WorldWideScience

Sample records for antioxidant enzyme activities

  1. Antioxidant enzymes activities in obese Tunisian children

    Directory of Open Access Journals (Sweden)

    Sfar Sonia

    2013-01-01

    Full Text Available Abstract Background The oxidant stress, expected to increase in obese adults, has an important role in the pathogenesis of many diseases. It results when free radical formation is greatly increased or protective antioxidant mechanisms are compromised. The main objective of this study is to evaluate the antioxidant response to obesity-related stress in healthy children. Methods A hundred and six healthy children (54 obese and 52 controls, aged 6–12 years old, participated in this study. The collected data included anthropometric measures, blood pressure, fasting glucose, total cholesterol, triglycerides and enzymatic antioxidants (Superoxide dismutase: SOD, Catalase: CAT and Glutathione peroxidase: GPx. Results The first step antioxidant response, estimated by the SOD activity, was significantly higher in obese children compared with normal-weight controls (p  Conclusions The obesity-related increase of the oxidant stress can be observed even in the childhood period. In addition to the complications of an increased BMI, obesity itself can be considered as an independent risk factor of free radical production resulting in an increased antioxidant response.

  2. Relationship between Estradiol and Antioxidant Enzymes Activity of Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Nasrin Sheikh

    2009-01-01

    Full Text Available Some evidence suggests the neuroprotection of estrogen provided by the antioxidant activity of this compound. The main objective of this study was to determine the level of estradiol and its correlation with the activity of antioxidant enzymes, total antioxidant status and ferritin from ischemic stroke subjects. The study population consisted of 30 patients with acute ischemic stroke and 30 controls. There was no significant difference between estradiol in stroke and control group. The activity of superoxide dismutase and level of ferritin was higher in stroke compared with control group (<.05, <.001, resp.. There was no significant correlation between estradiol and glutathione peroxidase, glutathione reductase, catalase, total antioxidant status, and ferritin in stroke and control groups. We observed inverse correlation between estradiol with superoxide dismutase in males of stroke patients (=−0.54, =.029. Our results supported that endogenous estradiol of elderly men and women of stroke or control group has no antioxidant activity.

  3. ANTIOXIDANT ENZYME ACTIVITY AND FRESH-CUT ARRACACHA QUALITY

    OpenAIRE

    Hêmina Carla Vilela; Patrícia de Fátima Pereira Goulart; Kamila Rezende Dázio de Souza; Ana Carolina Vilas Boas; Jane Silva Roda; Roseane Maria Evangelista de Oliveira

    2015-01-01

    The arracacha is an alternative of fresh-cut product; however it can be easily degraded after the processing techniques. The objective of this work was to evaluate the useful life of fresh-cut arracacha submitted to two types of cuts and storage, as well as to evaluate the activity of antioxidant enzymes. The roots were selected, sanitized and submitted to two cut types: cubed and grated. Then they were evaluated at 3 times: 0, 3 and 7 days. The cutting in cubes provided higher quality and lo...

  4. Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit

    Science.gov (United States)

    The changes in antioxidant capacity, enzyme activity and decay inhibition in strawberry fruit (Fragaria x ananassa) illuminated with different UV-C dosages were investigated. Three UV-C illumination durations and dosages, 1 min, 5 min and 10 min, (0.43, 2.15 and 4.30 kJ m-2) tested promoted the anti...

  5. ANTIOXIDANT ENZYME ACTIVITY AND FRESH-CUT ARRACACHA QUALITY

    Directory of Open Access Journals (Sweden)

    Hêmina Carla Vilela

    2015-06-01

    Full Text Available The arracacha is an alternative of fresh-cut product; however it can be easily degraded after the processing techniques. The objective of this work was to evaluate the useful life of fresh-cut arracacha submitted to two types of cuts and storage, as well as to evaluate the activity of antioxidant enzymes. The roots were selected, sanitized and submitted to two cut types: cubed and grated. Then they were evaluated at 3 times: 0, 3 and 7 days. The cutting in cubes provided higher quality and lower SOD, CAT and APX activity. However, the grated product presented higher PG activity and lower PPO activity. The microbiological safety and the nutritional value were maintained in both cuts during the whole storage period. The useful life, regarding the physicochemical, nutritional and microbiological aspects, can be established at 7 days under refrigeration for fresh-cut arracacha.

  6. Studies on antioxidant activity of teasaponins after hydrolyzed by enzyme

    Science.gov (United States)

    Tian, Jing; Zhao, Sen; Xu, Longquan; Fei, Xu; Wang, Xiuying; Wang, Yi

    The biological activity of teasaponins and their molecular structure are closely related, and the activity of saponins may be increased with the change of their molecular structure. In this report, teasaponins were hydrolyzed by Aspergillus niger for increasing the antioxidant activity. The antioxidant activity of teasaponins before and after hydrolyzed was tested by DPPH, and the result showed four new teasaponins were produced after hydrolysis, and their antioxidant activity was increased significantly than the original teasaponins before hydrolysis, the radical scavenging capacity (RSC) was partly up to 95 %.

  7. Protein Hydrolysis from Catfish Prepared by Papain Enzyme and Antioxidant Activity of Hydrolyzate

    OpenAIRE

    Ace Baehaki1); Shanti Dwita Lestari; Achmad Rizky Romadhoni

    2015-01-01

    The objective of this research was to make a protein hydrolysates from catfish (Pangasius pangasius) enzymatically using papain enzyme and analyzed the antioxidant activity of protein hydrolysates produced. The research used the method completely randomized design with two replications the treatment were the difference concentration of the papain enzyme (0%, 1%, 2%, 3%, 4%, 5%, and 6%). The parameters of research were antioxidative activity using DPPH (2,2-difenil-1–pikrilhidra...

  8. The Relationship between Plasma Antioxidant Enzymes Activity and Sex Hormones during the Menstrual Cycle

    Directory of Open Access Journals (Sweden)

    Tavilani, H. (PhD

    2014-05-01

    Full Text Available Background and Objective: There is increasing evidence for the role of oxidative stress in female reproductive tract. The purpose of this study was to determine the activity of antioxidant enzymes during menstrual cycle. In addition, the relationship between activity of antioxidant enzyme and sex hormones was evaluated. Material and Methods: In this study the activity of superoxide dismutase, glutathione peroxidase, glutathione reductase, catalase and total antioxidant capacity during the menses, follicular and luteal phases of the menstrual cycle in twenty women with regular menstrual cycle were studied. Furthermore, the correlation between activity of antioxidant enzymes and estradiol, progesterone, LH, FSH and testosterone were evaluated. Results: There was no significant difference between activity of superoxide dismutase, glutathione peroxidase, glutathione reductase, catalase and total antioxidant capacity during the menses, follicular and luteal phases of the menstrual cycle (P>0.05. We found significant correlation, in luteal phase, between superoxide dismutase and FSH (P<0.05، r=0.44 and LH P<0.05،r=0.54. Also it is observed between LH and glutathione peroxidase (P<0.05، r=0.44. Conclusion: Based on the results, there is no significant difference between antioxidant enzymes and total antioxidant capacity of plasma during menstrual cycle. In other words, physiologic system of women with regular menstrual cycle can protect body against oxidative stress and this is probably performed due to action of FSH and LH hormones. Keywords: Antioxidants; Menstrual cycle; Sex hormones

  9. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Science.gov (United States)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  10. Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Lucie Vávrová

    2013-02-01

    Full Text Available Objective: In the pathogenesis of the metabolic syndrome (MetS, an increase of oxidative stress could play an important role which is closely linked with insulin resistance, endothelial dysfunction, and chronic inflammation. The aim of our study was to assess several parameters of the antioxidant status in MetS. Methods: 40 subjects with MetS and 40 age- and sex-matched volunteers without MetS were examined for activities of superoxide dismutase (CuZnSOD, catalase (CAT, glutathione peroxidase 1 (GPX1, glutathione reductase (GR, paraoxonase1 (PON1, concentrations of reduced glutathione (GSH, and conjugated dienes in low-density lipoprotein (CD-LDL. Results: Subjects with MetS had higher activities of CuZnSOD (p Conclusions: Our results implicated an increased oxidative stress in MetS and a decreased antioxidative defense that correlated with some laboratory (triglycerides, high-density lipoprotein cholesterol (HDL-C and clinical (waist circumference, blood pressure components of MetS.

  11. Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals

    Institute of Scientific and Technical Information of China (English)

    刘建国; 张晓丽; 孙延红; 林伟

    2010-01-01

    The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD),peroxidase (POD),catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O2ˉ).The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H.pluvialis during exposure to reactive oxygen species (ROS) such as Oˉ2.Astaxanthin reacte...

  12. Effects of 60Co-γ ray irradiation on antioxidant enzyme activities in tobacco

    International Nuclear Information System (INIS)

    Effects of 300Gy 60Co-γ ray irradiation on the activities of 3 antioxidant enzymes in tobacco were studied in this paper. The results showed that the activities of superoxide dismutase (SOD), peroxidas (POD) and catalse (CAT) in tobacco were gradually increased. All the activities of SOD POD and CAT reached the maximums at 12 h and then gradually decreased. Similar results were also observed in the expression of sod, pod and cat genes. These results indicated that the activities of antioxidant enzymes could play an important role in tobacco tolerance against irradiation

  13. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Semsang, Nuananong, E-mail: nsemsang@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, LiangDeng [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Ion beam bombarded rice seeds in vacuum. ► Studied seed survival from the ion bombardment. ► Determined various antioxidant enzyme activities and lipid peroxidation level. ► Discussed vacuum, ion species and ion energy effects. ► Attributed the changes to free radical formation due to ion bombardment. -- Abstract: Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29–60 keV and ion fluences of 1 × 10{sup 16} ions cm{sup −2}. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  14. [Photodynamic reaction and oxidative stress - influence of the photodynamic effect on the activity antioxidant enzymes].

    Science.gov (United States)

    Romiszewska, Anna; Nowak-Stępniowska, Agata

    2014-01-01

    The interaction of light with a photosensitizer, accumulated in a tissue in the presence of oxygen, leads to formation of reactive oxygen species, mainly of singlet oxygen and free radicals. These factors react with biomolecules producing their oxidized states. Reactive oxygen species, such as singlet oxygen and free radicals are able to damage membranes, DNA, enzymes, structural peptides and other cellular structures leading to cell death. An antioxidant protection of cell is formed by enzymes belonging to the family of oxidoreductases: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR). Photodynamic therapy leads to the increased production of oxidizing toxic forms. It is important to analyze impact of PDT on the activity of antioxidant enzymes, such as SOD, CAT, GPx. The activity of antioxidant enzymes during the photodynamic effect is influenced by both the light energy dose and the concentration of photosensitizer. The presence only of the photosensitizer or only the light energy may also result in changes in the activity of these enzymes. The differences in changes in the activity of these enzymes depend on the type of used photosensitizer. A phenomenon of selective accumulation of photosensitizer in tumor tissues is used in the photodynamic method of tumor diagnosis and treatment.

  15. Thioredoxin 1 in Prostate Tissue Is Associated with Gleason Score, Erythrocyte Antioxidant Enzyme Activity, and Dietary Antioxidants

    Directory of Open Access Journals (Sweden)

    Terrence M. Vance

    2015-01-01

    Full Text Available Background. Prostate cancer is the most common noncutaneous cancer and second leading cause of cancer-related mortality in men in the US. Growing evidence suggests that oxidative stress is involved in prostate cancer. Methods. In this study, thioredoxin 1 (Trx 1, an enzyme and subcellular indicator of redox status, was measured in prostate biopsy tissue from 55 men from the North Carolina-Louisiana Prostate Cancer Project. A pathologist blindly scored levels of Trx 1. The association between Trx 1 and the Gleason score, erythrocyte antioxidant enzyme activity, and dietary antioxidant intake was determined using Fisher’s exact test. Results. Trx 1 levels in benign prostate tissue in men with incident prostate cancer were positively associated with the Gleason score (P=0.01 and inversely associated with dietary antioxidant intake (P=0.03. In prostate cancer tissue, Trx 1 levels were associated with erythrocyte glutathione peroxidase activity (P=0.01. No association was found for other erythrocyte enzymes. Greater Gleason score of malignant tissue corresponds to a greater difference in Trx 1 levels between malignant and benign tissue (P=0.04. Conclusion. These results suggest that the redox status of prostate tissue is associated with prostate cancer grade and both endogenous and exogenous antioxidants.

  16. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Apple, F. S.; Sjödin, B.

    1996-01-01

    for activities of the antioxidant enzymes glutathione peroxidase (GPX), glutathione reductase (GR), and superoxide dismutase (SOD). Activities of several muscle metabolic enzymes were determined to assess the effectiveness of the training. After the first 6-wk training period, no change in GPX, GR, or SOD......The effect of intermittent sprint cycle training on the level of muscle antioxidant enzyme protection was investigated. Resting muscle biopsies, obtained before and after 6 wk of training and 3, 24, and 72 h after the final session of an additional 1 wk of more frequent training, were analyzed...... (P activity of phosphofructokinase and creatine kinase, implying an enhanced anaerobic capacity in the trained muscle. The present study demonstrates that intermittent sprint cycle training that induces an enhanced capacity for anaerobic energy generation also improves...

  17. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens

    NARCIS (Netherlands)

    Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T.

    2013-01-01

    This trial was conducted to evaluate the effects of dietary supplementation of phytogenic product containing an equal mixture of thymol and carvacrol at 4 levels (0, 60, 100, and 200 mg/kg of diet) on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, an

  18. Effects of boarding return satellite on antioxidant enzyme activities during germination of hot pepper seed

    International Nuclear Information System (INIS)

    The effect of boarding return satellite on antioxidant enzyme activities during germination of hot pepper seed was studied. The results showed that the germination potentiality and germination rate of hot pepper seed after boarding return satellite were increased by 3.5% and 5.3%, respectively. During seed germination, soluble protein and MDA contents decreased, however, the SOD activities increased. SOD activity of treated seeds was higher than that of the control especially during the initial period of germination, while the content of soluble and MDA contents were much lower than those of control. The activities of SOD, G-POD, APX and CAT in 13d seedlings of treated seeds were increased by 14.29%, 25.23%, 1.84% and 21.52%, respectively. It was concluded that space flight enhanced antioxidant enzyme activities of seeds and seedlings, which were very important to prevent membrane lipid superoxide. (authors)

  19. Higher Plasma Pyridoxal Phosphate Is Associated with Increased Antioxidant Enzyme Activities in Critically Ill Surgical Patients

    Directory of Open Access Journals (Sweden)

    Chien-Hsiang Cheng

    2013-01-01

    Full Text Available Critically ill patients experience severe stress, inflammation and clinical conditions which may increase the utilization and metabolic turnover of vitamin B-6 and may further increase their oxidative stress and compromise their antioxidant capacity. This study was conducted to examine the relationship between vitamin B-6 status (plasma and erythrocyte PLP oxidative stress, and antioxidant capacities in critically ill surgical patients. Thirty-seven patients in surgical intensive care unit of Taichung Veterans General Hospital, Taiwan, were enrolled. The levels of plasma and erythrocyte PLP, serum malondialdehyde, total antioxidant capacity, and antioxidant enzyme activities (i.e., superoxide dismutase (SOD, glutathione S-transferase, and glutathione peroxidase were determined on the 1st and 7th days of admission. Plasma PLP was positively associated with the mean SOD activity level on day 1 (r=0.42, P<0.05, day 7 (r=0.37, P<0.05, and on changes (Δ (day 7 − day 1 (r=0.56, P<0.01 after adjusting for age, gender, and plasma C-reactive protein concentration. Higher plasma PLP could be an important contributing factor in the elevation of antioxidant enzyme activity in critically ill surgical patients.

  20. Activity of antioxidative defense enzymes in the blood of patients with liver echinococcosis

    Directory of Open Access Journals (Sweden)

    Lilić Aleksandar

    2007-01-01

    Full Text Available Background/Aim. Chronic echinococcocal disease is the parasite human disease caused by the penetration of larval (asexual stages of the canine tapeworm (Echinococcus granulosus in the liver of humans. After the penetration of the parasite, the host organism react by activating complement- depending immune response. The aim of this study was to elucidate the influence of larval form of Echinococcus granulosus in the liver on the activity of antioxidative defense enzymes in the blood of patients before and after the surgical intervention. Methods. We investigated the activity of antioxidative defense enzymes: copper/zinc containing superoxide dismutase (CuZn SOD, catalase (CAT, glutathione peroxidase (GSH-Px, glutathione reductase (GR and glutathione-S-transferase (GST in the blood of patients before and after the surgical intervention in respect to the controls, clinically healthy persons. Results. Our results showed that the activity of the GSH-Px was significantly decreased in the plasma of the patients with echinocococal disease before the surgery in respect to the controls. The activity of GST was significantly higher in the blood of the patients after the surgery in comparison to the controls. Conclusion. Chronic liver echinoccocal disease caused significant changes of some antioxidative defense enzymes, first of all Se-dependent enzyme GSH-Px, which could be a suitabile biomarker in the biochemical evaluation of the disease. This work represents a first comprehensive study of the activity of antioxidative defense enzymes in cronic liver echinococcocosis in the patients before and after the surgical intervention in respect to the clinically healthy persons.

  1. The Antioxidant Profiles, Lysosomal and Membrane Enzymes Activity in Patients with Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Halina Milnerowicz

    2014-01-01

    Full Text Available Oxidative stress and inflammatory mediators, such as IL-6, play an important role in the pathophysiology of acute pancreatitis. The study was aimed to assess the degree of the pro/antioxidative imbalance and estimate which antioxidant plays a role in the maintenance of pro/antioxidative balance during acute pancreatitis. The study was investigated in the blood of 32 patients with acute pancreatitis and 37 healthy subjects. IL-6 concentration as early marker of inflammation was determinated. The intensity of oxidative stress was assessed by TBARS concentration. To investigate antioxidative status, the GPx and Cu/Zn SOD activities and the levels of GSH, MT, SH groups, and TRAP were measured. The concentrations of Cu and Zn as ions participating in the maintenance of antioxidant enzymes stability and playing a role in the course of disease were determinated. The activities of GGT, AAP, NAG, and β-GD as markers of tissue damage were also measured. An increase in IL-6 concentration, which correlated with Ranson criteria, and an increase in GPx activity, levels of MT, TBARS, or GGT, and NAG activities in patients group compared to healthy subjects were demonstrated. A decrease in GSH level in patients group compared to control group was noted. The studies suggest that GPx/GSH and MT play the role of the first line of defence against oxidative stress and pro/antioxidant imbalance in the course of acute pancreatitis.

  2. The Antioxidant Profiles, Lysosomal and Membrane Enzymes Activity in Patients with Acute Pancreatitis

    Science.gov (United States)

    Milnerowicz, Halina; Bukowski, Radosław; Jabłonowska, Monika; Ściskalska, Milena; Milnerowicz, Stanisław

    2014-01-01

    Oxidative stress and inflammatory mediators, such as IL-6, play an important role in the pathophysiology of acute pancreatitis. The study was aimed to assess the degree of the pro/antioxidative imbalance and estimate which antioxidant plays a role in the maintenance of pro/antioxidative balance during acute pancreatitis. The study was investigated in the blood of 32 patients with acute pancreatitis and 37 healthy subjects. IL-6 concentration as early marker of inflammation was determinated. The intensity of oxidative stress was assessed by TBARS concentration. To investigate antioxidative status, the GPx and Cu/Zn SOD activities and the levels of GSH, MT, SH groups, and TRAP were measured. The concentrations of Cu and Zn as ions participating in the maintenance of antioxidant enzymes stability and playing a role in the course of disease were determinated. The activities of GGT, AAP, NAG, and β-GD as markers of tissue damage were also measured. An increase in IL-6 concentration, which correlated with Ranson criteria, and an increase in GPx activity, levels of MT, TBARS, or GGT, and NAG activities in patients group compared to healthy subjects were demonstrated. A decrease in GSH level in patients group compared to control group was noted. The studies suggest that GPx/GSH and MT play the role of the first line of defence against oxidative stress and pro/antioxidant imbalance in the course of acute pancreatitis. PMID:25298618

  3. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids

    Directory of Open Access Journals (Sweden)

    Azevedo R.B.

    2001-01-01

    Full Text Available Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180%. Removal of the gonads in both males and females (comparison between castrated groups increased the difference in SOD activity from 83 to 138% and reduced the difference in CAT activity from 180 to 86%. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48% CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle.

  4. Antioxidant enzyme activity in bacterial resistance to nicotine toxicity by reactive oxygen species.

    Science.gov (United States)

    Shao, Tiejuan; Yuan, Haiping; Yan, Bo; Lü, Zhenmei; Min, Hang

    2009-10-01

    We analyzed superoxide dismutase (SOD), catalase (CAT), and ATPase activities in the highly nicotine-degrading strain Pseudomonas sp. HF-1 and two standard strains Escherichia coli and Bacillus subtilis in an attempt to understand antioxidant enzymes in bacteria are produced in response to nicotine, which increases the virulence of the bacteria. Nicotine had different effects on different antioxidant enzymes of different bacteria. SOD plays a more important role in resistance to nicotine stress in E. coli than it does in CAT. Multiple antioxidant enzymes are involved in combating oxidative stress caused by nicotine in Pseudomonas sp. HF-1. The contribution of a particular antioxidant enzyme for protection from nicotine stress varies with the growth phase involved. The inhibition of ATPase in Pseudomonas sp. HF-1 at the stationary phase was enhanced with increasing nicotine concentration, showing a striking dose-response relationship. Nicotine probably affected the metabolism of ATP to some extent. Furthermore, different bacteria possessed distinct SOD isoforms to cope with oxidative stress caused by nicotine. PMID:19294456

  5. Activity of antioxidative enzymes in fresh and frozen thawed buffalo (Bubalus bubalis spermatozoa in relation to lipid peroxidation and semen quality

    Directory of Open Access Journals (Sweden)

    G. Kadirve

    2014-09-01

    Conclusion: It was concluded that loss of activity of intracellular antioxidative enzymes was evident after freezing and thawing and there was a strong association between the antioxidative enzyme activities, ROS, lipid peroxidation and sperm function in buffalo semen.

  6. THE PLASMA ANTIOXIDANT ACTIVITY OF SUPEROXIDE DISMUTASE ENZYME IN OSTEOPOROSIS

    OpenAIRE

    A A Behfar; Sadeghi, N; M R Oveisi; B. Jannat; M. Hajimahmoodi; A R Jamshidi; Behzad, M.; P Rastegary

    2008-01-01

    "nOsteoporosis is a metabolic disease characterized by reduction in bone density and susceptibility to deformity and fracture. Some studies show that osteoblasts can create inter-cellular free radicals that lead to cellular death. Superoxide dismutase (SOD) plays an essential role in cell defense against reactive oxygen metabolites. The purpose of this study was to measure the plasma SOD activities in Iranian women with osteoporosis compared to the control group. SOD activity was measure...

  7. Antioxidant enzyme activities and lipid peroxidation as biomarker compounds for potato tuber stored by gamma radiation

    Institute of Scientific and Technical Information of China (English)

    Abd El-Moneim MR Afify; Hossam S El-Beltagi; Amina A Aly; Abeer E El-Ansary

    2012-01-01

    Objective: To study the capability of gamma irradiation for inhibiting sprouting of potato tubers.Methods:S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT), in addition to lipid peroxidation level were tested in potato tubers stored for 3, 6 and 9 weeks. Gamma irradiation with five treatments (0, 30, 50, 100 and 200 Gy) was used to control germination process of potato tubers. Results: Gamma radiation was able to maintain potato tuber for 6 weeks. The main biomarkers for validity of potato tuber during storage were studying antioxidant enzyme activitiesi.e. The enzymes activities i.e. peroxidase (POD), polyphenol oxidase (PPO), glutathione-POD, PPO, GST, SOD, CAT enzyme activities as well as lipid peroxidation during storage time. Conclusions: The optimum dose was 50 Gy which prevented the sprouting initiation all over the storage period without casting undesirable rotting for potato tubers. At this dose all antioxidant enzyme activities i.e. POD, PPO, GST, SOD, CAT enzyme activities as well as lipid peroxidation level during storage time recorded the best rates.

  8. Role of Abscisic Acid and Water Stress on the Activities of Antioxidant Enzymes in Wheat

    Directory of Open Access Journals (Sweden)

    Hadeesa Naz

    2014-07-01

    Full Text Available Eight wheat varieties (Chinese Spring, Pavon, Gabo, Saleem-2000, Zamindar-04, Siren, NR-264 and Marvi were compared for their response to exogenous application of abscisic acid (ABA, Water Stress (WS and Control (C during invitro condition. Their responses were studied in the form of seedlings growth and antioxidant enzymes. Exogenous application of ABA reflected ameliorating effect on catalase activity. Water stress treatment led to increase in levels of catalase except Pavon. Increased activity of antioxidant enzymes showed tolerance capacity under water stress. Correlation coefficient analysis reflected negative and significant relationship between total protein contents and peroxidase and catalase. Further, investigations are needed to enhance the understanding on the effect of different abiotic stresses and growth hormones during early seed development.

  9. EFFECTS OF SALT CONCENTRATIONS ON ANTIOXIDANT ENZYME ACTIVITY OF GRAIN SORGHUM

    Directory of Open Access Journals (Sweden)

    Ridvan Temizgul

    2016-07-01

    Full Text Available The present study was conducted to determine salt response of grain sorghum (Sureno plants through antioxidant defense enzymes and to determine their salt resistanceat biochemical level. Sorghum plants were grown in climate chambers for 15 days in 3 replications in Hoagland growth medium under different salt concentrations (0, 50, 100, 150, 200 mM. At the end of growing period, roots and leaves were separated and the effects of salt stress were assessed spectrophotometrically through antioxidant enzymes, chlorophyll and carotenes. Root CAT increased until 100 mM, SOD, APX and GST activities increased with increasing salt concentrations until 150 mM and then they all decreased. Increasing salt concentrations elevated MDA accumulation in sorghum roots. Leaf SOD and APX activities and proline contents increased until 150 mM and CAT, GR and GST activities increased until 100 mM and then they all decreased. Leaf MDA contents also increased with higher salt concentrations. However, increasing salt concentrations decreased chlorophyll contents at 100 mM, carotene contents increased until 150 mM and then decreased. Although ascending antioxidant enzyme activity improved salt resistance of sorghum plants, increasing concentrations were not found to be sufficient. Thus, further studies with higher concentrations should be carried out to elucidate the case.

  10. Potato Responds to Salt Stress by Increased Activity of Antioxidant Enzymes

    Institute of Scientific and Technical Information of China (English)

    Keyvan Aghaei; All Akber Ehsanpour; Setsuko Komatsu

    2009-01-01

    To understand the response of potato to salt stress, antioxidant enzyme activities and ion content were analyzed for a sensitive and a tolerant cultivar. Nodal cuttings of the tolerant cultivar, Kennebec, and the sensitive cultivar, Concord, were exposed to media without or with 30, 60, 90 or 120 mmol/L NaCl for 4 weeks. On exposure to NaCl, the length and fresh and dry weight of both shoots and roots of Concord showed greater decrease than those of Kennebec. The decrease in shoot growth was more severe than that of the root for both cultivars. The K+ content of shoots and roots of both cultivars was reduced in a dose-dependent manner by exposure to NaCl; the Na+ content Increased. Activities of ascorbate peroxidase, catalase and glutathione reductase were increased in NaCl-exposed shoots of Kennebec; the corresponding activities inNaCl-exposed shoots of Concord were decreased. Roots of both cultivars showed similar changes in the activities of these enzymes on exposure to NaCl. These studies established that enzyme activities In Concord shoots are inversely related to the NaCl concentration, whereas those in Kennebec do not show a dose dependency, which is also the case for the roots of both cultivars. Our findings suggest that an Increase in activity of antioxidant enzymes, such as ascorbate peroxidase,cetalase and glutathione reductase, can contribute to salt tolerance in Kennebec, a salt resistant cultivar of potato.

  11. Effect of norfloxacin and moxifloxacin on melanin synthesis and antioxidant enzymes activity in normal human melanocytes.

    Science.gov (United States)

    Beberok, Artur; Wrześniok, Dorota; Otręba, Michał; Miliński, Maciej; Rok, Jakub; Buszman, Ewa

    2015-03-01

    Fluoroquinolone antibiotics provide broad-spectrum coverage for a number of infectious diseases, including respiratory as well as urinary tract infections. One of the important adverse effects of these drugs is phototoxicity which introduces a serious limitation to their use. To gain insight the molecular mechanisms underlying the fluoroquinolones-induced phototoxic side effects, the impact of two fluoroquinolone derivatives with different phototoxic potential, norfloxacin and moxifloxacin, on melanogenesis and antioxidant enzymes activity in normal human melanocytes HEMa-LP was determined. Both drugs induced concentration-dependent loss in melanocytes viability. The value of EC50 for these drugs was found to be 0.5 mM. Norfloxacin and moxifloxacin suppressed melanin biosynthesis; antibiotics were shown to inhibit cellular tyrosinase activity and to reduce melanin content in melanocytes. When comparing the both analyzed fluoroquinolones, it was observed that norfloxacin possesses greater inhibitory effect on tyrosinase activity in melanocytes than moxifloxacin. The extent of oxidative stress in cells was assessed by measuring the activity of antioxidant enzymes: SOD, CAT, and GPx. It was observed that norfloxacin caused higher depletion of antioxidant status in melanocytes when compared with moxifloxacin. The obtained results give a new insight into the mechanisms of fluoroquinolones toxicity directed to pigmented tissues. Moreover, the presented differences in modulation of biochemical processes in melanocytes may be an explanation for various phototoxic activities of the analyzed fluoroquinolone derivatives in vivo.

  12. Changes in Nutrient Composition, Antioxidant Properties, and Enzymes Activities of Snake Tomato (Trichosanthes cucumerina) during Ripening

    Science.gov (United States)

    Badejo, Adebanjo Ayobamidele; Adebowale, Adeyemi Philips; Enujiugha, Victor Ndigwe

    2016-01-01

    Snake tomato (Trichosanthes cucumerina) has been cultivated and used as a replacement for Lycopersicum esculentum in many Asian and African diets. Matured T. cucumerina fruits were harvested at different ripening stages and separated into coats and pulps for analyses to determine their suitability for use in culinary. They were analyzed for the nutritional composition and antioxidant potential using different biochemical assays [1,1-diphenyl-2-picrylhydrazyl, 2,2′-azinobis( 3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities, and ferric reducing antioxidant power] and antioxidative enzymes activities. The nutritional composition revealed that T. cucumerina contains over 80% water and is very rich in fiber, thus it can serve as a good natural laxative. The lycopene and β-carotene contents were especially high in the ripe pulp with values of 21.62±1.22 and 3.96±0.14 mg/100 g, respectively. The ascorbic acid content was highest in the pulp of unripe fruit with a value of 56.58±1.08 mg/100 g and significantly (P ripe coat> ripe pulp> unripe coat. There were decreases in the antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, and glutathione reductase) activities, with the exception of catalase, as ripening progressed in the fruits. These decreased activities may lead to the softening of the fruit during ripening. Harnessing the antioxidative potential of T. cucumerina in culinary through consumption of the coats and pulps will alleviate food insecurity and help maintain good health among many dwellers in sub-Saharan Africa and Southeast Asia. PMID:27390724

  13. Correlation of antioxidants and antioxidant enzymes to oxygen radical scavenging activities in berries

    Science.gov (United States)

    Berry fruits contain high levels of antioxidant compounds. In addition to the usual nutrients such as vitamins and minerals, berry fruits are also rich in flavonols, anthocyanidins, proanthocyanidins, catechins, flavones, and their glycosides. These antioxidants are capable of performing a number of...

  14. Antioxidant enzyme activities in different genders and tissues of amphioxus Branchiostoma belcheri tsingtauense

    Institute of Scientific and Technical Information of China (English)

    WEI Ran; ZHANG Shicui; WANG Changfa; PANG Qiuxiang

    2007-01-01

    Information regarding antioxidant enzymes in amphioxus remains lacking, and this study was carried out to examine the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in different genders and tissues of amphioxus Branchiostoma belcheri tsingtauense.Results show that (1) CuZn-SOD, CAT and GPX activities in the whole amphioxus B. belcheri tsingtauense were basically at the same levels in male and female amphioxus, whereas both T-SOD and Mn-SOD activities in male amphioxus were significantly higher than that in the female (P<0.05); (2) The testis had significantly higher T-SOD and CuZn-SOD activities than the ovary (P<0.05); (3) CuZn-SOD activity was undetectable in the guts of male and female amphioxus; (4) For both male and female amphioxus, the activities of CAT and GPX in the gonads including testis and ovary were the lowest (P<0.05)among the tissues examined; (5) The gut and gill had the same level GPX activities while the gut had a higher CAT activity; (6) There was no clear difference in CAT and GPX activities in the corresponding tissues between male and female amphioxus. The study on SOD, CAT and GPX activities in different genders and tissues of the protochordate provides data for future comparison of amphioxus antioxidant enzymes with those of invertebrates and vertebrates.

  15. Antioxidant Enzyme Activity, Iron Content and Lipid Oxidation of Raw and Cooked Meat of Korean Native Chickens and Other Poultry

    OpenAIRE

    Muhlisin,; Utama, Dicky Tri; Lee, Jae Ho; Choi, Ji Hye; Lee, Sung Ki

    2016-01-01

    This study was conducted to observe antioxidant enzyme activity, iron content and lipid oxidation of Korean native chickens and other poultry. The breast and thigh meat of three Korean native chicken breeds including Woorimatdak, Hyunin black and Yeonsan ogye, and three commercial poultry breeds including the broiler, White Leghorn and Pekin duck (Anasplatyrhyncos domesticus) were studied. The analyses of the antioxidant enzymes activity, iron content and lipid oxidation were performed in raw...

  16. Interspecific diversity in root antioxidative enzyme activities reflect root turnover strategies and preferred habitats in wetland graminoids

    OpenAIRE

    Yücel, Çağdaş Kera; Bor, Melike; Ryser, Peter

    2014-01-01

    Antioxidant enzymes protect cells against oxidative stress and are associated with stress tolerance and longevity. In animals, variation in their activities has been shown to relate to species ecology, but in plants, comparative studies with wild species are rare. We investigated activities of five antioxidant enzymes – ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POX), and superoxide dismutase (SOD) – in roots of four perennial graminoid wetland species...

  17. Effects of dietary menadione on the activity of antioxidant enzymes in abalone, Haliotis discus hannai Ino

    Science.gov (United States)

    Fu, Jinghua; Xu, Wei; Mai, Kangsen; Zhang, Wenbing; Feng, Xiuni; Liufu, Zhiguo

    2012-01-01

    A 240-day growth experiment in a re-circulating water system was conducted to investigate the effects of dietary menadione on the growth and antioxidant responses of abalone Haliotis discus hannai Ino. Triplicate groups of juvenile abalone (initial weight: 1.19 ± 0.01 g; shell length: 19.23 ± 0.01 mm) were fed to satiation with 3 semi-purified diets containing 0, 10, and 1 000 mg menadione sodium bisulfite (MSB)/kg, respectively. Results show that there were no significant differences in the rate of weight gain or in the daily increment in shell length of abalone among different treatments. Activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) in viscera were significantly decreased with dietary menadione. However, activities of these enzymes except for GPX in muscle were increased. Therefore, antioxidant responses of abalone were increased in muscle and decreased in viscera by dietary menadione.

  18. AM Fungi Influences the Photosynthetic Activity, Growth and Antioxidant Enzymes in Allium sativum L. under Salinity Condition

    OpenAIRE

    Mahesh BORDE; Mayura DUDHANE; Paramjit Kaur JITE

    2010-01-01

    Potential of Arbuscular mycorrhizal (AM) fungi in alleviating adverse salt effects on growth was tested in garlic (Allium sativum L.). Towards this objective we analyzed the AM root colonization and the activities of various antioxidant enzymes like peroxidase, catalase, and superoxide dismutase at 0, 100, 200 and 300 mM salinity levels. The activities of all the antioxidant enzymes studied were found to be increased in AM garlic plants. Antioxidant activity was maximum in 100 and 200 mM NaCl...

  19. Analysis of metallotionein expression and antioxidant enzyme activities in Meretrix meretrix larvae under sublethal cadmium exposure

    International Nuclear Information System (INIS)

    To investigate the possible role of metallothioneins (MTs) and antioxidant enzymes in cadmium (Cd) tolerance in Meretrix meretrix larvae, a new MT (designated MmMT) gene was identified and cloned from M. meretrix. The full-length cDNA of MmMT consisted of an open reading frame (ORF) of 231 bp encoding a protein of 76 amino acids, with 21 cysteine residues and a conserved structural pattern Cys-x-Cys-x(3)-Cys-Tyr-Gly-x(3)-Cys-x-Cys-x(3)-Cys-x-Cys-Lys at the C-terminus. The deduced amino acid sequence of MmMT showed about 57-84% identity with previously published MT sequences of mussels and oysters. Real-time PCR was used to analyze the expression level of MmMT mRNA at different M. meretrix larval stages under Cd exposure (25 μg L-1). Results showed that Cd could induce the expression of MmMT mRNA in the larvae, and the expression level increased 5.04-fold and 3.99-fold in D-shaped larvae and pediveligers, respectively. Immunolocalization of MmMT in the stressed larvae revealed that MmMT was synthesized in almost all of the soft parts at the trochophore and postlarva stages, whereas it was only synthesized in the velum and epidermis at the D-shaped larva and pediveliger stages. The activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), also were measured in larvae at different developmental stages. Increased enzymatic activities were detected mainly in D-shaped larvae and pediveligers under Cd stress, suggesting that these enzymes respond synchronously with MT. Our results indicate that MmMT and antioxidant enzymes played important roles in counteracting Cd stress in M. meretrix larvae.

  20. Potent AChE enzyme inhibition activity of Zizyphus oxyphylla: A new source of antioxidant compounds.

    Science.gov (United States)

    Mazhar, Farhana; Khanum, Raisa; Ajaib, Muhammad; Jahangir, Muhammad

    2015-11-01

    The purpose of this study was to assess the antioxidant potential and enzyme inhibition of various fractions of Zizyphus oxyphylla. The plant metabolites were extracted in methanol and partitioned with n-hexane, chloroform, ethyl acetate and n-butanol successively. Phytochemical screening showed presence of alkaloids, terpenoids and flavonoids in ethyl acetate and n-butanol fractions. The antioxidant potential and acetylcholine esterase assay of all these fractions and remaining aqueous fraction was evaluated by using reported methods. The results revealed that chloroform soluble fraction exhibited highest percent inhibition of DPPH radical as compared to other fractions. It showed 95.01 ± 0.37% inhibition of DPPH radical at a concentration of 120 μg/mL. The IC₅₀ of this fraction was 13.20 ± 0.27 μg/mL, relative to butylated hydroxytoluene (BHT, a reference standard), having IC₅₀ of 12.10 ± 0.29 μg/mL. It also showed highest total antioxidant activity i.e. 1.723 ± 0.34 as well as highest FRAP value (339.5 ± 0.57 TE μm/mL) and highest total phenolic contents (142.65 ± 1.20 GAE mg/g) as compared to the other studied fractions. The fractions were also studied for Acetylcholine esterase enzyme (AChE) enzyme inhibition activity and n-butanol soluble fraction exhibited maximum inhibition (95.5 ± 0.13 mg/mL with IC50 =9.58 ± 0.08 mg/mL relative to galanthamine (13.26 ± 0.73 mg/mL), while n- hexane soluble fraction (165.15 ± 0.94 mg/mL) showed non-significant. We are still working to isolate pure compounds for active fractions targeting potent inhibition responsible for some activities. PMID:26639499

  1. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    Science.gov (United States)

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women.

  2. Markers of inflammation and antioxidant enzyme activities in restenosis following percutaneous coronary intervention

    Directory of Open Access Journals (Sweden)

    Pantović Snežana

    2015-01-01

    Full Text Available The efficacy of percutaneous coronary intervention (PCI is often compromised by the need for repeat revascularization, because of restenosis development. Numerous studies have tried to establish the predictive value of different biochemical markers of restenosis, with conflicting results. The aim of this study was to assess the prognostic significance of inflammatory and lipid markers, and major antioxidant enzyme activity for the development of in-stent restenosis (ISR following PCI. Serum high sensitive C-reactive protein (hs-CRP, soluble intercellular cell adhesion molecule-1 (sICAM-1, transforming growth factor-beta (TGF-β, lipoprotein(a and oxidized low-density lipoprotein (oxLDL levels, as well as serum extracellular superoxide dismutase (EC-SOD and catalase (CAT activity were determined in 44 patients before stent implantation procedure, and after 6-month follow-up. Results after follow-up revealed that, in patients that developed angiografically confirmed ISR, the increase in serum hs-CRP levels was significanty higher, compared to those without stenosis. Stent implantation induced compensatory increase in serum antioxidant enzyme activities at follow-up, with significantly lower CAT activity in patients with ISR, possibly contributing to stenosis development. No significant changes in circulating levels of ICAM-1, TGF-β, oxLDL and Lp(a were observed between the groups. In conclusion, serum hs-CRP level and CAT activity may be considered as useful biochemical markers for monitoring patients during follow-up after stent implantation.

  3. Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Phytotoxicity of cadmium on growing Arachis hypogaea L. seedlings was studied. Seeds were exposed to 25, 50, and 100 μmol/L CdCl2 concentrations, for a period of 10, 15, 20 and 25 d. The extent of damage to chlorophyll, protein, proline, nitrate and nitrite reductase, antioxidant enzyme activity in leaves and roots were evaluated after 10 d of cadmium stress. The higher concentration of cadmium (100 μmol/L) resulted (leaves and roots) total chlorophyll 91.01%, protein 79.51%, 83.61%, nitrate reductase 79.39%,80.72% and nitrite reductase 77.07%, 75.88% activity decreased with increase in cadmium concentrations and exposure periods. Cadmium caused significant changes in the activity of antioxidative enzymes. Contrastingly Cd treated plant tissues showed an increase in proline 159.87%, 239.6%, gluthion reductase (GR) 337.72%, 306.14%, superoxide disumutase (SOD) 688.56%, 381.72%, ascorbate peroxidase (APX) 226.47%, 252.14%, peroxidase (POD) 72.19%, 60.29% and catalase (CAT) 228.96%, 214.74% as compared to control. Cadmium stress caused a significant increase in the rate of SOD activity in leaves and roots of plant species. Results show the crop A. hypogaea is highly sensitive even at very low cadmium concentrations.

  4. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    Directory of Open Access Journals (Sweden)

    Thi Le Nhung Nguyen-Deroche

    2012-01-01

    Full Text Available Zinc-supplementation (20 μM effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase, and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa. Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  5. Optimization of enzyme assisted extraction of Fructus Mori polysaccharides and its activities on antioxidant and alcohol dehydrogenase.

    Science.gov (United States)

    Deng, Qingfang; Zhou, Xin; Chen, Huaguo

    2014-10-13

    In the present study, enzyme assisted extraction of Fructus Mori polysaccharides (FMPS) from F. mori using four kinds of enzymes and three compound enzymes were examined. Research found that glucose oxidase offered a better performance in enhancement of the extraction yields of FMPS, antioxidant and activate alcohol dehydrogenase activities. The glucose oxidase assisted extraction process was further optimized by using response surface method (RSM) to obtain maximum yield of crude FMPS. The results showed that optimized extraction conditions were ratio of enzyme amount 0.40%, enzyme treated time 38 min, treated temperature 58 °C and liquid-solid radio 11.0. Under these conditions, the mean experimental value of extraction yield (16.16 ± 0.14%) corresponded well with the predicted values and increased 160% than none enzyme treated ones. Pharmacological verification tests showed that F. mori crude polysaccharides had good antioxidant and activate alcohol dehydrogenase activities in vitro.

  6. Angiotensin-converting enzyme inhibitory and antioxidant activities of enzymatically synthesized phenolic and vitamin glycosides.

    Science.gov (United States)

    Charles, Rajachristu Einstein; Ponrasu, Thangavel; Sivakumar, Ramaiah; Divakar, Soundar

    2009-03-01

    Amyloglucosidase from Rhizopus mould and beta-glucosidase from sweet almond were employed for the preparation of phenolic and vitamin glycosides of vanillin, N-vanillylnonanamide, DL-dopa, dopamine, curcumin, alpha-tocopherol (vitamin E), pyridoxine (vitamin B(6)), ergocalciferol (vitamin D(2)), thiamin (vitamin B(1)) and riboflavin (vitamin B(2)). Approx. 20 enzymatically prepared phenolic and vitamin glycosides were subjected to ACE (angiotensin-converting enzyme) inhibition activity measurements, and 14 glycosides were tested for antioxidant activities. Both phenolic and vitamin glycosides exhibited IC(50) values for ACE inhibition in the 0.52+/-0.03-3.33+/-0.17 mM range and antioxidant activities ranging from 0.8+/-0.04 to 1.18+/-0.06 mM. Comparable ACE inhibition values were observed between free phenols and vitamin glycosides. However, antioxidant activities of glycosides were, in general, lesser than those of free phenols. Best IC(50) value for ACE inhibition were observed for 11-O-(D-fructofuranosyl)thiamin (0.52+/-0.03 mM), 3-hydroxy-4-O-(6-D-sorbitol)phenylalanine (0.56+/-0.03 mM), 4-O-(beta-D-glucopyranosyl)vanillin (0.61+/-0.03 mM), 4-O-(D-galactopyranosyl)vanillin (0.61+/-0.03 mM) and pyridoxine-D-glucoside (0.84+/-0.04 mM). Similarly, best IC(50) values for antioxidant activity were observed for 1,7-O-(bis-beta-D-glucopyranosyl)curcumin (0.8+/-0.04 mM), 4-O-(beta-D-glucopyranosyl)vanillin (0.9+/-0.05 mM), 3-hydroxy-4-O-(beta-D-galactopyranosyl-(1'-->4)beta-D-glucopyranosyl)phenylalanine (0.9+/-0.05 mM), 20-O-(D-glucopyranosyl)ergocalciferol (0.9+/-0.05 mM) and dopamine-D-galactoside (0.93+/-0.05 mM). PMID:18547170

  7. Effects on antioxidant enzyme activities and osmolytes in Halocnemum strobilaceum under salt stress

    Institute of Scientific and Technical Information of China (English)

    TianPeng Gao; Rui Guo; XiangWen Fang; ZhiGang Zhao; GuoHua Chang; YinQuan Chen; Qing Zhang

    2016-01-01

    The seedlings ofHalocnermum strobilaceum were cultivated in 0.5% hoagland nutrient solution containing 0.0%, 0.9%, 2.7% and 5.4% of NaCl as well as composite salt (Na+, Ca2+, K+, Si4+) for 20 days; all the contents are in weight ratio. Succulent level, inorganic ions (Na+, K+), organics such as betaine, proline, malondialdehyde, and antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), betaine aldehyde dehydrogenase (BADH) were measured to reveal its salt tolerance mechanism. When the composite salt concentration reaches 5.4%, SOD activity level, and MDA content is five times the control group; when it reaches 2.7%, the succulent level of seedlings, and the content of K+ in roots is nearly two times the NaCl treatment; the dry weight is more than three times the control group; with the NaCl treatment, MDA is three times the contrast; when the salt concentration is 2.7%, POD reaches the maximum. Results indicate that Si4+, K+, and Ca2+ from composite salt in the roots ofH. strobilaceum improved the water-holding capacity. The activities of antioxidant enzyme were raised by the accumulation of proline and betaine, which increased the salt tolerance. The absorption of K+ promoted the high ratio of K+/Na+ and alleviated the damage of cell membranes ofH. strobilaceum, which is associated with osmotic contents such as betaine and proline.

  8. Effect of Yeast Probiotic on Growth, Antioxidant Enzyme Activities and Malondialdehyde Concentration of Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Victor Sinkalu

    2013-11-01

    Full Text Available The aim of the study was to determine the effect of yeast probiotic on body weight, and the activities of anti-oxidant enzymes: superoxide dismutase (SOD, catalase (CAT and glutathione peroxidase (GPx, and malondialdehyde (MDA concentration of broiler chickens. The experiment was carried out on hybrid Hubbard broiler chickens (n = 200. Two-hundred day-old chicks were randomly selected and distributed into four groups of 50 day-old chicks each: Control, C, and treatment groups comprising T1, T2 and T3 administered with 0.25 mL, 0.5 mL and 1.0 mL yeast probiotic, respectively. Chicks were fed a commercial starter diet for the first 28 days of age, followed by pelleted finisher diet from 29 to 42 days. Chickens in T1 had a significantly (p 0.05 different when compared with the control. GPx activity was significantly (p 0.05 difference in MDA level in all the treatment groups. In conclusion, administering yeast probiotic supplement increased body weight and enhanced serum anti-oxidant enzyme activities of broiler chickens.

  9. Synthesis of flavonoid-a-glicoside through transglycosylation by enzyme and its activities as antioxidant

    Directory of Open Access Journals (Sweden)

    JOKO SULISTYO

    2008-01-01

    Full Text Available Flavonoid-- glycoside was synthesized using enzyme of CGT-ase (EC.2.4.1.19 which was isolated from cultivated of Aspergillus oryzae. CGT-ase enzyme has optimum capability at the temperature of 40C, pH 7 yielded 1.87 unit/mL while at pH 6 was 1.11 unit/mL. The pretest of CGT-ase transfer activity was carried out using resorcinol as an acceptor and commercial starch solution as the glucosyl donor. Subsequently, acceptor was replaced by crude extract of ginger, and wheat starch as donor. The other product of hydrolysis was separated by column chromatography, monitored by TLC which was showed a single spot. The Rf value was compared with the Rf value of arbutin standard, the Rf values were about the same which were 0.85 for product and 0.87 for arbutin standard. The sugar total of product synthesis was determined by the Dubois method, which was 628.0 ppm. The value is equivalent to 0.032% of the original starch. The antioxidant activity was analyzed by -carotene method discoloration. The result showed that the strong antioxidant activities were in the following order: BHT>product>arbutin>crude extract of ginger.

  10. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora) Hydrolysates

    OpenAIRE

    Raheleh Ghanbari; Mohammad Zarei; Afshin Ebrahimpour; Azizah Abdul-Hamid; Amin Ismail; Nazamid Saari

    2015-01-01

    In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates,...

  11. Changes in Nitrogen Metabolism and Antioxidant Enzyme Activities of Maize Tassel in Black Soils Region of Northeast China

    Directory of Open Access Journals (Sweden)

    Hongwen eXu

    2014-10-01

    Full Text Available Two varieties of maize (Zea mays L. grown in fields in Black soils of Northeast China were tested to study the dynamic changes of nitrogen metabolism and antioxidant enzyme activity in tassels of maize. Results showed that antioxidant enzyme activity in tassels of maize increased first and then decreased with the growing of maize, and reached peak value at shedding period. Pattern of proline was consistent with antioxidant enzyme activity, showing that osmotic adjustment could protect many enzymes, which are important for cell metabolism. Continuous reduction of soluble protein content along with the growing of maize was observed in the study, which indicated that quantitative material and energy were provided for pollen formation. Besides, another major cause was that a large proportion of nitrogen was used for the composition of structural protein. Nitrate nitrogen concentrations of tassels were more variable than ammonium nitrogen, which showed that nitrate nitrogen was the favored nitrogen source for maize.

  12. Optimization of enzyme-assisted extraction of polysaccharides from alfalfa and its antioxidant activity.

    Science.gov (United States)

    Wang, Shaopu; Dong, Xiaofang; Tong, Jianming

    2013-11-01

    In this present study, an efficient complex enzyme-assisted extraction technology was developed and optimized to extract polysaccharides from alfalfa using four factors at five levels central composite rotatable response surface design (CCRD). The experimental data was fitted to a second order polynomial equation with high coefficient of determination values (R(2)>0.95). The results of statistical analysis showed that the linear and quadratic terms of these four variables had significant effects (Penzyme concentration of 2.5%, 2.0%, 3.0% (weight of alfalfa) of cellulase, papain and pectase, extraction temperature 52.7 °C, extraction pH 3.87, ratio of water to raw material 78.92 mL/g and extraction time 2.73 h. Under the optimal conditions, the experimental extraction yield of alfalfa polysaccharides was 5.05 ± 0.02%, which was well matched with the value (5.09%) predicted by the CCRD model. Moreover, evaluation of the antioxidant activity of polysaccharides from alfalfa in vitro suggested that the polysaccharides had good antioxidant effect, especially scavenging activity for hydroxyl radical and DPPH radical, which indicated that the polysaccharides from alfalfa may be explored as a novel natural antioxidant.

  13. Antioxidant enzymes activities of Burkholderia spp. strains-oxidative responses to Ni toxicity.

    Science.gov (United States)

    Dourado, M N; Franco, M R; Peters, L P; Martins, P F; Souza, L A; Piotto, F A; Azevedo, R A

    2015-12-01

    Increased agriculture production associated with intense application of herbicides, pesticides, and fungicides leads to soil contamination worldwide. Nickel (Ni), due to its high mobility in soils and groundwater, constitutes one of the greatest problems in terms of environmental pollution. Metals, including Ni, in high concentrations are toxic to cells by imposing a condition of oxidative stress due to the induction of reactive oxygen species (ROS), which damage lipids, proteins, and DNA. This study aimed to characterize the Ni antioxidant response of two tolerant Burkholderia strains (one isolated from noncontaminated soil, SNMS32, and the other from contaminated soil, SCMS54), by measuring superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Ni accumulation and bacterial growth in the presence of the metal were also analyzed. The results showed that both strains exhibited different trends of Ni accumulation and distinct antioxidant enzymes responses. The strain from contaminated soil (SCMS54) exhibited a higher Ni biosorption and exhibited an increase in SOD and GST activities after 5 and 12 h of Ni exposure. The analysis of SOD, CAT, and GR by nondenaturing PAGE revealed the appearance of an extra isoenzyme in strain SCMS54 for each enzyme. The results suggest that the strain SCMS54 isolated from contaminated soil present more plasticity with potential to be used in soil and water bioremediation. PMID:26289332

  14. Protective Antioxidant Enzyme Activities are Affected by Drought in Quinoa (Chenopodium Quinoa Willd)

    DEFF Research Database (Denmark)

    Fghire, Rachid; Ali, Oudou Issa; Anaya, Fatima;

    2013-01-01

    Changes in water availability are responsible for a variety of biochemical stress responses in plant organisms. Stress induced by this factor may be associated with enhanced reactive oxygen species (ROS) generations, which cause oxidative damage. In the present study we investigated the activities...... of antioxidant enzymes superoxide dismutase (SOD), polyphenoloxydase (PPO), peroxidase (POD) and catalase (CAT), measured at flowering in quinoa, subjected to varying levels of drought stress. Drought levels were 100, 50 and 33% of evapotranspiration (ETc), and rainfed. Compared to full water supply (100%ETc......), the activities of SOD under dry conditions (33%ETc) increased significantly by 39 and 90%, in 2011 and 2012, respectively. Under rainfed conditions, the activities of SOD increased by 178.71 and 322.42 %. The CAT activity in rainfed treatment increased significantly by 103.15% (2011) and 87.4% (2012) compared...

  15. Bipolar disorder course, impaired glucose metabolism and antioxidant enzymes activities: A preliminary report.

    Science.gov (United States)

    Mansur, Rodrigo B; Rizzo, Lucas B; Santos, Camila M; Asevedo, Elson; Cunha, Graccielle R; Noto, Mariane N; Pedrini, Mariana; Zeni-Graiff, Maiara; Gouvea, Eduardo S; Cordeiro, Quirino; Reininghaus, Eva Z; McIntyre, Roger S; Brietzke, Elisa

    2016-09-01

    This study aimed to examine the role of oxidative stress in bipolar disorder (BD) by evaluating the relationship among antioxidant enzymes activities, impaired glucose metabolism (IGM) and illness course. We measured the activities of plasma superoxide dismutase (SOD) and glutathione peroxidase (GPx) in individuals with BD (N = 55) and healthy controls (N = 28). Information related to current and past psychiatric/medical history, as well as prescription of any pharmacological treatments was captured. Impaired glucose metabolism was operationalized as pre-diabetes or type 2 diabetes mellitus. Our results showed that, after adjustment for age, gender, alcohol use, smoking and current medication, both BD (p < 0.001) and IGM (p = 0.019) were associated with increased GPx activity, whereas only BD was associated with decreased SOD activity (p = 0.008). We also observed an interaction between BD and IGM on SOD activity (p = 0.017), whereas the difference between BD and controls was only significant in individuals with IGM (p = 0.009). IGM, GPx and SOD activity were independently associated with variables of illness course. Moreover, IGM moderated the association between SOD activity and number of mood episodes (p < 0.001), as a positive correlation between SOD activity and mood episodes was observed only in participants with IGM. In conclusion, BD and IGM are associated with independent and synergistic effects on markers of oxidative stress. The foregoing observations suggest that the heterogeneity observed in previous studies evaluating antioxidant enzymes in BD may be a function of concurrent IGM; and that imbalances in the oxidative system may subserve the association between BD and IGM, as well as its relationship with illness course. PMID:27281261

  16. Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities.

    Science.gov (United States)

    Del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G; LeBlanc, Jean Guy

    2014-02-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti

  17. Antioxidant Activity and Induction of mRNA Expressions of Antioxidant Enzymes in HEK-293 Cells of Moringa oleifera Leaf Extract.

    Science.gov (United States)

    Vongsak, Boonyadist; Mangmool, Supachoke; Gritsanapan, Wandee

    2015-08-01

    The leaves of Moringa oleifera, collected in different provinces in Thailand, were determined for the contents of total phenolics, total flavonoids, major components, and antioxidant activity. The extract and its major active components were investigated for the inhibition of H2O2-induced reactive oxygen species production and the effects on antioxidant enzymes mRNA expression. The extract, crypto-chlorogenic acid, isoquercetin and astragalin, significantly reduced the reactive oxygen species production inducing by H2O2 in HEK-293 cells. Treatment with isoquercetin significantly increased the mRNA expression levels of antioxidant enzymes such as superoxide dismutase, catalase and heme oxygenase 1. These results confirm that M. oleifera leaves are good sources of natural antioxidant with isoquercetin as an active compound. PMID:26166137

  18. Antioxidant Activity and Induction of mRNA Expressions of Antioxidant Enzymes in HEK-293 Cells of Moringa oleifera Leaf Extract.

    Science.gov (United States)

    Vongsak, Boonyadist; Mangmool, Supachoke; Gritsanapan, Wandee

    2015-08-01

    The leaves of Moringa oleifera, collected in different provinces in Thailand, were determined for the contents of total phenolics, total flavonoids, major components, and antioxidant activity. The extract and its major active components were investigated for the inhibition of H2O2-induced reactive oxygen species production and the effects on antioxidant enzymes mRNA expression. The extract, crypto-chlorogenic acid, isoquercetin and astragalin, significantly reduced the reactive oxygen species production inducing by H2O2 in HEK-293 cells. Treatment with isoquercetin significantly increased the mRNA expression levels of antioxidant enzymes such as superoxide dismutase, catalase and heme oxygenase 1. These results confirm that M. oleifera leaves are good sources of natural antioxidant with isoquercetin as an active compound.

  19. Effect of selenium on growth and antioxidant enzyme activities of wine related yeasts.

    Science.gov (United States)

    Assunção, M; Martins, L L; Mourato, M P; Baleiras-Couto, M M

    2015-12-01

    The use of supplements in the diet is a common practice to address nutritional deficiencies. Selenium is an essential micronutrient with an antioxidant and anti-carcinogenic role in human and animal health. There is increasing interest in developing nutritional supplements such as yeast cells enriched with selenium. The possibility of producing beverages, namely wine, with selenium-enriched yeasts, led us to investigate the selenium tolerance of six wine related yeasts. The production of such cells may hamper selenium toxicity problems. Above certain concentrations selenium can be toxic inducing oxidative stress and yeast species can show different tolerance. This work aimed at studying selenium tolerance of a diversity of wine related yeasts, thus antioxidant response mechanisms with different concentrations of sodium selenite were evaluated. Viability assays demonstrated that the yeast Torulaspora delbrueckii showed the highest tolerance for the tested levels of 100 µg mL(-1) of sodium selenite. The evaluation of antioxidative enzyme activities showed the best performance for concentrations of 250 and 100 µg mL(-1), respectively for the yeast species Saccharomyces cerevisiae and Hanseniaspora guilliermondii. These results encourage future studies on the possibility to use pre-enriched yeast cells as selenium supplement in wine production.

  20. Effect of irradiation of electron beam on protein and antioxidized enzyme activity of microcystis aeruginosa

    International Nuclear Information System (INIS)

    Microcystis aeruginosa often threatens human health and safety for its microcystin and bad smell. Its large number and hardness of removal are difficulty for water treatment. In this study, electron beam generated by an accelerator was applied to irradiate Microcystis aeruginosa by dose of l, 2, 3, 4 and 5 kGy. The effect of irradiation on Microcystis aeruginosa characteristic and mechanism was studied by surveying the changing of protein, enzyme activity and photosynthesis rate. The data show that irradiation of 1 kGy has little effect on dissoluble protein, POD and SOD activity. Irradiation of 25 kGy can decrease protein content and destroy the antioxidant system, also the photosynthesis rate decreases obviously, which makes Microcystis aeruginosa lose activity in short time. The result proves that a certain dose of electron beam irradiation can control algae growth and affect its life characteristic efficiently. (authors)

  1. Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates

    OpenAIRE

    Melissa Ferreira SBROGGIO; Marina Silveira MONTILHA; Vitória Ribeiro Garcia de FIGUEIREDO; Sandra Regina GEORGETTI; Louise Emy KUROZAWA

    2016-01-01

    Abstract The objective of this work was to evaluate the antioxidant activity of protein hydrolysates obtained by the enzymatic hydrolysis of okara using an endopeptidase (Alcalase) and exopeptidase (Flavourzyme). The reaction was monitored by the pH-stat procedure in which five aliquots were collected during the hydrolysis by each enzyme, corresponding to different degrees of hydrolysis (DH). The antioxidant activities of the aliquots were evaluated by the ABTS, DPPH and FRAP methods. For the...

