WorldWideScience

Sample records for antioxidant gene expression

  1. Epigenetic control of antioxidant gene expression

    OpenAIRE

    Wild, Brigitte

    2015-01-01

    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 29-10-2015 To respond to exogenous and endogenous stimuli, organisms have developed a variety of mechanisms to modulate the quantity, duration and the type of response to these stimuli. Of these mechanisms, one of the most important is the regulation of gene expression. This regulation of gene expression occurs at various levels but especially by th...

  2. Diurnal variation of hepatic antioxidant gene expression in mice.

    Directory of Open Access Journals (Sweden)

    Yi-Qiao Xu

    Full Text Available BACKGROUND: This study was aimed to examine circadian variations of hepatic antioxidant components, including the Nrf2- pathway, the glutathione (GSH system, antioxidant enzymes and metallothionein in mouse liver. METHODS AND RESULTS: Adult mice were housed in light- and temperature-controlled facilities for 2 weeks, and livers were collected every 4 h during the 24 h period. Total RNA was isolated, purified, and subjected to real-time RT-PCR analysis. Hepatic mRNA levels of Nrf2, Keap1, Nqo1 and Gclc were higher in the light-phase than the dark-phase, and were female-predominant. Hepatic GSH presented marked circadian fluctuations, along with glutathione S-transferases (GST-α1, GST-µ, GST-π and glutathione peroxidase (GPx1. The expressions of GPx1, GST-µ and GST-π mRNA were also higher in females. Antioxidant enzymes Cu/Zn superoxide dismutase (Sod1, catalase (CAT, cyclooxygenase-2 (Cox-2 and heme oxygenase-1 (Ho-1 showed circadian rhythms, with higher expressions of Cox-2 and CAT in females. Metallothionein, a small non-enzymatic antioxidant protein, showed dramatic circadian variation in males, but higher expression in females. The circadian variations of the clock gene Brain and Muscle Arnt-like Protein-1(Bmal1, albumin site D-binding protein (Dbp, nuclear receptor Rev-Erbα (Nr1d1, period protein (Per1 and Per2 and cryptochrome 1(Cry1 were in agreement with the literature. Furthermore, acetaminophen hepatotoxicity is more severe when administered in the afternoon when hepatic GSH was lowest. CONCLUSIONS: Circadian variations and gender differences in transcript levels of antioxidant genes exist in mouse liver, which could affect body responses to oxidative stress at different times of the day.

  3. Mutation of cytotoxin-associated gene A affects expressions of antioxidant proteins of Hellcobacter pylori

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Huang; Guang-Cai Duan; Qing-Tang Fan; Wei-Dong Zhang; Chun-Hua Song; Xue-Yong Huang; Rong-Guang Zhang

    2009-01-01

    AIM: To determine if disruption of the cagA gene of Helicobacter pylori ( H pylori) has an effect on the expression of other proteins at proteome level.METHODS: Construction of a cagA knock out mutant Hp27_. cagA ( cagA-) via homologous recombinat ion wi th the wi ld- type st rain Hp27 ( cagA+) as a recipient was performed. The method of sonicat ion-urea-CHAPS-DTT was employed to extract bacterial proteins from both strains. Soluble proteins were analyzed by two-dimensional electrophoresis (2-DE). Images of 2-DE gels were digitalized and analyzed. Only spots that had a statistical significance in differential expression were selected and analyzed by matrix-assisted laser desorption/ionizationtime of flight mass spectrometry (MALDI-TOF-MS). Biological information was used to search protein database and identify the biological function of proteins. RESULTS: The proteome expressions between wild-type strain and isogenic mutant with the cagA gene knocked-out were compared. Five protein spots with high abundance in bacteria proteins of wild-type strains, down-regulated or absently expressed in bacteria proteins of mutants, were identified and analyzed. From a quantitative point of view, the identified proteins are related to the cagA gene and important antioxidant proteins of H pylori, including alkyl hydroperoxide reductase (Ahp), superoxide dismutase (SOD) and modulator of drug activity (Mda66), respectively, suggesting that cagA is important to maintain the normal activity of antioxidative stress and ensure H pylori persistent colonization in the host. CONCLUSION: cagA gene i s relevant to the expressions of antioxidant proteins of H pylori, which may be a novel mechanism involved in H pylori cagA pathogenesis.

  4. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    Science.gov (United States)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P midbrain, and hindbrain), while catalase activity was increased (forebrain and midbrain) ( P < 0.05). Glutathione peroxidase activity did not change. Relative gene expression of catalase and superoxide dismutases (1 and 2) was downregulated, while glutathione peroxidase was upregulated in the brain of the cold-induced pulmonary hypertensive chickens. Probably, these situations in the oxidant and antioxidant status of the brain especially hindbrain may change its function at cardiovascular center and sympathetic nervous system to exacerbate pulmonary hypertension.

  5. Transcriptome-based identification of antioxidative gene expression after fish oil supplementation in normo- and dyslipidemic men

    Directory of Open Access Journals (Sweden)

    Schmidt Simone

    2012-05-01

    Full Text Available Abstract Background The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs, especially in dyslipidemic subjects with a high risk of cardiovascular disease, are widely described in the literature. A lot of effects of n-3 PUFAs and their oxidized metabolites are triggered by regulating the expression of genes. Currently, it is uncertain if the administration of n-3 PUFAs results in different expression changes of genes related to antioxidative mechanisms in normo- and dyslipidemic subjects, which may partly explain their cardioprotective effects. The aim of this study was to investigate the effects of n-3 PUFA supplementation on expression changes of genes involved in oxidative processes. Methods Ten normo- and ten dyslipidemic men were supplemented for twelve weeks with fish oil capsules, providing 1.14 g docosahexaenoic acid and 1.56 g eicosapentaenoic acid. Gene expression levels were determined by whole genome microarray analysis and quantitative real-time polymerase chain reaction (qRT-PCR. Results Using microarrays, we discovered an increased expression of antioxidative enzymes and a decreased expression of pro-oxidative and tissue enzymes, such as cytochrome P450 enzymes and matrix metalloproteinases, in both normo- and dyslipidemic men. An up-regulation of catalase and heme oxigenase 2 in both normo- and dyslipidemic subjects and an up-regulation of cytochrome P450 enzyme 1A2 only in dyslipidemic subjects could be observed by qRT-PCR analysis. Conclusions Supplementation of normo- and dyslipidemic subjects with n-3 PUFAs changed the expression of genes related to oxidative processes, which may suggest antioxidative and potential cardioprotective effects of n-3 PUFAs. Further studies combining genetic and metabolic endpoints are needed to verify the regulative effects of n-3 PUFAs in antioxidative gene expression to better understand their beneficial effects in health and disease prevention. Trial registration Clinical

  6. Effect of curcumin on hepatic antioxidant enzymes activities and gene expressions in rats intoxicated with aflatoxin B1.

    Science.gov (United States)

    El-Bahr, S M

    2015-01-01

    Twenty-eight rats were examined in a 5-week experiment to investigate the effect of curcumin on gene expression and activities of hepatic antioxidant enzymes in rats intoxicated with aflatoxin B1 (AFB1 ). The rats were divided into four groups. Rats in 1-4 groups served as control, oral curcumin treated (15 mg/kg body weight), single i.p. dose of AFB1 (3 mg/kg body weight) and combination of single i.p. dose of AFB1 with oral curcumin treated, respectively. AFB1 Liver damage and oxidative stress were evident in untreated AFB1 -intoxicated rats as indicated by a significant elevation in hepatic transaminases, elevation in lipid peroxide biomarkers (thiobarbituric acid reactive substances; TBARS), reduction of reduced glutathione (GSH) concentration, reduction in the activities of antioxidant enzymes namely catalase (CAT), total superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST) and down-regulation of gene expression of these antioxidant enzymes compared to control. Liver sections of rats intoxicated with AFB1 showed a disrupted lobular architecture, scattered necrotic cells and biliary proliferation. Administration of curcumin with AFB1 resulted in amelioration of AFB1 -induced effects compared to untreated AFB1 -intoxicated rats via an up-regulation of antioxidant enzyme gene expression, activation of the expressed genes and increase in the availability of GSH.

  7. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress.

    Science.gov (United States)

    Chen, Lei; Mao, Feijian; Kirumba, George Chira; Jiang, Cheng; Manefield, Mike; He, Yiliang

    2015-12-01

    Microcystis (M.) aeruginosa, one of the most common bloom-forming cyanobacteria, occurs worldwide. The Qingcaosha (QCS) Reservoir is undergoing eutrophication and faces the problem of saltwater intrusion. The aim of this study was to investigate the effects of sudden salinity changes on physiological parameters and related gene transcription in M. aeruginosa under controlled laboratory conditions. The results showed that sodium chloride (50, 200 and 500 mg L(-1) NaCl) inhibited the algal growth and decreased pigment concentrations (chlorophyll a, carotenoid and phycocyanin). Sodium chloride increased both the intracellular and extracellular microcystin contents and elevated the mcyD transcript level in M. aeruginosa. It also increased the malondialdehyde (MDA) content and caused cytomembrane damage. This damage caused the release of intracellular toxins into the culture medium. In addition, NaCl decreased the maximum electron transport rate, increased the levels of reactive oxygen species (ROS) and changed the cellular redox status. Consequently, NaCl inhibited the expression of cpcB, psbA and rbcL. Furthermore, NaCl increased the activities of superoxide dismutases (SOD), catalase (CAT), glutathione reductase (GR), and total glutathione peroxidase (GPx). The transcript levels of sod and reduced glutathione (gsh) were also increased after exposure to NaCl. Our results indicate that a sudden increase in salinity increases the production and excretion of microcystin, changes the cellular redox status, enhances the activities of antioxidant enzymes, inhibits photosynthesis, and affects transcript levels of related genes in M. aeruginosa. PMID:26232039

  8. Effect of Maturity Stage on the Gene Expression of Antioxidative Enzymes in Cucumber (Cucumis sativus L.) Fruits Under Chilling Stress

    Institute of Scientific and Technical Information of China (English)

    QIAN Chun-lu; MI Hong-bo; ZHAO Yu-ying; HE Zhi-ping; MAO Lin-chun

    2013-01-01

    The gene expression patterns of antioxidative enzymes in cucumber (Cucumis sativus L.) fruits at four different maturity stages, immature (3-8 d after anthesis (DAA), mature (9-16 DAA), breaker (17-22 DAA), and yellow (35-40 DAA), were determined before and after cold storage at 2°C for 9 d and after subsequent rewarming at 20°C for 2 d. The electrolyte leakage and malondialdehyde content in cucumber fruits were increased after cold storage and subsequent rewarming. Increased expressions of peroxidase, ascorbate peroxidase (APX), and monodehydroascorbate reductase after cold storage played an important role in cucumber fruits to cope with chilling injury. The elevated cyt-superoxide dismutase, catalase, APX and dehydroascorbate reductase after subsequent rewarming in cucumber fruits facilitated the recovery from chilling stress. The highest expression levels of all the seven antioxidative enzyme genes in yellow fruits might be responsible for the enhanced chilling tolerance. Cucumber fruits at earlier developmental stages was more susceptible to chilling stress than those at later stages. The relative higher gene expressions of antioxidative enzymes genes at earlier developmental stages may be the responses to the sever oxidative stress caused by chilling injury.

  9. Gene expression changes for antioxidants pathways in the mouse cochlea: relations to age-related hearing deficits.

    Directory of Open Access Journals (Sweden)

    Sherif F Tadros

    Full Text Available Age-related hearing loss - presbycusis - is the number one neurodegenerative disorder and top communication deficit of our aged population. Like many aging disorders of the nervous system, damage from free radicals linked to production of reactive oxygen and/or nitrogen species (ROS and RNS, respectively may play key roles in disease progression. The efficacy of the antioxidant systems, e.g., glutathione and thioredoxin, is an important factor in pathophysiology of the aging nervous system. In this investigation, relations between the expression of antioxidant-related genes in the auditory portion of the inner ear - cochlea, and age-related hearing loss was explored for CBA/CaJ mice. Forty mice were classified into four groups according to age and degree of hearing loss. Cochlear mRNA samples were collected and cDNA generated. Using Affymetrix® GeneChip, the expressions of 56 antioxidant-related gene probes were analyzed to estimate the differences in gene expression between the four subject groups. The expression of Glutathione peroxidase 6, Gpx6; Thioredoxin reductase 1, Txnrd1; Isocitrate dehydrogenase 1, Idh1; and Heat shock protein 1, Hspb1; were significantly different, or showed large fold-change differences between subject groups. The Gpx6, Txnrd1 and Hspb1 gene expression changes were validated using qPCR. The Gpx6 gene was upregulated while the Txnrd1 gene was downregulated with age/hearing loss. The Hspb1 gene was found to be downregulated in middle-aged animals as well as those with mild presbycusis, whereas it was upregulated in those with severe presbycusis. These results facilitate development of future interventions to predict, prevent or slow down the progression of presbycusis.

  10. Gene expression changes for antioxidants pathways in the mouse cochlea: relations to age-related hearing deficits.

    Science.gov (United States)

    Tadros, Sherif F; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D

    2014-01-01

    Age-related hearing loss - presbycusis - is the number one neurodegenerative disorder and top communication deficit of our aged population. Like many aging disorders of the nervous system, damage from free radicals linked to production of reactive oxygen and/or nitrogen species (ROS and RNS, respectively) may play key roles in disease progression. The efficacy of the antioxidant systems, e.g., glutathione and thioredoxin, is an important factor in pathophysiology of the aging nervous system. In this investigation, relations between the expression of antioxidant-related genes in the auditory portion of the inner ear - cochlea, and age-related hearing loss was explored for CBA/CaJ mice. Forty mice were classified into four groups according to age and degree of hearing loss. Cochlear mRNA samples were collected and cDNA generated. Using Affymetrix® GeneChip, the expressions of 56 antioxidant-related gene probes were analyzed to estimate the differences in gene expression between the four subject groups. The expression of Glutathione peroxidase 6, Gpx6; Thioredoxin reductase 1, Txnrd1; Isocitrate dehydrogenase 1, Idh1; and Heat shock protein 1, Hspb1; were significantly different, or showed large fold-change differences between subject groups. The Gpx6, Txnrd1 and Hspb1 gene expression changes were validated using qPCR. The Gpx6 gene was upregulated while the Txnrd1 gene was downregulated with age/hearing loss. The Hspb1 gene was found to be downregulated in middle-aged animals as well as those with mild presbycusis, whereas it was upregulated in those with severe presbycusis. These results facilitate development of future interventions to predict, prevent or slow down the progression of presbycusis.

  11. GHK-Cu may Prevent Oxidative Stress in Skin by Regulating Copper and Modifying Expression of Numerous Antioxidant Genes

    Directory of Open Access Journals (Sweden)

    Loren Pickart

    2015-07-01

    Full Text Available The copper binding tripeptide GHK (glycyl-l-histidyl-l-lysine is a naturally occurring plasma peptide that significantly declines during human aging. It has been established that GHK:Copper(2+ improves wound healing and tissue regeneration and stimulates collagen and decorin production. GHK-Cu also supports angiogenesis and nerve outgrowth, improves the condition of aging skin and hair, and possesses antioxidant and anti-inflammatory effects. In addition, it increases cellular stemness and secretion of trophic factors by mesenchymal stem cells. GHK’s antioxidant actions have been demonstrated in vitro and in animal studies. They include blocking the formation of reactive oxygen and carbonyl species, detoxifying toxic products of lipid peroxidation such as acrolein, protecting keratinocytes from lethal Ultraviolet B (UVB radiation, and blocking hepatic damage by dichloromethane radicals. In recent studies, GHK has been found to switch gene expression from a diseased state to a healthier state for certain cancers and for chronic obstructive pulmonary disease (COPD. The Broad Institute’s Connectivity Map indicated that GHK induces a 50% or greater change of expression in 31.2% of human genes. This paper reviews biological data demonstrating positive effects of GHK in skin and proposes interaction with antioxidant-related genes as a possible explanation of its antioxidant activity.

  12. L-malate enhances the gene expression of carried proteins and antioxidant enzymes in liver of aged rats.

    Science.gov (United States)

    Zeng, X; Wu, J; Wu, Q; Zhang, J

    2015-01-01

    Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. To investigate the antioxidant mechanism of L-malate in the mitochondria, we analyzed the change in gene expression of two malate-aspartate shuttle (MAS)-related carried proteins (AGC, aspartate/glutamate carrier and OMC, oxoglutarate/malate carrier) in the inner mitochondrial membrane, and three antioxidant enzymes (CAT, SOD, and GSH-Px) in the mitochondria. The changes in gene expression of these proteins and enzymes were examined by real-time RT-PCR in the heart and liver of aged rats treated with L-malate. L-malate was orally administered in rats continuously for 30 days using a feeding atraumatic needle. We found that the gene expression of OMC and GSH-Px mRNA in the liver increased by 39 % and 38 %, respectively, in the 0.630 g/kg L-malate treatment group than that in the control group. The expression levels of SOD mRNA in the liver increased by 39 %, 56 %, and 78 % in the 0.105, 0.210, and 0.630 g/kg L-malate treatment groups, respectively. No difference were observed in the expression levels of AGC, OMC, CAT, SOD, and GSH-Px mRNAs in the heart of rats between the L-malate treatment and control groups. These results predicted that L-malate may increase the antioxidant capacity of mitochondria by enhancing the expression of mRNAs involved in the MAS and the antioxidant enzymes.

  13. Short-term UV-B radiation affects photosynthetic performance and antioxidant gene expression in highbush blueberry leaves.

    Science.gov (United States)

    Inostroza-Blancheteau, Claudio; Acevedo, Patricio; Loyola, Rodrigo; Arce-Johnson, Patricio; Alberdi, Miren; Reyes-Díaz, Marjorie

    2016-10-01

    The impact of increased artificial UV-B radiation on photosynthetic performance, antioxidant and SOD activities and molecular antioxidant metabolism responses in leaves of two highbush blueberry (Vaccinium corymbosum L. cv. Brigitta and Bluegold) genotypes was studied. Plants were grown in a solid substrate and exposed to 0, 0.07, 0.12 and 0.19 W m(-2) of biologically-effective UV-B irradiance for 0-72 h. Our findings show that net photosynthesis (Pn) decreased significantly in Bluegold, accompanied by a reduction in the effective quantum yield (ФPSII) and electron transport rate (ETR), especially at the highest UV-B irradiation. On the other hand, Brigitta showed a better photosynthetic performance, as well as a clear increment in the antioxidant activity response that could be associated with increased superoxide dismutase activity (SOD) in the early hours of induced UV-B stress in all treatments. At the molecular level, the expression of the three antioxidant genes evaluated in both genotypes had a similar tendency. However, ascorbate peroxidase (APX) expression was significantly increased (6-fold) in Bluegold compared to Brigitta. Thus, the reduction of Pn concomitant with a lower photochemical performance and a reduced response of antioxidant metabolism suggest that the Bluegold genotype is more sensitive to UV-B radiation, while Brigitta appears to tolerate better moderate UV-B irradiance in a short-term experiment.

  14. Short-term UV-B radiation affects photosynthetic performance and antioxidant gene expression in highbush blueberry leaves.

    Science.gov (United States)

    Inostroza-Blancheteau, Claudio; Acevedo, Patricio; Loyola, Rodrigo; Arce-Johnson, Patricio; Alberdi, Miren; Reyes-Díaz, Marjorie

    2016-10-01

    The impact of increased artificial UV-B radiation on photosynthetic performance, antioxidant and SOD activities and molecular antioxidant metabolism responses in leaves of two highbush blueberry (Vaccinium corymbosum L. cv. Brigitta and Bluegold) genotypes was studied. Plants were grown in a solid substrate and exposed to 0, 0.07, 0.12 and 0.19 W m(-2) of biologically-effective UV-B irradiance for 0-72 h. Our findings show that net photosynthesis (Pn) decreased significantly in Bluegold, accompanied by a reduction in the effective quantum yield (ФPSII) and electron transport rate (ETR), especially at the highest UV-B irradiation. On the other hand, Brigitta showed a better photosynthetic performance, as well as a clear increment in the antioxidant activity response that could be associated with increased superoxide dismutase activity (SOD) in the early hours of induced UV-B stress in all treatments. At the molecular level, the expression of the three antioxidant genes evaluated in both genotypes had a similar tendency. However, ascorbate peroxidase (APX) expression was significantly increased (6-fold) in Bluegold compared to Brigitta. Thus, the reduction of Pn concomitant with a lower photochemical performance and a reduced response of antioxidant metabolism suggest that the Bluegold genotype is more sensitive to UV-B radiation, while Brigitta appears to tolerate better moderate UV-B irradiance in a short-term experiment. PMID:27343876

  15. In vivo biochemical and gene expression analyses of the antioxidant activities and hypocholesterolaemic properties of Tamarindus indica fruit pulp extract.

    Directory of Open Access Journals (Sweden)

    Chor Yin Lim

    Full Text Available BACKGROUND: Tamarindus indica (T. indica is a medicinal plant with many biological activities including anti-diabetic, hypolipidaemic and anti-bacterial activities. A recent study demonstrated the hypolipidaemic effect of T. indica fruit pulp in hamsters. However, the biochemical and molecular mechanisms responsible for these effects have not been fully elucidated. Hence, the aims of this study were to evaluate the antioxidant activities and potential hypocholesterolaemic properties of T. indica, using in vitro and in vivo approaches. METHODOLOGY/PRINCIPAL FINDINGS: The in vitro study demonstrated that T. indica fruit pulp had significant amount of phenolic (244.9 ± 10.1 mg GAE/extract and flavonoid (93.9 ± 2.6 mg RE/g extract content and possessed antioxidant activities. In the in vivo study, hamsters fed with high-cholesterol diet for ten weeks showed elevated serum triglyceride, total cholesterol, HDL-C and LDL-C levels. Administration of T. indica fruit pulp to hypercholesterolaemic hamsters significantly lowered serum triglyceride, total cholesterol and LDL-C levels but had no effect on the HDL-C level. The lipid-lowering effect was accompanied with significant increase in the expression of Apo A1, Abcg5 and LDL receptor genes and significant decrease in the expression of HMG-CoA reductase and Mtp genes. Administration of T. indica fruit pulp to hypercholesterolaemic hamsters also protected against oxidative damage by increasing hepatic antioxidant enzymes, antioxidant activities and preventing hepatic lipid peroxidation. CONCLUSION/SIGNIFICANCE: It is postulated that tamarind fruit pulp exerts its hypocholesterolaemic effect by increasing cholesterol efflux, enhancing LDL-C uptake and clearance, suppressing triglyceride accumulation and inhibiting cholesterol biosynthesis. T. indica fruit pulp has potential antioxidative effects and is potentially protective against diet-induced hypercholesterolaemia.

  16. Copper chloride induces antioxidant gene expression but reduces ability to mediate H2O2 toxicity in Xanthomonas campestris.

    Science.gov (United States)

    Sornchuer, Phornphan; Namchaiw, Poommaree; Kerdwong, Jarunee; Charoenlap, Nisanart; Mongkolsuk, Skorn; Vattanaviboon, Paiboon

    2014-02-01

    Copper (Cu)-based biocides are currently used as control measures for both fungal and bacterial diseases in agricultural fields. In this communication, we show that exposure of the bacterial plant pathogen Xanthomonas campestris to nonlethal concentrations of Cu(2+) ions (75 µM) enhanced expression of genes in OxyR, OhrR and IscR regulons. High levels of catalase, Ohr peroxidase and superoxide dismutase diminished Cu(2+)-induced gene expression, suggesting that the production of hydrogen peroxide (H2O2) and organic hydroperoxides is responsible for Cu(2+)-induced gene expression. Despite high expression of antioxidant genes, the CuCl2-treated cells were more susceptible to H2O2 killing treatment than the uninduced cells. This phenotype arose from lowered catalase activity in the CuCl2-pretreated cells. Thus, exposure to a nonlethal dose of Cu(2+) renders X. campestris vulnerable to H2O2, even when various genes for peroxide-metabolizing enzymes are highly expressed. Moreover, CuCl2-pretreated cells are sensitive to treatment with the redox cycling drug, menadione. No physiological cross-protection response was observed in CuCl2-treated cells in a subsequent challenge with killing concentrations of an organic hydroperoxide. As H2O2 production is an important initial plant immune response, defects in H2O2 protection are likely to reduce bacterial survival in plant hosts and enhance the usefulness of copper biocides in controlling bacterial pathogens. PMID:24385479

  17. Modification of antioxidative and antiapoptotic genes expression in irradiated K562 cells upon fullerenol C60(OH)24 nanoparticle treatment.

    Science.gov (United States)

    Stankov, Karmen; Borisev, Ivana; Kojic, Vesna; Rutonjski, Lazar; Bogdanovic, Gordana; Djordjevic, Aleksandar

    2013-01-01

    Recent data established the prospective applications for fullerenol (C60(OH)24) nanoparticle (FNP) in many fields, such as antioxidants, neuroprotective agents, and potential anti-radiation drugs. Leukemia cell sensitization to apoptosis induced by ionizing radiation is achieved by upregulation of ROS production and/or downregulation of antioxidative enzymes. Therefore, our aim was to analyze the potential role of fullerenol nanoparticle in modulation of the leukemic cellular response to irradiation. We used the qRT-PCR to analyze the expression level of mRNA for 11 genes in irradiated and FNP pre-treated irradiated K562 cells, and compared the gene expression level with the overall cell survival. Our results of the improved cell survival in FNP-treated irradiated cells and significant overexpression of anti-apoptotic Bcl-2 and Bcl-xL and cytoprotective genes such as GSTA4, MnSOD, NOS, CAT and HO-1 genes, may indicate that FNP exerts cytoprotective function in K562 leukemic cells, rendering K562 cells more tolerant to radiotherapy.

  18. Expression analysis of antioxidant genes in response to drought stress in the fl ag leaf of two Indonesian rice cultivars

    Directory of Open Access Journals (Sweden)

    Refli R

    2015-12-01

    Full Text Available The objective of this study was to analysis the expression of antioxidant genes in response to droughtstress in Indonesian rice. The malondialdehyde (MDA content and the expression of Cu-ZnSod1, cCu-ZnSod2,MnSod1, cApxa, cApxb, chl-sApx, Cat1, Cat2, Cat3, Gr1, Gr2, and Gr3 genes were assayed in the rice fl ag leaf ofCiherang and Situ Bagendit cultivars subjected to control, mild and severe drought during the grain fi llingphase. Increase in MDA content of Ciherang treated to mild and severe drought was almost two-fold andthree-fold respectively, while MDA content in Situ Bagendit subjected to mild and severe drought increasedapproximately one-fold and two-fold as compared to the control. The semi quantitative reverse transcriptionpolymerase chain reaction (sqRT-PCR analysis showed that the expression of cCu-ZnSod1, MnSod1, Cat2, Gr3genes of Ciherang, and cCu-ZnSod2, MnSod1, cApxa, cApxb, chl-sAPX, Cat2 and Gr1 genes of Situ Bagendit increasedin fl ag leaf of plant treated to drought. Expressions of cApxb, chl-sApx, Cat3 of Ciherang and Cu-ZnSod1 and Gr2genes of Situ Bagendit were not changed signifi cantly by drought stress. Decreased expression was shownby cCu-ZnSod2, cApxa, Cat1, Gr1 and Gr2 genes of Ciherang, and Cat1, Cat3 and Gr3 genes of Situ Bagendit. Theresults indicated that the activity of oxidative defense was regulated by four genes; cCu-ZnSod1, MnSod1, Cat2,Gr3 in Ciherang, and eight genes; cCu-ZnSod1, cCu-ZnSod2, MnSod1, cApxa, cApxb, chl-sApx, Cat2 and Gr1 in SituBagendit. Therefore, differences in the number of antioxidant genes controlling oxidative defense systemmight determine the difference of the oxidative defense capacity between both cultivars in response to droughtstress during grain fi lling.

  19. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Likui Wang

    2014-09-01

    Full Text Available Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2 called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE, which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.

  20. Multiwall Carbon Nanotube-Induced Apoptosis and Antioxidant Gene Expression in the Gills, Liver, and Intestine of Oryzias latipes

    Directory of Open Access Journals (Sweden)

    Jin Wuk Lee

    2015-01-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs have many attractive properties with potential applications in various fields. Despite their usefulness, however, the associated waste can be hazardous to the environment. To examine adverse effects in aquatic environments, Oryzias latipes were exposed to MWCNTs dispersed in water for 14 days and apoptosis and antioxidant gene expression were observed. This work showed that in gills exposed to 100 mg/L MWCNTs for 4 days, there was significant p53, caspase-3 (Cas3, caspase-8 (Cas8, and caspase-9 (Cas9 gene expression relative to the controls, while catalase (CAT and glutathione-S-transferase (GST expression were reduced. At 14 days, CAT, GST, and metallothionein (MT were induced significantly in the gills and Cas3, Cas8, and Cas9 were induced in the liver. No significant gene induction was seen in intestine. Intracellular reactive oxygen species (ROS were increased significantly only at 14 days. Histologically, no apoptosis was observed with exposure to 100 mg/L MWCNTs for 21 days. The gills were more sensitive to MWCNT toxicity than the other organs. Males had higher apoptosis gene induction than females. These results demonstrated that MWCNTs could cause apoptosis in a manner influenced by tissue and gender in aqueous environments.

  1. Annatto extract and β-carotene enhances antioxidant status and regulate gene expression in neutrophils of diabetic rats.

    Science.gov (United States)

    Rossoni Júnior, Joamyr Victor; Araújo, Glaucy Rodrigues; Pádua, Bruno Da Cruz; Magalhães, Cíntia Lopes de Brito; Chaves, Míriam Martins; Pedrosa, Maria Lúcia; Silva, Marcelo Eustáquio; Costa, Daniela Caldeira

    2012-03-01

    Annatto (Bixa orellana L.) contains a mixture of orange-yellowish pigments due to the presence of various carotenoids that have antioxidant effect. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen and nitrogen species (ROS and RNS) as part of the body's defence mechanisms to destroy invading pathogens. It is well known that the function of neutrophils is altered in diabetes; one of the major functional changes in neutrophils in diabetes is the increased generation of extracellular superoxide via the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system. The purpose of this study is to evaluate the production of ROS and nitric oxide (NO) as well as the expression of NADPH oxidase subunits, inducible nitric oxide (iNOS), superoxide dismutase (SOD) and catalase (CAT) in neutrophils from diabetic rats treated with annatto extract and β-carotene. Forty-eight female Fisher rats were distributed into six groups according to the treatment received. All animals were sacrificed 7 days after treatment, and the neutrophils were isolated using two gradients of different densities. The ROS and NO were quantified by a chemiluminescence and spectrophotometric assays, respectively. Analyses of gene expression were performed using quantitative real time polymerase chain reaction (qRT-PCR). The results show that treatment with annatto extract and β-carotene was able to decrease ROS production and the mRNA levels of p22(phox) and p47(phox) and increase the mRNA levels of SOD and CAT in neutrophils from diabetic rats. These data suggest that annatto extract and β-carotene exerts antioxidant effect via inhibition of expression of the NADPH oxidase subunits and increase expression/activity of antioxidant enzymes. PMID:22239725

  2. Ethanol and supercritical fluid extracts of hemp seed (Cannabis sativa L.) increase gene expression of antioxidant enzymes in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Sunghyun Hong; Kandhasamy Sowndhararajan; Taewoo Joo; Chanmook Lim; Haeme Cho; Songmun Kim; Gur-Yoo Kim; Jin-Woo Jhoo

    2015-01-01

    Objective: To determine the gene expression of antioxidant enzymes by hemp seed extracts in human hepatoma (HepG2) cells. Methods: Ethanol and supercritical fluid (SF) extracts obtained from de-hulled hemp seed were used for the evaluation of in vitro antioxidant activity and gene expression of antioxidant enzymes. In vitro antioxidant activities of the samples evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical scavenging assays. The expression of antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) in HepG2cells was evaluated by real-time PCR. Results:In the antioxidant assay, SF extract of hemp seed exhibited higher ABTS and DPPH radical scavenging activities (IC50 of 66.6 µg/mL and 9.2 mg/mL, respectively) than ethanol extract. The results of antioxidant enzyme expression in real-time PCR study revealed the H2O2 (200 µM) challenged HepG2 cells reduced the expression of enzymes such as SOD, GPx and CAT. However, the cells treated with ethanol and SF extracts were up-regulated the expression of antioxidant enzymes in concentration dependent manner. When compared to ethanol extract, the SF extract exhibited higher activity in the expression of all the antioxidant enzymes at the concentration of 500 µg/mL. Conclusion: In conclusion, the findings of our study demonstrated that the hemp seed effectively inhibited H2O2 mediated oxidative stress and may be useful as a therapeutic agent in preventing oxidative stress mediated diseases.

  3. Effects of N-acetyl-L-cysteine on gene expression of antioxidant enzymes in yeast cells after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Park, Ji Young; Ryu, Tae Ho; Roh, Chang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Ionizing radiation induces water radiolysis, which generates highly reactive hydroxyl radicals. Reactive oxygen species (ROS) cause apoptosis and cell damage. When exposed to ionizing radiation, cells activates ROS scavenging detoxifying enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase. SOD scavenges superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen. Yeast has two catalase and three GPx proteins. The biochemical function of GPx is to reduce lipid-hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water. N-acetylL-cysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity and alkaline phosphatase. In this study, the role of NAC as an antioxidant and a radioprotector was examined on cell survival, transcriptional level, and protein level. through observing viability of cells, analyzing the gene expression of antioxidant enzyme, measuring the SOD activity and intracellular GSH levels in yeast W303-1A strain The cell viability of haploid S. cerevisiae W303-1A strain was reduced significantly at the low dose (10∼30 Gy). The half-lethal dose of the strain was about 20 Gy. The CFU assay result confirmed that NAC could not rescue the cells from radiation-induced death. When irradiated with 100 Gy, an increase in the transcriptional expression was observed in the antioxicant genes. The expression of these genes decreased by treatment of NAC in irradiated cells. NAC decline SOD activity and intracellular GSH levels. The present study shows that NAC can directly scavenge

  4. 31. Antioxidant and hypoxia induce the human antioxidant response element-mediated expression of NAD(P) H: quinone oxidoreductase1 gene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Background: NAD(P)H: quinone oxidoreductase 1 (NQO1) is an obligate two-electron reductase that is involved in protection of cells against redox cycling, oxidative stress, and neoplasia. and can also bioactivate certain antitumor quinones. Many antioxidants are cancer chemopreventive agents, and tumour hypoxia are now being exploited in cancer treatment which shows considerable promise to overcome the resistance to cancer chemotherapy. Antioxidant response element (ARE) is sensitive to perturbations of cellular redox states. Our previous studies have shown that β-tyrosol (β-TY), as a phenolic antioxidant, can protects cells against DNA damage resulting from toxic H2O2. Aim: We take the present study with the goal of whether antioxidants such as β-tyrosol, butylated hydroxyanisole(BHA) and β-Naphthooflavone(β-NF) and hypoxia (pO2 0.1% -0.5%) can induce gene expression of NQO1, inhibit proliferation of human hepatoma cells SMMC-7721 and the relationship between them; whether ARE can mediate gene expression in response to antioxidans and hypoxia. Methods: SMMC-7721 human hepatoma cells are planted in plates, grown for 24h. and exposed to antioxidants and hypoxia, each alone or in combination for another 24h. The enzyme activity was determinied by spectrophotometric assay using direct measurement of NQO1 from cells cultured in Microtiter wells. Semi-quantitative reverse transcription-PCR (RT-PCR) technique was used to measure NQO1 mRNA levets. Proliferation was estimated using the crystal violet staining technique. Electrophoretic mobility shift assay (EMSA) was employed to assess protein binding to the ARE under all of These conditions. Hypoxia cells were harvested in an anaerobic chamber at the end of the incubation period. Results: Antioxidant (90ug/ml β-TY、60μmol/L BHA、80μmol/L β-NF) potently induce an increase in the activity of NQO1. From 60μg/ml to 90μg/ml, β-TY caused NQO1 activity enhancement in a dose-dependent manner The NQO1 activity induced

  5. Anthocyanin, antioxidant activity and stress-induced gene expression in high CO2-treated table grapes stored at low temperature.

    Science.gov (United States)

    Romero, Irene; Teresa Sanchez-Ballesta, M; Maldonado, Roberto; Isabel Escribano, M; Merodio, Carmen

    2008-01-01

    A pretreatment with 20kPa CO2+20 kPa O2+60 kPa N2 for 3 days proved effective in maintaining the fruit quality and controlling decay in table grapes (Vitis vinifera cv. Cardinal) stored at 0 degrees C. In the present work, we analyzed whether total anthocyanin content, the molecular mechanism implicated in their biosynthesis and antioxidant activity is related to the beneficial effect of this gaseous treatment. We isolated partial cDNAs that codified for enzymes implicated in the anthocyanin biosynthesis such as l-phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS), and an antioxidant enzyme such as ascorbate peroxidase (APX). Low temperatures induced an accumulation of total anthocyanin content in the skin of both treated and non-treated grapes, although levels were lower in CO2-treated fruit. By contrast, antioxidant activity decreased during storage at 0 degrees C in non-treated grapes but did not change in CO2-treated grapes. The up-regulation of anthocyanin biosynthesis gene expression and VcAPX mRNA observed in non-treated grape is not enhanced in CO2-treated grapes, which presented low total decay. These results point out the ability of CO2-treated grapes to prevent the generation of reactive oxygen species rather than their inactivation by means of induction of studied defense systems. PMID:17570561

  6. [Effects of exogenous EBR and NO signal on antioxidant system and low response gene expression under cold stress on maize embryo].

    Science.gov (United States)

    Ma, Jin-hu; Xing, Guo-fang; Yang, Xiao-huan; Wang, Yu-guo; Du, Hui-ling

    2015-05-01

    In this study, Xianyu 335, a maize hybrid, was used to investigate the effects of 24-Epibrassinolide (EBR, a synthetic BR) on antioxidant capacity and low-temperature response gene expression in maize embryo germination under low temperature (LT) stress. The germination rate of maize seeds under LT stress was not affected by EBR, but the seed activity index and seedling growth were improved. EBR increased the activities of some antioxidative enzymes including SOD, POD, CAT and GR, and the contents of non-enzymatic antioxidants, such as GSH and proline, and induced the accumulation of nitric oxide (NO). NO scavenging c-PTIO and NOS inhibitor L- NAME decreased but NO donor SNP increased the enzyme activities of CAT and POD, and the content of proline, indicating NO mediated the EBR-induced antioxidant capacity. The gene expression pattern analysis showed that the expression of P5CS1, CBF1, CBF3 and COR15a was induced by LT stress, and further increased by EBR treatment in maize embryo, while their expression was suppressed by c-PTIO and L-NAME, and improved by SNP, which implied LT-responsed genes were regulated by NO. These results demonstrated that NO was involved in the EBR-induced LT tolerance in maize embryo by modulating the antioxidative capacity and the expression of LT-responsive genes. PMID:26571659

  7. Jasmonic acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity and Gene Expression in Glycine max under Nickel Toxicity

    Directory of Open Access Journals (Sweden)

    Geetika eSirhindi

    2016-05-01

    Full Text Available In present study, we evaluated the effects of Jasmonic acid (JA on physio-biochemical attributes, antioxidant enzyme activity and gene expression in soybean (Glycine max L. plants subjected to nickel (Ni stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23%, 38.31% and 39.21% respectively over the control. However, application of JA was found to improve the chlorophyll content and growth of Ni-stressed seedlings in terms of root and shoot length. Plants supplemented with Jasmonate restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein and total soluble sugar (TSS by 33.09%, 51.26%, 22.58% and 49.15% respectively under Ni toxicity as compared to control. Supplementation of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2 by 68.49%, lipid peroxidation (MDA by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD, peroxidase (POD, catalase (CAT and ascorbate peroxidase (APX increases by 40.04%, 28.22%, 48.53% and 56.79% respectively over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62%, CAT by 15.25%, POD by 58.33% and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes and osmoprotectants, antioxidant enzyme activity and gene expression.

  8. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity

    Science.gov (United States)

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  9. Ultraviolet Radiation-Elicited Enhancement of Isoflavonoid Accumulation, Biosynthetic Gene Expression, and Antioxidant Activity in Astragalus membranaceus Hairy Root Cultures.

    Science.gov (United States)

    Jiao, Jiao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Gu, Cheng-Bo; Fu, Yu-Jie; Ma, Wei

    2015-09-23

    In this work, Astragalus membranaceus hairy root cultures (AMHRCs) were exposed to ultraviolet radiation (UV-A, UV-B, and UV-C) for promoting isoflavonoid accumulation. The optimum enhancement for isoflavonoid production was achieved in 34-day-old AMHRCs elicited by 86.4 kJ/m(2) of UV-B. The resulting isoflavonoid yield was 533.54 ± 13.61 μg/g dry weight (DW), which was 2.29-fold higher relative to control (232.93 ± 3.08 μg/g DW). UV-B up-regulated the transcriptional expressions of all investigated genes involved in isoflavonoid biosynthetic pathway. PAL and C4H were found to be two potential key genes that controlled isoflavonoid biosynthesis. Moreover, a significant increase was noted in antioxidant activity of extracts from UV-B-elicited AMHRCs (IC50 values = 0.85 and 1.08 mg/mL) in comparison with control (1.38 and 1.71 mg/mL). Overall, this study offered a feasible elicitation strategy to enhance isoflavonoid accumulation in AMHRCs and also provided a basis for metabolic engineering of isoflavonoid biosynthesis in the future.

  10. Gene expression

    International Nuclear Information System (INIS)

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn2+ or Cd2+. We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  11. Investigation into the effects of antioxidant-rich extract of Tamarindus indica leaf on antioxidant enzyme activities, oxidative stress and gene expression profiles in HepG2 cells.

    Science.gov (United States)

    Razali, Nurhanani; Abdul Aziz, Azlina; Lim, Chor Yin; Mat Junit, Sarni

    2015-01-01

    The leaf extract of Tamarindus indica L. (T. indica) had been reported to possess high phenolic content and showed high antioxidant activities. In this study, the effects of the antioxidant-rich leaf extract of the T. indica on lipid peroxidation, antioxidant enzyme activities, H2O2-induced ROS production and gene expression patterns were investigated in liver HepG2 cells. Lipid peroxidation and ROS production were inhibited and the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase was enhanced when the cells were treated with the antioxidant-rich leaf extract. cDNA microarray analysis revealed that 207 genes were significantly regulated by at least 1.5-fold (p FGG, FGA, MVK, DHCR24, CYP24A1, ALDH6A1, EPHX1 and LEAP2 were amongst the highly regulated. When the significantly regulated genes were analyzed using Ingenuity Pathway Analysis software, "Lipid Metabolism, Small Molecule Biochemistry, Hematological Disease" was the top biological network affected by the leaf extract, with a score of 36. The top predicted canonical pathway affected by the leaf extract was the coagulation system (P FGG), Superpathway of Cholesterol Biosynthesis (MVK), Immune protection/antimicrobial response (IFNGR1, LEAP2, ANXA3 and MX1) and Xenobiotic Metabolism Signaling (ALDH6A1, ADH6). In conclusion, the antioxidant-rich leaf extract of T. indica inhibited lipid peroxidation and ROS production, enhanced antioxidant enzyme activities and significantly regulated the expression of genes and proteins involved with consequential impact on the coagulation system, cholesterol biosynthesis, xenobiotic metabolism signaling and antimicrobial response.

  12. Analysis of gene expression changes, caused by exposure to nitrite, in metabolic and antioxidant enzymes in the red claw crayfish, Cherax quadricarinatus.

    Science.gov (United States)

    Jiang, Qichen; Zhang, Wenyi; Tan, Hongyue; Pan, Dongmei; Yang, Yuanhao; Ren, Qian; Yang, Jiaxin

    2014-06-01

    We evaluated the effect of acute exposure to nitrite on expression of antioxidant and metabolic enzyme genes in gill tissue of advanced juvenile Cherax quadricarinatus. A 48h nitrite exposure was conducted, using four test concentrations (NO2-N=0.5, 1, 1.5 and 2mg L(-1)) plus a control group. The relative mRNA expression of mitochondrial manganese superoxide dismutase (mMnSOD), cytosolic MnSOD (cMnSOD), extracellular copper/zinc SOD (exCu/ZnSOD), catalase (CAT), glutathione S-transferase (GST), arginine kinase (AK), glutamate dehydrogenase (GDH), mitochondrial malate dehydrogenase (mMDH), Na(+)/K(+)-ATPase α-subunit and phosphoenolpyruvate carboxykinase (PEPCK) in gill tissue was measured. Significantly increased mRNA expression was observed for all the antioxidant enzymes after 12 and 24h. After 48h, they all decreased at high nitrite concentrations. The gene expression levels of AK, GDH, mMDH and Na(+)/K(+)-ATPase α-subunit showed similar trends as the antioxidant enzymes. Significant depression of gene expression levels of PEPCK occurred throughout the experimental time at high nitrite concentrations. The results indicated that nitrite could induce oxidative and metabolic stress in C. quadricarinatus, in a time dependent manner, which suggests they could be helpful in predicting sublethal nitrite toxicity and useful in environmental monitoring studies.

  13. Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin.

    Science.gov (United States)

    Yarru, L P; Settivari, R S; Gowda, N K S; Antoniou, E; Ledoux, D R; Rottinghaus, G E

    2009-12-01

    The objective of the present study was to evaluate the efficacy of curcumin, an antioxidant found in turmeric (Curcuma longa) powder (TMP), to ameliorate changes in gene expression in the livers of broiler chicks fed aflatoxin B(1) (AFB(1)). Four pen replicates of 5 chicks each were assigned to each of 4 dietary treatments, which included the following: A) basal diet containing no AFB(1) or TMP (control), B) basal diet supplemented with TMP (0.5%) that supplied 74 mg/kg of curcumin, C) basal diet supplemented with 1.0 mg of AFB(1)/kg of diet, and D) basal diet supplemented with TMP that supplied 74 mg/kg of curcumin and 1.0 mg of AFB(1)/kg of diet. Aflatoxin reduced (P < 0.05) feed intake and BW gain and increased (P < 0.05) relative liver weight. Addition of TMP to the AFB(1) diet ameliorated (P < 0.05) the negative effects of AFB(1) on growth performance and liver weight. At the end of the 3-wk treatment period, livers were collected (6 per treatment) to evaluate changes in the expression of genes involved in antioxidant function [catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST)], biotransformation [epoxide hydrolase (EH), cytochrome P450 1A1 and 2H1 (CYP1A1 and CYP2H1)], and the immune system [interleukins 6 and 2 (IL-6 and IL-2)]. Changes in gene expression were determined using the quantitative real-time PCR technique. There was no statistical difference in gene expression among the 4 treatment groups for CAT and IL-2 genes. Decreased expression of SOD, GST, and EH genes due to AFB(1) was alleviated by inclusion of TMP in the diet. Increased expression of IL-6, CYP1A1 and CYP2H1 genes due to AFB(1) was also alleviated by TMP. The current study demonstrates partial protective effects of TMP on changes in expression of antioxidant, biotransformation, and immune system genes in livers of chicks fed AFB(1). Practical application of the research is supplementation of TMP in diets to prevent or reduce the

  14. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Chen Wei; Sheng, G. Daniel; Xu Xiaoyan; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Fu Zhengwei [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)], E-mail: azwfu2003@yahoo.com.cn

    2008-07-30

    Greater exposure to herbicide increases the likelihood of harmful effects in humans and the environment. Glufosinate, a non-selective herbicide, inhibits glutamine synthetase (GS) and thus blocks ammonium assimilation in plants. In the present study, the aquatic unicellular alga Chlorella vulgaris was chosen to assess the effects of acute glufosinate toxicity. We observed physiological changes during 12-96 h of exposure, and gene transcription during 6-48 h of exposure. Exposure to glufosinate increased malondialdehyde content by up to 2.73 times compared with the control, suggesting that there was some oxidative damage. Electron microscopy also showed that there were some chloroplast abnormalities in response to glufosinate. The activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) also increased markedly in the presence of glufosinate. Maximum activities of SOD, POD, and CAT were 2.90, 2.91, and 2.48 times that of the control, respectively. These elevated activities may help alleviate oxidative damage. A real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL. The results showed that glufosinate reduced the transcript abundances of the three genes after 12 h exposure. The lowest abundances of psaB, psbC and rbcL transcripts in response to glufosinate exposure were 38%, 16% and 43% of those of the control, respectively. Our results demonstrate that glufosinate affects the activities of antioxidant enzymes, disrupts chloroplast ultrastructure, and reduces transcription of photosynthesis-related genes in C. vulgaris.

  15. Genome-Wide Gene Expression Profiles in Antioxidant Pathways and Their Potential Sex Differences and Connections to Vitamin C in Mice

    Directory of Open Access Journals (Sweden)

    Lu Lu

    2013-05-01

    Full Text Available Vitamin C (VC is well known as an antioxidant in humans, primates and guinea pigs. Studies have suggested gender differences in VC requirements in humans, and gender differences in oxidant injury vulnerability in early life may represent a biological mechanism contributing to gender disparity in later life. Using spontaneous bone fracture (sfx mice, which lack the gene for L-Gulonolactone oxidase (Gulo, we studied the potential sex difference in expression profiles of oxidative genes at the whole-genome level. Then, we analyzed data of gene expressions in a mouse population of recombinant inbred (RI strains originally derived by crossing C57BL/6J (B6 and DBA/2J (D2 mice. Our data indicated that there were sex differences in the regulation of pre- and pro-oxidative genes in sfx mice. The associations of expression levels among Gulo, its partner genes and oxidative genes in the BXD (B6 × D2 RI strains showed a sex difference. Transcriptome mapping suggests that Gulo was regulated differently between female and male mice in BXD RI strains. Our study indicates the importance of investigating sex differences in Gulo and its oxidative function by using available mouse models.

  16. NAP (davunetide) protects primary hippocampus culture by modulating expression profile of antioxidant genes during limiting oxygen conditions.

