum after the consumption of honey is high and surpasses the antioxidative activity of tea. Dark honeys (honeydew and heather have considerably higher antioxidative activity in comparison to light ones (acacia, lime, polyfloral.

  5. Antioxidants: Characterization, natural sources, extraction and analysis.

    Science.gov (United States)

    Oroian, Mircea; Escriche, Isabel

    2015-08-01

    Recently many review papers regarding antioxidants from different sources and different extraction and quantification procedures have been published. However none of them has all the information regarding antioxidants (chemistry, sources, extraction and quantification). This article tries to take a different perspective on antioxidants for the new researcher involved in this field. Antioxidants from fruit, vegetables and beverages play an important role in human health, for example preventing cancer and cardiovascular diseases, and lowering the incidence of different diseases. In this paper the main classes of antioxidants are presented: vitamins, carotenoids and polyphenols. Recently, many analytical methodologies involving diverse instrumental techniques have been developed for the extraction, separation, identification and quantification of these compounds. Antioxidants have been quantified by different researchers using one or more of these methods: in vivo, in vitro, electrochemical, chemiluminescent, electron spin resonance, chromatography, capillary electrophoresis, nuclear magnetic resonance, near infrared spectroscopy and mass spectrometry methods. Copyright © 2015. Published by Elsevier Ltd.

  6. Antioxidant Activity from Various Tomato Processing

    Directory of Open Access Journals (Sweden)

    Retno Sri Iswari

    2016-04-01

    Full Text Available Tomato is one of the high antioxidant potential vegetables. Nowadays, there are many techniques of tomato processings instead of fresh consumption, i.e. boiled, steamed, juiced and sauteed. Every treatment of cooking will influence the chemical compound inside the fruits and the body's nutrition intake. It is important to conduct the research on antioxidant compound especially lycopene, β-carotene, vitamin C, α-tocopherol, and its activity after processing. This research has been done using the experimental method. Tomatoes were cooked into six difference ways, and then it was extracted using the same procedure continued with antioxidant measurement. The research results showed that steaming had promoted the higher antioxidant numbers (lycopene. α-tocopherol, β-carotene and vitamin C and higher TCA and antioxidant activities in the tomatoes than other processings. It was indicated that steaming was the best way to enhance amount, capacity and activities of antioxidants of the tomatoes.

  7. 6-Gingerol-rich fraction from Zingiber officinale ameliorates carbendazim-induced endocrine disruption and toxicity in testes and epididymis of rats.

    Science.gov (United States)

    Salihu, M; Ajayi, B O; Adedara, I A; de Souza, D; Rocha, J B T; Farombi, E O

    2017-06-01

    This study evaluated the protective effects of 6-gingerol-rich fraction (6-GRF) from Zingiber officinale on carbendazim (CBZ)-induced reproductive toxicity in rats. Adult male rats were treated with either CBZ (50 mg/kg) alone or in combination with 6-GRF (50, 100 and 200 mg/kg) for 14 consecutive days. Gas chromatography-mass spectrometry (GCMS) analysis revealed that 6-GRF consists of ten bioactive chemical components with 6-gingerol being the most abundant (30.76%). Administration of 6-GRF significantly (p < .05) prevented CBZ-mediated increase in absolute and relative testes weights as well as restored the sperm quantity and quality in the treated rats to near control. In testes and epididymis, 6-GRF significantly abolished CBZ-mediated increase in oxidative damage as well as augmented antioxidant enzymes activities and glutathione level in the treated rats. Moreover, CBZ administration alone significantly decreased plasma levels of testosterone, thyrotropin, triiodothyronine and tetraiodothyronine, whereas follicle-stimulating hormone was significantly elevated without affecting luteinising hormone and prolactin levels when compared with the control. Conversely, 6-GRF ameliorated the disruption in the hormonal levels and restored their levels to near normalcy in CBZ-treated rats. Collectively, 6-GRF inhibited the adverse effects of CBZ on the antioxidant defence systems, hormonal balance and histology of the testes and epididymis in rats. © 2016 Blackwell Verlag GmbH.

  8. Ameliorating effect of wheat bran, Beta-carotene and Curcumin on K-ras gene mutations and expression of ntioxidant enzymes in rat colon cancer

    International Nuclear Information System (INIS)

    Tarek Elmaghraby, T.; Korraa, S.S.; Maher, M.M.; Hassan, N.H.A.

    2010-01-01

    In Egypt, colon cancer has unique characterises differ than other countries, more than third cases happen in people under 40 years, with advanced stage, high grade tumors that carry more mutations . This may be return to increase pollution in food and water. The aim of the present study, is the investigation of the role of some natural products approaches for colorectal carcinoma including curcumin, wheat bran and β-C