  2. Effect of Cytotoxic Compounds on Activity of Antioxidant Enzyme System in MCF-7 and H1299 Cells.

    Science.gov (United States)

    Mumyatova, V A; Balakina, A A; Filatova, N V; Sen', V D; Korepin, A G; Terentev, A A

    2016-05-01

    We studied the function of the antioxidant system in tumor cell lines MCF-7 and H1299 that differ by the state of tumor suppressor gene p53. Exposure to different classes of cytotoxic compounds induced several types of antioxidant system responses that depend on the type of cell line. The effects of platinum(II) and platinum(IV) complexes on activity of antioxidant enzymes vary, which can be explained by differences in their accumulation and biotransformation in tumor cells. Triazole and oxazolidinone derivatives had little effect on activity of superoxide dismutase and catalase in H1299 cells, but increased superoxide dismutase activity in MCF-7 cells. PMID:27265137

  3. Antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) under different cultivation conditions.

    Science.gov (United States)

    Chen, Lei; Kang, Young-Hwa

    2014-03-12

    An adaptation of cultural management to the specific cultural system, as well as crop demand, can further result in the improvement of the quality of horticultural products. Therefore, this study focused on the antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) grown in hydroponics in comparison with those of the plant grown in soil. The antioxidant activities of Plebeian herba extract were measured as 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging abilities as well as the reducing power by decreasing nitric oxide (NO) and superoxide dismutase activity (SOD) in vitro. Interestingly, by comparison with hydroponics and traditional cultivation, Plebeian herba cultivated in nutrition-based soil improved inhibitory effect on free radicals of DPPH, ABTS, and NO and increased the contents of phenolics such as caffeic acid (1), luteolin-7-glucoside (2), homoplantaginin (3), hispidulin (4), and eupatorin. Free radical scavenging and SOD activity, as well as α-glucosidase inhibitory effect, were higher in Plebeian herba grown in nutrition-based soil than in plants grown in hydroponics and traditional condition.

  4. Antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) under different cultivation conditions.

    Science.gov (United States)

    Chen, Lei; Kang, Young-Hwa

    2014-03-12

    An adaptation of cultural management to the specific cultural system, as well as crop demand, can further result in the improvement of the quality of horticultural products. Therefore, this study focused on the antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) grown in hydroponics in comparison with those of the plant grown in soil. The antioxidant activities of Plebeian herba extract were measured as 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging abilities as well as the reducing power by decreasing nitric oxide (NO) and superoxide dismutase activity (SOD) in vitro. Interestingly, by comparison with hydroponics and traditional cultivation, Plebeian herba cultivated in nutrition-based soil improved inhibitory effect on free radicals of DPPH, ABTS, and NO and increased the contents of phenolics such as caffeic acid (1), luteolin-7-glucoside (2), homoplantaginin (3), hispidulin (4), and eupatorin. Free radical scavenging and SOD activity, as well as α-glucosidase inhibitory effect, were higher in Plebeian herba grown in nutrition-based soil than in plants grown in hydroponics and traditional condition. PMID:24422962

  5. EFFECTS OF CIGARETTE SMOKING ON ERYTHROCYTE ANTIOXIDATIVE ENZYME ACTIVITIES AND PLASMA CONCENTRATIONS OF THEIR COFACTORS

    Directory of Open Access Journals (Sweden)

    M. Zahraie

    2005-07-01

    Full Text Available Tobacco smoke contains numerous compounds, many ‎of which are oxidants and capable of producing free radical and enhancing ‎the oxidative stress. The aim of this study was to investigate the effect of cigarette smoking on the erythrocyte antioxidative enzyme activities and the plasma ‎concentration of their cofactors. ‎Sixty eight healthy men were enrolled, 32 of whom had never smoked and 36 had smoked at least 10 cigarettes per day for ‎at least one year. Hemolysate superoxide dismutase (Cu-Zn SOD, glutathione peroxidase (GSH-Px and ‎catalase (CAT activities were measured using spectrophotometer. Plasma copper, zinc and selenium concentrations were determined ‎using atomic absorption spectrophotometer. Plasma iron concentration was determined by colorimetric ‎method. We found that erythrocyte Cu-Zn SOD activity was significantly higher in tobacco smokers ‎compared with non-smokers (1294 ± 206.7 U/gHb in smokers vs. 1121.6 ± 237.8 U/gHb in non-‎smokers, P < 0.01. While plasma selenium concentration was significantly lower in tobacco ‎smokers (62.7±14.8 μg/L in smokers vs. 92.1 ± 17.5 μg/L in non-smokers, P < 0.01, there were no significant ‎differences in erythrocyte GSH-Px and CAT activities and plasma copper, zinc and iron concentrations between the two groups. ‎It seems that cigarette smoking can alter antioxidative enzymes activity and plasma concentration of some trace elements.

  6. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: Potential application in the management of hyperglycemia

    Directory of Open Access Journals (Sweden)

    Gulati Vandana

    2012-06-01

    Full Text Available Abstract Background Traditional Indian and Australian medicinal plant extracts were investigated to determine their therapeutic potential to inhibit key enzymes in carbohydrate metabolism, which has relevance to the management of hyperglycemia and type 2 diabetes. The antioxidant activities were also assessed. Methods The evaluation of enzyme inhibitory activity of seven Australian aboriginal medicinal plants and five Indian Ayurvedic plants was carried out against α-amylase and α-glucosidase. Antioxidant activity was determined by measuring (i the scavenging effect of plant extracts against 2, 2-diphenyl-1-picryl hydrazyl (DPPH and 2, 2′-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS and (ii ferric reducing power. Total phenolic and total flavonoid contents were also determined. Results Of the twelve plant extracts evaluated, the highest inhibitory activity against both α-amylase and α-glucosidase enzymes was exerted by Santalum spicatum and Pterocarpus marsupium with IC50 values of 5.43 μg/ml and 0.9 μg/ml, respectively, and 5.16 μg/ml and 1.06 μg/ml, respectively. However, the extracts of Acacia ligulata (IC50 = 1.01 μg/ml, Beyeria leshnaultii (0.39 μg/ml, Mucuna pruriens (0.8 μg/ml and Boerhaavia diffusa (1.72 μg/ml exhibited considerable activity against α-glucosidase enzyme only. The free radical scavenging activity was found to be prominent in extracts of Acacia kempeana, Acacia ligulata followed by Euphorbia drummondii against both DPPH and ABTS. The reducing power was more pronounced in Euphorbia drummondii and Pterocarpus marsupium extracts. The phenolic and flavonoid contents ranged from 0.42 to 30.27 μg/mg equivalent of gallic acid and 0.51 to 32.94 μg/mg equivalent of quercetin, respectively, in all plant extracts. Pearson’s correlation coefficient between total flavonoids and total phenolics was 0.796. Conclusion The results obtained in this study showed that most of the plant extracts

  7. Effects of alginate on frozen-thawed boar spermatozoa quality, lipid peroxidation and antioxidant enzymes activities.

    Science.gov (United States)

    Hu, Jinghua; Geng, Guoxia; Li, Qingwang; Sun, Xiuzhu; Cao, Hualin; Liu, Yawei

    2014-06-30

    Although alginate was reported to play an important role as free radical scavengers in vitro and could be used as sources of natural antioxidants, there was no study about the cryoprotective effects of alginate on boar spermatozoa freezing. The objective of this research was to evaluate the effects of different concentrations of alginate added to the freezing extenders on boar spermatozoa motility, plasma membrane integrity, acrosomal integrity, mitochondrial activities, lipid peroxidation and antioxidative enzymes activities (SOD and GSH-Px) after thawing. Alginate was added to the TCG extender to yield six different final concentrations: 0, 0.2, 0.4, 0.6, 0.8, and 1.0mg/mL. The semen extender supplemented with various doses of alginate increased (P<0.05) total motility. The spermatozoa plasma membrane integrity and mitochondrial activity were improved at four different concentrations: 0.4, 0.6, 0.8, 1.0mg/mL. The addition of alginate also provided significantly positive effect on post-thaw boar spermatozoa acrosomal integrity at concentrations of 0.6, 0.8, 1.0mg/mL, compared with that of the control (P<0.05). The freezing extenders with the presence of alginate led to higher SOD and GSH-Px activities and lower MDA levels, in comparison to the control (P<0.05). In summary, alginate exhibited a dose-related response on frozen-thawed boar spermatozoa motility, functional integrity and antioxidative capacity at appropriate concentrations. Therefore alginate could be employed as an effective cryoprotectant in boar spermatozoa cryopreservation. PMID:24814905

  8. Antitumor properties and modulation of antioxidant enzymes' activity by Aloe vera leaf active principles isolated via supercritical carbon dioxide extraction.

    Science.gov (United States)

    El-Shemy, H A; Aboul-Soud, M A M; Nassr-Allah, A A; Aboul-Enein, K M; Kabash, A; Yagi, A

    2010-01-01

    The aim of this study was to evaluate the potential anticancer properties and modulatory effect of selected Aloe vera (A. vera) active principles on antioxidant enzyme activities. Thus, three anthraquinones (Namely: aloesin, aloe-emodin and barbaloin) were extracted from A. vera leaves by supercritical fluid extraction and subsequently purified by high performance liquid chromatography. Additionally, the N-terminal octapeptide derived from verectin, a biologically active 14 kDa glycoprotein present in A. vera, was also tested. In vivo, active principles exhibited significant prolongation of the life span of tumor-transplanted animals in the following order: barbaloin> octapeptide> aloesin > aloe-emodin. A. vera active principles exhibited significant inhibition on Ehrlich ascite carcinoma cell (EACC) number, when compared to positive control group, in the following order: barbaloin> aloe-emodin > octapeptide > aloesin. Moreover, in trypan blue cell viability assay, active principles showed a significant concentration-dependent cytotoxicity against acute myeloid leukemia (AML) and acute lymphocytes leukemia (ALL) cancerous cells. Furthermore, in MTT cell viability test, aloe-emodin was found to be active against two human colon cancer cell lines (i.e. DLD-1 and HT2), with IC(50) values of 8.94 and 10.78 microM, respectively. Treatments of human AML leukemic cells with active principles (100 microg ml(-1)) resulted in varying intensities of internucleosomal DNA fragmentation, hallmark of cells undergoing apoptosis, in the following order: aloe-emodin> aloesin> barbaloin> octapeptide. Intererstingly, treatment of EACC tumors with active principles resulted in a significant elevation activity of key antioxidant enzymes (SOD, GST, tGPx, and LDH). Our data suggest that the tested A. vera compounds may exert their chemo-preventive effect through modulating antioxidant and detoxification enzyme activity levels, as they are one of the indicators of tumorigenesis. These

  9. Analysis of the Relationship between Antioxidant Enzyme Gene Polymorphisms and Their Activity in Post-Traumatic Gonarthrosis.

    Science.gov (United States)

    Vnukov, V V; Panina, S B; Milyutina, N P; Krolevets, I V; Zabrodin, M A

    2016-05-01

    Analysis of polymorphisms of genes encoding antioxidant enzymes SOD1 (G7958A), SOD2 (T58C), CAT (C-262T), and GSTP1 (Ile105Val) in 93 patients with post-traumatic gonarthrosis showed that GSTP1 Ile105Val polymorphism is often associated with heterozygous mutation in catalase gene CAT C-262T. In gonarthrosis, catalase activity in peripheral blood mononuclear cells in patients with CT genotype of the C-262T locus of CAT gene more than 2-fold surpassed that in CC genotype and more than 50% surpassed the normal. Changes in the balance of activity of antioxidant enzymes can affect viability of mononuclear cells. PMID:27270931

  10. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity.

    Science.gov (United States)

    Delles, Rebecca M; Xiong, Youling L; True, Alma D; Ao, Touying; Dawson, Karl A

    2014-06-01

    Recent nutrigenomic studies have shown that animal nutrition can have a major influence on tissue gene expression. Dietary antioxidant supplements can enhance the quality of meat through modification of tissue metabolic processes. This study investigated the influence of dietary antioxidants and quality of oil on the oxidative and enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or skin packaging systems during retail display at 2 to 4°C for up to 21 d. Broilers were fed either a diet with a low-oxidized (peroxide value 23 mEq of O2/kg) or high-oxidized (peroxide value 121 mEq of O2/kg) oil, supplemented with or without an algae-based Se yeast and organic mineral antioxidant pack for 42 d. Lipid and protein oxidation and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation (TBA reactive substances) was inhibited by up to 32.5% (P antioxidant-supplemented diet when compared with diets without antioxidants, particularly in the HiOx and PVC systems. Protein sulfhydryls were significantly protected by antioxidant diets (e.g., by 14.6 and 17.8% for low-and high-oxidized dietary groups, respectively, in PVC d 7 samples). Glutathione peroxidase, catalase, and superoxide dismutase activities were significantly higher (P antioxidant-supplemented diets compared with the basal diet, regardless of oil quality. Also, serum carbonyls were lower in broilers fed a low-oxidized antioxidant-supplemented treatment. The results demonstrate that dietary antioxidants can minimize the oxidative instability of proteins and lipids, and the protection may be linked to improved cellular antioxidant enzymatic activity.

  11. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity1

    Science.gov (United States)

    Delles, Rebecca M.; Xiong, Youling L.; True, Alma D.; Ao, Touying; Dawson, Karl A.

    2014-01-01

    Recent nutrigenomic studies have shown that animal nutrition can have a major influence on tissue gene expression. Dietary antioxidant supplements can enhance the quality of meat through modification of tissue metabolic processes. This study investigated the influence of dietary antioxidants and quality of oil on the oxidative and enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or skin packaging systems during retail display at 2 to 4°C for up to 21 d. Broilers were fed either a diet with a low-oxidized (peroxide value 23 mEq of O2/kg) or high-oxidized (peroxide value 121 mEq of O2/kg) oil, supplemented with or without an algae-based Se yeast and organic mineral antioxidant pack for 42 d. Lipid and protein oxidation and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation (TBA reactive substances) was inhibited by up to 32.5% (P < 0.05) with an antioxidant-supplemented diet when compared with diets without antioxidants, particularly in the HiOx and PVC systems. Protein sulfhydryls were significantly protected by antioxidant diets (e.g., by 14.6 and 17.8% for low-and high-oxidized dietary groups, respectively, in PVC d 7 samples). Glutathione peroxidase, catalase, and superoxide dismutase activities were significantly higher (P < 0.05) in antioxidant-supplemented diets compared with the basal diet, regardless of oil quality. Also, serum carbonyls were lower in broilers fed a low-oxidized antioxidant-supplemented treatment. The results demonstrate that dietary antioxidants can minimize the oxidative instability of proteins and lipids, and the protection may be linked to improved cellular antioxidant enzymatic activity. PMID:24879706

  12. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora) Hydrolysates.

    Science.gov (United States)

    Ghanbari, Raheleh; Zarei, Mohammad; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2015-01-01

    In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions. PMID:26690117

  13. Angiotensin-I Converting Enzyme (ACE Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora Hydrolysates

    Directory of Open Access Journals (Sweden)

    Raheleh Ghanbari

    2015-12-01

    Full Text Available In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8% after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH (56.00% and ferrous ion-chelating (FIC (59.00% methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions.

  14. [Effects of macrophytes pyrolysis bio-oil on Skeletonema costatum antioxidant enzyme activities].

    Science.gov (United States)

    Yao, Yuan; Li, Feng-Min; Li, Yuan-Yuan; Shan, Shi; Li, Jie; Wang, Zhen-Yu

    2013-02-01

    In order to reveal the preliminary inhibition mechanisms of aquatic plants bio-oils on Skeletonema costatum, effects of Arundo donax L. 300 degees C, Ph. australis Trin. 400 degrees C and Typha orientalis Pres1 400 degrees C bio-oils on the concentration change of malondialdehyde (MDA) and the activity of antioxidant enzymes system (SOD, POD and CAT) were evaluated. The results showed that the higher Ihe Bio-oil concentrations, the higher the MDA contents in Skeletonema costatum was, and when the Bio-oil concentration was 10 mg.L-1 the MDA concentration increased with the reaction time. Superoxide dismutase (SOD) activity also increased with the increase of bio-oil concentration. For Arundo donax L 300 degrees C and Typha orientalis Presl 400 degrees C bio-oil, when the reaction time was longer, the S0D activity of Skeletonema costatum first increased and then decreased, and in both cases the maximum SOD activity was measured at 24 h. reaching 93.6 U (10(7) cells)-1 and 8.23 U (10(7) cells)-1, respectively. For Ph. australis Trin 400 degrees C bio-oil, the SOD activity kept increasing within 72 h. The peroxidase ( POD) activity of Skeletonema costatum also increased with the increase of bio-il concentrations. In the presence of Arundo donax L. 300 degrees C and Ph. australis Trin 400 degrees C bio-oil, the POD activity of Skeletonma, costatum first increased and then decreased, while with Typha orientalis Presl 400 degrees C bio-oil the POD activity increased with fluctuations. For all the three bio-oils, the catalase (CAT) activities increased first and then decreased when the reaction time was prolonged, and the higher the bio-oils concentration, the greater the CAT activity was. Pyrolysis bio-oils enhance the activity of antioxidant enzymes, leading to intracellular oxidative stress in the algae, which seems to be the main inhibitory mechanism for algae PMID:23668127

  15. AM Fungi Influences the Photosynthetic Activity, Growth and Antioxidant Enzymes in Allium sativum L. under Salinity Condition

    Directory of Open Access Journals (Sweden)

    Mahesh BORDE

    2010-12-01

    Full Text Available Potential of Arbuscular mycorrhizal (AM fungi in alleviating adverse salt effects on growth was tested in garlic (Allium sativum L.. Towards this objective we analyzed the AM root colonization and the activities of various antioxidant enzymes like peroxidase, catalase, and superoxide dismutase at 0, 100, 200 and 300 mM salinity levels. The activities of all the antioxidant enzymes studied were found to be increased in AM garlic plants. Antioxidant activity was maximum in 100 and 200 mM NaCl (sodium chloride in AM and non-AM plants. Proline accumulation was induced by salt levels and it was more in leaves as well as roots of AM plants as compared to non-AM plants, this indicating that mycorrhiza reduced salt injury. Growth parameters of garlic plants like leaf area, plant fresh and dry weight and antioxidant enzyme activities were higher at moderate salinity level. This work suggests that the mycorrhiza helps garlic plants to perform better under moderate salinity level by enhancing the antioxidant activity and proline content as compared to non-AM plants.

  16. Activity of Stress-related Antioxidative Enzymes in the Invasive Plant Crofton Weed(Eupatorium adenophorum)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Crofton weed is an Invasive weed in southwestern China.The activities of several antioxidative enzymes involved in plant protection against oxidative stress were assayed to determine physiological aspects of the crofton weed that might render the plant vulnerable to environmental stress.Stresses imposed on crofton weed were heat (progressively increasing temperatures:25℃,30℃,35℃.38℃ and 42℃ at 24 h intervals),cold(progressively decreasing temperatures:25℃,20℃,15℃,10℃ and 5℃ at 24h intervals),and drought(without watering up to 4 days).The three stresses induced oxidative damage as evidenced by an increase in lipid peroxidation.The effect varied with the stress imposed and the length of exposure.The activity of superoxide dismutase(SOD)increased in response to all stresses but was not significantly different from the controls(P<0.05) when exposed to cold stress.Catalase (CAT)activity decreased in response to heat and drought stress but increased when exposed to cold conditions.Guaiacol peroxidase(POD) and glutathione reductase (GR)activities increased in response to cold and drought but decreased in response to heat stress.The activity of ascorbate peroxidase(APX) responded differently to all three stresses.Monodehydroascorbate reductase (MDHAR)activity decreased in response to heat and drought,and slightly increased in response to the cold stress but was not significantly different from the controls (P<0.05).The activity of dehydroascorbate reductase(DHAR)increased in response to all three stresses.Taken together,the co-ordinate increase of the oxygen-detoxifying enzymes might be more effective to protect crofton weed from the accumulation of oxygen radicals at low temperatures rather than at high temperatures.

  17. In vitro larvicidal potential against Anopheles stephensi and antioxidative enzyme activities of Ginkgo biloba, Stevia rebaudiana and Parthenium hysterophorous

    Institute of Scientific and Technical Information of China (English)

    Nisar Ahmad; Hina Fazal; Bilal H Abbasi; Mazhar Iqbal

    2011-01-01

    Objective: To investigate in vitro larvicidal and antioxidant enzymes potential of the medicinal plants Ginkgo biloba (G. biloba), Stevia rebaudiana (S. rebaudiana) and Parthenium hysterophorous (P. hysterophorous) against Anopheles stephensi (An. stephensi) 4th instars larvae. Methods:For evaluation of larvicidal potential, the ethanolic, methanolic and dichloromethane leaves extracts of three different plants were used in dose-dependent experiments in two media, while the antioxidant enzymes activities were investigated using four different methods viz., superoxide dismutase, peroxidase, ascorbate and catalase. Results:An. stephensi has developed resistance to various synthetic insecticides, making its control increasingly difficult. The comparative performance of ethanolic extracts (65%-90%) was found better than the methanolic extract (70%-87%) and dichloromethane extract (60%-70%). Among the three plants extracts tested in two media, S. rebaudiana exhibited higher larvicidal activity with LC50 (24 h) in methanolic extract than P. hysterophorous and G. biloba. G. biloba and P. hysterophorous exhibited the strongest antioxidative enzymes activity and S. rebaudiana were less active and no significant difference was observed. Conclusions:These three plants exhibit larvicidal potential and can be further used for vector control alternative to synthetic insecticide due to eco-friendly and diseases control, furthermore these plant species have potent antioxidative enzyme activities, therefore, making them strong natural candidate particularly for diseases which are caused due to free radicals.

  18. Evaluation of the Activities of Antioxidant Enzyme and Lysosomal Enzymes of the Longissimus dorsi Muscle from Hanwoo (Korean Cattle) in Various Freezing Conditions.

    Science.gov (United States)

    Kang, Sun Moon; Kang, Geunho; Seong, Pil-Nam; Park, Beomyoung; Kim, Donghun; Cho, Soohyun

    2014-01-01

    This study was conducted to evaluate the activities of antioxidant enzyme (glutathione peroxidase (GSH-Px)) and lysosomal enzymes (alpha-glucopyranosidase (AGP) and beta-N-acetyl-glucosaminidase (BNAG)) of the longissimus dorsi (LD) muscle from Hanwoo (Korean cattle) in three freezing conditions. Following freezing at -20, -60, and -196℃ (liquid nitrogen), LD samples (48 h post-slaughter) were treated as follows: 1) freezing for 14 d, 2) 1 to 4 freeze-thaw cycles (2 d of freezing in each cycle), and 3) refrigeration (4℃) for 7 d after 7 d of freezing. The control was the fresh (non-frozen) LD. Freezing treatment at all temperatures significantly (pcycles and even for 7 d of refrigeration after freezing. These findings suggest that freezing has remarkable effects on the activities of antioxidant enzyme and lysosomal enzymes of Hanwoo beef in any condition. PMID:26761669

  19. Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis L. plants under salt stress.

    Science.gov (United States)

    Jahantigh, Omolbanin; Najafi, Farzaneh; Badi, Hassanali Naghdi; Khavari-Nejad, Ramazan Ali; Sanjarian, Forough

    2016-06-01

    The relationships between salt stress and antioxidant enzymes activities, proline, phenol and anthocyanine contents in Hyssopus officinalis L. plants in growth stage were investigated. The plants were subjected to five levels of saline irrigation water, 0.37 (tap water as control) with 2, 4, 6, 8 and 10 dSm(-1) of saline water. After two months the uniform plants were harvested for experimental analysis. Antioxidant enzymes activities and proline, phenol and anthocyanine contents of the plants were examinated. Enhanced activities of peroxidase, catalase and superoxide dismutase were determined by increasing salinity that plays an important protective role in the ROS-scavenging process. Proline, phenol and anthocyanine contents increased significantly with increasing salinity. These results suggest that salinity tolerance of Hyssopus officinalis plants might be closely related with the increased capacity of antioxidative system to scavenge reactive oxygen species and with the accumulation of osmoprotectant proline, phenol and anthocyanine contents under salinity conditions.

  20. Angiotensin-I-Converting Enzyme Inhibitory and Antioxidant Activities of Protein Hydrolysate from Muscle of Barbel (Barbus callensis

    Directory of Open Access Journals (Sweden)

    Assaad Sila

    2013-01-01

    Full Text Available The present study investigated angiotensin-I-converting enzyme (ACE inhibitory and antioxidant activities of barbel muscle protein hydrolysate prepared with Alcalase. The barbel muscle protein hydrolysate displayed a high ACE inhibitory activity (CI50=0.92 mg/mL. The antioxidant activities of protein hydrolysate at different concentrations were evaluated using various in vitro antioxidant assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH radical method and reducing power assay. The barbel muscle protein hydrolysate exhibited an important radical scavenging effect and reducing power. These results obtained by in vitro systems obviously established the antioxidant potency of barbel hydrolysate to donate electron or hydrogen atom to reduce the free radical. Furthermore, these bioactive substances can be exploited into functional foods or used as source of nutraceuticals.

  1. Role of antioxidative enzymes activity in salt stress and salinity screening in rice grown under in vitro condition

    Directory of Open Access Journals (Sweden)

    G.Thamodharan* And M. Arumugam Pillai

    2014-09-01

    Full Text Available Role of antioxidative enzyme activity in salt stress and salinity screening was studied in the callus of two rice cultivars (White ponni and BPT-5204. The antioxidant activities of the rice callus were determined by analyzing three enzymes activity namely, Superoxide Dismutase (SOD, Catalase (CAT and Ascorbate Peroxidase (APX grown under saline condition. Enzymes were analysed in 15 days old rice callus culture grown under salt stress and non-saline conditions. All the three enzyme activities were varied according to salt concentrations in the medium. SOD and CAT activities were higher in BPT-5204 but APX activities were higher in White ponni. Among the NaCl treatment, medium containing 40 mM NaCl observed higher enzyme activity than 20 and 30 mM NaCl. Under non saline condition there is no significant difference was noticed in the enzymatic activities and callus growth parameter in both the cultivars. Observation was carried out on the change in callus growth parameter like weight and color of the callus. There was a significant reduction in weight and also change in colour of the callus was noticed with respect to higher salt concentrations (30 and 40 mM NaCl in the medium for both the cultivars. The observed data indicated that rice plant responds well to salt-induced oxidative stress by increasing their enzymatic antioxidant defense systems. The antioxidant enzyme activity play vital role in defense against salt stress and this may help to screen the salt tolerant line grown under in vitro condition in early callus stage itself.

  2. Antioxidant enzyme activities in hepatic tissue from children with chronic cholestatic liver disease

    Directory of Open Access Journals (Sweden)

    Ismail Nagwa

    2010-01-01

    Full Text Available Background/Aim: To study the oxidative stress status in children with cholestatic chronic liver disease by determining activities of glutathione peroxidase (GPx, superoxide dismutase (SOD and catalase (CAT in liver tissue. Materials and Methods: A total of 34 children suffering from cholestatic chronic liver disease were studied. They were selected from the Hepatology Clinic, Cairo University, and compared with seven children who happened to have incidental normal liver biopsy. The patients were divided into three groups: extrahepatic biliary atresia (n=13, neonatal hepatitis (n=15 and paucity of intrahepatic bile ducts (n=6; GPx, SOD and CAT levels were measured in fresh liver tissue using ELISA . Results: In the cholestatic patients, a significant increase was found in mean levels of SOD, GPx and CAT in hepatic tissue compared to control children. The three enzymes significantly increased in the extrahepatic biliary atresia group, whereas in the groups of neonatal hepatitis and paucity of intrahepatic bile ducts, only GPx and CAT enzymes were significantly increased. Conclusion: Oxidative stress could play a role in the pathogenesis of cholestatic chronic liver diseases. These preliminary results are encouraging to conduct more extensive clinical studies using adjuvant antioxidant therapy.

  3. Bioactive properties of commercialised pomegranate (Punica granatum) juice: antioxidant, antiproliferative and enzyme inhibiting activities.

    Science.gov (United States)

    Les, Francisco; Prieto, Jose M; Arbonés-Mainar, Jose Miguel; Valero, Marta Sofía; López, Víctor

    2015-06-01

    Pomegranate juice and related products have long been used either in traditional medicine or as nutritional supplements claiming beneficial effects. Although there are several studies on this food plant, only a few studies have been performed with pomegranate juice or marketed products. The aim of this work is to evaluate the antioxidant effects of pomegranate juice on cellular models using hydrogen peroxide as an oxidizing agent or DPPH and superoxide radicals in cell free systems. The antiproliferative effects of the juice were measured on HeLa and PC-3 cells by the MTT assay and pharmacologically relevant enzymes (cyclooxygenases, xanthine oxidase, acetylcholinesterase and monoamine oxidase A) were selected for enzymatic inhibition assays. Pomegranate juice showed significant protective effects against hydrogen peroxide induced toxicity in the Artemia salina and HepG2 models; these effects may be attributed to radical scavenging properties of pomegranate as the juice was able to reduce DPPH and superoxide radicals. Moderate antiproliferative activities in HeLa and PC-3 cancer cells were observed. However, pomegranate juice was also able to inhibit COX-2 and MAO-A enzymes. This study reveals some mechanisms by which pomegranate juice may have interesting and beneficial effects in human health. PMID:26030005

  4. Effect of recombinant human erythropoietin administration on lipid peroxidation and antioxidant enzyme(s activities in preterm infants.

    Directory of Open Access Journals (Sweden)

    Akisu M

    2001-12-01

    of the 4th week, no differences were observed. Our findings in this study show that administration of r-HuEPO significantly decreases lipid peroxidation, but does not affect erythrocyte antioxidant enzyme(s activities in preterm infants. The mechanism responsible for the r-HuEPO-induced decrease in lipid peroxidation may concern inhibition to iron-catalyzed free radical reactions.

  5. Effect of curcumin on hepatic antioxidant enzymes activities and gene expressions in rats intoxicated with aflatoxin B1.

    Science.gov (United States)

    El-Bahr, S M

    2015-01-01

    Twenty-eight rats were examined in a 5-week experiment to investigate the effect of curcumin on gene expression and activities of hepatic antioxidant enzymes in rats intoxicated with aflatoxin B1 (AFB1 ). The rats were divided into four groups. Rats in 1-4 groups served as control, oral curcumin treated (15 mg/kg body weight), single i.p. dose of AFB1 (3 mg/kg body weight) and combination of single i.p. dose of AFB1 with oral curcumin treated, respectively. AFB1 Liver damage and oxidative stress were evident in untreated AFB1 -intoxicated rats as indicated by a significant elevation in hepatic transaminases, elevation in lipid peroxide biomarkers (thiobarbituric acid reactive substances; TBARS), reduction of reduced glutathione (GSH) concentration, reduction in the activities of antioxidant enzymes namely catalase (CAT), total superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST) and down-regulation of gene expression of these antioxidant enzymes compared to control. Liver sections of rats intoxicated with AFB1 showed a disrupted lobular architecture, scattered necrotic cells and biliary proliferation. Administration of curcumin with AFB1 resulted in amelioration of AFB1 -induced effects compared to untreated AFB1 -intoxicated rats via an up-regulation of antioxidant enzyme gene expression, activation of the expressed genes and increase in the availability of GSH.

  6. Effect of sodium fluoride ingestion on malondialdehyde concentration and the activity of antioxidant enzymes in rat erythrocytes.

    Science.gov (United States)

    Morales-González, José A; Gutiérrez-Salinas, José; García-Ortiz, Liliana; Del Carmen Chima-Galán, María; Madrigal-Santillán, Eduardo; Esquivel-Soto, Jaime; Esquivel-Chirino, César; González-Rubio, Manuel García-Luna Y

    2010-06-11

    Fluoride intoxication has been shown to produce diverse deleterious metabolic alterations within the cell. To determine the effects of sodium fluoride (NaF) treatment on malondialdehyde (MDA) levels and on the activity of antioxidant enzymes in rat erythrocytes, Male Wistar rats were treated with 50 ppm of NaF or were untreated as controls. Erythrocytes were obtained from rats sacrificed weekly for up to eight weeks and the concentration of MDA in erythrocyte membrane was determined. In addition, the activity of the enzymes superoxide, dismutase, catalase, and glutathione peroxidase were determined. Treatment with NaF produces an increase in the concentration of malondialdehyde in the erythrocyte membrane only after the eight weeks of treatment. On the other hand, antioxidant enzyme activity was observed to increase after the fourth week of NaF treatment. In conclusion, intake of NaF produces alterations in the erythrocyte of the male rat, which indicates induction of oxidative stress.

  7. Changes of Proline Content,Activity,and Active Isoforms of Antioxidative Enzymes in Two Alfalfa Cultivars Under Salt Stress

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-shan; HAN Jian-guo

    2009-01-01

    The plants of two alfalfa(Medicago sativa L.)cultivars differing in salt tolerance were subjected to three salt treatments,70,140,and 210 mM NaCl for 7 days.Root,shoot,and leaf growths were inhibited by increased salt treatments in both cultivars,and at 140 and 210 mM salt treatments,Zhongmu 1 had significantly higher root,shoot,and leaf dry weights per plant than Defi.The malondialdehyde(MDA)accumulation in Defi was considerably greater than in Zhongmu 1,indicating a higher degree of lipid peroxidation at 140 and 210 mM salt treatments.The changes in the activity and active isoforms of antioxidant enzymes such as superoxide dismutase(SOD,EC 1.15.1.1),catalase(CAT,EC 1.11.1.6),peroxidase(POD,EC 1.11.1.7),and ascorbate peroxidase(APOX,EC 1.11.1.11),accumulation of free proline,and rate of lipid peroxidation in leaves of two alfalfa cultivars were also investigated.After stress,the activity and active isoforms of antioxidative enzymes were altered and the extent of alteration varied between the cultivar Deft and Zhongmu 1.The proline accumulation in Defi was considerably greater than in Zhongmu 1 at 210 mM salt treatment.This indicated that proline accumulation may be the result,instead of the cause,of salt tolerance.

  8. Antioxidant capacity and angiotensin I converting enzyme inhibitory activity of a melon concentrate rich in superoxide dismutase.

    Science.gov (United States)

    Carillon, Julie; Del Rio, Daniele; Teissèdre, Pierre-Louis; Cristol, Jean-Paul; Lacan, Dominique; Rouanet, Jean-Max

    2012-12-01

    Antioxidant capacity and angiotensin 1-converting enzyme (ACE) inhibitory activity of a melon concentrate rich in superoxide dismutase (SOD-MC) were investigated in vitro. The total antioxidant capacity (TAC) was measured by the Trolox equivalent antioxidant capacity assay (TEAC), the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assay, and the ferric reducing antioxidant power assay (FRAP). The ability of the extract to scavenge three specific reactive oxygen species (superoxide radical anion (O(2)(-)), hydroxyl radical (HO()) and hydrogen peroxide (H(2)O(2))) was also investigated in order to better evaluate its antioxidant properties. Even if the measures of TAC were relatively low, results clearly established an antioxidant potential of SOD-MC that exhibited the highest radical-scavenging activity towards O(2)(-), with a IC(50) 12-fold lower than that of H(2)O(2) or HO(). This lets hypothesis that the antioxidant potential of SOD-MC could be mainly due to its high level of SOD. Moreover, for the first time, an ACE inhibitory activity of SOD-MC (IC(50)=2.4±0.1mg/mL) was demonstrated, showing that its use as a functional food ingredient with potential preventive benefits in the context of hypertension may have important public health implications and should be carefully considered. PMID:22953857

  9. Effect of benzo[a]pyrene on detoxification and the activity of antioxidant enzymes of marine microalgae

    Science.gov (United States)

    Shen, Chen; Miao, Jingjing; Li, Yun; Pan, Luqing

    2016-04-01

    The objective of this study was to examine the effect of benzo[a]pyrene (BaP) on the detoxification and antioxidant systems of two microalgae, Isochrysis zhanjiangensis and Platymonas subcordiformis. In our study, these two algae were exposed to BaP for 4 days at three different concentrations including 0.5 μg L-1 (low), 3 μg L-1 (mid) and 18 μg L-1 (high). The activity of detoxification enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) increased in P. subcordiformis in all BaP-treated groups. In I. zhanjiangensis, the activity of these two enzymes increased at the beginning of exposure, and then decreased in the groups treated with mid- and high BaP. The activity of antioxidant enzyme superoxide dismutase (SOD) increased in I. zhanjiangensis in all BaP-treated groups, and then decreased in high BaP-treated group, while no significant change was observed in P. subcordiformis. The activity of antioxidant enzyme catalase (CAT) increased in I. zhanjiangensis and P. subcordiformis in all BaPtreated groups. The content of malondialdehyde (MDA) in Isochrysis zhanjiangensis increased first, and then decreased in high BaP-treated group, while no change occurred in P. subcordiformis. These results demonstrated that BaP significantly influenced the activity of detoxifying and antioxidant enzymes in microalgae. The metabolic related enzymes (EROD, GST and CAT) may serve as sensitive biomarkers of measuring the contamination level of BaP in marine water.

  10. Chemical stress induced by heliotrope (Heliotropium europaeum L.) allelochemicals and increased activity of antioxidant enzymes.

    Science.gov (United States)

    Abdulghader, Kalantar; Nojavan, Majid; Naghshbandi, Nabat

    2008-03-15

    The aims of this study were to evaluate the allelopathic potential of heliotrope on some biochemical processes of dodder. The preliminary experiments revealed that the effect of aqueous extract of leaves of heliotrope is higher than its seeds and roots. So, the aqueous extract of leaves was used in remaining experiments. Leaf extracts of 5 g powder per 100 mL H2O inhibited the germination of dodder seeds up to 95% and that of radish up to 100%. While, the aqueous extract of vine leaves which is a non-allelopathic plant did not have any inhibitory effect on these seeds. Vine leaf was used as a control to show that the inhibitory effect of heliotrope is due to an inhibitory compound but not due to the concentration. The leaf extract of heliotrope at 0.0, 0.1, 1.0, 2, 3, 4 and 5 g powder per 100 mL H2O reduced the radish seedling growth from 14 cm to about 0.5 cm and that of dodder from 7.5 cm to about 0.25 cm. The effects of heliotrope allelochemicals on some physiological and biochemical processes of radish was also Investigated. The activity of auxin oxidase increased in leaves and roots of radish. Suggesting that the reduced radish growth is due to the decreased active auxin levels in its leaves and roots. The activity of alpha-amylase was reduced, so reduction of starch degradation and lack of respiratory energy is the prime reason of germination inhibition in dodder and radish seeds. The level of soluble sugars increased. This is an indication of reduction of the activity of some respiratory enzymes and reduced consumption of these sugars. Proline levels were also increased, indicating that, the chemical stress is induced by leaf extract. Finally, the activities of GPX and CAT which are antioxidant enzymes were increased, along with increased extract concentration. These finding shows that the chemical stress induced by leaf extract produces super oxide (O2*) and H2O2, which is neutralized to H2O and O2 by these enzymes. PMID:18814656

  11. Antioxidant Enzyme Activity, Iron Content and Lipid Oxidation of Raw and Cooked Meat of Korean Native Chickens and Other Poultry.

    Science.gov (United States)

    Muhlisin; Utama, Dicky Tri; Lee, Jae Ho; Choi, Ji Hye; Lee, Sung Ki

    2016-05-01

    This study was conducted to observe antioxidant enzyme activity, iron content and lipid oxidation of Korean native chickens and other poultry. The breast and thigh meat of three Korean native chicken breeds including Woorimatdak, Hyunin black and Yeonsan ogye, and three commercial poultry breeds including the broiler, White Leghorn and Pekin duck (Anasplatyrhyncos domesticus) were studied. The analyses of the antioxidant enzymes activity, iron content and lipid oxidation were performed in raw and cooked samples. The activity of catalase (CAT) in the thigh meat was higher than that of the breast meat of three Korean native chickens and the broiler, respectively. The activity of glutathione peroxidase (GPx) in the uncooked thigh meat of three Korean native chickens was higher than that of the breasts. The breast meat of Woorimatdak and Pekin duck had higher superoxide dismutase (SOD) activity than the others, while only the thigh meat of Pekin duck had the highest activity. Cooking inactivated CAT and decreased the activity of GPx and SOD. The thigh meat of Woorimatdak, White Leghorn, Yeonsan ogye and Hyunin black contained more total iron than the breast meat of those breeds. The heme-iron lost during cooking ranged from 3.2% to 14.8%. It is noted that the thigh meat had higher thiobarbituric acid reactive substances values than the breast in all chicken breeds. Though Woorimatdak showed higher antioxidant enzyme activity and lower released-iron percentage among Korean native chickens, no differences were found on lipid oxidation. We confirm that the dark meat of poultry exhibited higher antioxidant enzyme activity and contained more iron than the white meat. PMID:26954148

  12. Antioxidant Enzyme Activity, Iron Content and Lipid Oxidation of Raw and Cooked Meat of Korean Native Chickens and Other Poultry.

    Science.gov (United States)

    Muhlisin; Utama, Dicky Tri; Lee, Jae Ho; Choi, Ji Hye; Lee, Sung Ki

    2016-05-01

    This study was conducted to observe antioxidant enzyme activity, iron content and lipid oxidation of Korean native chickens and other poultry. The breast and thigh meat of three Korean native chicken breeds including Woorimatdak, Hyunin black and Yeonsan ogye, and three commercial poultry breeds including the broiler, White Leghorn and Pekin duck (Anasplatyrhyncos domesticus) were studied. The analyses of the antioxidant enzymes activity, iron content and lipid oxidation were performed in raw and cooked samples. The activity of catalase (CAT) in the thigh meat was higher than that of the breast meat of three Korean native chickens and the broiler, respectively. The activity of glutathione peroxidase (GPx) in the uncooked thigh meat of three Korean native chickens was higher than that of the breasts. The breast meat of Woorimatdak and Pekin duck had higher superoxide dismutase (SOD) activity than the others, while only the thigh meat of Pekin duck had the highest activity. Cooking inactivated CAT and decreased the activity of GPx and SOD. The thigh meat of Woorimatdak, White Leghorn, Yeonsan ogye and Hyunin black contained more total iron than the breast meat of those breeds. The heme-iron lost during cooking ranged from 3.2% to 14.8%. It is noted that the thigh meat had higher thiobarbituric acid reactive substances values than the breast in all chicken breeds. Though Woorimatdak showed higher antioxidant enzyme activity and lower released-iron percentage among Korean native chickens, no differences were found on lipid oxidation. We confirm that the dark meat of poultry exhibited higher antioxidant enzyme activity and contained more iron than the white meat.

  13. Abscisic Acid Induced Changes in Production of Primary and Secondary Metabolites, Photosynthetic Capacity, Antioxidant Capability, Antioxidant Enzymes and Lipoxygenase Inhibitory Activity of Orthosiphon stamineus Benth.

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2013-07-01

    Full Text Available An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2−, phenylalanine ammonia lyase (PAL activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX, catalase (CAT, superoxide dismutase (SOD and Lipoxygenase inhibitory activity (LOX] under four levels of foliar abscisic acid (ABA application (0, 2, 4, 6 µM for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2−, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05 and O2− (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05. This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  14. Induction of phase 2 antioxidant enzymes by broccoli sulforaphane: Perspectives in maintaining the antioxidant activity of vitamins A, C, and E

    Directory of Open Access Journals (Sweden)

    Sekhar s Boddupalli

    2012-01-01

    Full Text Available Consumption of fruits and vegetables is recognized as an important part of a healthy diet. Increased consumption of cruciferous vegetables in particular has been associated with a decreased risk of several degenerative and chronic diseases, including cardiovascular disease and certain cancers. Members of the cruciferous vegetable family, which includes broccoli, Brussels sprouts, cauliflower, and cabbage, accumulate significant concentrations of glucosinolates, which are metabolized in vivo to biologically active isothiocyanates (ITCs. The ITC sulforaphane, which is derived from glucoraphanin, has garnered particular interest due to its extraordinary ability to induce expression of several enzymes via the Keap1/Nrf2/ARE pathway. Nrf2/ARE gene products are typically characterized as Phase II detoxification enzymes and/or antioxidant (AO enzymes. Over the last decade, human clinical studies have begun to provide in vivo evidence of both Phase II and AO enzyme induction by SF. Many AO enzymes are redox cycling enzymes that maintain redox homeostasis and activity of free radical scavengers such as such as vitamins A, C and E. In this review, we present the existing evidence for induction of PII and AO enzymes by SF, the interactions of SF-induced AO enzymes and proposed maintenance of the essential vitamins A, C and E, and, finally, the current view of genotypic effects on ITC metabolism and AO enzyme induction and function.

  15. Differential Responses of the Activities of Antioxidant Enzymes to Thermal Stresses between Two Invasive Eupatorium Species in China

    Institute of Scientific and Technical Information of China (English)

    Ping Lu; Wei-Guo Sang; Ke-Ping Ma

    2008-01-01

    The effect of thermal stress on the antioxidant system was Investigated in two invasive plants, Eupatorlum adenophorum Spreng. and E. odoratum L. The former is sensitive to high temperature, whereas the latter is sensitive to low temperature.Our aim was to explore the relationship between the response of antioxidant enzymes and temperature In the two Invasive weeds with different distribution patterns in China. Plants were transferred from glasshouse to growth chambers at a constant 25 ℃ for 1 week to acclimatize to the environment. For the heat treatments, temperature was Increased stepwise to 30, 35, 38 and finally to 42 ℃. For the cold treatments, temperature was decreased stepwise to 20, 15,10 and finally to 5 ℃.Plants were kept In the growth chambers for 24 h at each temperature step. In E. adenophorum, the coordinated Increase of the activities of antioxidant enzymes was effective In protecting the plant from the eccumulatlon of active oxygen species (AOS) at low temperature, but the activities of catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX),glutathione reductase (GR), and monodehydroascorbate reductase (MDAR) were not accompanied by the Increase of super-oxide dismutase (SOD) during the heat treatments. As a result, the level of lipid peroxidation in E. adenophorum was higher under heat stress than under cold stress. In E. odoratum, however, the lesser degree of membrane damage, as indicated by low monodehydroascorbate content, and the coordinated Increase of the oxygen. Dstoxlfying enzymes were observed in hest-treated plants, but the antioxidant enzymes were unable to operate in cold stress. This indicates that the plants have a higher capacity for scavenging oxygen radicals in heat stress than in cold stress. The different responses of antloxidant enzymes may be one of the possible mechanisms of the differences in temperature sensitivities of the two plant species.

  16. Foliar application of chlorocholine chloride improves leaf mineral nutrition, antioxidant enzyme activity, and tuber yield of potato (Solanum tuberosum L.)

    DEFF Research Database (Denmark)

    Wang, Huigun; Xiao, Langtao; Tong, Jianhua;

    2010-01-01

    growth conditions; however, the physiological mechanisms underlying the beneficial effects have not been fully understood. The objective of this study was to investigate the effects of CCC treatment on mineral nutrition, antioxidant enzyme system, and tuber yield of potato (cv. Zhongshu 3) under field...... conditions. The plants were foliar sprayed twice with 1.5, 2.0 and 2.5 g l-1 CCC at 24 and 28 days after emergence (DAE), respectively; and plants without CCC treatment were serviced as control. Leaf samples were collected on 56 DAE for determination of mineral nutrition contents and antioxidant enzyme...... activity. Results showed that 1.5 and 2.0 g l-1 CCC treatments significantly increased the contents of P, K, Ca, Mg, Fe, Mn, Zn and Cu in potato leaves. These treatments also increased superoxide dismutase (SOD), peroxidases (POD) and catalase (CAT) activities in the leaves. A positive linear relationship...

  17. Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs

    Science.gov (United States)

    Karthikeyan, B.; Jaleel, C.A.; Gopi, R.; Deiveekasundaram, M.

    2007-01-01

    An experiment was conducted on Catharanthus roseus to study the effect of seed treatments with native diazotrophs on its seedling growth and antioxidant enzyme activities. The treatments had significant influence on various seedling parameters. There is no significant influence on dry matter production with the diazotrophs, Azospirillum and Azotobacter. However, the vital seedling parameters such as germination percentage and vigour index were improved. Azotobacter treatment influenced maximum of 50% germination, whereas Azospirillum and Azotobacter were on par with C. roseus with respect to their vigour index. There was significant difference in the population of total diazotrophs. Azospirillum and Azotobacter between rhizosphere and non-rhizosphere soils of C. roseus had the same trend and were observed at various locations of the study. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were increased to a significant extent due to the treatment with diazotrophs. PMID:17610323

  18. Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs

    Institute of Scientific and Technical Information of China (English)

    KARTHIKEYAN B.; JALEEL C.A.; GOPI R.; DEIVEEKASUNDARAM M.

    2007-01-01

    An experiment was conducted on Catharanthus roseus to study the effect of seed treatments with native diazotrophs on its seedling growth and antioxidant enzyme activities. The treatments had significant influence on various seedling parameters.There is no significant influence on dry matter production with the diazotrophs, Azospirillum and Azotobacter. However, the vital seedling parameters such as germination percentage and vigour index were improved. Azotobacter treatment influenced maximum of 50% germination, whereas Azospirillum and Azotobacter were on par with C. roseus with respect to their vigour index. There was significant difference in the population of total diazotrophs. Azospirillum and Azotobacter between rhizosphere and non-rhizosphere soils of C. roseus had the same trend and were observed at various locations of the study. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were increased to a significant extent due to the treatment with diazotrophs.

  19. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L.)

    Science.gov (United States)

    Hao, Ting; Jin, Haijun; Zhang, Hongmei; He, Lizhong; Zhou, Qiang; Huang, Danfeng; Hui, Dafeng; Yu, Jizhu

    2016-01-01

    Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease. PMID:27065102

  20. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Ding, Xiaotao; Jiang, Yuping; Hao, Ting; Jin, Haijun; Zhang, Hongmei; He, Lizhong; Zhou, Qiang; Huang, Danfeng; Hui, Dafeng; Yu, Jizhu

    2016-01-01

    Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease. PMID:27065102

  1. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L..

    Directory of Open Access Journals (Sweden)

    Xiaotao Ding

    Full Text Available Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease.

  2. Plasma Homocysteine Is Associated with Increased Oxidative Stress and Antioxidant Enzyme Activity in Welders

    Directory of Open Access Journals (Sweden)

    Hung-Hsin Liu

    2013-01-01

    Full Text Available The purpose of this study was to examine the association of vitamin B6 status and plasma homocysteine with oxidative stress and antioxidant capacities in welders. Workers were divided into either the welding exposure group (n=57 or the nonexposure controls (n=42 based on whether they were employed as welders. There were no significant differences in vitamin B6 status and plasma homocysteine concentration between the welding exposure group and the nonexposure controls. The welding exposure group had significantly higher levels of oxidized low-density lipoprotein cholesterol and lower erythrocyte glutathione concentration and superoxide dismutase (SOD activities when compared to nonexposure controls. Plasma pyridoxal 5′-phosphate concentration did not correlate with oxidative stress indicators or antioxidant capacities in either group. However, plasma homocysteine significantly correlated with total antioxidant capacity (TAC (partial rs=-0.34, P<0.05 and erythrocyte SOD activities (partial rs=0.29, P<0.05 after adjusting for potential confounders in the welding exposure group. In the welding exposure group, adequate vitamin B6 status was not associated with oxidative stress or antioxidant capacities. However, elevated plasma homocysteine seemed to be a major contributing factor to antioxidant capacities (TAC and erythrocyte SOD activities in welders.

  3. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature.

    Science.gov (United States)

    Hu, Zhengrong; Fan, Jibiao; Chen, Ke; Amombo, Erick; Chen, Liang; Fu, Jinmin

    2016-04-01

    The phytohormone ethylene has been reported to mediate plant response to cold stress. However, it is still debated whether the effect of ethylene on plant response to cold stress is negative or positive. The objective of the present study was to explore the role of ethylene in the cold resistance of Bermuda grass (Cynodon dactylon (L).Pers.). Under control (warm) condition, there was no obvious effect of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the antagonist Ag(+) of ethylene signaling on electrolyte leakage (EL) and malondialdehyde (MDA) content. Under cold stress conditions, ACC-treated plant leaves had a greater level of EL and MDA than the untreated leaves. However, the EL and MDA values were lower in the Ag(+) regime versus the untreated. In addition, after 3 days of cold treatment, ACC remarkably reduced the content of soluble protein and also altered antioxidant enzyme activity. Under control (warm) condition, there was no significant effect of ACC on the performance of photosystem II (PS II) as monitored by chlorophyll α fluorescence transients. However, under cold stress, ACC inhibited the performance of PS II. Under cold condition, ACC remarkably reduced the performance index for energy conservation from excitation to the reduction of intersystem electron acceptors (PI(ABS)), the maximum quantum yield of primary photochemistry (φP0), the quantum yield of electron transport flux from Q(A) to Q(B) (φE0), and the efficiency/probability of electron transport (ΨE0). Simultaneously, ACC increased the values of specific energy fluxes for absorption (ABS/RC) and dissipation (DI0/RC) after 3 days of cold treatment. Additionally, under cold condition, exogenous ACC altered the expressions of several related genes implicated in the induction of cold tolerance (LEA, SOD, POD-1 and CBF1, EIN3-1, and EIN3-2). The present study thus suggests that ethylene affects the cold tolerance of Bermuda grass by impacting the antioxidant system

  4. Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates

    Directory of Open Access Journals (Sweden)

    Melissa Ferreira SBROGGIO

    2016-01-01

    Full Text Available Abstract The objective of this work was to evaluate the antioxidant activity of protein hydrolysates obtained by the enzymatic hydrolysis of okara using an endopeptidase (Alcalase and exopeptidase (Flavourzyme. The reaction was monitored by the pH-stat procedure in which five aliquots were collected during the hydrolysis by each enzyme, corresponding to different degrees of hydrolysis (DH. The antioxidant activities of the aliquots were evaluated by the ABTS, DPPH and FRAP methods. For the hydrolysates obtained using Alcalase, the antioxidant activities increased from: 68.6 to 99.5% (ABTS, 14.5 to 17.7% (DPPH and 222.6 to 684.9 µM Trolox (FRAP, when the DH varied from 0 to 33.6%. With respect to Flavourzyme, the results were: 67.2 to 88.2% (ABTS, 9.5 to 18.5% (DPPH and 168.0 to 360.3 µM Trolox (FRAP, when the DH increased up to 5.8%. The results showed that the protein hydrolysates had antioxidant capacities, which were influenced by the degree of hydrolysis and the type of enzyme.

  5. Roles of plant growth regulators on yield, grain qualities and antioxidant enzyme activities in super hybrid rice (Oryza sativa L.)

    OpenAIRE

    Pan, Shenggang; Rasul, Fahd; Li, Wu; Tian, Hua; Mo, Zhaowen; Duan, Meiyang; Tang, Xiangru

    2013-01-01

    Background Plant growth regulators play important roles in plant growth and development, but little is known about roles of plant growth regulators in yield, grain qualities and antioxidant enzyme activities in super hybrid rice. In this study, gibberellic acid(GA3), paclobutrazol (PBZ), 6-Benzylaminopurine(6-BA) treatments and distilled water (control) were sprayed to two hybrid rice cultivars (Peizataifeng and Huayou 86) at the heading stage in the field experiments in both early and late s...

  6. Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs

    OpenAIRE

    B.Karthikeyan; Jaleel, C.A.; Gopi, R.; Deiveekasundaram, M.

    2007-01-01

    An experiment was conducted on Catharanthus roseus to study the effect of seed treatments with native diazotrophs on its seedling growth and antioxidant enzyme activities. The treatments had significant influence on various seedling parameters. There is no significant influence on dry matter production with the diazotrophs, Azospirillum and Azotobacter. However, the vital seedling parameters such as germination percentage and vigour index were improved. Azotobacter treatment influenced maximu...

  7. Evaluation of the Inhibition of Carbohydrate Hydrolyzing Enzymes, the Antioxidant Activity, and the Polyphenolic Content of Citrus limetta Peel Extract

    Directory of Open Access Journals (Sweden)

    Eduardo Padilla-Camberos

    2014-01-01

    Full Text Available Type 2 diabetes mellitus is one of the most frequent causes of death in Mexico, characterized by chronic hyperglycemia. One alternative strategy for this metabolic abnormality is inhibiting the enzymes responsible for the metabolism of carbohydrates. We evaluated whether the aqueous Citrus limetta peel extract could inhibit the metabolism of carbohydrates. We found that this extract inhibited primarily the enzyme α-amylase by 49.6% at a concentration of 20 mg/mL and to a lesser extent the enzyme α-glucosidase with an inhibition of 28.2% at the same concentration. This inhibition is likely due to the high polyphenol content in the Citrus limetta peel (19.1 mg GAE/g. Antioxidant activity of the Citrus limetta peel demonstrated dose-dependent antioxidant activity, varying from 6.5% at 1.125 mg/mL to 42.5% at 20 mg/mL. The study of these polyphenolic compounds having both antihyperglycemic and antioxidant activities may provide a new approach to the management of type 2 diabetes mellitus.

  8. Influence of thermal treatment on color, enzyme activities, and antioxidant capacity of innovative pastelike parsley products.

    Science.gov (United States)

    Kaiser, Andrea; Brinkmann, Maike; Carle, Reinhold; Kammerer, Dietmar R

    2012-03-28

    Conventional spice powders are often characterized by low sensory quality and high microbial loads. Furthermore, genuine enzymes are only inhibited but not entirely inactivated upon drying, so that they may regain their activity upon rehydration of dried foods. To overcome these problems, initial heating was applied in the present study as the first process step for the production of innovative pastelike parsley products. For this purpose, fresh parsley was blanched (80, 90, and 100 °C for 1-10 min) and subsequently comminuted to form a paste. Alternatively, mincing was carried out prior to heat treatment. Regardless of temperature, the color of the latter product did not show any change after heating for 1 min. With progressing exposure time the green color turned to olive hues due to marked pheophytin formation. Inactivation of genuine peroxidase (POD) and polyphenol oxidase (PPO) was achieved at all temperature-time regimes applied. In contrast, the parsley products obtained after immediate water-blanching were characterized by brighter green colors and enhanced pigment retention. With the exception of the variants water-blanched at 80 °C, POD and PPO were completely inactivated at any of the thermal treatments. Furthermore, in water-blanched samples, antioxidant capacities as determined by the TEAC and FRAP assays were even enhanced compared to unheated parsley, whereas a decrease of phenolic contents could not be prevented. Consequently, the innovative process presented in this study allows the production of novel herb and spice products characterized by improved sensory quality as compared to conventional spice products. PMID:22375822

  9. [Effect of exogenous calcium on the activities of antioxidative protective enzymes in ectomycorrhizal fungi under aluminum stress].

    Science.gov (United States)

    Wang, Ming-Xia; Huang, Jian-Guo; Yuan, Ling; Zhou, Zhi-Feng

    2012-10-01

    In order to investigate the function of Ca2+ in the alleviation of Al3+ stress in ectomycorrhizal fungi, four strains (Bo 02, Bo 15, Pt 715 and Sl 08) were grown in liquid culture media to study the Al resistance of different strains and the effect of exogenous Ca2+ (0, 0.25, 0.5, 1.0 mmol x L(-1)) on the activity of antioxidative protective enzymes under Al3+ stress. It was showed that ectomycorrhizal fungal species varied in resistance to Al3+ stress. Pt 715 and Sl 08 were more tolerant to Al3+ than Bo 02 and Bo 15 in vitro. The activities of CAT and SOD in Bo 02, SOD in Bo 15, CAT and POD in Sl 08 increased significantly under Al3+ stress. It was showed that the activities of these enzymes in ectomycorrhizal fungi had a close relationship with Al3+ stress. The enzymes in Bo 02 were most sensitive to exogenous Ca2+ and the function of Ca2+ in resisting Al3+ stress was the best in the four strains. A high concentration of Ca2+ (> or = 0.5 mmol x L(-1)) could alleviate or offset the increased activities of antioxidative protective enzymes by Al3+ stress in Sl 08.

  10. Effect of static magnetic field and/or cadmium in the antioxidant enzymes activity in rat heart and skeletal muscle.

    Science.gov (United States)

    Amara, Salem; Garrel, Catherine; Favier, Alain; Ben Rhouma, Khémais; Sakly, Mohsen; Abdelmelek, Hafedh

    2009-12-01

    Currently, environmental and industrial pollution along with increase and causes multiple stress conditions, the combined exposure to magnetic field and other toxic agents is recognised as an important research area, with a view to better protecting human health against their probable unfavourable effects. In the present study, we investigated the effect of co-exposure to static magnetic field (SMF) and cadmium (Cd) on the antioxidant enzymes activity and the malondialdehyde (MDA) concentration in rat skeletal and cardiac muscles. The exposure of rats to SMF (128 mT, 1 h/day during 30 consecutive days) decreased the activities of glutathione peroxidase (GPx) and the superoxide dismutase (CuZn-SOD) in heart muscle. Sub-chronic exposure to SMF increased the MDA concentration in rat cardiac muscle. Cd treatment (CdCl2, 40 mg/l, per os) during 4 weeks decreased the activities of catalase (CAT) in skeletal muscle and the CuZn-SOD in the heart. Moreover, Cd administration increased MDA concentration in the both structures. The combined effect of SMF (128 mT, 1 h/day during 30 consecutive days) and Cd (40 mg/l, per os) disrupt the antioxidant enzymes activity in rat skeletal and cardiac muscles. Moreover, we noted a huge increase in MDA concentration in the heart and skeletal muscle compared to control group. Thus it is possible that the SMF- and/or Cd-induced depletion of antioxidant enzymes activity in muscle tissues might, like the enhanced lipid peroxidation, importantly contribute to oxidative damage. The combined effect of SMF and Cd altered significantly the antioxidant enzymatic capacity and induced lipid peroxidation in both skeletal and cardiac muscle.