    Science.gov (United States)

    Arya, A; Meena, R; Sethy, N K; Das, M; Sharma, M; Bhargava, K

    2015-04-01

    Hypoxia is a well-known threat to neuronal cells and triggers the pathophysiological syndromes in extreme environments such as high altitudes and traumatic conditions such as stroke. Among several prophylactic molecules proven suitable for ameliorating free radical damage, NAP (an octapeptide with initial amino acids: asparagine/N, alanine/A, and proline/P) can be considered superlative, primarily due to its high permeability into brain through blood-brain barrier and observed activity at femtomolar concentrations. Several mechanisms of action of NAP have been hypothesized for its protective role during hypoxia, yet any distinct mechanism is unknown. Oxidative stress is advocated as the leading event in hypoxia; we, therefore, investigated the regulation of key antioxidant genes to understand the regulatory role of NAP in providing neuroprotection. Primary neuronal culture of rat was subjected to cellular hypoxia by limiting the oxygen concentration to 0.5% for 72 h and observing the prophylactic efficacies of 15fM NAP by conventional cell death assays using flow cytometry. We performed real-time quantitative polymerase chain reaction to comprehend the regulatory mechanism. Further, we validated the significantly regulated candidates by enzyme assays and immunoblotting. In the present study, we report that NAP regulates a major clad of cellular antioxidants and there is an involvement of more than one route of action in neuroprotection during hypoxia. PMID:25727410

  17. Selection of reference genes in different myocardial regions of an in vivo ischemia/reperfusion rat model for normalization of antioxidant gene expression

    Directory of Open Access Journals (Sweden)

    Vesentini Nicoletta

    2012-02-01

    Full Text Available Abstract Background Changes in cardiac gene expression due to myocardial injury are usually assessed in whole heart tissue. However, as the heart is a heterogeneous system, spatial and temporal heterogeneity is expected in gene expression. Results In an ischemia/reperfusion (I/R rat model we evaluated gene expression of mitochondrial and cytoplasmatic superoxide dismutase (MnSod, Cu-ZnSod and thioredoxin reductase (trxr1 upon short (4 h and long (72 h reperfusion times in the right ventricle (RV, and in the ischemic/reperfused (IRR and the remote region (RR of the left ventricle. Gene expression was assessed by Real-time reverse-transcription quantitative PCR (RT-qPCR. In order to select most stable reference genes suitable for normalization purposes, in each myocardial region we tested nine putative reference genes by geNorm analysis. The genes investigated were: Actin beta (actb, Glyceraldehyde-3-P-dehydrogenase (gapdh, Ribosomal protein L13A (rpl13a, Tyrosine 3-monooxygenase (ywhaz, Beta-glucuronidase (gusb, Hypoxanthine guanine Phosphoribosyltransferase 1 (hprt, TATA binding box protein (tbp, Hydroxymethylbilane synthase (hmbs, Polyadenylate-binding protein 1 (papbn1. According to our findings, most stable reference genes in the RV and RR were hmbs/hprt and hmbs/tbp/hprt respectively. In the IRR, six reference genes were recommended for normalization purposes; however, in view of experimental feasibility limitations, target gene expression could be normalized against the three most stable reference genes (ywhaz/pabp/hmbs without loss of sensitivity. In all cases MnSod and Cu-ZnSod expression decreased upon long reperfusion, the former in all myocardial regions and the latter in IRR alone. trxr1 expression did not vary. Conclusions This study provides a validation of reference genes in the RV and in the anterior and posterior wall of the LV of cardiac ischemia/reperfusion model and shows that gene expression should be assessed separately in

  18. Acute effects of heavy metals on the expression of glutathione-related antioxidant genes in the marine ciliate Euplotes crassus

    International Nuclear Information System (INIS)

    Highlights: • Significant higher increases in the relative ROS and total GSH levels were observed after exposure to heavy metals. • Real-time PCR data showed expression levels of GPx and GR mRNA were sensitively modulated within 8 h of exposure to heavy metals. • E. crassus GPx and GR genes may be involved in cellular defense mechanisms against heavy metal-induced oxidative stress. • E. crassus GPx and GR genes will be useful as potential molecular markers for monitoring heavy metal contamination. - Abstract: Euplotes crassus, a single-celled eukaryote, is directly affected by environmental contaminants. Here, exponentially cultured E. crassus were exposed to cadmium, copper, lead, and zinc and then the reactive oxygen species (ROS) and total glutathione (GSH) levels were measured. Subsequently, the transcriptional modulation of glutathione peroxidase (GPx) and glutathione reductase (GR) were estimated by quantitative RT-PCR. After an 8-h exposure, significantly higher increases in the relative ROS and total GSH levels were observed in exposed group, compared to the controls. Real-time PCR data revealed that the expression levels of GPx and GR mRNA were sensitively modulated within 8 h of exposure to all heavy metals. These findings suggest that these genes may be involved in cellular defense mechanisms by modulating their gene expression against heavy metal-induced oxidative stress. Thus, they may be useful as potential molecular biomarkers to assess sediment environments for contaminants

  19. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae

    International Nuclear Information System (INIS)

    Highlights: •Novel identification of DNA repair-related genes in fish. •Investigation of whole expression profiling of DNA repair genes upon gamma radiation. •Analysis of effects of gamma radiation on antioxidant system and cell stress proteins. •Usefulness of verification of pathway-based profiling for mechanistic understanding. -- Abstract: To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4 Gy of radiation, and biochemical and molecular damage became substantial from 8 Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6 Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae

  20. Antioxidant-rich leaf extract of Barringtonia racemosa significantly alters the in vitro expression of genes encoding enzymes that are involved in methylglyoxal degradation III

    Science.gov (United States)

    Kong, Kin Weng; Abdul Aziz, Azlina; Razali, Nurhanani; Aminuddin, Norhaniza

    2016-01-01

    Background Barringtonia racemosa is a medicinal plant belonging to the Lecythidaceae family. The water extract of B. racemosa leaf (BLE) has been shown to be rich in polyphenols. Despite the diverse medicinal properties of B. racemosa, information on its major biological effects and the underlying molecular mechanisms are still lacking. Methods In this study, the effect of the antioxidant-rich BLE on gene expression in HepG2 cells was investigated using microarray analysis in order to shed more light on the molecular mechanism associated with the medicinal properties of the plant. Results Microarray analysis showed that a total of 138 genes were significantly altered in response to BLE treatment (p compound. Conclusions BLE has the potential to be developed into a novel chemopreventive agent provided that the cytotoxic effects related to methylglyoxal accumulation are minimized in normal cells that rely on aerobic glycolysis for energy supply. PMID:27635343

  1. Detoxification and antioxidant effects of garlic and curcumin in Oreochromis niloticus injected with aflatoxin B₁ with reference to gene expression of glutathione peroxidase (GPx) by RT-PCR.

    Science.gov (United States)

    El-Barbary, Manal I

    2016-04-01

    The present study aims to investigate the effects of both garlic and curcumin through evaluating their therapeutic properties as antioxidants on liver and kidney functions, hepatic antioxidants and GPx gene expression against aflatoxicosis of O. niloticus. In total, 180 of tilapia were divided into ten groups; T1 represented the negative control fed on a basal diet, and T2 was injected with a single intraperitoneal (i.p.) dose of AFB1 (6 mg/kg b.w.). Fish in T3-T6 were fed on a basal diet supplemented with both garlic (T3 and T4) and curcumin (T5 and T6) at the two concentrations of 10 and 20 g/kg diet, respectively. Fish in T7-T10 groups were injected with AFB1 and fed on the garlic (T7 and T8) and curcumin (T9 and T10) dietaries. The results showed that AFB1 has significant potency for increasing the activity of plasma AST, ALT, creatinine and uric acid values, and hepatic MDA as well as for reducing the concentrations of plasma TP, AL, GL and hepatic activity of TAC, while AFB1 led to up-regulated GPx gene expression when compared to the control (T1). These harmful effects of AFB1 were alleviated due to the garlic and curcumin dietaries in some studied parameters. Garlic reflected the highest induction of gene expression (T7); however, curcumin showed significant down-regulated (T9). These results concluded that the effects of garlic were better than curcumin at the two concentrations and the low concentration of them is more beneficial than the high concentration when it used against AFB1 in O. niloticus.

  2. Effects of dietary tannic acid on the growth, hepatic gene expression, and antioxidant enzyme activity in Brandt's voles (Microtus brandti).

    Science.gov (United States)

    Ye, Man-Hong; Nan, Yan-Lei; Ding, Meng-Meng; Hu, Jun-Bang; Liu, Qian; Wei, Wan-Hong; Yang, Sheng-Mei

    2016-01-01

    This study was designed to investigate the physiological and biochemical responses of Brandt's voles to the persistent presence of dietary tannic acid. The diet for animals in the experimental group was supplemented with 3% dietary tannic acid for 5weeks. The control group received a commercial lab chow. No significant differences were detected in body weight, organ (heart, kidney, and liver) weights, and organ parameters between animals from two groups. However, voles in the experimental group had significantly higher daily food intake, increased contents of proline and histidine in saliva and feces after protein hydrolysis, and elevated hepatic expression of transferrin than the control. Our results suggested the existence of adaptive strategies developed in Brandt's voles to overcome the adverse effects of dietary tannic acid. (1) Food consumption was increased to satisfy their nutritional demands. (2) The secretion of tannic-acid-binding salivary proteins was promoted. (3) The absorption of iron was enhanced. These alterations contributed to neutralize the negative effects of tannic acid and maintain body mass in animals supplemented with tannic acid. As the result of the consumption of tannic acid, hepatic expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase was significantly decreased, while the overall potential of the antioxidant system, characterized by increased hepatic enzymatic activities of catalase and glutathione peroxidase, was enhanced. Our results also implied the involvement of tannic acid in the regulation of lipid metabolism and oxidative stress in voles. PMID:26850644

  3. Postprandial antioxidant gene expression is modified by Mediterranean diet supplemented with coenzyme Q10 in elderly men and women

    OpenAIRE

    Yubero-Serrano, Elena M.; Gonzalez-Guardia, Lorena; Rangel-Zuñiga, Oriol; Delgado-Casado, Nieves; Delgado-Lista, Javier; Perez-Martinez, Pablo; Garcia-Rios, Antonio; Caballero, Javier; Marin, Carmen; Gutierrez-Mariscal, Francisco M.; Tinahones, Francisco J; Villalba, Jose M.; Tunez, Isaac; Perez-Jimenez, Francisco; Lopez-Miranda, Jose

    2011-01-01

    Postprandial oxidative stress is characterized by an increased susceptibility of the organism towards oxidative damage after consumption of a meal rich in lipids and/or carbohydrates. We have investigated whether the quality of dietary fat alters postprandial gene expression and protein levels involved in oxidative stress and whether the supplementation with coenzyme Q10 (CoQ) improves this situation in an elderly population. Twenty participants were randomized to receive three isocaloric die...

  4. Dietary açai modulates ROS production by neutrophils and gene expression of liver antioxidant enzymes in rats

    OpenAIRE

    Guerra, Joyce Ferreira da Costa; Magalhães, Cíntia Lopes de Brito; Costa, Daniela Caldeira; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia

    2011-01-01

    Açai (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Because increased oxidative stress and impaired antioxidant defense mechanisms are important factors in the development of diabetic complications and many health claims have been reported for açai, the present study was undertaken to evaluate the possible protective effects of açai on the production of reactive oxygen species by neutrophils and on the liver antioxidant defense system in control a...

  5. Antioxidant Enzymatic Activities and Gene Expression Associated with Heat Tolerance in the Stems and Roots of Two Cucurbit Species (“Cucurbita maxima” and “Cucurbita moschata”) and Their Interspecific Inbred Line “Maxchata”

    OpenAIRE

    Neelam Ara; Korakot Nakkanong; Wenhui Lv; Jinghua Yang; Zhongyuan Hu; Mingfang Zhang

    2013-01-01

    The elucidation of heat tolerance mechanisms is required to combat the challenges of global warming. This study aimed to determine the antioxidant enzyme responses to heat stress, at the enzymatic activity and gene expression levels, and to investigate the antioxidative alterations associated with heat tolerance in the stems and roots of squashes using three genotypes differing in heat tolerance. Plants of heat-tolerant “C. moschata”, thermolabile “C. maxima” and moderately heat-tolerant inte...

  6. Effects of phenol on ovarian P450arom gene expression and aromatase activity in vivo and antioxidant metabolism in common carp Cyprinus carpio.

    Science.gov (United States)

    Das, Sumana; Majumder, Suravi; Gupta, Shreyasi; Dutta, Sharmistha; Mukherjee, Dilip

    2016-02-01

    Ovarian cyp19a mRNA expression and P450 aromatase activity were measured in vivo in common carp Cyprinus carpio exposed to phenol for 96 h. Production of reactive oxygen species (ROS) and parameters of antioxidant defense system in serum ovary and liver of this fish after long-term phenol exposure were also studied. In vivo exposure of fish to sublethal dose of phenol for 96 h caused marked attenuation of ovarian cyp19a1a gene expression and P450 aromatase activity. Production of ROS like hydrogen peroxide and hydroxyl radicals in serum, liver and ovary in fish exposed to phenol for 15 days elevated significantly from day 1 to day 7 with no further significant increase thereafter compared to their respective control values. Total superoxide dismutase (SOD) and catalase activities in serum and ovary decreased gradually and significantly from day 1 to day 4, which then increased significantly for the rest of the exposure days. Liver SOD activity seemed to be distinctly responsive to phenol. SOD activity in liver of phenol-exposed fish started to increase gradually from day 1 to 4 with no further increase thereafter. Catalase activities in all the tissues showed significant inhibition up to day 4 which then increased gradually and significantly up to day 15 of phenol exposure compared to their respective control values. From our results, it appears that sublethal dose of phenol has the endocrine disruptive potential and effect is mediated via inhibition of ovarian P450arom gene expression and aromatase activity in vivo. Sublethal dose of phenol also caused oxidative stress, and antioxidant systems are very much effective to prevent the damages caused by the generation of ROS.

  7. Application of Plant-Growth-Promoting Fungi Trichoderma longibrachiatum T6 Enhances Tolerance of Wheat to Salt Stress through Improvement of Antioxidative Defense System and Gene Expression

    Science.gov (United States)

    Zhang, Shuwu; Gan, Yantai; Xu, Bingliang

    2016-01-01

    Soil salinity is a serious problem worldwide that reduces agricultural productivity. Trichoderma longibrachiatum T6 (T6) has been shown to promote wheat growth and induce plant resistance to parasitic nematodes, but whether the plant-growth-promoting fungi T6 can enhance plant tolerance to salt stress is unknown. Here, we determined the effect of plant-growth-promoting fungi T6 on wheat seedlings’ growth and development under salt stress, and investigated the role of T6 in inducing the resistance to NaCl stress at physiological, biochemical, and molecular levels. Wheat seedlings were inoculated with the strain of T6 and then compared with non-inoculated controls. Shoot height, root length, and shoot and root weights were measured on 15 days old wheat seedlings grown either under 150 mM NaCl or in a controlled setting without any NaCl. A number of colonies were re-isolated from the roots of wheat seedlings under salt stress. The relative water content in the leaves and roots, chlorophyll content, and root activity were significantly increased, and the accumulation of proline content in leaves was markedly accelerated with the plant growth parameters, but the content of leaf malondialdehyde under saline condition was significantly decreased. The antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in wheat seedlings were increased by 29, 39, and 19%, respectively, with the application of the strain of T6 under salt stress; the relative expression of SOD, POD, and CAT genes in these wheat seedlings were significantly up-regulated. Our results indicated that the strain of T6 ameliorated the adverse effects significantly, protecting the seedlings from salt stress during their growth period. The possible mechanisms by which T6 suppresses the negative effect of NaCl stress on wheat seedling growth may be due to the improvement of the antioxidative defense system and gene expression in the stressed wheat plants. PMID:27695475

  8. Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass (Dicentrarchus labrax).

    Science.gov (United States)

    Guardiola, F A; Porcino, C; Cerezuela, R; Cuesta, A; Faggio, C; Esteban, M A

    2016-05-01

    The application of additives in the diet as plants or extracts of plants as natural and innocuous compounds has potential in aquaculture as an alternative to antibiotics and immunoprophylactics. The aim of the current study was to evaluate the potential effects of dietary supplementation of date palm fruit extracts alone or in combination with Pdp11 probiotic on serum antioxidant status, on the humoral and cellular innate immune status, as well as, on the expression levels of some immune-related genes in head-kidney and gut of European sea bass (Dicentrarchus labrax) after 2 and 4 weeks of administration. This study showed for the first time in European sea bass an immunostimulation in several of the parameters evaluated in fish fed with date palm fruits extracts enriched diet or fed with this substance in combination with Pdp 11 probiotic, mainly after 4 weeks of treatment. In the same way, dietary supplementation of mixture diet has positive effects on the expression levels of immune-related genes, chiefly in head-kidney of Dicentrarchus labrax. Therefore, the combination of both could be considered of great interest as potential additives for farmed fish. PMID:27033470

  9. GHK-Cu may Prevent Oxidative Stress in Skin by Regulating Copper and Modifying Expression of Numerous Antioxidant Genes

    OpenAIRE

    Loren Pickart; Jessica Michelle Vasquez-Soltero; Anna Margolina

    2015-01-01

    The copper binding tripeptide GHK (glycyl-l-histidyl-l-lysine) is a naturally occurring plasma peptide that significantly declines during human aging. It has been established that GHK:Copper(2+) improves wound healing and tissue regeneration and stimulates collagen and decorin production. GHK-Cu also supports angiogenesis and nerve outgrowth, improves the condition of aging skin and hair, and possesses antioxidant and anti-inflammatory effects. In addition, it increases cellular stemness and ...

  10. Response of two rice cultivars differing in their sensitivity towards arsenic, differs in their expression of glutaredoxin and glutathione S transferase genes and antioxidant usage.

    Science.gov (United States)

    Dubey, Arvind Kumar; Kumar, Navin; Sahu, Nayan; Verma, Pankaj Kumar; Ranjan, Ruma; Chakrabarty, Debasis; Behera, Soumit K; Mallick, Shekhar

    2016-02-01

    Embodied study investigates the role of GRX and associated antioxidant enzymes in the detoxification mechanism between arsenic (As) sensitive (Usar-3) and tolerant cultivar (Pant Dhan 11) of Oryza sativa against As(III) and As(V), under GSH enriched, and GSH deprived conditions. The overall growth and physiological parameters in sensitive cultivar were lower than the tolerant cultivar, against various treatments of As(III) and As(V). The As accumulation in sensitive cv. against both As(III) and As(V) was lower than the corresponding treatments in tolerant cv. However, the As translocation against As(V) was lower (35% and 64%, resp.) than that of As(III), in both the cultivars. In sensitive cv. translocation of Zn and Cu was influenced by both As(V) and As(III) whereas, in tolerant cv. the translocation of Cu, Mn and Zn was influenced only by As(III). Translocation of Fe was negatively influenced by translocation of As in sensitive cv. and positively in tolerant cv. Strong correlation between H2O2, SOD, GRX, GR, GST and GSH/GSSG in sensitive cv. and between DHAR, APX, MDHAR and AsA in tolerant cv. demonstrates the underlying preference of GSH as electron donor for detoxification of H2O2 in sensitive cv. and AsA in tolerant cv. Higher expression of the four GRX and two GST genes in the sensitive cv. than tolerant cv, suggests that under As stress, GRX are synthesized more in the sensitive cv. than tolerant cv. Also, the expression of four GRX genes were higher against As(V) than As(III). The higher As accumulation in the tolerant cv. is due to lower GST expression, is attributed to the absence of thiolation and sequestration of As in roots, the translocation of As to shoots is higher.

  11. Surfactant metabolism and anti-oxidative capacity in hyperoxic neonatal rat lungs: effects of keratinocyte growth factor on gene expression in vivo.

    Science.gov (United States)

    Koslowski, Roland; Kasper, Michael; Schaal, Katharina; Knels, Lilla; Lange, Marco; Bernhard, Wolfgang

    2013-03-01

    Development of preterm infant lungs is frequently impaired resulting in bronchopulmoary dysplasia (BPD). BPD results from interruption of physiologic anabolic intrauterine conditions, the inflammatory basis and therapeutic consequences of premature delivery, including increased oxygen supply for air breathing. The latter requires surfactant, produced by alveolar type II (AT II) cells to lower surface tension at the pulmonary air:liquid interface. Its main components are specific phosphatidylcholine (PC) species including dipalmitoyl-PC, anionic phospholipids and surfactant proteins. Local antioxidative enzymes are essential to cope with the pro-inflammatory side effects of normal alveolar oxygen pressures. However, respiratory insufficiency frequently requires increased oxygen supply. To cope with the injurious effects of hyperoxia to epithelia, recombinant human keratinocyte growth factor (rhKGF) was proposed as a surfactant stimulating, non-catabolic and epithelial-protective therapeutic. The aim of the present study was to examine the qualification of rhKGF to improve expression parameters of lung maturity in newborn rats under hyperoxic conditions (85% O(2) for 7 days). In response to rhKGF proliferating cell nuclear antigen mRNA, as a feature of stimulated proliferation, was elevated. Similarly, the expressions of ATP-binding cassette protein A3 gene, a differentiation marker of AT II cells and of peroxiredoxin 6, thioredoxin and thioredoxin reductase, three genes involved in oxygen radical protection were increased. Furthermore, mRNA levels of acyl-coA:lysophosphatidylcholine acyltransferase 1, catalyzing dipalmitoyl-PC synthesis by acyl remodeling, and adipose triglyceride lipase, considered as responsible for fatty acid supply for surfactant PC synthesis, were elevated. These results, together with a considerable body of other confirmative evidence, suggest that rhKGF should be developed into a therapeutic option to treat preterm infants at risk for

  12. Variations in Antioxidant Genes and Male Infertility

    Directory of Open Access Journals (Sweden)

    Bolan Yu

    2015-01-01

    Full Text Available Oxidative stress and reactive oxygen species (ROS are generated from both endogenous and environmental resources, which in turn may cause defective spermatogenesis and male infertility. Antioxidant genes, which include catalase (CAT, glutathione peroxidase (GPX, glutathione S-transferase (GST, nitric oxide synthase (NOS, nuclear factor erythroid 2-related factor 2 (NRF2, and superoxide dismutase (SOD, play important roles in spermatogenesis and normal sperm function. In this review, we discuss the association between variations in major antioxidant genes and male infertility. Numerous studies have suggested that genetic disruption or functional polymorphisms in these antioxidant genes are associated with a higher risk for male infertility, which include low sperm quality, oligoasthenoteratozoospermia, oligozoospermia, and subfertility. The synergistic effects of environmental ROS and functional polymorphisms on antioxidant genes that result in male infertility have also been reported. Therefore, variants in antioxidant genes, which independently or synergistically occur with environmental ROS, affect spermatogenesis and contribute to the occurrence of male infertility. Large cohort and multiple center-based population studies to identify new antioxidant genetic variants that increase susceptibility to male infertility as well as validate its potential as genetic markers for diagnosis and risk assessment for male infertility for precise clinical approaches are warranted.

  13. Variations in Antioxidant Genes and Male Infertility.

    Science.gov (United States)

    Yu, Bolan; Huang, Zhaofeng

    2015-01-01

    Oxidative stress and reactive oxygen species (ROS) are generated from both endogenous and environmental resources, which in turn may cause defective spermatogenesis and male infertility. Antioxidant genes, which include catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST), nitric oxide synthase (NOS), nuclear factor erythroid 2-related factor 2 (NRF2), and superoxide dismutase (SOD), play important roles in spermatogenesis and normal sperm function. In this review, we discuss the association between variations in major antioxidant genes and male infertility. Numerous studies have suggested that genetic disruption or functional polymorphisms in these antioxidant genes are associated with a higher risk for male infertility, which include low sperm quality, oligoasthenoteratozoospermia, oligozoospermia, and subfertility. The synergistic effects of environmental ROS and functional polymorphisms on antioxidant genes that result in male infertility have also been reported. Therefore, variants in antioxidant genes, which independently or synergistically occur with environmental ROS, affect spermatogenesis and contribute to the occurrence of male infertility. Large cohort and multiple center-based population studies to identify new antioxidant genetic variants that increase susceptibility to male infertility as well as validate its potential as genetic markers for diagnosis and risk assessment for male infertility for precise clinical approaches are warranted. PMID:26618172

  14. Crocin "saffron" protects against beryllium chloride toxicity in rats through diminution of oxidative stress and enhancing gene expression of antioxidant enzymes.

    Science.gov (United States)

    El-Beshbishy, Hesham A; Hassan, Memy H; Aly, Hamdy A A; Doghish, Ahmed S; Alghaithy, Abdulaziz A A

    2012-09-01

    RNA expression of antioxidant genes.

  15. Sub-toxic Ethanol Exposure Modulates Gene Expression and Enzyme Activity of Antioxidant Systems to Provide Neuroprotection in Hippocampal HT22 Cells

    Science.gov (United States)

    Casañas-Sánchez, Verónica; Pérez, José A.; Quinto-Alemany, David; Díaz, Mario

    2016-01-01

    Ethanol is known to cause severe systemic damage often explained as secondary to oxidative stress. Brain is particularly vulnerable to ethanol-induced reactive oxygen species (ROS) because the high amounts of lipids, and because nerve cell membranes contain high amounts of peroxidable fatty acids. Usually these effects of ethanol are associated to high and/or chronic exposure to ethanol. However, as we show in this manuscript, a low and acute dose of ethanol trigger a completely different response in hippocampal cells. Thus, we have observed that 0.1% ethanol exposure to HT22 cells, a murine hippocampal-derived cell line, increases the transcriptional expression of different genes belonging to the classical, glutathione/glutaredoxin and thioredoxin/peroxiredoxin antioxidant systems, these including Sod1, Sod2, Gpx1, Gclc, and Txnrd1. Paralleling these changes, enzyme activities of total superoxide dismutase (tSOD), catalase, total glutathione peroxidase (tGPx), glutathione-S-reductase (GSR), and total thioredoxin reductase (tTXNRD), were all increased, while the generation of thiobarbituric acid reactive substances (TBARS), as indicators of lipid peroxidation, and glutathione levels remained unaltered. Ethanol exposure did not affect cell viability or cell growing as assessed by real-time cell culture monitoring, indicating that low ethanol doses are not deleterious for hippocampal cells, but rather prevented glutamate-induced excitotoxicity. In summary, we conclude that sub-toxic exposure to ethanol may well be neuroprotective against oxidative insults in hippocampal cells. PMID:27512374

  16. Flavocoxid Inhibits Phospholipase A2, Peroxidase Moieties of the Cyclooxygenases (COX, and 5-Lipoxygenase, Modifies COX-2 Gene Expression, and Acts as an Antioxidant

    Directory of Open Access Journals (Sweden)

    Bruce P. Burnett

    2011-01-01

    Full Text Available The multiple mechanisms of action for flavocoxid relating to arachidonic acid (AA formation and metabolism were studied in vitro. Flavocoxid titrated into rat peritoneal macrophage cultures inhibited cellular phospholipase A2 (PLA2 (IC50 = 60 μg/mL. In in vitro enzyme assays, flavocoxid showed little anti-cyclooxygenase (CO activity on COX-1/-2 enzymes, but inhibited the COX-1 (IC50 = 12.3 and COX-2 (IC50 = 11.3 μg/mL peroxidase (PO moieties as well as 5-lipoxygenase (5-LOX (IC50 = 110 μg/mL. No detectable 5-LOX inhibition was found for multiple traditional and COX-2 selective NSAIDs. Flavocoxid also exhibited strong and varied antioxidant capacities in vitro and decreased nitrite levels (IC50 = 38 μg/mL in rat peritoneal macrophages. Finally, in contrast to celecoxib and ibuprofen, which upregulated the cox-2 gene, flavocoxid strongly decreased expression. This work suggests that clinically favourable effects of flavocoxid for management of osteoarthritis (OA are achieved by simultaneous modification of multiple molecular pathways relating to AA metabolism, oxidative induction of inflammation, and neutralization of reactive oxygen species (ROS.

  17. Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression.

    Directory of Open Access Journals (Sweden)

    Anton M Markovets

    Full Text Available UNLABELLED: The incidence of age-related macular degeneration (AMD, the main cause of blindness in older patients in the developed countries, is increasing with the ageing population. At present there is no effective treatment for the prevailing geographic atrophy, dry AMD, whereas antiangiogenic therapies successful used in managing the wet form of AMD. Recently we showed that mitochondria-targeted antioxidant plastoquinonyl-decyl-triphenylphosphonium (SkQ1 is able to prevent the development and moreover caused regression of pre-existing signs of the retinopathy in OXYS rats, an animal model of AMD. Here we examine the effects of SkQ1 on expression of key regulators of angiogenesis vascular endothelial growth factor A (VEGF and its antagonist pigment epithelium-derived factor (PEDF genes in the retina of OXYS rats as evidenced by real-time PCR and an ELISA test for VEGF using Wistar rats as control. Ophthalmoscopic examinations confirmed that SkQ1 supplementation (from 1.5 to 3 months of age, 250 nmol/kg prevented development while eye drops SkQ1 (250 nM, from 9 to 12 months caused some reduction of retinopathy signs in OXYS rats and did not reveal any negative effects on the control Wistar rat's retina. Prevention of premature retinopathy by SkQ1 was connected with an increase of VEGF mRNA and protein in OXYS rat's retina up to the levels corresponding to the Wistar rats, and did not involve changes in PEDF expression. In contrast the treatment with SkQ1 drops caused a decrease of VEGF mRNA and protein levels and an increase in the PEDF mRNA level in the middle-aged OXYS rats, but in Wistar rats the changes of gene expression were the opposite. CONCLUSIONS: The beneficial effects of SkQ1 on retinopathy connected with normalization of expression of VEGF and PEDF in the retina of OXYS rats and depended on age of the animals and the stage of retinopathy.

  18. Changes in barrier health status of the gill for grass carp (Ctenopharyngodon idella) during valine deficiency: Regulation of tight junction protein transcript, antioxidant status and apoptosis-related gene expression.

    Science.gov (United States)

    Feng, Lin; Luo, Jian-Bo; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-08-01

    This study investigated the effects of dietary valine on tight junction protein transcription, antioxidant status and apoptosis on grass carp gills (Ctenopharyngodon idella). Fish were fed six different experimental diets containing graded levels of valine (4.3, 8.0, 10.6, 13.1, 16.7, 19.1 g/kg). The results indicated that valine deficiency decreased Claudin b, Claudin 3, Occludin and ZO-1 transcription and increased Claudin 15 expression in the fish gill (P valine deficiency and valine supplementation did not have a significant effect on Claudin c and Claudin 12 expression in grass carp gills (P > 0.05). Valine deficiency also disrupted antioxidant status in the gill by decreasing anti-superoxide radicals and hydroxyl radical capacity, glutathione contents and the activities and mRNA levels of Cu/Zn superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) (P valine deficiency induced DNA fragmentation via the up-regulation of Caspase 3, Caspase 8 and Caspase 9 expressions (P valine deficiency impaired the structural integrity of fish gill by disrupted fish antioxidant defenses and regulating the expression of tight junction protein, cytokines, antioxidant enzymes, NF-κB p65, IκBα, TOR, Nrf2, Keap1 and apoptosis-related genes in the fish gill.

  19. Effect of dietary glutamine on growth performance, non-specific immunity, expression of cytokine genes, phosphorylation of target of rapamycin (TOR), and anti-oxidative system in spleen and head kidney of Jian carp (Cyprinus carpio var. Jian).

    Science.gov (United States)

    Hu, Kai; Zhang, Jing-Xiu; Feng, Lin; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Zhou, Xiao-Qiu

    2015-06-01

    This study was designed to investigate the effects of dietary glutamine on the growth performance, cytokines, target of rapamycin (TOR), and antioxidant-related parameters in the spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish were fed the basal (control) and glutamine-supplemented (12.0 g glutamine kg(-1) diet) diets for 6 weeks. Results indicated that the dietary glutamine supplementation improved the growth performance, spleen protein content, serum complement 3 content, and lysozyme activity in fish. In the spleen, glutamine down-regulated the expression of the interleukin 1 and interleukin 10 genes, and increased the level of phosphorylation of TOR protein. In the head kidney, glutamine down-regulated the tumor necrosis factor α and interleukin 10 gene expressions, phosphorylated and total TOR protein levels, while up-regulated the transforming growth factor β2 gene expression. Furthermore, the protein carbonyl content was decreased in the spleen of fish fed glutamine-supplemented diet; conversely, the anti-hydroxyl radical capacity and glutathione content in the spleen were increased by glutamine. However, diet supplemented with glutamine did not affect the lipid peroxidation, anti-superoxide anion capacity, and antioxidant enzyme activities in the spleen. Moreover, all of these antioxidant parameters in the head kidney were not affected by glutamine. Results from the present experiment showed the importance of dietary supplementation of glutamine in benefaction of the growth performance and several components of the innate immune system, and the deferential role in cytokine gene expression, TOR kinase activity, and antioxidant status between the spleen and head kidney of juvenile Jian carp.

  20. Expression changes of antioxidant, apoptotic, anti-apoptotic genes and miR-15b-34a-21-98 in over tissue by using erythromycin, quinacrine and tetracycline in non-surgical sterilization.

    Science.gov (United States)

    Kara, Murat; Yumrutas, Onder; Atilgan, Remzi; Baspinar, Melike; Sapmaz, Ekrem; Kuloglu, Tuncay

    2014-12-01

    In the present study, effects on expression of antioxidant, apoptotic and anti-apoptotic genes (GSR, GRX3, SOD1, RAI-NOS, HSP7, BAX, Bcl-2, CASP3 and MDH1) of substances being used in non-surgical sterilization such as quinacrine, erythromycin and tetracycline were evaluated in over tissue. Moreover, expression of some specific mi-RNA (miR-15b, miR-21, miR34a and miR-98) that playing a role in apoptosis was determined in same tissue. Prospective comparative experimental study. Genetics and Histology laboratory. Total number of 28 Wistar albino 12-14 week old female rats with regular cycles and 200-220 grams in weight. Total RNA was isolated from tissues by using a RNA isolation kit. Gene expression levels were evaluated by Real-Time PCR method. Tubal passage and fibrosis induction in tissues was observed in the histochemical analysis. In the statistical analysis of data Kruskal-Wallis variance analysis and Mann-Whitney U test were used and p tetracycline were significantly higher than control. Results of the present study suggest that the doses treated of quinacrine, erythromycin and tetracycline used in non-surgical sterilization effect poorly the expression of anti-oxidant, apoptotic and anti-apoptotic genes, but the expression of miR-34 playing the role in apoptosis increased after treatment of these substances. PMID:25195052

  1. Antioxidant Enzymatic Activities and Gene Expression Associated with Heat Tolerance in the Stems and Roots of Two Cucurbit Species (“Cucurbita maxima” and “Cucurbita moschata” and Their Interspecific Inbred Line “Maxchata”

    Directory of Open Access Journals (Sweden)

    Neelam Ara

    2013-12-01

    Full Text Available The elucidation of heat tolerance mechanisms is required to combat the challenges of global warming. This study aimed to determine the antioxidant enzyme responses to heat stress, at the enzymatic activity and gene expression levels, and to investigate the antioxidative alterations associated with heat tolerance in the stems and roots of squashes using three genotypes differing in heat tolerance. Plants of heat-tolerant “C. moschata”, thermolabile “C. maxima” and moderately heat-tolerant interspecific inbred line “Maxchata” genotypes were exposed to moderate (37 °C and severe (42 °C heat shocks. “C. moschata” exhibited comparatively little oxidative damage, with the lowest hydrogen peroxide (H2O2, superoxide (O2− and malondialdehyde (MDA contents in the roots compared to stems, followed by “Maxchata”. The enzyme activities of superoxide dismutase (SOD, ascorbate peroxidase (APX, catalase (CAT and peroxidase (POD were found to be increased with heat stress in tolerant genotypes. The significant inductions of FeSOD, MnSOD, APX2, CAT1 and CAT3 isoforms in tolerant genotypes suggested their participation in heat tolerance. The differential isoform patterns of SOD, APX and CAT between stems and roots also indicated their tissue specificity. Furthermore, despite the sequence similarity of the studied antioxidant genes among “C. maxima” and “Maxchata”, most of these genes were highly induced under heat stress in “Maxchata”, which contributed to its heat tolerance. This phenomenon also indicated the involvement of other unknown genetic and/or epigenetic factors in controlling the expression of these antioxidant genes in squashes, which demands further exploration.

  2. Antioxidant Enzymatic Activities and Gene Expression Associated with Heat Tolerance in the Stems and Roots of Two Cucurbit Species (“Cucurbita maxima” and “Cucurbita moschata”) and Their Interspecific Inbred Line “Maxchata”

    Science.gov (United States)

    Ara, Neelam; Nakkanong, Korakot; Lv, Wenhui; Yang, Jinghua; Hu, Zhongyuan; Zhang, Mingfang

    2013-01-01

    The elucidation of heat tolerance mechanisms is required to combat the challenges of global warming. This study aimed to determine the antioxidant enzyme responses to heat stress, at the enzymatic activity and gene expression levels, and to investigate the antioxidative alterations associated with heat tolerance in the stems and roots of squashes using three genotypes differing in heat tolerance. Plants of heat-tolerant “C. moschata”, thermolabile “C. maxima” and moderately heat-tolerant interspecific inbred line “Maxchata” genotypes were exposed to moderate (37 °C) and severe (42 °C) heat shocks. “C. moschata” exhibited comparatively little oxidative damage, with the lowest hydrogen peroxide (H2O2), superoxide (O2−) and malondialdehyde (MDA) contents in the roots compared to stems, followed by “Maxchata”. The enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) were found to be increased with heat stress in tolerant genotypes. The significant inductions of FeSOD, MnSOD, APX2, CAT1 and CAT3 isoforms in tolerant genotypes suggested their participation in heat tolerance. The differential isoform patterns of SOD, APX and CAT between stems and roots also indicated their tissue specificity. Furthermore, despite the sequence similarity of the studied antioxidant genes among “C. maxima” and “Maxchata”, most of these genes were highly induced under heat stress in “Maxchata”, which contributed to its heat tolerance. This phenomenon also indicated the involvement of other unknown genetic and/or epigenetic factors in controlling the expression of these antioxidant genes in squashes, which demands further exploration. PMID:24336062

  3. Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit species ("Cucurbita maxima" and "Cucurbita moschata") and their interspecific inbred line "Maxchata".

    Science.gov (United States)

    Ara, Neelam; Nakkanong, Korakot; Lv, Wenhui; Yang, Jinghua; Hu, Zhongyuan; Zhang, Mingfang

    2013-12-10

    The elucidation of heat tolerance mechanisms is required to combat the challenges of global warming. This study aimed to determine the antioxidant enzyme responses to heat stress, at the enzymatic activity and gene expression levels, and to investigate the antioxidative alterations associated with heat tolerance in the stems and roots of squashes using three genotypes differing in heat tolerance. Plants of heat-tolerant "C. moschata", thermolabile "C. maxima" and moderately heat-tolerant interspecific inbred line "Maxchata" genotypes were exposed to moderate (37 °C) and severe (42 °C) heat shocks. "C. moschata" exhibited comparatively little oxidative damage, with the lowest hydrogen peroxide (H2O2), superoxide (O2(-)) and malondialdehyde (MDA) contents in the roots compared to stems, followed by "Maxchata". The enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) were found to be increased with heat stress in tolerant genotypes. The significant inductions of FeSOD, MnSOD, APX2, CAT1 and CAT3 isoforms in tolerant genotypes suggested their participation in heat tolerance. The differential isoform patterns of SOD, APX and CAT between stems and roots also indicated their tissue specificity. Furthermore, despite the sequence similarity of the studied antioxidant genes among "C. maxima" and "Maxchata", most of these genes were highly induced under heat stress in "Maxchata", which contributed to its heat tolerance. This phenomenon also indicated the involvement of other unknown genetic and/or epigenetic factors in controlling the expression of these antioxidant genes in squashes, which demands further exploration.

  4. Exogenous spermidine improves seed germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression.

    Science.gov (United States)

    Li, Zhou; Peng, Yan; Zhang, Xin-Quan; Ma, Xiao; Huang, Lin-Kai; Yan, Yan-Hong

    2014-01-01

    This study was designed to determine the effect of exogenous spermidine (Spd) (30 μM) on white clover seed germination under water stress induced by polyethylene glycol 6000. Use of seed priming with Spd improved seed germination percentage, germination vigor, germination index, root viability and length, and shortened mean germination time under different water stress conditions. Seedling fresh weight and dry weight also increased significantly in Spd-treated seeds compared with control (seeds primed with distilled water). Improved starch metabolism was considered a possible reason for this seed invigoration, since seeds primed with Spd had significantly increased α-amylase/β-amylase activities, reducing sugar, fructose and glucose content and transcript level of β-amylase gene but not transcript level of α-amylase gene. In addition, the physiological effects of exogenous Spd on improving seeds' tolerance to water deficit during germination were reflected by lower lipid peroxidation levels, better cell membrane stability and significant higher seed vigour index in seedlings. Enhanced antioxidant enzyme activities (superoxide dismutase, peroxidase, catalase and ascorbate peroxidase), ascorbate-glutathione cycle (ASC-GSH cycle) and transcript level of genes encoding antioxidant enzymes induced by exogenous Spd may be one of the critical reasons behind acquired drought tolerance through scavenging of reactive oxygen species (ROS) in water-stressed white clover seeds. The results indicate that Spd plays an important function as a stress-protective compound or physiological activator.

  5. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  6. The effect of alcohol and hydrogen peroxide on liver hepcidin gene expression in mice lacking antioxidant enzymes, glutathione peroxidase-1 or catalase.

    Science.gov (United States)

    Harrison-Findik, Duygu Dee; Lu, Sizhao

    2015-01-01

    This study investigates the regulation of hepcidin, the key iron-regulatory molecule, by alcohol and hydrogen peroxide (H2O2) in glutathione peroxidase-1 (gpx-1(-/-)) and catalase (catalase(-/-)) knockout mice. For alcohol studies, 10% ethanol was administered in the drinking water for 7 days. Gpx-1(-/-) displayed significantly higher hepatic H2O2 levels than catalase(-/-) compared to wild-type mice, as measured by 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The basal level of liver hepcidin expression was attenuated in gpx-1(-/-) mice. Alcohol increased H2O2 production in catalase(-/-) and wild-type, but not gpx-1(-/-), mice. Hepcidin expression was inhibited in alcohol-fed catalase(-/-) and wild-type mice. In contrast, alcohol elevated hepcidin expression in gpx-1(-/-) mice. Gpx-1(-/-) mice also displayed higher level of basal liver CHOP protein expression than catalase(-/-) mice. Alcohol induced CHOP and to a lesser extent GRP78/BiP expression, but not XBP1 splicing or binding of CREBH to hepcidin gene promoter, in gpx-1(-/-) mice. The up-regulation of hepatic ATF4 mRNA levels, which was observed in gpx-1(-/-) mice, was attenuated by alcohol. In conclusion, our findings strongly suggest that H2O2 inhibits hepcidin expression in vivo. Synergistic induction of CHOP by alcohol and H2O2, in the absence of gpx-1, stimulates liver hepcidin gene expression by ER stress independent of CREBH.

  7. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.).

    Science.gov (United States)

    Fatima, Tahira; Kesari, Vigya; Watt, Ian; Wishart, David; Todd, James F; Schroeder, William R; Paliyath, Gopinadhan; Krishna, Priti

    2015-10-01

    In this study, phenolic compounds were analyzed in developing berries of four Canadian grown sea buckthorn (Hippophae rhamnoides L.) cultivars ('RC-4', 'E6590', 'Chuyskaya' and 'Golden Rain') and in leaves of two of these cultivars. Among phenolic acids, p-coumaric acid was the highest in berries, while gallic acid was predominant in leaves. In the flavonoid class of compounds, myricetin/rutin, kaempferol, quercetin and isorhamnetin were detected in berries and leaves. Berries of the 'RC-4' cultivar had approximately ⩾ 2-fold higher levels of myricetin and quercetin at 17.5mg and 17.2 mg/100 g FW, respectively, than the other cultivars. The flavonoid content in leaves was considerably more than in berries with rutin and quercetin levels up to 135 mg and 105 mg/100 g FW, respectively. Orthologs of 15 flavonoid biosynthesis pathway genes were identified within the transcriptome of sea buckthorn mature seeds. Semi-quantitative RT-PCR analysis of these genes in developing berries indicated relatively higher expression of genes such as CHS, F3'H, DFR and LDOX in the 'RC-4' cultivar than in the 'Chuyskaya' cultivar. Vitamin C levels in ripened berries of the Canadian cultivars were on the high end of the concentration range reported for most other sea buckthorn cultivars. Orthologs of genes involved in vitamins C and E biosynthesis were also identified, expanding the genomic resources for this nutritionally important plant. PMID:26318327

  8. Dietary phenylalanine-improved intestinal barrier health in young grass carp (Ctenopharyngodon idella) is associated with increased immune status and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes and related signalling molecules.

    Science.gov (United States)

    Feng, Lin; Li, Wen; Liu, Yang; Jiang, Wei-Dan; Kuang, Sheng-Yao; Jiang, Jun; Tang, Ling; Wu, Pei; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-08-01

    The present work evaluated the effects of dietary phenylalanine (Phe) on the intestinal immune response, tight junction proteins transcript abundance, and the gene expression of immune- and antioxidant-related signalling molecules in the intestine. In addition, the dietary Phe (and Phe + Tyr) requirement of young grass carp (Ctenopharyngodon idella) was also estimated. Fish were fed fish meal-casein-gelatin based diets (302.3 g crude protein kg(-1)) containing 3.4 (basal diet), 6.1, 9.1, 11.5, 14.0 and 16.8 g Phe kg(-1) with a fixed amount of 10.7 g tyrosine kg(-1) for 8 weeks. The results showed that Phe deficiency or excess Phe reduced the lysozyme and acid phosphatase activities and complement C 3 content in the intestine (P 0.05). Gene expression of interleukin-10 (IL-10), transforming growth factor-β1 (TGF-β1), target of rapamycin (TOR) and inhibitor of nuclear factor κBα (IκBα) in proximal intestine (PI), mid intestine (MI) and distal intestine (DI) increased as dietary Phe increased up to 6.1, 9.1, 11.5 and 14.0 g kg(-1), respectively (P < 0.05). However, interleukin-8 (IL-8), tumour necrosis factor-α (TNF-α) and nuclear factor-κB p65 (NF-κB p65) mRNA levels showed opposite tendencies. In addition, the mRNA level of superoxide dismutase (SOD) was significantly lower in the intestinal tissue of the group fed a diet with Phe levels of 16.8 g kg(-1) than in those of other groups (P < 0.05). The expression of NF-E2-related factor 2 (Nrf2) gene was increased as dietary Phe increased up to 9.1 g kg(-1) (P < 0.05). In conclusion, Phe improved intestinal immune status, and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes, NF-κB p65, IκBα, TOR, and Nrf2 in the fish intestine. Based on the quadratic regression analysis of lysozyme activity at a 95% maximum, the dietary Phe requirement of young grass carp (256-629 g) was estimated to be 8.31 g kg(-1), corresponding to 2.75 g 100 g(-1) protein.

  9. Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes.

    Science.gov (United States)

    Jovanović, Boris; Cvetković, Vladimir J; Mitrović, Tatjana Lj

    2016-02-01

    The fruitfly, Drosophila melanogaster was exposed to the human food grade of E171 titanium dioxide (TiO2). This is a special grade of TiO2 which is frequently omitted in nanotoxicology studies dealing with TiO2, yet it is the most relevant grade regarding oral exposure of humans. D. melanogaster larvae were exposed to 0.002 mg mL(-1), 0.02 mg mL(-1), 0.2 mg mL(-1), and 2 mg mL(-1) of TiO2 in feeding medium, and the survival, fecundity, pupation time, and expression of genes involved in oxidative stress response were monitored. TiO2 did not affect survival but significantly increased time to pupation (p < 0.001). Fecundity of D. melanogaster was unaffected by the treatment. Expression of the gene for catalase was markedly downregulated by the treatment, while the effect on the downregulation of superoxide dismutase 2 was less pronounced. After four days of dietary exposure TiO2 was present in a significant amount in larvae, but was not transferred to adults during metamorphosis. Two individuals with aberrant phenotype similar to previously described gold nanoparticles induced mutant phenotypes were detected in the group exposed to TiO2. In general, TiO2 showed little toxicity toward D. melanogaster at concentrations relevant to oral exposure of humans.

  10. Glycyrrhizin exerts antioxidative effects in H5N1 influenza A virus-infected cells and inhibits virus replication and pro-inflammatory gene expression.

    Directory of Open Access Journals (Sweden)

    Martin Michaelis

    Full Text Available Glycyrrhizin is known to exert antiviral and anti-inflammatory effects. Here, the effects of an approved parenteral glycyrrhizin preparation (Stronger Neo-Minophafen C were investigated on highly pathogenic influenza A H5N1 virus replication, H5N1-induced apoptosis, and H5N1-induced pro-inflammatory responses in lung epithelial (A549 cells. Therapeutic glycyrrhizin concentrations substantially inhibited H5N1-induced expression of the pro-inflammatory molecules CXCL10, interleukin 6, CCL2, and CCL5 (effective glycyrrhizin concentrations 25 to 50 µg/ml but interfered with H5N1 replication and H5N1-induced apoptosis to a lesser extent (effective glycyrrhizin concentrations 100 µg/ml or higher. Glycyrrhizin also diminished monocyte migration towards supernatants of H5N1-infected A549 cells. The mechanism by which glycyrrhizin interferes with H5N1 replication and H5N1-induced pro-inflammatory gene expression includes inhibition of H5N1-induced formation of reactive oxygen species and (in turn reduced activation of NFκB, JNK, and p38, redox-sensitive signalling events known to be relevant for influenza A virus replication. Therefore, glycyrrhizin may complement the arsenal of potential drugs for the treatment of H5N1 disease.

  11. Tumor-specific gene expression patterns with gene expression profiles

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaogang; LI Yingxin; LI Jiangeng; GONG Daoxiong; WANG Jinlian

    2006-01-01

    Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, "RFE_Relief algorithm" was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.

  12. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k+) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k+ gene expression where the H S V-1 t k+ gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([18 F]F H P G; [18 F]-A C V), and pyrimidine- ([123/131 I]I V R F U; [124/131I]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [123/131I]I V R F U imaging with the H S V-1 t k+ reporter gene will be presented

  13. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  14. In vitro antioxidant and antigenotoxic potentials of myricetin-3-o-galactoside and myricetin-3-o-rhamnoside from Myrtus communis: modulation of expression of genes involved in cell defence system using cDNA microarray.

    Science.gov (United States)

    Hayder, Nawel; Bouhlel, Ines; Skandrani, Ines; Kadri, Malika; Steiman, Régine; Guiraud, Pascale; Mariotte, Anne-Marie; Ghedira, Kamel; Dijoux-Franca, Marie-Geneviève; Chekir-Ghedira, Leila

    2008-04-01

    Antioxidant activity of myricetin-3-o-galactoside and myricetin-3-o-rhamnoside, isolated from the leaves of Myrtus communis, was determined by the ability of each compound to inhibit xanthine oxidase activity, lipid peroxidation and to scavenge the free radical 1,1-diphenyl-2-picrylhydrazyl. Antimutagenic activity was assessed using the SOS chromotest and the Comet assay. The IC50 values of lipid peroxidation by myricetin-3-o-galactoside and myricetin-3-o-rhamnoside are respectively 160 microg/ml and 220 microg/ml. At a concentration of 100 microg/ml, the two compounds showed the most potent inhibitory effect of xanthine oxidase activity by respectively, 57% and 59%. Myricetin-3-o-rhamnoside was a very potent radical scavenger with an IC50 value of 1.4 microg/ml. Moreover, these two compounds induced an inhibitory activity against nifuroxazide, aflatoxine B1 and H2O2 induced mutagenicity. The protective effect exhibited by these molecules was also determined by analysis of gene expression as response to an oxidative stress using a cDNA micro-array. Myricetin-3-o-galactoside and myricetin-3-o-rhamnoside modulated the expression patterns of cellular genes involved in oxidative stress, respectively (GPX1, TXN, AOE372, SEPW1, SHC1) and (TXNRD1, TXN, SOD1 AOE372, SEPW1), in DNA damaging repair, respectively (XPC, LIG4, RPA3, PCNA, DDIT3, POLD1, XRCC5, MPG) and (TDG, PCNA, LIG4, XRCC5, DDIT3, MSH2, ERCC5, RPA3, POLD1), and in apoptosis (PARP). PMID:18222061

  15. The Protective Properties of the Strawberry (Fragaria ananassa) against Carbon Tetrachloride-Induced Hepatotoxicity in Rats Mediated by Anti-Apoptotic and Upregulation of Antioxidant Genes Expression Effects

    Science.gov (United States)

    Hamed, Sherifa S.; AL-Yhya, Nouf A.; El-Khadragy, Manal F.; Al-Olayan, Ebtesam M.; Alajmi, Reem A.; Hassan, Zeinab K.; Hassan, Salwa B.; Abdel Moneim, Ahmed E.