  11. Physiological responses of Brassica napus to fulvic acid under water stress:Chlorophyll a fluorescence and antioxidant enzyme activity

    Institute of Scientific and Technical Information of China (English)

    Ramin Lotfi; Mohammad Pessarakli; Puriya Gharavi-Kouchebagh; Hossein Khoshvaghti

    2015-01-01

    The ameliorative effect of fulvic acid (0, 300, and 600 mg L−1) on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L.) plant under water stress (60, 100, and 140 mm evaporation from class A pan) was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA) improved the maximum quantum efficiency of PSII (Fv/Fm) and performance index (PI) of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS) is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  12. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Institute of Scientific and Technical Information of China (English)

    Ramin; Lotfi; Mohammad; Pessarakli; Puriya; Gharavi-Kouchebagh; Hossein; Khoshvaghti

    2015-01-01

    The ameliorative effect of fulvic acid(0, 300, and 600 mg L-1) on photosystem II and antioxidant enzyme activity of the rapeseed(Brassica napus L.) plant under water stress(60, 100, and 140 mm evaporation from class A pan) was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid(FA) improved the maximum quantum efficiency of PSII(Fv/Fm)and performance index(PI) of plants under both well-watered and limited-water conditions. The time span from Foto Fmand the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species(ROS) is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  13. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  14. Selenium-induced Changes in Activities of Antioxidant Enzymes and Content of Photosynthetic Pigments in Spirulina platensis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Spirulina platensis exposed to various selenium (Se) concentrations (0,10,20, 40, 80, 150, 175, 200, 250 mglL) accumulated high amounts of Se in a dose- and time-dependent manner. Under low Se concentrations (≤150 mg/L), Se induced increases in biomass concentration, content of photosynthetic pigments, and activities of glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT) and Gua-dep peroxidases (POD), which indicates that antioxidant enzymes play an important role in protecting cells from Se stress. Higher Se concentrations (≥ 175 mg/L) led to higher Se accumulation and increases in activities of GPX, SOD, CAT and POD, but also induced lipid peroxidation (LPO) coupled with potassium leakage and decreases in biomass concentration and contents of photosynthetic pigment. The results indicate that increases in activities of the antioxidant enzymes were not sufficient to protect cell membranes against Se stress. Time-dependent variations in the activities of antioxidant enzymes, contents of chlorophyll a and carotenoid and the LPO level were also investigated under representative Se concentrations of 40 and 200 mg/L. Opposite variation trends between SOD-CAT activities, and GPX-POD-APX activities were observed during the growth cycles. The results showed that the prevention of damage to cell membranes of S. platensis cells could be achieved by cooperative effects of SOD-CAT and GPX-POD-APX enzymes. This study concludes that S. platensis possessed tolerance to Se and could protect itself from phytotoxicity induced by Se by altering various metabolic processes.

  15. ANTIOXIDANT ENZYME ACTIVITY AMONG ORPHANS INFECTED WITH INTESTINAL PARASITES IN PATHUM THANI PROVINCE, THAILAND.

    Science.gov (United States)

    Mahittikorn, Aongart; Prasertbun, Rapeepan; Mori, Hirotake; Popruk, Supaluk

    2014-11-01

    Intestinal parasitic infections can negatively impact growth and nutrition in children. The infections can induce oxidative stress, resulting in a variety of illnesses. We measured antioxidant enzyme levels in orphan children infected with intestinal parasites to investigate the influence of nutritional status on antioxidant enzymes. This cross sectional study was conducted at an orphanage in Thailand. Stool samples were obtained from each subject and examined for intestinal parasites. Anthropometric measurements, complete blood count and biochemical parameters, including serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels, were obtained from studied subjects. One hundred twenty-eight children were included in the study. Intestinal parasites were found on microscopic examination of the stools in 36.7% (47/128); 18% (23/128) had a mixed parasite infection. Intestinal protozoa were found in 34.4% of subjects and intestinal helminthes were found in 2.3%. The median GPx level in children infected with intestinal parasites (2.3 ng/ml) was significantly lower than in non-infected children (7.7 ng/ml) (p < 0.05). However, there was no significant difference in SOD levels between the two groups. When comparing GPx levels in children with 1) pathogenic parasites, 2) non-pathogenic parasites and 3) no intestinal parasite infection, GPx levels differed significantly among three groups (2.2 ng/ml, 2.4 ng/ml and 7.7 ng/ml, respectively) (p < 0.05). When separating children by BMI and type of infection, the median SOD level in underweight children infected with pathogenic parasites (107.2 ng/ml) was significantly higher than in underweight children infected with non-pathogenic parasites (68.6 ng/ml) and without intestinal parasite infections (72.2 ng/ml). The present study identified two key findings: low GPx levels in children with intestinal parasitic infections, and the potential impact of malnutrition on some antioxidants. PMID:26466411

  16. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages.

    Science.gov (United States)

    Varì, Rosaria; D'Archivio, Massimo; Filesi, Carmelina; Carotenuto, Simona; Scazzocchio, Beatrice; Santangelo, Carmela; Giovannini, Claudio; Masella, Roberta

    2011-05-01

    Protocatechuic acid (PCA) is a main metabolite of anthocyanins, whose daily intake is much higher than that of other polyphenols. PCA has biological effects, e.g., it induces the antioxidant/detoxifying enzyme gene expression. This study was aimed at defining the molecular mechanism responsible for PCA-induced over-expression of glutathione (GSH) peroxidase (GPx) and GSH reductase (GR) in J774 A.1 macrophages. New evidence is provided that PCA increases GPx and GR expression by inducing C-JUN NH(2)-terminal kinase (JNK)-mediated phosphorylation of Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2). RNA and proteins were extracted from cells treated with PCA (25 μM) for different time points. Quantitative real-time polymerase chain reaction and immunoblotting analyses showed a rapid increase in mRNA (>60%) and protein (>50%) for both the enzymes. This was preceded by the up-regulation of Nrf2, in terms of mRNA and protein, and by its significant activation as assessed by increased Nrf2 phosphorylation and nuclear translocation (+60%). By using specific kinase inhibitors and detecting the activated form, we showed that JNK was the main upstream kinase responsible for Nrf2 activation. Convincing evidence is provided of a causal link between PCA-induced Nrf2 activation and increased enzyme expression. By silencing Nrf2 and using a JNK inhibitor, enzyme enhancement was counteracted. Finally, with the ChIP assay, we demonstrated that PCA-activated Nrf2 specifically bound ARE sequences in enzyme gene promoters. Our study demonstrates for the first time that PCA improves the macrophage endogenous antioxidant potential by a mechanism in which JNK-mediated Nrf2 activation plays an essential role. This knowledge could contribute to novel diet-based approaches aimed at counteracting oxidative injury by reinforcing endogenous defences. PMID:20621462

  17. 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress.

    Science.gov (United States)

    Fariduddin, Q; Khalil, Radwan R A E; Mir, Bilal A; Yusuf, M; Ahmad, A

    2013-09-01

    Brassinosteroids have been extensively used to overcome various abiotic stresses. But its role in combined stress of salt and excess copper remains unexplored. Seeds of two cultivars (Rocket and Jumbo) of Cucumis sativus were grown in sand amended with copper (100 mg kg(-1)), and developed seedlings were exposed to salt stress in the form of NaCl (150 mM) at the 30-day stage of growth for 3 days. These seedlings were subsequently sprayed with 0 or 0.01 μM of 24-epibrassinolide (EBL) at the 35-day stage. The plants exposed to NaCl and Cu in combination exhibited a significant decline in fresh and dry mass of plant, chlorophyll content, activities of carbonic anhydrase, net photosynthetic rate and maximum quantum yield of the PSII primary photochemistry followed by NaCl and Cu stress alone, more severely in Jumbo than in Rocket. However, the follow-up treatment with EBL to the stressed and nonstressed plant improved growth, chlorophyll content, carbonic anhydrase activity and photosynthetic efficiency, and further enhanced the activity of various antioxidant enzymes viz. catalase, peroxidase and superoxide dismutase and content of proline at the 40-day stage of growth, and the response of the hormone was more effective in Rocket than in Jumbo. The elevated level of antioxidant enzymes as well as proline could have conferred tolerance to the NaCl- and/or Cu-stressed plants resulting in improved growth, water relations and photosynthetic attributes. Furthermore, antioxidant enzyme activity and proline content were more enhanced in Rocket than in Jumbo cultivar.

  18. Antioxidant and antimicrobial activity of lecithin free egg yolk protein preparation hydrolysates obtained with digestive enzymes

    Directory of Open Access Journals (Sweden)

    Aleksandra Zambrowicz

    2012-12-01

    Full Text Available ABSTRACT:Several biological activities have now been associated with egg protein- derived peptides, including antihypertensive, antimicrobial, immunomodulatory, anticancer and antioxidantactivities, highlighting the importance of these biopeptides in human health, and disease prevention and treatment. Special attention has been given to peptides with antioxidant and antimicrobial activities as a new source of natural preservatives in food industry. In this study, the antioxidant properties of the egg-yolk protein by-product (YP hydrolysates were evaluated based on their radical scavenging capacity (DPPH, Fe2+chelating effect and ferric reducing power (FRAP. Furthermore, antimicrobial properties of obtained hydrolysates against Bacillus species were studied. The degrees (DHs of hydrolysis for 4h hydrolysates were: 19.1%, 13.5% and 13.0%, for pepsin, chymotrypsin and trypsin, respectively. Pepsin was the most effective in producing the free amino groups (1410.3 μmolGly/g. The RP-HPLC profiles of the protein hydrolysates showed differences in the hydrophobicity of the generated peptides.Trypsin hydrolysate obtained after 4h reaction demonstrated the strongest DPPH free radical scavenging activity (0.85 µmol Troloxeq/mg. Trypsin and chymotrypsin hydrolysates obtained after 4h reaction exhibited 4 times higher ferric reducing capacity than those treated bypepsin. The hydrolysis products obtained from YP exhibited significant chelating activity. The 4h trypsin hydrolysate exhibited weak antimicrobial activity against B. subtilis B3; B. cereus B512; B. cereus B 3p and B. laterosporum B6.

  19. Effects of chilled storage and cryopreservation on sperm characteristics, antioxidant enzyme activities, and lipid peroxidation in Pacific cod Gadus microcephalus

    Science.gov (United States)

    Wang, Xueying; Shi, Xuehui; Liu, Yifan; Yu, Daode; Guan, Shuguang; Liu, Qinghua; Li, Jun

    2016-07-01

    The present study evaluated the effects of chilled storage and cryopreservation on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod Gadus macrocephalus. Sperm motility and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (Gr), and lipid peroxidation (measured via malondialdehyde (MDA) content) were determined after the milt was stored at 4°C for 12 h, cryopreserved without cryoprotectant in 12% propylene glycol (PG), cryopreserved in 12% PG+0.1 mol/L trehalose, or cryopreserved in 12% PG spermatozoa but centrifuged to decant the supernatant prior to cryopreservation (only sperm cells were cryopreserved). After chilled storage or cryopreservation, the SOD, CAT and GPx activities were reduced in sperm cells and increased in seminal plasma in almost all treatments; sperm motility parameters were also decreased. However, the addition of trehalose into the cryoprotectant could significantly improve the postthaw sperm quality as revealed by the sperm average path velocity. This improvement might be attributed to the function of trehalose in scavenging reactive oxygen species. Chilled storage and cryopreservation had significant effects on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod.

  20. Complex Enzyme-Assisted Extraction, Purification, and Antioxidant Activity of Polysaccharides from the Button Mushroom, Agaricus bisporus (Higher Basidiomycetes).

    Science.gov (United States)

    Yin, Xiulian; You, Qinghong; Zhou, Xinghai

    2015-01-01

    Agaricus bisporus polysaccharides (ABP) were extracted by complex enzyme-assisted extraction methodology. The following were optimal conditions for the extraction of crude ABP: complex enzyme amount, 2.2%; temperature, 62°C; time, 3 h; and pH, 4. Under these conditions, the experimental yield of crude ABP was 6.87%. The crude ABP was purified by diethylaminoethyl-cellulose 52 chromatography and Sephadex G-100 chromatography, and one fraction-namely, ABP-1-was produced. The ABP-1 contained 93.67% carbohydrate, 1.46% protein, and 0.62% uronic acid. The constituent monosaccharides were predominantly glucose, galactose, mannose, and xylose. The antioxidant activities of ABP-1 were investigated by measuring its scavenging ability on 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radicals, its ferric-reducing activity power, and the reducing power assay. At a concentration of 1.2 mg/mL, ABP-1 seemed to possess good free radical scavenging activity, with a scavenging value of about 56%. The results indicate that ABP-1 has good antioxidant activity. PMID:26756190

  1. CHOLESTEROL ESTERASE ENZYME INHIBITORY AND ANTIOXIDANT ACTIVITIES OF LEAVES OF CAMELLIA SINENSIS (L. KUNTZE. USING IN VITRO MODELS

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar et al.

    2011-11-01

    Full Text Available The present study was to evaluate the in vitro cholesterol esterase enzyme inhibitory and in vitro antioxidant activity of the methanol extract of the leaves of Camellia sinensis (L.. Phytochemical screening of the extract shows the presence of flavonoids, phenolics and terpenoids. The extract shows ability to inhibit the enzyme with IC50 (82.46±0.74µg/ml where as that of standard, Orlistat (24.15±0.59µg/ml. Antioxidant and free radical scavenging activity were also assessed by using the methods, IC50 values for Nitric oxide radical scavenging activity (396.83±0.83µg/ml, whereas for standard curcumin (260.38±0.66µg/ml, hydroxyl radical scavenging activity (47.04±2.26µg/ml and for quercetin (70.99±1.31µg/ml. Moreover, the extract was found to scavenge the superoxide with 50% inhibition at 308.17±23.25µg/ml and standard ascorbic acid at 225.08±2.44µg/ml, IC50 for ferrous chelating ability assay (44.12±4.63µg/ml and of ascorbic acid (47.25±.89µg/ml. Total content of flavonoids present in 1mg of extract was 19.8±0.11 µg quercetin equivalents/mg. Results indicated that the extract shows potential bioactive compounds which might have a beneficial impact on diseases related to cholesterol synthesis and showed potential antioxidant and free radical scavenging activities.

  2. Application of Probiotic (Bacillus subtilis to Enhance Immunity, Antioxidation, Digestive Enzymes Activity and Hematological Profile of Shaoxing Duck

    Directory of Open Access Journals (Sweden)

    Imran Rashid Rajput, Wei Fen Li, Ya Li Li, Lei Jian and Min Qi Wang*

    2013-01-01

    Full Text Available The study was designed to evaluate the effects of probiotics (Bacillus subtilis to enhance immunity, antioxidation, digestive enzymes activity and hematological profile of Shaoxing duck. A population of 200 laying ducks (160 days old was divided into two groups each further divided in five replications. The control (G1 were fed on basal diet and (G2 with B. subtilis 1×108 cfu/kg in addition of basal diet for thirty five days. The results showed that, ducks were treated with probiotics (B. subtilis, their serum IL-2 increased and IL-10 decreased (P<0.05. The concentrations of IgG, IgA and sIgA were observed significantly higher in (G2 as compared to (G1. Treatment group (G2, showed significantly improvement in (SOD, T-AOC and ASAFR activity in serum and liver. However, digestive enzymes amylase and trypsin activity also improved (P<0.05 in (G2. The blood chemistry analysis showed significant decrease in FT3 and no other significant change observed in hematological profile as compared to (G1. In conclusion, application of B. subtilis (1×108 cfu/kg may be beneficial to improve antioxidation response, supportive in innate immunity and digestibility of fowls (Shaoxing duck.

  3. Effects of osmotic stress on antioxidant enzymes activities in leaf discs of PSAG12-IPT modified gerbera

    Institute of Scientific and Technical Information of China (English)

    LAI Qi-xian; BAO Zhi-yi; ZHU Zhu-jun; QIAN Qiong-qiu; MAO Bi-zeng

    2007-01-01

    Leaf senescence is often caused by water deficit and the chimeric gene PSAG12-IPT is an auto-regulated gene delaying leaf senescence. Using in vitro leaf discs culture system, the changes of contents of chlorophylls, carotenoids, soluble protein and thiobarbituric acid reactive substance (TBARS) and antioxidant enzymes activities were investigated during leaf senescence of PSAG12-IPT modified gerbera induced by osmotic stress compared with the control plant (wild type). Leaf discs were incubated in 20%, 40% (w/v) polyethylene glycol (PEG) 6 000 nutrient solution for 20 h under continuous light [130 μmol/(m2·s)]. The results showed that the contents of chlorophylls, carotenoids and soluble protein were decreased by osmotic stress with the decrease being more pronounced at 40% PEG, but that, at the same PEG concentration the decrease in the transgenic plants was significantly lower than that in the control plant. The activities of superoxide dismutase (SOD), catalases (CAT), ascorbate peroxidase (APX),guaiacol peroxidase (GPX) and dehydroascorbate reductase (DHAR) were stimulated by PEG treatment. However, the increases were higher in PSAG12-IPT transgenic plants than in the control plants, particularly at 40% PEG treatment. Lipid peroxidation (TBARS content) was increased by PEG treatment with the increase being much lower in transgenic plant than in the control plant.It could be concluded that the increases in the activities of antioxidant enzymes including SOD, CAT, APX, GPX and DHAR were responsible for the delay of leaf senescence induced by osmotic stress.

  4. Temperature stress, anti-oxidative enzyme activity and virus acquisition in Bemisia tabaci (Hemiptera: Aleyrodidae)

    Science.gov (United States)

    In most eukaryotic systems, antioxidants provide protection when cells are exposed to stressful environmental conditions. Antioxidants, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase, function in a stepwise series with SOD initially preventing oxidative damage by conve...

  5. GENOTYPIC THERMOTOLERANCE IS ASSOCIATED WITH ELEVATED PRE-STRESS ANTIOXIDANT ENZYME ACTIVITY IN COTTON LEAVES AND PISTILS

    Science.gov (United States)

    Numerous studies have illustrated the need for antioxidant enzymes in acquired photosynthetic thermotolerance, but information on their possible role in promoting innate thermotolerance in either leaves or reproductive tissues is limited for cotton. We investigated the hypothesis that genotypic diff...

  6. Effects of Exogenous Silicon on the Activities of Antioxidant Enzymes and Lipid Peroxidation in Chilling-Stressed Cucumber Leaves

    Institute of Scientific and Technical Information of China (English)

    LIU Jiao-jing; LIN Shao-hang; XU Pei-lei; WANG Xiu-juan; BAI Ji-gang

    2009-01-01

    In order to increase vegetable productivity by improving environmental conditions,this article investigates the effects of exogenous silicon on the activities of major antioxidant enzymes and on lipid peroxidation under chilling stress,and it examines whether silicon-induced chilling tolerance is mediated by an increase in antioxidant activity.Cucumis sativus cv.Jinchun 4 was hydroponically cultivated to the two-leaf stage,at which point seedlings were watered with different concentrations of silicon (0,0.1 and 1 mmol L-1) and separately exposed to normal (25/18℃) or chilling (15/8℃) temperatures for six days under low light (100 umol m-2 s-1).Data were collected from the second leaves on the percentage of withering and the levels of endogenous silicon,malondialdehyde (MDA),hydrogen peroxide (H2O2),superoxide radical (O2·-), superoxide dismutase (SOD,EC 1.15.1.1),glutathione peroxidase (GSH-Px,EC 1.11.1.9),ascorbate peroxidase (APX,EC 1.11.1.11),monodehydroascorbate reductase (MDHAR,EC 1.6.5.4),glutathione reductase (GR,EC 1.6.4.2),reduced glutathione (GSH) and ascorbate (AsA).Compared to normal temperatures,chilling resulted in partially withered leaves and increased MDA content.When 0.1 or 1 mmol L-1 exogenous silicon was combined with chilling.the withering of the cucumber leaves was reduced relative to the original chilling treatment,while the endogenous silicon content was increased,antioxidants such as SOD,GSH-Px,APX,MDHAR,GR,GSH,and AsA were more active,and the levels of H2O2,O2·-,and MDA were lower.We propose that exogenous silicon leads to greater deposition of endogenous silicon and thereby increases antioxidant activities and reduces lipid peroxidation induced by chilling.

  7. Effects of Exogenous Silicon on Photosynthetic Capacity and Antioxidant Enzyme Activities in Chloroplast of Cucumber Seedlings Under Excess Manganese

    Institute of Scientific and Technical Information of China (English)

    FENG Jian-peng; SHI Qing-hua; WANG Xiu-feng

    2009-01-01

    Effects of silicon on photosynthetic parameters and antioxidant enzymes of chloroplast in cucumber seedlings under excess Mn were studied. Compared with the control, excess Mn significantly inhibited net photosynthetic rate (Pn), stomatal conductance, as well as the maximum yield of the photosystem Ⅱ photochemical reactions (Fv/Fm) and the quantum yield of photosysytem Ⅱelectron transport(φPSⅡ),application of Si reversed the negative effects of excess Mn. In the further investigation, it was obtained that application of Si significantly increased the activities of enzymes related with ascorbate-glutathione cycle including ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in cucumber chloroplast under excess Mn, this could be responsible for the lower accumulation of H2O2 and lower lipid peroxidation of chloroplast induced by Mn, and resulted in keeping higher photosynthesis.

  8. Heat stress and antioxidant enzyme activity in bubaline ( Bubalus bubalis) oocytes during in vitro maturation

    Science.gov (United States)

    Waiz, Syma Ashraf; Raies-ul-Haq, Mohammad; Dhanda, Suman; Kumar, Anil; Goud, T. Sridhar; Chauhan, M. S.; Upadhyay, R. C.

    2016-09-01

    In vitro environments like heat stress usually increase the production of reactive oxygen species in bubaline oocytes which have been implicated as one of the major causes for reduced developmental competence. Oocytes during meiotic maturation are sensitive to oxidative stress, and heat stress accelerates cellular metabolism, resulting in the higher production of free radicals. Therefore, the aim of present work was to assess the impact of heat stress during meiotic maturation on bubaline cumulus-oocyte complexes (COC), denuded oocytes (DO), and cumulus cell mass in terms of their oxidative status. Accordingly, for control group, COC were matured at 38.5 °C for complete 24 h of meiotic maturation and heat stress of 40.5 and 41.5 °C was applied to COC during the first 12 h of maturation and then moved to 38.5 °C for rest of the 12 h. In another group, COC after maturation were denuded from the surrounding cumulus cells by manual pipetting. Results indicated that the production of reactive oxygen species (ROS), lipid peroxides, and nitric oxide (NO) was significantly ( P antioxidant enzymatic activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were significantly ( P antioxidant enzymatic defense system for scavenging the ROS.

  9. Interaction of vitamin E and exercise training on oxidative stress and antioxidant enzyme activities in rat skeletal muscles.

    Science.gov (United States)

    Chang, Chen-Kang; Huang, Hui-Yu; Tseng, Hung-Fu; Hsuuw, Yan-Der; Tso, Tim K

    2007-01-01

    It has been shown that free radicals are increased during intensive exercise. We hypothesized that vitamin E (vit E) deficiency, which will increase oxidative stress, would augment the training-induced adaptation of antioxidant enzymes. This study investigated the interaction effect of vit E and exercise training on oxidative stress markers and activities of antioxidant enzymes in red quadriceps and white gastrocnemius of rats in a 2x2 design. Thirty-two male rats were divided into trained vit E-adequate, trained vit E-deficient, untrained vit E-adequate, and untrained vit E-deficient groups. The two trained groups swam 6 h/day, 6 days/week for 8 weeks. The two vit E-deficient groups consumed vit E-free diet for 8 weeks. Vitamin E-training interaction effect was significant on thiobarbituric acid reactive substances (TBARSs), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in both muscles. The trained vit E-deficient group showed the highest TBARS and GPX activity and the lowest SOD activity in both muscles. A significant vit E effect on glutathione reductase and catalase was present in both muscles. Glutathione reductase and catalase activities were significantly lower in the two vit E-adequate groups combined than in the two vit E-deficient groups combined in both muscles. This study shows that vit E status and exercise training have interactive effect on oxidative stress and GPX and SOD activities in rat skeletal muscles. Vitamin E deprivation augmented the exercise-induced elevation in GPX activity while inhibiting exercise-induced SOD activity, possibly through elevated oxidative stress. PMID:16644199

  10. Studies on the potential antioxidant properties of Senecio stabianus Lacaita (Asteraceae) and its inhibitory activity against carbohydrate-hydrolysing enzymes.

    Science.gov (United States)

    Tundis, Rosa; Menichini, Federica; Loizzo, Monica R; Bonesi, Marco; Solimene, Umberto; Menichini, Francesco

    2012-01-01

    This study showed for the first time the antioxidant and hypoglycaemic properties of the methanol, n-hexane and ethyl acetate extracts from Senecio stabianus Lacaita, a plant that belongs to the Asteraceae family. The antioxidant activities were carried out using two different in vitro assays, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH) test and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonate) (ABTS) test. The ethyl acetate extract showed the highest activity with inhibitory concentration 50% (IC(50)) values of 35.5 and 32.7 µg mL(-1) on DPPH test and ABTS test, respectively. This activity may be related to a good total phenol and flavonoid content. All extracts were also tested for their potential inhibitory activity of α-amylase and α-glucosidase digestive enzymes. The n-hexane extract exhibited the highest α-amylase inhibition with an IC(50) value of 0.21 mg mL(-1). Through bioassay-guided fractionation processes seven fractions (A-G) were obtained and tested. Based on the phytochemical analysis, the activity of n-hexane extract may be related to the presence of monoterpenes and sesquiterpenes. PMID:21644170

  11. Effect of different methods of hypoxic exercise training on free radical oxidation and antioxidant enzyme activity in the rat brain.

    Science.gov (United States)

    Li, Jie; Wang, Yuxia

    2013-11-01

    The effects of different modes of hypoxic exercise training on free radical production and antioxidant enzyme activity in the brain of rats were investigated in this study. A total of 40 healthy 2-month-old male Wister rats were randomly assigned to 5 groups according to different training modes. Endurance training sessions were performed for 5 weeks under different normoxic (atmospheric pressure ~632 mmHg, altitude ~1,500 m) and hypoxic conditions (atmospheric pressure ~493 mmHg, altitude ~3,500 m) at the same relative intensity. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activity and the malondialdehyde (MDA) content of the brain were evaluated by spectrophotometric analysis. Compared to the low-training low (LL) group, the SOD activity was significantly increased by 68.73, 54.28 and 304.02% in the high-training high (HH), high-training low (HL) and high-exercise high-training low (HHL) groups, respectively. However, no obvious change was observed for the low-training high (LH) group. In comparison to the LL group, the GSH-Px activity was found to be significantly higher in the HH, HL, LH and HHL groups. Similarly, in comparison to the LL group, the CAT activity exhibited a significant increase in the HH, HL, LH and HHL groups. Compared to the LL group, the MDA content was significantly increased in the HH, HL and HHL groups, although no significant difference was detected for the LH group. Following exhaustive exercise, the antioxidant enzyme activities in the rat brains were immediately improved in all the hypoxia modes. Moreover, the free radical production was increased after all the modes of hypoxic exercise training, with the LH mode being the only exception. PMID:24649054

  12. Effect of different methods of hypoxic exercise training on free radical oxidation and antioxidant enzyme activity in the rat brain

    Science.gov (United States)

    LI, JIE; WANG, YUXIA

    2013-01-01

    The effects of different modes of hypoxic exercise training on free radical production and antioxidant enzyme activity in the brain of rats were investigated in this study. A total of 40 healthy 2-month-old male Wister rats were randomly assigned to 5 groups according to different training modes. Endurance training sessions were performed for 5 weeks under different normoxic (atmospheric pressure ~632 mmHg, altitude ~1,500 m) and hypoxic conditions (atmospheric pressure ~493 mmHg, altitude ~3,500 m) at the same relative intensity. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activity and the malondialdehyde (MDA) content of the brain were evaluated by spectrophotometric analysis. Compared to the low-training low (LL) group, the SOD activity was significantly increased by 68.73, 54.28 and 304.02% in the high-training high (HH), high-training low (HL) and high-exercise high-training low (HHL) groups, respectively. However, no obvious change was observed for the low-training high (LH) group. In comparison to the LL group, the GSH-Px activity was found to be significantly higher in the HH, HL, LH and HHL groups. Similarly, in comparison to the LL group, the CAT activity exhibited a significant increase in the HH, HL, LH and HHL groups. Compared to the LL group, the MDA content was significantly increased in the HH, HL and HHL groups, although no significant difference was detected for the LH group. Following exhaustive exercise, the antioxidant enzyme activities in the rat brains were immediately improved in all the hypoxia modes. Moreover, the free radical production was increased after all the modes of hypoxic exercise training, with the LH mode being the only exception. PMID:24649054

  13. Heat stress and antioxidant enzyme activity in bubaline (Bubalus bubalis) oocytes during in vitro maturation

    Science.gov (United States)

    Waiz, Syma Ashraf; Raies-ul-Haq, Mohammad; Dhanda, Suman; Kumar, Anil; Goud, T. Sridhar; Chauhan, M. S.; Upadhyay, R. C.

    2016-01-01

    In vitro environments like heat stress usually increase the production of reactive oxygen species in bubaline oocytes which have been implicated as one of the major causes for reduced developmental competence. Oocytes during meiotic maturation are sensitive to oxidative stress, and heat stress accelerates cellular metabolism, resulting in the higher production of free radicals. Therefore, the aim of present work was to assess the impact of heat stress during meiotic maturation on bubaline cumulus-oocyte complexes (COC), denuded oocytes (DO), and cumulus cell mass in terms of their oxidative status. Accordingly, for control group, COC were matured at 38.5 °C for complete 24 h of meiotic maturation and heat stress of 40.5 and 41.5 °C was applied to COC during the first 12 h of maturation and then moved to 38.5 °C for rest of the 12 h. In another group, COC after maturation were denuded from the surrounding cumulus cells by manual pipetting. Results indicated that the production of reactive oxygen species (ROS), lipid peroxides, and nitric oxide (NO) was significantly (P < 0.05) higher in the oocytes subjected to heat stress (40.5 and 41.5 °C) during meiotic maturation compared to the oocytes matured under standard in vitro culture conditions (38.5 °C). Also, the antioxidant enzymatic activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were significantly (P < 0.05) increased in all the treatment groups compared to the control group. Therefore, the present study clearly establishes that heat stress ensues oxidative stress in bubaline oocytes which triggers the induction of antioxidant enzymatic defense system for scavenging the ROS.

  14. Effect of Sodium Chloride and Cadmium on the Growth, Oxidative Stress and Antioxidant Enzyme Activities of Zygosaccharomyces rouxii

    Institute of Scientific and Technical Information of China (English)

    LI Chunsheng; XU Ying; JIANG Wei; LV Xin; DONG Xiaoyan

    2014-01-01

    Zygosaccharomyces rouxii is a salt-tolerant yeast species capable of removing cadmium (Cd) pollutant from aqueous solution. Presently, the physiological characteristics of Z. rouxii under the stress of sodium chloride (NaCl) and Cd are poorly under-stood. This study investigated the effects of NaCl and Cd on the growth, oxidative stress and antioxidant enzyme activities of Z. rouxii after stress treatment for 24 h. Results showed that NaCl or Cd alone negatively affected the growth of Z. rouxii, but the growth-inhibiting effect of Cd on Z. rouxii was reduced in the presence of NaCl. Flow cytometry assay showed that under Cd stress, NaCl significantly reduced the production of reactive oxygen species (ROS) and cell death of Z. rouxii compared with those in the absence of NaCl. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) of Z. rouxii were significantly enhanced by 2%-6%NaCl, which likely contributed to the high salt tolerance of Z. rouxii. The POD activity was inhibited by 20 mg L-1 Cd while the SOD and CAT activities were enhanced by 8 mg L-1 Cd and inhibited by 20 mg L-1 or 50 mg L-1 Cd. The inhibitory ef-fect of high-level Cd on the antioxidant enzyme activities of Z. rouxii was counteracted by the combined use of NaCl, especially at 6%. This probably accounted for the decrease in Cd-induced ROS production and cell death of Z. rouxii after incubation with NaCl and Cd. Our work provided physiological clues as to the use of Z. rouxii as a biosorbent for Cd removal from seawater and liquid highly salty food.

  15. Effect of sodium chloride and cadmium on the growth, oxidative stress and antioxidant enzyme activities of Zygosaccharomyces rouxii

    Science.gov (United States)

    Li, Chunsheng; Xu, Ying; Jiang, Wei; Lv, Xin; Dong, Xiaoyan

    2014-06-01

    Zygosaccharomyces rouxii is a salt-tolerant yeast species capable of removing cadmium (Cd) pollutant from aqueous solution. Presently, the physiological characteristics of Z. rouxii under the stress of sodium chloride (NaCl) and Cd are poorly understood. This study investigated the effects of NaCl and Cd on the growth, oxidative stress and antioxidant enzyme activities of Z. rouxii after stress treatment for 24 h. Results showed that NaCl or Cd alone negatively affected the growth of Z. rouxii, but the growth-inhibiting effect of Cd on Z. rouxii was reduced in the presence of NaCl. Flow cytometry assay showed that under Cd stress, NaCl significantly reduced the production of reactive oxygen species (ROS) and cell death of Z. rouxii compared with those in the absence of NaCl. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) of Z. rouxii were significantly enhanced by 2%-6% NaCl, which likely contributed to the high salt tolerance of Z. rouxii. The POD activity was inhibited by 20 mg L-1 Cd while the SOD and CAT activities were enhanced by 8 mg L-1 Cd and inhibited by 20 mg L-1 or 50 mg L-1 Cd. The inhibitory effect of high-level Cd on the antioxidant enzyme activities of Z. rouxii was counteracted by the combined use of NaCl, especially at 6%. This probably accounted for the decrease in Cd-induced ROS production and cell death of Z. rouxii after incubation with NaCl and Cd. Our work provided physiological clues as to the use of Z. rouxii as a biosorbent for Cd removal from seawater and liquid highly salty food.

  16. Effects of cold-hardening on compatible solutes and antioxidant enzyme activities related to freezing tolerance in Ammopiptanthus mongolicus seedlings

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-juan; CHEN Yu-zhen; LIU Mei-qin; LU Cun-fu

    2008-01-01

    Cold acclimation is associated with many metabolic changes that lead to an increase of freezing tolerance. In order to investigate the biochemical process of cold acclimation in Ammopiptanthus mongolicus, seedlings were acclimated at 2℃ under 16-h photoperiod (150 μmol·m-2·s-1 photosynthetically active radiation) for 14 d. Freezing tolerance in seedlings increased after 14 d of cold-hardening. Contents of protein, proline and solute carbohydrate in cotyledon increased after cold acclimation. Patterns of isozymes of superoxide dismutase (SOD), peroxidase, catalase and polyphenol oxidase (PPO) were investigated. The activities of SOD, peroxidase and PPO in cold acclimated plants were increased during cold-hardening. We deduced that compatible solutes and antioxidant enzymes play important roles in development of freezing tolerance during cold acclimation in this evergreen woody plant.

  17. Genetic variability in chronic irradiated plant populations - Polymorphism and activity of antioxidant enzymes in chronic irradiated plant populations

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, Polina Y.; Geras' kin, Stanislav A. [Russian Institute of Agricultural Radiology and Agroecology, 249030, Obninsk, Kievskoe shosse 109 km (Russian Federation)

    2014-07-01

    Introduction: The gene pool of natural population is constantly changing in order to provide the greatest fitness at this time. Ability of population to adapt to changing environmental conditions depends on genetic polymorphism of traits which are operates by selection. Chronic stress exposure can change amount or structure intra-population variability. Therefore, it is necessary to analyze the relationships between genetic polymorphism and stress factors, such as radiation exposure. This studies my assist in the development of new bio-indication methods. Materials and methods: Studying sites: Bryansk region is the most contaminated region of Russia as a result of Chernobyl accident. The initial activity by {sup 137}Cs on this territory reached 1 MBq/m{sup 2} above surface. Our study conducted in several districts of Bryansk region, which are characterized the most dose rate. Experimental sites similar to climate characteristics, stand of trees is homogeneous, pine trees take up a significant part of phytocenosis. Heavy metals content in soils and cones be within background. Dose rates vary from 0.14 to 130 mGy/year. Object: Pinus sylvestris L.,the dominant tree species in North European and Asian boreal forests. Scots pine has a long maturation period (18-20 month), which means that significant DNA damage may accumulate in the undifferentiated stem cells, even at low doses (or dose rates) during exposure to low concentrations of contaminants Isozyme analysis: We evaluated isozyme polymorphism of three antioxidant enzymes: superoxide dismutase, glutatione reductase and glutatione peroxidase. Analysis of enzymes activities: We chose key enzymes of antioxidant system for this experiment: superoxide dismutase, catalase and peroxidase. Results and conclusions: We estimated frequency of each allele in reference and experimental populations. based It was showed that frequency of rare alleles increase in chronic irradiated populations, i.e. increase the sampling variance

  18. Exogenous Nitric Oxide Alleviated the Inhibition of Photosynthesis and Antioxidant Enzyme Activities in Iron-Deficient Chinese Cabbage(Brassica chinensis L.)

    Institute of Scientific and Technical Information of China (English)

    DING Fei; WANG Xiu-feng; SHI Qing-hua; WANG Mei-ling; YANG Feng-juan; GAO Qing-hai

    2008-01-01

    The effects of exogenous nitric oxide(NO)on plant growth,chlorophyll contents,photosynthetic and chlorophyll fluorescence parameters as well as lipid peroxidation and activities of antioxidant enzymes were investigated in Chinese cabbage plants exposed to iron(Fe)deficiency.Iron deficiency led to serious chlorosis in Chinese cabbage leaves,and resulted in significant decrease in plant growth,photosynthetic pigments,net photosynthetic rate,Fv/Fm,ΦPsⅡand activities of antioxidant enzymes,and increase in lipid peroxidation.While treatment with SNP,a NO donor,it could revert the iron deficiency symptoms,increased photosynthetic rate as well as activities of antioxidant enzymes,and protected membrane from lipid peroxidation,as a result,the growth inhibition of Chinese cabbage by Fe deficiency was alleviated.

  19. Effects of Estrogen Replacement Therapy on Lipid Peroxidation and Antioxidant Enzyme Activities of Ovariectomized and Ovariectomized-Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Aslı F. Ceylan-Işık

    2007-01-01

    Full Text Available Menopause and diabetes are conditions producing free radicals independently from each other. Estrogen replacement therapy which widely used in postmenopausal period has beneficial effects because of its antioxidant property. The study groups were as follows: ovariectomy (n=8, ovariectomy+17-östradiol (n=8, ovariectomy+diabetes (n=10 and ovariectomy+diabetes+17-östradiol (n=8. Diabetes was induced by streptozotocin (45 mg/kg i.p. and the treatment with 17-östradiol (0.1 mg/kg/day was started a week after ovariectomy. After–week long experimental period aortic and uterine tissues were collected from the animals and the malondialdehyde concentration, glutathione peroxidase and catalase activities were quantified. The treatment did not effect blood glucose concentrations, but increased plasma estradiol concentrations. Increased malondialdehyde concentrations were reduced by the treatment in aorta from diabetics and nondiabetics, but the treatment increased malondialdehyde concentrations in nondiabetic uterine while were reducing in diabetic uterine. The treatment also reduced the increased activities of catalase and glutathione peroxidase in aorta from diabetics and nondiabetics, on the other hand the treatment increased the activities of those enzymes in uterine from diabetics and nondiabetics. Our results suggested that estrogen acts as an antioxidant or prooxidant depending on the tissues.

  20. Impact of acute exercise on antioxidant enzymes activity and lipid status in blood of patients with hypertension

    Directory of Open Access Journals (Sweden)

    Kostić Nada

    2009-01-01

    Full Text Available Background/Aim. Many studies support the hypothesis that oxidative stress is involved in the pathogenic process of a variety of diseases including hypertension. In humans, hypertension is also considered a state of oxidative stress that can contribute to the development of arteriosclerosis and other hypertension- induced organ damage. The aim of this study was to evaluate an influence of acute physical exercise on antioxidative enzymes activity and lipid status in patients with hypertension. Methods. Forty patients with hypertension and 20 age-matched controls were included in the study. To assess an influence of acute exercise on lipids and antioxidative enzymes activity the following parameters were determined at rest and immediately after the acute cardiopulmonary exercise cycloergometer test: triglycerides (TG, total cholesterol, low density cholesterol (LDL, oxidised LDL cholesterol (OxLDL, superoxide dismutase (SOD, glutathione peroxidase (GSH-Px and plasminogen activator inhibitor (PAI. Results. In basal condition, hypertensive patients compared to the control group had increased, but not significantly, level of Ox LDL (88.61±14.06 vs 79.00±29.26 mmol/L, PAI (3.06±0.56 vs 2.6±0.35 U/mL and activity of GSH-Px (50.22±15.20 vs 44.63±13.73 U/g Hb. After acute exercise test, there was significantly greater level of Ox LDL (79.0±29.26 vs 89.3±29.07 mmol/L; p < 0.05 only in the control group. GSH-Px activity was significantly decreased only in hypertensive patients after acute exercise (50.22±15.2 vs 42.82±13.42 U/g Hb; p < 0.05, but not in the controls. Conclusion. No significantly elevated Ox LDL, GSH-Px and PAI-1 levels were found in hypertensive patients during basal condition in comparison with healthy subjects. Decreased GSH-Px activity was associated with those in acute exercise only in hypertensive patients. It could be an important indicator of deficiency of physiological antioxidative defense mechanism in hypertensive

  1. Jasmonic acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity and Gene Expression in Glycine max under Nickel Toxicity

    Directory of Open Access Journals (Sweden)

    Geetika eSirhindi

    2016-05-01

    Full Text Available In present study, we evaluated the effects of Jasmonic acid (JA on physio-biochemical attributes, antioxidant enzyme activity and gene expression in soybean (Glycine max L. plants subjected to nickel (Ni stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23%, 38.31% and 39.21% respectively over the control. However, application of JA was found to improve the chlorophyll content and growth of Ni-stressed seedlings in terms of root and shoot length. Plants supplemented with Jasmonate restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein and total soluble sugar (TSS by 33.09%, 51.26%, 22.58% and 49.15% respectively under Ni toxicity as compared to control. Supplementation of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2 by 68.49%, lipid peroxidation (MDA by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD, peroxidase (POD, catalase (CAT and ascorbate peroxidase (APX increases by 40.04%, 28.22%, 48.53% and 56.79% respectively over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62%, CAT by 15.25%, POD by 58.33% and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes and osmoprotectants, antioxidant enzyme activity and gene expression.

  2. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity

    Science.gov (United States)

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  3. Relation between iron metabolism and antioxidants enzymes and δ-ALA-D activity in rats experimentally infected by Fasciola hepatica.

    Science.gov (United States)

    Bottari, Nathieli B; Mendes, Ricardo E; Baldissera, Matheus D; Bochi, Guilherme V; Moresco, Rafael N; Leal, Marta L R; Morsch, Vera M; Schetinger, Maria R C; Christ, Ricardo; Gheller, Larissa; Marques, Éder J; Da Silva, Aleksandro S

    2016-06-01

    The aim of this study was to evaluate the iron metabolism in serum, as well as antioxidant enzymes, in addition to the Delta-Aminolevulinic Acid Dehydratase (δ-ALA-D) activity in the liver of rats experimentally infected by Fasciola hepatica. Thirty male adult rats (Wistar) specific pathogen free were divided into four groups: two uninfected group (CTRL 1 and CTRL 2) with five animals each and two infected groups (INF 1 and INF 2) with 10 animals each. Infection was performed orally with 20 metacercariae at day 1. On day 15 (CTRL 1 and INF 1 groups) and 87 PI (CTRL 2 and INF 2 groups) blood and bone marrow were collected and the animals were subsequently euthanized for liver sampling. Blood was allocated in tubes without anticoagulant for serum acquisition to measure iron, transferrin and unsaturated iron binding capacity (UIBC). δ-ALA-D, superoxide dismutase (SOD), and catalase (CAT) activities were measured in the liver. A decrease in iron, transferrin and UIBC levels was observed in all infected animals compared to control groups (P < 0.05). Furthermore, iron accumulation was observed in bone marrow of infected mice. Infected animals showed an increase in δ-ALA-D activity at 87 post-infection (PI) (INF 2) as well as in SOD activity at days 15 (INF 1) and 87 PI (INF 2). On the other hand, CAT activity was reduced in rats infected by F. hepatica during acute and chronic phase of fasciolosis (INF 1 and INF 2 groups), when moderate (acute) and severe necrosis in the liver histopathology were observed. These results may suggest that oxidative damage to tissues along with antioxidant mechanisms might have taken part in fasciolosis pathogenesis and are also involved in iron deficiency associated to changes in δ-ALA-D activity during chronic phase of disease. PMID:26995536

  4. Quercetin Protects Primary Human Osteoblasts Exposed to Cigarette Smoke through Activation of the Antioxidative Enzymes HO-1 and SOD-1

    Directory of Open Access Journals (Sweden)

    Karl F. Braun

    2011-01-01

    Full Text Available Smokers frequently suffer from impaired fracture healing often due to poor bone quality and stability. Cigarette smoking harms bone cells and their homeostasis by increased formation of reactive oxygen species (ROS. The aim of this study was to investigate whether Quercetin, a naturally occurring antioxidant, can protect osteoblasts from the toxic effects of smoking. Human osteoblasts exposed to cigarette smoke medium (CSM rapidly produced ROS and their viability decreased concentration- and time-dependently. Co-, pre- and postincubation with Quercetin dose-dependently improved their viability. Quercetin increased the expression of the anti-oxidative enzymes heme-oxygenase- (HO- 1 and superoxide-dismutase- (SOD- 1. Inhibiting HO-1 activity abolished the protective effect of Quercetin. Our results demonstrate that CSM damages human osteoblasts by accumulation of ROS. Quercetin can diminish this damage by scavenging the radicals and by upregulating the expression of HO-1 and SOD-1. Thus, a dietary supplementation with Quercetin could improve bone matter, stability and even fracture healing in smokers.

  5. Effects of Waterlogging on Photosynthesis and Antioxidant Enzyme Activities of Six Barley Genotypes with Different Waterlogging Tolerance

    Institute of Scientific and Technical Information of China (English)

    XIAO Yu-ping; WEI Kang; CHEN Jin-xin; ZHOU Mei-xue; ZHANG Guo-ping

    2005-01-01

    A field experiment was carried out to study genotypic difference in the effect of waterlogging on photosynthesis, chlorophyll content and antioxidative enzyme activities in barley. Waterlogging caused a rapid decline in net photosynthetic rate (Ph) and stomatal conductance (gs), and little change in chlorophyll content during early days of the treatment. A dramatic increase in malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) in waterlogged plants in the early days of the experiment was found, indicating the occurrence of oxidative stress in barley plants exposed to waterlogging. There was a highly significant difference in the changed extent of all these parameters among genotypes.Franklin and Yongjiahong Liuleng Damai, which were relatively sensitive to waterlogging in terms of growth, photosynthesis and chlorophyll content, accumulated much more MDA than the other two relatively tolerant genotypes (93-3143 and QS).After removal of waterlogging, the genotypic difference became much greater in recovering of these examined parameters.Yongjiahong Liuleng Damai showed higher recovery, while Franklin only recovered to 50% of the control at the 14 day after waterlogging removal. It may be concluded that it is the difference in anti-oxidative stress caused by waterlogging that account for the major difference in photosynthesis among barley genotypes.

  6. Effects of fluoride on germination, early growth and antioxidant enzyme activities of legume plant species Prosopis juliflora.

    Science.gov (United States)

    Saini, Poonam; Khan, Suphiya; Baunthiyal, Mamta; Sharma, Vinay

    2013-03-01

    Prosopis juliflora (Mimosoideae) is a fast growing and drought resistant tree of semi-arid region of India where fluoride (F) toxicity is a common problem. In the present investigations this species was fluoride tested to check their capacity as bioindicator plant and its efficiency to accumulate. To achieve this aim, P. juliflora seedlings grown in hydroponic culture containing different concentrations of F were analyzed for germination percentage together with some biochemical parameters viz, antioxidant enzyme activities, total chlorophyll and accumulation of F in different plant parts. After 15 days of treatment, root growth (r = -0.928, p < 0.01), shoot growth (r = -0.976, p < 0.01), vigor index (r = -0.984, p < 0.01) were in decreasing trend with increasing concentration of NaF. Both catalase (3.2 folds) and peroxidase (2.7 folds) enzymes activity increased with increase in F concentration. Plant accumulated larger portion of the F in the roots (1024.63 microg g(-1) d.wt.) followed by shoot (492.30 microg g(-1) d.wt.). As P. juliflora did not show any morphological changes (marginal and tip chlorosis of leaf portions, necrosis and together these features are referred to as leaf "tip-burn") therefore, this species may be used as suitable bioindicator species for potentially F affected areas. Further, higher accumulation of F in roots indicates that P. juliflora is a suitable species for the removal of F in phytoremediation purposes.

  7. Interactive Effect of Salicylic Acid on Some Physiological Features and Antioxidant Enzymes Activity in Ginger (Zingiber officinale Roscoe

    Directory of Open Access Journals (Sweden)

    Hawa Z. E. Jaafar

    2013-05-01

    Full Text Available The effect of foliar salicylic acid (SA applications (10−3 and 10−5 M on activities of nitrate reductase, guaiacol peroxidase (POD, superoxide dismutases (SOD, catalase (CAT and proline enzymes and physiological parameters was evaluated in two ginger varieties (Halia Bentong and Halia Bara under greenhouse conditions. In both varieties, tested treatments generally enhanced photosynthetic rate and total dry weight. Photosynthetic rate increases were generally accompanied by increased or unchanged stomatal conductance levels, although intercellular CO2 concentrations of treated plants were typically lower than in controls. Lower SA concentrations were generally more effective in enhancing photosynthetic rate and plant growth. Exogenous application of SA increased antioxidant enzyme activities and proline content; the greatest responses were obtained in plants sprayed with 10–5 M SA, with significant increases observed in CAT (20.1%, POD (45.2%, SOD (44.1% and proline (43.1% activities. Increased CAT activity in leaves is naturally expected to increase photosynthetic efficiency and thus net photosynthesis by maintaining a constant CO2 supply. Our results support the idea that low SA concentrations (10–5 M may induce nitrite reductase synthesis by mobilizing intracellular NO3− and can provide protection to nitrite reductase degradation in vivo in the absence of NO3–. Observed positive correlations among proline, SOD, CAT and POD activities in the studied varieties suggest that increased SOD activity was accompanied by increases in CAT and POD activities because of the high demands of H2O2 quenching.

  8. Interactive effect of salicylic acid on some physiological features and antioxidant enzymes activity in ginger (Zingiber officinale Roscoe).

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z E

    2013-01-01

    The effect of foliar salicylic acid (SA) applications (10⁻³ and 10⁻⁵ M) on activities of nitrate reductase, guaiacol peroxidase (POD), superoxide dismutases (SOD), catalase (CAT) and proline enzymes and physiological parameters was evaluated in two ginger varieties (Halia Bentong and Halia Bara) under greenhouse conditions. In both varieties, tested treatments generally enhanced photosynthetic rate and total dry weight. Photosynthetic rate increases were generally accompanied by increased or unchanged stomatal conductance levels, although intercellular CO₂ concentrations of treated plants were typically lower than in controls. Lower SA concentrations were generally more effective in enhancing photosynthetic rate and plant growth. Exogenous application of SA increased antioxidant enzyme activities and proline content; the greatest responses were obtained in plants sprayed with 10⁻⁵ M SA, with significant increases observed in CAT (20.1%), POD (45.2%), SOD (44.1%) and proline (43.1%) activities. Increased CAT activity in leaves is naturally expected to increase photosynthetic efficiency and thus net photosynthesis by maintaining a constant CO₂ supply. Our results support the idea that low SA concentrations (10⁻⁵ M) may induce nitrite reductase synthesis by mobilizing intracellular NO³⁻ and can provide protection to nitrite reductase degradation in vivo in the absence of NO³⁻. Observed positive correlations among proline, SOD, CAT and POD activities in the studied varieties suggest that increased SOD activity was accompanied by increases in CAT and POD activities because of the high demands of H₂O₂ quenching. PMID:23698049

  9. Sublethal gamma irradiation affects reproductive impairment and elevates antioxidant enzyme and DNA repair activities in the monogonont rotifer Brachionus koreanus

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeonghoon; Won, Eun-Ji [Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Il-Chan; Yim, Joung Han [Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840 (Korea, Republic of); Lee, Su-Jae [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-10-15

    Highlights: • No mortality within 96 h even at a high intensity (1200 Gy). • A reduced fecundity of Brachionus koreanus at over 150 Gy with a decrease in lifespan. • Dose-dependent ROS increase with GST enzyme activity at sub-lethal doses. • Significant impact on life table parameters, particularly fecundity. • Significant up-regulation of DNA repair-associated genes at sublethal doses. - Abstract: To examine the effects of gamma radiation on marine organisms, we irradiated several doses of gamma ray to the microzooplankton Brachionus koreanus, and measured in vivo and in vitro endpoints including the survival rate, lifespan, fecundity, population growth, gamma ray-induced oxidative stress, and modulated patterns of enzyme activities and gene expressions after DNA damage. After gamma radiation, no individuals showed any mortality within 96 h even at a high intensity (1200 Gy). However, a reduced fecundity (e.g. cumulated number of offspring) of B. koreanus at over 150 Gy was observed along with a slight decrease in lifespan. At 150 Gy and 200 Gy, the reduced fecundity of the rotifers led to a significant decrease in population growth, although in the second generation the population growth pattern was not affected even at 200 Gy when compared to the control group. At sub-lethal doses, reactive oxygen species (ROS) levels dose-dependently increased with GST enzyme activity. In addition, up-regulations of the antioxidant and chaperoning genes in response to gamma radiation were able to recover cellular damages, and life table parameters were significantly influenced, particularly with regard to fecundity. DNA repair-associated genes showed significantly up-regulated expression patterns in response to sublethal doses (150 and 200 Gy), as shown in the expression of the gamma-irradiated B. koreanus p53 gene, suggesting that these sublethal doses were not significantly fatal to B. koreanus but induced DNA damages leading to a decrease of the population size.

  10. Sublethal gamma irradiation affects reproductive impairment and elevates antioxidant enzyme and DNA repair activities in the monogonont rotifer Brachionus koreanus

    International Nuclear Information System (INIS)

    Highlights: • No mortality within 96 h even at a high intensity (1200 Gy). • A reduced fecundity of Brachionus koreanus at over 150 Gy with a decrease in lifespan. • Dose-dependent ROS increase with GST enzyme activity at sub-lethal doses. • Significant impact on life table parameters, particularly fecundity. • Significant up-regulation of DNA repair-associated genes at sublethal doses. - Abstract: To examine the effects of gamma radiation on marine organisms, we irradiated several doses of gamma ray to the microzooplankton Brachionus koreanus, and measured in vivo and in vitro endpoints including the survival rate, lifespan, fecundity, population growth, gamma ray-induced oxidative stress, and modulated patterns of enzyme activities and gene expressions after DNA damage. After gamma radiation, no individuals showed any mortality within 96 h even at a high intensity (1200 Gy). However, a reduced fecundity (e.g. cumulated number of offspring) of B. koreanus at over 150 Gy was observed along with a slight decrease in lifespan. At 150 Gy and 200 Gy, the reduced fecundity of the rotifers led to a significant decrease in population growth, although in the second generation the population growth pattern was not affected even at 200 Gy when compared to the control group. At sub-lethal doses, reactive oxygen species (ROS) levels dose-dependently increased with GST enzyme activity. In addition, up-regulations of the antioxidant and chaperoning genes in response to gamma radiation were able to recover cellular damages, and life table parameters were significantly influenced, particularly with regard to fecundity. DNA repair-associated genes showed significantly up-regulated expression patterns in response to sublethal doses (150 and 200 Gy), as shown in the expression of the gamma-irradiated B. koreanus p53 gene, suggesting that these sublethal doses were not significantly fatal to B. koreanus but induced DNA damages leading to a decrease of the population size

  11. In Vitro Antioxidant and Enzymes Inhibitory activity of Chloroform Fraction of Hydroalcoholic extract obtained from Argemone mexicana

    Directory of Open Access Journals (Sweden)

    Nayak P

    2013-03-01

    Full Text Available In the present investigation antioxidant and alphaamylase inhibitory activity of chloroform fraction of Argemone mexicana were evaluated. The antioxidant activity of chloroform fraction of A. mexicana was evaluated by DPPH, Super oxide radical Scavenging activity, ABTS radical cation scavenging activity and Nitric oxide radical scavenging activity. Alpha-amylase inhibitory activity of chloroform fraction was evaluated by DNS method respectively. The observed resultant antioxidant activity of chloroform fraction in all studied models was moderate as compared with reference standard Ascorbic acid. The chloroform fraction exhibited appreciable α-amylase inhibitory activity with an IC50 value 48.92μg/ml respectively, when compared with acarbose (IC50 value 83.33μg/ml.In conclusion, from the results of present study it is confirmed that antioxidant and alpha-amylase inhibitory activity of chloroform fraction of A. mexicana may contribute in its earlier observed antidiabetic potential.

  12. Activity of antioxidative enzymes in fresh and frozen thawed buffalo (Bubalus bubalis) spermatozoa in relation to lipid peroxidation and semen quality

    Institute of Scientific and Technical Information of China (English)

    G Kadirvel; SatishKumar; S K Ghosh; P Perumal

    2014-01-01

    Objective:To investigate the activity of antioxidative enzymes in fresh and frozen thawed spermatozoa in relation to lipid peroxidation and semen quality in buffalo(Bubalus bubalis) bulls.Methods:Forty two semen ejaculates from seven buffalo bulls were collected by artificial vagina method and were used for the study.Sperm motility, livability, plasma membrane and acrosomal integrity, buffalo cervical mucous penetration test were assessed in fresh and frozen thawed semen.Intracellular antioxidative enzymatic activity such as super oxide dismutase (SOD), catalase(CAT), glutathione peroxidase(GSHPx) and reduced glutathione(GSH), reactive oxygen species(ROS) and lipid peroxidation(LPO) were estimated in fresh and frozen thawed semen.Results:A significant(P<0.01) reduction in activity of antioxidative enzymes(SOD by 47.7%,GSHPx by62.7% andGSH by58.6%) in frozen thawed spermatozoa as compared to fresh spermatozoa was found.Although the catalase activity was varied from0 to3.8IU/109sperm in fresh semen, but after freezing and thawing this activity was not detectable.These enzyme activities had a strong positive association with sperm motility, membrane integrity and distance traveled by vanguard spermatozoa in buffalo cervical mucus and negative correlation withLPO andROS. However, no significant correlation with acrosomal integrity was found.Conclusion:It was concluded that loss of activity of intracellular antioxidative enzymes was evident after freezing and thawing and there was a strong association between the antioxidative enzyme activities,ROS, lipid peroxidation and sperm function in buffalo semen.

  13. Bioactive properties of commercialised pomegranate (Punica granatum) juice: antioxidant, antiproliferative and enzyme inhibiting activities

    OpenAIRE

    Les, F.; Prieto, J.M.; Arbonés-Mainar, J. M.; Valero, M. S.; López, V.

    2015-01-01

    Pomegranate juice and related products have long been used either in traditional medicine or as nutritional supplements claiming beneficial effects. Although there are several studies on this food plant, only a few studies have been performed with pomegranate juice or marketed products. The aim of this work is to evaluate the antioxidant effects of pomegranate juice on cellular models using hydrogen peroxide as an oxidizing agent or DPPH and superoxide radicals in cell free systems. The antip...

  14. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    OpenAIRE

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G; LeBlanc, Jean Guy

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells...

  15. Effects of mechanical damage and herbivore wounding on H2O2 metabolism and antioxidant enzyme activities in hybrid poplar leaves

    Institute of Scientific and Technical Information of China (English)

    AN Yu; SHEN Ying-bai; ZHANG Zhi-xiang

    2009-01-01

    The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii ×P. pyramidalis ‘Opera 8277') in response to mechanical damage (MD) and herbivore wounding (HW) were investigated to determine whether H2O2 could function as the secondary messenger in the signaling of systemic resistance. Results show that H2O2 was generated in wounded leaves through MD and HW treatments and systemically in unwounded leaves around the wounded leaves. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also enhanced. However, the H2O2 accumulation and antioxidant enzyme activities were inhibited in MD leaves through the pretreatment with DPI (which is a specific inhibitor of NADPH oxidase). The results of this study suggest that H2O2 could be systemically induced by MD and HW treatments, and H2O2 metabolism was closely related to the change in SOD, APX and CAT activities. A high level of antioxidant enzymes could decrease membrane lipid peroxidation levels and effectively induce plant defense responses.

  16. Oxidative stability and antioxidant enzyme activities of dry-cured bacons as affected by the partial substitution of NaCl with KCl.

    Science.gov (United States)

    Wu, Haizhou; Yan, Wenjing; Zhuang, Hong; Huang, Mingming; Zhao, Jianying; Zhang, Jianhao

    2016-06-15

    This study investigated the influence of partial substitution of NaCl with KCl on protein and lipid oxidation as well as antioxidant enzyme activities in dry-cured bacons during processing. The partial substitution was 0% KCl (I), 40% KCl (II), and 70% KCl (III). Compared with 0% KCl (I), the substitution of 40% NaCl with KCl did not significantly influence the protein and lipid oxidation and antioxidant enzyme activities. The bacons that were treated with 70% KCl treatment (III) showed increased lipid oxidation and antioxidant enzyme GSH-Px activity, whereas samples treated with formulas I and II showed higher protein oxidation and antioxidant enzyme catalase activity. These results demonstrate that the substitution of NaCl with KCl by more than 40% may significantly affect protein and lipid oxidation and that for the substitution of NaCl in further processed meat products with other chloride salts, salt content is very important for control of protein and lipid biochemical changes in finished products. PMID:26868571

  17. Alterations in antioxidant enzyme activities and proline content in pea leaves under long-term drought stress.

    Science.gov (United States)

    Karataş, Ilhami; Öztürk, Lokman; Demir, Yavuz; Unlükara, Ali; Kurunç, Ahmet; Düzdemir, Oral

    2014-09-01

    The effects of long-term drought stress on chlorophyll, proline, protein and hydrogen peroxide (H2O2) contents, malondialdehyde (MDA) in terms of lipid peroxidation and on the changes in the activities of antioxidant enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6) and peroxidase (POX; EC 1.11.1.7) in the leaves of pea (Pisum sativum L.) were studied in field conditions. Chlorophyll and protein contents in leaves decreased significantly with increased drought stress. The proline content increased markedly under water deficit. MDA amounts were elevated as a result of water shortage, whereas H(2)O(2) content changed slightly in pea leaves exposed to drought stress. Drought stress markedly enhanced the activities of SOD, CAT and POX but slightly changed the activity of APX. We conclude that in field conditions, long-term water shortage increased the susceptibility to drought in peas.

  18. Studies on the Seasonal Changes in Antioxidant Enzymes Activity on Differently, Polluted Areas along the Bay of Bengal Employing Perna viridis as an Animal Model

    Directory of Open Access Journals (Sweden)

    C. Amutha

    2012-01-01

    Full Text Available Antioxidants are the innate or acquired molecules capable of slowing down or preventing the oxidative damage (damage due to reactive oxygen species that caused by free radicals. The antioxidant enzyme activity in response to season as well as hydrocarbon pollution was attempted. Rayapuram fishing harbor of Chennai (Station-1 is highly oil contaminated with oil sleeks on the surface. The relatively moderate oil contaminated area (Station-2 is about 2 km away from the fishing harbor and the least contaminated Vellar estuary Parangipettai (Station-3 was considered as the reference site. The 2 year (2005-2007 observation was recorded seasonally; the antioxidant activity varied seasonally and organally (digestive gland, gill and mantle in the marine green mussel Perna viridis. The common antioxidant enzymes such as Catalase (CAT, Superoxide Dismutase (SOD and Glutathione Reductase (GR activity were evaluated. The CAT and SOD are responded well with seasons (i.e., monsoon, pre-monsoon, post-monsoon and summer seasons. During monsoon period, both CAT and SOD activity are very low in all the Stations, in both pre-monsoon and post-monsoon period their activity were moderate and higher enzyme activity was noted during summer season. On contrary, the GR activity was noted as very low during summer and very high during pre or post monsoon and the activity was moderate during monsoon period. In addition the GR activity respond to temperature also but the other antioxidants CAT and SOD yielded no detectable activity. Among the organs liver showed higher CAT and SOD activity when compared to gill and mantle but the GR exhibited the increased activity in gill but not in liver.

  19. Influence of salicylic and succinic acids on antioxidant enzymes activity, heat resistance and productivity of Panicum miliaceum L.

    Directory of Open Access Journals (Sweden)

    Miroshnichenko N.N.

    2011-05-01

    Full Text Available The influence of treatment of millet (Panicum miliaceum L. seeds with the solutions of salicylic and succinic acids on the heat resistance of plantlets and activity of antioxidant enzymes – superoxide dismutase (SOD, catalase and peroxidase – in them have been investigated. In the micro-field experiment the influence of these acids on the millet yield was estimated. The action of salicylic (10 μM and succinic (1 mM acids caused the increase of plantlets resistance to the damaging heating that expressed in the rise of relative quantity of survived plantlets in 5 days after heating at the temperature of 47°С and in the reduced content of lipid peroxidation product malonic dialdehyde during the poststress period. The increase of activity of SOD, catalase and peroxidase took place in millet plantlets under the influence of salicylic and succinic acids. The increase of productivity of millet grain under the action of salicylic and succinic acids on 13,3-52,0 and 6,4-38,8% respectively depending on weather conditions in the field experiments was noted.

  20. Bioactivity comparison of extracts from various parts of common and tartary buckwheats: evaluation of the antioxidant- and angiotensin-converting enzyme inhibitory activities

    Directory of Open Access Journals (Sweden)

    Tsai Hweiyan

    2012-08-01

    Full Text Available Abstract Background Buckwheat flour and buckwheat sprouts possess antioxidant properties, and previous studies have reported on buckwheat flour displaying an inhibitory activity for angiotensin-I converting enzyme (ACE. Information is lacking on the bioactivity of other parts of the buckwheat, such as the seed hulls and plant stalks. This study investigates the ACE inhibitory activity and antioxidant activity of various parts of 2 types of buckwheat, namely, common buckwheat (Fagopyrum esculentum Moench and tartary buckwheat (Fagopyrum tataricum Gaertn. Results The extract of common hulls extracted using 50% (v/v-ethanol solvent presented a remarkable inhibitory activity. The value of IC50 is 30 μg ml-1. The extracts of both common and tartary hulls extracted using 50% (v/v-ethanol solvent demonstrated an antioxidant activity that is superior to that of other extracts. Conclusion This study determined that the ethanolic extract of the hulls of common buckwheat presented more favorable antioxidant and ACE inhibitory abilities. However, the correlation of antioxidant activity and ACE inhibitory activity for all 18 types of extracts is low. The ACE inhibitory activity could have been caused by a synergistic effect of flavonoids or from other unidentified components in the extracts. The ethanolic extract of common hulls demonstrated remarkable ACE inhibitory activity and is worthy of further animal study.

  1. Complex enzyme hydrolysis releases antioxidative phenolics from rice bran.

    Science.gov (United States)

    Liu, Lei; Wen, Wei; Zhang, Ruifen; Wei, Zhencheng; Deng, Yuanyuan; Xiao, Juan; Zhang, Mingwei

    2017-01-01

    In this study, phenolic profiles and antioxidant activity of rice bran were analyzed following successive treatment by gelatinization, liquefaction and complex enzyme hydrolysis. Compared with gelatinization alone, liquefaction slightly increased the total amount of phenolics and antioxidant activity as measured by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Complex enzyme hydrolysis significantly increased the total phenolics, flavonoids, FRAP and ORAC by 46.24%, 79.13%, 159.14% and 41.98%, respectively, compared to gelatinization alone. Furthermore, ten individual phenolics present in free or soluble conjugate forms were also analyzed following enzymatic processing. Ferulic acid experienced the largest release, followed by protocatechuic acid and then quercetin. Interestingly, a major proportion of phenolics existed as soluble conjugates, rather than free form. Overall, complex enzyme hydrolysis releases phenolics, thus increasing the antioxidant activity of rice bran extract. This study provides useful information for processing rice bran into functional beverage rich in phenolics. PMID:27507440

  2. Variation in antioxidant enzyme activities, growth and some physiological parameters of bitter melon (Momordica charantia) under salinity and chromium stress.

    Science.gov (United States)

    Bahrami, Mahsa; Heidari, Mostafa; Ghorbani, Hadi

    2016-07-01

    In general, salinity and heavy metals interfere with several physiological processes and reduce plant growth. In order to evaluate of three levels of salinity (0, 4 and 8 ds m(-1)) and three concentration of chromium (0, 10 and 20 mg kg(-1) soil) in bitter melon (Momordica charantia), a plot experiment was conducted in greenhouse at university of Shahrood, Iran. The results revealed that chromium treatment had no significant affect on fresh and dry weight, but salinity caused reduction of fresh and dry weight in growth parameter. Salinity and chromium enhanced antioxidant enzymes activities like catalase (CAT), guaiacol peroxidase (GPX) and sodium content in leaves. However salinity and chromium treatments had no effect on potassium, phosphorus in leaves, soluble carbohydrate concentration in leaves and root, but decreased the carotenoid content in leaves. On increasing salinity from control to 8 ds m(-1) chlorophyll a, b and anthocyanin content decreased by 41.6%, 61.1% and 26.5% respectively but chromium treatments had no significant effect on these photosynthetic pigments. PMID:27498497

  3. Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.).

    Science.gov (United States)

    Zouari, M; Ben Ahmed, Ch; Zorrig, W; Elloumi, N; Rabhi, M; Delmail, D; Ben Rouina, B; Labrousse, P; Ben Abdallah, F

    2016-06-01

    The ability of exogenous compatible solutes, such as proline, to counteract cadmium (Cd) inhibitory effects in young date palm plants (Phoenix dactylifera L. cv Deglet Nour) was investigated. Two-year-old date palm plants were subjected for five months at different Cd stress levels (0, 10 and 30 mg CdCl2 kg(-1) soil) whether supplied or not with exogenous proline (20mM) added through the irrigation water. Different levels of Cd stress altered plant growth, gas exchanges and chlorophyll content as well as water status, but at different extent among them. In contrast, an increase of antioxidant enzymes activities of Cd-treated plants in association with high amounts of proline content, hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) and electrolyte leakage (EL) were observed. Interestingly, exogenous proline mitigated the adverse effects of Cd on young date palm. Indeed, it alleviated the oxidative damage induced by Cd accumulation and established better levels of plant growth, water status and photosynthetic activity. Moreover, proline-treated plants showed high antioxidant enzymes activities (superoxide dismutase, catalase and glutathione peroxydase) in roots and leaves as compared to Cd-treated plants. PMID:26901506

  4. Investigation into the effects of antioxidant-rich extract of Tamarindus indica leaf on antioxidant enzyme activities, oxidative stress and gene expression profiles in HepG2 cells.

    Science.gov (United States)

    Razali, Nurhanani; Abdul Aziz, Azlina; Lim, Chor Yin; Mat Junit, Sarni

    2015-01-01

    The leaf extract of Tamarindus indica L. (T. indica) had been reported to possess high phenolic content and showed high antioxidant activities. In this study, the effects of the antioxidant-rich leaf extract of the T. indica on lipid peroxidation, antioxidant enzyme activities, H2O2-induced ROS production and gene expression patterns were investigated in liver HepG2 cells. Lipid peroxidation and ROS production were inhibited and the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase was enhanced when the cells were treated with the antioxidant-rich leaf extract. cDNA microarray analysis revealed that 207 genes were significantly regulated by at least 1.5-fold (p FGG, FGA, MVK, DHCR24, CYP24A1, ALDH6A1, EPHX1 and LEAP2 were amongst the highly regulated. When the significantly regulated genes were analyzed using Ingenuity Pathway Analysis software, "Lipid Metabolism, Small Molecule Biochemistry, Hematological Disease" was the top biological network affected by the leaf extract, with a score of 36. The top predicted canonical pathway affected by the leaf extract was the coagulation system (P FGG), Superpathway of Cholesterol Biosynthesis (MVK), Immune protection/antimicrobial response (IFNGR1, LEAP2, ANXA3 and MX1) and Xenobiotic Metabolism Signaling (ALDH6A1, ADH6). In conclusion, the antioxidant-rich leaf extract of T. indica inhibited lipid peroxidation and ROS production, enhanced antioxidant enzyme activities and significantly regulated the expression of genes and proteins involved with consequential impact on the coagulation system, cholesterol biosynthesis, xenobiotic metabolism signaling and antimicrobial response.

  5. Specific activities of antioxidative enzymes in the cochlea of guinea pigs at different stages of development.

    Science.gov (United States)

    Zelck, U; Nowak, R; Karnstedt, U; Koitschev, A; Käcker, N

    1993-01-01

    Significant activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were found in the cochleas of guinea pigs of different ages. The specific activities of SOD and GSH-Px (expressed as units/mg protein) increased significantly from fetal animals to animals 2 days old and then to 6-month-old animals. PMID:8369116

  6. Exogenous calcium induces tolerance to atrazine stress in Pennisetum seedlings and promotes photosynthetic activity, antioxidant enzymes and psbA gene transcripts.

    Science.gov (United States)

    Erinle, Kehinde Olajide; Jiang, Zhao; Ma, Bingbing; Li, Jinmei; Chen, Yukun; Ur-Rehman, Khalil; Shahla, Andleeb; Zhang, Ying

    2016-10-01

    Calcium (Ca) has been reported to lessen oxidative damages in plants by upregulating the activities of antioxidant enzymes. However, atrazine mediated reactive oxygen species (ROS) reduction by Ca is limited. This study therefore investigated the effect of exogenously applied Ca on ROS, antioxidants activity and gene transcripts, the D1 protein (psbA gene), and chlorophyll contents in Pennisetum seedlings pre-treated with atrazine. Atrazine toxicity increased ROS production and enzyme activities (ascorbate peroxidase APX, peroxidase POD, Superoxide dismutase SOD, glutathione-S-transferase GST); but decreased antioxidants (APX, POD, and Cu/Zn SOD) and psbA gene transcripts. Atrazine also decreased the chlorophyll contents, but increased chlorophyll (a/b) ratio. Contrarily, Ca application to atrazine pre-treated seedlings lowered the harmful effects of atrazine by reducing ROS levels, but enhancing the accumulation of total chlorophyll contents. Ca-protected seedlings in the presence of atrazine manifested reduced APX and POD activity, whereas SOD and GST activity was further increased with Ca application. Antioxidant gene transcripts that were down-regulated by atrazine toxicity were up-regulated with the application of Ca. Calcium application also resulted in up-regulation of the D1 protein. In conclusion, ability of calcium to reverse atrazine-induced oxidative damage and calcium regulatory role on GST in Pennisetum was presented. PMID:27391035

  7. Inoculation effects of endophytic fungus (Piriformospora indica on antioxidant enzyme activity and wheat tolerance under phosphorus deficiency in hydroponic system

    Directory of Open Access Journals (Sweden)

    D. Rahmani Iranshahi

    2016-02-01

    Full Text Available Information about the effect of endophytic fungus Piriformospora indica on wheat response to stress conditions is very limited and sometime contradictory. This greenhouse research was conducted in a hydroponic culture to investigate the inoculation effects of mycorrizhal-like fungus, P. indica, on enzymatic and non–enzymatic defense mechanisms of wheat (Triticum aestivum L., cv. Niknejad at two levels of phosphorus (P supply (deficient and sufficient. The experiment was factorial, based on a completely randomized design with three replications. Sixty days after applying the treatments, plants were harvested and shoot dry weight and concentration of P, iron, zinc and activity of antioxidant enzymes like catalase (CAT, ascorbate peroxidase (APX, guaiacol peroxidase (GPX and chlorophyll a, b and carotenoids contents were measured. Results showed that P-deficiency reduced shoot dry weight and concentration of P and iron and increased concentration of zinc in the shoots. Inoculation of wheat roots with P. indica in P-deficiency condition resulted in significant increasing of shoot dry weight and P concentration. Also, chlorophyll a, b contents and concentration of carotenoids in P-deficiency condition was significantly higher than P-sufficiency condition. Inoculation of P. indica to wheat roots decreased chorophyll a, b contents and concentration of carotenoids. Inoculation of P. indica in P-deficiency condition significantly decreased the activity of GPX and significantly increased the activity of CAT and GPX in P-sufficiency condition. In general, inoculation of fungus P. indica to wheat plant could be recommended as an effective method to alleviate deleterious effects of P-deficiency and increase its tolerance to this stress.

  8. Effect of La3+ on Activities of Antioxidant Enzymes in Wheat Seedlings under Mercury Stress

    Institute of Scientific and Technical Information of China (English)

    庞欣; 王东红; 彭安; 张福锁; 邢晓燕; 李春俭

    2002-01-01

    The effects of La(NO3)3 on the growth,activities of SOD,CAT and MDA content in shoots and roots of wheat seedlings under mercury stress were evaluated by the nutrient solution culture experiment. The results suggest that there is positive effect of La(NO3)3 on enhancing the activities of SOD,CAT,decrease of MDA content in shoots and roots of wheat seedlings during 0~5 d. But La(NO3)3 evens and cooperates with mercury when plants are too long under mercury stress. Mercury inhibits the growth of wheat seedlings more grievously.

  9. Trace minerals status and antioxidative enzyme activity in dogs with generalized demodecosis.

    Science.gov (United States)

    Beigh, S A; Soodan, J S; Singh, R; Khan, A M

    2013-11-15

    The present study was aimed to determine the levels of trace elements zinc, copper, iron, erythrocyte oxidant/anti-oxidant balance, vitamin C and β-carotene in dogs with generalized demodecosis. A total of 24 dogs with clinically established diagnosis of generalized demodecosis and 6 dogs as control were included in the study. In comparison to healthy control, zinc and copper levels were significantly (Pdogs with generalized demodecosis, whereas iron levels were significantly (Pdogs whereas activity of superoxide dismutase (SOD) and catalase were significantly (Pdogs when compared to healthy control. SOD activity was positively correlated with zinc (rs=0.65, rs=0.71 and Pdogs. MDA levels were negatively correlated with iron (rs=-0.49, rs=-0.78 and P0.05; rs=-0.54, Pdogs and with SOD activity in diseased dogs only (rs=-0.68, Pdogs is associated with significant alteration in trace elements and oxidant/anti-oxidant imbalance and this imbalance might be secondary to changes caused by demodectic mange.

  10. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds.

    Science.gov (United States)

    Ding, YanFen; Cheng, HongYan; Song, SongQuan

    2008-09-01

    Sacred lotus (Nelumbo nucifera Gaertn. 'Tielian') seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW](-1), respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100 degrees C. Germination percentage of maize (Zea mays L. 'Huangbaogu') seeds was zero after they were treated at 100 degrees C for 15 min and that of lotus seeds was 13.5% following the treatment at 100 degrees C for 24 h. The time in which 50% of lotus and maize seeds were killed by 100 degrees C was about 14.5 h and 6 min, respectively. With increasing treatment time at 100 degrees C, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100 degrees C was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100 degrees C was more than 12 h, plasmolysis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plasmolemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0 -12 h of the treatment at 100 degrees C and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100 degrees C and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100 degrees C and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treatment time at 100 degrees

  11. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds

    Institute of Scientific and Technical Information of China (English)

    DING YanFen; CHENG HongYan; SONG SongQuan

    2008-01-01

    Sacred lotus (Nelumbo nucifera Gaertn. 'Tielian') seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW]-1, respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100℃. Germination percentage of maize (Zea mays L. 'Huangbaogu') seeds was zero after they were treated at 100℃ for 15 min and that of lotus seeds was 13.5% following the treatment at 100℃ for 24 h. The time in which 50% of lotus and maize seeds were killed by 100℃ was about 14.5 h and 6 min, respectively. With increasing treatment time at 100℃, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100℃ was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100℃ was more than 12 h, plasmoly-sis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plas-molemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0 -12 h of the treatment at 100℃ and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100℃ and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100℃ and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treat-ment time at 100℃. For maize seeds: (1) activities of SOD and DHAR of embryos and

  12. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Sacred lotus (Nelumbo nucifera Gaertn. ‘Tielian’) seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW] ?1, respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100℃. Germination percentage of maize (Zea mays L. ‘Huangbaogu’) seeds was zero after they were treated at 100℃ for 15 min and that of lotus seeds was 13.5% following the treatment at 100℃ for 24 h. The time in which 50% of lotus and maize seeds were killed by 100℃ was about 14.5 h and 6 min, respectively. With increasing treatment time at 100℃, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100℃ was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100℃ was more than 12 h, plasmoly-sis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plas-molemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0-12 h of the treatment at 100℃ and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100℃ and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100℃ and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treat-ment time at 100℃. For maize seeds: (1) activities of SOD and DHAR of embryos and

  13. Activity of antioxidant enzymes and physiological responses in ark shell, Scapharca broughtonii, exposed to thermal and osmotic stress: effects on hemolymph and biochemical parameters.

    Science.gov (United States)

    An, Myung In; Choi, Cheol Young

    2010-01-01

    Changes in water temperature and salinity are responsible for a variety of physiological stress responses in aquatic organisms. Stress induced by these factors was recently associated with enhanced reactive oxygen species (ROS) generation, which caused oxidative damage. In the present study, we investigated the time-related effects of changes in water temperature and salinity on mRNA expression and the activities of antioxidant enzymes (SOD and CAT) and lipid peroxidation (LPO) in the gills and digestive glands of the ark shell, Scapharca broughtonii. To investigate physiological responses, hydrogen peroxide (H(2)O(2)), lysozyme activity, aspartate aminotransferase (AspAT), and alanine aminotransferase (AlaAT) were measured in the hemolymph. Water temperature and salinity changes significantly increased antioxidant enzyme mRNA expression and activity in the digestive glands and gills in a time-dependent manner. H(2)O(2) concentrations increased significantly in the high-temperature and hyposalinity treatments. LPO, AspAT and AlaAT levels also increased significantly in a time-dependent manner, while lysozyme activity decreased. These results suggest that antioxidant enzymes play important roles in reducing oxidative stress in ark shells exposed to changes in water temperature and salinity.

  14. Effect of salinity stress on antioxidative enzyme activities in tomato cultured in vitro

    International Nuclear Information System (INIS)

    Under inappropriate environments, plants responses by changing their metabolisms to maintain homeostasis that acclimation abilities are different among species and varieties. Saline tolerance tomato is an alternative way to overcome saline soil condition of some areas in Thailand. This study aims to select one or some saline tolerance tomato varieties from mostly used commercial ones. Six tomato variety seeds (Pethlanna, Puangphaka, Seeda, Beefeater, Seeda chompoo and TE VF 1-3-4) were grown by tissue culture technique in MS medium and MS medium supplied with 0, 5, 10, 25 and 50 mM NaCl. The Puangphaka variety was selected since it could grow in all tests NaCl concentrations with best germination time compared to the others cultivar seeds and exhibited 80-90% growth compared to control group. The seedlings were further cultivated in the same medium for 7, 14 and 21 days before they were conducted to determine stem and root superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities as well as amount of chlorophyll. It was found that the SOD, CAT and GPx exhibited increase and decrease trends nearly the same pattern in salinity responses but with different activity levels. Inhibition of nutrient uptake could also be seen from the results. The maximum activities were 5, 0.18, 0.08, 2 and 3 U/mg protein for stem SOD, stem CAT, root CAT, stem GPx and root GPx, respectively. Furthermore, the chlorophyll A and B levels were decrease slightly except for the 21 days plants which presented considerable decrease. (author)

  15. Effects of benzo(a)pyrene exposure on the antioxidant enzyme activity of scallop Chlamys farreri

    Science.gov (United States)

    Pan, Luqing; Ren, Jiayun; Zheng, Debin

    2009-02-01

    Scallop Chlamys farreri was exposed to different concentrations of benzo(a)pyrene (BaP) (0.5 μg/L, 1.0 μg/L, 10.0 μg/L and 50.0 μg/L) for 30 days in seawater. The 7-ethoxyresorufin O-deethylase (EROD) activity was significantly induced, and increased with the increasing BaP concentration. The glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), Glutathione peroxidase (GPx) activities increased in short time at low concentration of BaP, and was significantly depressed at high concentrations. Scallop gill was more sensitive to BaP than the digestive gland, and the digestive gland was the main tissue to deal with oxyradicals. The contents of malondialdehyde (MDA) increased with the exposure time and there was a positive correlation (concentration-effect) between the MDA content and the concentration of BaP. The biomarkers determined in this experiment had important roles in detoxification, and showed great potential as biomarkers for oxidative stress. Controlled laboratory experiments designed to simulate field exposure scenarios are particularly useful in ascertaining biomarkers suitable for use with complex contaminant mixtures in the marine environment.

  16. Effects of benzo(a)pyrene exposure on the antioxidant enzyme activity of scallop Chlamys farreri

    Institute of Scientific and Technical Information of China (English)

    PAN Luqing; REN Jiayun; ZHENG Debin

    2009-01-01

    Scallop Chlamys farreri was exposed to different concentrations of benzo(a)pyrene (BaP) (0.5 μg/L, 1.0 μg/L, 10.0 μg/L and 50.0 μg/L) for 30 days in seawater. The 7-ethoxyresorufin O-deethylase (EROD) activity was significantly induced, and increased with the increasing BaP concentration. The glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), Glutathione peroxidase (GPx) activities increased in short time at low concentration of BaP, and was significantly depressed at high concentrations. Scallop gill was more sensitive to BaP than the digestive gland, and the digestive gland was the main tissue to deal with oxyradicals. The contents of malondialdehyde (MDA) increased with the exposure time and there was a positive correlation (concentration-effect) between the MDA content and the concentration of BaP. The biomarkers determined in this experiment had important roles in detoxification, and showed great potential as biomarkers for oxidative stress. Controlled laboratory experiments designed to simulate field exposure scenarios are particularly useful in ascertaining biomarkers suitable for use with complex contaminant mixtures in the marine environment.

  17. Acute liver failure in rats activates glutamine-glutamate cycle but declines antioxidant enzymes to induce oxidative stress in cerebral cortex and cerebellum.

    Directory of Open Access Journals (Sweden)

    Santosh Singh

    Full Text Available BACKGROUND AND PURPOSE: Liver dysfunction led hyperammonemia (HA causes a nervous system disorder; hepatic encephalopathy (HE. In the brain, ammonia induced glutamate-excitotoxicity and oxidative stress are considered to play important roles in the pathogenesis of HE. The brain ammonia metabolism and antioxidant enzymes constitute the main components of this mechanism; however, need to be defined in a suitable animal model. This study was aimed to examine this aspect in the rats with acute liver failure (ALF. METHODS: ALF in the rats was induced by intraperitoneal administration of 300 mg thioacetamide/Kg. b.w up to 2 days. Glutamine synthetase (GS and glutaminase (GA, the two brain ammonia metabolizing enzymes vis a vis ammonia and glutamate levels and profiles of all the antioxidant enzymes vis a vis oxidative stress markers were measured in the cerebral cortex and cerebellum of the control and the ALF rats. RESULTS: The ALF rats showed significantly increased levels of ammonia in the blood (HA but little changes in the cortex and cerebellum. This was consistent with the activation of the GS-GA cycle and static levels of glutamate in these brain regions. However, significantly increased levels of lipid peroxidation and protein carbonyl contents were consistent with the reduced levels of all the antioxidant enzymes in both the brain regions of these ALF rats. CONCLUSION: ALF activates the GS-GA cycle to metabolize excess ammonia and thereby, maintains static levels of ammonia and glutamate in the cerebral cortex and cerebellum. Moreover, ALF induces oxidative stress by reducing the levels of all the antioxidant enzymes which is likely to play important role, independent of glutamate levels, in the pathogenesis of acute HE.

  18. Effects of Fenugreek Seed Extract and Swimming Endurance Training on Plasma Glucose and Cardiac Antioxidant Enzymes Activity in Streptozotocin-induced Diabetic Rats

    OpenAIRE

    Arshadi, Sajad; BAKHTIYARI, Salar; Haghani, Karimeh; Valizadeh, Ahmad

    2015-01-01

    Objective Diabetes mellitus is a group of metabolic diseases characterized by chronic hyperglycemia condition resulting from defective insulin secretion or resistance insulin action, or both. The purpose of this study was to evaluate the effect of 6 weeks swimming training and Trigonella foenum-graecum seed (fenugreek) extract, alone and in combination, on plasma glucose and cardiac antioxidant enzyme activity of streptozotocin-induced diabetic rats. Methods Fifty male Wistar rats were divide...

  19. Effects of seaweed supplementation on blood glucose concentration, lipid profile, and antioxidant enzyme activities in patients with type 2 diabetes mellitus

    OpenAIRE

    Kim, Min Sun; Kim, Jung Yun; Choi, Woong Hwan; Lee, Sang Sun

    2008-01-01

    The present study was carried out to evaluate the physiological effects of seaweed supplementation on blood glucose levels, lipid profile, and antioxidant enzyme activities in subjects with type 2 diabetes mellitus. Subjects were randomized into either a control group or a seaweed supplementation group. Pills with equal parts of dry powdered sea tangle and sea mustard were provided to the seaweed supplementation group three times a day for 4 weeks. Total daily consumption of seaweed was 48 g....

  20. Effects of soybean supplementation on blood glucose, plasma lipid levels, and erythrocyte antioxidant enzyme activity in type 2 diabetes mellitus patients

    OpenAIRE

    Chang, Ji Ho; Kim, Min Sun; Kim, Tae Wha; Lee, Sang Sun

    2008-01-01

    The purpose of this study was to investigate the effect of soybean on blood glucose and lipid concentrations, and antioxidant enzyme activity in type 2 diabetes mellitus (DM) patients. We divided patients into two groups and fed them, respectively, a basal diet (control group) and a basal diet with 69 g/d of soybean (soybean group) for 4 weeks. Pills with roasted soybean powder were provided to the soybean supplementation group three times a day. Macronutrients intake except dietary fiber was...

  1. Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress

    OpenAIRE

    GHORBANPOUR, Mansour; HATAMI, Mehrnaz; Kazem KHAVAZI

    2013-01-01

    This study examined the effects of inoculation with 2 rhizobacteria strains, Pseudomonas putida (PP) and Pseudomonas fluorescens (PF), on growth parameters, chlorophyll, proline, leaf relative water content (RWC), antioxidant enzyme activities (including superoxide dismutase (SOD), peroxidase (POX), and catalase (CAT)), tropane alkaloids (such as hyoscyamine (HYO) and scopolamine (SCO)), and production of Hyoscyamus niger under 3 water deficit stress (WDS) levels, i.e. 30% (W1), 60% (W2), and...

  2. Roles of Antioxidative Enzymes in Wound Healing

    OpenAIRE

    Toshihiro Kurahashi; Junichi Fujii

    2015-01-01

    Since skin is the first barrier separating the body from the external environment, impaired wound healing can be life threatening to living organisms. Delayed healing processes are observed in animals under certain circumstances, such as advanced age, diabetes, and immunosuppression, but the underlying mechanisms of the abnormality remain elusive. Redox homeostasis is defined as the balance between the levels of reactive oxygen species (ROS) and antioxidants in which antioxidative enzymes pla...

  3. Fingerprinting antioxidative activities in plants

    Directory of Open Access Journals (Sweden)

    Plieth Christoph

    2009-01-01

    Full Text Available Abstract Background A plethora of concurrent cellular activities is mobilised in the adaptation of plants to adverse environmental conditions. This response can be quantified by physiological experiments or metabolic profiling. The intention of this work is to reduce the number of metabolic processes studied to a minimum of relevant parameters with a maximum yield of information. Therefore, we inspected 'summary parameters' characteristic for whole classes of antioxidative metabolites and key enzymes. Results Three bioluminescence assays are presented. A horseradish peroxidase-based total antioxidative capacity (TAC assay is used to probe low molecular weight antioxidants. Peroxidases are quantified by their luminol converting activity (LUPO. Finally, we quantify high molecular weight superoxide anion scavenging activity (SOSA using coelenterazine. Experiments with Lepidium sativum L. show how salt, drought, cold, and heat influence the antioxidative system represented here by TAC, LUPO, SOSA, catalase, and glutathione reductase (GR. LUPO and SOSA run anti-parallel under all investigated stress conditions suggesting shifts in antioxidative functions rather than formation of antioxidative power. TAC runs in parallel with GR. This indicates that a majority of low molecular weight antioxidants in plants is represented by glutathione. Conclusion The set of assays presented here is capable of characterising antioxidative activities in plants. It is inexpensive, quick and reproducible and delivers quantitative data. 'Summary parameters' like TAC, LUPO, and SOSA are quantitative traits which may be promising for implementation in high-throughput screening for robustness of novel mutants, transgenics, or breeds.

  4. Germinating Peanut (Arachis hypogaea L.) Seedlings Attenuated Selenite-Induced Toxicity by Activating the Antioxidant Enzymes and Mediating the Ascorbate-Glutathione Cycle.

    Science.gov (United States)

    Wang, Guang; Zhang, Hong; Lai, Furao; Wu, Hui

    2016-02-17

    Selenite can enhance the selenium nutrition level of crops, but excessive selenite may be toxic to plant growth. To elucidate the mechanisms underlying the role of selenite in production and detoxification of oxidative toxicity, peanut seedlings were developed with sodium selenite (0, 3, and 6 mg/L). The effects of selenite on antioxidant capacity, transcript levels of antioxidant enzyme genes, and enzyme activities in hypocotyl were investigated. The CuZn-SOD, GSH-Px, GST, and APX gene expression levels and their enzyme activities in selenite treatments were 1.0-3.6-fold of the control. Selenite also significantly increased the glutathione and ascorbate concentrations by mediating the ascorbate-glutathione cycle, and the selenite-induced hydrogen peroxide may act as a second messenger in the signaling pathways. This work has revealed a complex antioxidative response to selenite in peanut seedling. Understanding these mechanisms may help future research in increasing selenite tolerance and selenium accumulation in peanut and other crops.

  5. Effects of in vitro UVA irradiation and PUVA treatment on membrane fatty acids and activities of antioxidant enzymes in human keratinocytes

    International Nuclear Information System (INIS)

    Human Keratinocytes (NCTC 2544) in culture were exposed to either plain ultraviolet A (UVA) irradiation or to 8-methoxypsoralen plus UVA (PUVA) treatment. Lipid peroxidation, activities of antioxidant enzymes, and percentage amounts of 14C-arachidonic acid in various cellular lipid subclasses and in the culture medium were measured. Both UVA irradiation and PUVA treatment induced significant changes in the distribution of arachidonic acid and increased the liberation of arachidonic acid from membrane phospholipids. At 24 h after either UVA irradiation or PUVA treatment the formation of thiobarbituric acid reactive material was significantly increased, whereas the amount of conjugated dienes was unaffected. The activities of the antioxidant enzymes, catalase and superoxide dismutase, were already significantly decreased at 0.5 h after UVA irradiation or PUVA treatment. The enzyme activities were partially restored during the following 24 h incubation. From the present study, we suggest that in keratinocytes both plain UVA irradiation and PUVA treatment induce changes in the distribution of membrane fatty acids and cause an impairment in the enzymic defense system against oxidative stress

  6. Age and heat exposure-dependent changes in antioxidant enzymes activities in rat's liver and brain mitochondria: role of alpha-tocopherol.

    Science.gov (United States)

    Stojkovski, V; Hadzi-Petrushev, N; Ilieski, V; Sopi, R; Gjorgoski, I; Mitrov, D; Jankulovski, N; Mladenov, M

    2013-01-01

    To investigate the role of mitochondrial antioxidant capacity during increased susceptibility to heat accompanied by the aging, young and aged Wistar rats were exposed on heat for 60 min. After heat exposure, hepatic and brain mitochondria were isolated. Our results revealed changes in antioxidant enzyme activities in liver and brain mitochondria from young and to a greater extent in aged rats. Our measurements of MnSOD, GPx and GR activity indicate greater reactive oxygen species production from the mitochondria of aged heat exposed in comparison to young heat exposed rats. Also in the aged rats, the effect of alpha-tocopherol treatment in the prevention of oxidative stress occurred as a result of heat exposure, is less pronounced. Taken together, our data suggest that mitochondria in aged rats are more vulnerable and less able to prevent oxidative changes that occur in response to acute heat exposure.

  7. ANTIOXIDANT ENZYMES IN MAMMALS NATURALLY ADAPTED TO OXYGEN DEFICIENCY

    Directory of Open Access Journals (Sweden)

    Antonova Ekaterina Petrovna

    2013-03-01

    Full Text Available The activity of the key antioxidant enzymes, superoxide dismutase (SOD and catalase, were studied in the liver, kidneys and heart of 8 mammalian species from 2 Orders – Insectivora and Rodentia. Some species-specific differences were found – the activities of the enzymes in the organs considerably differed even in the taxonomically close species. The specific profile of antioxidant enzymes in the organism of birch mouse appears to be due to the occurance of hibernation in this animal. In the heart of semi-aquatic Eurasian water shrew and European water vole, an increase of the catalase activity was noted. The activity of SOD and catalase in the same organ can differ significantly even in taxonomically close species of studied mammals, and it was caused, first of all, by the specificity of their ecological features and adaptation to hypoxia.

  8. Antioxidant activity and emulsion-stabilizing effect of pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion.

    Science.gov (United States)

    Huang, Ping-Hsiu; Lu, Hao-Te; Wang, Yuh-Tai; Wu, Ming-Chang

    2011-09-14

    The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion. PMID:21806056

  9. Inhibitory activity on type 2 diabetes and hypertension key-enzymes, and antioxidant capacity of Veronica persica phenolic-rich extracts.

    Science.gov (United States)

    Sharifi-Rad, M; Tayeboon, G S; Sharifi-Rad, J; Iriti, M; Varoni, E M; Razazi, S

    2016-05-30

    Veronica genus (Plantaginaceae) is broadly distributed in different habitats. In this study, the inhibitory activity of free soluble and conjugated phenolic extracts of Veronica persica on key enzymes associated to type 2 diabetes (α-glucosidase and α-amylase) and hypertension (angiotensin I converting enzyme, ACE) was assessed, as well as their antioxidant power. Our results showed that both the extracts inhibited α-amylase, α-glucosidase and ACE in a dose-dependent manner. In particular, free phenolic extract significantly (P<0.05) inhibited α-glucosidase (IC50 532.97 µg/mL), whereas conjugated phenolic extract significantly (P<0.05) inhibited α-amylase (IC50 489.73 µg/mL) and ACE (290.06 µg/mL). The enzyme inhibitory activities of the extracts were not associated with their phenolic content. Anyway, the inhibition of α-amylase, α-glucosidase and ACE, along with the antioxidant capacity of the phenolic-rich extracts, could represent a putative mechanism through which V. persica exerts its antidiabetes and antihypertension effects.

  10. Alteration of starch hydrolyzing enzyme inhibitory properties, antioxidant activities, and phenolic profile of clove buds (Syzygium aromaticum L.) by cooking duration.

    Science.gov (United States)

    Adefegha, Stephen A; Oboh, Ganiyu; Oyeleye, Sunday I; Osunmo, Kolawole

    2016-03-01

    This study assessed the effect of cooking duration on starch hydrolyzing enzyme (α-amylase and α-glucosidase) activities, antioxidant (1,1-diphenyl-2 picrylhydrazyl [DPPH*], hydroxyl [OH*] radicals scavenging abilities and reducing power) properties, and phenolic profile of clove buds. Clove buds (raw) were cooked for 10 (SC 10) and 20 min (SC 20) and subsequently, their effects were assessed on enzyme activities, antioxidant properties, and phenolic profile. Inhibition of α-amylase and α-glucosidase activities and radicals scavenging abilities were altered by cooking in the trend; raw SC 20, with IC 50 values ranging from 0.25 to 0.52 mg/mL and 0.10 to 1.50 mg/mL respectively. HPLC phenolic profile of the clove buds revealed significant (P < 0.05) changes in the amount of chlorogenic acid, quercitrin, quercetin, and kaempferol at different cooking duration. Thus, cooking duration may alter the phenolic compositions and nutraceutical potentials of clove bud by activation and/or deactivation of redox-active metabolites. PMID:27004114

  11. Antioxidant enzyme activities of Microcystis aeruginosa in response to nonylphenols and degradation of nonylphenols by M. aeruginosa.

    Science.gov (United States)

    Wang, Jingxian; Xie, Ping

    2007-10-01

    The aim of this study was to examine the effects of chemical nonylphenols (NPs) on the antioxidant system of Microcystis aeruginosa strains. The degradation and sorption of NPs by M. aeruginosa were also evaluated. High concentrations of NPs (1 and 2 mg/l) were found to cause increases in superoxidase dismutase (SOD) and glutathione-S-transferase (GST) activities and in glutathione (GSH) levels. These results suggest that toxic stress manifested by elevated SOD and GST levels and GSH contents may be responsible for the toxicity of NPs to M. aeruginosa and that the algal cells could improve their antioxidant and detoxification ability through the enhancement of enzymatic and nonenzymatic prevention substances. The observed elevations in GSH levels and GST activities were relatively higher than those in SOD activities, indicating that GSH and GST contributed more in eliminating toxic effects than SOD. Low concentrations of NPs (0.05-0.2 mg/l) enhanced cell growth and decreased GST activity in algal cells of M. aeruginosa, suggesting that NPs may have acted as a protecting factor, such as an antioxidant. The larger portion of the NPs (>60%) disappeared after 12 days of incubation, indicating the strong ability of M. aeruginosa to degrade the moderate persistent NP compounds. The sorption ratio of M. aeruginosa after a 12-day exposure to low nominal concentrations of NPs (0.02-0.5 mg/l) was relatively high (>30%). The fact that M. aeruginosa effectively resisted the toxic effects of NPs and strongly degraded these pollutants indicate that M. aeruginosa cells have a strong ability to adapt to variations in environmental conditions and that low and moderate concentrations of organic compounds may favor its survival. Further studies are needed to provide detailed information on the fate of persistent organic pollutants and the survival of algae and to determine the possible role of organic pollutants in the occurrence of water blooms in eutrophic lakes. PMID:17342429

  12. [Effects of ryegrass and arbuscular mycorrhiza on activities of antioxidant enzymes, accumulation and chemical forms of cadmium in different varieties of tomato].

    Science.gov (United States)

    Jiang, Ling; Yang, Yun; Xu, Wei-Hong; Wang, Chong-Li; Chen, Rong; Xiong, Shi-Juan; Xie, Wen-Wen; Zhang, Jin-Zhong; Xiong, Zhi-Ting; Wang, Zheng-Yin; Xie, De-Ti

    2014-06-01

    Pot experiments were carried out to investigate the effects of ryegrass and arbuscular mycorrhiza on the plant growth, malondialdehyde (MDA), antioxidant enzyme activities of leaf and root, accumulation and chemical forms of cadmium (Cd) in tow varieties of tomato when exposed to Cd (20 mg x kg(-1)). The results showed that dry weights of fruit and plant, and contents of malondialdehyde (MDA) and antioxidant enzyme activities of leaf and root, and concentrations and accumulations of Cd significantly differed between two varieties of tomato. Dry weights of fruit, roots, stem, leaf and plant were increased by single or combined remediation of ryegrass and arbuscular mycorrhiza, while MDA contents and antioxidant enzyme activities of leaf and root reduced. The total extractable Cd, F(E), F(W), F(NaCl), F(HAc), F(HCl), and F(R) in fruit of two varieties of tomato reduced by 19.4% - 52.4%, 31.0% - 75.2%, 19.7% - 59.1%, 3.1% - 48.2%, 20.0% - 65.0%, 40.7% - 100.0% and 15.2% - 50.0%, respectively. Cadmium accumulations in tomato were in the order of leaf > stem > fruit > root. Cadmium concentrations in leaf, stem, root and fruit of both varieties decreased by single or combined remediation of ryegrass and arbuscular mycorrhiza, and Cd accumulations of stem and plant of two varieties also reduced. Cd accumulations in fruit of two varieties decreased by 42.9% and 43.7% in the combined remediation treatments, respectively. Tolerance and resistance of 'LUO BEI QI' on Cd was more than 'De Fu mm-8', and Cd concentrations and Cd accumulations in fruit and plant were in the order of 'LUO BEI QI' < 'De Fu mm-8' in the presence or absence of single or combined remediation of ryegrass and arbuscular mycorrhiza.

  13. Effect of Zinc and Bio Fertilizers on Antioxidant Enzymes Activity, Chlorophyll Content, Soluble Sugars and Proline in Triticale Under Salinity Condition

    OpenAIRE

    Younes KHEIRIZADEH AROUGH; Raouf SEYED SHARIFI; Mohammad SEDGHI; Morteza BARMAKI

    2016-01-01

    In order to study the effects of bio fertilizers and zinc fertilizer on antioxidant enzymes activity, chlorophyll content, soluble sugars and proline in triticale under salinity condition, a factorial experiment was conducted based on randomized complete block design with three replications under greenhouse condition. Experiment factors were included salinity in four levels [no-salt (control or S0), salinity 20 (S1), 40 (S2) and 60 (S3) mM NaCl) equivalent of 1.85, 3.7 and 5.55 dS m−1 respect...

  14. Evaluation of Various Packaging Systems on the Activity of Antioxidant Enzyme, and Oxidation and Color Stabilities in Sliced Hanwoo (Korean Cattle) Beef Loin during Chill Storage

    OpenAIRE

    Kang, Sun Moon; Kang, Geunho; Seong, Pil-Nam; Park, Beomyoung; Cho, Soohyun

    2014-01-01

    The effects of various packaging systems, vacuum packaging (VACP), medium oxygen-modified atmosphere packaging (50% O2/20% CO2/30% N2, MOMAP), MOMAP combined with vacuum skin packaging (VSP-MOMAP), high oxygen-MAP (80% O2/20% CO2/0% N2, HOMAP), and HOMAP combined with VSP (VSP-HOMAP), on the activity of antioxidant enzyme, and oxidation and color stabilities in sliced Hanwoo (Korean cattle) beef loin were investigated at 4°C for 14 d. Higher (p

  15. Role of vitamin B6 status on antioxidant defenses, glutathione, and related enzyme activities in mice with homocysteine-induced oxidative stress

    OpenAIRE

    Huang, Yi-Chia; Hsu, Cheng-Chin; Cheng, Chien-Hsiang; Hsu, Chin-Lin; Lee, Wan-Ju; Huang, Shih-Chien

    2015-01-01

    Background: Vitamin B6 may directly or indirectly play a role in oxidative stress and the antioxidant defense system.Objective: The purpose of this study was to examine the associations of vitamin B6 status with cysteine, glutathione, and its related enzyme activities in mice with homocysteine-induced oxidative stress.Design: Four-week-old male BALB/c mice were weighed and divided into one of four dietary treatment groups fed either a normal diet (as a control group and a homocysteine group),...

  16. Activity and Transcriptional Responses of Hepatopancreatic Biotransformation and Antioxidant Enzymes in the Oriental River Prawn Macrobrachium nipponense Exposed to Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Julin Yuan

    2015-10-01

    Full Text Available Microcystins (MCs are a major group of cyanotoxins with side effects in many organisms; thus, compounds in this group are recognized as potent stressors and health hazards in aquatic ecosystems. In order to assess the toxicity of MCs and detoxification mechanism of freshwater shrimp Macrobrachium nipponense, the full-length cDNAs of the glutathione S-transferase (gst and catalase (cat genes were isolated from the hepatopancreas. The transcription level and activity changes in the biotransformation enzyme (glutathione S-transferase (GST and antioxidant enzymes (superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx in the hepatopancreas of M. nipponense exposed to MC-LR (0.2, 1, 5, and 25 μg/L for 12, 24, 72 and 96 h were analyzed. The results showed that the isolated full-length cDNAs of cat and gst genes from M. nipponense displayed a high similarity to other crustaceans, and their mRNAs were mainly expressed in the hepatopancreas. MC-LR caused significant increase of GST activity following 48–96 h (p < 0.05 and an increase in SOD activity especially in 24- and 48-h exposures. CAT activity was activated when exposed to MC-LR in 12-, 24- and 48-h exposures and then it was inhibited at 96-h exposure. There was no significant effect on GPx activity after the 12- and 24-h exposures, whereas it was significantly stimulated after the 72- and 96-h exposures (p < 0.05. The transcription was altered similarly to enzyme activity, but the transcriptional response was generally more immediate and had greater amplitude than enzymatic response, particularly for GST. All of the results suggested that MC-LR can induce antioxidative modulation variations in M. nipponense hepatopancreas in order to eliminate oxidative damage.

  17. Dietary Aloe vera improves plasma lipid profile, antioxidant, and hepatoprotective enzyme activities in GIFT-tilapia (Oreochromis niloticus) after Streptococcus iniae challenge.

    Science.gov (United States)

    Gabriel, Ndakalimwe Naftal; Qiang, Jun; Ma, Xin Yu; He, Jie; Xu, Pao; Liu, Kai

    2015-10-01

    The current study investigated the effects of dietary Aloe vera on plasma lipid profile status, antioxidant, and hepatoprotective enzyme activities of GIFT-tilapia juveniles under Streptococcus iniae challenge. Five dietary groups were designed including a control and 100 % Aloe powder incorporated into a tilapia feed at 0.5, 1, 2, and 4 %/kg feed, which were administered for 8 weeks. Fish fed dietary Aloe at 4 %/kg feed significantly reduced in total cholesterol, while triacylglycerol reduced (P Aloe/kg feed compared to unsupplemented ones. High-density lipoprotein was significantly elevated in fish fed 0.5 and 1 % Aloe/kg feed compared to unsupplemented ones, and no significant changes (P > 0.05) were noted in low-density lipoprotein among test groups. Furthermore, high activities of superoxide dismutase, catalase, and glutathione peroxide in liver tissues were observed in Aloe-supplemented fish compared to unsupplemented ones, before and after S. iniae challenge (7.7 × 10(6) CFU cells/mL). Variations were also noted in malondialdehyde activity throughout the trial, but no significant difference (P > 0.05) was observed between groups. Meanwhile, Aloe-supplemented fish reduced serum aspartate and alanine aminotransferase (AST and ALT) activities before and after challenge. Based on the second-order polynomial regression analysis, dietary Aloe inclusion levels less than or equal to 1.88, 1.86, and 2.79 %/kg feed were determined to be suitable in improving plasma lipid profile status, antioxidant, and hepatoprotective enzyme activities in GIFT-tilapia in this study, respectively. Thus, A. vera extracts may be recommended as a tilapia feed supplement to enhance fish antioxidant and hepatoprotective capacities, especially during disease outbreaks.

  18. Methyl jasmonate effectively enhanced some defense enzymes activity and Total Antioxidant content in harvested "Sabrosa" strawberry fruit.

    Science.gov (United States)

    Asghari, Mohammadreza; Hasanlooe, Ali Rashid

    2016-05-01

    The use of chemicals in postharvest technology of horticultural crops is highly restricted and it is necessary to introduce safe food preserving methods. Strawberry is very susceptible to postharvest losses and more than 50% of harvested fruit is lost in Iran. Effect of postharvest treatment with methyl jasmonate (at 0, 8, and 16 μmol L(-1)) on some quality attributes of Sabrosa strawberry fruit during storage at 1 ± 0.5°C with 90-95% RH for 14 days followed by 24 h at 20°C was studied. Methyl jasmonate, at both concentrations, decreased weight loss and retained marketability of fruits. Catalase activity of treated fruits was decreased during the first days, but showed a substantial increase during the second week. Methyl jasmonate, in a concentration-dependent manner, enhanced peroxidase activity. Fruit total antioxidant capacity was enhanced by methyl jasmonate treatment. The results indicated that methyl jasmonate plays a key role in establishing resistance against stresses, enhancing fruit defense systems, antioxidant capacity, and storage life leading to decreased postharvest losses. This phytochemical has a good potential to be used in postharvest technology of Sabrosa strawberry fruit and enhance the fruit postharvest life. PMID:27247768

  19. Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris).

    Science.gov (United States)

    Vafaei, Fatemeh; Movafeghi, Ali; Khataee, Alireza

    2013-11-01

    The potential of pennywort (Hydrocotyle vulgaris) for phytoremediation of C.I. Acid Blue 92 (AB92) was evaluated. The effects of various experimental parameters including pH, temperature, dye concentration and plant weight on dye removal efficiency were investigated. The results showed that the optimal condition for dye removal were pH 3.5 and temperature 25 degree C. Moreover, the absolute dye removal enhanced with increase in the initial dye concentration and plant weight. Pennywort showed the same removal efficiency in repeated experiments (four runs) as that obtained from the first run (a 6-day period). Therefore, the ability of the plant in consecutive removal of AB92 confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. The effect of treatment on photosynthesis and antioxidant defense system including superoxide dismutase, peroxidase and catalase in plant roots and leaves were evaluated. The results revealed a reduction in photosynthetic pigments content under dye treatments. Antioxidant enzyme responses showed marked variations with respect to the plant organ and dye concentration in the liquid medium. Overall, the increase in antioxidant enzyme activity under AB92 stress in the roots was much higher than that in the leaves. Nevertheless, no significant increase in malondialdehyde content was detected in roots or leaves, implying that the high efficiency of antioxidant system in the elimination of reactive oxygen species. Based on these results, pennywort was founded to be a capable species for phytoremediation of AB92-contaminated water, may be effective for phytoremediation dye-contaminated polluted aquatic ecosystems.

  20. Cofactor metals and antioxidant enzymes in cisplatin-treated rats: effect of antioxidant intervention.

    Science.gov (United States)

    Sabuncuoglu, Suna; Eken, Ayse; Aydin, Ahmet; Ozgunes, Hilal; Orhan, Hilmi

    2015-10-01

    We explored the association between the activities of antioxidant enzymes and their metallic cofactors in rats treated with cisplatin. The antioxidant effects of aminoguanidine, and a combination of vitamins E and C were investigated. Plasma platin was significantly lower than liver and kidney. Cisplatin treatment caused significant increase in plasma Se-glutathione peroxidase activity. Activities of Se-glutathione peroxidase, glutathione S-transferase, catalase and Cu,Zn-superoxide dismutase have been found to be significantly decreased in liver and kidney compared to controls. Zn levels in these organs were diminished upon cisplatin treatment, while levels of Cu were unaffected. Interestingly, levels of iron, the cofactor of catalase, were found to be significantly increased in liver and kidney. Intervention with aminoguanidine or vitamins was generally prevented cisplatin-caused changes in the activity of enzymes and in the tissue levels of cofactor metals. These observations suggest that relation between activities of enzymes and levels of cofactor metals is multifactorial.

  1. Effect of dietary supplementation of vitamin C on growth, reactive oxygen species, and antioxidant enzyme activity of Apostichopus japonicus (Selenka) juveniles exposed to nitrite

    Science.gov (United States)

    Luo, Zuoyong; Wang, Baojie; Liu, Mei; Jiang, Keyong; Liu, Mingxing; Wang, Lei

    2014-07-01

    Different amounts of vitamin C were added to diets fed to juveniles (2.5 ± 0.15 g) of sea cucumber Apostichopus japonic u s (Selenka) in an attempt to reduce the stress response of specimens exposed to nitrite stress. A commercial feed was used as the control diet and three experimental diets were made by supplementing 1 000, 1 500, or 2 000 mg vitamin C/kg diet to control diet separately in a 45-day experiment. Sea cucumbers were exposed to three different levels (0.5, 1.0, and 1.5 mg/L) of nitrite stress for 4, 8, and 12 h at four time intervals (0, 15, 30, and 45 d). Growth of the animals was recorded during the experiment. Reactive oxygen species (ROS) (i.e. hydroxyl free radical (-OH), malondialdehyde (MDA) and total antioxidant capacity (T-AOC)) and antioxidant enzyme activities (i.e., superoxide dismutase (SOD) and catalase (CAT)) were measured. Response surface methodology (RSM) was used to analyze the effect of multiple factors on ROS indices and enzyme activities. Weight gain (WG) and special growth rate (SGR) of vitamin C supplementation groups were significantly higher than those of control group ( P < 0.05). The levels of -OH and MDA increased under exposure time extending and nitrite concentration increasing, whereas T-AOC level decreased. SOD and CAT activities increased at 4 h and 8 h and decreased at 12 h. During the days in which the animal consumed experimental diets, the levels of -OH and MDA decreased and that of T-AOC increased. This result suggests that diets containing vitamin C could reduce the nitrite stress response in the animals and increase their antioxidant capacity. The multifactor regression equation of growth performance, ROS indices, and duration of feeding results suggest that vitamin C supplementation of 1 400-2 000 mg/kg diet for 29-35 days could reduce effectively the effects of nitrite exposure.

  2. Expression profiles of two small heat shock proteins and antioxidant enzyme activity in Mytilus galloprovincialis exposed to cadmium at environmentally relevant concentrations

    Science.gov (United States)

    You, Liping; Ning, Xuanxuan; Chen, Leilei; Zhang, Linbao; Zhao, Jianmin; Liu, Xiaoli; Wu, Huifeng

    2014-03-01

    Small heat shock proteins encompass a widespread but diverse class of proteins, which play key roles in protecting organisms from various stressors. In the present study, the full-length cDNAs of two small heat shock proteins (MgsHSP22 and MgsHSP24.1) were cloned from Mytilus galloprovincialis, which encoded peptides of 181 and 247 amino acids, respectively. Both MgsHSP22 and MgsHSP24.1 were detected in all tissues examined by real-time PCR, with the highest expression being observed in muscle and gonad tissues. The real-time PCR results revealed that Cd significantly inhibited MgsHSP22 expression at 24 h and MgsHSP24.1 at 24 and 48 h under 5 μg/L Cd 2+ exposure. MgsHSP24.1 expression was also significantly inhibited after 50 μg/L Cd2+ exposure for 48 h. With regard to antioxidant enzymes, increased GPx and CAT activity were detected under Cd2+ stress (5 and 50 μg/L), while no significant difference in SOD activity was observed throughout the experiment. Overall, both MgsHsps and antioxidant enzymes revealed their potential as Cd stress biomarkers in M. galloprovincialis.

  3. Screening of Salt-stress, Antioxidant Enzyme, and Antimicrobial Activity of Leave extracts of Mangroves Avicennia marina L. from Hodaidah, Yemen

    Directory of Open Access Journals (Sweden)

    Maher A. Al Maqtari

    2014-05-01

    Full Text Available In the present study the salinity stress, antioxidant enzyme and antimicrobial activities of leaf extract of Avicennia marinawere investigated. As visualized from SDS-PAGE, no differences was found in number of protein band, but the intensities of several protein bands having apparent molecular mass by reduced severely in salt treated samples with enhanced activities of CAT, POX and GPX. Escherichia coli (ATCC8739, Staphylococus aureus (ATCC 6538, and Bacillus subtilis (ATCC6633 and fungus (Candida albicans ATCC 2091, and Aspergillus niger ATCC 16404 were used as the test pathogenic bacteria and fungi, respectively in this study. The Avicennia marina extract possessed antibacterial activity against E. coli, S. aureus, and B. subtilis (12, 6, and 7 mm respectively, with antifungal activity against C. albicans and A. niger (9 and 10 mm.

  4. TOTAL ANTIOXIDANT ACTIVITY OF YEAST SACCHAROMYCES CEREVISIAE

    OpenAIRE

    Blažena Lavová; Dana Urminská

    2013-01-01

    Antioxidants are health beneficial compounds that can protect cells and macromolecules (e.g. fats, lipids, proteins and DNA) from the damage of reactive oxygen species (ROS). Sacchamomyces cerevisiae are know as organisms with very important antioxidative enzyme systems such as superoxide dismutase or catalase. The total antioxidant activity (mmol Trolox equivalent – TE.g-1 d.w.) of Saccharomyces cerevisiae was measured by 2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) during the yeas...

  5. Pattern of phenolic content, antioxidant activity and senescence-related enzymes in granulated vs non-granulated juice-sacs of 'Kinnow' mandarin (Citrus nobilis x C. deliciosa).

    Science.gov (United States)

    Sharma, R R; Awasthi, O P; Kumar, Kuldeep

    2016-03-01

    'Kinnow' is a hybrid mandarin, developed at California (USA) but could not become successful there. However, it revolutionized citrus industry in India, Pakistan and Bangladesh. Recent reports indicate that like other citrus fruits, it also suffers from juice-sac granulation but exact cause of this malady is not known. Fully-mature 'Kinnow' fruits were harvested and observations on some physical and biochemical attributes were recorded and their relationship was established with occurrence of granulation. About 12.8 % 'Kinnow' fruits were affected by juice-sac granulation. Granulated fruits had higher average weight (178 ± 2.26 g), peel thickness (3.72 ± 0.23 mm), and less soluble solids concentrates (7.4 ± 0.21 %) than non-granulated fruits. Granulated fruits exhibited lower concentrations of total phenolics compounds (4.3 ± 0.56 mg 100(-1) g gallic acid equivalent fresh weigh) and antioxidants activity (1.78 ± 0.29 μmol Trolox g(-1) FW) but produced higher rates of carbon dioxide and ethylene, and exhibited higher activities of senescent-related enzymes such as lipoxygenase (LOX) (1.3 ± 0.31 μmoles min(-1) g(-1) FW) and pectin methylesterase (PME) (0.52 ± 0.12 μmol of NaOH g(-1) FW min(-1)) and had strong relationships with the occurrence of granulation. From this study, it can be concluded that total phenolics compounds, antioxidants and PAL enzyme activity have strongly negative co-relation; whereas, senescent-related enzymes such as LOX, and PME and rates of respiration or ethylene evolution have strongly positive relationships with the occurrence of granulation in 'Kinnow' mandarin. PMID:27570277

  6. Activity of Selected Antioxidant Enzymes, Selenium Content and Fatty Acid Composition in the Liver of the Brown Hare (Lepus europaeus L.) in Relation to the Season of the Year.

    Science.gov (United States)

    Drozd, Radosław; Pilarczyk, Renata; Pilarczyk, Bogumiła; Drozd, Arleta; Tomza-Marciniak, Agnieszka; Bombik, Teresa; Bąkowska, Małgorzata; Bombik, Elżbieta; Jankowiak, Dorota; Wasak, Agata

    2015-12-01

    The aim of the study was to evaluate the effect of low concentrations of selenium in the environment on the activity of selected antioxidant enzymes: Se-GSHPx, total GSHPx, SOD, CAT, and GST as well as fatty acid profile in the livers of brown hares during winter and spring. Liver tissues obtained from 20 brown hares collected in the north-eastern Poland in the winter and spring season were analyzed. In the tissue analyzed, a significantly lower level of selenium was noticeable in the spring compared to winter; however, values measured in both seasons indicated a deficiency of this element in the analyzed population of brown hares. There were no differences found that could indicate the influence of Se deficiency on the activity of antioxidant enzymes. The determined activity of antioxidant enzymes and fatty acid composition suggest a negligible impact of the low concentration of Se on the analyzed biochemical parameters of brown hare livers. PMID:26043915

  7. Activity of Selected Antioxidant Enzymes, Selenium Content and Fatty Acid Composition in the Liver of the Brown Hare (Lepus europaeus L.) in Relation to the Season of the Year.