    2016-01-01

    The strawberry (Fragaria ananassa) has been extensively used to treat a wide range of ailments in many cultures. The present study was aimed at evaluating the hepatoprotective effect of strawberry juice on experimentally induced liver injury in rats. To this end, rats were introperitoneally injected with carbon tetrachloride (CCl4) with or without strawberry juice supplementation for 12 weeks and the hepatoprotective effect of strawberry was assessed by measuring serum liver enzyme markers, hepatic tissue redox status and apoptotic markers with various techniques including biochemistry, ELISA, quantitative PCR assays and histochemistry. The hepatoprotective effect of the strawberry was evident by preventing CCl4-induced increase in liver enzymes levels. Determination of oxidative balance showed that strawberry treatment significantly blunted CCl4-induced increase in oxidative stress markers and decrease in enzymatic and non-enzymatic molecules in hepatic tissue. Furthermore, strawberry supplementation enhanced the anti-apoptotic protein, Bcl-2, and restrained the pro-apoptotic proteins Bax and caspase-3 with a marked reduction in collagen areas in hepatic tissue. These findings demonstrated that strawberry (F. ananassa) juice possessed antioxidant, anti-apoptotic and anti-fibrotic properties, probably mediated by the presence of polyphenols and flavonoids compounds. PMID:27547187

  16. Ascidian gene-expression profiles

    OpenAIRE

    William R Jeffery

    2002-01-01

    With the advent of gene-expression profiling, a large number of genes can now be investigated simultaneously during critical stages of development. This approach will be particularly informative in studies of ascidians, basal chordates whose genomes and embryology are uniquely suited for mapping developmental gene networks.

  17. Effects of Lipoic Acid on Immune Function, the Antioxidant Defense System, and Inflammation-Related Genes Expression of Broiler Chickens Fed Aflatoxin Contaminated Diets

    Science.gov (United States)

    Li, Yan; Ma, Qiu-Gang; Zhao, Li-Hong; Wei, Hua; Duan, Guo-Xiang; Zhang, Jian-Yun; Ji, Cheng

    2014-01-01

    This study was designed to evaluate the effect of low level of Aflatoxin B1 (AFB1) on oxidative stress, immune reaction and inflammation response and the possible ameliorating effects of dietary alpha-lipoic acid (α-LA) in broilers. Birds were randomly allocated into three groups and assigned to receive different diets: basal diet, diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in diet containing 74 μg/kg AFB1 for three weeks. The results showed that the serum levels of malondialdehyde, tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ) in the AFB1-treated group were significantly increased than the control group. In addition, the increased expressions of interleukin 6 (IL6), TNFα and IFNγ were observed in birds exposed to the AFB1-contaminated diet. These degenerative changes were inhibited by α-LA-supplement. The activities of total superoxide dismutase and glutathione peroxidase, the levels of humoral immunity, and the expressions of nuclear factor-κB p65 and heme oxygenase-1, however, were not affected by AFB1. The results suggest that α-LA alleviates AFB1 induced oxidative stress and immune changes and modulates the inflammatory response at least partly through changes in the expression of proinflammatory cytokines of spleen such as IL6 and TNFα in broiler chickens. PMID:24699046

  18. Antioxidant Enzyme Gene Expression as Molecular Biomarkers of Exposure to Polycyclic Musks%抗氧化酶基因作为多环麝香污染分子标志物研究

    Institute of Scientific and Technical Information of China (English)

    陈春; 周启星; 刘潇威

    2012-01-01

    The objective of this study was to investigate the molecular toxicological effects of low level synthetic musks exposure on the earthworm Eisenia fetida.The method of Sybr Green Ⅰ real time quantitative PCR(RT-qPCR) for detecting gene expression level was established.SOD(superoxide dismutase) and CAT(catalase) mRNA expression levels were measured after 28 days of AHTN and HHCB exposure.The analysis results of both sequence alignment and melting curve demonstrated that the selected primers were suitable for mRNA quantification.The liner correlation coefficients of SOD and CAT standard curves were 0.997 and 0.994,respectively,and the PCR amplification efficiencies were both close to 100%.Therefore,relative quantification method could be applied to analyze the gene expression levels.The significant elevation of malondialdehyde(MDA) levels indicated that the reactive oxygen species-induced cellular oxidative injury might be one of the main toxic effects of AHTN and HHCB.Besides,a significant positive correlation was observed between the up-regulation of SOD,CAT mRNA and the MDA levels,suggesting that possible changes in the transcript expression of antioxidant enzyme genes were associated with the oxidative stress.Furthermore,the dose-response correlation between SOD,CAT mRNA levels and the exposure concentrations was also found.The overall results indicated that SOD and CAT genes might be potential molecular biomarkers for the evaluation of the pollution stress and toxicological effects of synthetic musks in the environment.%为研究土壤中低剂量合成麝香暴露的分子毒理效应,以蚯蚓超氧化物歧化酶(SOD)和过氧化氢酶(CAT)基因为供试基因,建立mRNA表达水平的Sybr GreenⅠ荧光定量PCR检测方法;并且采用自然土壤染毒实验,检测了吐纳麝香(AHTN)或佳乐麝香(HHCB)胁迫诱导SOD、CAT mRNA的表达水平变化.序列同源性比较与熔解曲线分析表明设计的引物适合

  19. Homeobox gene expression in Brachiopoda

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas

    2011-01-01

    The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa....... Not is a homeobox containing gene that regulates the formation of the notochord in chordates, while Cdx (caudal) is a ParaHox gene involved in the formation of posterior tissues of various animal phyla. The T. transversa homolog, TtrNot, is expressed in the ectoderm from the beginning of gastrulation until...... formation. TtrNot expression is absent in unfertilized eggs, in embryos prior to gastrulation, and in settled individuals during and after metamorphosis. Comparison with the expression patterns of Not genes in other metazoan phyla suggests an ancestral role for this gene in gastrulation and germ layer...

  20. Shuffling Yeast Gene Expression Data

    OpenAIRE

    Bilke, Sven

    2000-01-01

    A new method to sort gene expression patterns into functional groups is presented. The method is based on a sorting algorithm using a non-local similarity score, which takes all other patterns in the dataset into account. The method is therefore very robust with respect to noise. Using the expression data for yeast, we extract information about functional groups. Without prior knowledge of parameters the cell cycle regulated genes in yeast can be identified. Furthermore a second, independent ...

  1. Vascular gene expression: a hypothesis

    OpenAIRE

    Martínez-Navarro, Angélica C.; Galván-Gordillo, Santiago V.; Xoconostle-Cázares, Beatriz; Ruiz-Medrano, Roberto

    2013-01-01

    The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular ti...

  2. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin;

    2014-01-01

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies....... For maximal reliability of analysis, therefore, comparisons should be performed at the cellular level. This could be accomplished using an appropriate correction method that can detect and remove the inter-treatment bias for cell-number. Based on inter-treatment variations of reference genes, we introduce...

  3. CHROMATIN LOOPS, GENE POSITIONING AND GENE EXPRESSION

    Directory of Open Access Journals (Sweden)

    Sjoerd eHolwerda

    2012-10-01

    Full Text Available Technological developments and intense research over the last years have led to a better understanding of the three-dimensional structure of the genome and its influence on genome function inside the cell nucleus. We will summarize topological studies performed on four model gene loci: the α- and β-globin gene loci, the antigen receptor loci, the imprinted H19-Igf2 locus and the Hox gene clusters. Collectively, these studies show that regulatory DNA sequences physically contact genes to control their transcription. Proteins set up the three-dimensional configuration of the genome and we will discuss the roles of the key structural organizers CTCF and cohesin, the nuclear lamina and the transcription machinery. Finally, genes adopt non-random positions in the nuclear interior. We will review studies on gene positioning and propose that cell-specific genome conformations can juxtapose a regulatory sequence on one chromosome to a responsive gene on another chromosome to cause altered gene expression in subpopulations of cells.

  4. Shuffling Yeast Gene Expression Data

    CERN Document Server

    Bilke, S

    2000-01-01

    A new method to sort gene expression patterns into functional groups is presented. The method is based on a sorting algorithm using a non-local similarity score, which takes all other patterns in the dataset into account. The method is therefore very robust with respect to noise. Using the expression data for yeast, we extract information about functional groups. Without prior knowledge of parameters the cell cycle regulated genes in yeast can be identified. Furthermore a second, independent cell clock is identified. The capability of the algorithm to extract information about signal flow in the regulatory network underlying the expression patterns is demonstrated.

  5. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder;

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...... known genes and 157 ESTs were found to be highly relevant for CRC. The alteration of known genes was confirmed in >70% of the cases by array analysis of 25 single samples. Two-way hierarchical average linkage cluster analysis clustered normal tissue together with Dukes' A, clustered Dukes' B with Dukes...

  6. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses

    Directory of Open Access Journals (Sweden)

    J.G. Scandalios

    2005-07-01

    Full Text Available Molecular oxygen (O2 is the premier biological electron acceptor that serves vital roles in fundamental cellular functions. However, with the beneficial properties of O2 comes the inadvertent formation of reactive oxygen species (ROS such as superoxide (O2·-, hydrogen peroxide, and hydroxyl radical (OH·. If unabated, ROS pose a serious threat to or cause the death of aerobic cells. To minimize the damaging effects of ROS, aerobic organisms evolved non-enzymatic and enzymatic antioxidant defenses. The latter include catalases, peroxidases, superoxide dismutases, and glutathione S-transferases (GST. Cellular ROS-sensing mechanisms are not well understood, but a number of transcription factors that regulate the expression of antioxidant genes are well characterized in prokaryotes and in yeast. In higher eukaryotes, oxidative stress responses are more complex and modulated by several regulators. In mammalian systems, two classes of transcription factors, nuclear factor kB and activator protein-1, are involved in the oxidative stress response. Antioxidant-specific gene induction, involved in xenobiotic metabolism, is mediated by the "antioxidant responsive element" (ARE commonly found in the promoter region of such genes. ARE is present in mammalian GST, metallothioneine-I and MnSod genes, but has not been found in plant Gst genes. However, ARE is present in the promoter region of the three maize catalase (Cat genes. In plants, ROS have been implicated in the damaging effects of various environmental stress conditions. Many plant defense genes are activated in response to these conditions, including the three maize Cat and some of the superoxide dismutase (Sod genes.

  7. Resveratrol inhibits LXRα-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction

    Energy Technology Data Exchange (ETDEWEB)

    Jin, So Hee; Yang, Ji Hye; Shin, Bo Yeon; Seo, Kyuhwa; Shin, Sang Mi [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Cho, Il Je, E-mail: skek023@dhu.ac.kr [MRC-GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbukdo 712-715 (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2013-08-15

    Liver X receptor-α (LXRα), a member of the nuclear receptor superfamily of ligand-activated transcription factors, regulates de novo fatty acid synthesis that leads to stimulate hepatic steatosis. Although, resveratrol has beneficial effects on metabolic disease, it is not known whether resveratrol affects LXRα-dependent lipogenic gene expression. This study investigated the effect of resveratrol in LXRα-mediated lipogenesis and the underlying molecular mechanism. Resveratrol inhibited the ability of LXRα to activate sterol regulatory element binding protein-1c (SREBP-1c) and thereby inhibited target gene expression in hepatocytes. Moreover, resveratrol decreased LXRα–RXRα DNA binding activity and LXRE-luciferase transactivation. Resveratrol is known to activate Sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK), although its precise mechanism of action remains controversial. We found that the ability of resveratrol to repress T0901317-induced SREBP-1c expression was not dependent on AMPK and Sirt1. It is well established that hepatic steatosis is associated with antioxidant and redox signaling. Our data showing that expression of Sestrin2 (Sesn2), which is a novel antioxidant gene, was significantly down-regulated in the livers of high-fat diet-fed mice. Moreover, resveratrol up-regulated Sesn2 expression, but not Sesn1 and Sesn3. Sesn2 overexpression repressed LXRα-activated SREBP-1c expression and LXRE-luciferase activity. Finally, Sesn2 knockdown using siRNA abolished the effect of resveratrol in LXRα-induced FAS luciferase gene transactivation. We conclude that resveratrol affects Sesn2 gene induction and contributes to the inhibition of LXRα-mediated hepatic lipogenesis. - Highlights: • We investigated the effect of resveratrol in LXRα-mediated lipogenesis. • Resveratrol attenuated the ability of the LXRα-mediated lipogenic gene expression. • Resveratrol’s effects on T090-induced lipogenesis is not dependent on Sirt1 or AMPK.

  8. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  9. Zipf's Law in Gene Expression

    CERN Document Server

    Furusawa, C; Furusawa, Chikara; Kaneko, Kunihiko

    2002-01-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1, i.e., they obey Zipf's law. Furthermore, by simulations of a simple model with an intra-cellular reaction network, we found that Zipf's law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  10. Human papillomavirus gene expression

    International Nuclear Information System (INIS)

    To determine the role of tissue differentiation on expression of each of the papillomavirus mRNA species identified by electron microscopy, the authors prepared exon-specific RNA probes that could distinguish the alternatively spliced mRNA species. Radioactively labeled single-stranded RNA probes were generated from a dual promoter vector system and individually hybridized to adjacent serial sections of formalin-fixed, paraffin-embedded biopsies of condylomata. Autoradiography showed that each of the message species had a characteristic tissue distribution and relative abundance. The authors have characterized a portion of the regulatory network of the HPVs by showing that the E2 ORF encodes a trans-acting enhancer-stimulating protein, as it does in BPV-1 (Spalholz et al. 1985). The HPV-11 enhancer was mapped to a 150-bp tract near the 3' end of the URR. Portions of this region are duplicated in some aggressive strains of HPV-6 (Boshart and zur Hausen 1986; Rando et al. 1986). To test the possible biological relevance of these duplications, they cloned tandem arrays of the enhancer and demonstrated, using a chloramphenicol acetyltransferase (CAT) assay, that they led to dramatically increased transcription proportional to copy number. Using the CAT assays, the authors found that the E2 proteins of several papillomavirus types can cross-stimulate the enhancers of most other types. This suggests that prior infection of a tissue with one papillomavirus type may provide a helper effect for superinfection and might account fo the HPV-6/HPV-16 coinfections in condylomata that they have observed

  11. Expression profile of oxidative and antioxidative stress enzymes based on ESTs approach of citrus

    Directory of Open Access Journals (Sweden)

    Luis Antonio Peroni

    2007-01-01

    Full Text Available Plants not only evolve but also reduce oxygen in photosynthesis. An inevitable consequence of this normal process is the production of reactive oxygen species (ROS. Plants are adequately protected by the presence of multiple antioxidative enzymes in the cytosol and also in the different cell organelles such as chloroplasts, mitochondria, and peroxisomes. Traditionally, ROS were considered to be only a toxic byproduct of aerobic metabolism. However, recently it has become apparent that plants actively produce these molecules which may control many different physiological processes such as abiotic and biotic stress response, pathogen defense and systemic signaling. The search results using the Citrus Genome Program in Brazil (CitEST for oxidative stress and the antioxidant enzyme system in Citrus Sinensis variety ‘Pera IAC’ indicated that the multiple ROS-scavenging enzymes were expressed throughout all citrus tissues. The analyses demonstrated the ubiquitous expression of metallothioneins, probably indicating a constitutive expression pattern. Oxalate oxidase has been identified as the most abundant expressed gene in developing fruits, which suggests a specific function in the ripening of citrus fruit. Moreover, infected leaves with Xylella fastidiosa and Leprosis citri showed a massive change in their ROS gene expression profile which may indicate that the suppression of ROS detoxifying mechanisms may be involved in the induction of the diseases.

  12. Identifying Gene Interaction Enrichment for Gene Expression Data

    OpenAIRE

    Jigang Zhang; Jian Li; Hong-Wen Deng

    2009-01-01

    Gene set analysis allows the inclusion of knowledge from established gene sets, such as gene pathways, and potentially improves the power of detecting differentially expressed genes. However, conventional methods of gene set analysis focus on gene marginal effects in a gene set, and ignore gene interactions which may contribute to complex human diseases. In this study, we propose a method of gene interaction enrichment analysis, which incorporates knowledge of predefined gene sets (e.g. gene ...

  13. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  14. Gene expression profile of pulpitis.

    Science.gov (United States)

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  15. Gene Expression in Trypanosomatid Parasites

    Directory of Open Access Journals (Sweden)

    Santiago Martínez-Calvillo

    2010-01-01

    Full Text Available The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.

  16. The Gene Expression Omnibus Database.

    Science.gov (United States)

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  17. The Gene Expression Omnibus database

    Science.gov (United States)

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  18. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    International Nuclear Information System (INIS)

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity

  19. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    Science.gov (United States)

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  20. A constructive approach to gene expression dynamics

    International Nuclear Information System (INIS)

    Recently, experiments on mRNA abundance (gene expression) have revealed that gene expression shows a stationary organization described by a scale-free distribution. Here we propose a constructive approach to gene expression dynamics which restores the scale-free exponent and describes the intermediate state dynamics. This approach requires only one assumption: Markov property

  1. Effective Clustering Algorithms for Gene Expression Data

    CERN Document Server

    Chandrasekhar, T; Elayaraja, E

    2012-01-01

    Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. Identification of co-expressed genes and coherent patterns is the central goal in microarray or gene expression data analysis and is an important task in Bioinformatics research. In this paper, K-Means algorithm hybridised with Cluster Centre Initialization Algorithm (CCIA) is proposed Gene Expression Data. The proposed algorithm overcomes the drawbacks of specifying the number of clusters in the K-Means methods. Experimental analysis shows that the proposed method performs well on gene Expression Data when compare with the traditional K- Means clustering and Silhouette Coefficients cluster measure.

  2. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    Directory of Open Access Journals (Sweden)

    Thi Le Nhung Nguyen-Deroche

    2012-01-01

    Full Text Available Zinc-supplementation (20 μM effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase, and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa. Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  3. Correlating Expression Data with Gene Function Using Gene Ontology

    Institute of Scientific and Technical Information of China (English)

    LIU,Qi; DENG,Yong; WANG,Chuan; SHI,Tie-Liu; LI,Yi-Xue

    2006-01-01

    Clustering is perhaps one of the most widely used tools for microarray data analysis. Proposed roles for genes of unknown function are inferred from clusters of genes similarity expressed across many biological conditions.However, whether function annotation by similarity metrics is reliable or not and to what extent the similarity in gene expression patterns is useful for annotation of gene functions, has not been evaluated. This paper made a comprehensive research on the correlation between the similarity of expression data and of gene functions using Gene Ontology. It has been found that although the similarity in expression patterns and the similarity in gene functions are significantly dependent on each other, this association is rather weak. In addition, among the three categories of Gene Ontology, the similarity of expression data is more useful for cellular component annotation than for biological process and molecular function. The results presented are interesting for the gene functions prediction research area.

  4. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata;

    2015-01-01

    Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gene...... expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles...... for these components, we observed that the residual expression levels (in 'functional genomic mRNA' profiling) correlated strongly with copy number. DNA copy number correlated positively with expression levels for 99% of all abundantly expressed human genes, indicating global gene dosage sensitivity. By applying...

  5. An altered antioxidant balance occurs in Down syndrome fetal organs: implications for the "gene dosage effect" hypothesis.

    Science.gov (United States)

    de Haan, J B; Susil, B; Pritchard, M; Kola, I

    2003-01-01

    Down syndrome (DS) is the congenital birth defect responsible for the greatest number of individuals with mental retardation. It arises due to trisomy of human chromosome 21 (HSA21) or part thereof. To date there have been limited studies of HSA21 gene expression in trisomy 21 conceptuses. In this study we investigate the expression of the HSA21 antioxidant gene, Cu/Zn-superoxide dismutase-1 (SOD1) in various organs of control and DS aborted conceptuses. We show that SOD1 mRNA levels are elevated in DS brain, lung, heart and thymus. DS livers show decreased SOD1 mRNA expression compared with controls. Since non-HSA21 antioxidant genes are reported to be concomitantly upregulated in certain DS tissues, we examined the expression of glutathione peroxidase-1 (GPX1) in control and DS fetal organs. Interestingly, GPX1 expression was unchanged in the majority of DS organs and decreased in DS livers. We examined the SOD1 to GPX1 mRNA ratio in individual organs, as both enzymes form part of the body's defense against oxidative stress, and because a disproportionate increase of SOD1 to GPX1 results in noxious hydroxyl radical damage. All organs investigated show an approximately 2-fold increase in the SOD1 to GPX1 mRNA ratio. We propose that it is the altered antioxidant ratio that contributes to certain aspects of the DS phenotype.

  6. Quality Measures for Gene Expression Biclusters

    OpenAIRE

    Beatriz Pontes; Ral Girldez; Aguilar-Ruiz, Jess S.

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Further...

  7. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...

  8. Antioxidants

    Science.gov (United States)

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  9. Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available BACKGROUND: Thymosin beta-4 (Tβ4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H(2O(2 induced cardiac damage. METHODS: Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H(2O(2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H(2O(2-induced cardiac damage was evaluated. RESULTS: Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2O(2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl(2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4. CONCLUSION: This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the

  10. A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana

    Science.gov (United States)

    Liu, Shuchang; Liu, Feng; Jia, Haihong; Yan, Yan; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-06-01

    Glutathione S-transferases (GSTs) are an important family of multifunctional enzymes in aerobic organisms. They play a crucial role in the detoxification of exogenous compounds, especially insecticides, and protection against oxidative stress. Most previous studies of GSTs in insects have largely focused on their role in insecticide resistance. Here, we isolated a theta class GST gene designated AccGSTT1 from Apis cerana cerana and aimed to explore its antioxidant and antibacterial attributes. Analyses of homology and phylogenetic relationships suggested that the predicted amino acid sequence of AccGSTT1 shares a high level of identity with the other hymenopteran GSTs and that it was conserved during evolution. Quantitative real-time PCR showed that AccGSTT1 is most highly expressed in adult stages and that the expression profile of this gene is significantly altered in response to various abiotic stresses. These results were confirmed using western blot analysis. Additionally, a disc diffusion assay showed that a recombinant AccGSTT1 protein may be roughly capable of inhibiting bacterial growth and that it reduces the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, these data indicate that AccGSTT1 may play an important role in antioxidant processes under adverse stress conditions.

  11. Analysis of metallotionein expression and antioxidant enzyme activities in Meretrix meretrix larvae under sublethal cadmium exposure

    International Nuclear Information System (INIS)

    To investigate the possible role of metallothioneins (MTs) and antioxidant enzymes in cadmium (Cd) tolerance in Meretrix meretrix larvae, a new MT (designated MmMT) gene was identified and cloned from M. meretrix. The full-length cDNA of MmMT consisted of an open reading frame (ORF) of 231 bp encoding a protein of 76 amino acids, with 21 cysteine residues and a conserved structural pattern Cys-x-Cys-x(3)-Cys-Tyr-Gly-x(3)-Cys-x-Cys-x(3)-Cys-x-Cys-Lys at the C-terminus. The deduced amino acid sequence of MmMT showed about 57-84% identity with previously published MT sequences of mussels and oysters. Real-time PCR was used to analyze the expression level of MmMT mRNA at different M. meretrix larval stages under Cd exposure (25 μg L-1). Results showed that Cd could induce the expression of MmMT mRNA in the larvae, and the expression level increased 5.04-fold and 3.99-fold in D-shaped larvae and pediveligers, respectively. Immunolocalization of MmMT in the stressed larvae revealed that MmMT was synthesized in almost all of the soft parts at the trochophore and postlarva stages, whereas it was only synthesized in the velum and epidermis at the D-shaped larva and pediveliger stages. The activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), also were measured in larvae at different developmental stages. Increased enzymatic activities were detected mainly in D-shaped larvae and pediveligers under Cd stress, suggesting that these enzymes respond synchronously with MT. Our results indicate that MmMT and antioxidant enzymes played important roles in counteracting Cd stress in M. meretrix larvae.

  12. Lethrinas nebulosus fish as a biomarker for petroleum hydrocarbons pollution in Red Sea : Alterations in antioxidants mRNA expression

    OpenAIRE

    Afifi, Mohamed; Ali, Haytham A.; Saber, Taghred M.; El-Murr, Abd elhakeem

    2016-01-01

    Total Petroleum Hydrocarbons (TPHs) are environmental contaminants that are released into the marine water via oil spills and industrial activities. The mRNA expression profile of some antioxidant genes in livers, gills, skin and muscles of Lethrinas nebulosus was used as biomarker of TPHs pollution in six areas at Jeddah and Yanbu coasts in Kingdom of Saudi Arabia (KSA). TPHs were determined in Red Sea water and sediments collected from the studied areas. Ten fish of similar sizes were colle...

  13. Vitamin C modulates cadmium-induced hepatic antioxidants' gene transcripts and toxicopathic changes in Nile tilapia, Oreochromis niloticus.

    Science.gov (United States)

    El-Sayed, Yasser S; El-Gazzar, Ahmed M; El-Nahas, Abeer F; Ashry, Khaled M

    2016-01-01

    Cadmium (Cd) is one of the naturally occurring heavy metals having adverse effects, while vitamin C (L-ascorbic acid) is an essential micronutrient for fish, which can attenuate tissue damage owing to its chain-breaking antioxidant and free radical scavenger properties. The adult Nile tilapia fish were exposed to Cd at 5 mg/l with and without vitamin C (500 mg/kg diet) for 45 days in addition to negative and positive controls fed with the basal diet and basal diet supplemented with vitamin C, respectively. Hepatic relative mRNA expression of genes involved in antioxidant function, metallothionein (MT), glutathione S-transferase (GST-α1), and glutathione peroxidase (GPx1), was assessed using real-time reverse transcription polymerase chain reaction (RT-PCR). Hepatic architecture was also histopathologically examined. Tilapia exposed to Cd exhibited upregulated antioxidants' gene transcript levels, GST-⍺1, GPx1, and MT by 6.10-, 4.60-, and 4.29-fold, respectively. Histopathologically, Cd caused severe hepatic changes of multifocal hepatocellular and pancreatic acinar necrosis, and lytic hepatocytes infiltrated with eosinophilic granular cells. Co-treatment of Cd-exposed fish with vitamin C overexpressed antioxidant enzyme-related genes, GST-⍺1 (16.26-fold) and GPx1 (18.68-fold), and maintained the expression of MT gene close to control (1.07-fold), averting the toxicopathic lesions induced by Cd. These results suggested that vitamin C has the potential to protect Nile tilapia from Cd hepatotoxicity via sustaining hepatic antioxidants' genes transcripts and normal histoarchitecture.

  14. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy (Davis, CA); Bachkirova, Elena (Davis, CA); Rey, Michael (Davis, CA)

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  15. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  16. Bayesian biclustering of gene expression data

    OpenAIRE

    Liu Jun S; Gu Jiajun

    2008-01-01

    Abstract Background Biclustering of gene expression data searches for local patterns of gene expression. A bicluster (or a two-way cluster) is defined as a set of genes whose expression profiles are mutually similar within a subset of experimental conditions/samples. Although several biclustering algorithms have been studied, few are based on rigorous statistical models. Results We developed a Bayesian biclustering model (BBC), and implemented a Gibbs sampling procedure for its statistical in...

  17. Gene expression in the Parkinson's disease brain

    OpenAIRE

    Lewis, Patrick A.; Cookson, Mark R.

    2012-01-01

    The study of gene expression has undergone a transformation in the past decade as the benefits of the sequencing of the human genome have made themselves felt. Increasingly, genome wide approaches are being applied to the analysis of gene expression in human disease as a route to understanding the underlying pathogenic mechanisms. In this review, we will summarise current state of gene expression studies of the brain in Parkinson's disease, and examine how these techniques can be used to gain...

  18. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  19. Analysis of Gene Expression Patterns Using Biclustering.

    Science.gov (United States)

    Roy, Swarup; Bhattacharyya, Dhruba K; Kalita, Jugal K

    2016-01-01

    Mining microarray data to unearth interesting expression profile patterns for discovery of in silico biological knowledge is an emerging area of research in computational biology. A group of functionally related genes may have similar expression patterns under a set of conditions or at some time points. Biclustering is an important data mining tool that has been successfully used to analyze gene expression data for biologically significant cluster discovery. The purpose of this chapter is to introduce interesting patterns that may be observed in expression data and discuss the role of biclustering techniques in detecting interesting functional gene groups with similar expression patterns. PMID:26350227

  20. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    be met by using promoter libraries. This approach generally consists of inserting a library of promoters in front of the gene to be studied, whereby the individual promoters might deviate either in their spacer sequences or bear slight deviations from the consensus sequence of a vegetative promoter. Here......The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene...... knockout and strong overexpression. However, applications such as metabolic optimization and control analysis necessitate a continuous set of expression levels with only slight increments in strength to cover a specific window around the wildtype expression level of the studied gene; this requirement can...

  1. Deriving Trading Rules Using Gene Expression Programming

    Directory of Open Access Journals (Sweden)

    Adrian VISOIU

    2011-01-01

    Full Text Available This paper presents how buy and sell trading rules are generated using gene expression programming with special setup. Market concepts are presented and market analysis is discussed with emphasis on technical analysis and quantitative methods. The use of genetic algorithms in deriving trading rules is presented. Gene expression programming is applied in a form where multiple types of operators and operands are used. This gives birth to multiple gene contexts and references between genes in order to keep the linear structure of the gene expression programming chromosome. The setup of multiple gene contexts is presented. The case study shows how to use the proposed gene setup to derive trading rules encoded by Boolean expressions, using a dataset with the reference exchange rates between the Euro and the Romanian leu. The conclusions highlight the positive results obtained in deriving useful trading rules.

  2. Gene expression of the endolymphatic sac

    DEFF Research Database (Denmark)

    Friis, Morten; Martin-Bertelsen, Tomas; Friis-Hansen, Lennart;

    2011-01-01

    that the endolymphatic sac has multiple and diverse functions in the inner ear. Objectives:The objective of this study was to provide a comprehensive review of the genes expressed in the endolymphatic sac in the rat and perform a functional characterization based on measured mRNA abundance. Methods:Microarray technology...... was used to investigate the gene expression of the endolymphatic sac with the surrounding dura. Characteristic and novel endolymphatic sac genes were determined by comparing with expressions in pure dura. Results: In all, 463 genes were identified specific for the endolymphatic sac. Functional annotation...

  3. Quality measures for gene expression biclusters.

    Science.gov (United States)

    Pontes, Beatriz; Girldez, Ral; Aguilar-Ruiz, Jess S

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters. PMID:25763839

  4. Positron emission tomography imaging of gene expression

    International Nuclear Information System (INIS)

    The merging of molecular biology and nuclear medicine is developed into molecular nuclear medicine. Positron emission tomography (PET) of gene expression in molecular nuclear medicine has become an attractive area. Positron emission tomography imaging gene expression includes the antisense PET imaging and the reporter gene PET imaging. It is likely that the antisense PET imaging will lag behind the reporter gene PET imaging because of the numerous issues that have not yet to be resolved with this approach. The reporter gene PET imaging has wide application into animal experimental research and human applications of this approach will likely be reported soon

  5. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  6. The Activation of Nrf2 and Its Downstream Regulated Genes Mediates the Antioxidative Activities of Xueshuan Xinmaining Tablet in Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    Xiong, Lingxin; Xie, Jingshu; Song, Chenxue; Liu, Jinping; Zheng, Jingtong; Liu, Chuangui; Zhang, Xiaotian; Li, Pingya; Wang, Fang

    2015-01-01

    Epidemiological studies have verified the critical role that antioxidative stress plays in protecting vascular endothelial cells. The aims of the present study were to investigate the antioxidative activities and differential regulation of nuclear erythroid-related factor 2- (Nrf2-) mediated gene expression by Xueshuan Xinmaining Tablet (XXT), a traditional Chinese medicine with the effect of treating cardiovascular diseases. The antioxidative activities of XXT were investigated using quantitative real-time PCR (qPCR), a PCR array, and western blotting. Our results indicated that XXT exhibited potent antioxidative activities by suppressing the levels of hydrogen peroxide- (H2O2-) induced reactive oxygen species (ROS) in human umbilical vein endothelial cells (HUVECs). We were also conscious of strong Nrf2-mediated antioxidant induction. XXT enhanced the expressions of Keap1, Nrf2, and Nrf2-mediated genes, such as glutamate-cysteine ligase modifier subunit (GCLM), NAD(P)H: quinine oxidoreductase 1 (NQO1), heme oxygenase 1 (HMOX1), and glutathione peroxidase (GPX) in HUVECs. In summary, XXT strongly activated Nrf2 and its downstream regulated genes, which may contribute to the antioxidative and vascular endothelial cell protective activities of XXT. PMID:26681964

  7. Bimodal gene expression patterns in breast cancer

    OpenAIRE

    Nikolsky Yuri; Bugrim Andrej; Shi Weiwei; Kirillov Eugene; Bessarabova Marina; Nikolskaya Tatiana

    2010-01-01

    Abstract We identified a set of genes with an unexpected bimodal distribution among breast cancer patients in multiple studies. The property of bimodality seems to be common, as these genes were found on multiple microarray platforms and in studies with different end-points and patient cohorts. Bimodal genes tend to cluster into small groups of four to six genes with synchronised expression within the group (but not between the groups), which makes them good candidates for robust conditional ...

  8. Topological Features In Cancer Gene Expression Data

    OpenAIRE

    Lockwood, Svetlana; Krishnamoorthy, Bala

    2014-01-01

    We present a new method for exploring cancer gene expression data based on tools from algebraic topology. Our method selects a small relevant subset from tens of thousands of genes while simultaneously identifying nontrivial higher order topological features, i.e., holes, in the data. We first circumvent the problem of high dimensionality by dualizing the data, i.e., by studying genes as points in the sample space. Then we select a small subset of the genes as landmarks to construct topologic...

  9. A comparative gene expression database for invertebrates

    Directory of Open Access Journals (Sweden)

    Ormestad Mattias

    2011-08-01

    Full Text Available Abstract Background As whole genome and transcriptome sequencing gets cheaper and faster, a great number of 'exotic' animal models are emerging, rapidly adding valuable data to the ever-expanding Evo-Devo field. All these new organisms serve as a fantastic resource for the research community, but the sheer amount of data, some published, some not, makes detailed comparison of gene expression patterns very difficult to summarize - a problem sometimes even noticeable within a single lab. The need to merge existing data with new information in an organized manner that is publicly available to the research community is now more necessary than ever. Description In order to offer a homogenous way of storing and handling gene expression patterns from a variety of organisms, we have developed the first web-based comparative gene expression database for invertebrates that allows species-specific as well as cross-species gene expression comparisons. The database can be queried by gene name, developmental stage and/or expression domains. Conclusions This database provides a unique tool for the Evo-Devo research community that allows the retrieval, analysis and comparison of gene expression patterns within or among species. In addition, this database enables a quick identification of putative syn-expression groups that can be used to initiate, among other things, gene regulatory network (GRN projects.

  10. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  11. Multivariate search for differentially expressed gene combinations

    Directory of Open Access Journals (Sweden)

    Klebanov Lev

    2004-10-01

    Full Text Available Abstract Background To identify differentially expressed genes, it is standard practice to test a two-sample hypothesis for each gene with a proper adjustment for multiple testing. Such tests are essentially univariate and disregard the multidimensional structure of microarray data. A more general two-sample hypothesis is formulated in terms of the joint distribution of any sub-vector of expression signals. Results By building on an earlier proposed multivariate test statistic, we propose a new algorithm for identifying differentially expressed gene combinations. The algorithm includes an improved random search procedure designed to generate candidate gene combinations of a given size. Cross-validation is used to provide replication stability of the search procedure. A permutation two-sample test is used for significance testing. We design a multiple testing procedure to control the family-wise error rate (FWER when selecting significant combinations of genes that result from a successive selection procedure. A target set of genes is composed of all significant combinations selected via random search. Conclusions A new algorithm has been developed to identify differentially expressed gene combinations. The performance of the proposed search-and-testing procedure has been evaluated by computer simulations and analysis of replicated Affymetrix gene array data on age-related changes in gene expression in the inner ear of CBA mice.

  12. Gene Expression Profiling in Porcine Fetal Thymus

    Institute of Scientific and Technical Information of China (English)

    Yanjiong Chen; Shengbin Li; Lin Ye; Jianing Geng; Yajun Deng; Songnian Hu

    2003-01-01

    obtain an initial overview of gene diversity and expression pattern in porcinethymus, 11,712 ESTs (Expressed Sequence Tags) from 100-day-old porcine thymus(FTY) were sequenced and 7,071 cleaned ESTs were used for gene expressionanalysis. Clustered by the PHRAP program, 959 contigs and 3,074 singlets wereobtained. Blast search showed that 806 contigs and 1,669 singlets (totally 5,442ESTs) had homologues in GenBank and 1,629 ESTs were novel. According to theGene Ontology classification, 36.99% ESTs were cataloged into the gene expressiongroup, indicating that although the functional gene (18.78% in defense group) ofthymus is expressed in a certain degree, the 100-day-old porcine thymus still existsin a developmental stage. Comparative analysis showed that the gene expressionpattern of the 100-day-old porcine thymus is similar to that of the human infantthymus.

  13. Profiling of a few immune responsive genes expressed in postlarvae of Fenneropenaeus indicus challenged with Vibrio harveyi D3

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, S.; Ajay, K.M.; Ramaiah, N.; Meena, R.M.; Sreepada, R.A.

    such as NADH dehydrogenase, ATP synthase and Cytochrome C-oxidase were the major representatives of genes involved in ATP and antioxidant metabolism. As energy production is more efficient with NADH dehydrogenase pathway, its up- regulation could indicate... and minimum fold changes of relative expression. β-Actin is compared to itself as a reference and represented here as one fold change in its expression. 9    No matches 29% Others 3% Pigments 3% Enzymes 3% Antioxidant / ATP...

  14. Biochemical diversification through foreign gene expression in bdelloid rotifers.

    Directory of Open Access Journals (Sweden)

    Chiara Boschetti

    Full Text Available Bdelloid rotifers are microinvertebrates with unique characteristics: they have survived tens of millions of years without sexual reproduction; they withstand extreme desiccation by undergoing anhydrobiosis; and they tolerate very high levels of ionizing radiation. Recent evidence suggests that subtelomeric regions of the bdelloid genome contain sequences originating from other organisms by horizontal gene transfer (HGT, of which some are known to be transcribed. However, the extent to which foreign gene expression plays a role in bdelloid physiology is unknown. We address this in the first large scale analysis of the transcriptome of the bdelloid Adineta ricciae: cDNA libraries from hydrated and desiccated bdelloids were subjected to massively parallel sequencing and assembled transcripts compared against the UniProtKB database by blastx to identify their putative products. Of ~29,000 matched transcripts, ~10% were inferred from blastx matches to be horizontally acquired, mainly from eubacteria but also from fungi, protists, and algae. After allowing for possible sources of error, the rate of HGT is at least 8%-9%, a level significantly higher than other invertebrates. We verified their foreign nature by phylogenetic analysis and by demonstrating linkage of foreign genes with metazoan genes in the bdelloid genome. Approximately 80% of horizontally acquired genes expressed in bdelloids code for enzymes, and these represent 39% of enzymes in identified pathways. Many enzymes encoded by foreign genes enhance biochemistry in bdelloids compared to other metazoans, for example, by potentiating toxin degradation or generation of antioxidants and key metabolites. They also supplement, and occasionally potentially replace, existing metazoan functions. Bdelloid rotifers therefore express horizontally acquired genes on a scale unprecedented in animals, and foreign genes make a profound contribution to their metabolism. This represents a potential

  15. Nucleosome repositioning underlies dynamic gene expression.

    Science.gov (United States)

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  16. Chicory (Cichorium intybus L.) root extract regulates the oxidative status and antioxidant gene transcripts in CCl4-induced hepatotoxicity.

    Science.gov (United States)

    El-Sayed, Yasser S; Lebda, Mohamed A; Hassinin, Mohammed; Neoman, Saad A

    2015-01-01

    The ability of Cichorium intybus root extract (chicory extract) to protect against carbon tetrachloride (CCl4)-induced oxidative stress and hepatotoxicity was evaluated in male rats. The rats were divided into four groups according to treatment: saline (control); chicory extract (100 mg/kg body weight daily, given orally for 2 weeks); CCl4 (1 ml/kg body weight by intraperitoneal injection for 2 consecutive days only); or chicory extract (100 mg/kg body weight daily for 2 weeks) + CCl4 injection on days 16 and 17. The levels of hepatic lipid peroxidation, antioxidants, and molecular biomarkers were estimated twenty-four hours after the last CCl4 injection. Pretreatment with chicory extract significantly reduced CCl4-induced elevation of malondialdehyde levels and nearly normalized levels of glutathione and activity of glutathione S-transferase, glutathione peroxidase (GPx), glutathione reductase, catalase (CAT), paraoxonase-1 (PON1), and arylesterase in the liver. Chicory extract also attenuated CCl4-induced downregulation of hepatic mRNA expression levels of GPx1, CAT and PON1 genes. Results of DNA fragmentation support the ability of chicory extract to ameliorate CCl4-induced liver toxicity. Taken together, our results demonstrate that chicory extract is rich in natural antioxidants and able to attenuate CCl4-induced hepatocellular injury, likely by scavenging reactive free radicals, boosting the endogenous antioxidant defense system, and overexpressing genes encoding antioxidant enzymes. PMID:25807561

  17. Chicory (Cichorium intybus L. root extract regulates the oxidative status and antioxidant gene transcripts in CCl4-induced hepatotoxicity.

    Directory of Open Access Journals (Sweden)

    Yasser S El-Sayed

    Full Text Available The ability of Cichorium intybus root extract (chicory extract to protect against carbon tetrachloride (CCl4-induced oxidative stress and hepatotoxicity was evaluated in male rats. The rats were divided into four groups according to treatment: saline (control; chicory extract (100 mg/kg body weight daily, given orally for 2 weeks; CCl4 (1 ml/kg body weight by intraperitoneal injection for 2 consecutive days only; or chicory extract (100 mg/kg body weight daily for 2 weeks + CCl4 injection on days 16 and 17. The levels of hepatic lipid peroxidation, antioxidants, and molecular biomarkers were estimated twenty-four hours after the last CCl4 injection. Pretreatment with chicory extract significantly reduced CCl4-induced elevation of malondialdehyde levels and nearly normalized levels of glutathione and activity of glutathione S-transferase, glutathione peroxidase (GPx, glutathione reductase, catalase (CAT, paraoxonase-1 (PON1, and arylesterase in the liver. Chicory extract also attenuated CCl4-induced downregulation of hepatic mRNA expression levels of GPx1, CAT and PON1 genes. Results of DNA fragmentation support the ability of chicory extract to ameliorate CCl4-induced liver toxicity. Taken together, our results demonstrate that chicory extract is rich in natural antioxidants and able to attenuate CCl4-induced hepatocellular injury, likely by scavenging reactive free radicals, boosting the endogenous antioxidant defense system, and overexpressing genes encoding antioxidant enzymes.

  18. Phytochrome-regulated Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Peter H. Quail

    2007-01-01

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-regulated genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-family members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, and, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetiolation.

  19. Gene expression profile of sprinter's muscle.

    Science.gov (United States)

    Yoshioka, M; Tanaka, H; Shono, N; Shindo, M; St-Amand, J

    2007-12-01

    We have characterized the global gene expression profile in left vastus lateralis muscles of sprinters and sedentary men. The gene expression profile was analyzed by using serial analysis of gene expression (SAGE) method. The abundantly expressed transcripts in the sprinter's muscle were mainly involved in contraction and energy metabolism, whereas six transcripts were corresponding to potentially novel transcripts. Thirty-eight transcripts were differentially expressed between the sprinter and sedentary individuals. Moreover, sprinters showed higher expressions of both uncharacterized and potentially novel transcripts. Sprinters also highly expressed seven transcripts, such as glycine-rich protein, myosin heavy polypeptide (MYH) 2, expressed sequence tag similar to (EST) fructose-bisphosphate aldolase 1 isoform A (ALDOA), glyceraldehyde-3-phosphate dehydrogenase and ATP synthase F0 subunit 6. On the other hand, 20 transcripts such as MYH1, tropomyosin 2 and 3, troponin C slow, C2 fast, I slow, T1 slow and T3 fast, myoglobin, creatine kinase, ALDOA, glycogen phosphorylase, cytochrome c oxidase II and III, and NADH dehydrogenase 1 and 2 showed lower expression levels in the sprinters than the sedentary controls. The current study has characterized the global gene expressions in sprinters and identified a number of transcripts that can be subjected to further mechanistic analysis.

  20. Extracting expression modules from perturbational gene expression compendia

    OpenAIRE

    Van Dijck Patrick; Maere Steven; Kuiper Martin

    2008-01-01

    Abstract Background Compendia of gene expression profiles under chemical and genetic perturbations constitute an invaluable resource from a systems biology perspective. However, the perturbational nature of such data imposes specific challenges on the computational methods used to analyze them. In particular, traditional clustering algorithms have difficulties in handling one of the prominent features of perturbational compendia, namely partial coexpression relationships between genes. Biclus...

  1. Gene expression in periodontal tissues following treatment

    Directory of Open Access Journals (Sweden)

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  2. Microarray analysis of gene expression profiles in ripening pineapple fruits

    Directory of Open Access Journals (Sweden)

    Koia Jonni H

    2012-12-01

    Full Text Available Abstract Background Pineapple (Ananas comosus is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Results Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. Conclusions This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study

  3. Optogenetic Control of Gene Expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yick-Bun Chan

    Full Text Available To study the molecular mechanism of complex biological systems, it is important to be able to artificially manipulate gene expression in desired target sites with high precision. Based on the light dependent binding of cryptochrome 2 and a cryptochrome interacting bHLH protein, we developed a split lexA transcriptional activation system for use in Drosophila that allows regulation of gene expression in vivo using blue light or two-photon excitation. We show that this system offers high spatiotemporal resolution by inducing gene expression in tissues at various developmental stages. In combination with two-photon excitation, gene expression can be manipulated at precise sites in embryos, potentially offering an important tool with which to examine developmental processes.

  4. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  5. Regulation of Gene Expression in Protozoa Parasites

    Directory of Open Access Journals (Sweden)

    Consuelo Gomez

    2010-01-01

    Full Text Available Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  6. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo;

    2007-01-01

    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...... differences in peripheral blood mononuclear cell (MNC) gene expression patterns between 15 newly diagnosed HT patients and 15 matched healthy controls. However, the MNC expression levels of five genes were significantly upregulated in 25 IBD patients, compared to 18 matched healthy controls (CD14, FACL2, FCN1...... immunoinflammatory diseases, but only if accompanied by pronounced systemic manifestations. This suggests that at least some of the genes activated in RA are predominantly or solely related to general and disease-nonspecific autoimmune processes...

  7. Energy intake and adiponectin gene expression

    OpenAIRE

    Qiao, Liping; Lee, Bonggi; Kinney, Brice; Yoo, Hyung sun; Shao, Jianhua

    2011-01-01

    Hypoadiponectinemia and decreased adiponectin gene expression in white adipose tissue (WAT) have been well observed in obese subjects and animal models. However, the mechanism for obesity-associated hypoadiponectinemia is still largely unknown. To investigate the regulatory role of energy intake, dietary fat, and adiposity in adiponectin gene expression and blood adiponectin level, a series of feeding regimens was employed to manipulate energy intake and dietary fat in obese-prone C57BL/6, ge...

  8. Facilitated diffusion buffers noise in gene expression

    OpenAIRE

    Schoech, Armin; Zabet, Nicolae Radu

    2014-01-01

    Transcription factors perform facilitated diffusion (3D diffusion in the cytosol and 1D diffusion on the DNA) when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both ...

  9. PRAME gene expression profile in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Tânia Maria Vulcani-Freitas

    2011-02-01

    Full Text Available Medulloblastoma is the most common malignant tumors of central nervous system in the childhood. The treatment is severe, harmful and, thus, has a dismal prognosis. As PRAME is present in various cancers, including meduloblastoma, and has limited expression in normal tissues, this antigen can be an ideal vaccine target for tumor immunotherapy. In order to find a potential molecular target, we investigated PRAME expression in medulloblastoma fragments and we compare the results with the clinical features of each patient. Analysis of gene expression was performed by real-time quantitative PCR from 37 tumor samples. The Mann-Whitney test was used to analysis the relationship between gene expression and clinical characteristics. Kaplan-Meier curves were used to evaluate survival. PRAME was overexpressed in 84% samples. But no statistical association was found between clinical features and PRAME overexpression. Despite that PRAME gene could be a strong candidate for immunotherapy since it is highly expressed in medulloblastomas.

  10. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  11. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  12. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Odelta dos Santos

    Full Text Available Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR, one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  13. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  14. Translational control of gene expression and disease

    NARCIS (Netherlands)

    Calkhoven, Cornelis F; Müller, Christine; Leutz, Achim

    2002-01-01

    In the past decade, translational control has been shown to be crucial in the regulation of gene expression. Research in this field has progressed rapidly, revealing new control mechanisms and adding constantly to the list of translationally regulated genes. There is accumulating evidence that trans

  15. Perspectives: Gene Expression in Fisheries Management

    Science.gov (United States)

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  16. Application of multidisciplinary analysis to gene expression.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuefel (University of New Mexico, Albuquerque, NM); Kang, Huining (University of New Mexico, Albuquerque, NM); Fields, Chris (New Mexico State University, Las Cruces, NM); Cowie, Jim R. (New Mexico State University, Las Cruces, NM); Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy (New Mexico State University, Las Cruces, NM); Mosquera-Caro, Monica P. (University of New Mexico, Albuquerque, NM); Xu, Yuexian (University of New Mexico, Albuquerque, NM); Martin, Shawn Bryan; Helman, Paul (University of New Mexico, Albuquerque, NM); Andries, Erik (University of New Mexico, Albuquerque, NM); Ar, Kerem (University of New Mexico, Albuquerque, NM); Potter, Jeffrey (University of New Mexico, Albuquerque, NM); Willman, Cheryl L. (University of New Mexico, Albuquerque, NM); Murphy, Maurice H. (University of New Mexico, Albuquerque, NM)

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  17. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects...... genes and genetic signatures and for reducing dimensionally of gene expression data. Next, we have used machine-learning methods to predict survival and to assess important predictors based on these results. General application of a number of these methods has been implemented into two public query...