    Science.gov (United States)

    Drozd, Radosław; Pilarczyk, Renata; Pilarczyk, Bogumiła; Drozd, Arleta; Tomza-Marciniak, Agnieszka; Bombik, Teresa; Bąkowska, Małgorzata; Bombik, Elżbieta; Jankowiak, Dorota; Wasak, Agata

    2015-12-01

    The aim of the study was to evaluate the effect of low concentrations of selenium in the environment on the activity of selected antioxidant enzymes: Se-GSHPx, total GSHPx, SOD, CAT, and GST as well as fatty acid profile in the livers of brown hares during winter and spring. Liver tissues obtained from 20 brown hares collected in the north-eastern Poland in the winter and spring season were analyzed. In the tissue analyzed, a significantly lower level of selenium was noticeable in the spring compared to winter; however, values measured in both seasons indicated a deficiency of this element in the analyzed population of brown hares. There were no differences found that could indicate the influence of Se deficiency on the activity of antioxidant enzymes. The determined activity of antioxidant enzymes and fatty acid composition suggest a negligible impact of the low concentration of Se on the analyzed biochemical parameters of brown hare livers.

  8. Bioaccumulation of Cry1Ab protein from an herbivore reduces anti-oxidant enzyme activities in two spider species.

    Directory of Open Access Journals (Sweden)

    Ji Zhou

    Full Text Available Cry proteins are expressed in rice lines for lepidopteran pest control. These proteins can be transferred from transgenic rice plants to non-target arthropods, including planthoppers and then to a predatory spider. Movement of Cry proteins through food webs may reduce fitness of non-target arthropods, although recent publications indicated no serious changes in non-target populations. Nonetheless, Cry protein intoxication influences gene expression in Cry-sensitive insects. We posed the hypothesis that Cry protein intoxication influences enzyme activities in spiders acting in tri-trophic food webs. Here we report on the outcomes of experiments designed to test our hypothesis with two spider species. We demonstrated that the movement of CryAb protein from Drosophila culture medium into fruit flies maintained on the CryAb containing medium and from the flies to the spiders Ummeliata insecticeps and Pardosa pseudoannulata. We also show that the activities of three key metabolic enzymes, acetylcholine esterase (AchE, glutathione peroxidase (GSH-Px, and superoxide dismutase (SOD were significantly influenced in the spiders after feeding on Cry1Ab-containing fruit flies. We infer from these data that Cry proteins originating in transgenic crops impacts non-target arthropods at the physiological and biochemical levels, which may be one mechanism of Cry protein-related reductions in fitness of non-target beneficial predators.

  9. Growth performance and antioxidant enzyme activities in rainbow trout (Oncorhynchus mykiss) juveniles fed diets supplemented with sage, mint and thyme oils.

    Science.gov (United States)

    Sönmez, Adem Yavuz; Bilen, Soner; Alak, Gonca; Hisar, Olcay; Yanık, Talat; Biswas, Gouranga

    2015-02-01

    This study evaluated effects of dietary supplementation of sage (Salvia officinalis), mint (Mentha spicata) and thyme (Thymus vulgaris) oils on growth performance, lipid peroxidation level (melondialdehyde, MDA) and liver antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; glucose-6-phosphate dehydrogenase, G6PD; glutathione reductase, GR; glutathione-S-transferase, GST and glutathione peroxidase, GPx) in rainbow trout (Oncorhynchus mykiss) juveniles. For this purpose, triplicate groups of rainbow trout were fed daily ad libitum with diets containing sage, mint and thyme oils at 500, 1,000 and 1,500 mg kg(-1) for 60 days. While weight gain percentage of fish fed the diets containing sage and thyme oils was significantly higher than the control group, that of fish fed mint oil was the lowest. Similarly, specific growth rate was found to be the highest in all groups of the sage and thyme oil feeding and the lowest in the mint groups. Moreover, feed conversion ratio was significantly higher in the mint oil administered groups. Survival rate was also significantly reduced in the fish fed the diet containing mint oil. It was observed that SOD, G6PD and GPx activities were significantly increased in liver tissues of all the treated fish groups compared to that of control diet-fed group. However, CAT, GST and GR activities were significantly decreased in experimental diet-fed fish groups at the end of the experiment. On the other hand, a significant reduction was found in MDA levels in the fish fed the diets with sage and thyme oils compared to control and mint diets on the 30th and 60th days of experiment. Overall, dietary inclusion of sage and thyme oils is effective in enhancing rainbow trout growth, reduction in MDA and least changing antioxidant enzyme activities at a low level of 500 mg kg(-1) diet, and they can be used as important feed supplements for rainbow trout production. PMID:25431274

  10. Growth performance and antioxidant enzyme activities in rainbow trout (Oncorhynchus mykiss) juveniles fed diets supplemented with sage, mint and thyme oils.

    Science.gov (United States)

    Sönmez, Adem Yavuz; Bilen, Soner; Alak, Gonca; Hisar, Olcay; Yanık, Talat; Biswas, Gouranga

    2015-02-01

    This study evaluated effects of dietary supplementation of sage (Salvia officinalis), mint (Mentha spicata) and thyme (Thymus vulgaris) oils on growth performance, lipid peroxidation level (melondialdehyde, MDA) and liver antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; glucose-6-phosphate dehydrogenase, G6PD; glutathione reductase, GR; glutathione-S-transferase, GST and glutathione peroxidase, GPx) in rainbow trout (Oncorhynchus mykiss) juveniles. For this purpose, triplicate groups of rainbow trout were fed daily ad libitum with diets containing sage, mint and thyme oils at 500, 1,000 and 1,500 mg kg(-1) for 60 days. While weight gain percentage of fish fed the diets containing sage and thyme oils was significantly higher than the control group, that of fish fed mint oil was the lowest. Similarly, specific growth rate was found to be the highest in all groups of the sage and thyme oil feeding and the lowest in the mint groups. Moreover, feed conversion ratio was significantly higher in the mint oil administered groups. Survival rate was also significantly reduced in the fish fed the diet containing mint oil. It was observed that SOD, G6PD and GPx activities were significantly increased in liver tissues of all the treated fish groups compared to that of control diet-fed group. However, CAT, GST and GR activities were significantly decreased in experimental diet-fed fish groups at the end of the experiment. On the other hand, a significant reduction was found in MDA levels in the fish fed the diets with sage and thyme oils compared to control and mint diets on the 30th and 60th days of experiment. Overall, dietary inclusion of sage and thyme oils is effective in enhancing rainbow trout growth, reduction in MDA and least changing antioxidant enzyme activities at a low level of 500 mg kg(-1) diet, and they can be used as important feed supplements for rainbow trout production.

  11. Alternations of salivary antioxidant enzymes in systemic lupus erythematosus.

    Science.gov (United States)

    Zaieni, S H; Derakhshan, Z; Sariri, R

    2015-11-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with chronic systemic inflammation. Oxidative stress may play a role in the pathogenesis of SLE. An increase in free radicals or an impaired antioxidant defense system in SLE causes oxidative stress. Therefore, oxidative damage plays an important role in the pathogenesis of SLE. Variations in antioxidant activity have been previously studied in serum of patients with this disease. However, salivary factors have not been evaluated. Considering that saliva, the noninvasive biological fluid, could be a reflection of the state of health, the purpose of this study was evaluation of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) activity in the saliva of patients with SLE. During the course of the practical part of the project, 30 patients with SLE and 30 healthy controls were selected to donate their saliva samples. After centrifugation of un-stimulated saliva, biological activity of POD, CAT and SOD were evaluated on their appropriate substrates using spectrophotometric methods and the results were statistically analyzed. The results showed that activities of antioxidant enzymes SOD and CAT were significantly reduced in saliva of SLE patients as compared to controls. The results suggest that antioxidant status was impaired in the saliva of SLE patients, and antioxidant status of saliva could be one of the non-invasive markers for SLE.

  12. Trace elements and antioxidant enzymes in extremely low birthweight infants.

    Science.gov (United States)

    Loui, Andrea; Raab, Andrea; Maier, Rolf F; Brätter, Peter; Obladen, Michael

    2010-04-01

    Oxygen radicals are believed to contribute to typical diseases of prematurity, such as bronchopulmonary dysplasia (BPD), intraventricular haemorrhage (IVH), retinopathy of prematurity (ROP) and necrotising enterocolitis (NEC). Our aim was to investigate whether these disorders are associated with disturbances in antioxidant enzyme activities and with low trace elements, which are co-factors of antioxidant enzymes. 209 infants with birthweight less than 1000g were enrolled into a European multicentre randomised erythropoietin (rhEPO) trial; 155 developed one or more of the above mentioned diseases. We analysed Zn, Cu, Fe, Se in plasma and red blood cells (RBCs), superoxide dismutase (CuZn-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in RBCs on the 3rd and 68th day of life. Zn, Fe, Se in plasma, and Se in RBCs decreased (p<0.01), and Zn in RBC (p<0.001), CuZn-SOD (p<0.01) and CAT increased (p<0.05), whereas GSH-Px remained unchanged. No differences were observed between the rhEPO and control groups. Antioxidant enzyme activities did not correlate with gestational age. In infants with BPD, IVH, ROP, or NEC, CuZn-SOD and CAT (p<0.05) were higher at day 68 than in infants without these diseases. CuZn-SOD and GSH-Px at 3 days and CuZn-SOD at 68 days correlated positively (p<0.05) with the duration of oxygen treatment. In conclusion, in ELBW infants, trace element concentrations decreased over the first 10 weeks of life. Lower trace element concentrations, did not affect the activities of CuZn-SOD, GSH-Px, and CAT. Typical diseases of prematurity were not associated with decreased antioxidant enzyme activities.

  13. Effects of dietary tannic acid on the growth, hepatic gene expression, and antioxidant enzyme activity in Brandt's voles (Microtus brandti).

    Science.gov (United States)

    Ye, Man-Hong; Nan, Yan-Lei; Ding, Meng-Meng; Hu, Jun-Bang; Liu, Qian; Wei, Wan-Hong; Yang, Sheng-Mei

    2016-01-01

    This study was designed to investigate the physiological and biochemical responses of Brandt's voles to the persistent presence of dietary tannic acid. The diet for animals in the experimental group was supplemented with 3% dietary tannic acid for 5weeks. The control group received a commercial lab chow. No significant differences were detected in body weight, organ (heart, kidney, and liver) weights, and organ parameters between animals from two groups. However, voles in the experimental group had significantly higher daily food intake, increased contents of proline and histidine in saliva and feces after protein hydrolysis, and elevated hepatic expression of transferrin than the control. Our results suggested the existence of adaptive strategies developed in Brandt's voles to overcome the adverse effects of dietary tannic acid. (1) Food consumption was increased to satisfy their nutritional demands. (2) The secretion of tannic-acid-binding salivary proteins was promoted. (3) The absorption of iron was enhanced. These alterations contributed to neutralize the negative effects of tannic acid and maintain body mass in animals supplemented with tannic acid. As the result of the consumption of tannic acid, hepatic expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase was significantly decreased, while the overall potential of the antioxidant system, characterized by increased hepatic enzymatic activities of catalase and glutathione peroxidase, was enhanced. Our results also implied the involvement of tannic acid in the regulation of lipid metabolism and oxidative stress in voles. PMID:26850644

  14. Studies on the Seasonal Changes in Antioxidant Enzymes Activity on Differently, Polluted Areas along the Bay of Bengal Employing Perna viridis as an Animal Model

    OpenAIRE

    Amutha, C.; P Subramanian

    2012-01-01

    Antioxidants are the innate or acquired molecules capable of slowing down or preventing the oxidative damage (damage due to reactive oxygen species) that caused by free radicals. The antioxidant enzyme activity in response to season as well as hydrocarbon pollution was attempted. Rayapuram fishing harbor of Chennai (Station-1) is highly oil contaminated with oil sleeks on the surface. The relatively moderate oil contaminated area (Station-2) is about 2 km away from the fishing harbor and the ...

  15. Effects of Droplet-Vitrification Cryopreservation Based on Physiological and Antioxidant Enzyme Activities of Brassidium Shooting Star Orchid

    Directory of Open Access Journals (Sweden)

    Safrina Rahmah

    2015-01-01

    Full Text Available Protocorm-like bodies (PLBs of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM, and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX and catalase (CAT showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages.

  16. Type 2 Diabetic Patients with Ischemic Stroke: Decreased Insulin Sensitivity and Decreases in Antioxidant Enzyme Activity Are Related to Different Stroke Subtypes

    Directory of Open Access Journals (Sweden)

    Aleksandra Jotic

    2013-01-01

    C (1.14±0.58, 1.00±0.26 versus 3.14±0.62 min−1/mU/l × 104, P<0.001 and in nondiabetics in D and E versus F (3.38±0.77, 3.03±0.72 versus 6.03±1.69 min−1/mU/l × 104, P<0.001. Also, GSH-Px and GR activities were lower in A and B versus C (GSH-Px: 21.96±3.56,  22.51±1.23 versus 25.12±1.67; GR: 44.37±3.58,  43.50±2.39 versus 48.58±3.67 U/gHb; P<0.001 and in D and E versus F (GSH-Px: 24.75±3.02,  25.57±1.92 versus 28.56±3.91; GR: 48.27±6.81,  49.17±6.24 versus 53.67±3.96 U/gHb; P<0.001. Decreases in Si and GR were significantly related to both ATI and LI in T2D. Our results showed that decreased IS and impaired antioxidant enzymes activity influence ischemic stroke subtypes in T2D. The influence of insulin resistance might be exerted on the level of glutathione-dependent antioxidant enzymes.

  17. Effects of squalene/squalane on dopamine levels, antioxidant enzyme activity, and fatty acid composition in the striatum of Parkinson's disease mouse model.

    Science.gov (United States)

    Kabuto, Hideaki; Yamanushi, Tomoko T; Janjua, Najma; Takayama, Fusako; Mankura, Mitsumasa

    2013-01-01

    Active oxygen has been implicated in the pathogenesis of Parkinson's disease (PD); therefore, antioxidants have attracted attention as a potential way to prevent this disease. Squalene, a natural triterpene and an intermediate in the biosynthesis of cholesterol, is known to have active oxygen scavenging activities. Squalane, synthesized by complete hydrogenation of squalene, does not have active oxygen scavenging activities. We examined the effects of oral administration of squalene or squalane on a PD mouse model, which was developed by intracerebroventricular injection of 6-hydroxydopamine (6-OHDA). Squalene administration 7 days before and 7 days after one 6-OHDA injection prevented a reduction in striatal dopamine (DA) levels, while the same administration of squalane enhanced the levels. Neither squalene nor squalane administration for 7 days changed the levels of catalase, glutathione peroxidase, or superoxide dismutase activities in the striatum. Squalane increased thiobarbituric acid reactive substances, a marker of lipid peroxidation, in the striatum. Both squalane and squalene increased the ratio of linoleic acid/linolenic acid in the striatum. These results suggest that the administration of squalene or squalane induces similar changes in the composition of fatty acids and has no effect on the activities of active oxygen scavenging enzymes in the striatum. However, squalane increases oxidative damage in the striatum and exacerbates the toxicity of 6-OHDA, while squalene prevents it. The effects of squalene or squalane treatment in this model suggest their possible uses and risks in the treatment of PD.

  18. Effect of salinity on leaf water status, proline and total soluble sugar concentrations and activity of antioxidant enzymes in blue panic grass

    Directory of Open Access Journals (Sweden)

    H. R. Eshghizadeh

    2014-07-01

    Full Text Available Evaluation of certain biochemical and physiological changes under stress can provide an appropriate approach for the study of hereditary factors influencing salt stress tolerance. In this greenhouse study, the changes in water status, osmotic regulators and activity of antioxidant enzymes in leaf tissue of panic blue grass (Panicum antidotale Retz exposed to salinity were evaluated over five consecutive weeks. Five levels of salinity (0, 70, 140, 210 and 280 mM NaCl were applied at the 4-leaf stage. Results showed that the highest leaf relative water content (RWC in non-saline (control treatment, as compared with the lowest RWC in 280 mM salinity treatment, was 8.67, 31, 25, 28 and 27% in the 1st to the 5th wee, respectively. Average leaf osmotic potential showed a decreasing trend in different salinity treatments over time and was reduced from -0.717 MP in the first week to -1.26 MP in the 5th week after exposure to salinity. Total soluble carbohydrates content of the leaves was reduced with increasing the salinity level. After 28 days of exposure to salinity, the activity of ascorbate peroxidase enzyme in non-saline treatment was 40% more than the 280 mM treatment; although the highest activity of ascorbate peroxidase enzyme was observed in the 70 mM treatment. Leaf RWC (r=0.62** and membrane stability index (r=0.52** had the most positive correlation with dry matter production of blue panic grass. In addition, increasing the DPPH radical scavenging activity (r=-0.61** and total phenol concentration (r=-0.69** had effective role in survival of this salt-tolerant plant. The data analysis, using stepwise regression, indicated that total phenol concentration (β= -0.722 and leaf proline concentration (β= -0.265 were the main components of salinity tolerance of blue panic grass.

  19. Antioxidant enzyme activity is associated with blood pressure and carotid intima media thickness in black men and women: The SABPA study.

    Science.gov (United States)

    van Zyl, Caitlynd; Huisman, Hugo W; Mels, Catharina M C

    2016-05-01

    In the urbanized black population of South Africa, oxidative stress may play a crucial role in the development of hypertension. Since oxidative stress may result from impaired antioxidant capacity we aimed to investigate antioxidant enzyme activity as well as its associations with vascular function and structure in a bi-ethnic population. Participants included 409 subjects almost equally stratified by ethnicity and sex. Blood pressure and carotid intima media thickness (cIMT) were measured and glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) enzyme activities were determined. GR activity was significantly higher in black men (7.71 nmol/min/ml vs 2.23 nmol/min/ml) and women (6.46 nmol/min/ml vs 2.86 nmol/min/ml) (p < 0.001) when compared to their white counterparts. In black women, GPx activity was significantly lower (p < 0.001) when compared to white women (31.9 nmol/min/ml vs 37.1 nmol/min/ml). In black men, cIMT was positively and independently associated with GR activity (R(2) = 0.30; β = 0.18; p = 0.048). In black women, systolic blood pressure (R(2) = 0.21; β = -0.24; p = 0.014), diastolic blood pressure (R(2) = 0.11; β = -0.20; p = 0.044) and mean arterial pressure (R(2) = 0.20; β = -0.31; p = 0.002) were inversely associated with GPx activity. No associations were found in the white groups. The positive association between GR activity and cIMT in black men may be the result of a compensatory response to prevent arterial remodelling. The inverse association between GPx activity and blood pressure in black women may indicate a role for decreased GPx activity in hypertension development in this population. PMID:26990726

  20. Effect of different levels dietary vitamin C on growth performance, muscle composition, antioxidant and enzyme activity of freshwater prawn, Macrobrachium malcolmsonii

    Directory of Open Access Journals (Sweden)

    Annamalai Asaikkutti

    2016-05-01

    Full Text Available In the present study was conducted to examine the effects and interactions of dietary vitamin C levels on the growth performance, antioxidant ability, muscle composition and enzyme activity in freshwater prawn Macrobrachium malcolmsonii (M. malcolmsonii. Additional, the vitamins C was dietary supplemented for freshwater prawn M. malcolmsonii. The experimental basal diets were supplemented with M. malcolmsonii at the rates of 0 (control, 25, 50, 100, 200 and 400 mg/kg dry feed weight. The as-supplemented vitamin C was fed in M. malcolmsonii for a period of 90 days. In the present investigation revealed that prawns fed with diet supplemented with 25–100 mg/kg of vitamins C shows enhanced (P  0.05 in feed conversion ratio (FCR were observed in prawn fed different diets. Addition, prawns fed with 25–100 mg/kg of vitamins C supplemented diets achieved significant (P  0.05 alterations in prawns fed with 25–100 mg/kg of vitamin C supplemented diets. Therefore, the present study proposed that 100 mg/kg of vitamin C could be supplemented for flexible enhanced survival; growth, antioxidant defense system and production of M. malcolmsonii.

  1. Exercise-induced oxidative stress and antioxidant enzyme activity in type 2 diabetic patients with and without diastolic dysfunction and hypertension

    Directory of Open Access Journals (Sweden)

    Kostić Nada

    2009-01-01

    Full Text Available Introduction. Antioxidant systems are important factors affecting the oxidation of lipoproteins and thereby the progression of atherosclerotic disease. It has been suggested that physical activity might maintain and promote the antioxidant defence capacity against the oxidative stress. Left ventricular dysfunction (LVDD and hypertension are more common in subjects with diabetes mellitus (DM type 2. Objective. To evaluate the oxidative stress in patients with DM type 2, particularly with LVDD and hypertension and to determine the influence of acute exercise training on the investigated parameters. Methods. To assess the oxidative stress of patients, we determined the following antioxidative parameters: triglycerides (TG, total cholesterol, low density cholesterol, OxLDL cholesterol, superoxide dismutase (SOD, glutathione peroxidase (GSH-Px, plasminogen activator-type 1 (PAI-1 which were measured at rest and immediately after the acute bout of the cardiopulmonary exercise cycle ergometer test. Results. In basal conditions, diabetic patients had a significant increase of TG (3.12±1.09 vs 1.74±0.9 mmol/l; p<0.01, OxLDL cholesterol (84.73±16.9 vs 79.00±29.26 mmol/l; p<0.05 and SOD enzyme activity (913.38±120.36 vs 877.14 ±153.18; p<0.05 compared to controls. During the acute exercise test, there were significantly greater levels of OxLDL (84.73±16.90 vs 92.33±23.29 mmol/l; p<0.05 in study patients. SOD significantly increased in both groups during exercise, in diabetic patients (913.38±120.36 vs 921.50±130.03 U/g Hb; p<0.05 and in controls (877.14±153.18 vs 895.00±193.49 U/g Hb; p<0.05. GSH-Px significantly increased only in diabetic patients after acute exercise (45.04±11.19 vs 51.81±15.07 U/g Hb; p<0.01, but not in controls. PAI significantly decreased during the exercise test only in healthy subjects (2.60±0.35 vs 2.22±0.65; p<0.05. Type 2 diabetic patients with cardiovascular complications (LVDD and hypertension had a significant

  2. 菊黄东方鲀仔稚鱼生长及其消化酶与抗氧化酶活性%Growth, digestive enzyme and antioxidant enzyme activities of tawny puffer (Taki fugu f lavidus) larvae

    Institute of Scientific and Technical Information of China (English)

    刘永士; 施永海; 张根玉; 谢永德; 徐嘉波; 邓平平; 张宗锋

    2014-01-01

    Summary It is well documented that , due to the changing nutritional requirements and shifting from endogenous to exogenous feeding , fishes experience evolutionary adaptations in the morphogenesis of their digestive system during early developmental stages . This fact is also reflected in the ontogeny of digestive enzyme patterns . To maintain health and prevent oxidation‐induced lesions and mortalities , there must be effective antioxidant systems operating in fish larvae . The components of these systems involve antioxidant compounds and antioxidant enzymes . It is well known and generally acknowledged that many biological and physiological systems are poorly developed in fish larvae . Therefore , a comprehensive analysis of the ontogenic changes occurring during the early life stages of fish is essential for the design of adequate larval rearing and feeding strategies and also for the formulation of dry diets . The overall aims of this study were to understand the characterization of the growth , digestive enzyme and antioxidant enzyme activities in tawny puffer ( Taki f ugu f lavidus ) during the early development in order to enhance the growth and quality of early life stages by avoiding nutrient and oxidation problems that may cause pathologies and diseases .Total length , body mass , main digestive enzymes and antioxidant enzymes of tawny puffer larvae from 2 to 30 day‐old were determined . The relationship between total length or body mass and day‐old could be fixed to the linear and exponential functions , respectively . The general correlation equation of total length and body mass was power function under artificial farming conditions , and the grow th ( in mass ) in relation to total length was allometric . Lipase activity was not detected in tawny puffer larvae . The activities of trypsin and pepsin followed a complementary variation pattern . Trypsin activity showed a rapid decrease from 2 to 6 day‐old , and reached to the minimum level ( 109

  3. Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of Hyoscyamus niger L. plants with nano-sized titanium dioxide and bulk application

    Directory of Open Access Journals (Sweden)

    Mansour GHORBANPOUR

    2015-11-01

    Full Text Available  Application of nanotechnology is now widely distributed overall the life, especially in agricultural systems. This study intended to indicate the impacts of nano-sized titanium dioxide particles (NT and bulk (BT on antioxidant enzymes activities including superoxide dismutase (SOD, peroxidase (POX and catalase (CAT, and variations of two major tropane alkaloids such as hyoscyamine (HYO and scopolamine (SCO in Hyoscyamus niger L. Plants were treated with different concentrations of NT and BT (0, 20, 40 and 80 mg l-1. Alkaloids extracted were identified by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS analysis. Results showed that SOD activity increased with increasing titanium dioxide concentration in both nano-particles and bulk treated plants. However, the highest and the lowest POX activity were observed in plants exposed to NT at 40 mg l-1 and control, respectively. Generally, all tested enzymes activities were higher in NT treated plants that those of BT except CAT activity at 80 mg l-1. The highest alkaloids content values, HYO: 0.286 g kg-1 and SCO: 0.126 g kg-1, were achieved in plants treated with NT at 80 and 20 mg l-1, respectively. The maximum and minimum plant biomass and subsequently total alkaloids yield were obtained in plants exposed to NT at 40 mg l-1 and controls, respectively. Our results suggest that NT in appropriate level (40 mg l-1 may act as an elicitor for biochemical responses and tropane alkaloids biosynthesis in H. niger plants. 

  4. Oxidative stress in deep scattering layers: Heat shock response and antioxidant enzymes activities of myctophid fishes thriving in oxygen minimum zones

    Science.gov (United States)

    Lopes, Ana Rita; Trübenbach, Katja; Teixeira, Tatiana; Lopes, Vanessa M.; Pires, Vanessa; Baptista, Miguel; Repolho, Tiago; Calado, Ricardo; Diniz, Mário; Rosa, Rui

    2013-12-01

    Diel vertical migrators, such as myctophid fishes, are known to encounter oxygen minimum zones (OMZ) during daytime in the Eastern Pacific Ocean and, therefore, have to cope with temperature and oxidative stress that arise while ascending to warmer, normoxic surface waters at night-time. The aim of this study was to investigate the antioxidant defense strategies and heat shock response (HSR) in two myctophid species, namely Triphoturus mexicanus and Benthosema panamense, at shallow and warm surface waters (21 kPa, 20-25 °C) and at hypoxic, cold (≤1 kPa, 10 °C) mesopelagic depths. More specifically, we quantified (i) heat shock protein concentrations (HSP70/HSC70) (ii) antioxidant enzyme activities [including superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)], and (iii) lipid peroxidation [malondialdehyde (MDA) levels]. HSP70/HSC70 levels increased in both myctophid species at warmer, well-oxygenated surface waters probably to prevent cellular damage (oxidative stress) due to increased oxygen demand under elevated temperatures and reactive oxygen species (ROS) formation. On the other hand, CAT and GST activities were augmented under hypoxic conditions, probably as preparatory response to a burst of oxyradicals during the reoxygenation phase (while ascending). SOD activity decreased under hypoxia in B. panamense, but was kept unchanged in T. mexicanus. MDA levels in B. panamense did not change between the surface and deep-sea conditions, whereas T. mexicanus showed elevated MDA and HSP70/HSC70 concentrations at warmer surface waters. This indicated that T. mexicanus seems to be not so well tuned to temperature and oxidative stress associated to diel vertical migrations. The understanding of such physiological strategies that are linked to oxygen deprivation and reoxygenation phases may provide valuable information about how different species might respond to the impacts of environmental stressors (e.g. expanding mesopelagic hypoxia

  5. Effects of α-tocopheryl acetate supplementation in preslaughter diet on antioxidant enzyme activities and fillet quality of commercial-size Sparus macrocephalus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study examined the effects of dietary α-tocopheryl acetate supplementation on antioxidant enzyme activities and fillet quality in commercial-size Sparus macrocephalus. Three hundred fish [main initial weight (350±12) g] were divided into three groups (E250, E500 and E1000) and reared in 9 cages. The fish were fed for 8 weeks with three diets containing different levels of dietary α-tocopheryl acetate (289, 553, 1069 mg/kg). Over the experimental period, fish were fed to satiation and reached a final mean weight of (465±28) g without significant body weight difference and proximate composition difference. Fillet α-tocopherol was significantly (P<0.05) different between groups, reaching levels of 14.2, 22.1, 30.9 μg/mg fillet for groups E250,E500 and E1000, respectively. Total serum superoxide dismutase (SOD) activity increased significantly (P<0.05) in fish fed the diets high in α-tocopheryl acetate, but serum glutathione peroxidase (GPX) activity was unaffected. In storage on ice, fillets offish fed the diets high in α-tocopheryl acetate exhibited significantly lower (P<0.05) levels of oxidation. These results suggested that increased dietary α-tocopheryl acetate could increase its flesh deposition, increase the activity of SOD and prevent lipid peroxidation of Sparus macrocephalus fillets in retail storage on ice.

  6. Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells.

    Science.gov (United States)

    Santofimia-Castaño, Patricia; Clea Ruy, Deborah; Garcia-Sanchez, Lourdes; Jimenez-Blasco, Daniel; Fernandez-Bermejo, Miguel; Bolaños, Juan P; Salido, Gines M; Gonzalez, Antonio

    2015-10-01

    The goal of this study was to evaluate the potential activation of the nuclear factor erythroid 2-related factor and the antioxidant-responsive element (Nrf2-ARE) signaling pathway in response to melatonin in isolated mouse pancreatic acinar cells. Changes in intracellular free Ca(2+) concentration were followed by fluorimetric analysis of fura-2-loaded cells. The activations of PKC and JNK were measured by Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Immunocytochemistry was employed to determine nuclear location of phosphorylated Nrf2, and the cellular redox state was monitored following MitoSOX Red-derived fluorescence. Our results show that stimulation of fura-2-loaded cells with melatonin (1 µM to 1 mM), in the presence of Ca(2+) in the extracellular medium, induced a slow and progressive increase of [Ca(2+)](c) toward a stable level. Melatonin did not inhibit the typical Ca(2+) response induced by CCK-8 (1 nM). When the cells were challenged with indoleamine in the absence of Ca(2+) in the extracellular solution (medium containing 0.5 mM EGTA) or in the presence of 1 mM LaCl(3), to inhibit Ca(2+) entry, we could not detect any change in [Ca(2+)](c). Nevertheless, CCK-8 (1 nM) was able to induce the typical mobilization of Ca(2+). When the cells were incubated with the PKC activator PMA (1 µM) in the presence of Ca(2+) in the extracellular medium, we observed a response similar to that noted when the cells were challenged with melatonin 100 µM. However, in the presence of Ro31-8220 (3 µM), a PKC inhibitor, stimulation of cells with melatonin failed to evoke changes in [Ca(2+)]c. Immunoblots, using an antibody specific for phospho-PKC, revealed that melatonin induces PKCα activation, either in the presence or in the absence of external Ca(2+). Melatonin induced the phosphorylation and nuclear translocation of the transcription factor Nrf2, and

  7. Natural Antioxidants, Lipid Profile, Lipid Peroxidation, Antioxidant Enzymes of Different Vegetable Oils

    Directory of Open Access Journals (Sweden)

    Eqbal M.A. Dauqan

    2011-08-01

    Full Text Available Antioxidant plays a very important role in the body defense system against Reactive Oxygen Species (ROS. The free radicals also play an important role in combustion, atmospheric chemistry, biochemistry and biotechnology including human physiology. Fats and oils are energy sources that are composed mostly of triacylglycerols. Lipid ptofile are risk indicators of coronary heart disease. Various types of lipoproteins exist, but the two most abundant are Low-density Lipoprotein (LDL and High-density Lipoprotein (HDL. Lipid peroxidation is the introduction of a functional group containing two catenated oxygyen atomsinto unsturated fatty acids in a free radical reaction. Life in oxygen has led to the evolution of biochemical adaptations that exploit the reactivity of Active Oxygen Species (AOS. Antioxidant enzymes are an important protective mechanism ROS. This paper highlight the functions of antioxidants in the blood and selected organs associated with health.

  8. Prenatal hormones alter antioxidant enzymes and lung histology in rats with congenital diaphragmatic hernia.

    NARCIS (Netherlands)

    H. IJsselstijn (Hanneke); B.A. Pacheco; A. Albert; W. Sluiter (Wim); P.K. Donahoe; J.C. de Jongste (Johan); J.J. Schnitzer; D. Tibboel (Dick)

    1997-01-01

    textabstractPrenatal administration of dexamethasone (Dex) and thyrotropin-releasing hormone (TRH) synergistically enhances lung maturity, but TRH suppresses the antioxidant enzyme activity. Prenatal hormonal therapy improves alveolar surfactant content and lung compliance in rat

  9. HYDRATION AND ENZYME ACTIVITY

    OpenAIRE

    Poole, P.

    1984-01-01

    Hydration induced conformation and dynamic changes are followed using a variety of experimental techniques applied to hen egg white lysozyme. These changes are completed just before the onset of enzyme activity, which occurs before all polar groups are hydrated, and before monolayer coverage is attained. We suggest that these hydration induced changes are necessary for the return of enzyme activity.

  10. Angiotensin I-Converting Enzyme inhibitory and antioxidant activities and surfactant properties of protein hydrolysates as obtained of Amaranthus hypochondriacus L. grain.

    Science.gov (United States)

    Soriano-Santos, J; Escalona-Buendía, H

    2015-04-01

    Even though some research has been carried out on surfactant properties of amaranth protein hydrolysates, their bio-functionality has not been studied yet. In this work amaranth grain Alb 1 and Glob were hydrolyzed (Alb 1H, Glob H) and foams and emulsions at optimal conditions (t, E/S, pH5) were prepared in order to assess techno-functional properties such as foaming (F) and emulsifying (E) (capacity (C) and stability (S)). FC and EC were much better for Glob H than for Alb H. Angiotensin I-converting enzyme-inhibitory activity was higher for Alb 1H (roughly 50 %) than that of Glob H (roughly 30 %). Scavenging of radicals activity (DPPH· or ABTS· (+) ) of Alb 1H and Glob H, at 2 mg/mL, was similar (approx. 40 %), but lower than Alb 1 (approx. 70 %), which was the best antioxidant. The low reducing power showed that hydrolysates barely donate an electron or hydrogen. Chelating activity on Cu(2+) was lower than that exhibited by Fe(2+,) which was remarkable, approx. 80 % as long as DH% > 10 %, where hydrolysates displayed high solubility (Alb 1H = 85 %, Glob H = 70 %) because of occurrence of 1-10 kDa peptides. Amaranth foams and emulsions prepared with protein hydrolysates have a potential as a nutraceutical food. PMID:25829587

  11. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications.

    Science.gov (United States)

    Lei, Xin Gen; Zhu, Jian-Hong; Cheng, Wen-Hsing; Bao, Yongping; Ho, Ye-Shih; Reddi, Amit R; Holmgren, Arne; Arnér, Elias S J

    2016-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.

  12. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications.

    Science.gov (United States)

    Lei, Xin Gen; Zhu, Jian-Hong; Cheng, Wen-Hsing; Bao, Yongping; Ho, Ye-Shih; Reddi, Amit R; Holmgren, Arne; Arnér, Elias S J

    2016-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways. PMID:26681794

  13. Role of vitamin B6 status on antioxidant defenses, glutathione, and related enzyme activities in mice with homocysteine-induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Cheng-Chin Hsu

    2015-04-01

    Full Text Available Background: Vitamin B6 may directly or indirectly play a role in oxidative stress and the antioxidant defense system. Objective: The purpose of this study was to examine the associations of vitamin B6 status with cysteine, glutathione, and its related enzyme activities in mice with homocysteine-induced oxidative stress. Design: Four-week-old male BALB/c mice were weighed and divided into one of four dietary treatment groups fed either a normal diet (as a control group and a homocysteine group, a vitamin B6-deficient diet (as a B6-deficient group, or a B6-supplemented diet (a pyridoxine-HCl-free diet supplemented with 14 mg/kg of pyridoxine-HCl, as a B6 supplement group for 28 days. Homocysteine thiolactone was then added to drinking water in three groups for 21 days to induce oxidative stress. At the end of the study, mice were sacrificed by decapitation and blood and liver samples were obtained. Results: Mice with vitamin B6-deficient diet had the highest homocysteine concentration in plasma and liver among groups. Significantly increased hepatic malondialdehyde levels were observed in the vitamin B6-deficient group. Among homocysteine-treated groups, mice with vitamin B6-deficient diet had the highest plasma glutathione concentration and relatively lower hepatic glutathione concentration. The glutathione peroxidase activities remained relatively stable in plasma and liver whether vitamin B6 was adequate, deficient, or supplemented. Conclusions: Mice with deficient vitamin B6 intakes had an aggravate effect under homocysteine-induced oxidative stress. The vitamin B6-deficient status seems to mediate the oxidative stress in connection with the redistribution of glutathione from liver to plasma, but not further affect glutathione-related enzyme activities in mice with homocysteine-induced oxidative stress.

  14. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta)

    Science.gov (United States)

    2016-01-01

    Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation. PMID:27642603

  15. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta).

    Science.gov (United States)

    Wu, Huanyang

    2016-01-01

    Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation. PMID:27642603

  16. Effect of Zinc and Bio Fertilizers on Antioxidant Enzymes Activity, Chlorophyll Content, Soluble Sugars and Proline in Triticale Under Salinity Condition

    Directory of Open Access Journals (Sweden)

    Younes KHEIRIZADEH AROUGH

    2016-06-01

    Full Text Available In order to study the effects of bio fertilizers and zinc fertilizer on antioxidant enzymes activity, chlorophyll content, soluble sugars and proline in triticale under salinity condition, a factorial experiment was conducted based on randomized complete block design with three replications under greenhouse condition. Experiment factors were included salinity in four levels [no-salt (control or S0, salinity 20 (S1, 40 (S2 and 60 (S3 mM NaCl equivalent of 1.85, 3.7 and 5.55 dS m−1 respectively], four bio fertilizers levels (no bio fertilizer (F0, application of mycorrhiza (F1, PGPR (F2, both application PGPR and mycorrhiza (F3 and three nano zinc oxide levels (without nano zinc oxide as control (Zn0, application of 0.4 (Zn1 and 0.8 (Zn2 g lit-1. Results showed that salinity severe stress (60 mM decreased chlorophyll a, chlorophyll b, total chlorophyll, carotenoid and grain yield of triticale, whereas soluble sugars and proline content, the activities of Catalase (CAT, Peroxidase (POD Polyphenol Oxidase (PPO enzymes increased. Results showed that both application of bio fertilizer and 0.8 g lit-1 nano zinc oxide (F3Zn2 increased about 39% from grain yield in comparison with F0Zn0 under the highest salinity level. Based on the results, it was concluded that bio fertilizers and nano zinc oxide application can be recommended for profitable triticale production under salinity condition.

  17. Antioxidative enzymes in the response of buckwheat (Fagopyrum esculentum Moench to complete submergence

    Directory of Open Access Journals (Sweden)

    Stanisavljević N.S.

    2011-01-01

    Full Text Available Oxidative stress and antioxidative defense system activity were studied in buckwheat leaves after complete submergence and re-aeration. The levels of H2O2 and lipid peroxidation were found to be significantly higher in stressed than in untreated buckwheat leaves. Enzymes catalyzing the degradation of H2O2 and peroxides were shown to participate actively, whereas superoxide dismutase did not take part in the buckwheat leaf response to flooding stress. The most prominent increase in antioxidative enzyme activities was noticed upon return to air, when the strongest oxidative stress occurred and the need for antioxidative defense was the greatest.

  18. Low-dose gamma irradiation induces water activity, leaf K+/Na+, glycine betaine, antioxidant enzyme activity and reduces lipid peroxidation and protease activity to enhance salt tolerance in pigeonpea [Cajanus cajan (L.) Millsp

    International Nuclear Information System (INIS)

    Soil salinity is a major constraint that limits legume productivity. The present study evaluates the physiological and biochemical basis of radiation affect on salt tolerance response of pigeonpea. Seed gamma irradiation, in general, at 1.92 (control), 5.86 (80 mM) and 8.02 dSm-1 (100 mM) soil electrical conductivity (NaCl stress), enhanced seedling establishment, plant growth, carbon metabolism and gas exchange characteristics such as net photosynthesis, stomatal conductance and transpiration rate. Further, an improvement in salt tolerance response of gamma irradiated (<10 Gy) pigeonpea was related to high seed water activity and leaf K+/Na+, glycine betaine, membrane stability index and enzymic antioxidant activity. (author)

  19. Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat

    DEFF Research Database (Denmark)

    Breinholt, V.; Lauridsen, S.T.; Dragsted, L.O.

    1999-01-01

    1. Gavage administration of the natural flavonoids tangeretin, chrysin, apigenin, naringenin, genistein and quercetin for 2 consecutive weeks to the female rat resulted in differential effects on selected phase 1 and 2 enzymes in liver, colon and heart as well as antioxidant enzymes in red brood...... cells (RBC). 2. Glutathione transferase (GST) activity assayed by use of the substrate 1-chloro-2,4-dinitrobenzene was significantly induced by apigenin, genistein and tangeretin in the heart but not in colon or liver. 3. In RBC chrysin, quercetin and genistein significantly decreased the activity......, genistein, tangeretin and BNF. 5. The observed effects of chrysin, quercetin and genistein on antioxidant enzymes, concurrently with a protection against oxidative stress, suggest a feedback mechanism on the antioxidant enzymes triggered by the flavonoid antioxidants. 6. Despite the use of high flavonoid...

  20. Enzyme-assisted extraction of phenolics from winemaking by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities.

    Science.gov (United States)

    de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Biasoto, Aline Camarão Telles; Shahidi, Fereidoon

    2016-12-01

    Phenolics in food and agricultural processing by-products exist in the soluble and insoluble-bound forms. The ability of selected enzymes in improving the extraction of insoluble-bound phenolics from the starting material (experiment I) or the residues containing insoluble-bound phenolics (experiment II) were evaluated. Pronase and Viscozyme improved the extraction of insoluble-bound phenolics as evaluated by total phenolic content, antioxidant potential as determined by ABTS and DPPH assays, and hydroxyl radical scavenging capacity, reducing power as well as evaluation of inhibition of alpha-glucosidase and lipase activities. Viscozyme released higher amounts of gallic acid, catechin, and prodelphinidin dimer A compared to Pronase treatment. Furthermore, p-coumaric and caffeic acids, as well as procyanidin dimer B, were extracted with Viscozyme but not with Pronase treatment. Solubility plays an important role in the bioavailability of phenolic compounds, hence this study may assist in better exploitation of phenolics from winemaking by-products as functional food ingredients and/or supplements.

  1. Sub-toxic Ethanol Exposure Modulates Gene Expression and Enzyme Activity of Antioxidant Systems to Provide Neuroprotection in Hippocampal HT22 Cells

    Science.gov (United States)

    Casañas-Sánchez, Verónica; Pérez, José A.; Quinto-Alemany, David; Díaz, Mario

    2016-01-01

    Ethanol is known to cause severe systemic damage often explained as secondary to oxidative stress. Brain is particularly vulnerable to ethanol-induced reactive oxygen species (ROS) because the high amounts of lipids, and because nerve cell membranes contain high amounts of peroxidable fatty acids. Usually these effects of ethanol are associated to high and/or chronic exposure to ethanol. However, as we show in this manuscript, a low and acute dose of ethanol trigger a completely different response in hippocampal cells. Thus, we have observed that 0.1% ethanol exposure to HT22 cells, a murine hippocampal-derived cell line, increases the transcriptional expression of different genes belonging to the classical, glutathione/glutaredoxin and thioredoxin/peroxiredoxin antioxidant systems, these including Sod1, Sod2, Gpx1, Gclc, and Txnrd1. Paralleling these changes, enzyme activities of total superoxide dismutase (tSOD), catalase, total glutathione peroxidase (tGPx), glutathione-S-reductase (GSR), and total thioredoxin reductase (tTXNRD), were all increased, while the generation of thiobarbituric acid reactive substances (TBARS), as indicators of lipid peroxidation, and glutathione levels remained unaltered. Ethanol exposure did not affect cell viability or cell growing as assessed by real-time cell culture monitoring, indicating that low ethanol doses are not deleterious for hippocampal cells, but rather prevented glutamate-induced excitotoxicity. In summary, we conclude that sub-toxic exposure to ethanol may well be neuroprotective against oxidative insults in hippocampal cells. PMID:27512374

  2. Effect of functionalized and non-functionalized nanodiamond on the morphology and activities of antioxidant enzymes of lung epithelial cells (A549).

    Science.gov (United States)

    Solarska-Ściuk, Katarzyna; Gajewska, Agnieszka; Glińska, Sława; Michlewska, Sylwia; Balcerzak, Łucja; Jamrozik, Agnieszka; Skolimowski, Janusz; Burda, Květoslava; Bartosz, Grzegorz

    2014-10-01

    The development of nanotechnology opens up new ways for biomedical applications of unmodified and modified diamond nanoparticles which are one of the most popular nanomaterials used in biology, biotechnology, medicine, cosmetics and engineering. They have been applied as diagnostic and therapeutic agents because they can be targeted to and localized in cells causing apoptosis and necrosis. The problem of biocompatibility of nanodiamonds at higher concentrations is thus of primary importance. The first step in the modification of DNPs is usually the introduction of hydrogen groups, which can bind other functional groups. The basic method to introduce -OH groups onto nanoparticles is the Fenton reaction. The aim of this study was to compare the effect of unmodified nanodiamond particles and nanoparticles modified by introduction of -OH groups and etoposide onto their surface reaction on human non-small lung cancer cells. A549 cells were incubated with 2-100μg/ml nanopowders and at 0.6-24μg/ml etoposide in the DMEM medium. We observed a decrease of cells viability and generation of reactive oxygen/ nitrogen species in the cells after incubation, estimated by oxidation of H2DCF-DA and DAF-FM-DA. Modified detonation nanoparticles affected also the cellular content of glutathione and activities of main antioxidant enzymes (glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase and catalase). The results of TEM microscopy show changes in cell morphology. These data demonstrate that modified nanoparticles induce oxidative stress in the target cells. PMID:25451571

  3. Enzyme-assisted extraction of phenolics from winemaking by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities.

    Science.gov (United States)

    de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Biasoto, Aline Camarão Telles; Shahidi, Fereidoon

    2016-12-01

    Phenolics in food and agricultural processing by-products exist in the soluble and insoluble-bound forms. The ability of selected enzymes in improving the extraction of insoluble-bound phenolics from the starting material (experiment I) or the residues containing insoluble-bound phenolics (experiment II) were evaluated. Pronase and Viscozyme improved the extraction of insoluble-bound phenolics as evaluated by total phenolic content, antioxidant potential as determined by ABTS and DPPH assays, and hydroxyl radical scavenging capacity, reducing power as well as evaluation of inhibition of alpha-glucosidase and lipase activities. Viscozyme released higher amounts of gallic acid, catechin, and prodelphinidin dimer A compared to Pronase treatment. Furthermore, p-coumaric and caffeic acids, as well as procyanidin dimer B, were extracted with Viscozyme but not with Pronase treatment. Solubility plays an important role in the bioavailability of phenolic compounds, hence this study may assist in better exploitation of phenolics from winemaking by-products as functional food ingredients and/or supplements. PMID:27374548

  4. Enzyme with rhamnogalacturonase activity.

    OpenAIRE

    Kofod, L.V.; Andersen, L N; Dalboge, H; Kauppinen, M.S.; Christgau, S; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A. G. J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet material. The enzyme has the amino acid sequence of SEQ ID NO:2 and is encoded by the DNA sequence of SEQ ID NO:1

  5. Induction of ROS generation by fluconazole in Candida glabrata: activation of antioxidant enzymes and oxidative DNA damage.

    Science.gov (United States)

    Mahl, Camila Donato; Behling, Camile Saul; Hackenhaar, Fernanda S; de Carvalho e Silva, Mélany Natuane; Putti, Jordana; Salomon, Tiago B; Alves, Sydney Hartz; Fuentefria, Alexandre; Benfato, Mara S

    2015-07-01

    In this study, we assessed the generation of reactive oxygen species (ROS) induced by subinhibitory concentration of fluconazole in susceptible and resistant Candida glabrata strains at stationary growth phase and measured their oxidative responses parameters: glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione-S-transferase (GST), consumption of hydrogen peroxide, and total glutathione, as well as oxidative damage in lipids, proteins, and DNA. Data showed that fluconazole increased generation of ROS and GPx and SOD enzymatic activity in treated cells; however, these enzymatic activities did not differ between resistant and susceptible strains. Susceptible strains exhibited higher GST activity than resistant, and when susceptible cells were treated with fluconazole, GST activity decreased. Fluconazole treatment cause oxidative damage only in DNA. There are a possible participation of ROS, as organic peroxides and O2(•-), in antifungal mechanism of fluconazole, which results in higher GPx and SOD enzymatic activities and oxidative DNA damage in C. glabrata.

  6. Alpha lipoic acid protects lens from H2O2-induced cataract by inhibiting apoptosis of lens epithelial cells and inducing activation of anti-oxidative enzymes

    Institute of Scientific and Technical Information of China (English)

    Yun Li; Ya-Zhen Liu; Jing-Ming Shi; Song-Bai Jia

    2013-01-01

    Objective: To determine whether alpha lipoic acid (LA) can effectively protect lenses from hydrogen peroxide (H2O2)-induced cataract. Methods: Lens from adult Sprague-Dawley rats were cultured in 24-well plates and treated without or with 0.2 mM of H2O2, 0.2 mM of H2O2 plus 0.5 mM, 1.0 mM, or 2.0 mM of LA for 24 h. Cataract was assessed using cross line grey scale measurement. Superoxide dismutase (SOD), glutathione (GSH-Px), lactate dehydrogenase (LDH), and malondialdehyde (MDA) activity or level in lens homogenates was measured. Apoptosis of lens epithelial cells in each group were detected by Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) Assay. Results: A total of 0.2 mM of H2O2 induced obvious cataract formation and apoptosis in lens’ epithelial cells, but 0.5-2.0 mM of LA could block the effect of 0.2 mM H2O2 in inducing cataract and apoptosis. Furthermore, 0.2 mM of H2O2 significantly decreased SOD, GSH-Px, and LDH activity and significant increased MDA level in the lens, but 0.5-2.0 mM of LA blocked the effect of 0.2 mM H2O2. One mM of LA was found to be the most effective. Conclusions: LA can protect lens from H2O2-induced cataract. LA exerts protective effects through inhibition of lens’ epithelial cell apoptosis and activation of anti-oxidative enzymes.

  7. EFFECT OF POLYPHENOLIC COMPLEX FROM WINE ON RATS ANTIOXIDANT ENZYMES ACTIVITY AT X-RAY IRRADIATION LOW DOSES

    Directory of Open Access Journals (Sweden)

    U. V. Datsyuk

    2014-04-01

    Full Text Available It is shown that the consumption of natural polyphenolic complex from grape wine in drinking water in the daily dose 2.5 ± 1.1 mg polyphenols/kg body mass of rats during the 10 day before exposure to radiation leads to increased of superoxide dismutase and gluthathione reductase activities in peripheral blood on 24 and 48 hours after full body X-ray irradiation (30 cGy. The of catalase, gluthathione peroxidase activities and the of the reactive thiobarbituric acid substances content in total lysates of peripheral blood within 72 hours after exposure are comparable to those in control rats. Marked decreased of catalase and superoxide dismutase activities at 24, 48 and 24 hours, respectively, was observed after exposure to ionizing radiation and increased content of lipid peroxidation products in all above mentioned time points. The decreased of superoxide dismutase and gluthathione peroxidase activities in lysates of rats aorta at 48 hour and increased content of the reactive thiobarbituric acid substances during 72 hours after radiation exposure were observed. The consumption of polyphenolic complex from wine did not change the superoxide dismutase and catalase activities in lysates of aorta rats treated with ionizing radiation, whereas gluthathione reductase and gluthathione peroxidase activities was increased during 72 hours after radiation influence. The content of TBA reactive substances was significantly decreased in lysates of aorta rats that were exposed to radiation and polyphenols of grape wine, compared with those of animals that were exposed to radiation alone.

  8. Antioxidant activity of Citrus fruits.

    Science.gov (United States)

    Zou, Zhuo; Xi, Wanpeng; Hu, Yan; Nie, Chao; Zhou, Zhiqin

    2016-04-01

    Citrus is well-known for its nutrition and health-promotion values. This reputation is derived from the studies on the biological functions of phytochemicals in Citrus fruits and their derived products in the past decades. In recent years, the antioxidant activity of Citrus fruits and their roles in the prevention and treatment of various human chronic and degenerative diseases have attracted more and more attention. Citrus fruits are suggested to be a good source of dietary antioxidants. To have a better understanding of the mechanism underlying the antioxidant activity of Citrus fruits, we reviewed a study on the antioxidant activity of the phytochemicals in Citrus fruits, introduced methods for antioxidant activity evaluation, discussed the factors which influence the antioxidant activity of Citrus fruits, and summarized the underlying mechanism of action. Some suggestions for future study were also presented. PMID:26593569

  9. Antioxidant activity of Citrus fruits.

    Science.gov (United States)

    Zou, Zhuo; Xi, Wanpeng; Hu, Yan; Nie, Chao; Zhou, Zhiqin

    2016-04-01

    Citrus is well-known for its nutrition and health-promotion values. This reputation is derived from the studies on the biological functions of phytochemicals in Citrus fruits and their derived products in the past decades. In recent years, the antioxidant activity of Citrus fruits and their roles in the prevention and treatment of various human chronic and degenerative diseases have attracted more and more attention. Citrus fruits are suggested to be a good source of dietary antioxidants. To have a better understanding of the mechanism underlying the antioxidant activity of Citrus fruits, we reviewed a study on the antioxidant activity of the phytochemicals in Citrus fruits, introduced methods for antioxidant activity evaluation, discussed the factors which influence the antioxidant activity of Citrus fruits, and summarized the underlying mechanism of action. Some suggestions for future study were also presented.

  10. Assessment of the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions.

    Science.gov (United States)

    Di Bernardini, Roberta; Mullen, Anne Maria; Bolton, Declan; Kerry, Joseph; O'Neill, Eileen; Hayes, Maria

    2012-01-01

    The main objective was to investigate the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of sarcoplasmic proteins isolated from the brisket muscle (Pectoralis profundus) of 3 (Bos taurus) cattle and hydrolysed with papain for 24 h at 37°C. Sarcoplasmic protein hydrolysates were ultra-filtered using molecular weight cut off (MWCO) membranes and 10-kDa and 3-kDa filtrates were obtained. The total sarcoplasmic protein extracts and the 3-kDa filtrates were tested for angiotensin I-converting enzyme inhibitory (ACE-I) activities. The total hydrolysates, 10-kDa and 3-kDa filtrates were also tested for their associated antioxidant activities using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assay, the ferric ion reducing antioxidant power (FRAP) assay and the Fe(2+) metal chelating ability assay. The peptidic content of the total hydrolysates, the 10-kDa and the 3-kDa filtrates were analysed using an ORBITRAP mass spectrometer, and mass spectral data obtained were analysed using TurboSEQUEST. Eleven peptides were characterised from the total hydrolysates, fifteen from the 10-kDa filtrate fractions, whilst nine peptides were characterised from the 3-kDa filtrate fractions. Similarities between the amino acid sequences of the peptides identified in this study and previously identified antioxidant and ACE-I inhibitory peptides detailed in the BIOPEP database were outlined. PMID:21880436

  11. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death

    NARCIS (Netherlands)

    Dunning, Sandra; Rehman, Atta Ur; Tiebosch, Marjolein H.; Hannivoort, Rebekka A.; Haijer, Floris W.; Woudenberg, Jannes; van den Heuvel, Fiona A. J.; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han

    2013-01-01

    Background: In chronic liver disease, hepatic stellate cells (HSCs) are activated, highly proliferative and produce excessive amounts of extracellular matrix, leading to liver fibrosis. Elevated levels of toxic reactive oxygen species (ROS) produced during chronic liver injury have been implicated i

  12. TOTAL ANTIOXIDANT ACTIVITY OF YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2013-02-01

    Full Text Available Antioxidants are health beneficial compounds that can protect cells and macromolecules (e.g. fats, lipids, proteins and DNA from the damage of reactive oxygen species (ROS. Sacchamomyces cerevisiae are know as organisms with very important antioxidative enzyme systems such as superoxide dismutase or catalase. The total antioxidant activity (mmol Trolox equivalent – TE.g-1 d.w. of Saccharomyces cerevisiae was measured by 2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid during the yeast cultivation. It was found that the total antioxidant activity was the highest (1.08 mmol TE.g-1 d.w. in the strain Kolín after 32 hours of cultivation and the lowest (0.26 mmol TE.g-1 d.w. in the strain Gyöng after 12 hours of cultivation.

  13. Changes in non Protein Thiols, some Antioxidant Enzymes Activity and Ultrastructural Alteration in Radish Plant (Raphanus sativus L. Grown under Lead Toxicity

    Directory of Open Access Journals (Sweden)

    Hossam Saad EL-BELTAGI

    2010-12-01

    Full Text Available Forty days old radish plants (Raphanus sativus L. were exposed to different regimes of lead stress as Pb(NO32 at the following concentrations 0, 25, 50, 100, 150, 250 and 500 ppm. The possible generation of oxidative stress, antioxidant metabolism and changes in the chloroplast and cell membrane ultrastructure were investigated. Greater loss of the photosynthetic pigments (Chl. a, Chl. b and total carotenoids were observed especially under 500 ppm lead (Pb. The accumulation of lead in roots and leaves of plant were measured and the results showed that lead accumulation increased with increasing of the metal treatment concentration. An increasing trend was observed in levels of ascorbate and decreasing trend in glutathione. Also, the antioxidant enzymes, viz., guaiacol peroxidase (GPX ascorbate peroxidase (APX, catalase (CAT and glutathione S-transferase (GST showed significant variation with the increase in lead stress compared to control (untreated plants. The rapid inducibility of some of these enzymes is useful early and sensitive indicators of heavy metal toxicity. Native polyacrylamide gel electrophoresis revealed an increase in the isoenzymes profile of CAT in both leaves and roots. While POD isoenzymes bands prominently increased in leaves and slightly decreased in roots at the higher Pb concentration in the growth media. The ultrastructural studies at selected concentrations; 100 and 500 ppm of Pb showed distortion of the structure and cell membranes in roots. Therefore, the changes in the levels of some antioxidants may play an important role against oxidative injury.

  14. Quercetin Modulates the Effects of Chromium Exposure on Learning, Memory and Antioxidant Enzyme Activity in F1 Generation Mice.

    Science.gov (United States)

    Halder, Sumita; Kar, Rajarshi; Mehta, Ashish K; Bhattacharya, Swapan K; Mediratta, Pramod K; Banerjee, Basu D

    2016-06-01

    In the present study, we investigated whether chromium (Cr) administered to the dams (F0) during lactation period could affect memory and oxidative stress in F1 generation mice in their adulthood and whether quercetin could modulate these effects. Morris water maze (MWM) was used to test for spatial memory. Passive avoidance task and elevated plus maze were used to test for acquisition and retention memory. Oxidative stress was evaluated by measuring glutathione-S-transferase (GST), catalase activity and malonaldehyde (MDA) levels in the brain tissue. The results of MWM showed that the animals in the Cr-treated group compared to control have better spatial memory that was further enhanced when Cr was administered along with quercetin (50 mg/kg). The elevated plus maze test also showed the Cr-treated group to improve acquisition as well as retention memory compared to control. Co-treatment with quercetin (all doses) also exhibited enhanced acquisition and retention memory compared to control. The passive avoidance task demonstrated no significant improvement in memory in the Cr-treated mice but co-treatment with quercetin (100 mg/kg) showed improved acquisition memory compared to control which was significantly better than the animals treated with chromium alone. GST activity was significantly increased in the Cr-treated animals, and this was further increased in groups treated with Cr and quercetin (all doses). Chromium when administered alone and in combination with quercetin (all doses) significantly reduced MDA levels. However, Cr treatment did not show significant change in catalase activity. Nevertheless, co-treatment with quercetin (25 and 50 mg/kg) resulted in significant decrease in catalase activity. Thus, our study demonstrates that Cr exposure during lactation could be beneficial for pups with respect to augmentation of cognitive function and reduction of oxidative stress. Quercetin could probably enhance this effect to some extent.

  15. Quercetin Modulates the Effects of Chromium Exposure on Learning, Memory and Antioxidant Enzyme Activity in F1 Generation Mice.

    Science.gov (United States)

    Halder, Sumita; Kar, Rajarshi; Mehta, Ashish K; Bhattacharya, Swapan K; Mediratta, Pramod K; Banerjee, Basu D

    2016-06-01

    In the present study, we investigated whether chromium (Cr) administered to the dams (F0) during lactation period could affect memory and oxidative stress in F1 generation mice in their adulthood and whether quercetin could modulate these effects. Morris water maze (MWM) was used to test for spatial memory. Passive avoidance task and elevated plus maze were used to test for acquisition and retention memory. Oxidative stress was evaluated by measuring glutathione-S-transferase (GST), catalase activity and malonaldehyde (MDA) levels in the brain tissue. The results of MWM showed that the animals in the Cr-treated group compared to control have better spatial memory that was further enhanced when Cr was administered along with quercetin (50 mg/kg). The elevated plus maze test also showed the Cr-treated group to improve acquisition as well as retention memory compared to control. Co-treatment with quercetin (all doses) also exhibited enhanced acquisition and retention memory compared to control. The passive avoidance task demonstrated no significant improvement in memory in the Cr-treated mice but co-treatment with quercetin (100 mg/kg) showed improved acquisition memory compared to control which was significantly better than the animals treated with chromium alone. GST activity was significantly increased in the Cr-treated animals, and this was further increased in groups treated with Cr and quercetin (all doses). Chromium when administered alone and in combination with quercetin (all doses) significantly reduced MDA levels. However, Cr treatment did not show significant change in catalase activity. Nevertheless, co-treatment with quercetin (25 and 50 mg/kg) resulted in significant decrease in catalase activity. Thus, our study demonstrates that Cr exposure during lactation could be beneficial for pups with respect to augmentation of cognitive function and reduction of oxidative stress. Quercetin could probably enhance this effect to some extent. PMID:26521059

  16. A novel copper complex induces ROS generation in doxorubicin resistant Ehrlich ascitis carcinoma cells and increases activity of antioxidant enzymes in vital organs in vivo

    International Nuclear Information System (INIS)

    In search of a suitable GSH-depleting agent, a novel copper complex viz., copper N-(2-hydroxyacetophenone) glycinate (CuNG) has been synthesized, which was initially found to be a potential resistance modifying agent and later found to be an immunomodulator in mice model in different doses. The objective of the present work was to decipher the effect of CuNG on reactive oxygen species (ROS) generation and antioxidant enzymes in normal and doxorubicin-resistant Ehrlich ascites carcinoma (EAC/Dox)-bearing Swiss albino mice. The effect of CuNG has been studied on ROS generation, multidrug resistance-associated protein1 (MRP1) expression and on activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). CuNG increased ROS generation and reduced MRP1 expression in EAC/Dox cells while only temporarily depleted glutathione (GSH) within 2 h in heart, kidney, liver and lung of EAC/Dox bearing mice, which were restored within 24 h. The level of liver Cu was observed to be inversely proportional to the level of GSH. Moreover, CuNG modulated SOD, CAT and GPx in different organs and thereby reduced oxidative stress. Thus nontoxic dose of CuNG may be utilized to reduce MRP1 expression and thus sensitize EAC/Dox cells to standard chemotherapy. Moreover, CuNG modulated SOD, CAT and and GPx activities to reduce oxidative stress in some vital organs of EAC/Dox bearing mice. CuNG treatment also helped to recover liver and renal function in EAC/Dox bearing mice. Based on our studies, we conclude that CuNG may be a promising candidate to sensitize drug resistant cancers in the clinic

  17. Effects of insoluble Zn, Cd, and EDTA on the growth, activities of antioxidant enzymes and uptake of Zn and Cd in Vetiveria zizanioides

    Institute of Scientific and Technical Information of China (English)

    XU Weihong; LI Weniyi; HE Jianping; Balwant Singh; XIONG Zhiting

    2009-01-01

    A root-bag experiment was conducted to study the effects of insoluble Zn, Cd and ethylenediaminetetraacetic acid (EDTA) on the plant growth, activities of antioxidant enzymes, proline, glutathione (GSH), water-soluble proteins and malondialdehyde (MDA) of Vetiveria zizanioides, and its uptake capacity of Zn and Cd.The results showed that plant growth of V.zizanioides was inhibited by Zn and Cd.The shoot dry weight (SDW) and root dry weight (RDW) decrease by 0.3%, 8.0%, 9.4% and 10.4%, 15.1%, 24.2% compared to the control without EDTA addition, respectively.After adding EDTA, shoot and root dry weight decreased over 10% and 15% compared to results in the absence of EDTA, respectively.The toxicity from insoluble Zn and Cd in soil on SDW and RDW of V.zizanioides was in order: Zn+Cd > Cd > Zn.The activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and contents of MDA and proline significantly increased, while the contents of GSH and water-soluble proteins markedly decreased with increasing Zn and Cd toxicity.With EDTA, shoot and root Zn concentrations increased in the Zn treatment by 7.3% and 37.4% compared to the plants grown in absence of EDTA.Shoot and root Cd concentrations in the combined Zn and Cd treatment with EDTA increased by 18.6% and 391.9% compared to the treatment without EDTA.However, Zn and Cd concentrations in shoot and roots decreased in the Cd treatment compared to the plants grown in absence of EDTA, with exception of root Cd concentration in the presence of EDTA).

  18. A novel copper complex induces ROS generation in doxorubicin resistant Ehrlich ascitis carcinoma cells and increases activity of antioxidant enzymes in vital organs in vivo

    Directory of Open Access Journals (Sweden)

    Efferth Thomas

    2006-11-01

    Full Text Available Abstract Background In search of a suitable GSH-depleting agent, a novel copper complex viz., copper N-(2-hydroxyacetophenone glycinate (CuNG has been synthesized, which was initially found to be a potential resistance modifying agent and later found to be an immunomodulator in mice model in different doses. The objective of the present work was to decipher the effect of CuNG on reactive oxygen species (ROS generation and antioxidant enzymes in normal and doxorubicin-resistant Ehrlich ascites carcinoma (EAC/Dox-bearing Swiss albino mice. Methods The effect of CuNG has been studied on ROS generation, multidrug resistance-associated protein1 (MRP1 expression and on activities of superoxide dismutase (SOD, catalase (CAT and glutathione peroxidase (GPx. Results CuNG increased ROS generation and reduced MRP1 expression in EAC/Dox cells while only temporarily depleted glutathione (GSH within 2 h in heart, kidney, liver and lung of EAC/Dox bearing mice, which were restored within 24 h. The level of liver Cu was observed to be inversely proportional to the level of GSH. Moreover, CuNG modulated SOD, CAT and GPx in different organs and thereby reduced oxidative stress. Thus nontoxic dose of CuNG may be utilized to reduce MRP1 expression and thus sensitize EAC/Dox cells to standard chemotherapy. Moreover, CuNG modulated SOD, CAT and and GPx activities to reduce oxidative stress in some vital organs of EAC/Dox bearing mice. CuNG treatment also helped to recover liver and renal function in EAC/Dox bearing mice. Conclusion Based on our studies, we conclude that CuNG may be a promising candidate to sensitize drug resistant cancers in the clinic.

  19. Effect of excess dietary L-valine on laying hen performance, egg quality, serum free amino acids, immune function and antioxidant enzyme activity.

    Science.gov (United States)

    Azzam, M M M; Dong, X Y; Dai, L; Zou, X T

    2015-01-01

    1. The aim of this study was to evaluate the tolerance of laying hens for an excessive L-valine (L-val) supply on laying performance, egg quality, serum free amino acids, immune function and antioxidant enzyme activities of laying hens. 2. A total of 720 HyLine Brown hens were allocated to 5 dietary treatment groups, each of which included 6 replicates of 24 hens, from 40 to 47 weeks of age. Graded amounts of L-val were added to the basal diet to achieve concentrations of 0 (control), 1, 2, 3 and 4 g/kg, respectively, in the experimental diets. 3. Supplementing the diet with L-val did not affect egg production, egg mass, egg weight, feed conversion ratio (FCR) or egg quality. The average daily feed intake response to supplemental L-val was quadratic and was maximised at 2.0 g L-val/kg diet. No differences were observed for total protein, total amino acids, blood urea nitrogen (BUN), uric acid, lactate dehydrogenase (LDH), alkaline phosphatase (AKP), Ca and P concentrations among the treatments. 4. Serum albumin concentration increased significantly in response to supplemental L-val and was also maximised at 2.0 g/kg. In addition, serum glucose increased quadratically to peak at 2.0 g L-val/kg diet. Serum free valine increased as L-val concentration increased to 2.0 g/kg diet and then decreased linearly. 5. Supplementation of L-val did not affect the serum concentrations of total antioxidative capability (T-AOC), superoxide dismutase (SOD) and malondialdehyde (MDA). L-val supplementation did not affect the concentrations of immunoglobulins IgG, IgA, IgM and complements (C3 and C4). Serum concentration of triiodothyronine (T3) increased significantly at 2.0 g L-val/kg diet. 6. It is concluded that high concentrations of L-val are tolerated and can be successfully supplemented into diets without detrimental effects on laying performance or immune function of laying hens.

  20. Study of antioxidant enzymes superoxide dismutase and glutathione peroxidase levels in tobacco chewers and smokers: A pilot study

    Directory of Open Access Journals (Sweden)

    Chundru Venkata Naga Sirisha

    2013-01-01

    Conclusions: The present study gave us an insight about the relationship between antioxidant enzyme activity, oxidative stress and tobacco. The altered antioxidant enzyme levels observed in this study will act as a predictor for pre potentially malignant lesions. Therefore an early intervention of tobacco habit and its related oxidative stress would prevent the development of tobacco induced lesions.

  1. Lipid peroxidation and antioxidant enzymes in male infertility.

    Directory of Open Access Journals (Sweden)

    Dandekar S

    2002-07-01

    Full Text Available BACKGROUND AND AIM: Mammalian spermatozoa are rich in polyunsaturated fatty acids and are very susceptible to attack by reactive oxygen species (ROS and membrane lipid peroxide ion. Normally a balance is maintained between the amount of ROS produced and that scavenged. Cellular damage arises when this equilibrium is disturbed. A shift in the levels of ROS towards pro-oxidants in semen and vaginal secretions can induce an oxidative stress on spermatozoa. The aim was to study lipid peroxidation and antioxidant enzymes such as catalase, glutathione peroxidase and superoxide dismutase (SOD and to correlate the same, with the ′water test′, in male infertility. SETTINGS: Experimental study. SUBJECTS AND METHODS: Ejaculates from a total of 83 infertile and fertile healthy individuals were obtained. Lipid peroxidation and antioxidant enzyme levels were studied and correlated with water test. RESULTS: The results indicate that (i the antioxidant enzyme catalase showed no significant changes in the various pathological samples, (ii antioxidant enzymes SOD and glutathione peroxidase correlate positively with asthenozoospermic samples and (iii the degree of lipid peroxidation also correlates positively with the poorly swollen sperm tails. The increase in SOD and glutathione peroxidase values, in the pathological cases represents an attempt made to overcome the reactive oxygen species. CONCLUSION: Water test could be used as a preliminary marker test for sperm tail damage by reactive oxygen species, since it correlates very well with lipid peroxidation and antioxidant enzymes.

  2. Antioxidant and Angiotensin 1 Converting Enzyme Inhibitory Functions from Chicken Collagen Hydrolysates

    OpenAIRE

    Soladoye, Olugbenga P.; Saldo Periago, Jordi; Peiro, Lluis; Rovira, Arnau; Mor-Mur i Francesch, Montserrat

    2015-01-01

    Chicken collagen was explored for its possible ACE inhibitory and antioxidant activities. Flavourzyme, Neutrase and Alcalase were employed for hydrolysis of chicken collagen at predetermined times with optimal conditions for corresponding enzymes. Flavourzyme hydrolysate showed the highest antioxidant activity as measured by ORAC-FL assay (20942 μmol TE/100 g) followed by Neutrase (19207 μmol TE/100 g) and Alcalase (14352 μmol TE/100 g). Further purification by size exclusion chromatography s...

  3. Antioxidant enzyme activities and lipid peroxidation as biomarker for potato tuber stored by two essential oils from Caraway and Clove and its main component carvone and eugenol

    Institute of Scientific and Technical Information of China (English)

    Abd El-Moneim MR Afify; Hossam S El-Beltagi; Amina A Aly; Abeer E El-Ansary

    2012-01-01

    Objective: To evaluate two essential oils from Caraway and Clove and its main component carvone and eugenol as sprout inhibitors on germination of potato tubers. Methods: The enzymes activities: catalase, glutathione-S-transferase, peroxidase, polyphenol oxidase and superoxide dismutase, in addition to lipid peroxidation level were tested in potato tubers stored for 3, 6 and 9 weeks. Essential oils; Caraway, Clove, carvone and eugenol with three concentration (100, 200 and 300 ppm) were used to control germination process of potato tubers. Results: The results of enzyme activities varied depending on the function of enzymes involved. As general trend the activities of the enzymes recorded are significantly found on the range of enzyme control or less, which prevent of potato tuber from germination. Glutathione-S-transferase activity was significantly increased after treatment with essential oils and the activity of enzyme reached (23.3±5.15) (100 ppm) for Caraway, (18.8±0.00) (100 ppm) for carvone, (10.4±0.00) (100 ppm) for colve, and (14.1±0.0) (100 ppm) for eugenol respectively compared to control (7.86±3.26). Conclusions:Polyphenol oxidase and peroxidase activity increased in its activity and recovered to the level of control after treatment with essential oils which maintain potato tuber for 9 weeks. The pure essential oils especially carvone have more potent as suppressor of potato tuber germination.

  4. Antioxidant activity of black bean (Phaseolus vulgaris L. protein hydrolysates

    Directory of Open Access Journals (Sweden)

    Jarine Amaral do EVANGELHO

    2016-01-01

    Full Text Available Abstract The objective of this work was to study the effect of enzymatic hydrolysis of black bean protein concentrate using different enzymes. Bean proteins were extracted and hydrolyzed over a period of 120 min using the enzymes pepsin or alcalase. The protein hydrolysates’ molecular weight was assayed by electrophoresis and the antioxidant activity was evaluated by the capturing methods of free radicals ABTS●+ and DPPH. Electrophoretic results showed that the bands above 50 kDa disappeared, when the beans protein was subjected to hydrolysis with pepsin. The bean protein hydrolysate obtained by hydrolysis with alcalase enzyme, showed higher antioxidant activity for inhibition of the radical ABTS●+. However, the hydrolysates obtained by hydrolysis with pepsin had higher antioxidant activity for inhibition of the radical DPPH. The use of pepsin and alcalase enzymes, under the same reaction time, produced black bean protein hydrolysates with different molecular weight profiles and superior antioxidant activity than the native bean protein.

  5. 多酶激活剂对小白菜生长、品质及抗氧化酶活性的影响%Effects of Multi-enzyme Activator on Growth, Quality and Antioxidant Activities of Pakchoi

    Institute of Scientific and Technical Information of China (English)

    庞强强; 陈日远; 刘厚诚; 宋世威; 苏蔚; 孙光闻

    2014-01-01

    Pakchoi was used as materials for investigating the effects of different concentrations of multi-enzyme activator on its growth, quality and antioxidant activities. The results showed that, all the three multi-enzyme activator treatments increased the fresh weight and dry weight of overground part of pakchoi, and increased the contents of vitamin C and soluble protein, in addition, enhanced the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and glutathione peroxidase (GSH-Px), but made the nitrate content decreased, among the three treatments, treatment T2 (800 times diluent) had the best effects.%研究了不同浓度的多酶激活剂对小白菜生长、品质及抗氧化酶活性的影响。研究结果表明,多酶激活剂处理均可提高小白菜的地上部鲜、干质量、VC和可溶性蛋白含量,降低小白菜硝酸盐含量,增强超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px)活性,以T2处理(800倍液)效果最佳。

  6. Effects of dietary β-1,3/1,6-glucan on the antioxidant and digestive enzyme activities of Pacific red snapper (Lutjanus peru) after exposure to lipopolysaccharides.

    Science.gov (United States)

    Guzmán-Villanueva, Laura T; Ascencio-Valle, Felipe; Macías-Rodríguez, María E; Tovar-Ramírez, Dariel

    2014-06-01

    The effect of β-1,3/1,6-glucan, derived from yeast, on growth, antioxidant, and digestive enzyme performance of Pacific red snapper Lutjanus peru before and after exposure to lipopolysaccharides (LPS) was investigated. The β-1,3/1,6-glucan was added to the basal diet at two concentrations (0.1 and 0.2 %). The treatment lasted 6 weeks, with sampling at regular intervals (0, 2, 4, and 6 weeks). At the end of this period, the remaining fish from either control or β-glucan-fed fish were injected intraperitoneally with LPS (3 mg kg(-1)) or with sterile physiological saline solution (SS) and then sampled at 0, 24, and 72 h. The results showed a significant increase (P snapper.

  7. Synthesis, antioxidant, enzyme inhibition and DNA binding studies of novel N-benzylated derivatives of sulfonamide

    Science.gov (United States)

    Abbas, Aadil; Murtaza, Shahzad; Tahir, Muhammad Nawaz; Shamim, Saima; Sirajuddin, Muhammad; Rana, Usman Ali; Naseem, Khadija; Rafique, Hummera

    2016-08-01

    A series of novel N-benzylated derivatives of sulfonamide were synthesized and characterized by FT-IR, NMR and XRD analysis. The synthesized compounds were assayed for their biological potential. The biological studies involved antioxidant, enzyme inhibition, and DNA interaction studies. Antioxidant potential was investigated by Ferric Reducing Antioxidant Power assay (FRAP) and DPPH free radical scavenging method, the capacity of synthesized compounds to inhibit the enzyme's activity was assayed by using the well-known Elman method whereas DNA interaction studies were carried out with the help UV-Vis absorption titration method. Moreover, a direct correlation between enzyme inhibition activity and concentration of the compounds was observed both in experimental and molecular docking studies. DNA interaction studies of the synthesized compounds showed weak interaction.

  8. Antioxidant activity of the medicinal plant Enicostemma littorale Blume

    Directory of Open Access Journals (Sweden)

    P Abirami

    2011-01-01

    Full Text Available Medicinal plants are the source for wide variety of natural antioxidants. In the study reported here, we have conducted a comparative study between the different parts of the plant Enicostemma littorale. The amount of total phenols and antioxidant enzymes Glutathione-S-Transferase, Superoxide Dismutase, Catalase and Peroxidase activities were evaluated and also the non-enzymatic antioxidants ascorbic acid, α- tocopherol and Glutathione activities were evaluated. The results showed that the antioxidant activities varied greatly among the different plant parts used in this study and some parts are rich in natural antioxidants especially the flowers of E. littorale. These results suggest that Enicostemma littorale have strong antioxidant potential. Further study is necessary for isolation and characterization of antioxidant agents, which can be used to treat various oxidative stress-related diseases.

  9. Antioxidant activity of polyaniline nanofibers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Well-confined uniform polyaniline (PANT) nanofibers were synthesized by using photo-assisted chemical oxidative polymerization of aniline in the presence of different dopant acids, and the radical scavenging ability of the produced PANI nanofibers was determined by the DPPH assay. It was found that the antioxidant activity of PANI nanofibers was higher than conventional PANI,and increased with decreasing of averaged diameter of the nanofibers. The enhanced antioxidant activity was concerned with increased surface area of PANI nanofibers.

  10. Antioxidation Activity in vitro of Enzymic Hydrolysates from Black Soybean%黑豆蛋白质酶水解物体外抗氧化活性的研究

    Institute of Scientific and Technical Information of China (English)

    刘恩岐; 贺菊萍; 陈振家; 刘虎平; 李玉娥

    2009-01-01

    采用Alcalase、Neutrase和Flavourzyme蛋白酶水解2种不同类型的黑豆蛋白,在其最适水解条件下,通过单酶水解和分阶段多酶复合水解方式制备黑豆蛋白水解物,利用邻苯三酚自氧化法测定比较其体外抗氧化活性.结果表明:在水解度相近的情况下,早熟大粒黑豆蛋白的Alcalase单酶水解物的抗氧化活性高于晚熟小粒黑豆蛋白;在水解时间相同的情况下,黑豆蛋白的Alcalase单酶水解物的抗氧化活性高于Neutrase和Flavourzyme蛋白酶;Alcalase和Neutrase分阶段水解90 min高于Alcalase单酶水解4 h的黑豆蛋白水解物的抗氧化活性;试验获得的具有较高抗氧化性的质量分数为2%的黑豆蛋白酶水解物,对邻苯三酚自氧化的抑制率与0.01%的维生素C水溶液相近.%The proteins of two types of black soybean were hydrolyzed by alcalase,neutrase and flavourzyme,and with single enzyme type or multi-enzyme type by stages.The antioxidation activities of the enzymic hydrolysates were compared by the pyrogallol autoxidation method.Results:The antioxidation activity of the protein of early-maturing big black soybean hydrolyzed by single alcalase is higher than that of late-maturing small black soybean in the similar DH situation.With zydrolyzation for the same time,the antioxidation activity of the protein of black soybean hydrolyzed by single alcalase is higher than that hydrolyzed by neutrase and flavourzyme individually.The antioxidation activity of black soybean protein hydrolyzed by alcalase and neutrase with multi-enzyme type by stages for 90 rain is higher than that hydrolyzed by single alcalase for 4 h.The inhibition rate against pyrogallic autoxidation of the black soybean enzymic hydrolysates in mass fraction of 2% produced in this work is comparable to that of 0.01% vitamin C.

  11. Mitomycin C induced alterations in antioxidant enzyme levels in a model insect species, Spodoptera eridania.

    Science.gov (United States)

    Batcabe, J P; MacGill, R S; Zaman, K; Ahmad, S; Pardini, R S

    1994-05-01

    1. An insect species, the southern armyworm Spodoptera eridania, was used as an in vivo model to examine mitomycin C's (MMC) pro-oxidant effect reflected in alterations of antioxidant enzymes. 2. Following a 2-day exposure to 0.01 and 0.05% w/w dietary concentrations, MMC only induced superoxide dismutase activity. All other enzyme activities were not affected, indicating oxidative stress was mild. 3. Following a 5-day exposure to 0.05% w/w dietary MMC, the activities of superoxide dismutase, glutathione-S-transferase and its peroxidase activity and DT-diaphorase were induced. GR activity was not altered. The high constitutive catalase activity was also not affected. These responses of S. eridania's antioxidant enzymes are analogous to those of mammalian systems in alleviating MMC-induced oxidative stress. 4. S. eridania emerges as an appropriate non-mammalian model for initial and cost-effective screening of drug-induced oxidative stress. PMID:7926607

  12. Coffee intake can promote activity of antioxidant enzymes with increasing MDA level and decreasing HDL-cholesterol in physically trained rats

    OpenAIRE

    Choi, Eun-Young; Jang, Jin-Young; Cho, Youn-OK

    2010-01-01

    This study investigated the effect of coffee intake and exercise on the antioxidative activity and plasma cholesterol profile of physically trained rats while they were exercising. Forty eight rats were under either the control diet with water (C) or control diet with coffee (CF) and at the same time they were given physical training for 4 weeks. In terms of physical training, the rats were exercised on a treadmill for 30 minutes everyday. At the end of 4 weeks, animals in each dietary group ...

  13. IN VITRO ANTIOXIDANT ACTIVITY OF IPOEMA BILOBA

    Directory of Open Access Journals (Sweden)

    Priti Tagde

    2012-01-01

    Full Text Available Biomolecules can be oxidized by free radicals. This oxidative damage has an important etiological role in aging and the development of diseases like cancer, atherosclerosis, and other inflammatory disorders. Synthetic antioxidants, like butylated hydroxyanisole, are good free radical scavengers; however, the synthetic antioxidants can be carcinogenic. Therefore, there is an increasing interest in searching for antioxidants of natural origin.   Antioxidants with different chemical properties may recharge each other in an antioxidant network. The total antioxidant content of dietary plants may therefore be a useful tool for testing the 'antioxidant network' hypothesis. Several berries, fruits, nuts, seeds, vegetables, drinks and spices have been found to be high in total antioxidants. Initial studies in animals and humans are supportive as to the beneficial effects of dietary plants rich in total antioxidants. Additionally, antioxidants and other plant compounds may also improve the endogenous antioxidant defense through induction of antioxidant and phase 2 enzymes.1,2 Dietary plants rich in such compounds include broccoli, brussel sprouts, cabbage, kale, cauliflower, carrots, onions, tomatoes, spinach and garlic , antioxidants and other plant compounds may also improve the endogenous antioxidant defense through induction of antioxidant and phase 2 enzymes.

  14. Different responses of tobacco antioxidant enzymes to light and chilling stress

    NARCIS (Netherlands)

    Gechev, T; Willekens, H; Van Montagu, M; Inze, D; Van Camp, W; Toneva, [No Value; Minkov, [No Value

    2003-01-01

    The effect of elevated light treatment (25 degreesC, PPFD 360 mumol m(-2) sec(-1)) or chilling temperatures combined with elevated light (5 degreesC, PPFD 360 mumol m-2 sec-1) on the activity of six antioxidant enzymes, guaiacol peroxidases, and glutathione peroxidase (GPx, EC 1.11.1.9) protein accu

  15. Virgin Olive Oil Enriched with Its Own Phenols or Complemented with Thyme Phenols Improves DNA Protection against Oxidation and Antioxidant Enzyme Activity in Hyperlipidemic Subjects.

    Science.gov (United States)

    Romeu, Marta; Rubió, Laura; Sánchez-Martos, Vanessa; Castañer, Olga; de la Torre, Rafael; Valls, Rosa M; Ras, Rosa; Pedret, Anna; Catalán, Úrsula; López de las Hazas, María del Carmen; Motilva, María J; Fitó, Montserrat; Solà, Rosa; Giralt, Montserrat

    2016-03-01

    The effects of virgin olive oil (VOO) enriched with its own phenolic compounds (PC) and/or thyme PC on the protection against oxidative DNA damage and antioxidant endogenous enzymatic system (AEES) were estimated in 33 hyperlipidemic subjects after the consumption of VOO, VOO enriched with its own PC (FVOO), or VOO complemented with thyme PC (FVOOT). Compared to pre-intervention, 8-hydroxy-2'-deoxyguanosine (a marker for DNA damage) decreased in the FVOO intervention and to a greater extent in the FVOOT with a parallel significant increase in olive and thyme phenolic metabolites. Superoxide dismutase (AEES enzyme) significantly increased in the FVOO intervention and to a greater extent in the FVOOT with a parallel significant increase in thyme phenolic metabolites. When all three oils were compared, FVOOT appeared to have the greatest effect in protecting against oxidative DNA damage and improving AEES. The sustained intake of a FVOOT improves DNA protection against oxidation and AEES probably due to a greater bioavailability of thyme PC in hyperlipidemic subjects. PMID:26889783

  16. Study on Leaf Characteristics and Antioxidant Enzyme Activities of Different Dioscorea L .%五种山药叶片形态和抗氧化酶活性比较

    Institute of Scientific and Technical Information of China (English)

    吴岳; 楼鹏强; 李霄; 邵果园; 陆旭辉

    2015-01-01

    为选育和栽植优质山药品种 ,以5 种山药为研究对象 ,进行叶形、叶脉、叶面积及抗氧化活性等方面研究.结果表明 :参薯SH01的革质厚叶 ,叶色墨绿 ;参薯SH02的黄绿色心型叶片 ;参薯SH03箭头型叶形 ;参薯SH04披针型叶片 ;山薯SH05叶片发皱.在叶片抗氧化酶活性方面 ,SH01具有最高含量的可溶性蛋白质、SOD和APX ,SH04具有最高的CAT活性 ,SH02具有最高活性的 POD.综合抗氧化酶活性比较 ,SH01具有比其它品种更高的抗氧化活性 ,表现出更强的抗逆性.%In order to breed and plant high quality Dioscorea L .varieties ,taking five kinds of Dioscorea L .as materials ,the leaves characteristics and antioxidant enzyme activities were studied .The results showed that SH01 had thick leathery leaves with the color of dark green ;SH02 had heart-shaped leaves with the color of chartreuse;SH03 had the average maximum leaves and arrow-shaped leaves ,which were different from other varieties ;SH04 had lanceolate shaped leaves ;SH05 had the wrinkled leaves .In leaf antioxidant activity areas , SH01 had the highest content of soluble protein ,the highest activity of SOD and APX ,SH04 had the highest CAT activity ;SH02 had the highest activity of POD .Comprehensive comparison of antioxidant enzyme activi-ty ,SH01 was higher than other varieties of antioxidant activity and showed stronger resistance .

  17. Antioxidant activities of Physalis peruviana.

    Science.gov (United States)

    Wu, Sue-Jing; Ng, Lean-Teik; Huang, Yuan-Man; Lin, Doung-Liang; Wang, Shyh-Shyan; Huang, Shan-Ney; Lin, Chun-Ching

    2005-06-01

    Physalis peruviana (PP) is a widely used medicinal herb for treating cancer, malaria, asthma, hepatitis, dermatitis and rheumatism. In this study, the hot water extract (HWEPP) and extracts prepared from different concentrations of ethanol (20, 40, 60, 80 and 95% EtOH) from the whole plant were evaluated for antioxidant activities. Results displayed that at 100 mug/ml, the extract prepared from 95% EtOH exhibited the most potent inhibition rate (82.3%) on FeCl2-ascorbic acid induced lipid peroxidation in rat liver homogenate. At concentrations 10-100 microg/ml, this extract also demonstrated the strongest superoxide anion scavenging and inhibitory effect on xanthine oxidase activities. In general, the ethanol extracts revealed a stronger antioxidant activity than alpha-tocopherol and HWEPP. Compared to alpha-tocopherol, the IC50 value of 95% EtOH PP extract was lower in thiobarbituric acid test (IC50=23.74 microg/ml vs. 26.71 microg/ml), in cytochrome c test (IC50=10.40 microg/ml vs. 13.39 microg/ml) and in xanthine oxidase inhibition test (IC50=8.97 microg/ml vs. 20.68 microg/ml). The present study concludes that ethanol extracts of PP possess good antioxidant activities, and the highest antioxidant properties were obtained from the 95% EtOH PP. PMID:15930727

  18. Effects of Ionizing Radiation and Glutathione Precursor on Antioxidant Enzyme and Cell Survival in Yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinkyu; Roh, Changhyun; Ryu, Taeho; Park, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Michael A. [Oxiage Cosmeceutical Research Institute, Virginia (United States)

    2013-05-15

    Cells react to such an induced oxidative stress through scavenging the generated reactive oxygen species to reduce oxidative damage. Antioxidant enzymes such as glutathione peroxidase, catalase, and superoxide dismutase are immediately triggered for reactive oxygen species. N-acetyl-L-cysteine (NAC), a precursor of glutathione, is one of the antioxidants. The effect of NAC as an antioxidant and/or a cell rescue agent was investigated in the present study. Glutathione (GSH) is the most abundant intracellular thiol, which involves in antioxidant defense via direct interaction with ROS or via activities of detoxication enzymes like glutathione peroxidases (GPx). NAC flowed in the cell is converted to cysteine by deacetylation, that is supplied to the depleted GSH by oxidative stress. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity such as GPx and alkaline phosphatase. Cell growth and survivorship and transcriptional level of glutathione gene are analyzed in two yeast strains exposed to combined treatment of NAC with gamma-rays. The effect of NAC on cell growth was measured during 72 hours. The cell growth was hampered by higher concentrations of NAC at stationary phase. NAC, however, didn't affect the cell division at the exponential phase. The survival of the cells decreased with radiation dose. The cell viability of the strain W303-1A was reduced significantly at the low dose (10 and 30 Gy). By comparison, the strain W303-1A was more sensitive to radiation with having a half lethal dose (LD{sub 50}) of about 20 Gy. The quantitative RT-PCR analysis showed that the transcriptional expression of antioxidant enzyme gene GPX1 increased after irradiation while the expression of the gene decreased by the combined treatment of NAC with 100 Gy radiation. The present study shows that NAC can directly scavenge ROS against oxidative stress in vivo. In conclusion, NAC can prevent radiation-induced oxidative

  19. Antioxidant Activity of Selected Herzegovinian Wines

    OpenAIRE

    Marković, M.; Talić, S.

    2013-01-01

    Many wines, particularly red, contain different compounds that possess strong antioxidant activity. The subject of this paper was the determination of phenol compounds with strong antioxidant activity, contained in nine commercially available Herzegovinian red wines. Total phenols, flavonoids, nonflavonoids content and antioxidant activity of selected wines were determined. Total phenols content was determined spectrophotometrically by the Folin...

  20. Indirect evaluation of corneal apoptosis in contact lens wearers by estimation of nitric oxide and antioxidant enzymes in tears

    Directory of Open Access Journals (Sweden)

    R P Bhatia

    2010-01-01

    Full Text Available Background : Contact lens induced trauma to the corneal epithelium results in increased release of inflammatory mediators. The keratocyte apoptosis is directly related to epithelial injury and has been correlated with increased production of nitric oxide. Potent antioxidant enzymes protect cells from oxidative damage by inactivating reactive oxygen species and thus inhibiting apoptosis. This study aims at determination of total nitric oxide and antioxidant enzymes in tears which will be an indirect criteria for assessing apoptosis. Materials and Methods : Nitric oxide and antioxidant enzymes were estimated in tears of 25 soft contact lens wearers and compared with 25 age and sex matched controls. Results : Statistically significant increase of nitric oxide (P< 0.001, superoxide dismutase (P< 0.001 and glutathione peroxidase (P< 0.001 levels was seen in tears of contact lens wearers as compared to controls. There was also statistically significant increase in the levels of antioxidant enzymes, superoxide dismutase (P< 0.05 and glutathione peroxidase (P< 0.01, with increase in the total duration of contact lens wear in years. Conclusions : Increase in the level of nitric oxide and antioxidant enzymes in tears of contact lens wearers suggested that contact lens wear suppresses the process of apoptosis. However, it was also postulated that the increased levels of nitric oxide balances the anti-apoptotic activities of increased levels of antioxidant enzymes by its pro-apoptotic activity leading to protective outcomes in contact lens wearers.

  1. Antioxidant property and [Formula: see text]-glucosidase, [Formula: see text]-amylase and lipase inhibiting activities of Flacourtia inermis fruits: characterization of malic acid as an inhibitor of the enzymes.

    Science.gov (United States)

    Alakolanga, A G A W; Kumar, N Savitri; Jayasinghe, Lalith; Fujimoto, Yoshinori

    2015-12-01

    Flacourtia inermis Roxb. (Flacourtiaceae), is a moderate sized tree cultivated in Sri Lanka for its fruits known as Lovi. The current study was undertaken to study the biological activity of extracts of the fruits in an attempt to increase the value of the under exploited fruit crops. Fruits of F. inermis were found to be rich in phenolics and anthocyanins. Polyphenol content of the fruits was determined to be 1.28 g gallic acid equivalents per 100 g of fresh fruit and anthocyanin content was estimated as 108 mg cyanidin-3-glucoside equivalents per 100 g of fresh fruits. The EtOAc extract showed moderate antioxidant activity in the DPPH radical scavenging assay with IC50 value of 66.2 ppm. The EtOAc and MeOH extracts of the fruits also exhibited inhibitory activities toward α-glucosidase, α-amylase and lipase enzymes with IC50values ranging from 549 to 710 ppm, 1021 to 1949 ppm and 1290 to 2096 ppm, respectively. The active principle for the enzyme inhibition was isolated through activity-guided fractionation and was characterized as (S)-malic acid. The results of this study indicate that F. inermis fruits have the potential to be used in health foods and in nutritional supplements. PMID:26604419

  2. Synergistic Exposure of Rice Seeds to Different Doses of γ-Ray and Salinity Stress Resulted in Increased Antioxidant Enzyme Activities and Gene-Specific Modulation of TC-NER Pathway

    Directory of Open Access Journals (Sweden)

    Anca Macovei

    2014-01-01

    Full Text Available Recent reports have underlined the potential of gamma (γ-rays as tools for seed priming, a process used in seed industry to increase seed vigor and to enhance plant tolerance to biotic/abiotic stresses. However, the impact of γ-rays on key aspects of plant metabolism still needs to be carefully evaluated. In the present study, rice seeds were challenged with different doses of γ-rays and grown in absence/presence of NaCl to assess the impact of these treatments on the early stages of plant life. Enhanced germination efficiency associated with increase in radicle and hypocotyl length was observed, while at later stages no increase in plant tolerance to salinity stress was evident. APX, CAT, and GR were enhanced at transcriptional level and in terms of enzyme activity, indicating the activation of antioxidant defence. The profiles of DNA damage accumulation were obtained using SCGE and the implication of TC-NER pathway in DNA damage sensing and repair mechanisms is discussed. OsXPB2, OsXPD, OsTFIIS, and OsTFIIS-like genes showed differential modulation in seedlings and plantlets in response to γ-irradiation and salinity stress. Altogether, the synergistic exposure to γ-rays and NaCl resulted in enhanced oxidative stress and proper activation of antioxidant mechanisms, thus being compatible with plant survival.

  3. Lipid Peroxidation, Antioxidant Enzymes and Levels of Nitric Oxide in Sheep Infected with Fasciola hepatica

    OpenAIRE

    BENZER, Fulya; OZAN, Sema TEMİZER

    2003-01-01

    In this study, the levels of malondialdehyde and activities of catalase and glutathione peroxidase, two antioxidant enzymes, and the levels of nitric oxide in sheep infected with Fasciola hepatica were measured. The level of malondialdehyde in plasma and tissue was measured according to the Yagi and Ohkawa methods, respectively. The activities of catalase and glutathione peroxidase were measured according to the methods of Aebi and Beutler, respectively. The level of nitric oxide was deter...

  4. Peptides Derived from Rhopilema esculentum Hydrolysate Exhibit Angiotensin Converting Enzyme (ACE) Inhibitory and Antioxidant Abilities

    OpenAIRE

    Jun Li; Qian Li; Jingyun Li; Bei Zhou

    2014-01-01

    Jellyfish (Rhopilema esculentum) was hydrolyzed using alcalase, and two peptides with angiotensin-I-converting enzyme (ACE) inhibitory and antioxidant activities were purified by ultrafiltration and consecutive chromatographic methods. The amino acid sequences of the two peptides were identified as VKP (342 Da) and VKCFR (651 Da) by electrospray ionization tandem mass spectrometry. The IC50 values of ACE inhibitory activities of the two peptides were 1.3 μM and 34.5 μM, respectively. Molecula...

  5. Antioxidant enzyme activity and lipid peroxidation in the blood of rats co-treated with vanadium (V(+5)) and chromium (Cr (+3)).

    Science.gov (United States)

    Scibior, Agnieszka; Zaporowska, Halina; Wolińska, Agnieszka; Ostrowski, Jarosław

    2010-12-01

    Selected biochemical parameters were studied in the blood of outbred, male Wistar rats which daily received to drink deionized water (Group I, control) or solutions of: sodium metavanadate (SMV; 0.100 mg V/mL)-Group II; chromium chloride (CC; 0.004 mg Cr/mL)-Group III; and SMV-CC (0.100 mg V and 0.004 mg Cr/mL)-Group IV for a 12-week period. The diet and fluid intake, body weight gain, and food efficiency ratio (FER) diminished significantly in the rats of Groups II and IV, compared with Groups I and III. The plasma total antioxidant status (TAS) as well as the MDA and the L: -ascorbic acid level in the erythrocytes (RBCs) remained unchanged in all the groups, whereas the plasma L: -ascorbic acid concentration decreased markedly in Group II, compared with Group III. The activities of Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), cellular glutathione peroxidase (cGSH-Px), and glutathione reductase (GR) in RBCs remained unaltered in all the treated rats. However, the activity of glutathione S-transferase (GST) and the content of reduced glutathione (GSH) in RBCs decreased and increased, respectively, in Groups II, III, and IV, compared with Group I. A vanadium-chromium interaction which affected the GST activity was also found. To summarize, SMV and CC administered separately or in combination in drinking water for 12 weeks did not alter either lipid peroxidation (LPO) or the activities of Cu,Zn-SOD, CAT, cGSH-Px, and GR, which allows a conclusion that both metals in the doses ingested did not reveal their pro-oxidant potential on RBCs.

  6. Serum Antioxidative Enzymes Levels and Oxidative Stress Products in Age-Related Cataract Patients

    Science.gov (United States)

    Chang, Dong; Zhang, Xuefei; Rong, Shengzhong; Sha, Qian; Liu, Peipei; Han, Tao; Pan, Hongzhi

    2013-01-01

    Purpose. To investigate the activity of antioxidative enzymes and the products of oxidative stress in patients with age-related cataracts and compare the findings with those in healthy control subjects. Method. Sixty patients with age-related cataract and sixty healthy controls of matched age and gender were included in this study. Serum samples were obtained to detect the antioxidative enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and oxidation degradation products of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), conjugated diene (CD), advanced oxidation protein products (AOPP), protein carbonyl (PC), and 8-hydroxydeoxyguanosine (8-OHdG). Results. Serum SOD, GSH-Px, and CAT activities in cataract group were significantly decreased as compared to the control subjects (P < 0.05). The levels of MDA, 4-HNE, and CD in cataract patients were significantly higher than those in the control subjects (P < 0.05, P < 0.01). Cataract patients had higher levels of 8-OHdG, AOPP, and PC with respect to the comparative group of normal subjects (P < 0.01). And there was no statistical significance in concentration of antioxidative enzymes and oxidative stress products in patients with different subtype cataract. Conclusions. Oxidative stress is an important risk factor in the development of age-related cataract, and augmentation of the antioxidant defence systems may be of benefit to prevent or delay cataractogenesis. PMID:23781296

  7. Serum Antioxidative Enzymes Levels and Oxidative Stress Products in Age-Related Cataract Patients

    Directory of Open Access Journals (Sweden)

    Dong Chang

    2013-01-01

    Full Text Available Purpose. To investigate the activity of antioxidative enzymes and the products of oxidative stress in patients with age-related cataracts and compare the findings with those in healthy control subjects. Method. Sixty patients with age-related cataract and sixty healthy controls of matched age and gender were included in this study. Serum samples were obtained to detect the antioxidative enzymes of superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px, and oxidation degradation products of malondialdehyde (MDA, 4-hydroxynonenal (4-HNE, conjugated diene (CD, advanced oxidation protein products (AOPP, protein carbonyl (PC, and 8-hydroxydeoxyguanosine (8-OHdG. Results. Serum SOD, GSH-Px, and CAT activities in cataract group were significantly decreased as compared to the control subjects (P<0.05. The levels of MDA, 4-HNE, and CD in cataract patients were significantly higher than those in the control subjects (P<0.05, P<0.01. Cataract patients had higher levels of 8-OHdG, AOPP, and PC with respect to the comparative group of normal subjects (P<0.01. And there was no statistical significance in concentration of antioxidative enzymes and oxidative stress products in patients with different subtype cataract. Conclusions. Oxidative stress is an important risk factor in the development of age-related cataract, and augmentation of the antioxidant defence systems may be of benefit to prevent or delay cataractogenesis.

  8. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Oranuch Nakchat

    2014-05-01

    Conclusions: TSCE exhibited antioxidant activities by scavenging ROS, attenuating GSH level that could protect human skin fibroblast cells from oxidative stress. Our results highlight the antioxidant mechanism of tamarind seed coat through an antioxidant enzyme system, the extract potentially benefits for health food and cosmeceutical application of tamarind seed coat.

  9. Antioxidant activity of potato juice

    Directory of Open Access Journals (Sweden)

    Przemysław Kowalczewski

    2012-06-01

    Full Text Available Background. The interest in potato juice as a therapeutic agent goes back to the 19th century but its application was not supported by any knowledge about biological activity of this raw material. Factors restricting the medical application of potato juice include its inattractive sensory and functional properties. The aim of the presented investigations was preliminary evaluation of the biological activity of potato juice and the impact on it of some technological operations such as: cryoconcentration and hydrolysis in a membrane reactor. Material and methods. Experiments comprised investigations of antioxidative potentials of fresh potato juice, products of its processing as well as fractions separated because of the size of their molecules using, for this purpose, Folin-Ciocalteu methods and reactions with the ABTS cation radical. Results. The value of the antioxidative potential of fresh potato juice determined by means of the ABTS reagent corresponded to approximately 330 μmol/100 g which is in keeping with literature data. As a result of the cryoconcentration process, the value determined by the Folin-Ciocalteu method was found to increase only slightly whereas the value determined by means of the ABTS reagent almost tripled. The antioxidative potential was found to grow even more strongly in the case of the application of both methods when the process of enzymatic hydrolysis was employed. The total of 5 protein fractions of molecular masses ranging from 11 000 Da to over 600 000 Da, as well as an organic non-protein fraction of the molecular mass of 600 Da, were obtained as a result of the performed separation. All the examined fractions exhibited antioxidative activities. The highest values determined by the Folin-Ciocalteu method were recorded for the protein fraction of 80 000 Da mean molecular mass, while using the ABTS reagent – for the organic, non-protein fraction. Conclusions. Potato juice possesses antioxidative activity which

  10. Effects of Launaea procumbens on brain antioxidant enzymes and cognitive performance of rat

    Directory of Open Access Journals (Sweden)

    Khan Rahmat

    2012-11-01

    Full Text Available Abstract Background Launaea procumbens is used in the treatment of oxidative stress and mental disorders. The effects of Launaea procumbens methanolic extracts (LPMEs, i.e., 100 and 200 LPME mg/kg body weight (b.w., on cognitive performance as well as on the activity of acetylcholinesterase, and antioxidant enzymes in rat brain tissue homogenates were evaluated. Methods Thirty male Sprague–Dawley rats were divided equally into three groups. Rats in group I (control were given saline (vehicle, group II received LPME (100 mg/kg b.w., p.o., and group III were treated with LPME (200 mg/kg b.w., p.o. in dimethyl sulfoxide (DMSO for 7 days. Antioxidant potential was assessed by measuring the activity of the antioxidant enzymes superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSHpx, glutathione reductase (GSR and glutathione-S-transferase (GST as well as lipid peroxidation and glutathione (GSH contents in brain tissue homogenates. Activity of acetylcholinesterase (AChE and cognitive performance were also assessed. Results LPME administration reduced the levels of lipid peroxidation products (TBARS contents, increased GSH levels and enhanced the activities of SOD, CAT, GSHpx, GSR and GST. AChE activity was reduced by LPME treatment compared with untreated controls. Conclusion These findings suggested the significant impact of LPMEs on brain function. These effects could be through the antioxidant effects of the bioactive constituents present in LPME.

  11. Determination of plasma gluthatione reductase enzyme activity in osteoporotic women

    OpenAIRE

    Sadeghi N; Oveisi M.R.; Jannat B.; Hajimahmoodi M; Jamshidi A.R; Sajadian Z.

    2008-01-01

    Background: Osteoporosis is a disease of high prevalence with increased bone loss. Free radicals have been proved to be involved in bone resorption. Glutathione reductase (GR) plays an essential role in cell defense against reactive oxygen metabolites by sustaining the reduced status of an important antioxidant, glutathione. In the present study GR activity of plasma as an antioxidant enzyme in relation to Bone Mineral Density (BMD) was investigated.Material and Method: GR activity was measur...

  12. Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles.

    Science.gov (United States)

    Chorny, Michael; Hood, Elizabeth; Levy, Robert J; Muzykantov, Vladimir R

    2010-08-17

    Antioxidant enzymes have shown promise as a therapy for pathological conditions involving increased production of reactive oxygen species (ROS). However the efficiency of their use for combating oxidative stress is dependent on the ability to achieve therapeutically adequate levels of active enzymes at the site of ROS-mediated injury. Thus, the implementation of antioxidant enzyme therapy requires a strategy enabling both guided delivery to the target site and effective protection of the protein in its active form. To address these requirements we developed magnetically responsive nanoparticles (MNP) formed by precipitation of calcium oleate in the presence of magnetite-based ferrofluid (controlled aggregation/precipitation) as a carrier for magnetically guided delivery of therapeutic proteins. We hypothesized that antioxidant enzymes, catalase and superoxide dismutase (SOD), can be protected from proteolytic inactivation by encapsulation in MNP. We also hypothesized that catalase-loaded MNP applied with a high-gradient magnetic field can rescue endothelial cells from hydrogen peroxide toxicity in culture. To test these hypotheses, a family of enzyme-loaded MNP formulations were prepared and characterized with respect to their magnetic properties, enzyme entrapment yields and protection capacity. SOD- and catalase-loaded MNP were formed with average sizes ranging from 300 to 400 nm, and a protein loading efficiency of 20-33%. MNP were strongly magnetically responsive (magnetic moment at saturation of 14.3 emu/g) in the absence of magnetic remanence, and exhibited a protracted release of their cargo protein in plasma. Catalase stably associated with MNP was protected from proteolysis and retained 20% of its initial enzymatic activity after 24h of exposure to pronase. Under magnetic guidance catalase-loaded MNP were rapidly taken up by cultured endothelial cells providing increased resistance to oxidative stress (62+/-12% cells rescued from hydrogen peroxide induced

  13. Systemic reduction of rice blast by inhibitors of antioxidant enzymes

    Science.gov (United States)

    Systemic acquired disease resistance (SAR) of plants may result from an oxidative burst in their tissues caused by both increased production of ROS and decreased antioxidant activity, in particular, enzymatic. Here we tested whether the exogenous inhibitors of superoxide dismutase (SOD) and catalase...

  14. [Effects of low temperature at 10 degrees C on some antioxidant enzyme activities and ultrastructures of hypocotylar cells in mung bean and garden pea].

    Science.gov (United States)

    Chen, Xu-Wei; Yang, Ling; Zhang, Yi; Gong, Ju-Fang

    2005-10-01

    Mung bean (Phaseolus radiatus Linn.) and garden pea (Pisum satium Linn.), which were stressed 4 days under a low temperature of 10 degrees C, were used as materials to study the cold tolerance of plant with different resistance. On the 2nd and 3rd day under 10 degrees C stress, both the malondialdehyde (MDA) content and the superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities increased significantly in hypocotylar cells of mung bean, so did SOD activity in garden pea, but other physiological indexes in garden pea were not different from the non-treatment groups (Figs. 1-5). In hypocotylar cells of mung bean, SOD activity always maintain at the highest level in a period of time,and so does POD activity (Figs. 3, 4). Ultrastructural results after stress indicated as follows: (1) Plastids in hypocotylar cells of mung bean accumulated much starch (Plate I-6), whereas the form of plastids in hypocotylar cells of garden pea changed maskedly to become dumb-bell-shaped, round or irregular, with the last one being the most common form (Plate I-8, 12); (2) In both mung bean and garden pea, central vacuole was divided into small vacuoles (Plate I-4, 10), and the number of mitochondria increased and became aggregated (Plate I-3, 11, 12). Judging from the activities of protective enzymes and ultrastructures, 10 degrees C low temperature caused non-lethal, temporary injuries to hypocotyls ultrastructures in mung bean, but no visible injury at all, and even improved its cold tolerance to a certain degree in garden pea.

  15. The effect of dietary cricket meal (Gryllus bimaculatus) on growth performance, antioxidant enzyme activities, and haematological response of African catfish (Clarias gariepinus).

    Science.gov (United States)

    Taufek, Norhidayah Mohd; Aspani, Firdaus; Muin, Hasniyati; Raji, Ameenat Abiodun; Razak, Shaharudin Abdul; Alias, Zazali

    2016-08-01

    This study was conducted to investigate the growth performance, biomarkers of oxidative stress, catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) as well as the haematological response of African catfish after being fed with fish feed containing different levels of cricket meal. The juvenile fish were assigned to three different treatments with isonitrogenous (35 %) and isoenergetic (19 kJ g(-1)) diets containing 100 % cricket meal (100 % CM), 75 % cricket meal (75 % CM), and 100 % fishmeal (100 % FM) as control groups for 7 weeks. The results indicated that a diet containing 100 % CM and 75 % CM improved growth performance in terms of body weight gain and specific growth rate, when compared to 100 % FM. The feed conversion ratio (FCR) and protein efficiency ratio (PER) did not differ significantly between all diets, but reduced FCR and increased PER were observed with a higher inclusion of cricket meal. A haematological examination of fish demonstrated no significant difference of red blood cells in all diets and white blood cells showed a significantly higher value in fishmeal-fed fish. On the other hand, haemoglobin and haematocrit significantly increased with increasing amounts of cricket meal in the diet. Antioxidant activity of CAT was higher in the 100 % CM group compared to fish fed other diets, whereas GST and SOD showed increasing trends with a higher incorporation of cricket, although insignificant differences were observed between all diets. These results suggest that cricket meal could be an alternative to fishmeal as a protein source in the African catfish diet. PMID:26886132

  16. Understanding salt tolerance mechanisms in wheat genotypes by exploring antioxidant enzymes

    DEFF Research Database (Denmark)

    Amjad, M.; Akhtar, J.; Haq, M.A.;

    2014-01-01

    The activities of antioxidant enzymes were analyzed in six wheat genotypes under different concentrations of NaCl (0, 100 and 200 mM). Plants were harvested after either 15 or 30 days of salt stress. The most salt tolerant genotype (SARC-1) maintained lower Na+ and higher relative growth rate (RGR....... Additionally, glutathione reductase (GR) activity was decreased in salt sensitive (S-9189 and S-9476) than salt tolerant (SARC-1) genotypes. Under salt stress conditions a negative relationship between SOD and leaf Na+, and a positive between SOD and shoot fresh weight (SFW), were observed. The higher...... efficiency of antioxidant enzymes of tolerant genotypes could be considered as one of the factors involved in salt tolerance of wheat....

  17. An enzyme with rhamnogalacturonase activity.

    OpenAIRE

    Kovod, L.V.; Dalboge, H; Andersen, L N; Kauppinen, M.; Christgan, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A. G. J.; Schols, H.A.

    1994-01-01

    An enzyme exhibiting rhamnogalacturonase activity, which enzyme: a) is encoded by the DNA sequence shown in SEQ ID No. 1 or a sequence homologous thereto encoding a polypeptide with RGase activity, b) has the amino acid sequence shown in SEQ ID No. 2 or an analogue thereof, c) is reactive with an antibody raised against the enzyme encoded by the DNA sequence shown in SEQ ID No. 1, d) has a pH optimum above pH 5, and/or e) has a relative activity of at least 30t a pH in the range of 5.5-6.5. T...

  18. Effect of Coenzyme Q10 supplementation on antioxidant enzymes activity and oxidative stress of seminal plasma: a double-blind randomised clinical trial.

    Science.gov (United States)

    Nadjarzadeh, A; Shidfar, F; Amirjannati, N; Vafa, M R; Motevalian, S A; Gohari, M R; Nazeri Kakhki, S A; Akhondi, M M; Sadeghi, M R

    2014-03-01

    Low seminal plasma concentrations of coenzyme Q10 (CoQ10) have been correlated with impaired sperm parameters, but the exact mechanism remains of dominating interest. This randomised, placebo-controlled study examined the effect of CoQ10 on catalase, superoxide dismutase (SOD) and F2 -isoprostanes in seminal plasma in infertile men and their relation with CoQ10 concentration. Sixty infertile men with idiopathic oligoasthenoteratozoospermia (OAT) were randomised to receive 200 mg d(-1) of CoQ10 or placebo for 3 months. 47 persons of them completed the study. Semen analysis, anthropometric measurements, diet and physical activity assessment were performed for subjects before and after treatment. Independent and paired t-test, chi-square test and ancova were compared outcomes of supplementation between two groups. CoQ10 levels increased from 44.74 ± 36.47 to 68.17 ± 42.41 ng ml(-1) following supplementation in CoQ10 (P concentration and normal sperm morphology (P = 0.037), catalase (P = 0.041) and SOD (P enzymes activity.

  19. Cadmium phytotoxicity: Quantitative sensitivity relationships between classical endpoints and antioxidative enzyme biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Rosa Correa, Albertina Xavier da [Centro de Ciencias Tecnologicas da Terra e do Mar, Universidade do Vale do Itajai, Rua Uruguai, 458, 88302-202 Itajai SC (Brazil); Roerig, Leonardo Rubi [Centro de Ciencias Tecnologicas da Terra e do Mar, Universidade do Vale do Itajai, Rua Uruguai, 458, 88302-202 Itajai SC (Brazil); Verdinelli, Miguel A. [Centro de Ciencias Tecnologicas da Terra e do Mar, Universidade do Vale do Itajai, Rua Uruguai, 458, 88302-202 Itajai SC (Brazil); Cotelle, Sylvie [Centre des Sciences de l' Environnement, Universite de Metz, 57000 Metz (France); Ferard, Jean-Francois [Centre des Sciences de l' Environnement, Universite de Metz, 57000 Metz (France); Radetski, Claudemir Marcos [Centro de Ciencias Tecnologicas da Terra e do Mar, Universidade do Vale do Itajai, Rua Uruguai, 458, 88302-202 Itajai SC (Brazil)]. E-mail: radetski@univali.br

    2006-03-15

    In this work, cadmium phytotoxicity and quantitative sensitivity relationships between different hierarchical endpoints in plants cultivated in a contaminated soil were studied. Thus, germination rate, biomass growth and antioxidative enzyme activity (i.e. superoxide dismutase, peroxidase, catalase and glutathione reductase) in three terrestrial plants (Avena sativa L., Brassica campestris L. cv. Chinensis, Lactuca sativa L. cv. hanson) were analyzed. Plant growth tests were carried out according to an International Standard Organization method and the results were analyzed by ANOVA followed by Williams' test. The concentration of Cd{sup 2+} that had the smallest observed significant negative effect (LOEC) on plant biomass was 6.25, 12.5 and 50 mg Cd/kg dry soil for lettuce, oat and Chinese cabbage, respectively. Activity of all enzymes studied increased significantly compared to enzyme activity in plant controls. For lettuce, LOEC values (mg Cd/kg dry soil) for enzymic activity ranged from 0.05 (glutathione reductase) to 0.39 (catalase). For oat, LOEC values (mg Cd/kg dry soil) ranged from 0.19 (for superoxide dismutase and glutathione reductase) to 0.39 (for catalase and peroxidase). For Chinese cabbage, LOEC values (mg Cd/kg dry soil) ranged from 0.19 (peroxidase, catalase and glutathione reductase) to 0.39 (superoxide dismutase). Classical (i.e. germination and biomass) and biochemical (i.e. enzyme activity) endpoints were compared to establish a sensitivity ranking, which was: enzyme activity > biomass > germination rate. For cadmium-soil contamination, the determination of quantitative sensitivity relationships (QSR) between classical and antioxidative enzyme biomarkers showed that the most sensitive plant species have, generally, the lowest QSR values.

  20. Effect of Cross-Sex Hormonal Replacement on Antioxidant Enzymes in Rat Retroperitoneal Fat Adipocytes

    Science.gov (United States)

    Velázquez Espejel, Rodrigo; Cabrera-Orefice, Alfredo; Uribe-Carvajal, Salvador; Pavón, Natalia

    2016-01-01

    We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2 exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2 deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes. PMID:27630756

  1. Effect of Cross-Sex Hormonal Replacement on Antioxidant Enzymes in Rat Retroperitoneal Fat Adipocytes

    Directory of Open Access Journals (Sweden)

    Israel Pérez-Torres

    2016-01-01

    Full Text Available We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.. Experimental groups were ovariectomized F (OvxF, castrated M (CasM, OvxF plus testosterone (OvxF + T, and CasM plus estradiol (CasM + E2 groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione-S-transferase (GST, and glutathione reductase (GR. Also, glutathione (GSH and lipid peroxidation (LPO were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2 exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2 deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes.

  2. Effect of Cross-Sex Hormonal Replacement on Antioxidant Enzymes in Rat Retroperitoneal Fat Adipocytes.

    Science.gov (United States)

    Pérez-Torres, Israel; Guarner-Lans, Verónica; Zúñiga-Muñoz, Alejandra; Velázquez Espejel, Rodrigo; Cabrera-Orefice, Alfredo; Uribe-Carvajal, Salvador; Pavón, Natalia

    2016-01-01

    We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2 exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2 deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes. PMID:27630756

  3. Effects of Sulfur and Cadmium Interactions on Antioxidant Enzyme Activity in Hyperaccumulator-Sedum alfredii Hance%镉硫交互对东南景天抗氧化酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    李会合

    2011-01-01

    通过营养液培养试验研究不同硫镉水平对超积累东南景天抗氧化酶活性的影响。结果表明,在增施镉水平下东南景天叶片的MDA含量随着硫水平增加显著降低,Cd0水平下S2处理显著降低MDA含量达12.4%。相反,东南景天叶片的MDA含量随着镉水平的提高显著增加18.4%~137.7%。镉硫交互对超积累东南景天叶片抗氧化酶活性有显著影响。超积累东南景天叶片SOD活性随着硫、镉水平的增加而增加,以S3〉S2〉S1,Cd100〉Cd10〉Cd0。增施硫显著提高Cd10和Cd100水平下东南景天叶片POD活性。在S1,S2水平下,增加Cd水平东南景天叶片POD活性显著增加,POD活性以Cd10〉Cd100〉Cd0。超积累东南景天叶片CAT活性随着硫水平增加而增加8.9%~21.3%,CAT活性随着Cd水平的增加而显著增加,增幅以S1和S2水平下较大。随着S,Cd水平的增加东南景天叶片的APX活性显著增加。镉硫交互对4种抗氧化酶的效应以APX〉CAT〉POD〉SOD。%Effects of sulfur and cadmium interactions on antioxidant enzyme activity in hyperaccumulator-Sedum alfredii Hance were investigated in hydroponic culture.The contents of MDA in leaf were decreased with sulfur application under three cadmium levels,significantly decreased by 12.4% in Cd0 and S2 treatment.On the contrary,the contents of MDA were significantly increased from 18.4% to 137.7% with increasing cadmium level.There were significant effects of sulfur and cadmium interactions on antioxidant enzyme activity in hyperaccumulator-Sedum alfredii Hance.With increasing of sulfur and cadmium level,the activity of SOD were significantly increased and were in the order of S3S2S1 and Cd100Cd10Cd0.The activities of POD in leaf of hyperaccumulator-Sedum alfredii Hance were increased with increasing S application in Cd10 and Cd100 treatment.Under S1and S2 levels,the activities of POD were enhanced with increasing cadmium level and were in the order of Cd10Cd100Cd0.The activities

  4. ANTI-OXIDANT AND ENZYME-INHIBITORY POTENTIAL OF MARINE STREPTOMYCES

    Directory of Open Access Journals (Sweden)

    K. Suthindhiran

    2013-01-01

    Full Text Available Marine actinomycetes are potential source for the discovery of novel compounds and enzymes. Though extensive research on marine actinomycetes is underway globally, the actinomycetes research from Indian marine ecosystem is unexplored and understudied. Hence, the present research is focussed on the screening of bioactive compounds from marine actinomycetes isolated from Indian coastal region. This study is designed to determine the antioxidant and enzyme inhibitory potential of Streptomyces sp. VITMSS05 strain, isolated from Marakkanam, southern coast of India. An actinomycetes strain designated as VITMSS05 was isolated. This strain was cultivated in Starch Caesin Agar medium (SCA supplemented with sea water. The cultural, morphological and molecular characterization was determined for the isolate. The crude extract of the isolate was extracted with ethyl acetate. Antioxidant activity of the crude extract was determined by DPPH radical scavenging assay. Alpha amylase and alpha glucosidase inhibitory potential of the extract was determined. Based on the phenotypic and phylogenetic analysis the strain was identified as Streptomyces sp. Significant antioxidant activity of the extract was observed with an IC50 value of 92.49 μg mL-1. The extract shows 64.1% inhibition on α-amylase and 91.5% inhibition on α-glucosidase at 100 μg mL-1 with an IC50 value of 385.97 and 42.89 μg mL-1. From the results it is evident that the ethyl acetate extract of Streptomyces sp. VITMSS05 has potent antioxidant and enzyme inhibitory activity in vitro. The combined effect of free radical scavenging and enzyme inhibition makes it a potent anti diabetic drug.