  18. Gene expression profiling: can we identify the right target genes?

    Directory of Open Access Journals (Sweden)

    J. E. Loyd

    2008-12-01

    Full Text Available Gene expression profiling allows the simultaneous monitoring of the transcriptional behaviour of thousands of genes, which may potentially be involved in disease development. Several studies have been performed in idiopathic pulmonary fibrosis (IPF, which aim to define genetic links to the disease in an attempt to improve the current understanding of the underlying pathogenesis of the disease and target pathways for intervention. Expression profiling has shown a clear difference in gene expression between IPF and normal lung tissue, and has identified a wide range of candidate genes, including those known to encode for proteins involved in extracellular matrix formation and degradation, growth factors and chemokines. Recently, familial pulmonary fibrosis cohorts have been examined in an attempt to detect specific genetic mutations associated with IPF. To date, these studies have identified families in which IPF is associated with mutations in the gene encoding surfactant protein C, or with mutations in genes encoding components of telomerase. Although rare and clearly not responsible for the disease in all individuals, the nature of these mutations highlight the importance of the alveolar epithelium in disease pathogenesis and demonstrate the potential for gene expression profiling in helping to advance the current understanding of idiopathic pulmonary fibrosis.

  19. Introduction to the Gene Expression Analysis.

    Science.gov (United States)

    Segundo-Val, Ignacio San; Sanz-Lozano, Catalina S

    2016-01-01

    In 1941, Beadle and Tatum published experiments that would explain the basis of the central dogma of molecular biology, whereby the DNA through an intermediate molecule, called RNA, results proteins that perform the functions in cells. Currently, biomedical research attempts to explain the mechanisms by which develops a particular disease, for this reason, gene expression studies have proven to be a great resource. Strictly, the term "gene expression" comprises from the gene activation until the mature protein is located in its corresponding compartment to perform its function and contribute to the expression of the phenotype of cell.The expression studies are directed to detect and quantify messenger RNA (mRNA) levels of a specific gene. The development of the RNA-based gene expression studies began with the Northern Blot by Alwine et al. in 1977. In 1969, Gall and Pardue and John et al. independently developed the in situ hybridization, but this technique was not employed to detect mRNA until 1986 by Coghlan. Today, many of the techniques for quantification of RNA are deprecated because other new techniques provide more information. Currently the most widely used techniques are qPCR, expression microarrays, and RNAseq for the transcriptome analysis. In this chapter, these techniques will be reviewed. PMID:27300529

  20. Regulation of gene expression in human tendinopathy

    Directory of Open Access Journals (Sweden)

    Archambault Joanne M

    2011-05-01

    Full Text Available Abstract Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics.

  1. Molecular identification of three novel glutaredoxin genes that play important roles in antioxidant defense in Helicoverpa armigera.

    Science.gov (United States)

    Zhang, Song-Dou; Shen, Zhong-Jian; Liu, Xiao-Ming; Li, Zhen; Zhang, Qing-Wen; Liu, Xiao-Xia

    2016-08-01

    Glutaredoxins (Grxs), also known as thioltransferases, play key roles in maintaining intracellular redox balance and protecting cells from oxidative damage in plants and mammals. We tested whether Grxs play important roles in antioxidant defense in insects using the moth, Helicoverpa armigera. We obtained the full-length cDNA sequences of three novel Grx genes, named HaGrx, HaGrx3, and HaGrx5. Sequence analysis indicated that HaGrx shared a high amino acid identity (58%-78%) and a CPYC motif of conserved redox activity with homologues from other selected insect species. In contrast, HaGrx3 and HaGrx5 both shared a CGF(S/G) motif, a conserved catalytic domain, with other orthologous genes. Quantitative real-time PCR results revealed that HaGrx, HaGrx3, and HaGrx5 exhibited temporally- and spatially-dependent patterns of expression. The mRNA expression of HaGrx, HaGrx3, and HaGrx5 was induced by various temperature stresses and H2O2 treatments. We further investigated the knockdown of HaGrx, HaGrx3, and HaGrx5 in H. armigera larvae and found that most of the selected antioxidant genes were up regulated. However, Tpx was down regulated, and further interpretation of the complementary functions of these antioxidant genes is still required. We also determined the effect of HaGrx, HaGrx3, and HaGrx5 knockdown on antioxidant enzymatic activity and metabolite content. The enzymatic activities of SOD, CAT, and POD, and the metabolite contents of hydrogen peroxide, ascorbate, protein carbonyl, and total GSH increased after RNAi mediated knockdown of HaGrx, HaGrx3, and HaGrx5. These results supported our hypothesis that HaGrx, HaGrx3, and HaGrx5 play important roles in antioxidant defense of Helicoverpa armigera and provided a theoretical basis for further in-depth study of physiological function in the insect glutaredoxin family genes.

  2. Noise minimization in eukaryotic gene expression.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    2004-06-01

    Full Text Available All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or "noise." Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  3. Soybean physiology and gene expression during drought.

    Science.gov (United States)

    Stolf-Moreira, R; Medri, M E; Neumaier, N; Lemos, N G; Pimenta, J A; Tobita, S; Brogin, R L; Marcelino-Guimarães, F C; Oliveira, M C N; Farias, J R B; Abdelnoor, R V; Nepomuceno, A L

    2010-10-05

    Soybean genotypes MG/BR46 (Conquista) and BR16, drought-tolerant and -sensitive, respectively, were compared in terms of morphophysiological and gene-expression responses to water stress during two stages of development. Gene-expression analysis showed differential responses in Gmdreb1a and Gmpip1b mRNA expression within 30 days of water-deficit initiation in MG/BR46 (Conquista) plants. Within 45 days of initiating stress, Gmp5cs and Gmpip1b had relatively higher expression. Initially, BR16 showed increased expression only for Gmdreb1a, and later (45 days) for Gmp5cs, Gmdefensin and Gmpip1b. Only BR16 presented down-regulated expression of genes, such as Gmp5cs and Gmpip1b, 30 days after the onset of moisture stress, and Gmgols after 45 days of stress. The faster perception of water stress in MG/BR46 (Conquista) and the better maintenance of up-regulated gene expression than in the sensitive BR16 genotype imply mechanisms by which the former is better adapted to tolerate moisture deficiency.

  4. The characterization of two peroxiredoxin genes in Dunaliella viridis provides insights into antioxidative response to salt stress.

    Science.gov (United States)

    Yuan, Huijuan; Meng, Xiangzong; Gao, Qiang; Qu, Wufei; Xu, Tengjiao; Xu, Zhengkai; Song, Rentao

    2011-08-01

    Peroxiredoxins (Prxs), a group of antioxidant enzymes, are an important component of the oxidative defense system and have been demonstrated to function as peroxidases, sensors of H(2)O(2)-mediated signaling and/or chaperones. In this study, a cDNA library was constructed from a halotolerant alga, Dunaliella viridis, and was used in a functional complementation screen for antioxidative genes in an oxidative sensitive yeast mutant. Two Prx genes, DvPrx1 and DvPrx2, were obtained from this screen. These two genes were classified as type II Prx and 2-Cys Prx based on amino acid sequence and phylogenetic analysis. When over-expressed in yeast cells, both Prx genes were able to confer better oxidative tolerance and decrease the level of reactive oxygen species (ROS). Subcellular localization experiments in tobacco cells revealed that both DvPrx1 and DvPrx2 were localized in the cytosol. The transcription of DvPrx1 and DvPrx2 can be induced by hypersalinity shock, but is not obviously affected by treatment with high levels of oxidant. Our results shed light on the function and regulation of Prx genes from Dunaliella and their potential roles in salt tolerance. PMID:21431909

  5. CEBPG transcription factor correlates with antioxidant and DNA repair genes in normal bronchial epithelial cells but not in individuals with bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Cigarette smoking is the primary cause of bronchogenic carcinoma (BC), yet only 10–15% of heavy smokers develop BC and it is likely that this variation in risk is, in part, genetically determined. We previously reported a set of antioxidant genes for which transcript abundance was lower in normal bronchial epithelial cells (NBEC) of BC individuals compared to non-BC individuals. In unpublished studies of the same NBEC samples, transcript abundance values for several DNA repair genes were correlated with these antioxidant genes. From these data, we hypothesized that antioxidant and DNA repair genes are co-regulated by one or more transcription factors and that inter-individual variation in expression and/or function of one or more of these transcription factors is responsible for inter-individual variation in risk for BC. The putative transcription factor recognition sites common to six of the antioxidant genes were identified through in silico DNA sequence analysis. The transcript abundance values of these transcription factors (n = 6) and an expanded group of antioxidant and DNA repair genes (n = 16) were measured simultaneously by quantitative PCR in NBEC of 24 non-BC and 25 BC individuals. CEBPG transcription factor was significantly (p < 0.01) correlated with eight of the antioxidant or DNA repair genes in non-BC individuals but not in BC individuals. In BC individuals the correlation with CEBPG was significantly (p < 0.01) lower than that of non-BC individuals for four of the genes (XRCC1, ERCC5, GSTP1, and SOD1) and the difference was nearly significant for GPX1. The only other transcription factor correlated with any of these five target genes in non-BC individuals was E2F1. E2F1 was correlated with GSTP1 among non-BC individuals, but in contrast to CEBPG, there was no significant difference in this correlation in non-BC individuals compared to BC individuals. We conclude that CEBPG is the transcription factor primarily responsible for regulating

  6. Quality measures for gene expression biclusters.

    Directory of Open Access Journals (Sweden)

    Beatriz Pontes

    Full Text Available An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters.

  7. Alternative-splicing-mediated gene expression

    Science.gov (United States)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  8. The Cryptococcus neoformans Catalase Gene Family and Its Role in Antioxidant Defense

    OpenAIRE

    Giles, Steven S.; Stajich, Jason E.; Nichols, Connie; Gerrald, Quincy D.; Alspaugh, J. Andrew; Dietrich, Fred; Perfect, John R.

    2006-01-01

    In the present study, we sought to elucidate the contribution of the Cryptococcus neoformans catalase gene family to antioxidant defense. We employed bioinformatics techniques to identify four members of the C. neoformans catalase gene family and created mutants lacking single or multiple catalase genes. Based on a phylogenetic analysis, CAT1 and CAT3 encode putative spore-specific catalases, CAT2 encodes a putative peroxisomal catalase, and CAT4 encodes a putative cytosolic catalase. Only Ca...

  9. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  10. Ocular Surface Development and Gene Expression

    Directory of Open Access Journals (Sweden)

    Shivalingappa K. Swamynathan

    2013-01-01

    Full Text Available The ocular surface—a continuous epithelial surface with regional specializations including the surface and glandular epithelia of the cornea, conjunctiva, and lacrimal and meibomian glands connected by the overlying tear film—plays a central role in vision. Molecular and cellular events involved in embryonic development, postnatal maturation, and maintenance of the ocular surface are precisely regulated at the level of gene expression by a well-coordinated network of transcription factors. A thorough appreciation of the biological characteristics of the ocular surface in terms of its gene expression profiles and their regulation provides us with a valuable insight into the pathophysiology of various blinding disorders that disrupt the normal development, maturation, and/or maintenance of the ocular surface. This paper summarizes the current status of our knowledge related to the ocular surface development and gene expression and the contribution of different transcription factors to this process.

  11. Gene expression profiles in irradiated cancer cells

    Science.gov (United States)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  12. Gene expression profiles in irradiated cancer cells

    International Nuclear Information System (INIS)

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses

  13. Gene Expression in the Human Endolymphatic Sac

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas;

    2015-01-01

    OBJECTIVES/HYPOTHESIS: The purpose of the present study is to explore, demonstrate, and describe the expression of genes related to the solute carrier (SLC) molecules of ion transporters in the human endolymphatic sac. STUDY DESIGN: cDNA microarrays and immunohistochemistry were used for analyses...... of fresh human endolymphatic sac tissue samples. METHODS: Twelve tissue samples of the human endolymphatic sac were obtained during translabyrinthine surgery for vestibular schwannoma. Microarray technology was used to investigate tissue sample expression of solute carrier family genes, using adjacent dura...... mater as control. Immunohistochemistry was used for verification of translation of selected genes, as well as localization of the specific protein within the sac. RESULTS: An extensive representation of the SLC family genes were upregulated in the human endolymphatic sac, including SLC26a4 Pendrin, SLC4...

  14. Parsimonious selection of useful genes in microarray gene expression data

    OpenAIRE

    González Navarro, Félix Fernando; Belanche Muñoz, Luis Antonio

    2011-01-01

    Machine Learning methods have of late made significant efforts to solving multidisciplinary problems in the field of cancer classification in microarray gene expression data. These tasks are characterized by a large number of features and a few observations, making the modeling a non-trivial undertaking. In this work we apply entropic filter methods for gene selection, in combination with several off-the-shelf classifiers. The introduction of bootstrap resampling techniques permits the achiev...

  15. Sequencing and Gene Expression Analysis of Leishmania tropica LACK Gene.

    Directory of Open Access Journals (Sweden)

    Nour Hammoudeh

    2014-12-01

    Full Text Available Leishmania Homologue of receptors for Activated C Kinase (LACK antigen is a 36-kDa protein, which provokes a very early immune response against Leishmania infection. There are several reports on the expression of LACK through different life-cycle stages of genus Leishmania, but only a few of them have focused on L.tropica.The present study provides details of the cloning, DNA sequencing and gene expression of LACK in this parasite species. First, several local isolates of Leishmania parasites were typed in our laboratory using PCR technique to verify of Leishmania parasite species. After that, LACK gene was amplified and cloned into a vector for sequencing. Finally, the expression of this molecule in logarithmic and stationary growth phase promastigotes, as well as in amastigotes, was evaluated by Reverse Transcription-PCR (RT-PCR technique.The typing result confirmed that all our local isolates belong to L.tropica. LACK gene sequence was determined and high similarity was observed with the sequences of other Leishmania species. Furthermore, the expression of LACK gene in both promastigotes and amastigotes forms was confirmed.Overall, the data set the stage for future studies of the properties and immune role of LACK gene products.

  16. Extracting expression modules from perturbational gene expression compendia

    Directory of Open Access Journals (Sweden)

    Van Dijck Patrick

    2008-04-01

    Full Text Available Abstract Background Compendia of gene expression profiles under chemical and genetic perturbations constitute an invaluable resource from a systems biology perspective. However, the perturbational nature of such data imposes specific challenges on the computational methods used to analyze them. In particular, traditional clustering algorithms have difficulties in handling one of the prominent features of perturbational compendia, namely partial coexpression relationships between genes. Biclustering methods on the other hand are specifically designed to capture such partial coexpression patterns, but they show a variety of other drawbacks. For instance, some biclustering methods are less suited to identify overlapping biclusters, while others generate highly redundant biclusters. Also, none of the existing biclustering tools takes advantage of the staple of perturbational expression data analysis: the identification of differentially expressed genes. Results We introduce a novel method, called ENIGMA, that addresses some of these issues. ENIGMA leverages differential expression analysis results to extract expression modules from perturbational gene expression data. The core parameters of the ENIGMA clustering procedure are automatically optimized to reduce the redundancy between modules. In contrast to the biclusters produced by most other methods, ENIGMA modules may show internal substructure, i.e. subsets of genes with distinct but significantly related expression patterns. The grouping of these (often functionally related patterns in one module greatly aids in the biological interpretation of the data. We show that ENIGMA outperforms other methods on artificial datasets, using a quality criterion that, unlike other criteria, can be used for algorithms that generate overlapping clusters and that can be modified to take redundancy between clusters into account. Finally, we apply ENIGMA to the Rosetta compendium of expression profiles for

  17. Gene expression profiling in sinonasal adenocarcinoma.

    OpenAIRE

    Sébille-Rivain Véronique; Malard Olivier; Guisle-Marsollier Isabelle; Ferron Christophe; Renaudin Karine; Quéméner Sylvia; Tripodi Dominique; Verger Christian; Géraut Christian; Gratas-Rabbia-Ré Catherine

    2009-01-01

    Abstract Background Sinonasal adenocarcinomas are uncommon tumors which develop in the ethmoid sinus after exposure to wood dust. Although the etiology of these tumors is well defined, very little is known about their molecular basis and no diagnostic tool exists for their early detection in high-risk workers. Methods To identify genes involved in this disease, we performed gene expression profiling using cancer-dedicated microarrays, on nine matched samples of sinonasal adenocarcinomas and n...

  18. Visualizing Gene Expression In Situ

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  19. Optogenetics for gene expression in mammalian cells.

    Science.gov (United States)

    Müller, Konrad; Naumann, Sebastian; Weber, Wilfried; Zurbriggen, Matias D

    2015-02-01

    Molecular switches that are controlled by chemicals have evolved as central research instruments in mammalian cell biology. However, these tools are limited in terms of their spatiotemporal resolution due to freely diffusing inducers. These limitations have recently been addressed by the development of optogenetic, genetically encoded, and light-responsive tools that can be controlled with the unprecedented spatiotemporal precision of light. In this article, we first provide a brief overview of currently available optogenetic tools that have been designed to control diverse cellular processes. Then, we focus on recent developments in light-controlled gene expression technologies and provide the reader with a guideline for choosing the most suitable gene expression system.

  20. Expression and antioxidation of Nrf2/ARE pathway in traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Zhen-Guo Cheng; Guo-Dong Zhang; Peng-Qiang Shi; Bao-Shun Du

    2013-01-01

    Objective: To explore the expression of Nrf2/ARE pathway in hindbrain tissue after the traumatic brain injury (TBI) and its anti-oxidative stress effect in the secondary nerve injury. Methods:The mice with Nrf2 gene knockout were used for the establishment of brain injury model. The experimental animals were divided into four groups: (Nrf2+/+) sham-operation group, (Nrf2+/+) brain injury group, (Nrf2-/-) sham-operation group and (Nrf2-/-) brain injury group. The specimen 24 h after cerebral trauma was selected. Then RT-PCR method was adopted to detect the expression of Nrf2 mRNA in brain; Western blotting method was adopted to detect the levels of Nrf2, HO-1 and NQO1 proteins in brain; ELISA method was adopted to detect the oxidative stress indicators:protein carbonyls, 4-hydroxy-2-nonenal (4-HNE) and 8-hydroxy-2’-deoxyguanosine (8-OHdG). Results: The Nrf2 mRNA and protein of Nrf2-/- mice were not expressed, and the difference of the relative amount of Nrf2 mRNA between Nrf2+/+ TBI group and Nrf2+/+ sham-operation group was not statistically significant (P>0.05); the level of Nrf2 protein in Nrf2+/+ TBI group increased significantly compared with the Nrf2+/+ sham-operation group (P0.05); there was only a little amount of expression of protein carbonyls, 4-HNE and 8-OHdG proteins in brain tissues in the Nrf2+/+ and Nrf2-/- sham-operation groups, and the difference was not statistically significant (P>0.05); after brain injury, the three oxidative stress indicators were significantly up-regulated in the Nrf2+/+ and Nrf2-/-groups, and the up-regulation of the latter group was more significant (P<0.01). Conclusions:After TBI the Nrf2/ARE pathway is activated and the activity of Nrf2 transcription regulation increases. However, the regulation dose not occur in the gene transcription level and only could increase the Nrf2 protein level, while the mRNA expression level has no obvious change. The nerve cell protective effect of Nrf2/ARE pathway in TBI achieves through

  1. Genes Expressed in Human Tumor Endothelium

    Science.gov (United States)

    St. Croix, Brad; Rago, Carlo; Velculescu, Victor; Traverso, Giovanni; Romans, Katharine E.; Montgomery, Elizabeth; Lal, Anita; Riggins, Gregory J.; Lengauer, Christoph; Vogelstein, Bert; Kinzler, Kenneth W.

    2000-08-01

    To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.

  2. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells.

    Science.gov (United States)

    Guzmán-Pérez, Valentina; Bumke-Vogt, Christiane; Schreiner, Monika; Mewis, Inga; Borchert, Andrea; Pfeiffer, Andreas F H

    2016-01-01

    Nasturtium (Tropaeolum majus L.) contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate-the benzyl isothiocyanate (BITC)-modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1). FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC-extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase-to modulate i) the insulin-signaling pathway, ii) the intracellular localization of FOXO1 and, iii) the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS) with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein) were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB) and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived)-like2 (NRF2) and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1). The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance. PMID:27622707

  3. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells

    Science.gov (United States)

    Guzmán-Pérez, Valentina; Bumke-Vogt, Christiane; Schreiner, Monika; Mewis, Inga; Borchert, Andrea; Pfeiffer, Andreas F. H.

    2016-01-01

    Nasturtium (Tropaeolum majus L.) contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate—the benzyl isothiocyanate (BITC)—modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1). FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC—extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase—to modulate i) the insulin-signaling pathway, ii) the intracellular localization of FOXO1 and, iii) the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS) with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein) were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB) and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived)-like2 (NRF2) and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1). The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance. PMID:27622707

  4. Sequence and gene expression evolution of paralogous genes in willows.

    Science.gov (United States)

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-12-22

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows.

  5. Expression of NRF2 and NRF2-modulated genes in peripheral blood leukocytes of bladder cancer males.

    Science.gov (United States)

    Reszka, E; Jablonowski, Z; Wieczorek, E; Gromadzinska, J; Jablonska, E; Sosnowski, M; Wasowicz, W

    2013-01-01

    Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is an oxidant-responsive transcription factor involved in induction of antioxidant genes. We assessed NRF2 and selected NRF2-modulated gene expression: glutathione S-transferase A1 and P1 (GSTA1 and GSTP1), mitochondrial superoxide dismutase (SOD2) in blood leukocytes of 51 bladder cancer patients and 90 control males. A significant up-regulation of SOD2 expression (P=0.002) was observed in leukocytes of patients. NRF2 expression was positively correlated with GSTP1 and with SOD2 mRNA level, both in patients and controls. These data suggest disturbances in SOD2 transcription in circulating blood leukocytes of males with bladder cancer. Moreover, concomitant constitutive expression of NRF2 and its target genes may suggest important role of NRF2 transcription factor in positive regulation of antioxidant genes, resulted in enhanced cytoprotection in human peripheral blood leukocytes. PMID:23259779

  6. Study of antimutagenic and antioxidant activities of gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus. Confirmation by microarray expression profiling.

    Science.gov (United States)

    Abdelwahed, Afef; Bouhlel, Ines; Skandrani, Ines; Valenti, Kita; Kadri, Malika; Guiraud, Pascal; Steiman, Régine; Mariotte, Anne-Marie; Ghedira, Kamel; Laporte, François; Dijoux-Franca, Marie-Geneviève; Chekir-Ghedira, Leila

    2007-01-01

    In vitro antioxidant and antimutagenic activities of two polyphenols isolated from the fruits of Pistacia lentiscus was assessed. Antioxidant activity was determined by the ability of each compound to scavenge the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH*), to inhibit xanthine oxidase and to inhibit the lipid peroxidation induced by H(2)O(2) in K562 cell line. Antimutagenic activity was assayed with SOS chromotest using Escherichia coli PQ37 as tester strain and Comet assay using K562 cell line. 1,2,3,4,6-Pentagalloylglucose was found to be more effective to scavenge DPPH* radical and protect against lipid peroxidation. Moreover, these two compounds induced an inhibitory activity against nifuroxazide and aflatoxin B1 mutagenicity. The protective effect exhibited by these molecules was also determined by analysis of gene expression as response to an oxidative stress. For this purpose, we used a cDNA-microarray containing 82 genes related to cell defense, essentially represented by antioxidant and DNA repair proteins. We found that 1,2,3,4,6-pentagalloylglucose induced a decrease in the expression of 11 transcripts related to antioxidant enzymes family (GPX1, TXN, AOE372, SHC1 and SEPW1) and DNA repair (POLD1, APEX, POLD2, MPG, PARP and XRCC5). The use of Gallic acid, induced expression of TXN, TXNRD1, AOE372, GSS (antioxidant enzymes) and LIG4, POLD2, MPG, GADD45A, PCNA, RPA2, DDIT3, HMOX2, XPA, TDG, ERCC1 and GTF2H1 (DNA repair) as well as the repression of GPX1, SEPW1, POLD1 and SHC1 gene expression. PMID:17129579

  7. Effects of Doxycycline on gene expression in Wolbachia and Brugia malayi adult female worms in vivo

    Directory of Open Access Journals (Sweden)

    Rao Ramakrishna U

    2012-02-01

    Full Text Available Abstract Background Most filarial nematodes contain Wolbachia symbionts. The purpose of this study was to examine the effects of doxycycline on gene expression in Wolbachia and adult female Brugia malayi. Methods Brugia malayi infected gerbils were treated with doxycycline for 6-weeks. This treatment largely cleared Wolbachia and arrested worm reproduction. RNA recovered from treated and control female worms was labeled by random priming and hybridized to the Version 2- filarial microarray to obtain expression profiles. Results and discussion Results showed significant changes in expression for 200 Wolbachia (29% of Wolbachia genes with expression signals in untreated worms and 546 B. malayi array elements after treatment. These elements correspond to known genes and also to novel genes with unknown biological functions. Most differentially expressed Wolbachia genes were down-regulated after treatment (98.5%. In contrast, doxycycline had a mixed effect on B. malayi gene expression with many more genes being significantly up-regulated after treatment (85% of differentially expressed genes. Genes and processes involved in reproduction (gender-regulated genes, collagen, amino acid metabolism, ribosomal processes, and cytoskeleton were down-regulated after doxycycline while up-regulated genes and pathways suggest adaptations for survival in response to stress (energy metabolism, electron transport, anti-oxidants, nutrient transport, bacterial signaling pathways, and immune evasion. Conclusions Doxycycline reduced Wolbachia and significantly decreased bacterial gene expression. Wolbachia ribosomes are believed to be the primary biological target for doxycycline in filarial worms. B. malayi genes essential for reproduction, growth and development were also down-regulated; these changes are consistent with doxycycline effects on embryo development and reproduction. On the other hand, many B. malayi genes involved in energy production, electron

  8. Cloning, expression and antioxidant activity of a novel collagen from Pelodiscus sinensis.

    Science.gov (United States)

    Xu, Ran; Li, Dengfeng; Peng, Jiao; Fang, Jing; Zhang, Liping; Liu, Lianguo

    2016-06-01

    Collagen is the main structural protein of various connective tissues in animals and naturally plays an important role within the body. It is increasingly used within certain areas, such as medicine, citology and cosmetology. The soft-shelled turtle (Pelodiscus sinensis) is a commercially important aquatic species rich in collagen. In this study, a novel collagen gene fragment of 756 bp, which encodes 252 deduced amino acid residues, including 25 conserved Gly-X-Y motifs, was cloned from a soft-shelled turtle. Recombinant soft-shelled turtle collagen (rSTC) was stably expressed in Escherichia coli Rosetta and purified by His GraviTrap affinity columns. The antioxidant activities of rSTC were measured using hydroxyl and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The results showed that rSTC quenched the free radicals in a dose-dependent manner. The hydroxyl radical scavenging activity (HRSA) of rSTC was 98.9 % at a concentration of 3 mg/mL. At a concentration of 5 mg/mL, rSTC exhibited a DPPH radical scavenging activity of 32.7 %. At the tested concentrations, rSTC exhibited higher HRSA and lower DPPH radical scavenging activity. PMID:27116966

  9. 妊娠期添加叶酸对新生仔猪肝脏抗氧化能力和基因表达影响%Effects of Maternal Folic Acid Supplementation on Antioxidant Abilities and Gene Expression in Liver of Newborn Piglets

    Institute of Scientific and Technical Information of China (English)

    刘静波; 陈代文; 余冰; 姚英

    2011-01-01

    试验选用24头大约克母猪,随机分为2个处理组,每组12个重复,研究妊娠期添加叶酸对新生仔猪肝脏抗氧化能力及其与叶酸代谢相关基因表达量的影响.对照组饲喂基础日粮(叶酸1.3 mg/kg),基础日粮为典型的王米-豆粕型日粮,在基础日粮中添加叶酸构成处理组日粮(叶酸30 mg/kg),试验从母猪配种开始直至分娩.结果表明:妊娠期间增加母猪叶酸摄入量显著提高仔猪血清叶酸含量(P<0.01),极显著降低血清同型半胱氨酸含量(P<0.01).叶酸添加组仔猪肝脏中总抗氧化能力(P<0.05)、谷胱甘肽过氧化物酶(P<0.05)和总超氧化物岐化酶活力(P<0.05)显著高于对照组.仔猪肝脏丙二醛和一氧化氮含量在添加叶酸之后显著下降(P<0.05).添加叶酸显著提高仔猪肝脏中丝氨酸羟甲基转移酶基因表达量(P<0.05),下调T-蛋白基因mRNA水平(P<0.05).由此可见,通过母体添加叶酸可显著改善仔猪肝脏抗氧化功能,并影响叶酸代谢相关基因表达量.%Twenty-four gilts (Yorkshire) were randomly allotted to 2 groups with 12 replications to study the effects of maternal folic acid supplementation on hepatic antioxidant capacity and expression patterns of genes involved in folic acid metabolism in newborn piglets during gestation period. The control group was fed with basal diet (folic acid 1.3 mg/kg), which was the typical corn-soybean meal. Folic acid was added into the basal diet as the experimental group diet (folic acid 30 mg/ kg). The trial duration was last from mating to delivery. The results showed that maternal folic acid supplementation increased serum folic acid content of piglets (P < 0.01) and reduced serum homocysteine content (P < 0.01) significantly during the gestational period. Compared with the control group, the activities of hepatic T-AOC(P< 0.05),GSH-Px (P< 0.05) and SOD (P < 0.05) in piglets of experimental group were increased, but the concentrations of MDA and NO were

  10. Gene expression profiling of human erythroid progenitors by micro-serial analysis of gene expression.

    Science.gov (United States)

    Fujishima, Naohito; Hirokawa, Makoto; Aiba, Namiko; Ichikawa, Yoshikazu; Fujishima, Masumi; Komatsuda, Atsushi; Suzuki, Yoshiko; Kawabata, Yoshinari; Miura, Ikuo; Sawada, Ken-ichi

    2004-10-01

    We compared the expression profiles of highly purified human CD34+ cells and erythroid progenitor cells by micro-serial analysis of gene expression (microSAGE). Human CD34+ cells were purified from granulocyte colony-stimulating factor-mobilized blood stem cells, and erythroid progenitors were obtained by cultivating these cells in the presence of stem cell factor, interleukin 3, and erythropoietin. Our 10,202 SAGE tags allowed us to identify 1354 different transcripts appearing more than once. Erythroid progenitor cells showed increased expression of LRBA, EEF1A1, HSPCA, PILRB, RANBP1, NACA, and SMURF. Overexpression of HSPCA was confirmed by real-time polymerase chain reaction analysis. MicroSAGE revealed an unexpected preferential expression of several genes in erythroid progenitor cells in addition to the known functional genes, including hemoglobins. Our results provide reference data for future studies of gene expression in various hematopoietic disorders, including myelodysplastic syndrome and leukemia.

  11. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...

  12. Population-level control of gene expression

    Science.gov (United States)

    Nevozhay, Dmitry; Adams, Rhys; van Itallie, Elizabeth; Bennett, Matthew; Balazsi, Gabor

    2011-03-01

    Gene expression is the process that translates genetic information into proteins, that determine the way cells live, function and even die. It was demonstrated that cells with identical genomes exposed to the same environment can differ in their protein composition and therefore phenotypes. Protein levels can vary between cells due to the stochastic nature of intracellular biochemical events, indicating that the genotype-phenotype connection is not deterministic at the cellular level. We asked whether genomes could encode isogenic cell populations more reliably than single cells. To address this question, we built two gene circuits to control three cell population-level characteristics: gene expression mean, coefficient of variation and non-genetic memory of previous expression states. Indeed, we found that these population-level characteristics were more predictable than the gene expression of single cells in a well-controlled environment. This research was supported by the NIH Director's New Innovator Award 1DP2 OD006481-01 and Welch Foundation Grant C-1729.

  13. The Low Noise Limit in Gene Expression.

    Directory of Open Access Journals (Sweden)

    Roy D Dar

    Full Text Available Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1 a global noise floor uniformly imposed on all genes by expression bursting; and (2 high noise distributed to only a select group of genes.

  14. Gene expression analysis of zebrafish heart regeneration.

    Directory of Open Access Journals (Sweden)

    Ching-Ling Lien

    2006-08-01

    Full Text Available Mammalian hearts cannot regenerate. In contrast, zebrafish hearts regenerate even when up to 20% of the ventricle is amputated. The mechanism of zebrafish heart regeneration is not understood. To systematically characterize this process at the molecular level, we generated transcriptional profiles of zebrafish cardiac regeneration by microarray analyses. Distinct gene clusters were identified based on temporal expression patterns. Genes coding for wound response/inflammatory factors, secreted molecules, and matrix metalloproteinases are expressed in regenerating heart in sequential patterns. Comparisons of gene expression profiles between heart and fin regeneration revealed a set of regeneration core molecules as well as tissue-specific factors. The expression patterns of several secreted molecules around the wound suggest that they play important roles in heart regeneration. We found that both platelet-derived growth factor-a and -b (pdgf-a and pdgf-b are upregulated in regenerating zebrafish hearts. PDGF-B homodimers induce DNA synthesis in adult zebrafish cardiomyocytes. In addition, we demonstrate that a chemical inhibitor of PDGF receptor decreases DNA synthesis of cardiomyocytes both in vitro and in vivo during regeneration. Our data indicate that zebrafish heart regeneration is associated with sequentially upregulated wound healing genes and growth factors and suggest that PDGF signaling is required.

  15. Cluster Analysis of Gene Expression Data

    CERN Document Server

    Domany, E

    2002-01-01

    The expression levels of many thousands of genes can be measured simultaneously by DNA microarrays (chips). This novel experimental tool has revolutionized research in molecular biology and generated considerable excitement. A typical experiment uses a few tens of such chips, each dedicated to a single sample - such as tissue extracted from a particular tumor. The results of such an experiment contain several hundred thousand numbers, that come in the form of a table, of several thousand rows (one for each gene) and 50 - 100 columns (one for each sample). We developed a clustering methodology to mine such data. In this review I provide a very basic introduction to the subject, aimed at a physics audience with no prior knowledge of either gene expression or clustering methods. I explain what genes are, what is gene expression and how it is measured by DNA chips. Next I explain what is meant by "clustering" and how we analyze the massive amounts of data from such experiments, and present results obtained from a...

  16. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  17. Effect of vitamin E on cerebral cortical oxidative stress and brain-derived neurotrophic factor gene expression induced by hypoxia and exercise in rats.

    Science.gov (United States)

    Sakr, H F; Abbas, A M; El Samanoudy, A Z

    2015-04-01

    Brain-derived neurotrophic factor (BDNF) is involved in the proliferation of neurons, and its expression increases significantly with exercise. We aimed to investigate the effects of chronic exercise (swimming) and sustained hypoxia on cortical BDNF expression in both the presence and absence of vitamin E. Sixty four male Sprague-Dawley rats were divided into two equal groups; a normoxic group and a hypoxic group. Both groups were equally subdivided into four subgroups: sedentary, sedentary with vitamin E, chronic exercise either with or without vitamin E supplementation. Arterial PO(2), and the levels of cortical malondialdehyde (MDA), antioxidants (reduced glutathione GSH, superoxide dismutase (SOD), catalase (CAT) and vitamin E) and BDNF gene expression were investigated. Hypoxia significantly increased MDA production and BDNF gene expression and decreased the antioxidants compared to control rats. Chronic exercise in hypoxic and normoxic rats increased MDA level and BDNF gene expression and decreased the antioxidants. Providing vitamin E supplementation to the hypoxic and normoxic rats significantly reduced MDA and BDNF gene expression and increased antioxidants. We conclude that sustained hypoxia and chronic exercise increased BDNF gene expression and induced oxidative stress. Moreover, vitamin E attenuated the oxidative stress and decreased BDNF gene expression in sustained hypoxia and chronic exercise which confirms the oxidative stress-induced stimulation of BDNF gene expression. PMID:25903950

  18. Sex hormones modulate circulating antioxidant enzymes: Impact of estrogen therapy

    Directory of Open Access Journals (Sweden)

    Francesco Bellanti

    2013-01-01

    Conclusions: Menopause is associated with significant change in antioxidant gene expression that in turn affects circulating redox state. Estrogens replacement therapy is able to prevent and counteract such modifications by acting as regulators of key antioxidant gene expression. These findings suggest that antioxidant genes are, almost in part, under the control of sex hormones, and that pathophysiology of the difference in gender disease may depend on the redox biology.

  19. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  20. Developmental and activity-dependent expression of LanCL1 confers antioxidant activity required for neuronal survival.

    Science.gov (United States)

    Huang, Chao; Chen, Mina; Pang, Dejiang; Bi, Dandan; Zou, Yi; Xia, Xiaoqiang; Yang, Weiwei; Luo, Liping; Deng, Rongkang; Tan, Honglin; Zhou, Liang; Yu, Shouyang; Guo, Liheng; Du, XiaoXia; Cui, Yiyuan; Hu, Jiahua; Mao, Qing; Worley, Paul F; Xiao, Bo

    2014-08-25

    Production of reactive oxygen species (ROS) increases with neuronal activity that accompanies synaptic development and function. Transcription-related factors and metabolic enzymes that are expressed in all tissues have been described to counteract neuronal ROS to prevent oxidative damage. Here, we describe the antioxidant gene LanCL1 that is prominently enriched in brain neurons. Its expression is developmentally regulated and induced by neuronal activity, neurotrophic factors implicated in neuronal plasticity and survival, and oxidative stress. Genetic deletion of LanCL1 causes enhanced accumulation of ROS in brain, as well as development-related lipid, protein, and DNA damage; mitochondrial dysfunction; and apoptotic neurodegeneration. LanCL1 transgene protects neurons from ROS. LanCL1 protein purified from eukaryotic cells catalyzes the formation of thioether products similar to glutathione S-transferase. These studies reveal a neuron-specific glutathione defense mechanism that is essential for neuronal function and survival. PMID:25158856

  1. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    Science.gov (United States)

    Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  2. Outlier Analysis for Gene Expression Data

    Institute of Scientific and Technical Information of China (English)

    Chao Yan; Guo-Liang Chen; Yi-Fei Shen

    2004-01-01

    The rapid developments of technologies that generate arrays of gene data enable a global view of the transcription levels of hundreds of thousands of genes simultaneously. The outlier detection problem for gene data has its importance but together with the difficulty of high dimensionality. The sparsity of data in high dimensional space makes each point a relatively good outlier in the view of traditional distance-based definitions. Thus, finding outliers in high dimensional data is more complex. In this paper, sme basic outlier analysis algorithms are discussed and a new genetic algorithm is presented. This algorithm is to find best dimension projections based on a revised cell-based algorithm and to give explanations to solutions. It can solve the outlier detection problem for gene expression data and for other high dimensional data as well.

  3. Coevolution of gene expression among interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  4. Antioxidant Activity and Induction of mRNA Expressions of Antioxidant Enzymes in HEK-293 Cells of Moringa oleifera Leaf Extract.

    Science.gov (United States)

    Vongsak, Boonyadist; Mangmool, Supachoke; Gritsanapan, Wandee

    2015-08-01

    The leaves of Moringa oleifera, collected in different provinces in Thailand, were determined for the contents of total phenolics, total flavonoids, major components, and antioxidant activity. The extract and its major active components were investigated for the inhibition of H2O2-induced reactive oxygen species production and the effects on antioxidant enzymes mRNA expression. The extract, crypto-chlorogenic acid, isoquercetin and astragalin, significantly reduced the reactive oxygen species production inducing by H2O2 in HEK-293 cells. Treatment with isoquercetin significantly increased the mRNA expression levels of antioxidant enzymes such as superoxide dismutase, catalase and heme oxygenase 1. These results confirm that M. oleifera leaves are good sources of natural antioxidant with isoquercetin as an active compound. PMID:26166137

  5. Antioxidant Activity and Induction of mRNA Expressions of Antioxidant Enzymes in HEK-293 Cells of Moringa oleifera Leaf Extract.

    Science.gov (United States)

    Vongsak, Boonyadist; Mangmool, Supachoke; Gritsanapan, Wandee

    2015-08-01

    The leaves of Moringa oleifera, collected in different provinces in Thailand, were determined for the contents of total phenolics, total flavonoids, major components, and antioxidant activity. The extract and its major active components were investigated for the inhibition of H2O2-induced reactive oxygen species production and the effects on antioxidant enzymes mRNA expression. The extract, crypto-chlorogenic acid, isoquercetin and astragalin, significantly reduced the reactive oxygen species production inducing by H2O2 in HEK-293 cells. Treatment with isoquercetin significantly increased the mRNA expression levels of antioxidant enzymes such as superoxide dismutase, catalase and heme oxygenase 1. These results confirm that M. oleifera leaves are good sources of natural antioxidant with isoquercetin as an active compound.

  6. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages.

    Science.gov (United States)

    Varì, Rosaria; D'Archivio, Massimo; Filesi, Carmelina; Carotenuto, Simona; Scazzocchio, Beatrice; Santangelo, Carmela; Giovannini, Claudio; Masella, Roberta

    2011-05-01

    Protocatechuic acid (PCA) is a main metabolite of anthocyanins, whose daily intake is much higher than that of other polyphenols. PCA has biological effects, e.g., it induces the antioxidant/detoxifying enzyme gene expression. This study was aimed at defining the molecular mechanism responsible for PCA-induced over-expression of glutathione (GSH) peroxidase (GPx) and GSH reductase (GR) in J774 A.1 macrophages. New evidence is provided that PCA increases GPx and GR expression by inducing C-JUN NH(2)-terminal kinase (JNK)-mediated phosphorylation of Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2). RNA and proteins were extracted from cells treated with PCA (25 μM) for different time points. Quantitative real-time polymerase chain reaction and immunoblotting analyses showed a rapid increase in mRNA (>60%) and protein (>50%) for both the enzymes. This was preceded by the up-regulation of Nrf2, in terms of mRNA and protein, and by its significant activation as assessed by increased Nrf2 phosphorylation and nuclear translocation (+60%). By using specific kinase inhibitors and detecting the activated form, we showed that JNK was the main upstream kinase responsible for Nrf2 activation. Convincing evidence is provided of a causal link between PCA-induced Nrf2 activation and increased enzyme expression. By silencing Nrf2 and using a JNK inhibitor, enzyme enhancement was counteracted. Finally, with the ChIP assay, we demonstrated that PCA-activated Nrf2 specifically bound ARE sequences in enzyme gene promoters. Our study demonstrates for the first time that PCA improves the macrophage endogenous antioxidant potential by a mechanism in which JNK-mediated Nrf2 activation plays an essential role. This knowledge could contribute to novel diet-based approaches aimed at counteracting oxidative injury by reinforcing endogenous defences. PMID:20621462

  7. Gene expression profiling in sinonasal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Sébille-Rivain Véronique

    2009-11-01

    Full Text Available Abstract Background Sinonasal adenocarcinomas are uncommon tumors which develop in the ethmoid sinus after exposure to wood dust. Although the etiology of these tumors is well defined, very little is known about their molecular basis and no diagnostic tool exists for their early detection in high-risk workers. Methods To identify genes involved in this disease, we performed gene expression profiling using cancer-dedicated microarrays, on nine matched samples of sinonasal adenocarcinomas and non-tumor sinusal tissue. Microarray results were validated by quantitative RT-PCR and immunohistochemistry on two additional sets of tumors. Results Among the genes with significant differential expression we selected LGALS4, ACS5, CLU, SRI and CCT5 for further exploration. The overexpression of LGALS4, ACS5, SRI, CCT5 and the downregulation of CLU were confirmed by quantitative RT-PCR. Immunohistochemistry was performed for LGALS4 (Galectin 4, ACS5 (Acyl-CoA synthetase and CLU (Clusterin proteins: LGALS4 was highly up-regulated, particularly in the most differentiated tumors, while CLU was lost in all tumors. The expression of ACS5, was more heterogeneous and no correlation was observed with the tumor type. Conclusion Within our microarray study in sinonasal adenocarcinoma we identified two proteins, LGALS4 and CLU, that were significantly differentially expressed in tumors compared to normal tissue. A further evaluation on a new set of tissues, including precancerous stages and low grade tumors, is necessary to evaluate the possibility of using them as diagnostic markers.

  8. Gene expression profiles in skeletal muscle after gene electrotransfer

    Directory of Open Access Journals (Sweden)

    Eriksen Jens

    2007-06-01

    Full Text Available Abstract Background Gene transfer by electroporation (DNA electrotransfer to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have therefore investigated transcriptional changes through gene expression profile analyses, morphological changes by histological analysis, and physiological changes by force generation measurements. DNA electrotransfer was obtained using a combination of a short high voltage pulse (HV, 1000 V/cm, 100 μs followed by a long low voltage pulse (LV, 100 V/cm, 400 ms; a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP and excised at 4 hours, 48 hours or 3 weeks after treatment. Results Differentially expressed genes were investigated by microarray analysis, and descriptive statistics were performed to evaluate the effects of 1 electroporation, 2 DNA injection, and 3 time after treatment. The biological significance of the results was assessed by gene annotation and supervised cluster analysis. Generally, electroporation caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern in some fibres after DNA+HV+LV treatment, while HV+LV pulses alone showed preservation of cell integrity. No difference in the force generation capacity was observed in

  9. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne;

    2007-01-01

    BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have...... investigated by microarray analysis, and descriptive statistics were performed to evaluate the effects of 1) electroporation, 2) DNA injection, and 3) time after treatment. The biological significance of the results was assessed by gene annotation and supervised cluster analysis.Generally, electroporation...

  10. A systematic screen for genes expressed in definitive endoderm by Serial Analysis of Gene Expression (SAGE

    Directory of Open Access Journals (Sweden)

    Jones Steven JM

    2007-08-01

    Full Text Available Abstract Background The embryonic definitive endoderm (DE gives rise to organs of the gastrointestinal and respiratory tract including the liver, pancreas and epithelia of the lung and colon. Understanding how DE progenitor cells generate these tissues is critical to understanding the cause of visceral organ disorders and cancers, and will ultimately lead to novel therapies including tissue and organ regeneration. However, investigation into the molecular mechanisms of DE differentiation has been hindered by the lack of early DE-specific markers. Results We describe the identification of novel as well as known genes that are expressed in DE using Serial Analysis of Gene Expression (SAGE. We generated and analyzed three longSAGE libraries from early DE of murine embryos: early whole definitive endoderm (0–6 somite stage, foregut (8–12 somite stage, and hindgut (8–12 somite stage. A list of candidate genes enriched for expression in endoderm was compiled through comparisons within these three endoderm libraries and against 133 mouse longSAGE libraries generated by the Mouse Atlas of Gene Expression Project encompassing multiple embryonic tissues and stages. Using whole mount in situ hybridization, we confirmed that 22/32 (69% genes showed previously uncharacterized expression in the DE. Importantly, two genes identified, Pyy and 5730521E12Rik, showed exclusive DE expression at early stages of endoderm patterning. Conclusion The high efficiency of this endoderm screen indicates that our approach can be successfully used to analyze and validate the vast amount of data obtained by the Mouse Atlas of Gene Expression Project. Importantly, these novel early endoderm-expressing genes will be valuable for further investigation into the molecular mechanisms that regulate endoderm development.

  11. Corresponding erdosteine changes autophagy genes expression in hippocampus on Rhinitis medicamentosa model

    OpenAIRE

    Dokuyucu Recep; Gogebakan Bulent; Cevik Cengiz

    2015-01-01

    In our study, rats were subjected to Oxymetazoline hydrochloride treatment and Rhinitis medicamentosa (RM) was formed and then autophagy gene expression levels were determined after the application of an antioxidant agent erdosteine (ED). The rats were divided into three groups; Group 1 was the control group. Group 2 (RM) and group 3 (RM+ED) rats received two spray puffs of 0.05% oxymetazoline into the nasal cavities three times daily for eight weeks. After...

  12. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L. seedlings.

    Directory of Open Access Journals (Sweden)

    Hubert Sytykiewicz

    Full Text Available The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB in seedling leaves of the Zea mays L. Tasty Sweet (susceptible and Ambrozja (relatively resistant cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid. Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9. However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4 or 24 h (sod9 post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants.

  13. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700......BACKGROUND: Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially...... Arabidopsis microarray experiments. CONCLUSIONS: Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/....

  14. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns

    Science.gov (United States)

    Feng, Kun; Yu, Jiahong; Cheng, Yuan; Ruan, Meiying; Wang, Rongqing; Ye, Qingjing; Zhou, Guozhi; Li, Zhimiao; Yao, Zhuping; Yang, Yuejian; Zheng, Qingsong; Wan, Hongjian

    2016-01-01

    Superoxide dismutases (SODs) are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS) caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L.) is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants. PMID:27625661

  15. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns.

    Science.gov (United States)

    Feng, Kun; Yu, Jiahong; Cheng, Yuan; Ruan, Meiying; Wang, Rongqing; Ye, Qingjing; Zhou, Guozhi; Li, Zhimiao; Yao, Zhuping; Yang, Yuejian; Zheng, Qingsong; Wan, Hongjian

    2016-01-01

    Superoxide dismutases (SODs) are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS) caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L.) is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants. PMID:27625661

  16. Gene expression in Pseudomonas aeruginosa swarming motility

    Directory of Open Access Journals (Sweden)

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  17. Annotation of gene function in citrus using gene expression information and co-expression networks

    OpenAIRE

    Wong, Darren CJ; Sweetman, Crystal; Ford, Christopher M

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related bi...

  18. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito;

    2005-01-01

    It is well known that tumors arising from tissues such as kidney, pancreas, liver and stomach are particularly refractory to treatment. Searching for new anticancer drugs using cells in culture has yielded some effective therapies, but these refractory tumors remain intractable. Studies that comp......It is well known that tumors arising from tissues such as kidney, pancreas, liver and stomach are particularly refractory to treatment. Searching for new anticancer drugs using cells in culture has yielded some effective therapies, but these refractory tumors remain intractable. Studies...... survival might, therefore, act through such a matrix-to-cell suppression of apoptosis. Indeed, correlative mining of gene expression and patient survival databases suggests that poor survival in patients with metastatic cancer correlates highly with tumor expression of a common theme: the genes involved...

  19. Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Mishin, Vladimir; Black, Adrienne T. [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Shakarjian, Michael P. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Kong, Ah-Ng Tony; Laskin, Debra L. [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-03-01

    4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86–98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2 −/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a reactive aldehyde. • 4-HNE induces antioxidant proteins in mouse keratinocytes. • Induction of

  20. Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product

    International Nuclear Information System (INIS)

    4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86–98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2 −/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a reactive aldehyde. • 4-HNE induces antioxidant proteins in mouse keratinocytes. • Induction of

  1. Identifying Driver Genes in Cancer by Triangulating Gene Expression, Gene Location, and Survival Data

    Science.gov (United States)

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates – or integrates – three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics. PMID:25949096

  2. Regulation of Gene Expression in Protozoa Parasites

    OpenAIRE

    Consuelo Gomez; Esther Ramirez, M.; Mercedes Calixto-Galvez; Olivia Medel; Rodríguez, Mario A

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or dru...