  5. Effect of Pb Stress on the Anti-oxidative Enzyme Activities in Danio rerio%铅胁迫对斑马鱼抗氧化酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    豆长明; 周鸣鸣; 张洁; 王晓辉; 谢贤政

    2012-01-01

    The effect of Pb on the anti-oxidative enzyme activities in Danio rerio was studied, and the toxicity effect of Pb on Danio rerio was discussed. Danio rerio was viewed as model organism, semi-static toxicity test was used in domestication and experiments of Danio rerio, the effects of Pb on superoxide dismutase (SOD) and eatalase (CAT) of it were discussed. At 1 d, effects of Pb stress on SOD in Danio rerio was induction effect, and the stress on CAT was induction-inhibition effect. At 7d, effects of PbAc stress on SOD in Danio rerio was induction effect, and stress on CAT was induction梚nhibition effect. Moreover, the enzyme activities were changed markedly significantly for 1 or 7d. The results showed that Pb stress on the anti-oxidative enzyme activities in Danio rerio was changed markedly. In short time and low-concentration exposure, Pb toxicity was significantly. The study could provide references for heavy metal pollution on the aquatic organism toxicity mechanism.%研究Pb对斑马鱼抗氧化酶活性影响,探讨重金属Pb对斑马鱼毒理学效应.以斑马鱼为模式生物,采用半静态法对斑马鱼进行驯养和试验,测定不同浓度Pb对超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性影响.Pb暴露1d胁迫斑马鱼SOD为诱导效应,胁迫CAT为诱导-抑制效应,Pb暴露7d胁迫斑马鱼SOD为诱导效应,胁迫CAT为诱导-抑制效应,且暴露1d和暴露7d酶活性变化均显著.试验结果表明,Pb胁迨斑马鱼抗氧化系统酶活性变化显著,Pb毒性显著.结果为重金属污染对水生生物毒性机理研究提供参考.

  6. Antioxidant activities of five Lamiaceae plants

    OpenAIRE

    Olívia R. Pereira; Perez, Maria J.; Macias, Rócio I.R.; Marín, Jose J. G.; Cardoso, Susana M.

    2013-01-01

    In the last decades, oxidative stress has been recognized as a key process in the physiopathology of several diseases. Consequently, the search for new antioxidant compounds, as well as new antioxidant sources, has increased exponentially. The Lamiaceae family encloses many plant species which are potential sources of antioxidant compounds. The present study evaluates the antioxidant activity of phenolic enriched extracts of Lamium album, Leonurus cardiaca, Lavandula dentata, Mentha aquatica ...

  7. Assessment of the effect of silicon on antioxidant enzymes in cotton plants by multivariate analysis.

    Science.gov (United States)

    Alberto Moldes, Carlos; Fontão de Lima Filho, Oscar; Manuel Camiña, José; Gabriela Kiriachek, Soraya; Lia Molas, María; Mui Tsai, Siu

    2013-11-27

    Silicon has been extensively researched in relation to the response of plants to biotic and abiotic stress, as an element triggering defense mechanisms which activate the antioxidant system. Furthermore, in some species, adding silicon to unstressed plants modifies the activity of certain antioxidant enzymes participating in detoxifying processes. Thus, in this study, we analyzed the activity of antioxidant enzymes in leaves and roots of unstressed cotton plants fertilized with silicon (Si). Cotton plants were grown in hydroponic culture and added with increasing doses of potassium silicate; then, the enzymatic activity of catalase (CAT), guaiacol peroxidase (GPOX), ascorbate peroxidase (APX), and lipid peroxidation were determined. Using multivariate analysis, we found that silicon altered the activity of GPOX, APX, and CAT in roots and leaves of unstressed cotton plants, whereas lipid peroxidation was not affected. The analysis of these four variables in concert showed a clear differentiation among Si treatments. We observed that enzymatic activities in leaves and roots changed as silicon concentration increased, to stabilize at 100 and 200 mg Si L(-1) treatments in leaves and roots, respectively. Those alterations would allow a new biochemical status that could be partially responsible for the beneficial effects of silicon. This study might contribute to adjust the silicon application doses for optimal fertilization, preventing potential toxic effects and unnecessary cost.

  8. Antioxidant activity of black bean (Phaseolus vulgaris L.) protein hydrolysates

    OpenAIRE

    Jarine Amaral do EVANGELHO; Jose de J. BERRIOS; Vânia Zanella PINTO; Mariana Dias ANTUNES; Nathan Levien VANIER; Elessandra da Rosa ZAVAREZE

    2016-01-01

    Abstract The objective of this work was to study the effect of enzymatic hydrolysis of black bean protein concentrate using different enzymes. Bean proteins were extracted and hydrolyzed over a period of 120 min using the enzymes pepsin or alcalase. The protein hydrolysates’ molecular weight was assayed by electrophoresis and the antioxidant activity was evaluated by the capturing methods of free radicals ABTS●+ and DPPH. Electrophoretic results showed that the bands above 50 kDa disappeared,...

  9. Effect of lindane on testicular antioxidant system and steroidogenic enzymes in adult rats

    Institute of Scientific and Technical Information of China (English)

    R. Sujatha; K.C. Chitin; C. Latchoumycandane; P.P. Mathur

    2001-01-01

    Aim: To find out the effect of lindane on testicular antioxidant system and testicular steroidogenesis in adult male rats. Methods: Adult male rats were orally administered with lindane at a dose of 5.0 mg/kg body weight per day for 30 days. Twenty-four hours after the last treatment the rats were killed using anesthetic ether. Testes, epididymis,seminal vesicles and ventral prostate were removed and weighed. A 10% testicular homogenate was prepared and cen trifuged at 4°C. The supematant was used for various biochemical estimations. Results: The body weight and the weights of testes, epididymis, seminal vesicles and ventral prostate were reduced in lindane-treated rars. There was asignificant decline in the activities of antioxidant enzymes superoxide dismutase (SOD), catalase and glutathione reduc tase while an increase in hydrogen peroxide (H2O2) generation was observed. The specific activities of testicular steroidogenic enzymes 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase were decreased. The levels of DNA, RNA and protein were also decreased in lindane-treated rats. Conclusion: Lindane induces oxida tive stress and decreases antioxidant enzymes in adult male rats.

  10. Sulphydryl groups and their relation to the antioxidant enzymes of chelonian red blood cells.

    Science.gov (United States)

    Torsoni, M A; Viana, R I; Ogo, S H

    1998-09-01

    Thiol groups of hemoglobin and blood glutathione are higher in Geochelone carbonaria than in Geochelone denticulata. Exposure of stripped hemolysate of both tortoises to terc-butyl hydroperoxide, resulted in a higher ferroheme oxidation of G. denticulata hemoglobin. In this example glutathione reductase and glutathione peroxidase, were not active due to the absence of GSH and NADPH, suggesting that the thiol groups of G. carbonaria hemoglobin act as antioxidant, similar to GSH. In the total hemolysate, however, where the antioxidant enzymes are active, both species showed similar levels of hemoglobin oxidation, suggesting that the protective effect of thiol groups of hemoglobin are less effective for heme protection. The activity of glutathione reductase and glutathione peroxidase was higher in erythrocytes of G. denticulata and the activity of catalase and superoxide dismutase was higher in erythrocytes of G. carbonaria. PMID:9784849

  11. O3浓度升高和UV-B辐射增强对大豆叶片抗氧化酶活性及POD同工酶的影响%Combined Effects of Elevated O3 Concentration and UV-B Radiation on Anti-Oxidative Enzymes Activities and POD Enzymes Isozymes of Soybean

    Institute of Scientific and Technical Information of China (English)

    刘轶鸥; 王岩; 刘波; 杨兴; 赵天宏

    2013-01-01

    During the last several decades, significant reductions in the concentrations of stratospheric ozone( O3) have been reported. The decrease of ozone concentration causes an increment of ultraviolet-B radiation to earth surface. The objective of this experiment is to reveal the toxicological mechanism under elevated ozone concentration and UV-B radiation singly or in combination on plant anti-oxidation enzymes activities and POD isoenzyme. Open-top chambers ( OTCs) were utilized to investigate change of anti-oxidation enzymes activities and POD isoenzyme band in soybean( Glycine max) leaves under elevated ozone concentration and UV-B radiation singly or in combination treatment. The results of anti-oxidation enzymes activities indicated that either O3 treatment or UV-B treatment induced a decrease on SOD,POD and CAT,and in the combined stress,anti-oxidation enzymes activities had intensified this trend to a certain degree. The result of POD isozyme band showed that a new band appeared under O3 treatment in branching stage and two new bands appeared in flowering stage and podding stage compared of branching stage,and the shade of color of POD isoenzyme bands was lighter compared to CK treatment. It was suggested that in all growth period,POD isoenzyme activity was inhibited under combined stress.%以大豆品种铁丰29为材料,利用开顶式气室(OTCs)研究了O3浓度升高和UV-B辐射增强单独胁迫及复合胁迫下大豆叶片抗氧化酶(SOD、POD和CAT)活性及POD同工酶谱带的变化.结果表明:O3处理大豆叶片SOD、CAT和POD活性均低于对照;UV处理下,大豆叶片SOD、CAT、POD活性也均低于对照,但基本高于O3处理;O3及UV复合处理下,加剧了SOD、CAT、POD活性的减弱.对POD同工酶研究发现,在分枝期,O3处理产生Ⅰ条新谱带,开花期和结荚期均比分枝期多2条谱带,并且受胁迫处理的POD酶谱带与对照相比颜色较浅,说明在整个生育期,胁迫处理下的大豆叶片POD同工酶活性受到抑制.

  12. Recent Advances in Antioxidant Active Food Packaging

    OpenAIRE

    Sanches-Silva, Ana; de Costa, Denise; Albuquerque, T.G.; Castilho, Maria Conceição; Ramos, Fernando; Machado, Ana V.; Costa, H. S.

    2015-01-01

    Recent Advances in Antioxidant Active Food Packaging: Food oxidation; Antioxidants; Food Packaging; Active Packaging; Legislation; Natural antioxidants. This work was supported by the project PTDC/AGRTEC/3366/2012 with the acronym Rose4Pack (Biodegradable active packaging with rosemary extract (Rosmarinus officinalis L.) to improve food shelf-life) and funded by the Foundation for Science and Technology (FCT) and COMPETE Program (FCOMP-01-0124-FEDER-028015). Denise Costa is grateful for th...

  13. Active Packaging: application of natural antioxidants

    OpenAIRE

    Sanches-Silva, Ana; de Costa, Denise; Albuquerque, T.G.; Castilho, Maria Conceição; Ramos, Fernando; Machado, Ana V.; Costa, H. S.

    2015-01-01

    Natural antioxidants applied in Active food Packaging: Food oxidation; Antioxidants; Food Packaging; Active Packaging; Legislation; Natural antioxidants. This work was supported by the project PTDC/AGRTEC/3366/2012 with the acronym Rose4Pack (Biodegradable active packaging with rosemary extract (Rosmarinus officinalis L.) to improve food shelf-life) and funded by the Foundation for Science and Technology (FCT) and COMPETE Program (FCOMP-01-0124-FEDER-028015).

  14. Hepatoprotective and Antioxidant Activities of Desmodium Triquetrum DC.

    Science.gov (United States)

    Kalyani, G A; Ramesh, C K; Krishna, V

    2011-07-01

    The hepatoprotective and antioxidant activities of ethanol extract of Desmodium triquetrum DC leaf were investigated against carbon tetrachloride (1 ml/kg i.p) induced hepatic damage in rats at a dose of 200 mg/kg body weight p.o. The test extract significantly (P<0.05) reduced the elevated levels of serum transaminases, alkaline phosphatase, bilirubin and reversed the antioxidant enzyme and non-enzyme levels. It dose dependently inhibited thiobarbuturic acid induced lipid peroxidation in vitro (IC(50)=59.9 μg/ml). Histopathological studies provided supportive evidence for biochemical analysis. Silymarin (25 mg/kg) is a known hepatoprotective drug used as a reference drug. The results indicated that D. triquetrum has potent hepatoprotective and antioxidant activity that may be due to the presence of flavonoids in the plant. PMID:22707836

  15. Hepatoprotective and antioxidant activities of Desmodium triquetrum DC

    Directory of Open Access Journals (Sweden)

    G A Kalyani

    2011-01-01

    Full Text Available The hepatoprotective and antioxidant activities of ethanol extract of Desmodium triquetrum DC leaf were investigated against carbon tetrachloride (1 ml/kg i.p induced hepatic damage in rats at a dose of 200 mg/kg body weight p.o. The test extract significantly (P<0.05 reduced the elevated levels of serum transaminases, alkaline phosphatase, bilirubin and reversed the antioxidant enzyme and non-enzyme levels. It dose dependently inhibited thiobarbuturic acid induced lipid peroxidation in vitro (IC 50 =59.9 μg/ml. Histopathological studies provided supportive evidence for biochemical analysis. Silymarin (25 mg/kg is a known hepatoprotective drug used as a reference drug. The results indicated that D. triquetrum has potent hepatoprotective and antioxidant activity that may be due to the presence of flavonoids in the plant.

  16. The antioxidant activity of cocoa

    Directory of Open Access Journals (Sweden)

    Hasan Kilicgun

    2009-01-01

    Full Text Available In this study we aimed to determine the antioxidant effects of Cocoa ( Theobroma cacao L., which is commonly used in both chocolate and cocoa drinks all over the world , on lipid peroxidation, alanine transaminase (ALT, aspartate transaminase (AST, glutathione (GSH and protein oxidation levels in carbon tetrachloride (CCl4 treated for male Wistar rats. Two control groups and one treatment group of rats were formed. The control groups were nourished with a standard diet, while the Cocoa group was nourished with standard diet which was enriched with % 6 by weight dried Cocoa powder. After three months, a single dose of carbon tetrachloride (CCl4 was performed in Control II (CCl4 and Cocoa groups (1ml/kg, as 20% in olive oil intraperitoneally and single dose of olive oil was administered (1ml/kg,i.p. in the same way as rats in Control I group. They were sacrificed two hours later. Lipid peroxide levels in liver, protein oxidation in liver, glutathione levels in liver, ALT and AST in plasma were measured. Cocoa decreased liver lipid peroxide, liver glutathione levels and plasma ALT and AST activities previously increased by CCl4 treatment, to the Control I levels The protein oxidation levels in the rats in the Cocoa group compared with the rats in CCl4 treated control group were found to have significantly lessened. These fi ndings suggest that cocoa has strong antioxidant activity because of the fact that cocoa inhibits liver injury.

  17. Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus

    Energy Technology Data Exchange (ETDEWEB)

    Monferran, Magdalena V.; Sanchez Agudo, Jose A. [Universidad Nacional de Cordoba - CONICET, Facultad de Ciencias Quimicas, Dto. Bioquimica Clinica - CIBICI, Medina Allende Esq., Haya de la Torre, Ciudad Universitaria, 5000 Cordoba (Argentina); Pignata, Maria L. [Universidad Nacional de Cordoba - CONICET, Facultad de Ciencias Exactas, Fisicas y Naturales - IMBIV, Ciudad Universitaria, 5000 Cordoba (Argentina); Wunderlin, Daniel A., E-mail: dwunder@fcq.unc.edu.a [Universidad Nacional de Cordoba - CONICET, Facultad de Ciencias Quimicas, Dto. Bioquimica Clinica - CIBICI, Medina Allende Esq., Haya de la Torre, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-08-15

    Bioaccumulation and toxicity of copper was evaluated on Potamogeton pusillus L. The effect of copper (5-100 mug L{sup -1}) applied for several days was assessed by measuring changes in the chlorophyll's, phaeophytin's, malondialdehyde, electrical conductivity, glutathione peroxidase (GPX), glutathione reductase (GR) and guaiacol peroxidase (POD) activities. Plants accumulated copper with a maximum of 162 mug g{sup -1} dw after 7-days exposure at 100 mug L{sup -1}, however most of the metal was accumulated after 1-day exposure. The toxic effect caused by Cu was evident by the reduction of photosynthetic pigments, increase of malondialdehyde and electrical conductivity. P. pusillus shows Cu-induced oxidative stress by modulating antioxidant enzymes like GPX, GR and POD. Antioxidant enzymes activity increased significantly after exposure to 40 mug L{sup -1} during 24 h, followed by a drop at longer times. Thus, P. pusillus is proposed as a good biomonitor for the assessment of metal pollution in aquatic ecosystems. - The tolerance of Potamogeton pusillus to copper largely depends on the enhanced activity of its antioxidant system, showing that a decrease on its activity favored oxidative stress and cell damage.

  18. The effect of rosemary extract on spatial memory, learning and antioxidant enzymes activities in the hippocampus of middle-aged rats

    OpenAIRE

    Rasoolijazi, Homa; Mehdizadeh, Mehdi; Soleimani, Mansoureh; Nikbakhte, Farnaz; Eslami Farsani, Mohsen; Ababzadeh, Shima

    2015-01-01

    Background: The Rosemary extract (RE) possesses various antioxidant, cytoprotective and cognition- improving bioactivities. In this study, we postulated which doses of RE have a more effect on the hippocampus of middle-aged rats. Methods: In this experimental study, thirty-two middle-aged male Wistar rats were fed by different doses (50,100 and 200 mg/kg/day) of RE (containing 40% carnosic acid) or distilled water for 12 weeks. The effects of different RE doses on learning and spatial memory ...

  19. Tandem antioxidant enzymes confer synergistic protective responses in experimental filariasis.

    Science.gov (United States)

    Prince, P R; Madhumathi, J; Anugraha, G; Jeyaprita, P J; Reddy, M V R; Kaliraj, P

    2014-12-01

    Helminth parasites use antioxidant defence strategies for survival during oxidative stress due to free radicals in the host. Accordingly, tissue-dwelling filarial parasites counteract host responses by releasing a number of antioxidants. Targeting these redox regulation proteins together, would facilitate effective parasite clearance. Here, we report the combined effect of protective immune responses trigged by recombinant Wuchereria bancrofti thioredoxin (WbTRX) and thioredoxin peroxidase (WbTPX) in an experimental filarial model. The expression of WbTRX and WbTPX in different stages of the parasite and their cross-reactivity were analysed by enzyme-linked immunosorbent assay (ELISA). The immunogenicity of recombinant proteins and their protective efficacy were studied in animal models when immunized in single or cocktail mode. The antigens showed cross-reactive epitopes and induced high humoral and cellular immune responses in mice. Further, parasite challenge against Brugia malayi L3 larvae in Mastomys coucha conferred significant protection of 57% and 62% against WbTRX and WbTPX respectively. The efficacy of L3 clearance was significantly higher (71%) (P filariasis.

  20. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (γ-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK).

    Science.gov (United States)

    Kleszczyński, Konrad; Zillikens, Detlef; Fischer, Tobias W

    2016-09-01

    Melatonin is an ubiquitous molecule with a variety of functions including potent antioxidative properties. Due to its lipophilic character, it easily crosses cellular and intracellular membranes and reaches all subcellular organelles. Because of its ability to scavenge free radicals, melatonin protects against oxidative stress, for example, induced by ultraviolet radiation (UVR). Here, we investigated, in a dose-dependent (0, 10, 25, and 50 mJ/cm(2) ) and time-dependent (0, 4, 24, 48 hr post-UVR) manner, whether melatonin prevents the UVR-mediated alterations in ATP synthesis and the generation of reactive oxygen species (ROS) in normal human epidermal keratinocytes (NHEK). Additionally, we evaluated the molecular mechanism of action of melatonin with regard to activation of phase-2 antioxidative enzymes via nuclear erythroid 2-related factor (Nrf2). We found that (i) melatonin counteracted UVR-induced alterations in the ATP synthesis and reduced free radical formation; (ii) melatonin induced the translocation of Nrf2 transcription factor from the cytosol into the nucleus resulting in, (iii) melatonin enhanced gene expression of phase-2 antioxidative enzymes including γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and NADPH: quinone dehydrogenase-1 (NQO1) representing an elevated antioxidative response of keratinocytes. These results suggest that melatonin not only directly scavenges ROS, but also significantly induces the activation of phase-2 antioxidative enzymes via the Nrf2 pathway uncovering a new action mechanism that supports the ability of keratinocytes to protect themselves from UVR-mediated oxidative stress. PMID:27117941

  1. Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress.

    Science.gov (United States)

    Zou, Ying-Ning; Huang, Yong-Ming; Wu, Qiang-Sheng; He, Xin-Hua

    2015-02-01

    Mechanisms of arbuscular mycorrhiza (AM)-induced lower oxidative burst of host plants under drought stress (DS) are not elucidated. A noninvasive microtest technology (NMT) was used to investigate the effects of Funneliformis mosseae on net fluxes of root hydrogen peroxide (H2O2) and calcium ions (Ca2+) in 5-month-old Poncirus trifoliata, in combination with catalase (CAT) and superoxide dismutase (SOD) activities as well as tissue superoxide radical (O2•-) and H2O2 concentrations under DS and well-watered (WW) conditions. A 2-month DS (55% maximum water holding capacity of growth substrates) significantly inhibited AM fungal root colonization, while AM symbiosis significantly increased plant biomass production, irrespective of water status. F. mosseae inoculation generally increased SOD and CAT activity but decreased O2•- and H2O2 concentrations in leaves and roots under WW and DS. Compared with non-AM seedlings, roots of AM seedlings had significantly higher net H2O2 effluxes and net Ca2+ influxes, especially in the meristem zone, but lower net H2O2 efflux in the elongation zone. Net Ca2+ influxes into roots were significantly positively correlated with root net H2O2 effluxes but negatively with root H2O2 concentrations. Results from this study suggest that AM-induced lower oxidative burst is related with higher antioxidant enzyme activities, root net H2O2 effluxes, and Ca2+ influxes under WW and DS.

  2. Synthesis and Antioxidant Activity of Sapriparaquinone Analogues

    Institute of Scientific and Technical Information of China (English)

    Fei DENG; Fu Jun ZHANG; Ming ZHAO; Yi Ping WANG; Jin Sheng ZHANG

    2006-01-01

    Twenty two sapriparaquinone derivatives were synthesized and their antioxidant activities were evaluated in vitro. Many of this kind of compounds demonstrated potent antioxidant activity against lipid peroxidation, especially compound 7 (ICs0 = 3.7 μg/mL). The preliminary structure-activity relationship of sapriparaquinone derivatives was discussed.

  3. Evaluation of Antioxidant Activity of Some Pteridophytes

    Directory of Open Access Journals (Sweden)

    Amit Semwal

    2013-04-01

    Full Text Available The present study was undertaken to find the antioxidant value of certain Pteridophytes in Garhwalregion. Antioxidants have been reported to prevent oxidative damage caused by free radical and can be used in cardiovascular and anti-inflammatory diseases to treat of burn and wounds. The methanolic crude extracts of some commonly used Pteridophytes were screened for their free radical scavengingproperties using ascorbic acid as standard antioxidant. Free radical scavenging activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical. The overall antioxidant activity of Diplaziumesculantum was the strongest, followed in descending order by Adiantumlunulatum, Pterisvittata, Equisetum romosissimumand Ampelopterisprolifera. All the methanolicextracts exhibited antioxidant activity significantly. The IC50 of the methanolic extracts ranged between 0.32 ± 0.12 and 0.81 ± 0.21 mg/ml. The study reveals that the consumption of these spices would exert several beneficial effects by virtue of their antioxidant activity.

  4. ANTIOXIDANT ACTIVITIES OF BLACK MULBERRY (Morus nigra)

    OpenAIRE

    YİĞİT, Demet; MAVİ, Ahmet; Aktaş, Mehmet

    2014-01-01

    In this study, the antioxidant properties of black mullberry (Morus nigra) fruits and leaves were evaluated by determining DPPH radical scavenging ability and lipid peroxidation inhibition activity. The total phenolic contents of the extracts were also assessed by Folin method. The water and methanol extracts of both fruits and leaves have antioxidant potential. The highest antioxidant activity was obtained from methanol extract of black mulberry leaves with 33.1 %. This was followed by metha...

  5. Antioxidants and antioxidant activity of several pigmented rice brans.

    Science.gov (United States)

    Laokuldilok, Thunnop; Shoemaker, Charles F; Jongkaewwattana, Sakda; Tulyathan, Vanna

    2011-01-12

    This study investigated the antioxidant content and activity of phenolic acids, anthocyanins, α-tocopherol and γ-oryzanol in pigmented rice (black and red rice) brans. After methanolic extraction, the DPPH free radical scavenging activity and antioxidant activity were measured. The pigmented rice bran extract had a greater reducing power than a normal rice bran extract from a long grain white rice. All bran extracts were highly effective in inhibiting linoleic acid peroxidation (60-85%). High-performance liquid chromatography (HPLC) analysis of antioxidants in rice bran found that γ-oryzanol (39-63%) and phenolic acids (33-43%) were the major antioxidants in all bran samples, and black rice bran also contained anthocyanins 18-26%. HPLC analysis of anthocyanins showed that pigmented bran was rich in cyanidin-3-glucoside (58-95%). Ferulic acid was the dominant phenolic acid in the rice bran samples. Black rice bran contained gallic, hydroxybenzoic, and protocatechuic acids in higher contents than red rice bran and normal rice bran. Furthermore, the addition of 5% black rice bran to wheat flour used for making bread produced a marked increase in the free radical scavenging and antioxidant activity compared to a control bread. PMID:21141962

  6. 白粉虱侵害对黄瓜光合作用和抗氧化酶活性的影响%Effects of Trialeurodes vaporariorum invasion on photosynthesis and antioxidant enzyme activity of cucumber

    Institute of Scientific and Technical Information of China (English)

    姜玉萍; 丁小涛; 张兆辉; 陈春宏

    2015-01-01

    在大棚栽培条件下,研究了白粉虱侵害对黄瓜叶片气体交换参数、叶绿素荧光参数、抗氧化酶活性、丙二醛和脯氨酸含量的影响。结果表明:白粉虱侵害使黄瓜净光合速率、Fv?Fm 明显降低,并且侵害程度越重,降低越明显;叶片中叶绿素含量、类胡萝卜素含量也随着侵害的加重而降低越明显;白粉虱侵害明显增加了叶片抗氧化酶活性和丙二醛、脯氨酸含量,并且侵害越重,增加越明显。说明白粉虱侵害时,黄瓜受到了明显的胁迫,胁迫植株通过提高抗氧化酶活性及增加丙二醛和脯氨酸含量等来适应外界胁迫。%Effects of Trialeurodes vaporariorum invasion on gas exchange parameters,chlorophyll fluores-cence parameters,antioxidant enzyme activity,MDA and proline content in cucumber leaves were studied under greenhouse cultivation conditions.The results showed that the net photosynthesis rate and Fv?Fm of cucumber de-creased significantly with Trialeurodes vaporariorum invasion,and the more serious damage,the more obvious the reduction.The content of chlorophyll and carotenoid in leaves decreased with the increase of damage.The cucum-ber was under stress when Trialeurodes vaporariorum infringed,and the plants adapted to the external stress by improving the activity of antioxidant enzymes and increasing the content of MDA and proline.

  7. Effects of water salinity on the antioxidant enzyme activities and growth of clam Cyclina sinensis%盐度对青蛤抗氧化酶活性及生长的影响

    Institute of Scientific and Technical Information of China (English)

    李子牛; 林听听; 么宗利; 来琦芳; 陆建学; 王慧; 周凯

    2012-01-01

    ) , and 35) , with the antioxidant enzymes superoxide dismutase (SOD) and cat-alase (CAT) in gill, mantle, and hepatopancreas at 0, 3, 6, 12, 24, 48, and 96 h of salinity stress measured respectively. The monthly length- and weight gain rates were also measured after the individuals cultured under different salinity stress for two months. In different tissues of the clam, hepatopancreas had the highest antioxidant enzyme activities, followed by mantle, and gill. For the individuals under salinity 10, the SOD activity in gill at 3 h and in mantle and hepatopancreas at 3, 6, 12, and 24 h, as well as the CAT activity in mantle at 6 and 12 h and in hepatopancreas at 3 and 6 h, was significantly higher than that of the control (P 0.05) . Under salinity 10, the length- and weight gain rates were significantly lower than those under salinity 15 and of the control, and had significant differences between the first and second months ( P<0. 05 ) . Under salinity 35 , both the length gain rate and the weight gain rate were the lowest, and had no significant differences between the first and second months. In conclusion, when stressed by salinity, the C. sinensis should take about 24 h for the restoration of its antioxidant enzyme activities. C. sinensis had a stronger tolerance against low salinity than against high salinity. When the salinity was at 35, the antioxidant enzyme activities of the clam varied greatly, and the growth was almost stopped.

  8. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea

    Directory of Open Access Journals (Sweden)

    Parvaiz eAhmad

    2016-03-01

    Full Text Available This work was designed to evaluate whether external application of nitric oxide (NO in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L. plants. SNAP (50 μM was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl. Salt stress negatively affected growth and biomass yield, leaf relative water content (LRWC and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars, hydrogen peroxide (H2O2 and malondialdehyde (MDA, as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, and glutathione reductase (GR in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt-induced oxidative damage by enhancing the biosynthesis of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system.

  9. Effect Of Nacl Salt Stress On Antioxidant Enzymes Of Isabgol Plantago Ovata Forsk. Genotypes

    Directory of Open Access Journals (Sweden)

    Suraj Kala

    2015-02-01

    Full Text Available Abstract Activity of antioxidant enzymes such as superoxide dismutase catalase and peroxidase in leaves of isabgol Plantago ovata Forsk. genotypes viz. GI-2 HI-96 PB-80 and HI-5 were studied under salt stress at different EC levels viz. control without salt 5 and 10 dSm-1 of nutrient supplemented NaCl salt solutions in sand filled polythene bags. Salt stress caused significant increase in the activity of superoxide dismutase catalase and peroxidase. Maximum increase in activity of superoxide dismutase and catalase enzymes was found in the genotype GI-2 and minimum increase in the genotype PB-80. Peroxidase activity was highest in the genotype HI-96 and lowest in the genotype PB-80 under salt stress indicating genotype GI-2 and HI-96 having more capacity of scavenging reactive oxygen species produced due to salt stress and were relatively salt tolerant while genotype PB-80 was salt sensitive among the genotypes studied.

  10. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    Science.gov (United States)

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  11. Combined Effects of Lanthanum (III and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    Directory of Open Access Journals (Sweden)

    Xuanbo Zhang

    Full Text Available Rare earth element pollution (REEs and acid rain (AR pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+, one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants.

  12. Biomonitoring of air pollution using antioxidative enzyme system in two genera of family Pottiaceae (Bryophyta).

    Science.gov (United States)

    Bansal, Pooja; Verma, Sonam; Srivastava, Alka

    2016-09-01

    Bryophyte particularly mosses, have been found to serve as reliable indicators of air pollution and can serve as bryometers-biological instruments for measuring air pollution. They are remarkable colonizers, as they have the ability to survive in adverse environments and are also particular in their requirement of environmental conditions, which makes them appropriate ecological indicators. The purpose of this study was to evaluate the activity of antioxidative enzymes in two mosses viz., Hyophila rosea R.S. Williams and Semibarbula orientalis (Web.) Wijk. & Marg. and assess their suitability as biomonitors. Three different locations viz., Lucknow University, Residency (contaminated sites) and Dilkusha Garden (reference site) within Lucknow city with different levels of air pollutants were used for comparison. Our results indicate that air pollution caused marked enhancement in activity of antioxidative enzymes viz., catalase, peroxidase and superoxide dismutase. All the three are capable of scavenging reactive oxygen species. In the genus S. orientalis, catalase, peroxidase and superoxide dismutase activity was minimum at the reference site Dilkusha Garden and was significantly higher at the two contaminated sites for catalase and peroxidase, whereas the difference was non significant for superoxide dismutase. In H. rosea the activity of catalase and peroxidase at the three locations was almost similar, however superoxide dismutase activity showed a significant increase in the two contaminated sites when compared to the reference site, the value being highest for Lucknow University site. It was thus observed that the two genera, from the same location, showed difference in the activity of the antioxidative enzymes. Based on our results, we recommend bryophytes as good monitors of air pollution. PMID:27321879

  13. Effects of Mn on the ion absorption and activity of antioxidant enzymes system in the roots of grape%锰对葡萄根中离子吸收及抗氧化酶系统的影响

    Institute of Scientific and Technical Information of China (English)

    尹文彦; 姚银安

    2012-01-01

    以2个葡萄品种(金手指、康拜尔)为材料,采用温室沙培实验,研究不同浓度Mn处理对葡萄根中离子吸收及抗氧化酶活性的影响.结果表明,随着Mn2+浓度的增大,葡萄根中元素含量呈现不同的变化,总体上看Ca和Mg的含量降低,Mn、Cu和Zn的含量增加,Fe含量则随锰处理浓度增加呈先下降后略有升高的趋势.在抗氧化系统中POD活性随 Mn浓度的升高而逐渐降低,而CAT和APX酶活性呈先升高后降低的趋势,SOD活性变化不大,说明保护酶系统形成了一定的适应高锰胁迫的机制,这些抗氧化酶活性的增强能够提高葡萄适应和抵抗重金属胁迫的能力.%Taking two grape varieties (Gold Finger and Campbell) as material, a sand culture experiment in greenhouse was carried out to study effects of various Mn stress on ion absorption and antioxidant enzyme system of grape roots. The results showed that with the increase concentrations of Mn + , the element content in grape roots showed different changes, in general, the contents of Ca and Mg were low levels, contents of Mn, Cu and Zn increased, while the Fe content declined first and then rose slightly with the rising of manganese concentration. The activity of POD with the rising of Mn concentration was decreasing, while the CAT and APX enzyme activities rose first and then declined. SOD maintained stability.

  14. Effect of Alpinia zerumbet components on antioxidant and skin diseases-related enzymes

    Directory of Open Access Journals (Sweden)

    Chompoo Jamnian

    2012-07-01

    Full Text Available Abstract Background The skin is chronically exposed to endogenous and environmental pro-oxidant agents, leading to the harmful generation of reactive oxygen species. Antioxidant is vital substances which possess the ability to protect the body from damage cause by free radicals induce oxidative stress. Alpinia zerumbet, a traditionally important economic plant in Okinawa, contains several interesting bioactive constituents and possesses health promoting properties. In this regard, we carried out to test the inhibitory effect of crude extracts and isolated compounds from A. zerumbet on antioxidant and skin diseases-related enzymes. Methods The antioxidant activities were examined by DPPH, ABTS and PMS-NADH radical scavenging. Collagenase, elastase, hyaluronidase and tyrosinase were designed for enzymatic activities to investigate the inhibitory properties of test samples using a continuous spectrophotometric assay. The inhibitory capacity of test samples was presented at half maximal inhibitory concentration (IC50. Results The results showed that aqueous extract of the rhizome was found to have greater inhibitory effects than the others on both of antioxidant and skin diseases-related enzymes. Furthermore, 5,6-dehydrokawain (DK, dihydro-5,6-dehydrokawain (DDK and 8(17,12-labdadiene-15,16-dial (labdadiene, isolated from rhizome, were tested for antioxidant and enzyme inhibitions. We found that DK showed higher inhibitory activities on DPPH, ABTS and PMS-NADH scavenging (IC50 = 122.14 ± 1.40, 110.08 ± 3.34 and 127.78 ± 4.75 μg/ml, respectively. It also had stronger inhibitory activities against collagenase, elastase, hyaluronidase and tyrosinase (IC50 = 24.93 ± 0.97, 19.41 ± 0.61, 19.48 ± 0.24 and 76.67 ± 0.50 μg/ml, respectively than DDK and labdadiene. Conclusion Our results indicate that the rhizome aqueous extract proved to be the source of bioactive compounds against enzymes responsible for

  15. Synergistic defensive mechanism of phytochelatins and antioxidative enzymes in Brassica chinensis L. against Cd stress

    Institute of Scientific and Technical Information of China (English)

    CHEN LiQin; GUO YiFei; YANG LiMin; WANG QiuQuan

    2008-01-01

    Brassica chinensis L. was chosen and exposed to different concentrations of Cd exposure to evaluate its Cd-accumulating capacity and its potential cellular defensive mechanisms. Cd accumulation in the shoots and roots of B. chinensis was up to 1348.3±461.8 and 3761.0±795.0 mg per killogram of dry weight, respectively, under 200 μmol/L of Cd exposure. Increasing Cd accumulation in the plant was accompanied by rapid accumulation of phytochelatins (PCs), and the sequestration of Cd by PCs pro-vided a primary cellular mechanism for Cd detoxification and tolerance of B. chinensis. Furthermore, malondialdehyde formation, hydrogen peroxide content and antioxidative enzyme activities such as superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase were observed in the shoots of Cd-stressed B. chinensis. Increasing enzyme activities in response to concentrations of 5 to 50 μmol/L Cd showed an efficient defense against oxidative stress, suggesting that the antioxidative system was a secondary defensive mechanism. These resulted in reduced free Cd damage and en-hanced Cd accumulation and tolerance. Glutathione plays a pivotal role in these two detoxification pathways. In general, these results suggested that PCs and the antioxidative system are synergistic in combatting Cd-induced oxidative stress and that they play important roles in Cd detoxification of B. chinensis, and also give a deep understanding of the natural defensive mechanisms in plants under heavy metal stress.

  16. The Role of Antioxidant Enzymes in Adaptive Responses to Sheath Blight Infestation under Different Fertilization Rates and Hill Densities

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2014-01-01

    Full Text Available Sheath blight of rice, caused by Rhizoctonia solani, is one of the most devastating rice diseases worldwide. No rice cultivar has been found to be completely resistant to this fungus. Identifying antioxidant enzymes activities (activity of superoxide dismutase (SOD, peroxidase (POD, and catalase (CAT and malondialdehyde content (MDA responding to sheath blight infestation is imperative to understand the defensive mechanism systems of rice. In the present study, two inoculation methods (toothpick and agar block method were tested in double-season rice. Toothpick method had greater lesion length than agar block method in late season. A higher MDA content was found under toothpick method compared with agar block method, which led to greater POD and SOD activities. Dense planting caused higher lesion length resulting in a higher MDA content, which also subsequently stimulated higher POD and SOD activity. Sheath blight severity was significantly related to the activity of antioxidant enzyme during both seasons. The present study implies that rice plants possess a system of antioxidant protective enzymes which helps them in adaptation to sheath blight infection stresses. Several agronomic practices, such as rational use of fertilizers and optimum planting density, involved in regulating antioxidant protective enzyme systems can be regarded as promising strategy to suppress the sheath blight development.

  17. Peptides Derived from Rhopilema esculentum Hydrolysate Exhibit Angiotensin Converting Enzyme (ACE Inhibitory and Antioxidant Abilities

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-09-01

    Full Text Available Jellyfish (Rhopilema esculentum was hydrolyzed using alcalase, and two peptides with angiotensin-I-converting enzyme (ACE inhibitory and antioxidant activities were purified by ultrafiltration and consecutive chromatographic methods. The amino acid sequences of the two peptides were identified as VKP (342 Da and VKCFR (651 Da by electrospray ionization tandem mass spectrometry. The IC50 values of ACE inhibitory activities of the two peptides were 1.3 μM and 34.5 μM, respectively. Molecular docking results suggested that VKP and VKCFR bind to ACE through coordinating with the active site Zn(II atom. Free radical scavenging activity and protection against hydrogen peroxide (H2O2-induced rat cerebral microvascular endothelial cell (RCMEC injury were used to evaluate the antioxidant activities of the two peptides. As the results clearly showed that the peptides increased the superoxide dismutase (SOD, catalase (CAT and glutathione peroxidase (GSH-px activities in RCMEC cells, it is proposed that the R. esculentum peptides exert significant antioxidant effects.

  18. Antioxidative and Anticholinesterase Activity of Cyphomandra betacea Fruit

    Directory of Open Access Journals (Sweden)

    Siti Hawa Ali Hassan

    2013-01-01

    Full Text Available Cyphomandra betacea is one of the underutilized fruits which can be found in tropical and subtropical countries. This study was conducted to determine the antioxidant activity and phytochemical contents in different parts (i.e., flesh and peel of the fruits. Antioxidants were analyzed using DPPH and ABTS free radical scavenging assays as well as FRAP assay. Anticholinesterase activity was determined using enzymatic assay using acetyl cholinesterase enzyme. For 80% methanol extract, the peel of the fruit displayed higher antioxidant activity in both FRAP and ABTS free radical scavenging assays while the flesh displayed higher antioxidant activity in the DPPH assay. Total phenolic and total flavonoid content were higher in the peel with the values of 4.89 ± 0.04 mg gallic acid equivalent (GAE/g and 3.36 ± 0.01 mg rutin equivalent (RU/g, respectively. Total anthocyanin and carotenoid content were higher in the flesh of the fruit with the values of 4.15 ± 0.04 mg/100 g and 25.13 ± 0.35 mg/100 g. The anticholinesterase was also higher in the peel of C. betacea. The same trends of phytochemicals, antioxidant, and anticholinesterase were also observed in the distilled water extracts. These findings suggested that C. betacea has a potential as natural antioxidant-rich nutraceutical products.

  19. THERMOSTABILITY OF ANTIOXIDANT AND DETERIORATIVE ENZYMES FROM SOURSOP AND CASHEW APPLE JUICES

    Directory of Open Access Journals (Sweden)

    MARCELA CRISTINA RABELO

    2016-01-01

    Full Text Available ABSTRACT This work aimed to evaluate the thermostability of antioxidant (superoxide dismutase - SOD, catalase - CAT and ascorbate peroxidase - APX and deteriorative (guaiacol peroxidase - G-POD, polyphenoloxidase - PPO, pectin-methylesterase - PME and polygalacturonase - PG enzymes from soursop and cashew apple juices. Juices were prepared homogenizing ripe fruit pulps and submitting to different thermal treatments (55, 65, 75, 85 and 95°C for different time period (1, 3, 5, 10, 15, 20 and 30 min then enzymatic activities were evaluated. The treatments at 55°C for soursop juice and at 75°C for cashew apple juice presented the best results, considering the low residual activities for deteriorative enzymes and the retained activity of SOD. Our results suggest appropriate technological condition to thermal processing from soursop and cashew apple juice whereby ensuring quality beyond their functionality.

  20. Antioxidant enzymes expression in Pseudomonas aeruginosa exposed to UV-C radiation.

    Science.gov (United States)

    Salma, Kloula Ben Ghorbal; Lobna, Maalej; Sana, Khefacha; Kalthoum, Chourabi; Imene, Ouzari; Abdelwaheb, Chatti

    2016-07-01

    It was well known that, UV-C irradiation increase considerably the reactive oxygen species (ROS) levels in eukaryotic and prokaryotic organisms. In the enzymatic ROS-scavenging pathways, superoxide dismutase (SOD), Catalase (CAT), and peroxidase (POX) were developed to deal with oxidative stress. In this study, we investigated the effects of UV-C radiations on antioxidant enzymes (catalase, superoxide dismutase, and peroxidases) expression in Pseudomonas aeruginosa. Catalase, superoxide dismutase, and peroxidases activities were determined spectrophotometrically. Isozymes of superoxide dismutase were revealed by native gel activity staining method. Lipid peroxidation was determined by measuring malondialdehyde formation. Our results showed that superoxide dismutase, catalase and peroxidase activities exhibited a gradual increase during the exposure time (30 min). However, the superoxide dismutase activity was maximized at 15 min. Native gel activity staining assays showed the presence of three superoxide dismutase isozymes. The iron-cofactored isoform activity was altered after exposure to UV-C stress. These finding suggest that catalase and peroxidase enzymes have the same importance toward UV-C rays at shorter and longer exposure times and this may confer additional protection to superoxide dismutase from damage caused by lipid peroxidation. Moreover, our data demonstrate the significant role of the antioxidant system in the resistance of this important human pathogen. PMID:27059814

  1. Antioxidant enzymes regulate reactive oxygen species during pod elongation in Pisum sativum and Brassica chinensis.

    Science.gov (United States)

    Liu, Nan; Lin, Zhifang; Guan, Lanlan; Gaughan, Gerald; Lin, Guizhu

    2014-01-01

    Previous research has focused on the involvement of reactive oxygen species (ROS) in cell wall loosening and cell extension in plant vegetative growth, but few studies have investigated ROS functions specifically in plant reproductive organs. In this study, ROS levels and antioxidant enzyme activities were assessed in Pisum sativum and Brassica chinensis pods at five developmental stages. In juvenile pods, the high levels of O2.- and .OH indicates that they had functions in cell wall loosening and cell elongation. In later developmental stages, high levels of .OH were also related to increases in cell wall thickness in lignified tissues. Throughout pod development, most of the O2.- was detected on plasma membranes of parenchyma cells and outer epidermis cells of the mesocarp, while most of the H2O2 was detected on plasma membranes of most cells throughout the mesocarp. This suggests that these sites are presumably the locations of ROS generation. The antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) apparently contributed to ROS accumulation in pod wall tissues. Furthermore, specifically SOD and POD were found to be associated with pod growth through the regulation of ROS generation and transformation. Throughout pod development, O2.- decreases were associated with increased SOD activity, while changes in H2O2 accumulation were associated with changes in CAT and POD activities. Additionally, high POD activity may contribute to the generation of(.)OH in the early development of pods. It is concluded that the ROS are produced in different sites of plasma membranes with the regulation of antioxidant enzymes, and that substantial ROS generation and accumulation are evident in cell elongation and cell wall loosening in pod wall cells. PMID:24503564

  2. Activity and concentration of polyphenolic antioxidants in apple juice 1 Effect of existing production methods

    NARCIS (Netherlands)

    Sluis, van der A.A.; Dekker, M.; Skrede, G.; Jongen, W.M.F.

    2002-01-01

    Apples are an important source of flavonoids in the human diet. The effect of processing apples into juice on polyphenolic antioxidant content and activity is described. Raw juice obtained from Jonagold apples by pulping and straight pressing or after pulp enzyming had an antioxidant activity that w

  3. Antiradical and antioxidant activities of new bio-antioxidants.

    Science.gov (United States)

    Kancheva, V D; Saso, L; Angelova, S E; Foti, M C; Slavova-Kasakova, A; Daquino, C; Enchev, V; Firuzi, O; Nechev, J

    2012-02-01

    Antioxidants could be promising agents for management of oxidative stress-related diseases. New biologically active compounds, belonging to a rare class of natural lignans with antiangiogenic, antitumoral and DNA intercalating properties, have been recently synthesized. These compounds are benzo[kl]xanthene lignans (1,2) and dihydrobenzofuran neolignans (3,4). The radical scavenging and chain-breaking antioxidant activities of compounds 1-4 were studied by applying different methods: radical scavenging activity by DPPH rapid test, chain-breaking antioxidant activity and quantum chemical calculations. All studied compounds were found to be active as DPPH scavengers but reaction time with DPPH and compounds' concentrations influenced deeply the evaluation. The highest values of radical scavenging activity (%RSAmax) and largest rate constants for reaction with DPPH were obtained for compounds 2 and 3. Comparison of %RSAmax with that of standard antioxidants DL-α-tocopherol (TOH), caffeic acid (CA) and butylated hydroxyl toluene (BHT) give the following new order of %RSA max: TOH (61.1%) > CA (58.6%) > 3 (36.3%) > 2 (28.1%) > 4 (6.7%) > 1 (3.6%) = BHT (3.6%). Chain-breaking antioxidant activities of individual compounds (0.1-1.0 mM) and of their equimolar binary mixtures (0.1 mM) with TOH were determined from the kinetic curves of lipid autoxidation at 80 °C. On the basis of a comparable kinetic analysis with standard antioxidants a new order of the antioxidant efficiency (i.e., protection factor, PF) of compounds 1-4 were obtained: 2 (7.2) ≥ TOH (7.0) ≥ CA (6.7) > 1 (3.1) > 3 (2.2) > ferulic acid FA (1.5) > 4 (0.6); and of the antioxidant reactivity (i.e. inhibition degree, ID): 2 (44.0) > TOH (18.7) > CA (9.3) > 1 (8.4) > 3 (2.8) > FA (1.0) > 4 (0.9). The important role of the catecholic structure in these compounds, which is responsible for the high chain-breaking antioxidant activity, is discussed and a reaction

  4. Effects of endosulfan on activities of acetylcholinesterase and antioxidant enzyme of Ctenopharyngodon idellus%硫丹对草鱼乙酰胆碱酯酶及抗氧化酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    武焕阳; OSCAR Ortegon; 许莉佳; 靳涛; 彭开琴; 丁诗华; 李云

    2011-01-01

    The effects of endosulfan exposure on the induction of oxidative stress and the alteration of AChE activities were studied in liver, muscle and brain samples from Ctenophatyngodon idellus. The results showed that the AChE activities of brain in Ctenopharyngodon idellus was stimulated after 24 h exposure. However, The activities of AChE were restrained when the exposure time and concentration was increased, and the inhibition rate was 41.8% and 56.2% in higher concentration groups after 120 h exposure, it showed a good linear correlation between the inhibition rate and the exposure time. The activities of SOD and GSH-Px in liver and muscle of Ctenopharyngodon idellus were significantly affected after 24 h exposure, showing a slow decrease after induction, then the SOD activities was significantly lower than the controls level, while the GSH-Px activities with no significant differences between the controls. The LPO level was rising when the antioxidant enzymes are affected in the same time, the MDA contents were increased, and reached the highest value after 96 h exposure. In conclusion, endosulfan impacts AChE and antioxidant enzyme activities on Ctenopharyngodon idellus, the adverse effects are sensitive parameters to use as the biomarker to assess the chemical pollutants on the biological effects of aquatic animals.%研究了硫丹暴露对草鱼肝脏、肌肉抗氧化酶及脑乙酰胆碱酯酶活性的影响.结果表明,硫丹24 h暴露可诱导草鱼脑AChE活性,当暴露时间延长或质量浓度升高时,AChE活性表现为受抑制,120h较高质量浓度组抑制率为41.8%和56.2%,抑制率与暴露时间呈良好的线性相关.硫丹暴露24 h后,草鱼肝脏及肌肉SOD、GSH-Px活性受到显著影响,表现出先诱导后缓慢降低的趋势,120 h后SOD活性显著低于对照组水平,GSH-Px活性与对照组无显著差异.在抗氧化酶受到影响的同时,鱼体脂质过氧化LPO程度不断上升,组织MDA含量逐渐增大,96 h达到

  5. miR-17* suppresses tumorigenicity of prostate cancer by inhibiting mitochondrial antioxidant enzymes.

    Directory of Open Access Journals (Sweden)

    Yong Xu

    Full Text Available Aberrant micro RNA (miRNA expression has been implicated in the pathogenesis of cancer. Recent studies have shown that the miR-17-92 cluster is overexpressed in many types of cancer. The oncogenic function of mature miRNAs encoded by the miR-17-92 cluster has been identified from the 5' arm of six precursors. However, the function of the miRNAs produced from the 3' arm of these precursors remains unknown. The present study demonstrates that miR-17* is able to suppress critical primary mitochondrial antioxidant enzymes, such as manganese superoxide dismutase (MnSOD, glutathione peroxidase-2 (GPX2 and thioredoxin reductase-2 (TrxR2. Transfection of miR-17* into prostate cancer PC-3 cells significantly reduces levels of the three antioxidant proteins and activity of the luciferase reporter under the control of miR-17* binding sequences located in the 3'-untranslated regions of the three target genes. Disulfiram (DSF, a dithiolcarbomate drug shown to have an anticancer effect, induces the level of mature miR-17* and cell death in PCa cells, which can be attenuated by transfection of antisense miR-17*. Increasing miR-17* level in PC-3 cells by a Tet-on based conditional expression system markedly suppresses its tumorigencity. These results suggest that miR-17* may suppress tumorigenicity of prostate cancer through inhibition of mitochondrial antioxidant enzymes.

  6. Effect of controlled atmosphere storage on pericarp browning, bioactive compounds and antioxidant enzymes of litchi fruits.

    Science.gov (United States)

    Ali, Sajid; Khan, Ahmad Sattar; Malik, Aman Ullah; Shahid, Muhammad

    2016-09-01

    'Gola' litchi fruits were stored under ten different CA-combinations at 5±1°C to investigate its effects on pericarp browning, biochemical quality and antioxidative activities. Control fruit turned completely brown after 28days of storage and were excluded from the study. Fruit-stored under CA7-combination (1% O2+5% CO2) showed reduced weight loss, pericarp browning, membrane leakage and malondialdehyde contents. Soluble solid contents, titratable acidity and ascorbic acid contents were higher in CA7-stored fruit. Activities of catalase and superoxide dismutase enzymes, levels of total anthocyanins, DPPH radical-scavenging-activity and phenolic contents were significantly higher in CA7-stored litchi fruit. In contrast, activities of polyphenol oxidase and peroxidase enzymes were substantially lower in fruit kept under CA7-combination. Fruit subjected to CA7-conditions also maintained higher organoleptic quality. In conclusion, 1% O2+5% CO2 CA-conditions delayed pericarp browning, maintained antioxidative activities and biochemical characteristics along with better organoleptic quality of litchi fruit for 35days. PMID:27041293

  7. Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks׳ gestation in nulliparous women who subsequently develop preeclampsia.

    Science.gov (United States)

    Mistry, Hiten D; Gill, Carolyn A; Kurlak, Lesia O; Seed, Paul T; Hesketh, John E; Méplan, Catherine; Schomburg, Lutz; Chappell, Lucy C; Morgan, Linda; Poston, Lucilla

    2015-01-01

    Preeclampsia is a pregnancy-specific condition affecting 2-7% of women and a leading cause of perinatal and maternal morbidity and mortality. Deficiencies of specific micronutrient antioxidant activities associated with copper, selenium, zinc, and manganese have previously been linked to preeclampsia at the time of disease. Our aims were to investigate whether maternal plasma micronutrient concentrations and related antioxidant enzyme activities are altered before preeclampsia onset and to examine the dependence on genetic variations in these antioxidant enzymes. Predisease plasma samples (15±1 weeks׳ gestation) were obtained from women enrolled in the international Screening for Pregnancy Endpoints (SCOPE) study who subsequently developed preeclampsia (n=244) and from age- and BMI-matched normotensive controls (n=472). Micronutrient concentrations were measured by inductively coupled plasma mass spectrometry; associated antioxidant enzyme activities, selenoprotein-P, ceruloplasmin concentration and activity, antioxidant capacity, and markers of oxidative stress were measured by colorimetric assays. Sixty-four tag-single-nucleotide polymorphisms (SNPs) within genes encoding the antioxidant enzymes and selenoprotein-P were genotyped using allele-specific competitive PCR. Plasma copper and ceruloplasmin concentrations were modestly but significantly elevated in women who subsequently developed preeclampsia (both Ppreeclampsia. The modest elevation in copper may contribute to oxidative stress, later in pregnancy, in those women that go on to develop preeclampsia. The lack of evidence to support the hypothesis that functional SNPs influence antioxidant enzyme activity in pregnant women argues against a role for these genes in the etiology of preeclampsia.

  8. Cellular antioxidant activity of common vegetables.

    Science.gov (United States)

    Song, Wei; Derito, Christopher M; Liu, M Keshu; He, Xiangjiu; Dong, Mei; Liu, Rui Hai

    2010-06-01

    The measurement of antioxidant activity using biologically relevant assays is important to screen fruits, vegetables, natural products, and dietary supplements for potential health benefits. The cellular antioxidant activity (CAA) assay quantifies antioxidant activity using a cell culture model and was developed to meet the need for a more biologically representative method than the popular chemistry antioxidant capacity measures. The objective of the study was to determine the CAA, total phenolic contents, and oxygen radical absorbance capacity (ORAC) values of 27 vegetables commonly consumed in the United States. Beets, broccoli, and red pepper had the highest CAA values, whereas cucumber had the lowest. CAA values were significantly correlated to total phenolic content. Potatoes were found to be the largest contributors of vegetable phenolics and CAA to the American diet. Increased fruit and vegetable consumption is an effective strategy to increase antioxidant intake and decrease oxidative stress and may lead to reduced risk of developing chronic diseases, such as cancer and cardiovascular disease.

  9. 化感物质对白藜种子萌发及抗氧化物酶活性的影响%Effects of Allelochemicals on Seed Germination and Seedling Antioxidant Enzyme Activity of Chenopodium album

    Institute of Scientific and Technical Information of China (English)

    李巧峡; 李腾腾; 高加来; 赵庆芳; 杨宁

    2012-01-01

    Chenopodium album is a common weed of wheat and other arable crops. Ferulic acid, vanillic acid, theobromine, theophylline, luteolin and quercetin are used to test their allelopathic effects on seed germination, seedling growth and antioxidant enzyme activity of C. album. The present study provides theoretical guidance for the biological control of C. album. Results show that six allelochemicals have significant allelopathic effects on seed germination, seedling growth and the activity of antioxidant enzymes. The effects are obviously related with the concentration and species of allelochemicals. Seed germination of C. album is significantly inhibited under 1 mmol ·L-1 of tested allelochemicals except vanillic acid and theobromine, while seed germination is promoted at lower concentrations. Superoxide dismutase (SOD) and catalase (CAT) activities initially have an increasing tendency, followed by a decreasing trendency. Perox-idase (POD) activity shows an opposite trendency with allelochemical (ferulic acid, theophylline, quercetin and luteolin) concentrations increasing. Ferulic acid, theophylline, quercetin and luteolin at 1 mmol ·L-1 obviously reduce SOD and CAT activities, while significantly increase POD activity except luteolin.%白藜(Chenopodium album)是小麦(Triticum aestivum)和其他耕地作物以及果园里常见杂草.试验选用阿魏酸、香草酸、可可碱、茶碱、木樨草素、槲皮黄素6种化感物质,通过对白藜种子萌发、幼苗生长及抗氧化酶活性的影响进行化感作用研究,为其生物防治提供理论指导.结果表明:6种化感物质对白藜种子萌发、幼苗生长及抗氧化物酶活性有明显的影响,这种影响效应与化感物质的种类及浓度明显相关.当6种化感物质的浓度为l mmol·L-1时,除香草酸与可可碱外,其余均使白藜种子萌发受到抑制,其中茶碱、槲皮黄素和木樨草素表现出显著的抑制作用(P<0.05);而6种化感物质在较低

  10. Antioxidant activity of capsaicinoid in canola oil.

    Science.gov (United States)

    Si, Wenhui; Liang, Yintong; Ma, Ka Ying; Chung, Hau Yin; Chen, Zhen-Yu

    2012-06-20

    Interest in replacing synthetic antioxidants, namely, butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA), with natural antioxidants is increasing. The present study examined the antioxidant activity of capsaicinoid from chili pepper in heated canola oil. The oxidation was conducted at 60, 90, 120, and 180 °C by monitoring oxygen consumption and the decrease in linoleic acid and α-linolenic acid in canola oil. At 60 °C, capsaicinoid was more effective against oxidation of canola oil compared with BHT. At higher temperatures of 90, 120, and 180 °C, capsaicinoid possessed an antioxidant activity similar to or slightly weaker that that of BHT. It was found that capsaicinoid prevented canola oil from oxidation in a dose-dependent manner. To study the structure-antioxidant relationship, it was found that the trimethylsiloxy (TMS) derivatives of capsaicinoid did not exhibit any antioxidant activity, suggesting the hydroxyl moiety was the functional group responsible for the antioxidant activity of capsaicinoid. It was concluded that capsaicinoid had the potential to be further explored as a natural antioxidant in foods, particularly spicy foods. PMID:22642555

  11. Elevation of antioxidant enzymes in the clinical effects of radon and thermal therapy for bronchial asthma

    International Nuclear Information System (INIS)

    An increased systemic production of oxygen-free radicals by activated inflammatory cells is thought to be involved in the pathophysiology of asthma. The aim of this study is to evaluate the clinical effects of radon and thermal therapy on asthma in relation to antioxidant enzymes and lipid peroxide. Radon and thermal therapy were performed once a week. All subjects went to a hot bathroom with a high concentration of radon, and nasal inhalation of vapor from a hot spring was performed for 40 min once a day under conditions of high humidity. The room temperature was 48 deg C; the room radon concentration was 2,080 Bq/m3. Blood samples were collected at 2 h, 14, and 28 days after the first therapy. A blood sample also was collected before the first therapy (at body temperature and background radon level) to be used as the control. The forced expiratory volume in one second (%FEV1) was significantly increased 28 days after the first therapy. On day 28, the catalase (CAT) activity was significantly increased in comparison with the control. The superoxide dismutase (SOD) activity was significantly increased compared to the control after first inhalation. On days 14 and 28, the lipid peroxide level was significantly decreased in comparison with the control. In conclusion, the present pilot study has shown that radon and thermal therapy improved the pulmonary function of asthmatics by increasing the reduced activities of antioxidant enzymes. (author)

  12. Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress.