  3. Gene expression profiling: methods and protocols

    OpenAIRE

    Manuela Monti

    2012-01-01

    There must be some good reasons to last for a second edition on the very same topic: likely, the topic is crucial to basic and applied science, it is a very rapid evolving topic and there must occurred some breakthroughs meanwhile the two editions. Well, I think that all of these reasons are here to justify this very wellcome second edition of “Gene expression profiling”, a topic that is crucial....

  4. Proteomic and gene expression patterns of keratoconus

    Directory of Open Access Journals (Sweden)

    Arkasubhra Ghosh

    2013-01-01

    Full Text Available Keratoconus is a progressive corneal thinning disease associated with significant tissue remodeling activities and activation of a variety of signaling networks. However, it is not understood how differential gene and protein expression direct function in keratoconus corneas to drive the underlying pathology, ectasia. Research in the field has focused on discovering differentially expressed genes and proteins and quantifying their levels and activities in keratoconus patient samples. In this study, both microarray analysis of total ribonucleic acid (RNA and whole proteome analyses are carried out using corneal epithelium and tears from keratoconus patients and compared to healthy controls. A number of structural proteins, signaling molecules, cytokines, proteases, and enzymes have been found to be deregulated in keratoconus corneas. Together, the data provide clues to the complex process of corneal degradation which suggest novel ways to clinically diagnose and manage the disease. This review will focus on discussing these recent advances in the knowledge of keratoconus biology from a gene expression and function point-of-view.

  5. Carbon Nanomaterials Alter Global Gene Expression Profiles.

    Science.gov (United States)

    Woodman, Sara; Short, John C W; McDermott, Hyoeun; Linan, Alexander; Bartlett, Katelyn; Gadila, Shiva Kumar Goud; Schmelzle, Katie; Wanekaya, Adam; Kim, Kyoungtae

    2016-05-01

    Carbon nanomaterials (CNMs), which include carbon nanotubes (CNTs) and their derivatives, have diverse technological and biomedical applications. The potential toxicity of CNMs to cells and tissues has become an important emerging question in nanotechnology. To assess the toxicity of CNTs and fullerenol C60(OH)24, we in the present work used the budding yeast Saccharomyces cerevisiae, one of the simplest eukaryotic organisms that share fundamental aspects of eukaryotic cell biology. We found that treatment with CNMs, regardless of their physical shape, negatively affected the growth rates, end-point cell densities and doubling times of CNM-exposed yeast cells when compared to unexposed cells. To investigate potential mechanisms behind the CNMs-induced growth defects, we performed RNA-Seq dependent transcriptional analysis and constructed global gene expression profiles of fullerenol C60(OH)24- and CNT-treated cells. When compared to non-treated control cells, CNM-treated cells displayed differential expression of genes whose functions are implicated in membrane transporters and stress response, although differentially expressed genes were not consistent between CNT- and fullerenol C60(OH)24-treated groups, leading to our conclusion that CNMs could serve as environmental toxic factors to eukaryotic cells. PMID:27483901

  6. Analysis of gene expression in rabbit muscle

    Directory of Open Access Journals (Sweden)

    Alena Gálová

    2014-02-01

    Full Text Available Increasing consumer knowledge of the link between diet and health has raised the demand for high quality food. Meat and meat products may be considered as irreplaceable in human nutrition. Breeding livestock to higher content of lean meat and the use of modern hybrids entails problems with the quality of meat. Analysing of livestock genomes could get us a great deal of important information, which may significantly affect the improvement process. Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS, which utilizes high-density single-nucleotide polymorphism (SNP, provides a new way to tackle this issue. New technologies now allow producing microarrays containing thousands of hybridization probes on a single membrane or other solid support. We used microarray analysis to study gene expression in rabbit muscle during different developmental age stages. The outputs from GeneSpring GX sotware are presented in this work. After the evaluation of gene expression in rabbits, will be selected genes of interest in relation to meat quality parameters and will be further analyzed by the available methods of molecular biology and genetics.

  7. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  8. Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening.

    Science.gov (United States)

    Huan, Chen; Jiang, Li; An, Xiujuan; Yu, Mingliang; Xu, Yin; Ma, Ruijuan; Yu, Zhifang

    2016-07-01

    The roles of reactive oxygen species (ROS) as both toxic by-products and as signaling molecules have been reported in fruit development and ripening. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) play important roles in balancing the induction and removal of ROS in plants, and are respectively encoded by families of closely homologous genes. In the present study, we investigated the roles of ROS and the above-mentioned antioxidant genes during the development and ripening of peach fruit. The experimental results indicated that O2(-) and H2O2 acted as potential signaling molecules in the middle stage of fruit development, and only H2O2 might function as a main toxic molecule to stimulate lipid peroxidation and oxidative stress in the late stage of fruit ripening. PpaCu/Zn-SODs were the most abundant members in the PpaSOD gene family and they expressed steadily in peach fruit development and ripening. Low temperature (4 °C) postponed and suppressed the climacteric peaks of respiration and ethylene, significantly enhanced the activities of CAT and GPX, and up-regulated the expression of PpaCAT1 and PpaGPX6 in the late stage of fruit ripening. PpaCAT1 and PpaGPX6 were two key genes in alleviating oxidative stress in the late stage of fruit ripening. PMID:27208820

  9. Corresponding erdosteine changes autophagy genes expression in hippocampus on Rhinitis medicamentosa model

    Directory of Open Access Journals (Sweden)

    Dokuyucu Recep

    2015-01-01

    Full Text Available In our study, rats were subjected to Oxymetazoline hydrochloride treatment and Rhinitis medicamentosa (RM was formed and then autophagy gene expression levels were determined after the application of an antioxidant agent erdosteine (ED. The rats were divided into three groups; Group 1 was the control group. Group 2 (RM and group 3 (RM+ED rats received two spray puffs of 0.05% oxymetazoline into the nasal cavities three times daily for eight weeks. After determination of RM in the rats, the RM group were killed. The ED+RM group received 10 mg/kg of an ED suspension. At the end of seven days, these rats were also killed. All groups’ hippocampus tissues were obtained for the measurement of autophagy gene expressions. In rhinitis medicamentosa group Atg5, Atg7 and Atg10 gene expressions in the left hippocampus were reduced as compared to control group (p=0.01, p>0.05, p=0.01, respectively. Also, erdosteine treatments were restored mRNA expression of autophagy genes. In right hippocampus of rhinitis medicamentosa group, Atg5 and Atg10 gene expressions was found to be down-regulated as compared to control group (p>0.05, p<0.05, respectively. Both BECN1 and ULK genes expression were found to be reduced in left hippocampus of rhinitis medicamentosa group. Erdosteine applications was restored the expression of these genes (p=0.03, p=0.03, respectively. Additionally, in right hippocampus, Erdosteine application was restored the expression of ULK gene (p=0.01. This is the first report that evaluated the expression autophagy genes in RM rat models and the changes observed after erdosteine applications.

  10. The transcriptional regulation of regucalcin gene expression.

    Science.gov (United States)

    Yamaguchi, Masayoshi

    2011-01-01

    Regucalcin, which is discovered as a calcium-binding protein in 1978, has been shown to play a multifunctional role in many tissues and cell types; regucalcin has been proposed to play a pivotal role in keeping cell homeostasis and function for cell response. Regucalcin and its gene are identified in over 15 species consisting of regucalcin family. Comparison of the nucleotide sequences of regucalcin from vertebrate species is highly conserved in their coding region with throughout evolution. The regucalcin gene is localized on the chromosome X in rat and human. The organization of rat regucalcin gene consists of seven exons and six introns and several consensus regulatory elements exist upstream of the 5'-flanking region. AP-1, NF1-A1, RGPR-p117, β-catenin, and other factors have been found to be a transcription factor in the enhancement of regucalcin gene promoter activity. The transcription activity of regucalcin gene is enhanced through intracellular signaling factors that are mediated through the phosphorylation and dephosphorylation of nuclear protein in vitro. Regucalcin mRNA and its protein are markedly expressed in the liver and kidney cortex of rats. The expression of regucalcin mRNA in the liver and kidney cortex has been shown to stimulate by hormonal factors (including calcium, calcitonin, parathyroid hormone, insulin, estrogen, and dexamethasone) in vivo. Regucalcin mRNA expression is enhanced in the regenerating liver after partial hepatectomy of rats in vivo. The expression of regucalcin mRNA in the liver and kidney with pathophysiological state has been shown to suppress, suggesting an involvement of regucalcin in disease. Liver regucalcin expression is down-regulated in tumor cells, suggesting a suppressive role in the development of carcinogenesis. Liver regucalcin is markedly released into the serum of rats with chemically induced liver injury in vivo. Serum regucalcin has a potential sensitivity as a specific biochemical marker of chronic

  11. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    1997-01-01

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  12. The similarity of gene expression between human and mouse tissues

    OpenAIRE

    Dowell, Robin D.

    2011-01-01

    Meta-analysis of human and mouse microarray data reveals conservation of patterns of gene expression that will help to better characterize the evolution of gene expression. See research article: http://genomebiology.com/2010/11/12/R124

  13. Identification of common prognostic gene expression signatures with biological meanings from microarray gene expression datasets.

    Directory of Open Access Journals (Sweden)

    Jun Yao

    Full Text Available Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT, recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures.

  14. Identification of common prognostic gene expression signatures with biological meanings from microarray gene expression datasets.

    Science.gov (United States)

    Yao, Jun; Zhao, Qi; Yuan, Ying; Zhang, Li; Liu, Xiaoming; Yung, W K Alfred; Weinstein, John N

    2012-01-01

    Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling) to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT), recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN) is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures.

  15. Gene expression profiling and endothelin in acute experimental pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Helieh S Oz; Ying Lu; Louis P Vera-Portocarrero; Pei Ge; Ada Silos-Santiago; Karin N Westlund

    2012-01-01

    AIM:To analyze gene expression profiles in an experimental pancreatitis and provide functional reversal of hypersensitivity with candidate gene endothelin-1 antagonists.METHODS:Dibutyltin dichloride (DBTC) is a chemical used as a polyvinyl carbonate stabilizer/catalyzer,biocide in agriculture,antifouling agent in paint and fabric.DBTC induces an acute pancreatitis flare through generation of reactive oxygen species.Lewis-inbred rats received a single i.v.injection with either DBTC or vehicle.Spinal cord and dorsal root ganglia (DRG) were taken at the peak of inflammation and processed for transcriptional profiling with a cDNA microarray biased for rat brain-specific genes.In a second study,groups of animals with DBTC-induced pancreatitis were treated with endothelin (ET) receptor antagonists [ET-A (BQ123) and ET-B BQ788)].Spontaneous pain related mechanical and thermal hypersensitivity were measured.Immunohistochemical analysis was performed using anti-ET-A and ET-B antibodies on sections from pancreatic tissues and DRG of the T10-12 spinal segments.RESULTS:Animals developed acute pancreatic inflammation persisting 7-10 d as confirmed by pathological studies (edema in parenchyma,loss of pancreatic architecture and islets,infiltration of inflammatory cells,neutrophil and mononuclear cells,degeneration,vacuolization and necrosis of acinar cells) and the painrelated behaviors (cutaneous secondary mechanical and thermal hypersensitivity).Gene expression profile was different in the spinal cord from animals with pancreatitis compared to the vehicle control group.Over 260 up-regulated and 60 down-regulated unique genes could be classified into 8 functional gene families:circulatory/acute phase/immunomodulatory; extracellular matrix; structural; channel/receptor/transporter; signaling transduction; transcription/translation-related; antioxidants/chaperones/heat shock; pancreatic and other enzymes.ET-1 was among the 52 candidate genes upregulated greater than 2-fold in

  16. Gene expression regulators--MicroRNAs

    Institute of Scientific and Technical Information of China (English)

    CHEN Fang; YIN Q. James

    2005-01-01

    A large class of non-coding RNAs found in small molecule RNAs are closely associated with the regulation of gene expression, which are called microRNA (miRNA). MiRNAs are coded in intergenic or intronic regions and can be formed into foldback hairpin RNAs. These transcripts are cleaved by Dicer, generating mature miRNAs that can silence their target genes in different modes of action. Now, research on small molecule RNAs has gotten breakthrough advance in biology. To discover miRNA genes and their target genes has become hot topics in RNA research. This review attempts to look back the history of miRNA discovery, to introduce the methods of screening miRNAs, to localize miRNA loci in genome, to seek miRNA target genes and the biological function, and to discuss the working mechanisms of miRNAs. Finally, we will discuss the potential important roles of miRNAs in modulating the genesis, development, growth, and differentiation of organisms. Thus, it can be predicted that a complete understanding of miRNA functions will bring us some new concepts, approaches and strategies for the study of living beings.

  17. Gene Expression Profiling of Xeroderma Pigmentosum

    Directory of Open Access Journals (Sweden)

    Bowden Nikola A

    2006-05-01

    Full Text Available Abstract Xeroderma pigmentosum (XP is a rare recessive disorder that is characterized by extreme sensitivity to UV light. UV light exposure results in the formation of DNA damage such as cyclobutane dimers and (6-4 photoproducts. Nucleotide excision repair (NER orchestrates the removal of cyclobutane dimers and (6-4 photoproducts as well as some forms of bulky chemical DNA adducts. The disease XP is comprised of 7 complementation groups (XP-A to XP-G, which represent functional deficiencies in seven different genes, all of which are believed to be involved in NER. The main clinical feature of XP is various forms of skin cancers; however, neurological degeneration is present in XPA, XPB, XPD and XPG complementation groups. The relationship between NER and other types of DNA repair processes is now becoming evident but the exact relationships between the different complementation groups remains to be precisely determined. Using gene expression analysis we have identified similarities and differences after UV light exposure between the complementation groups XP-A, XP-C, XP-D, XP-E, XP-F, XP-G and an unaffected control. The results reveal that there is a graded change in gene expression patterns between the mildest, most similar to the control response (XP-E and the severest form (XP-A of the disease, with the exception of XP-D. Distinct differences between the complementation groups with neurological symptoms (XP-A, XP-D and XP-G and without (XP-C, XP-E and XP-F were also identified. Therefore, this analysis has revealed distinct gene expression profiles for the XP complementation groups and the first step towards understanding the neurological symptoms of XP.

  18. An anatomic gene expression atlas of the adult mouse brain

    OpenAIRE

    Ng, Lydia; Bernard, Amy; Lau, Chris; Overly, Caroline C.; Dong, Hong-Wei; Kuan, Chihchau; Pathak, Sayan; Sunkin, Susan M.; Dang, Chinh; Bohland, Jason W.; Bokil, Hemant; Mitra, Partha P.; Puelles, Luis; Hohmann, John; Anderson, David J.

    2009-01-01

    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of gene...

  19. Studying the Complex Expression Dependences between Sets of Coexpressed Genes

    Directory of Open Access Journals (Sweden)

    Mario Huerta

    2014-01-01

    Full Text Available Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  20. Gene expression in developing watermelon fruit

    Directory of Open Access Journals (Sweden)

    Hernandez Alvaro

    2008-06-01

    Full Text Available Abstract Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb. Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon

  1. Gene Expression Profile Changes in Germinating Rice

    Institute of Scientific and Technical Information of China (English)

    Dongli He; Chao Han; Pingfang Yang

    2011-01-01

    Water absorption is a prerequisite for seed germination.During imbibition,water influx causes the resumption of many physiological and metabolic processes in growing seed.In order to obtain more complete knowledge about the mechanism of seed germination,two-dimensional gel electrophoresis was applied to investigate the protein profile changes of rice seed during the first 48 h of imbibition.Thirtynine differentially expressed proteins were identified,including 19 down-regulated and 20 up-regulated proteins.Storage proteins and some seed development- and desiccation-associated proteins were down regulated.The changed patterns of these proteins indicated extensive mobilization of seed reserves.By contrast,catabolism-associated proteins were up regulated upon imbibition.Semi-quantitative real time polymerase chain reaction analysis showed that most of the genes encoding the down- or upregulated proteins were also down or up regulated at mRNA level.The expression of these genes was largely consistent at mRNA and protein levels.In providing additional information concerning gene regulation in early plant life,this study will facilitate understanding of the molecular mechanisms of seed germination.

  2. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  3. Identification and Expression Profiling of Radiation-sensitive Genes Using Plant Model System, Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The purpose of this study is to characterize genes specifically expressed in response to ionizing energy (gamma-rays) of acute irradiation and elucidate signalling mechanisms via functional analysis of isolated genes in Arabidopsis thaliana. Recent improvements in DNA microarray technologies and bioinformatics have made it possible to look for common features of ionizing radiation-responsive genes and their regulatory regions. It has produced massive quantities of gene expression and other functional genomics data, and its application will increase in plant genomics. In this study, we used oligonucleotide microarrays to detect the Arabidopsis genes expressed differentially by a gamma-irradiation during the vegetative (VT, 21 DAG) and reproductive (RT, 28 DAG) stages. Wild-type (Ler) Arabidopsis was irradiated with gamma-rays with 100 and 800 Gy doses. Among the 21,500 genes represented in the Agilent chip, approximately 13,500 (∼61.4 %) responsive genes to ν -irradiation were expressed with signal intensity greater than 192 when compared to the combined control (non-irradiated vegetative and reproductive pool). Expression patterns of several radiation inducible genes were confirmed by RT-PCR and Northern blotting. Our microarray results may contribute to an overall understanding of the type and quantities of genes that are expressed by an acute gamma-irradiation. In addition, to investigate the oxidative damage caused by irradiation, RT-PCR analysis for the expression of antioxidant isoenzyme genes, and a Transmission Electron Microscope (TEM) observation for visualizing the H2O2 scavenging activity in leaves were applied

  4. Identification and Expression Profiling of Radiation-sensitive Genes Using Plant Model System, Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sub; Kang, Si-Yong; Lee, Geung-Joo; Kim, Jin-Baek

    2008-06-15

    The purpose of this study is to characterize genes specifically expressed in response to ionizing energy (gamma-rays) of acute irradiation and elucidate signalling mechanisms via functional analysis of isolated genes in Arabidopsis thaliana. Recent improvements in DNA microarray technologies and bioinformatics have made it possible to look for common features of ionizing radiation-responsive genes and their regulatory regions. It has produced massive quantities of gene expression and other functional genomics data, and its application will increase in plant genomics. In this study, we used oligonucleotide microarrays to detect the Arabidopsis genes expressed differentially by a gamma-irradiation during the vegetative (VT, 21 DAG) and reproductive (RT, 28 DAG) stages. Wild-type (Ler) Arabidopsis was irradiated with gamma-rays with 100 and 800 Gy doses. Among the 21,500 genes represented in the Agilent chip, approximately 13,500 ({sup {approx}}61.4 %) responsive genes to {nu} -irradiation were expressed with signal intensity greater than 192 when compared to the combined control (non-irradiated vegetative and reproductive pool). Expression patterns of several radiation inducible genes were confirmed by RT-PCR and Northern blotting. Our microarray results may contribute to an overall understanding of the type and quantities of genes that are expressed by an acute gamma-irradiation. In addition, to investigate the oxidative damage caused by irradiation, RT-PCR analysis for the expression of antioxidant isoenzyme genes, and a Transmission Electron Microscope (TEM) observation for visualizing the H{sub 2}O{sub 2} scavenging activity in leaves were applied.

  5. Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data

    CERN Document Server

    Chandrasekhar, T; Elayaraja, E

    2011-01-01

    Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clus...

  6. Novel redox nanomedicine improves gene expression of polyion complex vector

    OpenAIRE

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an RO...

  7. Pharmacokinetics and pharmacodynamics of phase II drug metabolizing/antioxidant enzymes gene response by anticancer agent sulforaphane in rat lymphocytes.

    Science.gov (United States)

    Wang, Hu; Khor, Tin Oo; Yang, Qian; Huang, Ying; Wu, Tien-Yuan; Saw, Constance Lay-Lay; Lin, Wen; Androulakis, Ioannis P; Kong, Ah-Ng Tony

    2012-10-01

    This study assesses the pharmacokinetics (PK) and pharmacodynamics (PD) of Nrf2-mediated increased expression of phase II drug metabolizing enzymes (DME) and antioxidant enzymes which represents an important component of cancer chemoprevention in rat lymphocytes following intravenous (iv) administration of an anticancer phytochemical sulforaphane (SFN). SFN was administered intravenously to four groups of male Sprague-Dawley JVC rats each group comprising four animals. Blood samples were drawn at selected time points. Plasma were obtained from half of each of the blood samples and analyzed using a validated LC-MS/MS method. Lymphocytes were collected from the remaining blood samples using Ficoll-Paque Plus centrifuge medium. Lymphocyte RNAs were extracted and converted to cDNA, quantitative real-time PCR analyses were performed, and fold changes were calculated against those at time zero for the relative expression of Nrf2-target genes of phase II DME/antioxidant enzymes. PK-PD modeling was conducted based on Jusko's indirect response model (IDR) using GastroPlus and bootstrap method. SFN plasma concentration declined biexponentially and the pharmacokinetic parameters were generated. Rat lymphocyte mRNA expression levels showed no change for GSTM1, SOD, NF-κB, UGT1A1, or UGT1A6. Moderate increases (2-5-fold) over the time zero were seen for HO-1, Nrf2, and NQO1, and significant increases (>5-fold) for GSTT1, GPx1, and Maf. PK-PD analyses using GastroPlus and the bootstrap method provided reasonable fitting for the PK and PD profiles and parameter estimates. Our present study shows that SFN could induce Nrf2-mediated phase II DME/antioxidant mRNA expression for NQO1, GSTT1, Nrf2, GPx, Maf, and HO-1 in rat lymphocytes after iv administration, suggesting that Nrf2-mediated mRNA expression in lymphocytes may serve as surrogate biomarkers. The PK-PD IDR model simultaneously linking the plasma concentrations of SFN and the PD response of lymphocyte mRNA expression is

  8. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  9. Gene expression profiling of cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  10. Network Completion for Static Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Natsu Nakajima

    2014-01-01

    Full Text Available We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data.

  11. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression

    DEFF Research Database (Denmark)

    Hustinx, Steven R; Cao, Dengfeng; Maitra, Anirban;

    2004-01-01

    Serial analysis of gene expression (SAGE) is a powerful tool for the discovery of novel tumor markers. The publicly available online SAGE libraries of normal and neoplastic tissues (http://www.ncbi.nlm.nih.gov/SAGE/) have recently been expanded; in addition, a more complete annotation of the human...... of this program. Novel differentially expressed genes in a cancer type can be identified by revisiting updated and expanded SAGE databases. TAGmapper should prove to be a powerful tool for the discovery of novel tumor markers through assignment of uncharacterized SAGE tags....

  12. Mining Association Rules among Gene Functions in Clusters of Similar Gene Expression Maps

    OpenAIRE

    An, Li; Obradovic, Zoran; Smith, Desmond; Bodenreider, Olivier; Megalooikonomou, Vasileios

    2009-01-01

    Association rules mining methods have been recently applied to gene expression data analysis to reveal relationships between genes and different conditions and features. However, not much effort has focused on detecting the relation between gene expression maps and related gene functions. Here we describe such an approach to mine association rules among gene functions in clusters of similar gene expression maps on mouse brain. The experimental results show that the detected association rules ...

  13. Ascorbic Acid and Gene Expression: Another Example of Regulation of Gene Expression by Small Molecules?

    OpenAIRE

    Belin, Sophie; Kaya, Ferdinand; Burtey, Stéphane; Fontes, Michel

    2010-01-01

    Ascorbic acid (vitamin C, AA) has long been considered a food supplement necessary for life and for preventing scurvy. However, it has been reported that other small molecules such as retinoic acid (vitamin A) and different forms of calciferol (vitamin D) are directly involved in regulating the expression of numerous genes. These molecules bind to receptors that are differentially expressed in the embryo and are therefore crucial signalling molecules in vertebrate development. The question is...

  14. Detection of gene expression pattern in the early stage after spinal cord injury by gene chip

    Institute of Scientific and Technical Information of China (English)

    刘成龙; 靳安民; 童斌辉

    2003-01-01

    Objective: To study the changes of the gene expression pattern of spinal cord tissues in the early stage after injury by DNA microarray (gene chip). Methods: The contusion model of rat spinal cord was established according to Allen's falling strike method and the gene expression patterns of normal and injured spinal cord tissues were studied by gene chip. Results: The expression of 45 genes was significantly changed in the early stage after spinal cord injury, in which 22 genes up-regulated and 23 genes down-regulated. Conclusions: The expression of some genes changes significantly in the early stage after spinal cord injury, which indicates the complexity of secondary spinal cord injury.

  15. MDR1 gene expression in primary colorectal carcinomas.

    OpenAIRE

    Pirker, R; Wallner, J.; Gsur, A; Götzl, M.; Zöchbauer, S; Scheithauer, W.; Depisch, D

    1993-01-01

    The expression of the MDR1 gene, a multidrug resistance gene, was prospectively determined in 113 primary colorectal carcinoma specimens and correlated with clinical data including survival durations of the patients. MDR1 RNA was detected in 65% of the carcinomas. No expression of the MDR2 gene was seen, MDR1 gene expression was independent of age and sex of the patients, size and histologic grading of the tumour, lymph node involvement and distant metastasis. Kaplan-Meier analysis revealed t...

  16. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group and offe......Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... developed metastasis and 82 primary breast tumors from patients who remained metastasis-free, by microarray gene expression profiling. We employed a nested case-control design, where samples were matched, in this study one-to-one, to exclude differences in gene expression based on tumor type, tumor size...

  17. Regulation of gene expression by hypoxia.

    Science.gov (United States)

    Millhorn, D E; Czyzyk-Krzeska, M; Bayliss, D A; Lawson, E E

    1993-12-01

    The present study was undertaken to determine if gene expression for tyrosine hydroxylase (TH), the rate limiting enzyme in the biosynthesis of catecholamines, is regulated in the carotid body, sympathetic ganglia and adrenal medulla by hypoxia. We found that a reduction in oxygen tension from 21% to 10% caused a substantial increase (200% at 1 hour and 500% at 6 hours exposure) in the concentration of TH mRNA in carotid body type I cells but not in either the sympathetic ganglia or adrenal gland. In addition, we found that hypercapnia, another natural stimulus of carotid body activity, failed to enhance TH mRNA in type I cells. Removal of the sensory and sympathetic innervation of the carotid body failed to prevent the induction of TH mRNA by hypoxia in type I cells. Our results show that TH gene expression is regulated by hypoxia in the carotid body but not in other peripheral catecholamine synthesizing tissue and that the regulatory mechanism is intrinsic to type I cells. PMID:7909954

  18. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    van Erk Marjan J

    2004-05-01

    Full Text Available Abstract Background Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an anti-oxidant and it can act as an anti-inflammatory agent. The aim of this study was to elucidate mechanisms and effect of curcumin in colon cancer cells using gene expression profiling. Methods Gene expression changes in response to curcumin exposure were studied in two human colon cancer cell lines, using cDNA microarrays with four thousand human genes. HT29 cells were exposed to two different concentrations of curcumin and gene expression changes were followed in time (3, 6, 12, 24 and 48 hours. Gene expression changes after short-term exposure (3 or 6 hours to curcumin were also studied in a second cell type, Caco-2 cells. Results Gene expression changes (>1.5-fold were found at all time points. HT29 cells were more sensitive to curcumin than Caco-2 cells. Early response genes were involved in cell cycle, signal transduction, DNA repair, gene transcription, cell adhesion and xenobiotic metabolism. In HT29 cells curcumin modulated a number of cell cycle genes of which several have a role in transition through the G2/M phase. This corresponded to a cell cycle arrest in the G2/M phase as was observed by flow cytometry. Functional groups with a similar expression profile included genes involved in phase-II metabolism that were induced by curcumin after 12 and 24 hours. Expression of some cytochrome P450 genes was downregulated by curcumin in HT29 and Caco-2 cells. In addition, curcumin affected expression of metallothionein genes, tubulin genes, p53 and other genes involved in colon carcinogenesis. Conclusions This study has extended knowledge on pathways or processes already reported to be affected by curcumin (cell cycle arrest, phase

  19. Peripheral blood gene expression profiles in COPD subjects

    OpenAIRE

    2011-01-01

    To identify non-invasive gene expression markers for chronic obstructive pulmonary disease (COPD), we performed genome-wide expression profiling of peripheral blood samples from 12 subjects with significant airflow obstruction and an equal number of non-obstructed controls. RNA was isolated from Peripheral Blood Mononuclear Cells (PBMCs) and gene expression was assessed using Affymetrix U133 Plus 2.0 arrays. Tests for gene expression changes that discriminate between COPD cases (FEV1< 70% pre...

  20. Real-time feedback control of gene expression

    OpenAIRE

    Uhlendorf, Jannis

    2013-01-01

    Gene expression is fundamental for the functioning of cellular processes and is tightly regulated. Inducible promoters allow one to perturb gene expression by changing the expression level of a protein from its physiological level. This is a common tool to decipher the functioning of biological processes: the expression level of a gene is changed and one observes how the perturbed cell behaves differently from an unperturbed cell. A shortcoming of inducible promoters is the difficulty to appl...

  1. Coactivators in PPAR-Regulated Gene Expression

    Directory of Open Access Journals (Sweden)

    Navin Viswakarma

    2010-01-01

    Full Text Available Peroxisome proliferator-activated receptor (PPARα, β (also known as δ, and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP/thyroid hormone receptor-associated protein 220 (TRAP220/mediator complex subunit 1 (MED1 may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.

  2. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  3. Seed-Based Biclustering of Gene Expression Data

    OpenAIRE

    Jiyuan An; Alan Wee-Chung Liew; Colleen C Nelson

    2012-01-01

    BACKGROUND: Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that have similar e...

  4. Low in situ expression of antioxidative enzymes in rat cerebellar granular cells susceptible to methylmercury.

    Science.gov (United States)

    Fujimura, M; Usuki, F

    2014-01-01

    Methylmercury (MeHg), an environmental neurotoxicant, induces site-specific toxicity in the brain. Although oxidative stress has been demonstrated with MeHg toxicity, the site-specific toxicity is not completely understood. Among the cerebellar neurons, cerebellar granule cells (CGCs) appear vulnerable to MeHg, whereas Purkinje cells and molecular layer neurons are resistant. Here, we use a MeHg-intoxicated rat model to investigate these cerebellar neurons for the different causes of susceptibility to MeHg. Rats were exposed to 20 ppm MeHg for 4 weeks and subsequently exhibited neuropathological changes in the cerebellum that were similar to those observed in humans. We first isolated the three cerebellar neuron types using a microdissection system and then performed real-time PCR analyses for antioxidative enzymes. We observed that expression of manganese-superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx1), and thioredoxin reductase 1 (TRxR1) was significantly higher in Purkinje cells and molecular layer neurons than in CGCs. Finally, we performed immunohistochemical analyses on the cerebellum. Immunohistochemistry showed increased expression of Mn-SOD, GPx1, and TRxR1 in Purkinje cells and molecular layer neurons, which was coincident with the mRNA expression patterns. Considering Mn-SOD, GPx1, and TRxR1 are critical for protecting cells against MeHg intoxication, the results indicate that low expression of these antioxidative enzymes increases CGCs vulnerability to MeHg toxicity.

  5. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto [Universidade Federal da Grande Dourados - UFGD, Dourados, MS (Brazil); Teruya, Roberto [Universidade Federal do Mato Grosso do Sul - UFMS, Campo Grande, MS (Brazil); Fagundes, Djalma José, E-mail: fsomaio@cardiol.br; Taha, Murched Omar [Universidade Federal de São Paulo - UNIFESP, São Paulo, SP (Brazil)

    2014-02-15

    Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's 't' test, p < 0.05). The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue.

  6. Curcumin induces changes in expression of genes involved in cholesterol homeostasis.

    Science.gov (United States)

    Peschel, Dieter; Koerting, Ramona; Nass, Norbert

    2007-02-01

    Curcuminoids, the yellow pigments of curcuma, exhibit anticarcinogenic, antioxidative and hypocholesterolemic activities. To understand the molecular basis for the hypocholesterolemic effects, we examined the effects of curcumin on hepatic gene expression, using the human hepatoma cell line HepG2 as a model system. Curcumin treatment caused an up to sevenfold, concentration-dependent increase in LDL-receptor mRNA, whereas mRNAs of the genes encoding the sterol biosynthetic enzymes HMG CoA reductase and farnesyl diphosphate synthase were only slightly increased at high curcumin concentrations where cell viability was reduced. Expression of the regulatory SREBP genes was moderately increased, whereas mRNAs of the PPARalpha target genes CD36/fatty acid translocase and fatty acid binding protein 1 were down-regulated. LXRalpha expression and accumulation of mRNA of the LXRalpha target gene ABCg1 were increased at low curcumin concentrations. Although curcumin strongly inhibited alkaline phosphatase activity, an activation of a retinoic acid response element reporter employing secreted alkaline phosphatase was observed. These changes in gene expression are consistent with the proposed hypocholesterolemic effect of curcumin.

  7. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane E.; Andersen, Ole;

    2008-01-01

    the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS: In...... investigated on cDNA from the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1) in the investigated period and 81% were high or low...

  8. Early gene expression in Pseudomonas fluorescens exposed to a polymetallic solution.

    Science.gov (United States)

    Gómez-Sagasti, María T; Becerril, José M; Epelde, Lur; Alkorta, Itziar; Garbisu, Carlos

    2015-02-01

    The molecular response of Pseudomonas fluorescens cells exposed to a mixture of heavy metals remains largely unknown. Here, we studied the temporal changes in the early gene expression of P. fluorescens cells exposed to three doses of a polymetallic solution over two exposure times, through the application of a customized cDNA microarray. At the lowest metal dose (MD/4), we observed a repression of the Hsp70 chaperone system, MATE and MFS transporters, TonB membrane transporter and histidine kinases, together with an overexpression of metal transport (ChaC, CopC), chemotaxis and glutamine synthetase genes. At the intermediate metal dose (MD), several amino acid transporters, a response regulator (CheY), a TonB-dependent receptor and the mutT DNA repair gene were repressed; by contrast, an overexpression of genes associated with the antioxidative stress system and the transport of chelates and sulfur was observed. Finally, at the highest metal dose (4MD), a repression of genes encoding metal ion transporters, drug resistance and alginate biosynthesis was found, together with an overexpression of genes encoding antioxidative proteins, membrane transporters, ribosomal proteins, chaperones and proteases. It was concluded that P. fluorescens cells showed, over exposure time, a highly complex molecular response when exposed to a polymetallic solution, involving mechanisms related with chemotaxis, signal transmission, membrane transport, cellular redox state, and the regulation of transcription and ribosomal activity. PMID:25754557

  9. Gene expression during fruit ripening in avocado.

    Science.gov (United States)

    Christoffersen, R E; Warm, E; Laties, G G

    1982-06-01

    The poly(A) (+)RNA populations from avocado fruit (Persea americana Mill cv. Hass) at four stages of ripening were isolated by two cycles of oligo-dT-cellulose chromatography and examined by invitro translation, using the rabbit reticulocyte lysate system, followed by two-dimensional gel electrophoresis (isoelectric focusing followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis) of the resulting translation products. Three mRNAs increased dramatically with the climacteric rise in respiration and ethylene production. The molecular weights of the corresponding translation products from the ripening-related mRNAs are 80,000, 36,000, and 16,500. These results indicate that ripening may be linked to the expression of specific genes.

  10. Individual variation of adipose gene expression and identification of covariated genes by cDNA microarrays

    NARCIS (Netherlands)

    Boeuf, S.; Keijer, J.; Franssen-Hal, van N.L.W.; Klaus, S.

    2002-01-01

    Gene expression profiling through the application of microarrays provides comprehensive assessment of gene expression levels in a given tissue or cell population, as well as information on changes of gene expression in altered physiological or pathological situations. Microarrays are particularly su

  11. Tocopherol Succinate: Modulation of Antioxidant Enzymes and Oncogene Expression, and Hematopoietic Recovery

    International Nuclear Information System (INIS)

    Purpose: A class of naturally occurring isoforms of tocopherol (tocols) was shown to have varying degrees of protection when administered before radiation exposure. We recently demonstrated that α-tocopherol succinate (TS) is a potential radiation prophylactic agent. Our objective in this study was to further investigate the mechanism of action of TS in mice exposed to 60Co γ-radiation. Methods and Materials: We evaluated the effects of TS on expression of antioxidant enzymes and oncogenes by quantitative RT-PCR in bone marrow cells of 60Co γ-irradiated mice. Further, we tested the ability of TS to rescue and repopulate hematopoietic stem cells by analyzing bone marrow cellularity and spleen colony forming unit in spleen of TS-injected and irradiated mice. Results: Our results demonstrate that TS modulated the expression of antioxidant enzymes and inhibited expression of oncogenes in irradiated mice at different time points. TS also increased colony forming unit-spleen numbers and bone marrow cellularity in irradiated mice. Conclusions: Results provide additional support for the observed radioprotective efficacy of TS and insight into mechanisms.

  12. Modulation of R-gene expression across environments.

    Science.gov (United States)

    MacQueen, Alice; Bergelson, Joy

    2016-03-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  13. Manganese Superoxide Dismutase Gene Expression Is Induced by Nanog and Oct4, Essential Pluripotent Stem Cells’ Transcription Factors

    Science.gov (United States)

    Solari, Claudia; Vázquez Echegaray, Camila; Cosentino, María Soledad; Petrone, María Victoria; Waisman, Ariel; Luzzani, Carlos; Francia, Marcos; Villodre, Emilly; Lenz, Guido; Miriuka, Santiago; Barañao, Lino; Guberman, Alejandra

    2015-01-01

    Pluripotent stem cells possess complex systems that protect them from oxidative stress and ensure genomic stability, vital for their role in development. Even though it has been reported that antioxidant activity diminishes along stem cell differentiation, little is known about the transcriptional regulation of the involved genes. The reported modulation of some of these genes led us to hypothesize that some of them could be regulated by the transcription factors critical for self-renewal and pluripotency in embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). In this work, we studied the expression profile of multiple genes involved in antioxidant defense systems in both ESCs and iPSCs. We found that Manganese superoxide dismutase gene (Mn-Sod/Sod2) was repressed during diverse differentiation protocols showing an expression pattern similar to Nanog gene. Moreover, Sod2 promoter activity was induced by Oct4 and Nanog when we performed a transactivation assay using two different reporter constructions. Finally, we studied Sod2 gene regulation by modulating the expression of Oct4 and Nanog in ESCs by shRNAs and found that downregulation of any of them reduced Sod2 expression. Our results indicate that pluripotency transcription factors positively modulate Sod2 gene transcription. PMID:26642061

  14. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR

    OpenAIRE

    Thein Swee; Jiang Jie; Best Steve; Silver Nicholas

    2006-01-01

    Abstract Background Control genes, which are often referred to as housekeeping genes, are frequently used to normalise mRNA levels between different samples. However, the expression level of these genes may vary among tissues or cells and may change under certain circumstances. Thus, the selection of housekeeping genes is critical for gene expression studies. To address this issue, 7 candidate housekeeping genes including several commonly used ones were investigated in isolated human reticulo...

  15. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane E.; Andersen, Ole;

    2008-01-01

    BACKGROUND: The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine...... the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS...... "female" genes (fig alpha and cyp19a1a). When comparing all five genes with expected sex related expression 56% show expression expected for either male or female. Furthermore, the expression of all genes was investigated in different tissue of adult male and female zebrafish. CONCLUSION: In zebrafish...

  16. CDX2 gene expression in acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Hanaa H. Arnaoaut

    2014-06-01

    Full Text Available CDX genes are classically known as regulators of axial elongation during early embryogenesis. An unsuspected role for CDX genes has been revealed during hematopoietic development. The CDX gene family member CDX2 belongs to the most frequent aberrantly expressed proto-oncogenes in human acute leukemias and is highly leukemogenic in experimental models. We used reversed transcriptase polymerase chain reaction (RT-PCR to determine the expression level of CDX2 gene in 30 pediatric patients with acute lymphoblastic leukemia (ALL at diagnosis and 30 healthy volunteers. ALL patients were followed up to detect minimal residual disease (MRD on days 15 and 42 of induction. We found that CDX2 gene was expressed in 50% of patients and not expressed in controls. Associations between gene expression and different clinical and laboratory data of patients revealed no impact on different findings. With follow up, we could not confirm that CDX2 expression had a prognostic significance.

  17. Expression profiling identifies genes involved in emphysema severity

    Directory of Open Access Journals (Sweden)

    Bowman Rayleen V

    2009-09-01

    Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

  18. Antioxidant Defense Enzyme Genes and Asthma Susceptibility: Gender-Specific Effects and Heterogeneity in Gene-Gene Interactions between Pathogenetic Variants of the Disease

    Directory of Open Access Journals (Sweden)

    Alexey V. Polonikov

    2014-01-01

    Full Text Available Oxidative stress resulting from an increased amount of reactive oxygen species and an imbalance between oxidants and antioxidants plays an important role in the pathogenesis of asthma. The present study tested the hypothesis that genetic susceptibility to allergic and nonallergic variants of asthma is determined by complex interactions between genes encoding antioxidant defense enzymes (ADE. We carried out a comprehensive analysis of the associations between adult asthma and 46 single nucleotide polymorphisms of 34 ADE genes and 12 other candidate genes of asthma in Russian population using set association analysis and multifactor dimensionality reduction approaches. We found for the first time epistatic interactions between ADE genes underlying asthma susceptibility and the genetic heterogeneity between allergic and nonallergic variants of the disease. We identified GSR (glutathione reductase and PON2 (paraoxonase 2 as novel candidate genes for asthma susceptibility. We observed gender-specific effects of ADE genes on the risk of asthma. The results of the study demonstrate complexity and diversity of interactions between genes involved in oxidative stress underlying susceptibility to allergic and nonallergic asthma.

  19. Serial Analysis of Gene Expression: Applications in Human Studies

    OpenAIRE

    Renu Tuteja; Narendra Tuteja

    2004-01-01

    Serial analysis of gene expression (SAGE) is a powerful tool, which provides quantitative and comprehensive expression profile of genes in a given cell population. It works by isolating short fragments of genetic information from the expressed genes that are present in the cell being studied. These short sequences, called SAGE tags, are linked together for efficient sequencing. The frequency of each SAGE tag in the cloned multimers directly reflects the transcript abundance. Therefore, SAGE r...

  20. Gene Expression Data Knowledge Discovery using Global and Local Clustering

    OpenAIRE

    H, Swathi.

    2010-01-01

    To understand complex biological systems, the research community has produced huge corpus of gene expression data. A large number of clustering approaches have been proposed for the analysis of gene expression data. However, extracting important biological knowledge is still harder. To address this task, clustering techniques are used. In this paper, hybrid Hierarchical k-Means algorithm is used for clustering and biclustering gene expression data is used. To discover both local and global cl...

  1. Regulated system for heterologous gene expression in Penicillium chrysogenum.

    OpenAIRE

    Graessle, S.; de Haas, H.; Friedlin, E; Kürnsteiner, H; Stöffler, G; Redl, B

    1997-01-01

    A system for regulated heterologous gene expression in the filamentous fungus Penicillium chrysogenum was established. This is the first heterologous expression system to be developed for this organism. Expression of a recombinant fungal xylanase gene (xylp) and the cDNA for the human tear lipocalin (LCNI) was achieved by placing the encoding sequences under the control of the repressible acid phosphatase gene (phoA) promoter of P. chrysogenum. Secreted recombinant proteins were detected in t...

  2. Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohui

    2008-05-01

    Full Text Available Abstract Background Cigarette smoking is a leading cause of preventable death and a significant cause of lung cancer and chronic obstructive pulmonary disease. Prior studies have demonstrated that smoking creates a field of molecular injury throughout the airway epithelium exposed to cigarette smoke. We have previously characterized gene expression in the bronchial epithelium of never smokers and identified the gene expression changes that occur in the mainstem bronchus in response to smoking. In this study, we explored relationships in whole-genome gene expression between extrathorcic (buccal and nasal and intrathoracic (bronchial epithelium in healthy current and never smokers. Results Using genes that have been previously defined as being expressed in the bronchial airway of never smokers (the "normal airway transcriptome", we found that bronchial and nasal epithelium from non-smokers were most similar in gene expression when compared to other epithelial and nonepithelial tissues, with several antioxidant, detoxification, and structural genes being highly expressed in both the bronchus and nose. Principle component analysis of previously defined smoking-induced genes from the bronchus suggested that smoking had a similar effect on gene expression in nasal epithelium. Gene set enrichment analysis demonstrated that this set of genes was also highly enriched among the genes most altered by smoking in both nasal and buccal epithelial samples. The expression of several detoxification genes was commonly altered by smoking in all three respiratory epithelial tissues, suggesting a common airway-wide response to tobacco exposure. Conclusion Our findings support a relationship between gene expression in extra- and intrathoracic airway epithelial cells and extend the concept of a smoking-induced field of injury to epithelial cells that line the mouth and nose. This relationship could potentially be utilized to develop a non-invasive biomarker for

  3. Analysis of the Relationship between Antioxidant Enzyme Gene Polymorphisms and Their Activity in Post-Traumatic Gonarthrosis.

    Science.gov (United States)

    Vnukov, V V; Panina, S B; Milyutina, N P; Krolevets, I V; Zabrodin, M A

    2016-05-01

    Analysis of polymorphisms of genes encoding antioxidant enzymes SOD1 (G7958A), SOD2 (T58C), CAT (C-262T), and GSTP1 (Ile105Val) in 93 patients with post-traumatic gonarthrosis showed that GSTP1 Ile105Val polymorphism is often associated with heterozygous mutation in catalase gene CAT C-262T. In gonarthrosis, catalase activity in peripheral blood mononuclear cells in patients with CT genotype of the C-262T locus of CAT gene more than 2-fold surpassed that in CC genotype and more than 50% surpassed the normal. Changes in the balance of activity of antioxidant enzymes can affect viability of mononuclear cells. PMID:27270931

  4. Links between core promoter and basic gene features influence gene expression

    Directory of Open Access Journals (Sweden)

    Sinvani Hadar

    2008-02-01

    Full Text Available Abstract Background Diversity in rates of gene expression is essential for basic cell functions and is controlled by a variety of intricate mechanisms. Revealing general mechanisms that control gene expression is important for understanding normal and pathological cell functions and for improving the design of expression systems. Here we analyzed the relationship between general features of genes and their contribution to expression levels. Results Genes were divided into four groups according to their core promoter type and their characteristics analyzed statistically. Surprisingly we found that small variations in the TATA box are linked to large differences in gene length. Genes containing canonical TATA are generally short whereas long genes are associated with either non-canonical TATA or TATA-less promoters. These differences in gene length are primarily determined by the size and number of introns. Generally, gene expression was found to be tightly correlated with the strength of the TATA-box. However significant reduction in gene expression levels were linked with long TATA-containing genes (canonical and non-canonical whereas intron length hardly affected the expression of TATA-less genes. Interestingly, features associated with high translation are prevalent in TATA-containing genes suggesting that their protein production is also more efficient. Conclusion Our results suggest that interplay between core promoter type and gene size can generate significant diversity in gene expression.

  5. Differential gene co-expression networks via Bayesian biclustering models

    OpenAIRE

    Gao, Chuan; Zhao, Shiwen; McDowell, Ian C.; Brown, Christopher D.; Barbara E Engelhardt

    2014-01-01

    Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes whose covariation may be observed in only a subset of the samples. Our biclustering me...

  6. Biclustering of Linear Patterns In Gene Expression Data

    OpenAIRE

    Gao, Qinghui; Ho, Christine; Jia, Yingmin; Li, Jingyi Jessica; Huang, Haiyan

    2012-01-01

    Identifying a bicluster, or submatrix of a gene expression dataset wherein the genes express similar behavior over the columns, is useful for discovering novel functional gene interactions. In this article, we introduce a new algorithm for finding biClusters with Linear Patterns (CLiP). Instead of solely maximizing Pearson correlation, we introduce a fitness function that also considers the correlation of complementary genes and conditions. This eliminates the need for a priori determination ...

  7. Differential Expression of Salinity Resistance Gene on Cotton

    Institute of Scientific and Technical Information of China (English)

    YE Wu-wei; YU Shu-xun

    2008-01-01

    @@ Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied,because of the large scale area of salinity in China,and its significant negative effects on the cotton production.The salinityresisted genes and their differential expression were studied under the stress of NaCI on cotton.There were found,under the NaCI stress,1644 genes differentially expressed from the salinity-sensitive cotton and only 817 genes differentially expressed from the salinityresisted cotton.

  8. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  9. Noise in gene expression is coupled to growth rate

    OpenAIRE

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-01-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four...

  10. Expression of UGA-Containing Mycoplasma Genes in Bacillus subtilis

    OpenAIRE

    Kannan, T. R.; Baseman, Joel B.

    2000-01-01

    We used Bacillus subtilis to express UGA-containing Mycoplasma genes encoding the P30 adhesin (one UGA) of Mycoplasma pneumoniae and methionine sulfoxide reductase (two UGAs) of Mycoplasma genitalium. Due to natural UGA suppression, these Mycoplasma genes were expressed as full-length protein products, but at relatively low efficiency, in recombinant wild-type Bacillus. The B. subtilis-expressed Mycoplasma proteins appeared as single bands and not as multiple bands compared to expression in r...

  11. Multiscale Embedded Gene Co-expression Network Analysis

    OpenAIRE

    Song, Won-Min; Zhang, Bin

    2015-01-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a...

  12. Expressed genes in regenerating rat liver after partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Cun-Shuan Xu; Salman Rahrnan; Jing-Bo Zhang; Cui-Fang Chang; Jin-Yun Yuan; Wen-Qiang Li; Hong-Peng Han; Ke-Jin Yang; Li-Feng Zhao; Yu-Chang Li; Hui-Yong Zhang

    2005-01-01

    AIM: To reveal the liver regeneration (LR) and its controlas well as the occurrence of liver disease and to study the gene expression profiles of 551 genes after partial hepatectomy (PH) in regenerating rat livers.METHODS: Five hundred and fifty-one expressed sequence tags screened by suppression subtractive hybridization were made into an in-house cDNA microarray, and the expressive genes and their expressive profiles in regenerating rat livers were analyzed by microarray and bioinformatics. RESULTS: Three hundred of the analyzed 551 genes were up- or downregulated more than twofolds at one or more time points during LR. Most of the genes were up- or downregulated 2-5 folds, but the highest reached 90 folds of the control. One hundred and thirty-nine of themshowed upregulation, 135 displayed downregulation, and up or down expression of 26 genes revealed a dependence on regenerating livers. The genes expressedin 24-h regenerating livers were much more than those in the others. Cluster analysis and generalization analysis showed that there were at least six distinct temporal patterns of gene expression in the regenerating livers, that is, genes were expressed in the immediate early phase, early phase, intermediate phase, early-late phase, late phase, terminal phase. CONCLUSION: In LR, the number of down-regulated genes was almost similar to that of the upregulated genes; the successively altered genes were more than the rapidly transient genes. The temporal patterns of gene expression were similar 2 and 4 h, 12 and 16 h, 48 and 96 h, 72 and 144 h after PH. Microarray combined with suppressive subtractive hybridization can effectively identify the genes related to LR.

  13. Conserved co-expression for candidate disease gene prioritization

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2008-04-01

    Full Text Available Abstract Background Genes that are co-expressed tend to be involved in the same biological process. However, co-expression is not a very reliable predictor of functional links between genes. The evolutionary conservation of co-expression between species can be used to predict protein function more reliably than co-expression in a single species. Here we examine whether co-expression across multiple species is also a better prioritizer of disease genes than is co-expression between human genes alone. Results We use co-expression data from yeast (S. cerevisiae, nematode worm (C. elegans, fruit fly (D. melanogaster, mouse and human and find that the use of evolutionary conservation can indeed improve the predictive value of co-expression. The effect that genes causing the same disease have higher co-expression than do other genes from their associated disease loci, is significantly enhanced when co-expression data are combined across evolutionarily distant species. We also find that performance can vary significantly depending on the co-expression datasets used, and just using more data does not necessarily lead to better prioritization. Instead, we find that dataset quality is more important than quantity, and using a consistent microarray platform per species leads to better performance than using more inclusive datasets pooled from various platforms. Conclusion We find that evolutionarily conserved gene co-expression prioritizes disease candidate genes better than human gene co-expression alone, and provide the integrated data as a new resource for disease gene prioritization tools.

  14. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  15. Gene Expression Pattern of Signal Transduction in Chronic Myeloid Leukemia

    Institute of Scientific and Technical Information of China (English)

    LI Huiyu; JIE Shenghua; GUO Tiannan; HUANG Shi'ang

    2006-01-01

    To explore the transcriptional gene expression profiles of signaling pathway in Chronic myeloid leukemia (CML), a series of cDNA microarray chips were tested. The results showed that differentially expressed genes related to singal transduction in CML were screened out and the genes involved in Phosphoinositide 3-kinases (PI3K), Ras-MAPK (mitogen-activated protein kinase) and other signaling pathway genes simultaneously. The results also showed that most of these genes were up-expression genes , which suggested that signal transduction be overactivated in CML. Further analysis of these differentially expressed signal transduction genes will be helpful to understand the molecular mechanism of CML and find new targets of treatment.

  16. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    Full Text Available Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts, inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14 as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase. In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2 and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7 in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  17. Cross-platform prediction of gene expression signatures.

    Directory of Open Access Journals (Sweden)

    Shu-Hong Lin

    Full Text Available Gene expression signatures can predict the activation of oncogenic pathways and other phenotypes of interest via quantitative models that combine the expression levels of multiple genes. However, as the number of platforms to measure genome-wide gene expression proliferates, there is an increasing need to develop models that can be ported across diverse platforms. Because of the range of technologies that measure gene expression, the resulting signal values can vary greatly. To understand how this variation can affect the prediction of gene expression signatures, we have investigated the ability of gene expression signatures to predict pathway activation across Affymetrix and Illumina microarrays. We hybridized the same RNA samples to both platforms and compared the resultant gene expression readings, as well as the signature predictions. Using a new approach to map probes across platforms, we found that the genes in the signatures from the two platforms were highly similar, and that the predictions they generated were also strongly correlated. This demonstrates that our method can map probes from Affymetrix and Illumina microarrays, and that this mapping can be used to predict gene expression signatures across platforms.

  18. Dynamic covariation between gene expression and proteome characteristics

    Directory of Open Access Journals (Sweden)

    Lehtinen Tommi O

    2005-08-01

    Full Text Available Abstract Background Cells react to changing intra- and extracellular signals by dynamically modulating complex biochemical networks. Cellular responses to extracellular signals lead to changes in gene and protein expression. Since the majority of genes encode proteins, we investigated possible correlations between protein parameters and gene expression patterns to identify proteome-wide characteristics indicative of trends common to expressed proteins. Results Numerous bioinformatics methods were used to filter and merge information regarding gene and protein annotations. A new statistical time point-oriented analysis was developed for the study of dynamic correlations in large time series data. The method was applied to investigate microarray datasets for different cell types, organisms and processes, including human B and T cell stimulation, Drosophila melanogaster life span, and Saccharomyces cerevisiae cell cycle. Conclusion We show that the properties of proteins synthesized correlate dynamically with the gene expression profile, indicating that not only is the actual identity and function of expressed proteins important for cellular responses but that several physicochemical and other protein properties correlate with gene expression as well. Gene expression correlates strongly with amino acid composition, composition- and sequence-derived variables, functional, structural, localization and gene ontology parameters. Thus, our results suggest that a dynamic relationship exists between proteome properties and gene expression in many biological systems, and therefore this relationship is fundamental to understanding cellular mechanisms in health and disease.

  19. Benzoic Acid-Inducible Gene Expression in Mycobacteria.

    Directory of Open Access Journals (Sweden)

    Marte S Dragset

    Full Text Available Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance.

  20. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans

    Science.gov (United States)

    Mayne, Benjamin T.; Bianco-Miotto, Tina; Buckberry, Sam; Breen, James; Clifton, Vicki; Shoubridge, Cheryl; Roberts, Claire T.

    2016-01-01

    The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  1. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  2. Expression Divergence of Tandemly Arrayed Genes in Human and Mouse

    Directory of Open Access Journals (Sweden)

    Valia Shoja

    2007-01-01

    Full Text Available Tandemly arrayed genes (TAGs account for about one third of the duplicated genes in eukaryotic genomes, yet there has not been any systematic study of their gene expression patterns. Taking advantage of recently published large-scale microarray data sets, we studied the expression divergence of 361 two-member TAGs in human and 212 two-member TAGs in mouse and examined the effect of sequence divergence, gene orientation, and chromosomal proximity on the divergence of TAG expression patterns. Our results show that there is a weak negative correlation between sequence divergence of TAG members and their expression similarity. There is also a weak negative correlation between chromosomal proximity of TAG members and their expression similarity. We did not detect any significant relationship between gene orientation and expression similarity. We also found that downstream TAG members do not show significantly narrower expression breadth than upstream members, contrary to what we predict based on TAG expression divergence hypothesis that we propose. Finally, we show that both chromosomal proximity and expression correlation in TAGs do not differ significantly from their neighboring non-TAG gene pairs, suggesting that tandem duplication is unlikely to be the cause for the higher-than-random expression association between neighboring genes on a chromosome in human and mouse.

  3. Gene length and expression level shape genomic novelties

    OpenAIRE

    Grishkevich, Vladislav; YANAI, Itai

    2014-01-01

    Gene duplication and alternative splicing are important mechanisms in the production of genomic novelties. Previous work has shown that a gene’s family size and the number of splice variants it produces are inversely related, although the underlying reason is not well understood. Here, we report that gene length and expression level together explain this relationship. We found that gene lengths correlate with both gene duplication and alternative splicing: Longer genes are less likely to prod...

  4. A stochastic approach to multi-gene expression dynamics

    International Nuclear Information System (INIS)

    In the last years, tens of thousands gene expression profiles for cells of several organisms have been monitored. Gene expression is a complex transcriptional process where mRNA molecules are translated into proteins, which control most of the cell functions. In this process, the correlation among genes is crucial to determine the specific functions of genes. Here, we propose a novel multi-dimensional stochastic approach to deal with the gene correlation phenomena. Interestingly, our stochastic framework suggests that the study of the gene correlation requires only one theoretical assumption-Markov property-and the experimental transition probability, which characterizes the gene correlation system. Finally, a gene expression experiment is proposed for future applications of the model

  5. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  6. Cell cycle gene expression under clinorotation

    Science.gov (United States)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  7. Assembly and Expression of Shark Ig Genes.

    Science.gov (United States)

    Hsu, Ellen

    2016-05-01

    Sharks are modern descendants of the earliest vertebrates possessing Ig superfamily receptor-based adaptive immunity. They respond to immunogen with Abs that, upon boosting, appear more rapidly and show affinity maturation. Specific Abs and immunological memory imply that Ab diversification and clonal selection exist in cartilaginous fish. Shark Ag receptors are generated through V(D)J recombination, and because it is a mechanism known to generate autoreactive receptors, this implies that shark lymphocytes undergo selection. In the mouse, the ∼2.8-Mb IgH and IgL loci require long-range, differential activation of component parts for V(D)J recombination, allelic exclusion, and receptor editing. These processes, including class switching, evolved with and appear inseparable from the complex locus organization. In contrast, shark Igs are encoded by 100-200 autonomously rearranging miniloci. This review describes how the shark primary Ab repertoire is generated in the absence of structural features considered essential in mammalian Ig gene assembly and expression. PMID:27183649

  8. Transgenic zebrafish recapitulating tbx16 gene early developmental expression.

    Directory of Open Access Journals (Sweden)

    Simon Wells

    Full Text Available We describe the creation of a transgenic zebrafish expressing GFP driven by a 7.5 kb promoter region of the tbx16 gene. This promoter segment is sufficient to recapitulate early embryonic expression of endogenous tbx16 in the presomitic mesoderm, the polster and, subsequently, in the hatching gland. Expression of GFP in the transgenic lines later in development diverges to some extent from endogenous tbx16 expression with the serendipitous result that one line expresses GFP specifically in commissural primary ascending (CoPA interneurons of the developing spinal cord. Using this line we demonstrate that the gene mafba (valentino is expressed in CoPA interneurons.

  9. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    Shubhra Sankar Ray; Sanghamitra Bandyopadhyay; Sankar K Pal

    2007-08-01

    A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering and ordering the genes using gene expression data into homogeneous groups was shown to be useful in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on gene ordering in hierarchical clustering framework for gene expression analysis, there is no work addressing and evaluating the importance of gene ordering in partitive clustering framework, to the best knowledge of the authors. Outside the framework of hierarchical clustering, different gene ordering algorithms are applied on the whole data set, and the domain of partitive clustering is still unexplored with gene ordering approaches. A new hybrid method is proposed for ordering genes in each of the clusters obtained from partitive clustering solution, using microarray gene expressions. Two existing algorithms for optimally ordering cities in travelling salesman problem (TSP), namely, FRAG_GALK and Concorde, are hybridized individually with self organizing MAP to show the importance of gene ordering in partitive clustering framework. We validated our hybrid approach using yeast and fibroblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of gene expression distances, and the maximization of biological gene ordering using MIPS categorization. Moreover, the new hybrid approach, finds comparable or sometimes superior biological gene order in less computation time than those obtained by optimal leaf ordering in hierarchical clustering solution.

  10. WsSGTL1 gene from Withania somnifera, modulates glycosylation profile, antioxidant system and confers biotic and salt stress tolerance in transgenic tobacco.

    Science.gov (United States)

    Pandey, Vibha; Niranjan, Abhishek; Atri, Neelam; Chandrashekhar, K; Mishra, Manoj K; Trivedi, Prabodh K; Misra, Pratibha

    2014-06-01

    Glycosylation of sterols, catalysed by sterol glycosyltransferases (SGTs), improves the sterol solubility, chemical stability and compartmentalization, and helps plants to adapt to environmental changes. The SGTs in medicinal plants are of particular interest for their role in the biosynthesis of pharmacologically active substances. WsSGTL1, a SGT isolated from Withania somnifera, was expressed and functionally characterized in transgenic tobacco plants. Transgenic WsSGTL1-Nt lines showed an adaptive mechanism through demonstrating late germination, stunted growth, yellowish-green leaves and enhanced antioxidant system. The reduced chlorophyll content and chlorophyll fluorescence with decreased photosynthetic parameters were observed in WsSGTL1-Nt plants. These changes could be due to the enhanced glycosylation by WsSGTL1, as no modulation in chlorophyll biogenesis-related genes was observed in transgenic lines as compared to wildtype (WT) plants. Enhanced accumulation of main sterols like, campesterol, stigmasterol and sitosterol in glycosylated form was observed in WsSGTL1-Nt plants. Apart from these, other secondary metabolites related to plant's antioxidant system along with activities of antioxidant enzymes (SOD, CAT; two to fourfold) were enhanced in WsSGTL1-Nt as compared to WT. WsSGTL1-Nt plants showed significant resistance towards Spodoptera litura (biotic stress) with up to 27 % reduced larval weight as well as salt stress (abiotic stress) with improved survival capacity of leaf discs. The present study demonstrates that higher glycosylation of sterols and enhanced antioxidant system caused by expression of WsSGTL1 gene confers specific functions in plants to adapt under different environmental challenges.

  11. Gene expression profiles of the developing human retina

    Institute of Scientific and Technical Information of China (English)

    WANG Feng; LI Huiming; LIU Wenwen; XU Ping; HU Gengxi; CHENG Yidong; JIA Libin; HUANG Qian

    2004-01-01

    Retina is a multilayer and highly specialized tissue important in converting light into neural signals. In humans, the critical period for the formation of complex multiplayer structure takes place during embryogenesis between 12 and 28 weeks. The morphologic changes during retinal development in humans have been studied but little is known about the molecular events essential for the formation of the retina. To gain further insights into this process, cDNA microarrays containing 16361 human gene probes were used to measure the gene expression levels in retinas. Of the 16361 genes, 68.7%, 71.4% and 69.7% showed positive hybridization with cDNAs made from 12-16 week fetal, 22-26 week fetal and adult retinas. A total of 814 genes showed a minimum of 3-fold changes between the lowest and highest expression levels among three time points and among them, 106 genes had expression levels with the hybridization intensity above 100 at one or more time points. The clustering analysis suggested that the majority of differentially expressed genes were down-regulated during the retinal development. The differentially expressed genes were further classified according to functions of known genes, and were ranked in decreasing order according to frequency: development, differentiation, signal transduction, protein synthesis and translation, metabolism, DNA binding and transcription, DNA synthesis-repair-recombination, immuno-response, ion channel- transport, cell receptor, cytoskeleton, cell cycle, pro-oncogene, stress and apoptosis related genes. Among these 106 differentially expressed genes, 60 are already present in NEI retina cDNA or EST Databank but the remaining 46 genes are absent and thus identified as "function unknown". To validate gene expression data from the microarray, real-time RT-PCR was performed for 46 "function unknown" genes and 6 known retina specific expression genes, and β-actin was used as internal control. Twenty-seven of these genes showed very similar

  12. Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity

    Directory of Open Access Journals (Sweden)

    Shimizu Kentaro

    2009-04-01

    Full Text Available Abstract Background To identify differentially expressed genes (DEGs from microarray data, users of the Affymetrix GeneChip system need to select both a preprocessing algorithm to obtain expression-level measurements and a way of ranking genes to obtain the most plausible candidates. We recently recommended suitable combinations of a preprocessing algorithm and gene ranking method that can be used to identify DEGs with a higher level of sensitivity and specificity. However, in addition to these recommendations, researchers also want to know which combinations enhance reproducibility. Results We compared eight conventional methods for ranking genes: weighted average difference (WAD, average difference (AD, fold change (FC, rank products (RP, moderated t statistic (modT, significance analysis of microarrays (samT, shrinkage t statistic (shrinkT, and intensity-based moderated t statistic (ibmT with six preprocessing algorithms (PLIER, VSN, FARMS, multi-mgMOS (mmgMOS, MBEI, and GCRMA. A total of 36 real experimental datasets was evaluated on the basis of the area under the receiver operating characteristic curve (AUC as a measure for both sensitivity and specificity. We found that the RP method performed well for VSN-, FARMS-, MBEI-, and GCRMA-preprocessed data, and the WAD method performed well for mmgMOS-preprocessed data. Our analysis of the MicroArray Quality Control (MAQC project's datasets showed that the FC-based gene ranking methods (WAD, AD, FC, and RP had a higher level of reproducibility: The percentages of overlapping genes (POGs across different sites for the FC-based methods were higher overall than those for the t-statistic-based methods (modT, samT, shrinkT, and ibmT. In particular, POG values for WAD were the highest overall among the FC-based methods irrespective of the choice of preprocessing algorithm. Conclusion Our results demonstrate that to increase sensitivity, specificity, and reproducibility in microarray analyses, we need

  13. Effect of Rol Genes on Polyphenols Biosynthesis in Artemisia annua and Their Effect on Antioxidant and Cytotoxic Potential of the Plant.

    Science.gov (United States)

    Dilshad, Erum; Zafar, Sara; Ismail, Hammad; Waheed, Mohammad Tahir; Cusido, Rosa Maria; Palazon, Javier; Mirza, Bushra

    2016-08-01

    Flavonoids are famous for their antioxidant capacity and redox potential. They can combat with cell aging, lipid peroxidation, and cancer. In the present study, Artemisia annua hybrid (Hyb8001r) was subjected to qualitative and quantitative analysis of flavonoids through HPLC. Rol genes transgenics of A. annua were also evaluated for an increase in their flavonoid content along with an increase in antioxidant and cytotoxic potential. This was also correlated with the expression level of flavonoids biosynthetic pathway genes as determined by real-time qPCR. Phenylalanine ammonia-lyase and chalcone synthase genes were found to be significantly more highly expressed in rol B (four to sixfold) and rol C transgenics (3.8-5.5-fold) than the wild-type plant. Flavonoids detected in the wild-type A. annua through HPLC include rutin (0.31 mg/g DW), quercetin (0.01 mg/g DW), isoquercetin (0.107 mg/g DW) and caffeic acid (0.03 mg/g DW). Transgenics of the rol B gene showed up to threefold increase in rutin and caffeic acid, sixfold increase in isoquercetin, and fourfold increase in quercetin. Whereas, in the case of transgenics of rol C gene, threefold increase in rutin and quercetin, 5 fold increase in isoquercetin, and 2.6-fold increase in caffeic acid was followed. Total phenolics and flavonoids content was also found to be increased in rol B (1.5-fold) and rol C (1.4-fold) transgenics as compared to the wild-type plant along with increased free radical scavenging activity. Similarly, the cytotoxic potential of rol gene transgenics against MCF7, HeLA, and HePG2 cancer cell lines was found to be significantly enhanced than the wild-type plant of A. annua. Current findings support the fact that rol genes can alter the secondary metabolism and phytochemical level of the plant. They increased the flavonoids content of A. annua by altering the expression level of flavonoids biosynthetic pathway genes. Increased flavonoid content also enhanced the antioxidant and cytotoxic

  14. Effect of Rol Genes on Polyphenols Biosynthesis in Artemisia annua and Their Effect on Antioxidant and Cytotoxic Potential of the Plant.

    Science.gov (United States)

    Dilshad, Erum; Zafar, Sara; Ismail, Hammad; Waheed, Mohammad Tahir; Cusido, Rosa Maria; Palazon, Javier; Mirza, Bushra

    2016-08-01

    Flavonoids are famous for their antioxidant capacity and redox potential. They can combat with cell aging, lipid peroxidation, and cancer. In the present study, Artemisia annua hybrid (Hyb8001r) was subjected to qualitative and quantitative analysis of flavonoids through HPLC. Rol genes transgenics of A. annua were also evaluated for an increase in their flavonoid content along with an increase in antioxidant and cytotoxic potential. This was also correlated with the expression level of flavonoids biosynthetic pathway genes as determined by real-time qPCR. Phenylalanine ammonia-lyase and chalcone synthase genes were found to be significantly more highly expressed in rol B (four to sixfold) and rol C transgenics (3.8-5.5-fold) than the wild-type plant. Flavonoids detected in the wild-type A. annua through HPLC include rutin (0.31 mg/g DW), quercetin (0.01 mg/g DW), isoquercetin (0.107 mg/g DW) and caffeic acid (0.03 mg/g DW). Transgenics of the rol B gene showed up to threefold increase in rutin and caffeic acid, sixfold increase in isoquercetin, and fourfold increase in quercetin. Whereas, in the case of transgenics of rol C gene, threefold increase in rutin and quercetin, 5 fold increase in isoquercetin, and 2.6-fold increase in caffeic acid was followed. Total phenolics and flavonoids content was also found to be increased in rol B (1.5-fold) and rol C (1.4-fold) transgenics as compared to the wild-type plant along with increased free radical scavenging activity. Similarly, the cytotoxic potential of rol gene transgenics against MCF7, HeLA, and HePG2 cancer cell lines was found to be significantly enhanced than the wild-type plant of A. annua. Current findings support the fact that rol genes can alter the secondary metabolism and phytochemical level of the plant. They increased the flavonoids content of A. annua by altering the expression level of flavonoids biosynthetic pathway genes. Increased flavonoid content also enhanced the antioxidant and cytotoxic

  15. Antioxidative defense

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals occur constantly during metabolism and take part in numerous physiological processes, such as: intra-cellular and inter-cellular signalization, gene expression, removal of damaged or senescent cells, and control of the tone of blood vessels. However, there is an increased quantity of free radicals in situations of so-called oxidative stress, when they cause serious damage to cellular membranes (peroxidation of their lipids, damage of membrane proteins, and similar, to interior cellular protein molecules, as well as DNA molecules and carbohydrates. This is precisely why the organism has developed numerous mechanisms for removing free radicals and/or preventing their production. Some of these are enzyme-related and include superoxide-dismutase, catalase, glutathione-peroxidase, and others. Other, non-enzyme mechanisms, imply antioxidative activities of vitamins E and C, provitamin A, coenzyme Q, reduced glutation, and others. Since free radicals can leave the cell that has produced them and become dispersed throughout the body, in addition to antioxidative defense that functions within cellular structures, antioxidant extra-cellular defense has also been developed. This is comprised by: transferrin, lactoferrin, haptoglobin, hemopexin, ceruloplasmin, albumins, extra-cellular isoform SOD, extracellular glutathione-peroxidase, glucose, bilirubin, urates, and many other molecules.

  16. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of

  17. Microdissection of the gene expression codes driving nephrogenesis.

    Science.gov (United States)

    Potter, S Steven; Brunskill, Eric W; Patterson, Larry T

    2010-01-01

    The kidney represents an excellent model system for learning the principles of organogenesis. It is intermediate in complexity, and employs many commonly used developmental processes. As such, kidney development has been the subject of intensive study, using a variety of techniques, including in situ hybridization, organ culture and gene targeting, revealing many critical genes and pathways. Nevertheless, proper organogenesis requires precise patterns of cell type specific differential gene expression, involving very large numbers of genes. This review is focused on the use of global profiling technologies to create an atlas of gene expression codes driving development of different mammalian kidney compartments. Such an atlas allows one to select a gene of interest, and to determine its expression level in each element of the developing kidney, or to select a structure of interest, such as the renal vesicle, and to examine its complete gene expression state. Novel component specific molecular markers are identified, and the changing waves of gene expression that drive nephrogenesis are defined. As the tools continue to improve for the purification of specific cell types and expression profiling of even individual cells it is possible to predict an atlas of gene expression during kidney development that extends to single cell resolution. PMID:21220959

  18. Biasogram: visualization of confounding technical bias in gene expression data

    DEFF Research Database (Denmark)

    Krzystanek, Marcin; Szallasi, Zoltan Imre; Eklund, Aron Charles

    2013-01-01

    Gene expression profiles of clinical cohorts can be used to identify genes that are correlated with a clinical variable of interest such as patient outcome or response to a particular drug. However, expression measurements are susceptible to technical bias caused by variation in extraneous factor...

  19. MEPD: medaka expression pattern database, genes and more.

    Science.gov (United States)

    Alonso-Barba, Juan I; Rahman, Raza-Ur; Wittbrodt, Joachim; Mateo, Juan L

    2016-01-01

    The Medaka Expression Pattern Database (MEPD; http://mepd.cos.uni-heidelberg.de/) is designed as a repository of medaka expression data for the scientific community. In this update we present two main improvements. First, we have changed the previous clone-centric view for in situ data to a gene-centric view. This is possible because now we have linked all the data present in MEPD to the medaka gene annotation in ENSEMBL. In addition, we have also connected the medaka genes in MEPD to their corresponding orthologous gene in zebrafish, again using the ENSEMBL database. Based on this, we provide a link to the Zebrafish Model Organism Database (ZFIN) to allow researches to compare expression data between these two fish model organisms. As a second major improvement, we have modified the design of the database to enable it to host regulatory elements, promoters or enhancers, expression patterns in addition to gene expression. The combination of gene expression, by traditional in situ, and regulatory element expression, typically by fluorescence reporter gene, within the same platform assures consistency in terms of annotation. In our opinion, this will allow researchers to uncover new insights between the expression domain of genes and their regulatory landscape. PMID:26450962

  20. Comparative genomics of the relationship between gene structure and expression

    NARCIS (Netherlands)

    Ren, X.

    2006-01-01

    The relationship between the structure of genes and their expression is a relatively new aspect of genome organization and regulation. With more genome sequences and expression data becoming available, bioinformatics approaches can help the further elucidation of the relationships between gene struc

  1. FGX : a frequentist gene expression index for Affymetrix arrays

    NARCIS (Netherlands)

    Purutçuoğlu, Vilda; Wit, Ernst

    2007-01-01

    We consider a new frequentist gene expression index for Affymetrix oligonucleotide DNA arrays, using a similar probe intensity model as suggested previously, called the Bayesian gene expression index (BGX). According to this model, the perfect match and mismatch values are assumed to be correlated a

  2. RNA preparation and characterization for gene expression studies

    DEFF Research Database (Denmark)

    Stangegaard, Michael

    2009-01-01

    Much information can be obtained from knowledge of the relative expression level of each gene in the transcriptome. With the current advances in technology as little as a single cell is required as starting material for gene expression experiments. The mRNA from a single cell may be linearly ampl...

  3. Peripheral blood gene expression profiles in COPD subjects.

    Science.gov (United States)

    Bhattacharya, Soumyaroop; Tyagi, Shivraj; Srisuma, Sorachai; Demeo, Dawn L; Shapiro, Steven D; Bueno, Raphael; Silverman, Edwin K; Reilly, John J; Mariani, Thomas J

    2011-01-01

    To identify non-invasive gene expression markers for chronic obstructive pulmonary disease (COPD), we performed genome-wide expression profiling of peripheral blood samples from 12 subjects with significant airflow obstruction and an equal number of non-obstructed controls. RNA was isolated from Peripheral Blood Mononuclear Cells (PBMCs) and gene expression was assessed using Affymetrix U133 Plus 2.0 arrays.Tests for gene expression changes that discriminate between COPD cases (FEV1 80% predicted, FEV1/FVC > 0.7) were performed using Significance Analysis of Microarrays (SAM) and Bayesian Analysis of Differential Gene Expression (BADGE). Using either test at high stringency (SAM median FDR = 0 or BADGE p Pearson and Spearman correlation coefficients (p < 0.05), identified a set of 86 genes. A total of 16 markers showed evidence of significant correlation (p < 0.05) with quantitative traits and differential expression between cases and controls. We further compared our peripheral gene expression markers with those we previously identified from lung tissue of the same cohort. Two genes, RP9and NAPE-PLD, were identified as decreased in COPD cases compared to controls in both lung tissue and blood. These results contribute to our understanding of gene expression changes in the peripheral blood of patients with COPD and may provide insight into potential mechanisms involved in the disease. PMID:21884629

  4. Expression and mapping of anthocyanin biosynthesis genes in carrot

    Science.gov (United States)

    Anthocyanin gene expression has been extensively studied in leaves, fruits and flowers of numerous plants. Little, however, is known about anthocyanin accumulation in roots, or in carrots or other Apiaceae. We quantified expression of six anthocyanin biosynthetic genes (phenylalanine ammonia-lyase (...

  5. Digital gene expression tag profiling analysis of the gene expression patterns regulating the early stage of mouse spermatogenesis.

    Directory of Open Access Journals (Sweden)

    Xiujun Zhang

    Full Text Available Detailed characterization of the gene expression patterns in spermatogonia and primary spermatocytes is critical to understand the processes which occur prior to meiosis during normal spermatogenesis. The genome-wide expression profiles of mouse type B spermatogonia and primary spermatocytes were investigated using the Solexa/Illumina digital gene expression (DGE system, a tag based high-throughput transcriptome sequencing method, and the developmental processes which occur during early spermatogenesis were systematically analyzed. Gene expression patterns vary significantly between mouse type B spermatogonia and primary spermatocytes. The functional analysis revealed that genes related to junction assembly, regulation of the actin cytoskeleton and pluripotency were most significantly differently expressed. Pathway analysis indicated that the Wnt non-canonical signaling pathway played a central role and interacted with the actin filament organization pathway during the development of spermatogonia. This study provides a foundation for further analysis of the gene expression patterns and signaling pathways which regulate the molecular mechanisms of early spermatogenesis.

  6. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  7. Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius.

    Science.gov (United States)

    Faherty, Sheena L; Villanueva-Cañas, José Luis; Klopfer, Peter H; Albà, M Mar; Yoder, Anne D

    2016-01-01

    Hibernation is a complex physiological response that some mammalian species employ to evade energetic demands. Previous work in mammalian hibernators suggests that hibernation is activated not by a set of genes unique to hibernators, but by differential expression of genes that are present in all mammals. This question of universal genetic mechanisms requires further investigation and can only be tested through additional investigations of phylogenetically dispersed species. To explore this question, we use RNA-Seq to investigate gene expression dynamics as they relate to the varying physiological states experienced throughout the year in a group of primate hibernators-Madagascar's dwarf lemurs (genus Cheirogaleus). In a novel experimental approach, we use longitudinal sampling of biological tissues as a method for capturing gene expression profiles from the same individuals throughout their annual hibernation cycle. We identify 90 candidate genes that have variable expression patterns when comparing two active states (Active 1 and Active 2) with a torpor state. These include genes that are involved in metabolic pathways, feeding behavior, and circadian rhythms, as might be expected to correlate with seasonal physiological state changes. The identified genes appear to be critical for maintaining the health of an animal that undergoes prolonged periods of metabolic depression concurrent with the hibernation phenotype. By focusing on these differentially expressed genes in dwarf lemurs, we compare gene expression patterns in previously studied mammalian hibernators. Additionally, by employing evolutionary rate analysis, we find that hibernation-related genes do not evolve under positive selection in hibernating species relative to nonhibernators. PMID:27412611

  8. Proteomic expression profiling of Haemophilus influenzae grown in pooled human sputum from adults with chronic obstructive pulmonary disease reveal antioxidant and stress responses

    Directory of Open Access Journals (Sweden)

    Brauer Aimee L

    2010-06-01

    Full Text Available Abstract Background Nontypeable Haemophilus influenzae colonizes and infects the airways of adults with chronic obstructive pulmonary disease, the fourth most common cause of death worldwide.Thus, H. influenzae, an exclusively human pathogen, has adapted to survive in the hostile environment of the human airways.To characterize proteins expressed by H. influenzae in the airways, a prototype strain was grown in pooled human sputum to simulate conditions in the human respiratory tract.The proteins from whole bacterial cell lysates were solubilized with a strong buffer and then quantitatively cleaned with an optimized precipitation/on-pellet enzymatic digestion procedure.Proteomic profiling was accomplished by Nano-flow liquid chromatography/mass spectroscopy with low void volume and high separation efficiency with a shallow, long gradient. Results A total of 1402 proteins were identified with high confidence, including 170 proteins that were encoded by genes that are annotated as conserved hypothetical proteins.Thirty-one proteins were present in greater abundance in sputum-grown conditions at a ratio of > 1.5 compared to chemically defined media.These included 8 anti-oxidant and 5 stress-related proteins, suggesting that expression of antioxidant activity and stress responses is important for survival in the airways.Four proteins involved in uptake of divalent anions and 9 proteins that function in uptake of various molecules were present in greater abundance in sputum-grown conditions. Conclusions Proteomic expression profiling of H. influenzae grown in pooled human sputum revealed increased expression of antioxidant, stress-response proteins and cofactor and nutrient uptake systems compared to media grown cells.These observations suggest that H. influenzae adapts to the oxidative and nutritionally limited conditions of the airways in adults with chronic obstructive pulmonary disease by increasing expression of molecules necessary for survival

  9. Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury

    Directory of Open Access Journals (Sweden)

    Shyue Song-Kun

    2011-02-01

    Full Text Available Abstract Background Traumatic spinal cord injury (SCI forms a disadvantageous microenvironment for tissue repair at the lesion site. To consider an appropriate time window for giving a promising therapeutic treatment for subacute and chronic SCI, global changes of proteins in the injured center at the longer survival time points after SCI remains to be elucidated. Methods Through two-dimensional electrophoresis (2DE-based proteome analysis and western blotting, we examined the differential expression of the soluble proteins isolated from the lesion center (LC at day 1 (acute and day 14 (subacute after a severe contusive injury to the thoracic spinal cord at segment 10. In situ apoptotic analysis was used to examine cell apoptosis in injured spinal cord after adenoviral gene transfer of antioxidant enzymes. In addition, administration of chondroitinase ABC (chABC was performed to analyze hindlimb locomotor recovery in rats with SCI using Basso, Beattie and Bresnahan (BBB locomotor rating scale. Results Our results showed a decline in catalase (CAT and Mn-superoxide dismutase (MnSOD found at day 14 after SCI. Accordingly, gene transfer of SOD was introduced in the injured spinal cord and found to attenuate cell apoptosis. Galectin-3, β-actin, actin regulatory protein (CAPG, and F-actin-capping protein subunit β (CAPZB at day 14 were increased when compared to that detected at day 1 after SCI or in sham-operated control. Indeed, the accumulation of β-actin+ immune cells was observed in the LC at day 14 post SCI, while most of reactive astrocytes were surrounding the lesion center. In addition, chondroitin sulfate proteoglycans (CSPG-related proteins with 40-kDa was detected in the LC at day 3-14 post SCI. Delayed treatment with chondroitinase ABC (chABC at day 3 post SCI improved the hindlimb locomotion in SCI rats. Conclusions Our findings demonstrate that the differential expression in proteins related to signal transduction, oxidoreduction

  10. Differential endometrial gene expression in pregnant and nonpregnant sows

    DEFF Research Database (Denmark)

    Østrup, Esben; Bauersachs, Stefan; Blum, Helmut;

    2010-01-01

    obtained from the endometrium of pregnant sows and sows inseminated with inactivated semen. Analysis of the microarray data revealed 263 genes to be significantly differentially expressed between the pregnant and nonpregnant sows. Most gene ontology terms significantly enriched at pregnancy had allocated......In an attempt to unveil molecular processes controlling the porcine placentation, we have investigated the pregnancy-induced gene expression in the endometrium using the Affymetrix GeneChip Porcine Genome Array. At Day 14 after insemination, at the time of initial placentation, samples were...... the three terms oxidoreductase activity, lipid metabolic process, and organic acid metabolic process had an overrepresentation of down-regulated genes. A gene interaction network based on the genes identified in the gene ontology term developmental processes identified genes likely to be involved...

  11. The effect of negative autoregulation on eukaryotic gene expression

    Science.gov (United States)

    Nevozhay, Dmitry; Adams, Rhys; Murphy, Kevin; Josic, Kresimir; Balázsi, G. Ábor

    2009-03-01

    Negative autoregulation is a frequent motif in gene regulatory networks, which has been studied extensively in prokaryotes. Nevertheless, some effects of negative feedback on gene expression in eukaryotic transcriptional networks remain unknown. We studied how the strength of negative feedback regulation affects the characteristics of gene expression in yeast cells carrying synthetic transcriptional cascades. We observed a drastic reduction of gene expression noise and a change in the shape of the dose-response curve. We explained these experimentally observed effects by stochastic simulations and a simple set of algebraic equations.

  12. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Fang, Lusheng; Li, Bo; Tong, Shurong;

    2011-01-01

    To improve the design process efficiency, this paper proposes the principle and methodology that design process gene controls the characteristics of design process under the framework of design process reuse and optimization based on design process gene. First, the concept of design process gene ...... with the example of design management gene. Last, the regulation mode that the regulator gene regulates the expression of the structural gene is established and it is illustrated by taking the design process management gene as an example. © (2011) Trans Tech Publications....

  13. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius;

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  14. Decoupling Linear and Nonlinear Associations of Gene Expression

    KAUST Repository

    Itakura, Alan

    2013-05-01

    The FANTOM consortium has generated a large gene expression dataset of different cell lines and tissue cultures using the single-molecule sequencing technology of HeliscopeCAGE. This provides a unique opportunity to investigate novel associations between gene expression over time and different cell types. Here, we create a MatLab wrapper for a powerful and computationally intensive set of statistics known as Maximal Information Coefficient, and then calculate this statistic for a large, comprehensive dataset containing gene expression of a variety of differentiating tissues. We then distinguish between linear and nonlinear associations, and then create gene association networks. Following this analysis, we are then able to identify clusters of linear gene associations that then associate nonlinearly with other clusters of linearity, providing insight to much more complex connections between gene expression patterns than previously anticipated.

  15. Fundamental principles of energy consumption for gene expression

    Science.gov (United States)

    Huang, Lifang; Yuan, Zhanjiang; Yu, Jianshe; Zhou, Tianshou

    2015-12-01

    How energy is consumed in gene expression is largely unknown mainly due to complexity of non-equilibrium mechanisms affecting expression levels. Here, by analyzing a representative gene model that considers complexity of gene expression, we show that negative feedback increases energy consumption but positive feedback has an opposite effect; promoter leakage always reduces energy consumption; generating more bursts needs to consume more energy; and the speed of promoter switching is at the cost of energy consumption. We also find that the relationship between energy consumption and expression noise is multi-mode, depending on both the type of feedback and the speed of promoter switching. Altogether, these results constitute fundamental principles of energy consumption for gene expression, which lay a foundation for designing biologically reasonable gene modules. In addition, we discuss possible biological implications of these principles by combining experimental facts.

  16. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data

    Directory of Open Access Journals (Sweden)

    Tintle Nathan L

    2012-08-01

    Full Text Available Abstract Background Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. Results We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Conclusions Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  17. Regulating gene expression : surprises still in store

    NARCIS (Netherlands)

    Jansen, Ritsert C.; Nap, Jan-Peter

    2004-01-01

    Understanding how genes constitute and contribute to the regulatory networks that result in phenotypic diversity is the major challenge of the post-genome era. Recently, it has been shown that major players in gene regulation can be identified by genome-wide linkage analysis of whole-genome gene exp

  18. Gene expression profiling in adipose tissue from growing broiler chickens

    Science.gov (United States)

    Hausman, Gary J; Barb, C Rick; Fairchild, Brian D; Gamble, John; Lee-Rutherford, Laura

    2014-01-01

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for gene microarray analysis with Affymetrix GeneChip Chicken Genome Arrays (Affymetrix) and quantitative real-time PCR analysis. Studies of global gene expression in chicken adipose tissue were initiated since such studies in many animal species show that adipose tissue expresses and secretes many factors that can influence growth and physiology. Microarray results indicated 333 differentially expressed adipose tissue genes between 3 and 6 wk, 265 differentially expressed genes between 4 and 6 wk and 42 differentially expressed genes between 3 and 4 wk. Enrichment scores of Gene Ontology Biological Process categories indicated strong age upregulation of genes involved in the immune system response. In addition to microarray analysis, quantitative real-time PCR analysis was used to confirm the influence of age on the expression of adipose tissue CC chemokine ligands (CCL), toll-like receptor (TLR)-2, lipopolysaccharide-induced TNF factor (LITAF), chemokine (C-C motif) receptor 8 (CCR8), and several other genes. Between 3 and 6 wk of age CCL5, CCL1, and CCR8 expression increased (P = 0.0001) with age. Furthermore, TLR2, CCL19, and LITAF expression increased between 4 and 6 wk of age (P = 0.001). This is the first demonstration of age related changes in CCL, LITAF, and TLR2 gene expression in chicken adipose tissue. Future studies are needed to elucidate the role of these adipose tissue genes in growth and the immune system. PMID:26317054

  19. Gene expression profiles in stages II and III colon cancers

    DEFF Research Database (Denmark)

    Thorsteinsson, Morten; Kirkeby, Lene T; Hansen, Raino;

    2012-01-01

    PURPOSE: A 128-gene signature has been proposed to predict outcome in patients with stages II and III colorectal cancers. In the present study, we aimed to reproduce and validate the 128-gene signature in external and independent material. METHODS: Gene expression data from the original material ...

  20. Dimensionality of Data Matrices with Applications to Gene Expression Profiles

    Science.gov (United States)

    Feng, Xingdong

    2009-01-01

    Probe-level microarray data are usually stored in matrices. Take a given probe set (gene), for example, each row of the matrix corresponds to an array, and each column corresponds to a probe. Often, people summarize each array by the gene expression level. Is one number sufficient to summarize a whole probe set for a specific gene in an array?…

  1. Regulated expression of foreign genes in vivo after germline transfer.

    OpenAIRE

    Passman, R S; Fishman, G I

    1994-01-01

    Tight transcriptional control of foreign genes introduced into the germline of transgenic mice would be of great experimental value in studies of gene function. To develop a system in which the spatial and temporal expression of candidate genes implicated in cardiac development or function could be tightly controlled in vivo, we have generated transgenic mice expressing a tetracycline-controlled transactivator (tTA) under the control of a rat alpha myosin heavy chain promoter (MHC alpha-tTA m...

  2. Inducible gene expression system by 3-hydroxypropionic acid

    OpenAIRE

    Zhou, Shengfang; Ainala, Satish Kumar; Seol, Eunhee; Nguyen, Trinh Thi; Park, Sunghoon

    2015-01-01

    Background 3-Hydroxypropionic acid (3-HP) is an important platform chemical that boasts a variety of industrial applications. Gene expression systems inducible by 3-HP, if available, are of great utility for optimization of the pathways of 3-HP production and excretion. Results Here we report the presence of unique inducible gene expression systems in Pseudomonas denitrificans and other microorganisms. In P. denitrificans, transcription of three genes (hpdH, mmsA and hbdH-4) involved in 3-HP ...

  3. Pancreatic expression of human insulin gene in transgenic mice.

    OpenAIRE

    Bucchini, D; Ripoche, M A; Stinnakre, M G; Desbois, P; Lorès, P; Monthioux, E; Absil, J; Lepesant, J A; Pictet, R; Jami, J

    1986-01-01

    We have investigated the possibility of obtaining integration and expression of a native human gene in transgenic mice. An 11-kilobase (kb) human chromosomal DNA fragment including the insulin gene (1430 base pairs) was microinjected into fertilized mouse eggs. This fragment was present in the genomic DNA of several developing animals. One transgenic mouse and its progeny were analyzed for expression of the foreign gene. Synthesis and release of human insulin was revealed by detection of the ...

  4. Gene expression profiles of mouse spermatogenesis during recovery from irradiation

    DEFF Research Database (Denmark)

    Shah, Fozia J; Tanaka, Masami; Nielsen, John E;

    2009-01-01

    the cellular changes that happen during recovery from irradiation by means of histology. We have earlier generated gene expression profiles during induction of spermatogenesis in mouse postnatal developing testes and found a correlation between profiles and the expressing cell types. The aim of the present...... work was to utilize the link between expression profile and cell types to follow the cellular changes that occur during post-irradiation recovery of spermatogenesis in order to describe recovery by means of gene expression. METHODS: Adult mouse testes were subjected to irradiation with 1 Gy...... or a fractionated radiation of two times 1 Gy. Testes were sampled every third or fourth day to follow the recovery of spermatogenesis and gene expression profiles generated by means of differential display RT-PCR. In situ hybridization was in addition performed to verify cell-type specific gene expression patterns...

  5. Evaluation of biological activities of Physalis peruviana ethanol extracts and expression of Bcl-2 genes in HeLa cells

    OpenAIRE

    Özgür Çakir; Murat Pekmez; Elif Çepni; Bilgin Candar; Kerem Fidan

    2014-01-01

    Physalis species are used in folk medicine for phytotherapeutic properties. The extracts of medicinal plants are known to possess cytotoxic and chemopreventative compounds. In this study we investigated antibacterial, antioxidant, DNA damage preventative properties of Physalis peruviana (golden berry) on leaf and shoot ethanol extracts and their effects on cytotoxicity of HeLa cells and expression of apoptotic pathway genes. Among the tested bacteria for antibacterial activity, maximum inhibi...

  6. Identification and Expression Analysis of Glucosinolate Biosynthetic Genes and Estimation of Glucosinolate Contents in Edible Organs of Brassica oleracea Subspecies

    OpenAIRE

    Go-Eun Yi; Arif Hasan Khan Robin; Kiwoung Yang; Jong-In Park; Jong-Goo Kang; Tae-Jin Yang; Ill-Sup Nou

    2015-01-01

    Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among t...

  7. Antioxidant enzymes expression in Pseudomonas aeruginosa exposed to UV-C radiation.

    Science.gov (United States)

    Salma, Kloula Ben Ghorbal; Lobna, Maalej; Sana, Khefacha; Kalthoum, Chourabi; Imene, Ouzari; Abdelwaheb, Chatti

    2016-07-01

    It was well known that, UV-C irradiation increase considerably the reactive oxygen species (ROS) levels in eukaryotic and prokaryotic organisms. In the enzymatic ROS-scavenging pathways, superoxide dismutase (SOD), Catalase (CAT), and peroxidase (POX) were developed to deal with oxidative stress. In this study, we investigated the effects of UV-C radiations on antioxidant enzymes (catalase, superoxide dismutase, and peroxidases) expression in Pseudomonas aeruginosa. Catalase, superoxide dismutase, and peroxidases activities were determined spectrophotometrically. Isozymes of superoxide dismutase were revealed by native gel activity staining method. Lipid peroxidation was determined by measuring malondialdehyde formation. Our results showed that superoxide dismutase, catalase and peroxidase activities exhibited a gradual increase during the exposure time (30 min). However, the superoxide dismutase activity was maximized at 15 min. Native gel activity staining assays showed the presence of three superoxide dismutase isozymes. The iron-cofactored isoform activity was altered after exposure to UV-C stress. These finding suggest that catalase and peroxidase enzymes have the same importance toward UV-C rays at shorter and longer exposure times and this may confer additional protection to superoxide dismutase from damage caused by lipid peroxidation. Moreover, our data demonstrate the significant role of the antioxidant system in the resistance of this important human pathogen. PMID:27059814

  8. Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data

    Directory of Open Access Journals (Sweden)

    T. Chandrasekhar

    2011-11-01

    Full Text Available Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clusters with perform well in terms of the Silhouette Coefficients cluster measure.

  9. Biclustering of the Gene Expression Data by Coevolution Cuckoo Search

    OpenAIRE

    Lu Yin; Yongguo Liu

    2015-01-01

    Biclustering has a potential to discover the local expression patterns analyzing the gene expression data which provide clues about biological processes. However, since it is proven that the biclustering problem is NP-hard, it is necessary to seek more effective algorithm. Cuckoo Search (CS) models the brood parasitism behavior of cuckoo to solve the optimization problem and outperforms the other existing algorithms. In this paper, we introduce a new algorithm for biclustering gene expression...

  10. GEE: An Informatics Tool for Gene Expression Data Explore

    OpenAIRE

    Lee, Soo Youn; Park, Chan Hee; Yoon, Jun Hee; Yun, Sunmin; Kim, Ju Han

    2016-01-01

    Objectives Major public high-throughput functional genomic data repositories, including the Gene Expression Omnibus (GEO) and ArrayExpress have rapidly expanded. As a result, a large number of diverse high-throughput functional genomic data retrieval systems have been developed. However, high-throughput functional genomic data retrieval remains challenging. Methods We developed Gene Expression data Explore (GEE), the first powerful, flexible web and mobile search application for searching who...

  11. An atlas of gene expression and gene co-regulation in the human retina.

    Science.gov (United States)

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-07-01

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). PMID:27235414

  12. DNA microarray analysis of genes differentially expressed in adipocyte differentiation

    Indian Academy of Sciences (India)

    Chunyan Yin; Yanfeng Xiao; Wei Zhang; Erdi Xu; Weihua Liu; Xiaoqing Yi; Ming Chang

    2014-06-01

    In the present study, the human liposarcoma cell line SW872 was used to identify global changes in gene expression profiles occurring during adipogenesis. We further explored some of the genes expressed during the late phase of adipocyte differentiation. These genes may play a major role in promoting excessive proliferation and accumulation of lipid droplets, which contribute to the development of obesity. By using microarray-based technology, we examined differential gene expression in early differentiated adipocytes and late differentiated adipocytes. Validated genes exhibited a ≥ 10-fold increase in the late phase of adipocyte differentiation by polymerase chain reaction (RT-PCR). Compared with undifferentiated preadipocytes, we found that 763 genes were increased in early differentiated adipocytes, and 667 genes were increased in later differentiated adipocytes. Furthermore, 21 genes were found being expressed 10-fold higher in the late phase of adipocyte differentiation. The results were in accordance with the RT-PCR test, which validated 11 genes, namely, CIDEC, PID1, LYRM1, ADD1, PPAR2, ANGPTL4, ADIPOQ, ACOX1, FIP1L1, MAP3K2 and PEX14. Most of these genes were found being expressed in the later phase of adipocyte differentiation involved in obesity-related diseases. The findings may help to better understand the mechanism of obesity and related diseases.

  13. Stress associated gene expression in blood cells is related to outcome in radiotherapy treated head and neck cancer patients

    Directory of Open Access Journals (Sweden)

    Bøhn Siv K

    2012-09-01

    Full Text Available Abstract Background We previously observed that a radiotherapy-induced biochemical response in plasma was associated with favourable outcome in head and neck squamous carcinoma cancer (HNSCC patients. The aim of the present study was to compare stress associated blood cell gene expression between two sub-groups of HNSCC patients with different biochemical responses to radiotherapy. Methods Out of 87 patients (histologically verified, 10 biochemical ‘responders’ having a high relative increase in plasma oxidative damage and a concomitant decrease in plasma antioxidants during radiotherapy and 10 ‘poor-responders’ were selected for gene-expression analysis and compared using gene set enrichment analysis. Results There was a significant induction of stress-relevant gene-sets in the responders following radiotherapy compared to the poor-responders. The relevance of the involvement of similar stress associated gene expression for HNSCC cancer and radioresistance was verified using two publicly available data sets of 42 HNSCC cases and 14 controls (GEO GSE6791, and radiation resistant and radiation sensitive HNSCC xenografts (E-GEOD-9716. Conclusions Radiotherapy induces a systemic stress response, as revealed by induction of stress relevant gene expression in blood cells, which is associated to favourable outcome in a cohort of 87 HNSCC patients. Whether these changes in gene expression reflects a systemic effect or are biomarkers of the tumour micro-environmental status needs further study. Trial registration Raw data are available at ArrayExpress under accession number E-MEXP-2460.

  14. Expression of HOX C homeobox genes in lymphoid cells.

    Science.gov (United States)

    Lawrence, H J; Stage, K M; Mathews, C H; Detmer, K; Scibienski, R; MacKenzie, M; Migliaccio, E; Boncinelli, E; Largman, C

    1993-08-01

    The class I homeobox genes located in four clusters in mammalian genomes (HOX A, HOX B, HOX C, and HOX D) appear to play a major role in fetal development. Previous surveys of homeobox gene expression in human leukemic cell lines have shown that certain HOX A genes are expressed only in myeloid cell lines, whereas HOX B gene expression is largely restricted to cells with erythroid potential. We now report a survey of the expression patterns of 9 homeobox genes from the HOX C locus in a panel of 24 human and 7 murine leukemic cell lines. The most striking observation is the lymphoid-specific pattern of expression of HOX C4, located at the 3' end of the locus. A major transcript of 1.9 kilobases is observed in both T-cell and B-cell lines. HOX C4 expression is also detected in normal human marrow and peripheral blood lymphocytes, but not in mature granulocytes or monocytes. HOX C8 is also expressed in human lymphoid cells but is expressed in other blood cell types as well. However, the HOX C8 transcript pattern is lineage specific. These data, in conjunction with earlier findings, suggest that homeobox gene expression influences lineage determination during hematopoiesis.

  15. Seed-based biclustering of gene expression data.

    Directory of Open Access Journals (Sweden)

    Jiyuan An

    Full Text Available BACKGROUND: Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that have similar expression levels across a subset of conditions. This paper proposes a seed-based algorithm that identifies coherent genes in an exhaustive, but efficient manner. METHODS: In order to find the biclusters in a gene expression dataset, we exhaustively select combinations of genes and conditions as seeds to create candidate bicluster tables. The tables have two columns (a a gene set, and (b the conditions on which the gene set have dissimilar expression levels to the seed. First, the genes with less than the maximum number of dissimilar conditions are identified and a table of these genes is created. Second, the rows that have the same dissimilar conditions are grouped together. Third, the table is sorted in ascending order based on the number of dissimilar conditions. Finally, beginning with the first row of the table, a test is run repeatedly to determine whether the cardinality of the gene set in the row is greater than the minimum threshold number of genes in a bicluster. If so, a bicluster is outputted and the corresponding row is removed from the table. Repeating this process, all biclusters in the table are systematically identified until the table becomes empty. CONCLUSIONS: This paper presents a novel biclustering algorithm for the identification of additive biclusters. Since it involves exhaustively testing combinations of genes and conditions, the additive biclusters can be found more readily.

  16. Paralogous Genes as a Tool to Study the Regulation of Gene Expression

    DEFF Research Database (Denmark)

    Hoffmann, Robert D

    their duplicate were found to be under less purifying selection. A gene ontology (GO) term enrichment analysis showed that paralogs with similar expression levels were enriched in GO terms related to macromolecular complexes, whereas paralogs with different expression levels were enriched in terms associated...... new functions, or their gene products are in a dosage balance. Regulatory DNA elements - some of which are conserved across species and hence called conserved non-coding sequences (CNSs) - that control expression of duplicated genes are thus under similar purifying selection. In the present study, I...... have performed in-depth analyses of paralogous genes in Arabidopsis thaliana, their expression profile, their sequence conservation, and their functions, in order to investigate the relationship between gene expression and retention of paralogous genes. Paralogs with lower expression than...

  17. Ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory chemokine ligand 2 gene in humans

    Directory of Open Access Journals (Sweden)

    Fischer Alexandra

    2012-10-01

    Full Text Available Abstract Background Coenzyme Q10 is an essential cofactor in the respiratory chain and serves in its reduced form, ubiquinol, as a potent antioxidant. Studies in vitro and in vivo provide evidence that ubiquinol reduces inflammatory processes via gene expression. Here we investigate the putative link between expression and DNA methylation of ubiquinol sensitive genes in monocytes obtained from human volunteers supplemented with 150 mg/ day ubiquinol for 14 days. Findings Ubiquinol decreases the expression of the pro-inflammatory chemokine (C-X-C motif ligand 2 gene (CXCL2 more than 10-fold. Bisulfite-/ MALDI-TOF-based analysis of regulatory regions of the CXCL2 gene identified six adjacent CpG islands which showed a 3.4-fold decrease of methylation status after ubiquinol supplementation. This effect seems to be rather gene specific, because ubiquinol reduced the expression of two other pro-inflammatory genes (PMAIP1, MMD without changing the methylation pattern of the respective gene. Conclusion In conclusion, ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory CXCL2 gene in humans. Current Controlled Trials ISRCTN26780329.

  18. Gene expression module-based chemical function similarity search

    OpenAIRE

    Li, Yun; Hao, Pei; Zheng, Siyuan; Tu, Kang; Fan, Haiwei; Zhu, Ruixin; Ding, Guohui; Dong, Changzheng; Wang, Chuan; Li, Xuan; Thiesen, H.-J.; Chen, Y. Eugene; Jiang, HuaLiang; Liu, Lei; Li, Yixue

    2008-01-01

    Investigation of biological processes using selective chemical interventions is generally applied in biomedical research and drug discovery. Many studies of this kind make use of gene expression experiments to explore cellular responses to chemical interventions. Recently, some research groups constructed libraries of chemical related expression profiles, and introduced similarity comparison into chemical induced transcriptome analysis. Resembling sequence similarity alignment, expression pat...

  19. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification

    Directory of Open Access Journals (Sweden)

    Kandasamy Suganthi

    2010-06-01

    Full Text Available Abstract Background Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. Results To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. Conclusions Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown

  20. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer

    Science.gov (United States)

    Yang, Xiaojing; Han, Han; De Carvalho, Daniel D.; Lay, Fides D.; Jones, Peter A.; Liang, Gangning

    2014-01-01

    SUMMARY DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the over-expression of genes, many of which are involved in metabolic processes regulated by c-MYC. Down-regulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may therefore be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene over-expression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. PMID:25263941

  1. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    Science.gov (United States)

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  2. Noise in gene expression is coupled to growth rate.

    Science.gov (United States)

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-12-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. PMID:26355006

  3. Gene Expression Prediction by Soft Integration and the Elastic Net—Best Performance of the DREAM3 Gene Expression Challenge

    OpenAIRE

    Mika Gustafsson; Michael Hörnquist

    2010-01-01

    Background: To predict gene expressions is an important endeavour within computational systems biology. It can both be a way to explore how drugs affect the system, as well as providing a framework for finding which genes are interrelated in a certain process. A practical problem, however, is how to assess and discriminate among the various algorithms which have been developed for this purpose. Therefore, the DREAM project invited the year 2008 to a challenge for predicting gene expression va...

  4. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  5. Flies selected for longevity retain a young gene expression profile

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2011-01-01

      We investigated correlated responses in the transcriptomes of longevity-selected lines of Drosophila melanogaster to identify pathways that affect life span in metazoan systems. We evaluated the gene expression profile in young, middle-aged, and old male flies, finding that 530 genes were...... differentially expressed between selected and control flies when measured at the same chronological age. The longevity-selected flies consistently showed expression profiles more similar to control flies one age class younger than control flies of the same age. This finding is in accordance with a younger gene...... expression profile in longevity-selected lines. Among the genes down-regulated in longevity-selected lines, we found a clear over-representation of genes involved in immune functions, supporting the hypothesis of a life-shortening effect of an overactive immune system, known as inflammaging. We judged...

  6. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette;

    2006-01-01

    shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes....... Unfortunately, current human genome-wide DNA sequence variation do not allow signatures of selective sweeps to be inferred using frequency-based approaches [4] and [5] . However, estimates of linkage disequilibrium (LD) - i.e. the extent of non-random association of alleles along chromosomes - are expected...

  7. Computational gene expression profiling under salt stress reveals patterns of co-expression.

    Science.gov (United States)

    Sanchita; Sharma, Ashok

    2016-03-01

    Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411

  8. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  9. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  10. Detecting microRNA activity from gene expression data.

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-01-01

    BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. RESULTS: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. CONCLUSIONS: We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  11. Detecting microRNA activity from gene expression data

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-05-18

    Abstract Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  12. An Interactive Database of Cocaine-Responsive Gene Expression

    Directory of Open Access Journals (Sweden)

    Willard M. Freeman

    2002-01-01

    Full Text Available The postgenomic era of large-scale gene expression studies is inundating drug abuse researchers and many other scientists with findings related to gene expression. This information is distributed across many different journals, and requires laborious literature searches. Here, we present an interactive database that combines existing information related to cocaine-mediated changes in gene expression in an easy-to-use format. The database is limited to statistically significant changes in mRNA or protein expression after cocaine administration. The Flash-based program is integrated into a Web page, and organizes changes in gene expression based on neuroanatomical region, general function, and gene name. Accompanying each gene is a description of the gene, links to the original publications, and a link to the appropriate OMIM (Online Mendelian Inheritance in Man entry. The nature of this review allows for timely modifications and rapid inclusion of new publications, and should help researchers build second-generation hypotheses on the role of gene expression changes in the physiology and behavior of cocaine abuse. Furthermore, this method of organizing large volumes of scientific information can easily be adapted to assist researchers in fields outside of drug abuse.

  13. Expression of homeobox genes in the mouse olfactory epithelium.

    Science.gov (United States)

    Parrilla, Marta; Chang, Isabelle; Degl'Innocenti, Andrea; Omura, Masayo

    2016-10-01

    Homeobox genes constitute a large family of genes widely studied because of their role in the establishment of the body pattern. However, they are also involved in many other events during development and adulthood. The main olfactory epithelium (MOE) is an excellent model to study neurogenesis in the adult nervous system. Analyses of homeobox genes during development show that some of these genes are involved in the formation and establishment of cell diversity in the MOE. Moreover, the mechanisms of expression of odorant receptors (ORs) constitute one of the biggest enigmas in the field. Analyses of OR promoters revealed the presence of homeodomain binding sites in their sequences. Here we characterize the expression patterns of a set of 49 homeobox genes in the MOE with in situ hybridization. We found that seven of them (Dlx3, Dlx5, Dlx6, Msx1, Meis1, Isl1, and Pitx1) are zonally expressed. The homeobox gene Emx1 is expressed in three guanylate cyclase(+) populations, two located in the MOE and the third one in an olfactory subsystem known as Grüneberg ganglion located at the entrance of the nasal cavity. The homeobox gene Tshz1 is expressed in a unique patchy pattern across the MOE. Our findings provide new insights to guide functional studies that aim to understand the complexity of transcription factor expression and gene regulation in the MOE. J. Comp. Neurol. 524:2713-2739, 2016. © 2016 Wiley Periodicals, Inc. PMID:27243442

  14. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Directory of Open Access Journals (Sweden)

    Emond Mary

    2007-09-01

    Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

  15. Applications of Little's Law to stochastic models of gene expression

    CERN Document Server

    Elgart, Vlad; Kulkarni, Rahul V

    2010-01-01

    The intrinsic stochasticity of gene expression can lead to large variations in protein levels across a population of cells. To explain this variability, different sources of mRNA fluctuations ('Poisson' and 'Telegraph' processes) have been proposed in stochastic models of gene expression. Both Poisson and Telegraph scenario models explain experimental observations of noise in protein levels in terms of 'bursts' of protein expression. Correspondingly, there is considerable interest in establishing relations between burst and steady-state protein distributions for general stochastic models of gene expression. In this work, we address this issue by considering a mapping between stochastic models of gene expression and problems of interest in queueing theory. By applying a general theorem from queueing theory, Little's Law, we derive exact relations which connect burst and steady-state distribution means for models with arbitrary waiting-time distributions for arrival and degradation of mRNAs and proteins. The de...

  16. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    Science.gov (United States)

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they

  17. Novel redox nanomedicine improves gene expression of polyion complex vector

    International Nuclear Information System (INIS)

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  18. Novel redox nanomedicine improves gene expression of polyion complex vector

    Science.gov (United States)

    Toh, Kazuko; Yoshitomi, Toru; Ikeda, Yutaka; Nagasaki, Yukio

    2011-12-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  19. Novel redox nanomedicine improves gene expression of polyion complex vector

    Directory of Open Access Journals (Sweden)

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Full Text Available Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP as an ROS scavenger. When polyethyleneimine (PEI/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  20. Design and Implementation of Visual Dynamic Display Software of Gene Expression Based on GTK

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei; MENG Fanjiang; LI Yong; YU Xiao

    2009-01-01

    The paper presented an implement method for a dynamic gene expression display software based on the GTK. This method established the dynamic presentation system of gene expression which according to gene expression data from gene chip hybridize at different time, adopted a linearity combination model and Pearson correlation coefficient algorithm. The system described the gene expression changes in graphic form, the gene expression changes with time and the changes in characteristics of the gene expression, also the changes in relations of the gene expression and regulation relationships among genes. The system also provided an integrated platform for analysis on gene chips data, especially for the research on the network of gene regulation.

  1. Integrated analysis of DNA methylation profiles and gene expression profiles to identify genes associated with pilocytic astrocytomas

    OpenAIRE

    Zhou, Ruigang; MAN, YIGANG

    2016-01-01

    The present study performed an integral analysis of the gene expression and DNA methylation profile of pilocytic astrocytomas (PAs). Weighted gene co-expression network analysis (WGCNA) was also performed to examine and identify the genes correlated to PAs, to identify candidate therapeutic targets for the treatment of PAs. The DNA methylation profile and gene expression profile were downloaded from the Gene Expression Omnibus database. Following screening of the differentially expressed gene...

  2. Differential gene expression in liver tissues of streptozotocin-induced diabetic rats in response to resveratrol treatment.

    Directory of Open Access Journals (Sweden)

    Gökhan Sadi

    Full Text Available This study was conducted to elucidate the genome-wide gene expression profile in streptozotocin induced diabetic rat liver tissues in response to resveratrol treatment and to establish differentially expressed transcription regulation networks with microarray technology. In addition to measure the expression levels of several antioxidant and detoxification genes, real-time quantitative polymerase chain reaction (qRT-PCR was also used to verify the microarray results. Moreover, gene and protein expressions as well as enzymatic activities of main antioxidant enzymes; superoxide dismutase (SOD-1 and SOD-2 and glutathione S-transferase (GST-Mu were analyzed. Diabetes altered 273 genes significantly and 90 of which were categorized functionally which suggested that genes in cellular catalytic activities, oxidation-reduction reactions, co-enzyme binding and terpenoid biosynthesis were dominated by up-regulated expression in diabetes. Whereas; genes responsible from cellular carbohydrate metabolism, regulation of transcription, cell signal transduction, calcium independent cell-to-cell adhesion and lipid catabolism were down-regulated. Resveratrol increased the expression of 186 and decreased the expression of 494 genes in control groups. While cellular and extracellular components, positive regulation of biological processes, biological response to stress and biotic stimulants, and immune response genes were up-regulated, genes responsible from proteins present in nucleus and nucleolus were mainly down-regulated. The enzyme assays showed a significant decrease in diabetic SOD-1 and GST-Mu activities. The qRT-PCR and Western-blot results demonstrated that decrease in activity is regulated at gene expression level as both mRNA and protein expressions were also suppressed. Resveratrol treatment normalized the GST activities towards the control values reflecting a post-translational effect. As a conclusion, global gene expression in the liver tissues is

  3. Construction of differentially expressed genes library of bighead carp (Aristichthys nobilis) exposed to microcystin-lr using ssh and expression profile of related genes.

    Science.gov (United States)

    Cui, Zhihui; Zhang, Kaiyue; Qu, Xiancheng; Liu, Qigen

    2011-12-01

    Microcystins (MCs) are hepatotoxic cyclic heptapeptides produced by cyanobacteria (blue-green algae). There are more than 70 MCs variants of which the most common and widely studied is MC-LR. We screened the hepatocellular differentially expressed genes against MC-LR in the bighead carp (Aristichthys nobilis). Suppression subtractive hybridization was used to construct the forward subtracted and reverse subtracted cDNA libraries, and one hundred and thirty two positive clones (seventy one in forward library and sixty one in reverse library) were randomly selected and sequenced. Finally, fifty five reliable sequences from the forward subtracted library were used in a homology search by BLASTn and BLASTx, as were 57 reliable sequences from the reverse subtracted library. Furthermore, eight analyzed sequences from the forward subtracted cDNA library and seven from the reverse subtracted library were found to be non-homologous sequences. The screening identified genes induced by MC-LR in both libraries that are involved in various processes, such as energy metabolism, immunity, and apoptosis. Some are cytoskeleton- and transportation-related genes, while signal transduction-related genes were also found. Significant genes, such as the apoptosis-related gene p53 and the proto-oncogene c-myc, are involved in inhibition of the MC-LR response in the reverse subtracted library. In addition, several immune-related genes, which play an important role in antioxidation and detoxification of MC-LR, were characterized and identified in both of the subtracted libraries. The study provides the basic data to further identify the genes and molecular mechanism of detoxification of microcystins. PMID:21803161

  4. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  5. Molecular subsets in the gene expression signatures of scleroderma skin.

    Directory of Open Access Journals (Sweden)

    Ausra Milano

    Full Text Available BACKGROUND: Scleroderma is a clinically heterogeneous disease with a complex phenotype. The disease is characterized by vascular dysfunction, tissue fibrosis, internal organ dysfunction, and immune dysfunction resulting in autoantibody production. METHODOLOGY AND FINDINGS: We analyzed the genome-wide patterns of gene expression with DNA microarrays in skin biopsies from distinct scleroderma subsets including 17 patients with systemic sclerosis (SSc with diffuse scleroderma (dSSc, 7 patients with SSc with limited scleroderma (lSSc, 3 patients with morphea, and 6 healthy controls. 61 skin biopsies were analyzed in a total of 75 microarray hybridizations. Analysis by hierarchical clustering demonstrates nearly identical patterns of gene expression in 17 out of 22 of the forearm and back skin pairs of SSc patients. Using this property of the gene expression, we selected a set of 'intrinsic' genes and analyzed the inherent data-driven groupings. Distinct patterns of gene expression separate patients with dSSc from those with lSSc and both are easily distinguished from normal controls. Our data show three distinct patient groups among the patients with dSSc and two groups among patients with lSSc. Each group can be distinguished by unique gene expression signatures indicative of proliferating cells, immune infiltrates and a fibrotic program. The intrinsic groups are statistically significant (p<0.001 and each has been mapped to clinical covariates of modified Rodnan skin score, interstitial lung disease, gastrointestinal involvement, digital ulcers, Raynaud's phenomenon and disease duration. We report a 177-gene signature that is associated with severity of skin disease in dSSc. CONCLUSIONS AND SIGNIFICANCE: Genome-wide gene expression profiling of skin biopsies demonstrates that the heterogeneity in scleroderma can be measured quantitatively with DNA microarrays. The diversity in gene expression demonstrates multiple distinct gene expression programs

  6. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    Science.gov (United States)

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  7. Gene Expression Profiling Predicts Survival in Conventional Renal Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: Conventional renal cell carcinoma (cRCC accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001. In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001. CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors.

  8. Differential network analysis from cross-platform gene expression data

    Science.gov (United States)

    Zhang, Xiao-Fei; Ou-Yang, Le; Zhao, Xing-Ming; Yan, Hong

    2016-01-01

    Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different groups. In addition, with the development of high-throughput technologies, we can collect gene expression profiles of same patients from multiple platforms. Therefore, inferring differential networks by considering cross-platform gene expression profiles will improve the reliability of network inference. We introduce a two dimensional joint graphical lasso (TDJGL) model to simultaneously estimate group-specific gene dependency networks from gene expression profiles collected from different platforms and infer differential networks. TDJGL can borrow strength across different patient groups and data platforms to improve the accuracy of estimated networks. Simulation studies demonstrate that TDJGL provides more accurate estimates of gene networks and differential networks than previous competing approaches. We apply TDJGL to the PI3K/AKT/mTOR pathway in ovarian tumors to build differential networks associated with platinum resistance. The hub genes of our inferred differential networks are significantly enriched with known platinum resistance-related genes and include potential platinum resistance-related genes. PMID:27677586

  9. Spatial gene expression quantification in changing morphologies

    NARCIS (Netherlands)

    D. Botman

    2016-01-01

    In systems biology, an organisms’ behavior is explained from the interactions among individual components such as genes and proteins. With few exceptions, interactions among genes and proteins are not measured directly and are therefore inferred from the observed output of a biological system. A net

  10. In plants, expression breadth and expression level distinctly and non-linearly correlate with gene structure

    Directory of Open Access Journals (Sweden)

    Yang Hangxing

    2009-11-01

    Full Text Available Abstract Background Compactness of highly/broadly expressed genes in human has been explained as selection for efficiency, regional mutation biases or genomic design. However, highly expressed genes in flowering plants were shown to be less compact than lowly expressed ones. On the other hand, opposite facts have also been documented that pollen-expressed Arabidopsis genes tend to contain shorter introns and highly expressed moss genes are compact. This issue is important because it provides a chance to compare the selectionism and the neutralism views about genome evolution. Furthermore, this issue also helps to understand the fates of introns, from the angle of gene expression. Results In this study, I used expression data covering more tissues and employ new analytical methods to reexamine the correlations between gene expression and gene structure for two flowering plants, Arabidopsis thaliana and Oryza sativa. It is shown that, different aspects of expression pattern correlate with different parts of gene sequences in distinct ways. In detail, expression level is significantly negatively correlated with gene size, especially the size of non-coding regions, whereas expression breadth correlates with non-coding structural parameters positively and with coding region parameters negatively. Furthermore, the relationships between expression level and structural parameters seem to be non-linear, with the extremes of structural parameters possibly scale as power-laws or logrithmic functions of expression levels. Conclusion In plants, highly expressed genes are compact, especially in the non-coding regions. Broadly expressed genes tend to contain longer non-coding sequences, which may be necessary for complex regulations. In combination with previous studies about other plants and about animals, some common scenarios about the correlation between gene expression and gene structure begin to emerge. Based on the functional relationships between

  11. Selenium Deficiency Mainly Influences Antioxidant Selenoproteins Expression in Broiler Immune Organs.

    Science.gov (United States)

    Yang, Zijiang; Liu, Ci; Liu, Chunpeng; Teng, Xiaohua; Li, Shu

    2016-07-01

    Selenoprotein has many functions in chicken, and the expression of selenoproteins is closely associated with the selenium (Se) level. However, little is known about the expression patterns of selenoproteins in chicken immune organs. Here, we investigated the effect of dietary Se deficiency on the expressions of 23 selenoproteins in broiler immune organs. In this study, 150 broilers were randomly divided into two groups (75 chickens per group). The chickens were maintained either on a diet supplemented with Se through the addition of 0.2 mg/kg of Se (C group) via sodium selenite or on a Se-deficient granulated diet (L group) until the broilers exhibited an onset of exudative diathesis (ED). Following euthanasia, the samples from the immune tissues (including the spleen, thymus, and bursa of Fabricius) were quickly collected, and the messenger RNA (mRNA) expression levels of 23 selenoproteins were examined by real-time quantitative PCR and analyzed using principal component analysis. The results showed that Se deficiency decreased the mRNA levels of 23 selenoproteins in the thymus, spleen, and bursa of the Fabricius tissues of broiler chickens. Furthermore, we found that among 23 selenoproteins, the mRNA levels of Dio1 in the thymus, Txnrd2 in the spleen, and Txnrd3 in the bursa of Fabricius decreased significantly (90.9 %, 83.3 %, and 96.8 %, respectively). In addition, the principal component analysis (PCA) results suggested that Se deficiency mainly influenced the expression of antioxidative selenoproteins, especially glutathione peroxidases (Gpxs), thioredoxin reductases (Txnrds), and iodothyronine deiodinases (Dios) in chicken immune organs. The results of this study are valuable for understanding the relevance of selenoprotein activity in vivo. PMID:26631053

  12. State-related alterations of gene expression in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Berk, Michael;

    2012-01-01

    Munkholm K, Vinberg M, Berk M, Kessing LV. State-related alterations of gene expression in bipolar disorder: a systematic review. Bipolar Disord 2012: 14: 684-696. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective:  Alterations in gene expression in bipolar disorder...... on comprehensive database searches for studies on gene expression in patients with bipolar disorder in specific mood states, was conducted. We searched Medline, Embase, PsycINFO, and The Cochrane Library, supplemented by manually searching reference lists from retrieved publications. Results:  A total of 17...

  13. Gene expression signatures for colorectal cancer microsatellite status and HNPCC

    DEFF Research Database (Denmark)

    Kruhøffer, M; Jensen, J L; Laiho, P;

    2005-01-01

    is correlated to prognosis and response to chemotherapy. Gene expression signatures as predictive markers are being developed for many cancers, and the identification of a signature for MMR deficiency would be of interest both clinically and biologically. To address this issue, we profiled the gene expression......-deficient tumours into sporadic MSI and HNPCC cases, and validated this by a mathematical cross-validation approach. The demonstration that this two-step classification approach can identify MSI as well as HNPCC cases merits further gene expression studies to identify prognostic signatures....

  14. Gene expression during testis development in Duroc boars

    DEFF Research Database (Denmark)

    Lervik, Siri; Kristoffersen, Anja Bråthen; Conley, Lene;

    2015-01-01

    . Nine clusters of genes with significant differential expression over time and 49 functional charts were found in the analysed testis samples. Prominent pathways in the prepubertal testis were associated with tissue renewal, cell respiration and increased endocytocis. E-cadherines may be associated...... with the onset of pubertal development. With elevated steroidogenesis (weeks 16 to 27), there was an increase in the expression of genes in the MAPK pathway, STAR and its analogue STARD6. A pubertal shift in genes coding for cellular cholesterol transport was observed. Increased expression of meiotic pathways...

  15. A longitudinal study of gene expression in healthy individuals

    Directory of Open Access Journals (Sweden)

    Tessier Michel

    2009-06-01

    Full Text Available Abstract Background The use of gene expression in venous blood either as a pharmacodynamic marker in clinical trials of drugs or as a diagnostic test requires knowledge of the variability in expression over time in healthy volunteers. Here we defined a normal range of gene expression over 6 months in the blood of four cohorts of healthy men and women who were stratified by age (22–55 years and > 55 years and gender. Methods Eleven immunomodulatory genes likely to play important roles in inflammatory conditions such as rheumatoid arthritis and infection in addition to four genes typically used as reference genes were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, as well as the full genome as represented by Affymetrix HG U133 Plus 2.0 microarrays. Results Gene expression levels as assessed by qRT-PCR and microarray were relatively stable over time with ~2% of genes as measured by microarray showing intra-subject differences over time periods longer than one month. Fifteen genes varied by gender. The eleven genes examined by qRT-PCR remained within a limited dynamic range for all individuals. Specifically, for the seven most stably expressed genes (CXCL1, HMOX1, IL1RN, IL1B, IL6R, PTGS2, and TNF, 95% of all samples profiled fell within 1.5–2.5 Ct, the equivalent of a 4- to 6-fold dynamic range. Two subjects who experienced severe adverse events of cancer and anemia, had microarray gene expression profiles that were distinct from normal while subjects who experienced an infection had only slightly elevated levels of inflammatory markers. Conclusion This study defines the range and variability of gene expression in healthy men and women over a six-month period. These parameters can be used to estimate the number of subjects needed to observe significant differences from normal gene expression in clinical studies. A set of genes that varied by gender was also identified as were a set of genes with elevated

  16. Membrane channel gene expression in human costal and articular chondrocytes.

    Science.gov (United States)

    Asmar, A; Barrett-Jolley, R; Werner, A; Kelly, R; Stacey, M

    2016-04-01

    Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Schönberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human articular and costal (teenage and fetal origin) cartilages. Notably, we found 14 ion channel genes commonly expressed between articular and both types of costal cartilage chondrocytes. There were several other ion channel genes expressed only in articular (6 genes) or costal chondrocytes (5 genes). Significant differences in expression of BEST1 and KCNJ2 (Kir2.1) were observed between fetal and teenage costal cartilage. Interestingly, the large Ca(2+) activated potassium channel (BKα, or KCNMA1) was very highly expressed in all chondrocytes examined. Expression of the gap junction genes for Panx1, GJA1 (Cx43) and GJC1 (Cx45) was also observed in chondrocytes from all cartilage samples. Together, this data highlights similarities between chondrocyte membrane channel gene expressions in cells derived from different anatomical sites, and may imply that common electrophysiological signaling pathways underlie cellular control. The high expression of a range of mechanically and metabolically sensitive membrane channels suggest that chondrocyte mechanotransduction may be more complex than previously thought. PMID:27116676

  17. Integration of biological networks and gene expression data using Cytoscape

    DEFF Research Database (Denmark)

    Cline, M.S.; Smoot, M.; Cerami, E.;

    2007-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context...... of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules...... and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape....

  18. Prediction of Tumor Outcome Based on Gene Expression Data

    Institute of Scientific and Technical Information of China (English)

    Liu Juan; Hitoshi Iba

    2004-01-01

    Gene expression microarray data can be used to classify tumor types. We proposed a new procedure to classify human tumor samples based on microarray gene expressions by using a hybrid supervised learning method called MOEA+WV (Multi-Objective Evolutionary Algorithm+Weighted Voting). MOEA is used to search for a relatively few subsets of informative genes from the high-dimensional gene space, and WV is used as a classification tool. This new method has been applied to predicate the subtypes of lymphoma and outcomes of medulloblastoma. The results are relatively accurate and meaningful compared to those from other methods.

  19. Reference genes for gene expression studies in wheat flag leaves grown under different farming conditions

    Directory of Open Access Journals (Sweden)

    Cordeiro Raposo Fernando

    2011-09-01

    Full Text Available Abstract Background Internal control genes with highly uniform expression throughout the experimental conditions are required for accurate gene expression analysis as no universal reference genes exists. In this study, the expression stability of 24 candidate genes from Triticum aestivum cv. Cubus flag leaves grown under organic and conventional farming systems was evaluated in two locations in order to select suitable genes that can be used for normalization of real-time quantitative reverse-transcription PCR (RT-qPCR reactions. The genes were selected among the most common used reference genes as well as genes encoding proteins involved in several metabolic pathways. Findings Individual genes displayed different expression rates across all samples assayed. Applying geNorm, a set of three potential reference genes were suitable for normalization of RT-qPCR reactions in winter wheat flag leaves cv. Cubus: TaFNRII (ferredoxin-NADP(H oxidoreductase; AJ457980.1, ACT2 (actin 2; TC234027, and rrn26 (a putative homologue to RNA 26S gene; AL827977.1. In addition of these three genes that were also top-ranked by NormFinder, two extra genes: CYP18-2 (Cyclophilin A, AY456122.1 and TaWIN1 (14-3-3 like protein, AB042193 were most consistently stably expressed. Furthermore, we showed that TaFNRII, ACT2, and CYP18-2 are suitable for gene expression normalization in other two winter wheat varieties (Tommi and Centenaire grown under three treatments (organic, conventional and no nitrogen and a different environment than the one tested with cv. Cubus. Conclusions This study provides a new set of reference genes which should improve the accuracy of gene expression analyses when using wheat flag leaves as those related to the improvement of nitrogen use efficiency for cereal production.

  20. Microarray analysis of gene expression profile of multidrug resistance in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yu-pei; CHEN Ge; FENG Bin; ZHANG Tai-ping; MA En-ling; WU Yuan-de

    2007-01-01

    Background Chemotherapy is the most frequently adopted adjuvant therapy of pancreatic ductal adenocarcinoma (PDAC), but the development of drug resistance reduces its effectiveness. Clarification of the mechanism of multidrug resistance (MDR) development in PDAC is needed to improve the therapeutic effect of chemotherapy. This study was aimed to investigate the molecular mechanism of MDR of PDAC and to identify genes associated with MDR development.Methods The gene expression profiles of cell line SW1990 and three drug-selected pancreatic chemoresistant sub-lines, SW1990/5-Fu, SW1990/ADM and SW1990/GEM, were obtained using an oligonucleotide microarray (Affymetrix HG U133 2.0 plus) that contained approximately 38 000 human genes. The microarray results were validated by real-time quantitative polymerase chain reaction and Western blot analysis.Results There were 165 genes and expressed sequence tags, some of which have never been linked to drug resistance, that were up- or down-regulated at least 2-fold in all resistant sub-lines when compared with SW1990.According to Gene Ontology annotation, differentially expressed genes related to MDR in pancreatic cancer belong to many functional families and with diverse biological processes. Genes related to antioxidant activity, apoptosis, the cell cycle, signal transduction and intracellular adhesion may undergo epigenetic changes preceding MDR development. A hierarchical clustering was conducted and several interesting clusters were discovered that may be primarily related to cell cycle and developmental regulation. A prediction rule was built from the expression profiles of 117 genes after support vector machine (SVM) analysis, and the prediction result was examined by cytotoxic testing. As a result, a differential gene expression pattern was constructed in multidrug resistant pancreatic cancer cells.Conclusions The findings of this study prove that construction of a chemoresistance prediction rule, based on gene

  1. Simultaneous tracking of fly movement and gene expression using GFP

    Directory of Open Access Journals (Sweden)

    Tavaré Simon

    2008-12-01

    Full Text Available Abstract Background Green Fluorescent Protein (GFP is used extensively as a reporter for transgene expression in Drosophila and other organisms. However, GFP has not generally been used as a reporter for circadian patterns of gene expression, and it has not previously been possible to correlate patterns of reporter expression with 3D movement and behavior of transgenic animals. Results We present a video tracking system that allows tissue-specific GFP expression to be quantified and correlated with 3D animal movement in real time. eyeless/Pax6 reporter expression had a 12 hr period that correlated with fly activity levels. hsp70 and hsp22 gene reporters were induced during fly aging in circadian patterns (24 hr and 18 hr periods, respectively, and spiked in the hours preceding and overlapping the death of the animal. The phase of hsp gene reporter expression relative to fly activity levels was different for each fly, and remained the same throughout the life span. Conclusion These experiments demonstrate that GFP can readily be used to assay longitudinally fly movement and tissue-specific patterns of gene expression. The hsp22-GFP and hsp70-GFP expression patterns were found to reflect accurately the endogenous gene expression patterns, including induction during aging and circadian periodicity. The combination of these new tracking methods with the hsp-GFP reporters revealed additional information, including a spike in hsp22 and hsp70 reporter expression preceding death, and an intriguing fly-to-fly variability in the phase of hsp70 and hsp22 reporter expression patterns. These methods allow specific temporal patterns of gene expression to be correlated with temporal patterns of animal activity, behavior and mortality.

  2. Imputing Gene Expression in Uncollected Tissues Within and Beyond GTEx

    Science.gov (United States)

    Wang, Jiebiao; Gamazon, Eric R.; Pierce, Brandon L.; Stranger, Barbara E.; Im, Hae Kyung; Gibbons, Robert D.; Cox, Nancy J.; Nicolae, Dan L.; Chen, Lin S.

    2016-01-01

    Gene expression and its regulation can vary substantially across tissue types. In order to generate knowledge about gene expression in human tissues, the Genotype-Tissue Expression (GTEx) program has collected transcriptome data in a wide variety of tissue types from post-mortem donors. However, many tissue types are difficult to access and are not collected in every GTEx individual. Furthermore, in non-GTEx studies, the accessibility of certain tissue types greatly limits the feasibility and scale of studies of multi-tissue expression. In this work, we developed multi-tissue imputation methods to impute gene expression in uncollected or inaccessible tissues. Via simulation studies, we showed that the proposed methods outperform existing imputation methods in multi-tissue expression imputation and that incorporating imputed expression data can improve power to detect phenotype-expression correlations. By analyzing data from nine selected tissue types in the GTEx pilot project, we demonstrated that harnessing expression quantitative trait loci (eQTLs) and tissue-tissue expression-level correlations can aid imputation of transcriptome data from uncollected GTEx tissues. More importantly, we showed that by using GTEx data as a reference, one can impute expression levels in inaccessible tissues in non-GTEx expression studies. PMID:27040689

  3. Differential gene expression between visceral and subcutaneous fat depots.

    Science.gov (United States)

    Atzmon, G; Yang, X M; Muzumdar, R; Ma, X H; Gabriely, I; Barzilai, N

    2002-01-01

    Abdominal obesity has been linked to the development of insulin resistance and Type 2 diabetes mellitus (DM2). By surgical removal of visceral fat (VF) in a variety of rodent models, we prevented insulin resistance and glucose intolerance, establishing a cause-effect relationship between VF and the metabolic syndrome. To characterize the biological differences between visceral and peripheral fat depots, we obtained perirenal visceral (VF) and subcutaneous (SC) fat from 5 young rats. We extracted mRNA from the fat tissue and performed gene array hybridization using Affymetrix technology with a platform containing 9 000 genes. Out of the 1 660 genes that were expressed in fat tissue, 297 (17.9 %) genes show a two-fold or higher difference in their expression between the two tissues. We present the 20 genes whose expression is higher in VF fat (by 3 - 7 fold) and the 20 genes whose expression is higher in SC fat (by 3 - 150 fold), many of which are predominantly involved in glucose homeostasis, insulin action, and lipid metabolism. We confirmed the findings of gene array expression and quantified the changes in expression in VF of genes involved in insulin resistance (PPARgamma leptin) and its syndrome (angiotensinogen and plasminogen activating inhibitor-1, PAI-1) by real-time PCR (qRT-PCR) technology. Finally, we demonstrated increased expression of resistin in VF by around 12-fold and adiponectin by around 4-fold, peptides that were not part of the gene expression platform. These results indicate that visceral fat and subcutaneous fat are biologically distinct. PMID:12660871

  4. SIGNATURE: A workbench for gene expression signature analysis

    Directory of Open Access Journals (Sweden)

    Chang Jeffrey T

    2011-11-01

    Full Text Available Abstract Background The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise. Results We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access. Conclusions SIGNATURE is available for public use at http://genepattern.genome.duke.edu/signature/.

  5. [Expression of bioinformatically identified genes in skin of psoriasis patients].

    Science.gov (United States)

    2013-10-01

    Gene expression analysis for EPHA2 (EPH receptor A2), EPHB2 (EPH receptor B2), S100A9 (S100 calcium binding protein A9), PBEF(nicotinamide phosphoribosyltransferase), LILRB2 (leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 2), PLAUR (plasminogen activator, urokinase receptor), LTB (lymphotoxin beta (TNF superfamily, member 3)), WNT5A (wingless-type MMTV integration site family, member 5A) has been conducted using real-time polymerase chain reaction in specimens affected by psoriasis versus visually intact skin in 18 patients. It was revealed that the expression of the nine examined genes was upregulated in the affected by psoriasis compared to visually intact skin specimens. The highest expression was observed for S100A9, S100AS, PBEF, WNT5A2, and EPHB2 genes. S100A9 and S100A8 gene expression in the affected by psoriasis skin was 100-fold higher versus visually intact skin while PBEF, WNT5A, and EPHB2 gene expression was upregulated more than five-fold. We suggested that the high expression of these genes might be associated with the state of the pathological process in psoriasis. Moreover, the transcriptional activity of these genes might serve a molecular indicator of the efficacy of treatment in psoriasis. PMID:25508677

  6. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Jennifer S Myers

    Full Text Available Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The "transforming growth factor-beta signaling" and "Ran regulation of mitotic spindle formation" pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran for investigation in prostate cancer pathogenesis.

  7. Ion channel gene expression predicts survival in glioma patients.

    Science.gov (United States)

    Wang, Rong; Gurguis, Christopher I; Gu, Wanjun; Ko, Eun A; Lim, Inja; Bang, Hyoweon; Zhou, Tong; Ko, Jae-Hong

    2015-08-03

    Ion channels are important regulators in cell proliferation, migration, and apoptosis. The malfunction and/or aberrant expression of ion channels may disrupt these important biological processes and influence cancer progression. In this study, we investigate the expression pattern of ion channel genes in glioma. We designate 18 ion channel genes that are differentially expressed in high-grade glioma as a prognostic molecular signature. This ion channel gene expression based signature predicts glioma outcome in three independent validation cohorts. Interestingly, 16 of these 18 genes were down-regulated in high-grade glioma. This signature is independent of traditional clinical, molecular, and histological factors. Resampling tests indicate that the prognostic power of the signature outperforms random gene sets selected from human genome in all the validation cohorts. More importantly, this signature performs better than the random gene signatures selected from glioma-associated genes in two out of three validation datasets. This study implicates ion channels in brain cancer, thus expanding on knowledge of their roles in other cancers. Individualized profiling of ion channel gene expression serves as a superior and independent prognostic tool for glioma patients.

  8. A biphasic pattern of gene expression during mouse retina development

    Directory of Open Access Journals (Sweden)

    Soares Marcelo

    2006-10-01

    Full Text Available Abstract Background Between embryonic day 12 and postnatal day 21, six major neuronal and one glia cell type are generated from multipotential progenitors in a characteristic sequence during mouse retina development. We investigated expression patterns of retina transcripts during the major embryonic and postnatal developmental stages to provide a systematic view of normal mouse retina development, Results A tissue-specific cDNA microarray was generated using a set of sequence non-redundant EST clones collected from mouse retina. Eleven stages of mouse retina, from embryonic day 12.5 (El2.5 to postnatal day 21 (PN21, were collected for RNA isolation. Non-amplified RNAs were labeled for microarray experiments and three sets of data were analyzed for significance, hierarchical relationships, and functional clustering. Six individual gene expression clusters were identified based on expression patterns of transcripts through retina development. Two developmental phases were clearly divided with postnatal day 5 (PN5 as a separate cluster. Among 4,180 transcripts that changed significantly during development, approximately 2/3 of the genes were expressed at high levels up until PN5 and then declined whereas the other 1/3 of the genes increased expression from PN5 and remained at the higher levels until at least PN21. Less than 1% of the genes observed showed a peak of expression between the two phases. Among the later increased population, only about 40% genes are correlated with rod photoreceptors, indicating that multiple cell types contributed to gene expression in this phase. Within the same functional classes, however, different gene populations were expressed in distinct developmental phases. A correlation coefficient analysis of gene expression during retina development between previous SAGE studies and this study was also carried out. Conclusion This study provides a complementary genome-wide view of common gene dynamics and a broad molecular

  9. A sequence-based approach to identify reference genes for gene expression analysis

    Directory of Open Access Journals (Sweden)

    Chari Raj

    2010-08-01

    Full Text Available Abstract Background An important consideration when analyzing both microarray and quantitative PCR expression data is the selection of appropriate genes as endogenous controls or reference genes. This step is especially critical when identifying genes differentially expressed between datasets. Moreover, reference genes suitable in one context (e.g. lung cancer may not be suitable in another (e.g. breast cancer. Currently, the main approach to identify reference genes involves the mining of expression microarray data for highly expressed and relatively constant transcripts across a sample set. A caveat here is the requirement for transcript normalization prior to analysis, and measurements obtained are relative, not absolute. Alternatively, as sequencing-based technologies provide digital quantitative output, absolute quantification ensues, and reference gene identification becomes more accurate. Methods Serial analysis of gene expression (SAGE profiles of non-malignant and malignant lung samples were compared using a permutation test to identify the most stably expressed genes across all samples. Subsequently, the specificity of the reference genes was evaluated across multiple tissue types, their constancy of expression was assessed using quantitative RT-PCR (qPCR, and their impact on differential expression analysis of microarray data was evaluated. Results We show that (i conventional references genes such as ACTB and GAPDH are highly variable between cancerous and non-cancerous samples, (ii reference genes identified for lung cancer do not perform well for other cancer types (breast and brain, (iii reference genes identified through SAGE show low variability using qPCR in a different cohort of samples, and (iv normalization of a lung cancer gene expression microarray dataset with or without our reference genes, yields different results for differential gene expression and subsequent analyses. Specifically, key established pathways in lung

  10. Gene expression patterns of the coral Acropora millepora in response to contact with macroalgae

    Science.gov (United States)

    Shearer, T. L.; Rasher, D. B.; Snell, T. W.; Hay, M. E.

    2012-12-01

    Contact with macroalgae often causes coral mortality, but the roles of abrasion versus shading versus allelopathy in these interactions are rarely clear, and effects on gene expression are unknown. Identification of gene expression changes within corals in response to contact with macroalgae can provide insight into the mode of action of allelochemicals, as well as reveal transcriptional strategies of the coral that mitigate damage from this competitive interaction, enabling the coral to survive. Gene expression responses of the coral Acropora millepora after long-term (20 days) direct contact with macroalgae ( Chlorodesmis fastigiata, Dictyota bartayresiana, Galaxaura filamentosa, and Turbinaria conoides) and short-term (1 and 24 h) exposure to C. fastigiata thalli and their hydrophobic extract were assessed. After 20 days of exposure, T. conoides thalli elicited no significant change in visual bleaching or zooxanthellae PSII quantum yield within A. millepora nubbins, but stimulated the greatest alteration in gene expression of all treatments. Chlorodesmis fastigiata, D. bartayresiana, and G. filamentosa caused significant visual bleaching of coral nubbins and reduced the PSII quantum yield of associated zooxanthellae after 20 days, but elicited fewer changes in gene expression relative to T. conoides at day 20. To evaluate initial molecular processes leading to reduction of zooxanthella PSII quantum yield, visual bleaching, and coral death, short-term exposures to C. fastigiata thalli and hydrophobic extracts were conducted; these interactions revealed protein degradation and significant changes in catalytic and metabolic activity within 24 h of contact. These molecular responses are consistent with the hypothesis that allelopathic interactions lead to alteration of signal transduction and an imbalance between reactive oxidant species production and antioxidant capabilities within the coral holobiont. This oxidative imbalance results in rapid protein degradation

  11. Expression of a Carrot Antifreeze Protein Gene in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Ma Xinyu; Shen Xin; Lu Cunfu

    2003-01-01

    The recombinant expression vectorpET43. lb-AFP, which contains full encoding region of a carrot 36 kD antifreeze protein (AFP) gene was constructed. The recombinant was transformed into expression host carrying T7 RNA polymerase gene (DE3 lysogen) and induced by 1 mmol. L-1 IPTG (isopropyl-β-D-thiogalactoside) to express 110 kD polypeptide of AFP fusion protein.The analysis of product solubility revealed that pET43. 1b-AFP was predominately soluble, and the expressed amount reached the maximum after the IPTG treatment for 3 h.

  12. Development of soybean gene expression database (SGED)

    Science.gov (United States)

    Large volumes of microarray expression data is a challenge for analysis. To address this problem a web-based database, Soybean Expression Database (SGED) was built, using PERL/CGI, C and an ORACLE database management system. SGED contains three components. The Data Mining component serves as a repos...

  13. GeneSigDB—A Curated Database of Gene Expression Signatures

    OpenAIRE

    Culhane, Aedín C.; Schwarzl, Thomas; Sultana, Razvan; Picard, Shaita C.; Lu, Tim H.; Franklin, Katherine R.; French, Simon J.; Papenhausen, Gerald; Correll, Mick; Picard, Kermshlise; Quackenbush, John

    2009-01-01

    The primary objective of most gene expression studies is the identification of one or more gene signatures; lists of genes whose transcriptional levels are uniquely associated with a specific biological phenotype. Whilst thousands of experimentally derived gene signatures are published, their potential value to the community is limited by their computational inaccessibility. Gene signatures are embedded in published article figures, tables or in supplementary materials, and are frequently pre...

  14. Cloning and expression analysis of chalcone synthase gene from Coleus forskohlii.

    Science.gov (United States)

    Awasthi, Praveen; Mahajan, Vidushi; Jamwal, Vijay Lakshmi; Kapoor, Nitika; Rasool, Shafaq; Bedi, Yashbir S; Gandhi, Sumit G

    2016-09-01

    Flavonoids are an important class of secondary metabolites that play various roles in plants such as mediating defense, floral pigmentation and plant-microbe interaction. Flavonoids are also known to possess antioxidant and antimicrobial activities. Coleus forskohlii (Willd.) Briq. (Lamiaceae) is an important medicinal herb with a diverse metabolic profile, including production of a flavonoid, genkwanin. However, components of the flavonoid pathway have not yet been studied in this plant. Chalcone synthase (CHS) catalyses the first committed step of flavonoid biosynthetic pathway. Full-length cDNA, showing homology with plant CHS gene was isolated from leaves of C. forskohlii and named CfCHS (GenBank accession no. KF643243). Theoretical translation of CfCHS nucleotide sequence shows that it encodes a protein of 391 amino acids with a molecular weight of 42.75 kDa and pI 6.57. Expression analysis of CfCHS in different tissues and elicitor treatments showed that methyl jasmonate (MeJA) strongly induced its expression. Total flavonoids content and antioxidant activity of C. forskohlii also got enhanced in response to MeJA, which correlated with increased CfCHS expression. Induction of CfCHS by MeJA suggest its involvement in production of flavonoids, providing protection from microbes during herbivory or mechanical wounding. Further, our in silico predictions and experimental data suggested that CfCHS may be posttranscriptionally regulated by miR34. PMID:27659336

  15. Cloning and expression analysis of chalcone synthase gene from Coleus forskohlii

    Indian Academy of Sciences (India)

    PRAVEEN AWASTHI; VIDUSHI MAHAJAN; VIJAY LAKSHMI JAMWAL; NITIKA KAPOOR; SHAFAQ RASOOL; YASHBIR S. BEDI; SUMIT G. GANDHI

    2016-09-01

    Flavonoids are an important class of secondary metabolites that play various roles in plants such as mediating defense, floral pigmentation and plant–microbe interaction. Flavonoids are also known to possess antioxidant and antimicrobial activities. Coleus forskohlii (Willd.) Briq. (Lamiaceae) is an important medicinal herb with a diverse metabolic profile, including production of a flavonoid, genkwanin. However, components of the flavonoid pathway have not yet been studied in this plant. Chalcone synthase (CHS) catalyses the first committed step of flavonoid biosynthetic pathway. Full-length cDNA, showing homology with plantCHS gene was isolated from leaves of C. forskohlii and named CfCHS (GenBank accession no. KF643243). Theoretical translation of CfCHS nucleotide sequence shows that it encodes a protein of 391 amino acids with a molecular weight of 42.75 kDa and pI 6.57. Expression analysis of CfCHS in different tissues and elicitor treatments showed that methyl jasmonate (MeJA) strongly induced its expression. Total flavonoids content and antioxidant activity of C.forskohlii also got enhanced in response to MeJA, which correlated with increased CfCHS expression. Induction ofCfCHS by MeJA suggest its involvement in production of flavonoids, providing protection from microbes during herbivory or mechanical wounding. Further, ourin silico predictions and experimental data suggested that CfCHS may be posttranscriptionally regulated by miR34.

  16. THE GENE EXPRESSION PROFILE OF HIGHLY METASTATIC HUMAN OVARIAN CANCER CELL LINE BY GENE CHIP

    Institute of Scientific and Technical Information of China (English)

    吕桂泉; 许沈华; 牟瀚舟; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 杨文; 程勇

    2001-01-01

    To study the gene expression of high metastatic human ovarian carcinoma cell line (HO-8910PM) and to screen for novel metastasis- associated genes by cDNA microarray. Methods: The cDNA was retro-transcribed from equal quantity mRNA derived from tissues of highly metastatic ovarian carcinoma cell line and normal ovarian, and was labeled with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BioDoor 4096 double dot human whole gene chip. The chip was scanned by scanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results: By applying the cDNA microarray we found: A total of 323 genes whose expression level were 3 times higher or lower in HO-8910PM cell than normal ovarian epithelium cell were screened out, with 71 higher and 252 lower respectively. Among these 10 were new genes. 67 genes showed expression difference bigger than 6 times between HO-8910PM cell and normal ovarian epithelium cell, among these genes 12 were higher, 55 lower, and two new genes were found. Conclusion: cDNA microarray technique is effective in screening the differentially expressed genes between human ovarian cancer cell line (HO-8910PM) and normal ovarian epithelium cell. Using the cDNA microarray to analyze of human ovarian cancer cell line gene expression profile difference will help the gene diagnosis, treatment and protection.

  17. Gene expression profile differences in gastric cancer, pericancerous epithelium and normal gastric mucosa by gene chip

    Institute of Scientific and Technical Information of China (English)

    Chuan-Ding Yu; Shen-Hua Xu; Hang-Zhou Mou; Zhi-Ming Jiang; Chi-Hong Zhu; Xiang-Lin Liu

    2005-01-01

    AIM: To study the difference of gene expression in gastric cancer (T), pericancerous epithelium (P) and normal tissue of gastric mucosa (C), and to screen an associated novel gene in early gastric carcinogenesis by oligonudeotide microarray.METHODS: U133A (Affymetrix, Santa Clara, CA) gene chip was used to detect the gene expression profile difference in T, P and C, respectively. Bioinformatics was used to analyze the detected results.RESULTS: When gastric cancer was compared with normal gastric mucosa, 766 genes were found, with a difference of more than four times in expression levels. Of the 766 genes,530 were up-regulated (Signal Log Ratio [SLR]>2), and 236 were down-regulated (SLR<-2). When pericancerous epithelium was compared with normal gastric mucosa, 64genes were found, with a difference of more than four times in expression levels. Of the 64 genes, 50 were up-regulated (SLR>2), and 14 were down-regulated (SLR<-2). Compared with normal gastric mucosa, a total of 143 genes with a difference in expression levels (more than four times, either in cancer or in pericancerous epithelium) were found in gastric cancer (T) and pericancerous epithelium (P). Of the 143 genes, 108 were up-regulated (SLR>2), and 35were down-regulated (SLR<-2).CONCLUSION: To apply a gene chip could find 143 genes associated with the genes of gastric cancer in pericancerous epithelium, although there were no pathological changes in the tissue slices. More interesting, six genes of pericancerous epithelium were up-regulated in comparison with genes of gastric cancer and three genes were down-regulated in comparison with genes of gastric cancer. It is suggested that these genes may be related to the carcinogenesis and development of early gastric cancer.

  18. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    Science.gov (United States)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  19. Clinicopathologic and gene expression parameters predict liver cancer prognosis

    Directory of Open Access Journals (Sweden)

    Hao Ke

    2011-11-01

    Full Text Available Abstract Background The prognosis of hepatocellular carcinoma (HCC varies following surgical resection and the large variation remains largely unexplained. Studies have revealed the ability of clinicopathologic parameters and gene expression to predict HCC prognosis. However, there has been little systematic effort to compare the performance of these two types of predictors or combine them in a comprehensive model. Methods Tumor and adjacent non-tumor liver tissues were collected from 272 ethnic Chinese HCC patients who received curative surgery. We combined clinicopathologic parameters and gene expression data (from both tissue types in predicting HCC prognosis. Cross-validation and independent studies were employed to assess prediction. Results HCC prognosis was significantly associated with six clinicopathologic parameters, which can partition the patients into good- and poor-prognosis groups. Within each group, gene expression data further divide patients into distinct prognostic subgroups. Our predictive genes significantly overlap with previously published gene sets predictive of prognosis. Moreover, the predictive genes were enriched for genes that underwent normal-to-tumor gene network transformation. Previously documented liver eSNPs underlying the HCC predictive gene signatures were enriched for SNPs that associated with HCC prognosis, providing support that these genes are involved in key processes of tumorigenesis. Conclusion When applied individually, clinicopathologic parameters and gene expression offered similar predictive power for HCC prognosis. In contrast, a combination of the two types of data dramatically improved the power to predict HCC prognosis. Our results also provided a framework for understanding the impact of gene expression on the processes of tumorigenesis and clinical outcome.

  20. Gene expression profile of esophageal cancer in North East India by cDNA microarray analysis

    Institute of Scientific and Technical Information of China (English)

    Indranil Chattopadhyay; Sujala Kapur; Joydeep Purkayastha; Rupkumar Phukan; Amal Kataki; Jagadish Mahanta; Sunita Saxena

    2007-01-01

    AIM: To identify alterations in genes and molecular functional pathways in esophageal cancer in a high incidence region of India where there is a widespread use of tobacco and betel quid with fermented areca nuts.METHODS: Total RNA was isolated from tumor and matched normal tissue of 16 patients with esophageal squamous cell carcinoma. Pooled tumor tissue RNA was labeled with Cy3-dUTP and pooled normal tissue RNA was labeled with Cy5-dUTP by direct labeling method.The labeled probes were hybridized with human 10K cDNA chip and expression profiles were analyzed by Genespring GX V 7.3 (Silicon Genetics).RESULTS: Nine hundred twenty three genes were differentially expressed. Of these, 611 genes were upregulated and 312 genes were downregulated. Using stringent criteria (P ≤ 0.05 and ≥ 1.5 fold change),127 differentially expressed genes (87 upregulated and 40 downregulated) were identified in tumor tissue. On the basis of Gene Ontology, four different molecular functional pathways (MAPK pathway,G-protein coupled receptor family, ion transport activity,and serine or threonine kinase activity) were most significantly upregulated and six different molecular functional pathways (structural constituent of ribosome,endopeptidase inhibitor activity, structural constituent of cytoskeleton, antioxidant activity, acyl group transferase activity, eukaryotic translation elongation factor activity)were most significantly downregulated.CONCLUSION: Several genes that showed alterations in our study have also been reported from a high incidence area of esophageal cancer in China. This indicates that molecular profiles of esophageal cancer in these two different geographic locations are highly consistent.

  1. Modulation of Gene Expression in Key Survival Pathways During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus

    Institute of Scientific and Technical Information of China (English)

    Kyle K Biggar; Cheng-Wei Wu; Shannon N Tessier; Jing Zhang; Fabien Pifferi; Martine Perret; Kenneth B Storey

    2015-01-01

    A variety of mammals employ torpor as an energy-saving strategy in environments of marginal or severe stress either on a daily basis during their inactive period or on a seasonal basis during prolonged multi-day hibernation. Recently, a few Madagascar lemur species have been iden-tified as the only primates that exhibit torpor; one of these is the gray mouse lemur (Microcebus murinus). To explore the regulatory mechanisms that underlie daily torpor in a primate, we ana-lyzed the expression of 28 selected genes that represent crucial survival pathways known to be involved in squirrel and bat hibernation. Array-based real-time PCR was used to compare gene expression in control (aroused) versus torpid lemurs in five tissues including the liver, kidney,skeletal muscle, heart, and brown adipose tissue. Significant differences in gene expression during torpor were revealed among genes involved in glycolysis, fatty acid metabolism, antioxidant defense, apoptosis, hypoxia signaling, and protein protection. The results showed upregulation of select genes primarily in liver and brown adipose tissue. For instance, both tissues showed elevated gene expression of peroxisome proliferator activated receptor gamma (ppargc), ferritin (fth1), and protein chaperones during torpor. Overall, the data show that the expression of only a few genes changed during lemur daily torpor, as compared with the broader expression changes reported for hibernation in ground squirrels. These results provide an indication that the alterations in gene expression required for torpor in lemurs are not as extensive as those needed for winter hibernation in squirrel models. However, identification of crucial genes with altered expression that support lemur torpor provides key targets to be explored and manipulated toward a goal of translational applications of inducible torpor as a treatment option in human biomedicine.

  2. Coffee enhances the expression of chaperones and antioxidant proteins in rats with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Salomone, Federico; Li Volti, Giovanni; Vitaglione, Paola; Morisco, Filomena; Fogliano, Vincenzo; Zappalà, Agata; Palmigiano, Angelo; Garozzo, Domenico; Caporaso, Nicola; D'Argenio, Giuseppe; Galvano, Fabio

    2014-06-01

    Coffee consumption is inversely related to the degree of liver injury in patients with nonalcoholic fatty liver disease (NAFLD). Molecular mediators contributing to coffee's beneficial effects in NAFLD remain to be elucidated. In this study, we administrated decaffeinated espresso coffee or vehicle to rats fed an high-fat diet (HFD) for 12 weeks and examined the effects of coffee on liver injury by using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) proteomic analysis combined with mass spectrometry. Rats fed an HFD and water developed panacinar steatosis, lobular inflammation, and mild fibrosis, whereas rats fed an HFD and coffee exhibited only mild steatosis. Coffee consumption increased liver expression of the endoplasmic reticulum chaperones glucose-related protein 78 and protein disulfide-isomerase A3; similarly, coffee drinking enhanced the expression of the mitochondrial chaperones heat stress protein 70 and DJ-1. Furthermore, in agreement with reduced hepatic levels of 8-isoprostanes and 8-hydroxy-2'-deoxyguanosine, proteomic analysis showed that coffee consumption induces the expression of master regulators of redox status (i.e., peroxiredoxin 1, glutathione S-transferase α2, and D-dopachrome tautomerase). Last, proteomics revealed an association of coffee intake with decreased expression of electron transfer flavoprotein subunit α, a component of the mitochondrial respiratory chain, involved in de novo lipogenesis. In this study, we were able to identify by proteomic analysis the stress proteins mediating the antioxidant effects of coffee; moreover, we establish for the first time the contribution of specific coffee-induced endoplasmic reticulum and mitochondrial chaperones ensuring correct protein folding and degradation in the liver. PMID:24365744

  3. A role for gene duplication and natural variation of gene expression in the evolution of metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel J Kliebenstein

    Full Text Available BACKGROUND: Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function. METHODOLOGY/PRINCIPAL FINDINGS: To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures. CONCLUSION: These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.

  4. Visually Relating Gene Expression and in vivo DNA Binding Data

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Yu; Mackey, Lester; Ker?,; nen, Soile V. E.; Weber, Gunther H.; Jordan, Michael I.; Knowles, David W.; Biggin, Mark D.; Hamann, Bernd

    2011-09-20

    Gene expression and in vivo DNA binding data provide important information for understanding gene regulatory networks: in vivo DNA binding data indicate genomic regions where transcription factors are bound, and expression data show the output resulting from this binding. Thus, there must be functional relationships between these two types of data. While visualization and data analysis tools exist for each data type alone, there is a lack of tools that can easily explore the relationship between them. We propose an approach that uses the average expression driven by multiple of ciscontrol regions to visually relate gene expression and in vivo DNA binding data. We demonstrate the utility of this tool with examples from the network controlling early Drosophila development. The results obtained support the idea that the level of occupancy of a transcription factor on DNA strongly determines the degree to which the factor regulates a target gene, and in some cases also controls whether the regulation is positive or negative.

  5. On TADs and LADs: Spatial Control Over Gene Expression.

    Science.gov (United States)

    Gonzalez-Sandoval, Adriana; Gasser, Susan M

    2016-08-01

    The combinatorial action of transcription factors drives cell-type-specific gene expression patterns. However, transcription factor binding and gene regulation occur in the context of chromatin, which modulates DNA accessibility. High-resolution chromatin interaction maps have defined units of chromatin that are in spatial proximity, called topologically associated domains (TADs). TADs can be further classified based on expression activity, replication timing, or the histone marks or non-histone proteins associated with them. Independently, other chromatin domains have been defined by their likelihood to interact with non-DNA structures, such as the nuclear lamina. Lamina-associated domains (LADs) correlate with low gene expression and late replication timing. TADs and LADs have recently been evaluated with respect to cell-type-specific gene expression. The results shed light on the relevance of these forms of chromatin organization for transcriptional regulation, and address specifically how chromatin sequestration influences cell fate decisions during organismal development. PMID:27312344

  6. Peripheral blood collection: the first step towards gene expression profiling.

    Science.gov (United States)

    Franken, Carmen; Remy, Sylvie; Lambrechts, Nathalie; Hollanders, Karen; Den Hond, Elly; Schoeters, Greet

    2016-07-01

    A crucial challenge for gene expression analysis in human biomonitoring studies on whole blood samples is rapid sample handling and mRNA stabilization. This study was designed to evaluate the impact of short bench times (less than 30 min) on yield, quality and gene expression of mRNA in the presence of different stabilization buffers (Tempus(TM) Blood RNA tube and RNAlater(®) Stabilization Reagent). Microarray analyzes showed significant changes over short periods of time in expression of a considerate part of the transcriptome (2356 genes) with a prominent role for NFкB-, cancer- and glucocorticoid-mediated networks, and specifically interleukin-8 (IL-8). These findings suggest that even short bench times affect gene expression, requiring to carry out blood collection in a strictly standardized way. PMID:26984061

  7. Bi-clustering of Gene Expression Data Using Conditional Entropy

    Science.gov (United States)

    Olomola, Afolabi; Dua, Sumeet

    The inherent sparseness of gene expression data and the rare exhibition of similar expression patterns across a wide range of conditions make traditional clustering techniques unsuitable for gene expression analysis. Biclustering methods currently used to identify correlated gene patterns based on a subset of conditions do not effectively mine constant, coherent, or overlapping biclusters, partially because they perform poorly in the presence of noise. In this paper, we present a new methodology (BiEntropy) that combines information entropy and graph theory techniques to identify co-expressed gene patterns that are relevant to a subset of the sample. Our goal is to discover different types of biclusters in the presence of noise and to demonstrate the superiority of our method over existing methods in terms of discovering functionally enriched biclusters. We demonstrate the effectiveness of our method using both synthetic and real data.

  8. Differential Expression of Salinity Resistance Gene on Cotton

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied,because of the large scale area of salinity in China,and its significant negative effects on

  9. The evolution of gene expression levels in mammalian organs

    DEFF Research Database (Denmark)

    Brawand, David; Soumillon, Magali; Necsulea, Anamaria;

    2011-01-01

    Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across...... ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages...... and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped...

  10. Super-paramagnetic clustering of yeast gene expression profiles

    CERN Document Server

    Getz, G; Domany, E; Zhang, M Q

    2000-01-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, Super-Paramagnetic Clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  11. Expression of streptavidin gene in bacteria and plants

    International Nuclear Information System (INIS)

    Six biotin-containing proteins are present in plants, representing at least four different biotin enzymes. The physiological function of these biotin enzymes is not understood. Streptavidin, a protein from Streptomyces avidinii, binds tightly and specifically to biotin causing inactivation of biotin enzymes. One approach to elucidating the physiological function of biotin enzymes in plant metabolism is to create transgenic plants expressing the streptavidin gene. A plasmid containing a fused streptavidin-beta-galactosidase gene has been expressed in E. coli. We also have constructed various fusion genes that include an altered CaMV 35S promoter, signal peptides to target the streptavidin protein to specific organelles, and the streptavidin coding gene. We are examining the expression of these genes in cells of carrot

  12. Biclustering of linear patterns in gene expression data.

    Science.gov (United States)

    Gao, Qinghui; Ho, Christine; Jia, Yingmin; Li, Jingyi Jessica; Huang, Haiyan

    2012-06-01

    Identifying a bicluster, or submatrix of a gene expression dataset wherein the genes express similar behavior over the columns, is useful for discovering novel functional gene interactions. In this article, we introduce a new algorithm for finding biClusters with Linear Patterns (CLiP). Instead of solely maximizing Pearson correlation, we introduce a fitness function that also considers the correlation of complementary genes and conditions. This eliminates the need for a priori determination of the bicluster size. We employ both greedy search and the genetic algorithm in optimization, incorporating resampling for more robust discovery. When applied to both real and simulation datasets, our results show that CLiP is superior to existing methods. In analyzing RNA-seq fly and worm time-course data from modENCODE, we uncover a set of similarly expressed genes suggesting maternal dependence. Supplementary Material is available online (at www.liebertonline.com/cmb). PMID:22697238

  13. Gene expression profiles identify inflammatory signatures in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Anna Torri

    Full Text Available Dendritic cells (DCs constitute a heterogeneous group of antigen-presenting leukocytes important in activation of both innate and adaptive immunity. We studied the gene expression patterns of DCs incubated with reagents inducing their activation or inhibition. Total RNA was isolated from DCs and gene expression profiling was performed with oligonucleotide microarrays. Using a supervised learning algorithm based on Random Forest, we generated a molecular signature of inflammation from a training set of 77 samples. We then validated this molecular signature in a testing set of 38 samples. Supervised analysis identified a set of 44 genes that distinguished very accurately between inflammatory and non inflammatory samples. The diagnostic performance of the signature genes was assessed against an independent set of samples, by qRT-PCR. Our findings suggest that the gene expression signature of DCs can provide a molecular classification for use in the selection of anti-inflammatory or adjuvant molecules with specific effects on DC activity.

  14. Gene expression profiling of soft and firm Atlantic salmon fillet.

    Directory of Open Access Journals (Sweden)

    Thomas Larsson

    Full Text Available Texture of salmon fillets is an important quality trait for consumer acceptance as well as for the suitability for processing. In the present work we measured fillet firmness in a population of farmed Atlantic salmon with known pedigree and investigated the relationship between this trait and gene expression. Transcriptomic analyses performed with a 21 K oligonucleotide microarray revealed strong correlations between firmness and a large number of genes. Highly similar expression profiles were observed in several functional groups. Positive regression was found between firmness and genes encoding proteasome components (41 genes and mitochondrial proteins (129 genes, proteins involved in stress responses (12 genes, and lipid metabolism (30 genes. Coefficients of determination (R(2 were in the range of 0.64-0.74. A weaker though highly significant negative regression was seen in sugar metabolism (26 genes, R(2 = 0.66 and myofiber proteins (42 genes, R(2 = 0.54. Among individual genes that showed a strong association with firmness, there were extracellular matrix proteins (negative correlation, immune genes, and intracellular proteases (positive correlation. Several genes can be regarded as candidate markers of flesh quality (coiled-coil transcriptional coactivator b, AMP deaminase 3, and oligopeptide transporter 15 though their functional roles are unclear. To conclude, fillet firmness of Atlantic salmon depends largely on metabolic properties of the skeletal muscle; where aerobic metabolism using lipids as fuel, and the rapid removal of damaged proteins, appear to play a major role.

  15. Expression and sub-cellular localization of leucine-rich repeats and immunoglobulin-like domains are related to antioxidant enzymes in human ependymoma and oligodendroglioma

    Institute of Scientific and Technical Information of China (English)

    Wei Yi; Lin Liu; Okechi Humphrey; Qianxue Chen; Shulan Huang

    2011-01-01

    The current study investigated correlations between the expression of leucine-rich repeats and immunoglobulin-like domain 1 (LRIG1) and antioxidant enzymes and related proteins, including manganese superoxide dismutase, glutamate cysteine ligase catalytic or regulatory subunit, thioredoxin and thioredoxin reductase, in both human ependymoma and oligodendroglioma. Results revealed that the cytoplasmic expression of LRIG1 was associated with expression of glutamate cysteine ligase catalytic subunit in the human ependymoma, while the nuclear expression of LRIG1 was associated with expression of thioredoxin reductase. In human oligodendroglioma, the cytoplasmic expression of LRIG1 was associated with expression of the glutamate cysteine ligase catalytic subunit. Both the nuclear and perinuclear expressions of LRIG1 were associated with expression of glutamate cysteine ligase regulatory subunit. These results indicated that several antioxidant enzymes and related proteins contributed to LRIG1 expression, and that these may participate in the antioxidation of the cells.

  16. Differential expression and immunolocalization of antioxidant enzymes in Entamoeba histolytica isolates during metronidazole stress.

    Science.gov (United States)

    Iyer, Lakshmi Rani; Singh, Nishant; Verma, Anil Kumar; Paul, Jaishree

    2014-01-01

    Entamoeba histolytica infections are endemic in the Indian subcontinent. Five to eight percent of urban population residing under poor sanitary conditions suffers from Entamoeba infections. Metronidazole is the most widely prescribed drug used for amoebiasis. In order to understand the impact of metronidazole stress on the parasite, we evaluated the expression of two antioxidant enzymes, peroxiredoxin and FeSOD, in Entamoeba histolytica isolates during metronidazole stress. The results reveal that, under metronidazole stress, the mRNA expression levels of these enzymes did not undergo any significant change. Interestingly, immunolocalization studies with antibodies targeting peroxiredoxin indicate differential localization of the protein in the cell during metronidazole stress. In normal conditions, all the Entamoeba isolates exhibit presence of peroxiredoxin in the nucleus as well as in the membrane; however with metronidazole stress the protein localized mostly to the membrane. The change in the localization pattern was more pronounced when the cells were subjected to short term metronidazole stress compared to cells adapted to metronidazole. The protein localization to the cell membrane could be the stress response mechanism in these isolates. Colocalization pattern of peroxiredoxin with CaBp1, a cytosolic protein, revealed that the membrane and nuclear localization was specific to peroxiredoxin during metronidazole stress.

  17. Expression of a human placental alkaline phosphatase gene in transfected cells: Use as a reporter for studies of gene expression

    International Nuclear Information System (INIS)

    The human placental alkaline phosphatase gene has been cloned and reintroduced into mammalian cells. When a plasmid carrying the gene under control of the simian virus 40 early promoter (pSV2Apap) is transfected into a variety of different cell types, placental alkaline phosphatase activity can readily be detected by using whole cell suspensions or cell lysates. Alkaline phosphatase activity can also be visualized directly in individual transfected cells by histochemical staining. The gene is appropriate for use as a reporter in studies of gene regulation since its expression is dependent on the presence of exogenous transcription control elements. The overall assay to detect the expression of the gene is quantitative, very rapid, and inexpensive. Cotransfections of cells with pSV2Apap and a related plasmid carrying the bacterial chloramphenicol acetyltransferase gene (pSV2Acat) indicate that transcription of these two genes is detected with roughly the same sensitivity

  18. Spotlight on differentially expressed genes in urinary bladder cancer.

    Directory of Open Access Journals (Sweden)

    Apostolos Zaravinos

    Full Text Available INTRODUCTION: We previously identified common differentially expressed (DE genes in bladder cancer (BC. In the present study we analyzed in depth, the expression of several groups of these DE genes. MATERIALS AND METHODS: Samples from 30 human BCs and their adjacent normal tissues were analyzed by whole genome cDNA microarrays, qRT-PCR and Western blotting. Our attention was focused on cell-cycle control and DNA damage repair genes, genes related to apoptosis, signal transduction, angiogenesis, as well as cellular proliferation, invasion and metastasis. Four publicly available GEO Datasets were further analyzed, and the expression data of the genes of interest (GOIs were compared to those of the present study. The relationship among the GOI was also investigated. GO and KEGG molecular pathway analysis was performed to identify possible enrichment of genes with specific biological themes. RESULTS: Unsupervised cluster analysis of DNA microarray data revealed a clear distinction in BC vs. control samples and low vs. high grade tumors. Genes with at least 2-fold differential expression in BC vs. controls, as well as in non-muscle invasive vs. muscle invasive tumors and in low vs. high grade tumors, were identified and ranked. Specific attention was paid to the changes in osteopontin (OPN, SPP1 expression, due to its multiple biological functions. Similarly, genes exhibiting equal or low expression in BC vs. the controls were scored. Significant pair-wise correlations in gene expression were scored. GO analysis revealed the multi-facet character of the GOIs, since they participate in a variety of mechanisms, including cell proliferation, cell death, metabolism, cell shape, and cytoskeletal re-organization. KEGG analysis revealed that the most significant pathway was that of Bladder Cancer (p = 1.5×10(-31. CONCLUSIONS: The present work adds to the current knowledge on molecular signature identification of BC. Such works should progress in order

  19. RNA Binding Proteins that Control Human Papillomavirus Gene Expression.

    OpenAIRE

    Naoko Kajitani; Stefan Schwartz

    2015-01-01

    The human papillomavirus (HPV) life cycle is strictly linked to the differentiation program of the infected mucosal epithelial cell. In the basal and lower levels of the epithelium, early genes coding for pro-mitotic proteins and viral replication factors are expressed, while terminal cell differentiation is required for activation of late gene expression and production of viral particles at the very top of the epithelium. Such productive infections are normally cleared within 18–24 months. I...

  20. Freedom of expression: cell-type-specific gene profiling.

    Science.gov (United States)

    Otsuki, Leo; Cheetham, Seth W; Brand, Andrea H

    2014-01-01

    Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling.

  1. A comparative analysis of biclustering algorithms for gene expression data

    OpenAIRE

    Eren, Kemal; Deveci, Mehmet; Küçüktunç, Onur; Çatalyürek, Ümit V.

    2012-01-01

    The need to analyze high-dimension biological data is driving the development of new data mining methods. Biclustering algorithms have been successfully applied to gene expression data to discover local patterns, in which a subset of genes exhibit similar expression levels over a subset of conditions. However, it is not clear which algorithms are best suited for this task. Many algorithms have been published in the past decade, most of which have been compared only to a small number of algori...

  2. Evaluation of Plaid Models in Biclustering of Gene Expression Data

    OpenAIRE

    Hamid Alavi Majd; Soodeh Shahsavari; Ahmad Reza Baghestani; Seyyed Mohammad Tabatabaei; Naghme Khadem Bashi; Mostafa Rezaei Tavirani; Mohsen Hamidpour

    2016-01-01

    Background. Biclustering algorithms for the analysis of high-dimensional gene expression data were proposed. Among them, the plaid model is arguably one of the most flexible biclustering models up to now. Objective. The main goal of this study is to provide an evaluation of plaid models. To that end, we will investigate this model on both simulation data and real gene expression datasets. Methods. Two simulated matrices with different degrees of overlap and noise are generated and then the in...

  3. Randomized Algorithmic Approach for Biclustering of Gene Expression Data

    OpenAIRE

    Sradhanjali Nayak; Debahuti Mishra; Satyabrata Das; Amiya Kumar Rath

    2011-01-01

    Microarray data processing revolves around the pivotal issue of locating genes altering their expression in response to pathogens, other organisms or other multiple environmental conditions resulted out of a comparison between infected and uninfected cells or tissues. To have a comprehensive analysis of the corollaries of certain treatments, deseases and developmental stages embodied as a data matrix on gene expression data is possible through simultaneous observation and monitoring of the ex...

  4. Probing Pineal-specific Gene Expression with Transgenic Zebrafish†

    OpenAIRE

    Kojima, Daisuke; Dowling, John E.; Fukada, Yoshitaka

    2008-01-01

    The pineal gland of zebrafish (Danio rerio) contains lightsensitive photoreceptor cells and plays an important role in the neuroendocrine system. The zebrafish exorhodopsin gene encodes a pineal-specific photoreceptive protein, whose promoter region harbors a cis-acting element, pineal expression-promoting element (PIPE), directing pineal-specific gene expression. For in vivo genetic studies on PIPE-binding proteins and their regulatory mechanisms, we generated a transgenic zebrafish line, Tg...

  5. Gene Expression Profiling Predicts the Development of Oral Cancer

    OpenAIRE

    Saintigny, Pierre; Zhang, Li; Fan, You-Hong; El-Naggar, Adel K.; Papadimitrakopoulou, Vali; Feng, Lei; Lee, J. Jack; Kim, Edward S.; Hong, Waun Ki; Mao, Li

    2011-01-01

    Patients with oral preneoplastic lesion (OPL) have high risk of developing oral cancer. Although certain risk factors such as smoking status and histology are known, our ability to predict oral cancer risk remains poor. The study objective was to determine the value of gene expression profiling in predicting oral cancer development. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer develo...

  6. Time course of gene expression during mouse skeletal muscle hypertrophy

    OpenAIRE

    Chaillou, Thomas; Lee, Jonah D.; England, Jonathan H.; Esser, Karyn A.; McCarthy, John J.

    2013-01-01

    The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50...

  7. Expression data on liver metabolic pathway genes and proteins

    OpenAIRE

    Mooli Raja Gopal Reddy; Chodisetti Pavan Kumar; Malleswarapu Mahesh; Manchiryala Sravan Kumar; Jeyakumar, Shanmugam M

    2016-01-01

    Here, we present the expression data on various metabolic pathways of liver with special emphasize on lipid and carbohydrate metabolism and long chain polyunsaturated fatty acid (PUFA) synthesis, both at gene and protein levels. The data were obtained to understand the effect of vitamin A deficiency on the expression status (both gene and protein levels) of some of the key factors involved in lipogenesis, fatty acid oxidation, triglyceride secretion, long chain PUFA, resolvin D1 synthesis, gl...

  8. [Gene expression profile of spinal ventral horn in ALS].

    Science.gov (United States)

    Yamamoto, Masahiko; Tanaka, Fumiaki; Sobue, Gen

    2007-10-01

    The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons as well as spinal ventral horn from autopsied patients with sporadic ALS were examined. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were significantly downregulated, and 1% were upregulated in motor neurons. In contrast with motor neurons, the total spinal ventral horn homogenates demonstrated 0.7% and 0.2% significant upregulation and downregulation of gene expression, respectively. Downregulated genes in motor neurons included those associated with cytoskeleton/axonal transport, transcription and cell surface antigens/receptors, such as dynactin 1 (DCTN1) and early growth response 3 (EGR3). In particular, DCTN1 was markedly downregulated in most residual motor neurons prior to the accumulation of pNF-H and ubiquitylated protein. Promoters for cell death pathway, death receptor 5 (DR5), cyclins C (CCNC) and A1 (CCNA), and caspases were upregulated, whereas cell death inhibitors, acetyl-CoA transporter (ACATN) and NF-kappaB (NFKB) were also upregulated. In terms of spinal ventral horn, the expression of genes related to cell surface antigens/receptors, transcription and cell adhesion/ECM were increased. The gene expression resulting in neurodegenerative and neuroprotective changes were both present in spinal motor neurons and ventral horn. Moreover, Inflammation-related genes, such as belonging to the cytokine family were not, however, significantly upregulated in either motor neurons or ventral horn. The sequence of motor neuron-specific gene expression changes from early DCTN1 downregulation to late CCNC upregulation in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death, and are helpful

  9. [Gene expression profile of spinal ventral horn in ALS].

    Science.gov (United States)

    Yamamoto, Masahiko; Tanaka, Fumiaki; Sobue, Gen

    2007-10-01

    The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons as well as spinal ventral horn from autopsied patients with sporadic ALS were examined. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were significantly downregulated, and 1% were upregulated in motor neurons. In contrast with motor neurons, the total spinal ventral horn homogenates demonstrated 0.7% and 0.2% significant upregulation and downregulation of gene expression, respectively. Downregulated genes in motor neurons included those associated with cytoskeleton/axonal transport, transcription and cell surface antigens/receptors, such as dynactin 1 (DCTN1) and early growth response 3 (EGR3). In particular, DCTN1 was markedly downregulated in most residual motor neurons prior to the accumulation of pNF-H and ubiquitylated protein. Promoters for cell death pathway, death receptor 5 (DR5), cyclins C (CCNC) and A1 (CCNA), and caspases were upregulated, whereas cell death inhibitors, acetyl-CoA transporter (ACATN) and NF-kappaB (NFKB) were also upregulated. In terms of spinal ventral horn, the expression of genes related to cell surface antigens/receptors, transcription and cell adhesion/ECM were increased. The gene expression resulting in neurodegenerative and neuroprotective changes were both present in spinal motor neurons and ventral horn. Moreover, Inflammation-related genes, such as belonging to the cytokine family were not, however, significantly upregulated in either motor neurons or ventral horn. The sequence of motor neuron-specific gene expression changes from early DCTN1 downregulation to late CCNC upregulation in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death, and are helpful

  10. Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius

    Science.gov (United States)

    Faherty, Sheena L.; Villanueva-Cañas, José Luis; Klopfer, Peter H.; Albà, M. Mar; Yoder, Anne D.

    2016-01-01

    Hibernation is a complex physiological response that some mammalian species employ to evade energetic demands. Previous work in mammalian hibernators suggests that hibernation is activated not by a set of genes unique to hibernators, but by differential expression of genes that are present in all mammals. This question of universal genetic mechanisms requires further investigation and can only be tested through additional investigations of phylogenetically dispersed species. To explore this question, we use RNA-Seq to investigate gene expression dynamics as they relate to the varying physiological states experienced throughout the year in a group of primate hibernators—Madagascar’s dwarf lemurs (genus Cheirogaleus). In a novel experimental approach, we use longitudinal sampling of biological tissues as a method for capturing gene expression profiles from the same individuals throughout their annual hibernation cycle. We identify 90 candidate genes that have variable expression patterns when comparing two active states (Active 1 and Active 2) with a torpor state. These include genes that are involved in metabolic pathways, feeding behavior, and circadian rhythms, as might be expected to correlate with seasonal physiological state changes. The identified genes appear to be critical for maintaining the health of an animal that undergoes prolonged periods of metabolic depression concurrent with the hibernation phenotype. By focusing on these differentially expressed genes in dwarf lemurs, we compare gene expression patterns in previously studied mammalian hibernators. Additionally, by employing evolutionary rate analysis, we find that hibernation-related genes do not evolve under positive selection in hibernating species relative to nonhibernators. PMID:27412611

  11. Expression analysis of five zebrafish RXFP3 homologues reveals evolutionary conservation of gene expression pattern.

    Science.gov (United States)

    Donizetti, Aldo; Fiengo, Marcella; Iazzetti, Giovanni; del Gaudio, Rosanna; Di Giaimo, Rossella; Pariante, Paolo; Minucci, Sergio; Aniello, Francesco

    2015-01-01

    Relaxin peptides exert different functions in reproduction and neuroendocrine processes via interaction with two evolutionarily unrelated groups of receptors: RXFP1 and RXFP2 on one hand, RXFP3 and RXFP4 on the other hand. Evolution of receptor genes after splitting of tetrapods and teleost lineage led to a different retention rate between mammals and fish, with the latter having more gene copies compared to the former. In order to improve our knowledge on the evolution of the relaxin ligands/receptors system and have insights on their function in early stages of life, in the present paper we analyzed the expression pattern of five zebrafish RXFP3 homologue genes during embryonic development. In our analysis, we show that only two of the five genes are expressed during embryogenesis and that their transcripts are present in all the developmental stages. Spatial localization analysis of these transcripts revealed that the gene expression is restricted in specific territories starting from early pharyngula stage. Both genes are expressed in the brain but in different cell clusters and in extra-neural territories, one gene in the interrenal gland and the other in the pancreas. These two genes share expression territories with the homologue mammalian counterpart, highlighting a general conservation of gene expression regulatory processes and their putative function during evolution that are established early in vertebrate embryogenesis. PMID:25384467

  12. Identification of Differentially Expressed Genes Induced by Ammonium Nitrogen in Rice Using mRNA Differential Display

    Institute of Scientific and Technical Information of China (English)

    ZHU Guo-hui; HUANG Zhuo-lie

    2008-01-01

    RNAs isolated from ammonium- and nitrate-treated rice leaves were used to screen differentially expressed genes through mRNA differential display. A total of 72 bands appeared significant differences and some of them were further confirmed by reverse Northern and Northem blot. The results showed that two genes, A-02 (Oryza sativa drought stress related mRNA) and A-03 (Zea mays partial mRNA for TFIIB-related protein) were highly up-regulated in the ammonium-fed rice leaves. The enzyme assays showed that the activities of the two anti-oxidative enzymes, catalase and peroxidase, and the content of a non-enzymic antioxidant, glutathione, were significantly higher in the ammonium-fed rice leaves than those in the nitrate-fed ones, indicating that the ammonium nutrition might be beneficial for rice plants to improve the stress resistance during growth and development.

  13. Toxic effects of three strobilurins (trifloxystrobin, azoxystrobin and kresoxim-methyl) on mRNA expression and antioxidant enzymes in grass carp (Ctenopharyngodon idella) juveniles.

    Science.gov (United States)

    Liu, Lei; Jiang, Chao; Wu, Zhuo-Qi; Gong, Yu-Xin; Wang, Gao-Xue

    2013-12-01

    The strobilurins are used widely in the world as effective fungicidal agents to control Asian soybean rust. In this study, the early life stage of grass carp (Ctenopharyngodon idella), which is one of the most important aquaculture species in China, was chosen to measure the acute toxicity of three common strobilurin-derived fungicides (trifloxystrobin (TFS), azoxystrobin (AZ) and kresoxim-methyl (KM)). As endpoints, normal developmental parameters (lethal concentration (LC₅₀) and average heart rate), expression of relative genes, and three antioxidant enzyme activities in the developing juveniles were recorded during a 48 h exposure. The results revealed that values of LC₅₀ were TFS 0.051 (0.046-0.058) mg L⁻¹, AZ 0.549 (0.419-0.771) mg L⁻¹ and KM 0.338 (0.284-0.407) mg L⁻¹ for juveniles. For the potential toxicity mechanisms, these three fungicides increased catalase (CAT) and peroxidase (POD) activity and decreased superoxide dismutase (SOD) activity, significantly inhibited expressions of three growth-related genes (IGF-1, IGF-2 and GHR) and two energy-related-genes (CCK and PYY), and caused pronounced up-regulation a stress-gene (HSP70). The present study demonstrated potential toxic effects of TFS, AZ and KM on the early development of C. idella. Overall, three strobilurins (TFS, AZ and KM) might cause serious damages to the aquatic species; therefore, their pollution supervision in water ecological environment should be strengthened.

  14. Gene expression profiling in peanut using high density oligonucleotide microarrays

    Directory of Open Access Journals (Sweden)

    Burow Mark

    2009-06-01

    Full Text Available Abstract Background Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. Results We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and demonstrate the utility of this array for expression profiling in a variety of peanut tissues, we compared transcript levels in pod, peg, leaf, stem, and root tissues. Results from this experiment showed 108 putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to peg, leaf, stem, or root. The transcripts significantly over-represented in pod include genes responsible for seed storage proteins and desiccation (e.g., late-embryogenesis abundant proteins, aquaporins, legumin B, oil production, and cellular defense. Additionally, almost half of the pod-abundant genes represent unknown genes allowing for the possibility of associating putative function to these previously uncharacterized genes. Conclusion The peanut oligonucleotide array represents the majority of publicly available peanut ESTs and can be used as a tool for expression profiling studies in diverse tissues.

  15. A Rough Set based Gene Expression Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    J. J. Emilyn

    2011-01-01

    Full Text Available Problem statement: Microarray technology helps in monitoring the expression levels of thousands of genes across collections of related samples. Approach: The main goal in the analysis of large and heterogeneous gene expression datasets was to identify groups of genes that get expressed in a set of experimental conditions. Results: Several clustering techniques have been proposed for identifying gene signatures and to understand their role and many of them have been applied to gene expression data, but with partial success. The main aim of this work was to develop a clustering algorithm that would successfully indentify gene patterns. The proposed novel clustering technique (RCGED provides an efficient way of finding the hidden and unique gene expression patterns. It overcomes the restriction of one object being placed in only one cluster. Conclusion/Recommendations: The proposed algorithm is termed intelligent because it automatically determines the optimum number of clusters. The proposed algorithm was experimented with colon cancer dataset and the results were compared with Rough Fuzzy K Means algorithm.

  16. Quantitative analysis of laminin 5 gene expression in human keratinocytes.

    Science.gov (United States)

    Akutsu, Nobuko; Amano, Satoshi; Nishiyama, Toshio

    2005-05-01

    To examine the expression of laminin 5 genes (LAMA3, LAMB3, and LAMC2) encoding the three polypeptide chains alpha3, beta3, and gamma2, respectively, in human keratinocytes, we developed novel quantitative polymerase chain reaction (PCR) methods utilizing Thermus aquaticus DNA polymerase, specific primers, and fluorescein-labeled probes with the ABI PRISM 7700 sequence detector system. Gene expression levels of LAMA3, LAMB3, and LAMC2 and glyceraldehyde-3-phosphate dehydrogenase were quantitated reproducibly and sensitively in the range from 1 x 10(2) to 1 x 10(8) gene copies. Basal gene expression level of LAMB3 was about one-tenth of that of LAMA3 or LAMC2 in human keratinocytes, although there was no clear difference among immunoprecipitated protein levels of alpha3, beta3, and gamma2 synthesized in radio-labeled keratinocytes. Human serum augmented gene expressions of LAMA3, LAMB3, and LAMC2 in human keratinocytes to almost the same extent, and this was associated with an increase of the laminin 5 protein content measured by a specific sandwich enzyme-linked immunosorbent assay. These results demonstrate that the absolute mRNA levels generated from the laminin 5 genes do not determine the translated protein levels of the laminin 5 chains in keratinocytes, and indicate that the expression of the laminin 5 genes may be controlled by common regulation mechanisms. PMID:15854126

  17. A Gene Expression Barcode for Microarray Data

    OpenAIRE

    Zilliox, Michael J.; Irizarry, Rafael A.

    2007-01-01

    The ability to measure genome-wide expression holds great promise for characterizing cells and distinguishing diseased from normal tissues. Thus far, microarray technology has only been useful for measuring relative expression between two or more samples, which has handicapped its ability to classify tissue types. This paper presents the first method that can successfully predict tissue type based on data from a single hybridization. A preliminary web-tool is available at http://rafalab.jhsph...

  18. Paternal irradiation perturbs the expression of circadian genes in offspring

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Andre M.G.F.; Barber, Ruth C.; Dubrova, Yuri E., E-mail: yed2@le.ac.uk

    2015-05-15

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies.

  19. Gene expression as a biomarker for human radiation exposure.

    Science.gov (United States)

    Omaruddin, Romaica A; Roland, Thomas A; Wallace, H James; Chaudhry, M Ahmad

    2013-03-01

    Accidental exposure to ionizing radiation can be unforeseen, rapid, and devastating. The detonation of a radiological device leading to such an exposure can be detrimental to the exposed population. The radiation-induced damage may manifest as acute effects that can be detected clinically or may be more subtle effects that can lead to long-term radiation-induced abnormalities. Accurate identification of the individuals exposed to radiation is challenging. The availability of a rapid and effective screening test that could be used as a biomarker of radiation exposure detection is mandatory. We tested the suitability of alterations in gene expression to serve as a biomarker of human radiation exposure. To develop a useful gene expression biomonitor, however, gene expression changes occurring in response to irradiation in vivo must be measured directly. Patients undergoing radiation therapy provide a suitable test population for this purpose. We examined the expression of CC3, MADH7, and SEC PRO in blood samples of these patients before and after radiotherapy to measure the in vivo response. The gene expression after ionizing radiation treatment varied among different patients, suggesting the complexity of the response. The expression of the SEC PRO gene was repressed in most of the patients. The MADH7 gene was found to be upregulated in most of the subjects and could serve as a molecular marker of radiation exposure. PMID:23446844

  20. Paternal irradiation perturbs the expression of circadian genes in offspring

    International Nuclear Information System (INIS)

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies

  1. Gene expression of the mismatch repair gene MSH2 in primary colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Kuramochi, Hidekazu; Crüger, Dorthe Gylling;

    2011-01-01

    and lymphnode metastases were analyzed with immunohistochemistry, methylation and MSI analyses, and quantitative polymerase chain reaction (PCR). The median gene expression of MSH2 was 1.00 (range 0.16-11.2, quartiles 0.70-1.51) and there was good agreement between the gene expression in primary tumor and lymph......Microsatellite instability (MSI) is caused by defective mismatch repair (MMR) and is one of the very few molecular markers with proven clinical importance in colorectal cancer with respect to heredity, prognosis, and treatment effect. The gene expression of the MMR gene MSH2 may be a quantitative...... marker for the level of MMR and a potential molecular marker with clinical relevance. The aim was to investigate the gene expression of MSH2 in primary operable colorectal cancer in correlation with MSI, protein expression, and promoter hypermethylation. In a cohort of 210 patients, the primary tumor...

  2. Rosiglitazone but not losartan prevents Nrf-2 dependent CD36 gene expression up-regulation in an in vivo atherosclerosis model

    Directory of Open Access Journals (Sweden)

    Caballero-Hidalgo A

    2008-02-01

    Full Text Available Abstract Background Thiazolidinediones exert anti-inflammatory and anti-oxidative roles and attenuate atherosclerosis by mechanisms partially independent of their metabolizing actions. High doses of angiotensin type 1 receptor (AT1R blocker losartan (LST seem to promote fat cell formation by preserving PPARγ activity. Methods C57BL/6J diet-induced atherosclerotic susceptible mice randomly received a normal or a high-fat high-cholesterol (HFHC diet and were treated with rosiglitazone (RG, LST or a vehicle for 12 weeks. Results HFHC was associated with increased PPARγ gene expression without an over regulation of PPARγ responsive genes, whereas RG and LST treatments were found to maintain PPARγ activity without resulting in increased PPARγ gene expression. A better anti-inflammatory and antioxidant profile in mice treated with RG regarding LST was observed in spite of a similar PPARγ preserved activity. Chromatin immunoprecipitation (ChIP assays revealed that animals under HFHC diet treated with RG showed a significant nuclear factor erythroid 2-like 2 (Nrf2-dependent down-regulation of the expression of the CD36 gene. Conclusion The PPARγ agonist RG exerts antioxidant properties that significantly reduced Nrf-2-dependent CD-36 up-regulation in mice under HFHC diet. Because LST treatment was also associated with a preserved PPARγ activity, our data suggests that these RG antioxidant effects are partially independent of its PPARγ metabolizing properties.

  3. Gene expression profiling of chicken intestinal host responses

    NARCIS (Netherlands)

    Hemert, van S.

    2007-01-01

    Chicken lines differ in genetic disease susceptibility. The scope of the research described in this thesis was to identify genes involved in genetic disease resistance in the chicken intestine. Therefore gene expression in the jejunum was investigated using a microarray approach. An intestine specif

  4. GOBO: gene expression-based outcome for breast cancer online.

    Directory of Open Access Journals (Sweden)

    Markus Ringnér

    Full Text Available Microarray-based gene expression analysis holds promise of improving prognostication and treatment decisions for breast cancer patients. However, the heterogeneity of breast cancer emphasizes the need for validation of prognostic gene signatures in larger sample sets stratified into relevant subgroups. Here, we describe a multifunctional user-friendly online tool, GOBO (http://co.bmc.lu.se/gobo, allowing a range of different analyses to be performed in an 1881-sample breast tumor data set, and a 51-sample breast cancer cell line set, both generated on Affymetrix U133A microarrays. GOBO supports a wide range of applications including: 1 rapid assessment of gene expression levels in subgroups of breast tumors and cell lines, 2 identification of co-expressed genes for creation of potential metagenes, 3 association with outcome for gene expression levels of single genes, sets of genes, or gene signatures in multiple subgroups of the 1881-sample breast cancer data set. The design and implementation of GOBO facilitate easy incorporation of additional query functions and applications, as well as additional data sets irrespective of tumor type and array platform.

  5. Fish oil supplementation reverses the effect of cholesterol on apoptotic gene expression in smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Linares Ana

    2010-07-01

    Full Text Available Abstract Background Nutritional control of gene regulation guides the transformation of smooth muscle cells (SMC into foam cells in atherosclerosis. Oxidative stress has been reported in areas of lipid accumulation, activating proliferation genes. Suppression of oxidative stress by antioxidant administration reduces this activation and the progression of lesions. We hypothesized that fish oil consumption may protect against atherosclerotic vascular disease. The study objective was to determine the effects of dietary cholesterol and fish-oil intake on the apoptotic pathways induced by 25-hydroxycholesterol (25-HC in SMC cultures. Methods An in vivo/in vitro cell model was used, culturing SMC isolated from chicks exposed to an atherogenic cholesterol-rich diet with 5% of cholesterol (SMC-Ch alone or followed by an anti-atherogenic fish oil-rich diet with 10% of menhaden oil (SMC-Ch-FO and from chicks on standard diet (SMC-C. Cells were exposed to 25-HC, studying apoptosis levels by flow cytometry (Annexin V and expressions of caspase-3, c-myc, and p53 genes by quantitative real-time reverse transcriptase-polymerase chain reaction. Results: Exposure to 25-HC produced apoptosis in all three SMC cultures, which was mediated by increases in caspase-3, c-myc, and p53 gene expression. Changes were more marked in SMC-Ch than in SMC-C, indicating that dietary cholesterol makes SMC more susceptible to 25-HC-mediated apoptosis. Expression of p53 gene was elevated in SMC-Ch-FO. This supports the proposition that endogenous levels of p53 protect SMC against apoptosis and possibly against the development of atherosclerosis. Fish oil attenuated the increase in c-myc levels observed in SMC-C and SMC-Ch, possibly through its influence on the expression of antioxidant genes. Conclusion Replacement of a cholesterol-rich diet with a fish oil-rich diet produces some reversal of the cholesterol-induced changes, increasing the resistance of SMC to apoptosis.

  6. Statistical framework for phylogenomic analysis of gene family expression profiles.

    Science.gov (United States)

    Gu, Xun

    2004-05-01

    Microarray technology has produced massive expression data that are invaluable for investigating the genome-wide evolutionary pattern of gene expression. To this end, phylogenetic expression analysis is highly desirable. On the basis of the Brownian process, we developed a statistical framework (called the E(0) model), assuming the independent expression of evolution between lineages. Several evolutionary mechanisms are integrated to characterize the pattern of expression diversity after gene duplications, including gradual drift and dramatic shift (punctuated equilibrium). When the phylogeny of a gene family is given, we show that the likelihood function follows a multivariate normal distribution; the variance-covariance matrix is determined by the phylogenetic topology and evolutionary parameters. Maximum-likelihood methods for multiple microarray experiments are developed, and likelihood-ratio tests are designed for testing the evolutionary pattern of gene expression. To reconstruct the evolutionary trace of expression diversity after gene (or genome) duplications, we developed a Bayesian-based method and use the posterior mean as predictors. Potential applications in evolutionary genomics are discussed. PMID:15166175

  7. Probabilistic estimation of microarray data reliability and underlying gene expression

    Directory of Open Access Journals (Sweden)

    Sigvardsson Mikael

    2003-09-01

    Full Text Available Abstract Background The availability of high throughput methods for measurement of mRNA concentrations makes the reliability of conclusions drawn from the data and global quality control of samples and hybridization important issues. We address these issues by an information theoretic approach, applied to discretized expression values in replicated gene expression data. Results Our approach yields a quantitative measure of two important parameter classes: First, the probability P(σ|S that a gene is in the biological state σ in a certain variety, given its observed expression S in the samples of that variety. Second, sample specific error probabilities which serve as consistency indicators of the measured samples of each variety. The method and its limitations are tested on gene expression data for developing murine B-cells and a t-test is used as reference. On a set of known genes it performs better than the t-test despite the crude discretization into only two expression levels. The consistency indicators, i.e. the error probabilities, correlate well with variations in the biological material and thus prove efficient. Conclusions The proposed method is effective in determining differential gene expression and sample reliability in replicated microarray data. Already at two discrete expression levels in each sample, it gives a good explanation of the data and is comparable to standard techniques.

  8. Screening of differentially expressed genes related to differentiation and proliferation by gene expression profiling of different grade astrocytoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Yi Zeng; Zhong Yang; Yangyun Han; Chao You

    2008-01-01

    BACKGROUND: The detection of differential gene expression in brain is possible by cDNA microarray technology, and the screening of differentially expressed genes might provide a biological basis for gene-targeted therapy for tumors. OBJECTIVE: To detect the dif