    Science.gov (United States)

    Ma, Jing; Lv, Chunfang; Xu, Minli; Chen, Guoxiang; Lv, Chuangen; Gao, Zhiping

    2016-01-01

    The present study was conducted to examine the effects of increasing concentrations of chromium (Cr(6+)) (0, 25, 50, 100, and 200 μmol) on rice (Oryza sativa L.) morphological traits, photosynthesis performance, and the activities of antioxidative enzymes. In addition, the ultrastructure of chloroplasts in the leaves of hydroponically cultivated rice (O. sativa L.) seedlings was analyzed. Plant fresh and dry weights, height, root length, and photosynthetic pigments were decreased by Cr-induced toxicity (200 μM), and the growth of rice seedlings was starkly inhibited compared with that of the control. In addition, the decreased maximum quantum yield of primary photochemistry (Fv/Fm) might be ascribed to the decreased the number of active photosystem II reaction centers. These results were confirmed by inhibited photophosphorylation, reduced ATP content and its coupling factor Ca(2+)-ATPase, and decreased Mg(2+)-ATPase activities. Furthermore, overtly increased activities of antioxidative enzymes were observed under Cr(6+) toxicity. Malondialdehyde and the generation rates of superoxide (O2̄) also increased with Cr(6+) concentration, while hydrogen peroxide content first increased at a low Cr(6+) concentration of 25 μM and then decreased. Moreover, transmission electron microscopy showed that Cr(6+) exposure resulted in significant chloroplast damage. Taken together, these findings indicate that high Cr(6+)concentrations stimulate the production of toxic reactive oxygen species and promote lipid peroxidation in plants, causing severe damage to cell membranes, degradation of photosynthetic pigments, and inhibition of photosynthesis.

  13. Chloroplast pigments, proteins, lipid peroxidation and activities of antioxidative enzymes during maturation and senescence of leaves and reproductive organs of Cajanus cajan L.

    Science.gov (United States)

    Jakhar, Somveer; Mukherjee, D

    2014-04-01

    A comparative investigation was undertaken with pigeon pea leaves and attached flower buds/flowers/pods during their developmental stages including senescence in a natural system in experimental plots. Alterations in chloroplast pigments, total soluble proteins, lipid peroxidation, malondialdehyde (MDA) content and activities of guaiacol peroxidase (POD, EC 1.11.1.7) and superoxide dismutase (SOD, EC 1.15.1.1) were studied at 5-day interval from initial to 40-day stage. Chloroplast pigments and proteins of leaves increased upto 15 and 20-day stages respectively followed by a steady decline. Reproductive parts, however, exhibited rise in chloroplast pigments upto 25-day and protein till last stage as developing pods gain the amount from the senescing leaves which are nearest to them. Senescing leaves show very high POD activity than the developing and senescing pods and POD appears to be associated with chlorophyll degradation. Considerably higher activity and amount of LOX and MDA respectively have been noticed in senescing leaves than in flowers and pods. Increase in SOD activity during early stage of leaf growth and maturation indicates protective role that declined at senescent stages. Pods are unique in having very high SOD activity, only last stage of senescence does show a decline. PMID:24757321

  14. High-Pressure-Assisted Enzymatic Release of Peptides and Phenolics Increases Angiotensin Converting Enzyme I Inhibitory and Antioxidant Activities of Pinto Bean Hydrolysates.

    Science.gov (United States)

    Garcia-Mora, Patricia; Peñas, Elena; Frias, Juana; Zieliński, Henryk; Wiczkowski, Wiesław; Zielińska, Danuta; Martínez-Villaluenga, Cristina

    2016-03-01

    Pinto bean protein concentrate was hydrolyzed by subtilisins at 0.1, 100, and 200 MPa and 50 °C for 15 min. Alcalase hydrolysis at 100 MPa led to higher ACE inhibition, reducing power, and free radical scavenging activity of hydrolysates. However, hydrolysate obtained by Savinase at 200 MPa showed the best ACE-inhibitory and radical scavenging activities. Proteolysis by Savinase at 200 MPa was considered the most effective treatment to increase small peptides (benefits in the production of functional hydrolysates providing higher functionality and added value to the resulting hydrolysate due to synergistic effects of bioactive peptides and soluble phenolics. PMID:26857428

  15. Antioxidant enzymes as potential targets in cardioprotection and treatment of cardiovascular diseases. Enzyme antioxidants: the next stage of pharmacological counterwork to the oxidative stress

    Directory of Open Access Journals (Sweden)

    Alexander V. Vavaev

    2012-02-01

    Full Text Available The focus in antioxidant research is on enzyme derivative investigations. Extracellular superoxide dismutase (EC-SOD is of particular interest, as it demonstrates in vivo the protective action against development of atherosclerosis, hypertension, heart failure, diabetes mellitus. The reliable association of coronary artery disease with decreased level of heparin-released EC-SOD was established in clinical research. To create a base for and to develop antioxidant therapy, various SOD isozymes, catalase (CAT, methods of gene therapy, and combined applications of enzymes are used. Covalent bienzyme SOD-CHS-CAT conjugate (CHS, chondroitin sulphate showed high efficacy and safety as the drug candidate. There is an evident trend to use the components of glycocalyx and extracellular matrix for target delivery of medical substances. Development of new enzyme antioxidants for therapeutic application is closely connected with progress in medical biotechnology, pharmaceutical industry, and bioeconomy.

  16. Hepatoprotective effects of Nigella sativa L and Urtica dioica L on lipid peroxidation, antioxidant enzyme systems and liver enzymes in carbon tetrachloride-treated rats

    Institute of Scientific and Technical Information of China (English)

    Mehmet Kanter; Omer Coskun; Mustafa Budancamanak

    2005-01-01

    AIM: To investigate the effects of Nigella sativa L (NS)and Urtica dioica L (UD) on lipid peroxidation, antioxidant enzyme systems and liver enzymes in CCl4-treated rats.METHODS: Fifty-six healthy male Wistar albino rats were used in this study. The rats were randomly allotted into one of the four experimental groups: A (CCl4-only treated), B (CCl4+UD treated), C (CCl4+NS treated) and D (CCl4+UD+NS treated), each containing 14 animals.All groups received CCl4 (0.8 mL/kg of body weight, sc,twice a week for 60 d). Tn addition, B, C and D groups also received daily J.p. injections of 0.2 mL/kg NS or/and 2 mL/kg UD oils for 60 d. Group A, on the other hand,received only 2 mL/kg normal saline solution for 60 d.Blood samples for the biochemical analysis were taken by cardiac puncture from randomly chosen-seven rats in each treatment group at beginning and on the 60th d of the experiment.RESULTS: The CCl4 treatment for 60 d increased thelipid peroxidation and liver enzymes,and also decreasedthe antioxidant enzyme levels. NS or UD treatment (aloneor combination) for 60 d decreased the elevated lipidperoxidation and liver enzyme levels and also increasedthe reduced antioxidant enzyme levels.The weight ofrats decreased in group A,and increased in groups B, Cand D.CONCLUSION: NS and UD decrease the lipid peroxidation and liver enzymes, and increase the antioxidant defense system activity in the CCl4-treated rats.

  17. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  18. Expression profile of oxidative and antioxidative stress enzymes based on ESTs approach of citrus

    Directory of Open Access Journals (Sweden)

    Luis Antonio Peroni

    2007-01-01

    Full Text Available Plants not only evolve but also reduce oxygen in photosynthesis. An inevitable consequence of this normal process is the production of reactive oxygen species (ROS. Plants are adequately protected by the presence of multiple antioxidative enzymes in the cytosol and also in the different cell organelles such as chloroplasts, mitochondria, and peroxisomes. Traditionally, ROS were considered to be only a toxic byproduct of aerobic metabolism. However, recently it has become apparent that plants actively produce these molecules which may control many different physiological processes such as abiotic and biotic stress response, pathogen defense and systemic signaling. The search results using the Citrus Genome Program in Brazil (CitEST for oxidative stress and the antioxidant enzyme system in Citrus Sinensis variety ‘Pera IAC’ indicated that the multiple ROS-scavenging enzymes were expressed throughout all citrus tissues. The analyses demonstrated the ubiquitous expression of metallothioneins, probably indicating a constitutive expression pattern. Oxalate oxidase has been identified as the most abundant expressed gene in developing fruits, which suggests a specific function in the ripening of citrus fruit. Moreover, infected leaves with Xylella fastidiosa and Leprosis citri showed a massive change in their ROS gene expression profile which may indicate that the suppression of ROS detoxifying mechanisms may be involved in the induction of the diseases.

  19. Ethanol and supercritical fluid extracts of hemp seed (Cannabis sativa L.) increase gene expression of antioxidant enzymes in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Sunghyun Hong; Kandhasamy Sowndhararajan; Taewoo Joo; Chanmook Lim; Haeme Cho; Songmun Kim; Gur-Yoo Kim; Jin-Woo Jhoo

    2015-01-01

    Objective: To determine the gene expression of antioxidant enzymes by hemp seed extracts in human hepatoma (HepG2) cells. Methods: Ethanol and supercritical fluid (SF) extracts obtained from de-hulled hemp seed were used for the evaluation of in vitro antioxidant activity and gene expression of antioxidant enzymes. In vitro antioxidant activities of the samples evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical scavenging assays. The expression of antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) in HepG2cells was evaluated by real-time PCR. Results:In the antioxidant assay, SF extract of hemp seed exhibited higher ABTS and DPPH radical scavenging activities (IC50 of 66.6 µg/mL and 9.2 mg/mL, respectively) than ethanol extract. The results of antioxidant enzyme expression in real-time PCR study revealed the H2O2 (200 µM) challenged HepG2 cells reduced the expression of enzymes such as SOD, GPx and CAT. However, the cells treated with ethanol and SF extracts were up-regulated the expression of antioxidant enzymes in concentration dependent manner. When compared to ethanol extract, the SF extract exhibited higher activity in the expression of all the antioxidant enzymes at the concentration of 500 µg/mL. Conclusion: In conclusion, the findings of our study demonstrated that the hemp seed effectively inhibited H2O2 mediated oxidative stress and may be useful as a therapeutic agent in preventing oxidative stress mediated diseases.

  20. CHANGES IN THE ACTIVITY OF ANTIOXIDANT AND GLYOXYLATE CYCLE ENZYMES OF HYDRO-PRIMED CALENDULA OFFICINALIS (L.) SEEDS AFTER RE-DRYING TEMPERATURE STRESS

    OpenAIRE

    Mohammad SEDGHI

    2013-01-01

    In order to study the effect of re-drying temperatures on the enzymatic activation of hydro-primed Calendula officinalis (L.) seeds, a completely randomized design with three replications was conducted. Treatments were six different re-drying temperatures including control (without drying), 20, 30, 40, 50, and 60 ◦C applied after hydro-priming. Results showed that rapid drying at high temperatures (40-60 ◦C) caused a significant difference comparing control. The best re-drying temperature con...

  1. Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings

    OpenAIRE

    TAVALLALI, Vahid; Majid RAHEMI; ESHGHI, Saeed; KHOLDEBARIN, Bahman; RAMEZANIAN, Asghar

    2010-01-01

    The mechanism(s) by which Zn alleviates NaCl stress was investigated in Pistacia vera L. 'Badami'. Pistachio seedlings were treated with 0, 800, 1600, 2400, and 3200 mg of NaCl kg-1 of soil, along with Zn (0, 5, 10, and 20 mg kg-1 of soil). NaCl stress induced high oxidative stress, increasing lipid peroxidation, electrolyte leakage, and lipoxygenase (LOX, E.C. 1.13.11.12) activity to high levels. Zn supplement efficiently reduced all these adverse effects of salt stress. However, t...

  2. Experimental study on the effect of vitamin C administration on lipid peroxidation and antioxidant enzyme activity in rats exposed to chlorpyriphos and lead acetate

    OpenAIRE

    Waseem Hussain Raja; Fayaz Ahmad Zargar; Naseer Ahmad Baba; Parveez Ahmad Para; Mudasir Sultana; Hina Ashraf Waiz; Nisar Ahmad Nisar

    2013-01-01

    Aim :To evaluate the effects of chlorpyriphos, lead acetate, vitamin C alone, and in combination on the activity of oxidative stress parameters in wistar rats. Materials and Methods: Rats of 150-200g body weight were divided into eight groups of six animals each and were subjected to various daily oral treatment regimes for 98 days. Group I served as control receiving only corn oil, group II received th chlorpyriphos @ 5.5 mg/ kg in corn oil, group III received lead acetate @100 ppm in water,...

  3. Environmental concentrations of 3,4-methylenedioxymethamphetamine (MDMA)-induced cellular stress and modulated antioxidant enzyme activity in the zebra mussel.

    Science.gov (United States)

    Parolini, Marco; Magni, Stefano; Binelli, Andrea

    2014-09-01

    Recent monitoring studies showed measurable levels of the 3,4-methylenedioxymethamphetamine (MDMA) in aquatic environments. However, no information is currently available on its potential hazard to aquatic non-target organisms. The aim of this study was to investigate the potential sub-lethal effects induced by 14-day exposures to low MDMA concentrations (0.05 and 0.5 μg/L) to zebra mussel (Dreissena polymorpha) specimens through the application of a biomarker suite. The trypan blue exclusion method and the neutral red retention assay (NRRA) were used to assess MDMA cytotoxicity. The activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST), as well as the lipid peroxidation (LPO) and protein carbonyl content (PCC), were measured as oxidative stress indexes. The single cell gel electrophoresis (SCGE) assay, the DNA diffusion assay, and the micronucleus test (MN test) were applied to investigate DNA damage, while filtration rate was measured as physiological parameter. Despite significant decrease in lysosome membrane stability, hemocyte viability and imbalances in CAT and GST activities pointed out at the end of the exposure to 0.5 μg/L, no significant variations for the other end points were noticed at both the treatments, suggesting that environmentally relevant MDMA concentrations did not induce deleterious effects to the zebra mussel.

  4. Natural zeolites chabazite/phillipsite/analcime increase blood levels of antioxidant enzymes

    OpenAIRE

    Dogliotti, Giada; Malavazos, Alexis E.; Giacometti, Sonia; Solimene, Umberto; Fanelli, Mauro; Corsi, Massimiliano M; Dozio, Elena

    2011-01-01

    Imbalance between reactive oxygen species generation and antioxidant capacity induces a condition known as oxidative stress which is implicated in numerous pathological processes. In this study we evaluated whether natural zeolites chabazite/phillipsite/analcime may affect the levels of different antioxidant enzymes (gluthatione peroxidase, superoxide dismutase, gluthatione reductase), total antioxidant status and oxidative stress in 25 clinically healthy men, both non-smokers and smokers. Me...

  5. Antioxidant Enzymes and Physiological Responses of Safflower (Carthamus tinctorius L.) to Iron Application, under Water Deficit Condition

    OpenAIRE

    Kayvan Fathi AMIRKHIZ; Majid Amini DEHAGHI; Siavash HESHMATI

    2015-01-01

    The effect of soil and foliar iron (Fe) application on the activity of some antioxidant enzymes and plant metabolites of Carthamus tinctorius L. (IL111), under water stress conditions was tested. The results showed that under drought stress conditions, the activity of ascorbate peroxidase, superoxide dismutase, polyphenol oxidase and catalase enzymes increased with soil application of Fe. In contrast, the activity of peroxidase enzyme under drought conditions increased with foliar application...

  6. Protective Effects of Bacillus subtilis ANSB060 on Serum Biochemistry, Histopathological Changes and Antioxidant Enzyme Activities of Broilers Fed Moldy Peanut Meal Naturally Contaminated with Aflatoxins

    Directory of Open Access Journals (Sweden)

    Yu Fan

    2015-08-01

    Full Text Available The aim of this study was to investigate the toxic effects of aflatoxins and evaluate the effectiveness of Bacillus subtilis ANSB060 in detoxifying aflatoxicosis in broilers. A total of 360 one-week-old male broilers (Ross 308 were assigned to six dietary treatments for five weeks. The treatment diets were: C0 (basal diet; C1.0 (C0 + 1.0 g B. subtilis ANSB060/kg diet; M0 (basal diet formulated with moldy peanut meal; M0.5, M1.0 and M2.0 (M0 + 0.5, 1.0 and 2.0 g B. subtilis ANSB060/kg diet, respectively. The contents of aflatoxin B1, B2, G1 and G2 in the diets formulated with moldy peanut meal were 70.7 ± 1.3, 11.0 ± 1.5, 6.5 ± 0.8 and 2.0 ± 0.3 µg/kg, respectively. The results showed that aflatoxins increased (p < 0.05 serum aspartate transaminase activity, decreased (p < 0.05 serum glutathione peroxidase activity, and enhanced (p < 0.05 malondialdehyde contents in both the serum and liver. Aflatoxins also caused gross and histological changes in liver tissues, such as bile duct epithelium hyperplasia, vacuolar degeneration and lymphocyte infiltration. The supplementation of ANSB060 reduced aflatoxin levels in the duodenum and counteracted the negative effects of aflatoxins, leading to the conclusion that ANSB060 has a protective effect against aflatoxicosis and this protection is dose-related.

  7. Sex hormones modulate circulating antioxidant enzymes: Impact of estrogen therapy

    Directory of Open Access Journals (Sweden)

    Francesco Bellanti

    2013-01-01

    Conclusions: Menopause is associated with significant change in antioxidant gene expression that in turn affects circulating redox state. Estrogens replacement therapy is able to prevent and counteract such modifications by acting as regulators of key antioxidant gene expression. These findings suggest that antioxidant genes are, almost in part, under the control of sex hormones, and that pathophysiology of the difference in gender disease may depend on the redox biology.

  8. Peroxidase-like activity of the Co3O4 nanoparticles used for biodetection and evaluation of antioxidant behavior

    Science.gov (United States)

    Jia, Huimin; Yang, Dongfang; Han, Xiangna; Cai, Junhui; Liu, Haiying; He, Weiwei

    2016-03-01

    Nanostructured enzyme mimics are of great interest as promising alternatives to artificial enzymes for biomedical and catalytic applications. Studying the chemical interactions between antioxidants and nano-enzymes may result in a better understanding of the antioxidant capability of antioxidants and may help improve the function of artificial enzymes to better mimic natural enzymes. In this study, using Co3O4 nanoparticles (NPs) as peroxidase mimics to catalyze the oxidation of chromophoric substrates by H2O2, we developed a platform that acts as a biosensor for hydrogen peroxide and glucose and that can study the inhibitory effects of natural antioxidants on peroxidase mimics. This method can be applied specifically to glucose detection in real samples. Three natural antioxidants, gallic acid (GA), tannic acid (TA), and ascorbic acid (AA), were compared for their antioxidant capabilities. We found that these three antioxidants efficiently inhibit peroxidase-like activity with concentration dependence. The antioxidants showed different efficiencies, in the following order: tannic acid > gallic acid > ascorbic acid. They also showed distinct modes of inhibition based on different interaction mechanisms. This study serves as a proof-of-concept that nano-enzyme mimics can be used to evaluate antioxidant capabilities and to screen enzyme inhibitors.Nanostructured enzyme mimics are of great interest as promising alternatives to artificial enzymes for biomedical and catalytic applications. Studying the chemical interactions between antioxidants and nano-enzymes may result in a better understanding of the antioxidant capability of antioxidants and may help improve the function of artificial enzymes to better mimic natural enzymes. In this study, using Co3O4 nanoparticles (NPs) as peroxidase mimics to catalyze the oxidation of chromophoric substrates by H2O2, we developed a platform that acts as a biosensor for hydrogen peroxide and glucose and that can study the

  9. Antioxidant activities from different rosemary clonal lines.

    Science.gov (United States)

    Ban, Lan; Narasimhamoorthy, Brindha; Zhao, Liuqing; Greaves, John A; Schroeder, William D

    2016-06-15

    Rosemary extract is widely used in food industry and carnosic acid is reported to be the major component that is responsible for its antioxidant activities. However, it is unclear how the numerous plant metabolites interact and contribute to the overall antioxidant activity. In this study, with poultry fat as the model food system, rosemary extract from six clonal lines were evaluated that each represented a different genetic variant. As expected, rosemary extract with higher carnosic acid content had higher antioxidant activity. However, rosemary extract which had carnosic acid removed retained a significant amount of activity. Furthermore, when the individual contributions of carnosic acid and the portion without carnosic acid were evaluated separately, neither was shown to be responsible for the overall level of its stabilization effect from rosemary extract as a whole entity. The interactions among different plant metabolites have a major impact on the overall antioxidant capabilities of rosemary extract. PMID:26868574

  10. Approach To Deliver Two Antioxidant Enzymes with Mesoporous Silica Nanoparticles into Cells.

    Science.gov (United States)

    Lin, Yu-Hsuan; Chen, Yi-Ping; Liu, Tsang-Pai; Chien, Fan-Ching; Chou, Chih-Ming; Chen, Chien-Tsu; Mou, Chung-Yuan

    2016-07-20

    Reactive oxygen species (ROS) are important factors in many clinical diseases. However, direct delivery of antioxidant enzymes into cells is difficult due to poor cell uptake. A proper design of delivery of enzymes by nanoparticles is very desirable for therapeutic purposes. To overcome the cell barrier problem, a designed mesoporous silica nanoparticle (MSN) system with attached TAT-fusion denatured enzyme for enhancing cell membrane penetration has been developed. Simultaneous delivery of two up-downstream antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase(GPx), reveals synergistic efficiency of ROS scavenging, compared to single antioxidant enzyme delivery. TAT peptide conjugation provided a facile nonendocytosis cell uptake and escape from endosome while moving and aggregating along the cytoskeleton that would allow them to be close to each other at the same time, resulting in the cellular antioxidation cascade reaction. The two-enzyme delivery shows a significant synergistic effect for protecting cells against ROS-induced cell damage and cell cycle arrest. The nanocarrier strategy for enzyme delivery demonstrates that intracellular anti-ROS cascade reactions could be regulated by multifunctional MSNs carrying image fluorophore and relevant antioxidation enzymes. PMID:27353012

  11. Role of antioxidant enzymes in bacterial resistance to organic acids.

    Science.gov (United States)

    Bruno-Bárcena, Jose M; Azcárate-Peril, M Andrea; Hassan, Hosni M

    2010-05-01

    Growth in aerobic environments has been shown to generate reactive oxygen species (ROS) and to cause oxidative stress in most organisms. Antioxidant enzymes (i.e., superoxide dismutases and hydroperoxidases) and DNA repair mechanisms provide protection against ROS. Acid stress has been shown to be associated with the induction of Mn superoxide dismutase (MnSOD) in Lactococcus lactis and Staphylococcus aureus. However, the relationship between acid stress and oxidative stress is not well understood. In the present study, we showed that mutations in the gene coding for MnSOD (sodA) increased the toxicity of lactic acid at pH 3.5 in Streptococcus thermophilus. The inclusion of the iron chelators 2,2'-dipyridyl (DIP), diethienetriamine-pentaacetic acid (DTPA), and O-phenanthroline (O-Phe) provided partial protection against 330 mM lactic acid at pH 3.5. The results suggested that acid stress triggers an iron-mediated oxidative stress that can be ameliorated by MnSOD and iron chelators. These findings were further validated in Escherichia coli strains lacking both MnSOD and iron SOD (FeSOD) but expressing a heterologous MnSOD from S. thermophilus. We also found that, in E. coli, FeSOD did not provide the same protection afforded by MnSOD and that hydroperoxidases are equally important in protecting the cells against acid stress. These findings may explain the ability of some microorganisms to survive better in acidified environments, as in acid foods, during fermentation and accumulation of lactic acid or during passage through the low pH of the stomach. PMID:20305033

  12. Experimental study on the effect of vitamin C administration on lipid peroxidation and antioxidant enzyme activity in rats exposed to chlorpyriphos and lead acetate

    Directory of Open Access Journals (Sweden)

    Waseem Hussain Raja

    2013-05-01

    Full Text Available Aim :To evaluate the effects of chlorpyriphos, lead acetate, vitamin C alone, and in combination on the activity of oxidative stress parameters in wistar rats. Materials and Methods: Rats of 150-200g body weight were divided into eight groups of six animals each and were subjected to various daily oral treatment regimes for 98 days. Group I served as control receiving only corn oil, group II received th chlorpyriphos @ 5.5 mg/ kg in corn oil, group III received lead acetate @100 ppm in water, whereas animals in group IV th received a combination of chlorpyriphos @ 5.5mg/kg in corn oil and lead acetate @ 100 ppm in water. Group V received th vitamin C @ 100mg/kg in water, group VI received a combination of chlorpyriphos @ 5.5mg/kg and vitamin C @ th th 100mg/kg , group VII received lead acetate @ 100 ppm in water and vitamin C @ 100mg/kg and group VIII received chlorpyriphos @ 5.5mg/kg , lead acetate @100ppm in water and vitamin C @ 100mg/kg. Results: Administration of both chlorpyriphos and lead acetate caused a significant decrease in oxidative stress parameters viz. blood glutathione, catalase, superoxide dismutase (SOD, glutathione peroxidase (GPx, glutathione-s-transferase (GST along with a significant increase in lipid peroxidation level when given alone or in combination. Conclusions: The study demonstrated that treatment of chlorpyriphos and lead treated rats with vitamin C significantly improved some of altered oxidative stress parameters revealing the protective effect of this vitamin C against oxidative stress induced by chlorpyriphos and lead. [Vet World 2013; 6(8.000: 461-466

  13. In vitro antioxidant activities of Asteraceae Plants

    OpenAIRE

    Vijaylakshmi, S.; Nanjan, M.J.; Suresh, B.

    2009-01-01

    Anaphalis neelgerriana DC and Cnicus wallichi DC belonging to the family Asteraceae (Compositae) are important medicinal plants indigenous to Nilgiris. Since the related species Anaphalis morrisonicola and Cnicus benedictus were reported for its anti cancer activities, the above mentioned plants were screened for Invitro antioxidant activity. In vitro antioxidant studies were carried out by DPPH, Nitric oxide and Hydrogen peroxide methods for the aerial part extracts of the plants. Different ...

  14. Chemomodulation of carcinogen metabolising enzymes, antioxidant profiles and skin and forestomach papillomagenesis by Spirulina platensis.

    Science.gov (United States)

    Dasgupta, T; Banejee, S; Yadav, P K; Rao, A R

    2001-10-01

    Numerous reports have revealed an inverse association between consumption of some selective natural products and risk of developing cancer. In the present study the effect of 250 and 500 mg/kg body wt. of Spirulina was examined on drug metabolising phase I and phase II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase and lipid peroxidation in the liver of 7-week-old Swiss albino mice. The implications of these biochemical alterations have been further evaluated adopting the protocol of benzo(a)pyrene induced forestomach and 7,12 dimethylbenz(a)anthracene (DMBA) initiated and croton oil promoted skin papillomagenesis. Our primary findings reveal the 'Monofunctional' nature of Spirulina as deduced from its potential to induce only the phase II enzyme activities associated mainly with carcinogen detoxification. The glutathione S-transferase and DT-diaphorase specific activities were induced in hepatic and all the extrahepatic organs examined (lung, kidney and forestomach) by Spirulina pretreatment (significance level being from p < 0.05 to p < 0.005) except for the low dose treatment in forestomach. With reference to antioxidant enzymes viz., superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and reduced glutathione were increased significantly by both the chosen doses of Spirulina from p < 0.01 to p < 0.005. Chemopreventive response was quantitated by the average number of papillomas per effective mouse (tumor burden) as well as percentage of tumor bearing animals. There was a significant inhibition of tumor burden as well as tumor incidence in both the tumor model systems studied. In the skin tumor studies tumor burden was reduced from 4.86 to 1.20 and 1.15 by the low and high dose treatment respectively. In stomach tumor studies tumor burden was 2.05 and 1.73 by the low and high doses of Spirulina treatment against 3.73 that of control. PMID:11768236

  15. THERAPEUTIC APPROACH TO CANCER BY VEGETABLES WITH ANTIOXIDANT ACTIVITY

    Directory of Open Access Journals (Sweden)

    Pandey Govind

    2011-01-01

    Full Text Available Cancer is the second leading cause of human deaths in the world. However, the potential treatment of cancer is still under investigation. In fact, the plants may occupy a good place in the treatment of cancer with no ill effect. The medicinal plants and their products, particularly vegetables have antioxidant activity leading to anticancer effect. Thus, more than 80% people in developing countries depend on traditional medicine or plants for their primary health needs. Plants used as vegetables prevent human from several diseases, including cancer. Many doctors recommend that people wish to reduce the risk of cancer must eat several portions of vegetables every day. The vegetables contain many phytochemicals having antioxidant activity. The antioxidants protect the cells from damage caused by ‘free oxygen radicals’. The main phytochemicals which show antioxidant activity are vitamins, carotenoids, terpenoids, flavonoids, polyphenols, saponins, enzymes and minerals. Hence, the present article gives a better therapeutic approach to cancer by the maximum use of antioxidant vegetables against different cancers.

  16. Antioxidant Activity and Nutritional Status in Anorexia Nervosa: Effects of Weight Recovery

    OpenAIRE

    María-Jesús Oliveras-López; Inmaculada Ruiz-Prieto; Patricia Bolaños-Ríos; Francisco De la Cerda; Franz Martín; Ignacio Jáuregui-Lobera

    2015-01-01

    Few studies are focused on the antioxidant status and its changes in anorexia nervosa (AN). Based on the hypothesis that renutrition improves that status, the aim was to determine the plasma antioxidant status and the antioxidant enzymes activity at the beginning of a personalized nutritional program (T0) and after recovering normal body mass index (BMI) (T1). The relationship between changes in BMI and biochemical parameters was determined. Nutritional intake, body composition, anthropometri...

  17. Changes in antioxidant enzymes in humans with long-term exposure to pesticides.

    Science.gov (United States)

    López, Olga; Hernández, Antonio F; Rodrigo, Lourdes; Gil, Fernando; Pena, Gloria; Serrano, José Luis; Parrón, Tesifón; Villanueva, Enrique; Pla, Antonio

    2007-07-10

    Different pesticides, including organophosphates (OPs), have been reported to induce oxidative stress due to generation of free radicals and alteration in antioxidant defence mechanisms. In this study, a cohort of 81 intensive agriculture workers (pesticide sprayers) was assessed twice during the course of a spraying season for changes in erythrocyte antioxidant enzymes. Acetylcholinesterase (AChE) was used as a reference biomarker. Sprayers presented lower levels of superoxide dismutase (SOD) and glutathione reductase (GR) as compared to controls independently of age, BMI, smoking habit or alcohol consumption. A positive correlation between SOD and AChE was observed at the high exposure period. Those individuals with a decrease in AChE greater than 15% exhibited lower SOD and catalase (CAT) activities at the same period. Glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PDH) remained unaffected in the exposed population. Paraoxonase (PON1) polymorphism influenced erythrocyte CAT and GR, as subjects with the R allele presented lower CAT and higher GR levels. Whether or not the decreased enzyme activities found in this study are linked to the adverse health effects related to chronic pesticide toxicity (in which oxidative damage plays a pathophysiological role, such as cancer or neurodegenerative disorders) is an attractive hypothesis that warrants further investigation. PMID:17590542

  18. Effects of melatonin on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rat testis

    Institute of Scientific and Technical Information of China (English)

    Abdullah Armagan; Efkan Uz; H. Ramazan Yilmaz; Sedat Soyupek; Taylan Oksay; Nurten Ozcelik

    2006-01-01

    Aim: To examine the effects of melatonin treatment on lipid peroxidation (LPO) and the activities of antioxidant enzymes in the testicular tissue of streptozotocin (STZ)-induced diabetic rats. Methods: Twenty-six male rats were randomly divided into three groups as follows: group Ⅰ, control, non-diabetic rats (n = 9); group Ⅱ, STZ-induced,Following 8-week melatonin treatment, all rats were anaesthetized and then were killed to remove testes from the scrotum. Results: As compared to group Ⅰ, in rat testicular tissues of group Ⅱ, increased levels of malondialdehyde (MDA) (P < 0.01) and superoxide dismutase (SOD) (P < 0.01) as well as decreased levels of catalase (CAT) (P < 0.01)and glutathione peroxidase (GSH-Px) (P > 0.05) were found. In contrast, as compared to group Ⅱ, in rat testicular tissues of group Ⅲ, levels of MDA decreased (but this decrease was not significant, P > 0.05) and SOD (P < 0.01) as well as CAT (P < 0.05) increased. GSH-Px was not influenced by any of the treatment. Melatonin did not significantly affect the elevated glucose concentration of diabetic group. At the end of the study, there was no significant difference between the melatonin-treated group and the untreated group by means of body and testicular weight.Conclusion: Diabetes mellitus increases oxidative stress and melatonin inhibits lipid peroxidation and might regulate the activities of antioxidant enzymes of diabetic rat testes.

  19. Effects of Drought Stress and Recovery on Antioxidant Enzyme Activities of Agropyron cristatum%干旱胁迫和复水对冰草相关抗性生理指标的影响

    Institute of Scientific and Technical Information of China (English)

    高悦; 朱永铸; 杨志民; 杜红梅

    2012-01-01

    drought stress and POD activities decreased the slowest. The activities of three antioxidant enzymes increased after re-watering and did not show any significant differences 6 days later compared with well-water control. These results suggest that drought tolerance of crested wheatgrass could be related with water retaining capacity during short-time drought stress and rapid recovery of physiological functions after re-watering.

  20. Antioxidant enzymes and fatty acid composition as related to disease resistance in postharvest loquat fruit.

    Science.gov (United States)

    Cao, Shifeng; Yang, Zhenfeng; Cai, Yuting; Zheng, Yonghua

    2014-11-15

    Two cultivars of loquat fruit were stored at 20°C for 10days to investigate the relationship between disease resistance, and fatty acid composition and activities of endogenous antioxidant enzymes. The results showed that decay incidence increased with storage time in both cultivars. A significantly lower disease incidence was observed in 'Qingzhong' fruit than in 'Fuyang', suggesting 'Qingzhong' had increased disease resistance. Meanwhile, 'Qingzhong' fruit also had lower levels of superoxide radical and hydrogen peroxide, and lower lipoxygenase activity, but higher levels of linolenic and linoleic acids and higher activities of catalase (CAT) and ascorbate peroxidase (APX) compared with 'Fuyang'. These results suggest that the higher levels of linolenic and linoleic acids and the higher activity of CAT and APX have a role in disease resistance of postharvest loquat fruit.

  1. Screening of antidiabetic and antioxidant activities of medicinal plants

    Institute of Scientific and Technical Information of China (English)

    Amal Bakr Shori

    2015-01-01

    Diabetes is a common metabolic disorder characterized by abnormaly increased plasma glucose levels. Postprandial hyperglycemia plays an essential role in development of type-2 diabetes. Inhibitors of carbohydrate-hydrolyzing enzymes (such as α-glucosidase and α-amylase) offer an effective strategy to regulate/prevent hyperglycemia by controling starch breakdown. Natural α-amylase and α-glucosidase inhibitors, as wel as antioxidants from plant-based sources, offer a source of dietary ingredients that affect human physiological function in order to treat diabetes. Several research studies have investigated the effectiveness of plant-based inhibitors of α-amylase and α-glucosidase, as wel as their antioxidant activity. The aim of this review is to summarize the antidiabetic and antioxidant properties of several medicinal plants around the world. Half inhibitory concentration (IC50,for enzyme suppression) and half effective concentration (EC50, for antioxidant activity) values of less than 500 μg/mL were deifned as the most potent plant-based inhibitors (in vitro) and are expected to provide interesting candidates for herbal treatment of diabetes, as foods, supplements, or reifned drugs.

  2. Antioxidant Activity of Hawaiian Marine Algae

    Directory of Open Access Journals (Sweden)

    Anthony D. Wright

    2012-02-01

    Full Text Available Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  3. Synthesis and evaluation of acetylcholineesterase inhibitory potential and antioxidant activity of benzothiazine derivatives

    OpenAIRE

    Shahwar, Durre; SANA, Uzma; Ahmad, Naeem

    2013-01-01

    The aim of the present study was to synthesize and characterize benzothiazine derivatives prepared by using 2-aminothiophenol and saccharine and in vitro screen their enzyme inhibition and antioxidant potential. Nine different derivatives were prepared and their structures were confirmed by spectral studies (EIMS, 1 H and 13C NMR). Enzyme inhibition potential of the synthesized compounds was evaluated by Ellman's method, while antioxidant activity was determined by DPPH and FRAP...

  4. ANTIOXIDANT ACTIVITY OF BUTEA MONOSPERMA LEAF EXTRACTS

    Directory of Open Access Journals (Sweden)

    Shah Darshan

    2012-04-01

    Full Text Available Antioxidants are substances which help to defend the body against cell damage caused by various free radicals. Free radicals are unstable oxygen molecules containing unpaired electrons. Reactive oxygen species, such as superoxide anion, hydroxyl radical, and hydrogen peroxide, have a causal relationship with oxidative stress.Role of free radicals has been implicated in several diseases such as liver cirrhosis, atherosclerosis, Cancer, aging, arthritis, diabetes etc. the aim of the study was to investigate the antioxidant activity of Butea monosperma. The quantities of the Butea monosperma aqueous and benzene extracts needed for in vitro inhibition of hydroxyl radicals and lipid peroxidation were relatively similar to the known antioxidant ascorbic acid.

  5. Antioxidant activity of Moringa oleifera tissue extracts

    OpenAIRE

    Santos, Andréa F. S.; Argôlo, Adriana C. C.; Paiva, Patrícia M. G.; Coelho, L. C. B. B.

    2012-01-01

    Moringa oleifera is an important source of antioxidants, tools in nutritional biochemistry that could be beneficial for human health; the leaves and flowers are used by the population with great nutritional importance. This work investigates the antioxidant activity of M. oleifera ethanolic (E1) and saline (E2) extracts from flowers (a), inflorescence rachis (b), seeds (c), leaf tissue (d), leaf rachis (e) and fundamental tissues of stem (f). The radical scavenging capacity (RSC) of extracts ...

  6. Dose-response effects of lycopene on selected drug-metabolizing and antioxidant enzymes in the rat

    DEFF Research Database (Denmark)

    Breinholt, V.; Lauridsen, S. T.; Daneshvar, B.;

    2000-01-01

    treatment. The activity of superoxide dismutase was thus significantly induced at lycopene doses of 0.005 and 0.05 g/kg b.w, whereas glutathione reductase and glutathione peroxidase was only induced at the 0.005 g/kg b.w. per day dose. For all antioxidant enzymes investigated, the activities seemed......-metabolizing enzymes involved in the protection against oxidative stress and cancer. The fact that these enzymatic activities are induced at all of these very low plasma levels, could be taken to suggest that modulation of antioxidant and drug-metabolizing enzymes map indeed be relevant to humans, which in general......The administration of lycopene to female rats at doses ranging from 0.001 to 0.1 g/kg b.w, per day for 2 weeks was found to alter the drug-metabolizing capacity and antioxidant status of the exposed animals. An investigation of four cytochrome P450-dependent enzymes revealed that benzyloxyresorufin...

  7. Involvement of anti-oxidative enzymes, photosynthetic pigments and flavonoid metabolism in the adaptation of Reaumuria soongorica to salt stress

    Institute of Scientific and Technical Information of China (English)

    YuBing Liu; Bo Cao; MeiLing Liu

    2013-01-01

    Reaumuria soongorica is a short woody shrub widely found in semi-arid areas of China. It can survive severe environ-mental stress including high salinity in its natural habitat. Thus, we investigated the involvement of anti-oxidative enzymes, photosynthetic pigments and flavonoid metabolism in the adaptation of R. soongorica to saline environments. R. soon-gorica was treated with 0, 100, 200 and 400 mM NaCl solutions for 14 days. Soil salt content increased significantly by watering with high content of NaCl solution, and no variation between 8 and 14 days during treatment. The levels of pe-roxidation of lipid membranes (measured by malondialdehyde content) and the activities of three antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX)) increased under salt stress. Chlorophyll and carotenoid content decreased with increasing salt content. The ratio of Chl a/Chl b and carotenoid/Chl exhibited sig-nificant increase under 400 mM NaCl. However, total flavonoid and anthocyanin contents and key enzyme activities in the flavonoid pathway including phenylalanine ammonialyase (PAL) and Chalcone isomerase (CHI) decreased under salt stress. These findings possibly suggest that R. soongorica has an adaptation protection mechanism against salt-induced oxidative damage by inducing the activity of antioxidant enzymes and maintaining a steady level of carotenoid/Chl.

  8. 水分胁迫对枣叶片光合作用和保护酶活性的影响%Effects of Water Stress on Photosynthetic Characteristics and Antioxidant Enzyme Activities of Jujube Leaves in Southern Xinjiang

    Institute of Scientific and Technical Information of China (English)

    王雨歌; 孟祥云; 彭思明; 刘怀锋

    2014-01-01

    以枣为试材,在大田滴灌条件下采取控水试验,研究不同水分处理对枣树光合作用和保护酶活性的影响。结果表明,各处理的蒸腾速率(Tr)、气孔导度(Gs)和胞间CO2浓度(Ci)日变化规律一致:Tr呈双峰曲线,Gs先上升后下降,Ci先下降后上升;对照(CK)和轻度水分胁迫(Ⅰ)的净光合速率(Pn)和Tr呈双峰曲线,重度水分胁迫(Ⅱ)下"双峰"和"午休"现象消失;随着水分胁迫的加剧,枣树叶片的Pn、Tr、Gs和Ci均下降,枣叶片中的过氧化氢酶(CAT)、超氧化物歧化酶(SOD)活性及丙二醛(MDA)含量均升高,过氧化物酶(POD)活性在轻度水分胁迫下升高,在重度水分胁迫下,活性降低。综合各项指标测定,轻度胁迫处理的灌溉周期为不影响枣生长及生产的节水灌溉策略。%The photosynthetic characteristics and antioxidant enzyme activities in jujube leaves were studied under different de-grees of water stress in this paper. The results showed that the net photosynthetic rate (Pn),transpiration rate (Tr),stomata con-ductance (Gs) and intercellular CO2 concentration (Ci) significantly decreased with increasing drought stress.Contrary to other treatments,the phenomenon of midday depression of photosynthesis disappeared under severe water stress.Meanwhile,the transpi-ration rate (Tr),stomata conductance (Gs) and intercellular CO2 concentration (Ci) significantly increased and then decreased under water stress.In addition,the activities of superoxide dismutase(SOD),catalase(CAT) and malondialdehyde(MDA) contents in-creased continuously with the deepening of drought stress.The activities of superoxide dismutase (SOD), peroxidase (POD) and catalase(CAT) increased and then decreased.

  9. Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport.

    Science.gov (United States)

    Abraham, Gerard; Dhar, Dolly Wattal

    2010-09-01

    Azolla microphylla plants exposed directly to NaCl (13 dsm(-1)) did not survive the salinity treatment beyond a period of one day, whereas plants exposed directly to 4 and 9 dsm(-1) NaCl were able to grow and produce biomass. However, plants pre-exposed to NaCl (2 dsm(-1)) for 7 days on subsequent exposure to 13 dsm(-1) NaCl were able to grow and produce biomass although at a slow rate and are hereinafter designated as pre-exposed plants. The pre-exposed and directly exposed plants distinctly differed in their response to salt in terms of lipid peroxidation, proline accumulation, activity of antioxidant enzymes, such as SOD, APX, and CAT, and Na(+)/K(+) ratio. Efficient modulation of antioxidant enzymes coupled with regulation of ion transport play an important role in the induction of salt tolerance. Results show that it is possible to induce salt adaptation in A. microphylla by pre-exposing them to low concentrations of NaCl. PMID:20422236

  10. Serum and BAL cytokine and antioxidant enzyme levels at different stages of pneumoconiosis in coal workers

    Energy Technology Data Exchange (ETDEWEB)

    Ulker, O.C.; Yucesoy, B.; Demir, O.; Tekin, I.O.; Karakaya, A. [Ankara University, Ankara (Turkey). Dept. of Toxicology

    2008-12-15

    Coal workers' pneumoconiosis (CWP) is an occupational pulmonary disease that occurs by chronic inhalation of coal dust. CWP is divided into two stages depending on the extent of the disease, as simple pneumoconiosis (SP) and progressive massive fibrosis (PMF). In the present study, serum and bronchoalveolar lavage (BAL) cytokine (interleukin-1 beta (IL-1 beta), IL-6, tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-beta (TGF-beta)) and antioxidant enzymes levels, their relation with the disease severity, and whether they can be considered as biological markers were investigated. Serum and BAL levels of IL-1 beta, IL-6, and TNF-alpha were higher in SP and PMF patient groups compared with that in active and retired miner groups. Serum and BAL IL-1 beta, IL-6, and TNF-alpha levels were also found to be higher in patients with PMF compared with the SP group. BAL superoxide dismutase (SOD), glutathione peroxidase, and catalase levels and serum SOD level were increased in both patient groups compared with the control group. In addition, mean serum and BAL TGF-beta levels were found to be increased in patients with SP compared with PMF group. Based on these results, BAL and serum cytokine and antioxidant enzymes levels were evaluated and discussed as potential biomarkers for different stages of CWP.

  11. Effect of lindane on antioxidant enzymes in epididymis and epididymal sperm of adult rats

    Institute of Scientific and Technical Information of China (English)

    K.C. Chitra; R. Sujatha; C. Latchoumycandane; P.P. Mathur

    2001-01-01

    Aim: To find out the changes induced by lindane on the antioxidant enzymes in epididymis and epididymal sperm of adult rats, Methods; Adult male rats were orally administered lindane at a dose of 5.0 mg/kg body weight per day for 30 days. At the end of the treatment, the rats were sacrificed. The epididymis was removed and weighed and sperm were collected for sperm count, motility and biochemical studies. A 1% homogenate of epididymis was prepared and used for biochemical estimations. Results: In lindane-treated rats, there were significant reductions in the epididymal weight, epididymal sperm count and motility compared with the controls. Significant decreases in the superoxide dismutase (SOD), catalase, glutathione reductase and glutathione peroxidase activities and significant increases in the H2O2 generation and lipid peroxidation were also observed in the epididymis and epididymal sperm of lindane-treated rats. Conclusion: Lindane decreases the levels of antioxidant enzymes in the epididymis and epididymal sperm of adult rats thereby inducing oxidative stress.

  12. ACTIVITY OF SUPEROXIDE DISMUTASE ENZYME IN YEAST SACCHAROMYCES CEREVISIAE

    OpenAIRE

    Blažena Lavová; Dana Urminská

    2014-01-01

    Reactive oxygen species (ROS) with reactive nitrogen species (RNS) are known to play dual role in biological systems, they can be harmful or beneficial to living systems. ROS can be important mediators of damage to cell structures, including proteins, lipids and nucleic acids termed as oxidative stress. The antioxidant enzymes protect the organism against the oxidative damage caused by active oxygen forms. The role of superoxide dismutase (SOD) is to accelerate the dismutation of the toxic su...

  13. The use of antioxidant enzymes in freshwater biofilms: temporal variability vs. toxicological responses.

    Science.gov (United States)

    Bonnineau, Chloé; Tlili, Ahmed; Faggiano, Leslie; Montuelle, Bernard; Guasch, Helena

    2013-07-15

    This study aims to investigate the potential of antioxidant enzyme activities (AEA) as biomarkers of oxidative stress in freshwater biofilms. Therefore, biofilms were grown in channels for 38 days and then exposed to different concentrations (0-150 μg L(-1)) of the herbicide oxyfluorfen for 5 more weeks. Under control conditions, the AEA of biofilms were found to change throughout time with a significant increase in ascorbate peroxidase (APX) activity during the exponential growth and a more important role of catalase (CAT) and glutathione reductase (GR) activities during the slow growth phase. Chronic exposure to oxyfluorfen led to slight variations in AEA, however, the ranges of variability of AEA in controls and exposed communities were similar, highlighting the difficulty of a direct interpretation of AEA values. After 5 weeks of exposure to oxyfluorfen, no clear effects were observed on chl-a concentration or on the composition of other pigments suggesting that algal group composition was not affected. Eukaryotic communities were structured clearly by toxicant concentration and both eukaryotic and bacterial richness were reduced in communities exposed to the highest concentration. In addition, during acute exposure tests performed at the end of the chronic exposure, biofilms chronically exposed to 75 and 150 μg L(-1) oxyfluorfen showed a higher CAT activity than controls. Chronic exposure to oxyfluorfen provoked then structural changes but also functional changes in the capacity of biofilm CAT activity to respond to a sudden increase in concentration, suggesting a selection of species with higher antioxidant capacity. This study highlighted the difficulty of interpretation of AEA values due to their temporal variation and to the absence of absolute threshold value indicative of oxidative stress induced by contaminants. Nevertheless, the determination of AEA pattern throughout acute exposure test is of high interest to compare oxidative stress levels

  14. Actividades enzimáticas antioxidativas em Cistus Ladanifer L. provenientes de áreas não contaminadas em elementos vestigiais Antioxidant enzymes activity of Cistus Ladanifer L. from areas non contaminated in trace elements

    Directory of Open Access Journals (Sweden)

    Erika Santos

    2011-07-01

    Full Text Available Avaliou-se a actividade das enzimas antioxidativas (catalase, peroxidase e superóxido dismutase e as concentrações em As, Cu, Pb e Zn nas folhas de duas populações de Cistus ladanifer L. colhidas, na Primavera e no Verão, em solos não contaminados em elementos vestigiais (Caldeirão e Pomarão e com condições climáticas diferentes. Nos solos das duas áreas, as concentrações totais e disponíveis (extracção com DTPA em elementos vestigiais foram baixas. A distribuição dos elementos pelas folhas novas e maduras foi semelhante entre áreas e estações do ano. As actividades enzimáticas variaram consoante a população. As folhas colhidas nas duas estações do ano, excepto as folhas novas de Verão do Pomarão, apresentaram actividade enzimática na fracção solúvel e iónica. Comparando as estações do ano e áreas de amostragem, constatou-se que as actividades enzimáticas representam um mecanismo de tolerância a vários factores de stresse (radiação UV, temperatura do ar elevada no verão, défice hídrico no verão, baixa-média fertilidade do solo e conteúdo de elementos vestigiais no solo, o que confere uma elevada plasticidade à espécie.The aim of this study was to evaluate the antioxidant enzymes activity (catalase, peroxidase and superoxide dismutase and the concentrations of As, Cu, Pb and Zn in leaves from two populations of Cistus ladanifer growing on soils non-contaminated with trace elements (Caldeirco and Pomarco, but with different climatic conditions and in two different seasons (spring and summer. In both areas, total and available concentrations (DTPA extraction of trace elements in soils were low. The distribution of elements for young and mature leaves was similar between areas and seasons. The enzyme activities varied with the plant population. Leaves collected in the two seasons, except young leaves from Pomarco collected in summer, showed enzymatic activity in the soluble and ionic fractions

  15. Modifying enzyme activity and selectivity by immobilization

    OpenAIRE

    Rodrigues, Rafael C.; Ortiz, Claudia; Berenguer Murcia, Ángel; Torres, Rodrigo; Fernández Lafuente, Roberto

    2013-01-01

    Immobilization of enzymes may produce alterations in their observed activity, specificity or selectivity. Although in many cases an impoverishment of the enzyme properties is observed upon immobilization (caused by the distortion of the enzyme due to the interaction with the support) in some instances such properties may be enhanced by this immobilization. These alterations in enzyme properties are sometimes associated with changes in the enzyme structure. Occasionally, these variations will ...

  16. Chemoprotective activity of boldine: modulation of drug-metabolizing enzymes.

    Science.gov (United States)

    Kubínová, R; Machala, M; Minksová, K; Neca, J; Suchý, V

    2001-03-01

    Possible chemoprotective effects of the naturally occurring alkaloid boldine, a major alkaloid of boldo (Peumus boldus Mol.) leaves and bark, including in vitro modulations of drug-metabolizing enzymes in mouse hepatoma Hepa-1 cell line and mouse hepatic microsomes, were investigated. Boldine manifested inhibition activity on hepatic microsomal CYP1A-dependent 7-ethoxyresorufin O-deethylase and CYP3A-dependent testosterone 6 beta-hydroxylase activities and stimulated glutathione S-transferase activity in Hepa-1 cells. In addition to the known antioxidant activity, boldine could decrease the metabolic activation of other xenobiotics including chemical mutagens. PMID:11265593

  17. Antioxidant activity of whey protein hydrolysates in milk beverage system

    OpenAIRE

    Mann, Bimlesh; Kumari, Anuradha; Kumar, Rajesh; Sharma, Rajan; Prajapati, Kishore; Mahboob, Shaik; Athira, S.

    2014-01-01

    The aim of the present study was to evaluate the antioxidant activity of flavoured milk enriched with antioxidative whey protein hydrolysates (WPHs) by radical scavenging method. Whey protein concentrate (WPC) was hydrolyzed by using three commercial proteases; flavouzyme, alcalase and corolase PP and these WPHs were analyzed for degree of hydrolysis and antioxidant activity. The antioxidant activities of these WPHs were evaluated using ABTS method. Trolox equivalent antioxidant activity of a...

  18. Antioxidant and Antiradical Activity of Coffee

    Directory of Open Access Journals (Sweden)

    Alexander Yashin

    2013-10-01

    Full Text Available This review summarizes published information concerning the determination of antioxidant activity (AA in coffee samples by various methods (ORAC, FRAP, TRAP, TEAC, etc. in vitro and limited data of antiradical activity of coffee products in vitro and in vivo. Comparison is carried out of the AA of coffee Arabica and coffee Robusta roasted at different temperatures as well as by different roasting methods (microwave, convection, etc.. Data on the antiradical activity of coffee is provided. The antioxidant activity of coffee, tea, cocoa, and red wine is compared. At the end of this review, the total antioxidant content (TAC of coffee samples from 21 coffee-producing countries as measured by an amperometric method is provided. The TAC of green and roasted coffee beans is also compared.

  19. Antioxidative defense enzymes in placenta protect placenta and fetus in inherited thrombophilia from hydrogen peroxide

    OpenAIRE

    Jelena Bogdanovic Pristov; Ivan Spasojevic; Željko Mikovic; Vesna Mandic; Nikola Cerovic; Mihajlo Spasic

    2009-01-01

    Our aim was to investigate the activities of antioxidative defense enzymes in the placenta, fetal blood and amnion fluid in inherited thrombophilia. Thrombophilia was associated with nearly threefold increase of activity (p < 0.001) of the placental catalase (81.1 ± 20.6 U/mg of proteins in controls and 270.0 ± 69.9 U/mg in thrombophilic subjects), glutathione (GSH) peroxidase (C: 20.2 ± 10.1 U/mg; T: 60.0 ± 15.5 U/mg), and GSH reductase (C: 28.9 ± 5.6 U/mg; T: 72.7 ± 23.0 U/mg). The placenta...

  20. Effects of Beta-cypermethrin on Antioxidant Enzymes Activities of Procambarus clarkii%高效氯氰菊酯对克氏原螯虾(Procambarus clarkii)抗氧化酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    毛阿敏; 魏克强; 赵辉; 刘婉莎; 刘娥娥; 吕虹瑞

    2013-01-01

    为研究水体中不同浓度的高效氯氰菊酯对克氏原螯虾抗氧化酶活性的影响,在本实验室测得高效氯氰菊酯致克氏原螯虾的96 h LC50为0.2μg·L-1的基础上,将克氏原螯虾分别暴露于0、0.005、0.01、0.02、0.04μg· L-1的高效氯氰菊酯溶液中,在24、48、72h和96 h后分别测定其鳃、肝胰腺和血清中超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性以及丙二醛(MDA)的含量.结果表明,在染毒96 h期间各组织中的SOD活性变化规律相似,均为先上升后下降;肝胰腺中的CAT活性先下降后上升再下降,而鳃和血清中的CAT活性表现为先上升后下降;丙二醛(MDA)含量则一直高于对照组,随着暴露时间和暴露浓度的增加而增加.染毒96h后,0.04 μg·L-1处理组与空白对照组相比,肝胰腺、鳃和血清中的SOD活性分别下降了28.3%、44.1%和27.2%,CAT活性分别下降了38.1%、39.4%和 12.3%,而MDA含量分别较空白对照组提高了0.72、1.09倍和0.46倍.研究结果提示,高效氯氰菊酯对克氏原螯虾的抗氧化酶活性具有显著的抑制效应.%Beta-cypermethrin,a type Ⅱ pyrethroid insecticide,is widely used in agriculture around the world.Although much research on the toxicity of beta-cypermethrin has been done in fishes,little is so far available regarding its toxicity to crustaceans,such as shrimp,crab and crayfish.To investigate the acute toxic effect of beta-cypermethrin on Procambarus clarkii,the crayfishes were exposed to various concentrations of beta-cypermethrin(0 μg· L-1,0.005 μg· L-1,0.01 μg· L-1,0.02 μg· L-1 and 0.04 μg· L-1) until 96 h according to the 96 h LC50 values (0.2 μg· L-1) measured previously.Activities of antioxidant enzymes viz.superoxide dismutase (SOD) and catalase (CAT),and contents of malondialdehyde(MDA) in gill,hepatopancreas and serum were determined at 24 h,48 h,72 h and 96 h,respectively.Results indicated that SOD activities first increased then

  1. Oxidative stress and the antioxidant enzyme system in the developing brain

    Directory of Open Access Journals (Sweden)

    So-Yeon Shim

    2013-03-01

    Full Text Available Preterm infants are vulnerable to the oxidative stress due to the production of large amounts of free radicals, antioxidant system insufficiency, and immature oligodendroglial cells. Reactive oxygen species (ROS play a pivotal role in the development of periventricular leukomalacia. The three most common ROS are superoxide (O2&#8226;-, hydroxyl radical (OH&#8226;, and hydrogen peroxide (H2O2. Under normal physiological conditions, a balance is maintained between the production of ROS and the capacity of the antioxidant enzyme system. However, if this balance breaks down, ROS can exert toxic effects. Superoxide dismutase, glutathione peroxidase, and catalase are considered the classical antioxidant enzymes. A recently discovered antioxidant enzyme family, peroxiredoxin (Prdx, is also an important scavenger of free radicals. Prdx1 expression is induced at birth, whereas Prdx2 is constitutively expressed, and Prdx6 expression is consistent with the classical antioxidant enzymes. Several antioxidant substances have been studied as potential therapeutic agents; however, further preclinical and clinical studies are required before allowing clinical application.

  2. Antioxidative Defense Enzymes in Placenta Protect Placenta and Fetus in Inherited Thrombophilia from Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Jelena Bogdanovic Pristov

    2009-01-01

    Full Text Available Our aim was to investigate the activities of antioxidative defense enzymes in the placenta, fetal blood and amnion fluid in inherited thrombophilia. Thrombophilia was associated with nearly threefold increase of activity (p < 0.001 of the placental catalase (81.1 ± 20.6 U/mg of proteins in controls and 270.0 ± 69.9 U/mg in thrombophilic subjects, glutathione (GSH peroxidase (C: 20.2 ± 10.1 U/mg; T: 60.0 ± 15.5 U/mg, and GSH reductase (C: 28.9 ± 5.6 U/mg; T: 72.7 ± 23.0 U/mg. The placental activities of superoxide dismutating enzymes—MnSOD and CuZnSOD, did not differ in controls and thrombophilia. Likewise, the activities of catalase and SOD in the fetal blood, and the level of ascorbyl radical which represents a marker of oxidative status of amniotic fluid, were similar in controls and thrombophilic subjects. From this we concluded that in thrombophilia, placental tissue is exposed to H2O2-mediated oxidative stress, which could be initiated by pro-thrombic conditions in maternal blood. Increased activity of placental H2O2-removing enzymes protects fetus and mother during pregnancy, but may increase the risk of postpartum thrombosis.

  3. Effects of heavy-ion beams irradiation on survival rate and antioxidant enzymes of sweet sorghum seedlings

    International Nuclear Information System (INIS)

    [Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activities and lipid peroxidation of sweet sorghum. [Method] The dry seeds were irradiated by 12C6+ heavy ion beams with absorbed doses: 0, 40, 80, 120, 160 and 200 Gy, respectively. Then, the seed germination potential, survival rate, antioxidant enzyme activities and lipid peroxidation of sweet sorghum were measured. [Result] Heavy-ion beams irradiation exhibited different influence on germination potential and survival rates. Germination rate showed a downward trend, but the corresponding survival curve of seedlings was saddle-shaped. The activities of SOD, POD, CAT and ASA-POD changed in different trends as well. The MDA content rose toward increasing irradiation dose, suggesting that high dose of heavy-ion beams irradiation enhanced the damage to membrane of sweet sorghum seedlings. [Conclusion] After being irradiated, germination potential and survival rates of sweet sorghum were decreased, and antioxidant enzymes activity changed greatly. This study laid the basis for further work on breeding and improvement of sweet sorghum irradiated by 12C6+ heavy ion beams

  4. Antioxidant activity of Rhizophora mangle bark.

    Science.gov (United States)

    Sánchez, Janet; Melchor, Gleiby; Martínez, Gregorio; Escobar, Arturo; Faure, Roberto

    2006-02-01

    The antioxidant activity of Rhizophora mangle bark aqueous extract and its majoritary component and high molecular weight polyphenols' fraction were studied using deoxyribose assay. The total extract and its fraction showed scavenging activity of hydroxyl radicals and hability to chelate iron ions. PMID:16436316

  5. Antioxidant activity directed isolations form punica granatum

    International Nuclear Information System (INIS)

    The extracts derived from pomegranate juice following antioxidant activity directed isolation were screened for their antioxidant activity through their ability to scavenge 2,2- diphenyl-l-picrylhydrazyl (DPPH) radicals. Only fractions which exhibited >50/0 DPPH scavenging effect at each step of isolation were selected for further purification and their ability to reduce peroxide formation (peroxide value) in heated com oil. Phytochemical analysis of the pure compounds finally obtained, revealed the presence of pelargonidin-3- galactose (Pg-3-galactose), cyanidin-3-glucose (Cy-3-Glucose), gallic acid, quercetin and myricetin in the fractions exhibiting >50% DPPH scavenging potential. The order of antioxidant activity of these pure compounds by DPPH method was found to be gallic acid> quercetin> myricetin> Cy-3-galactose> Pg-3-Glucose while order with respect to reduction in peroxide value (PV) was the reverse of DPPH. (author)

  6. Correlation between Antioxidant Enzymes Activity and Intraerythrocyte Concentration of Fe, Mg, Zn, Cu in Pulmonary Arterial Hypertension and Cor Pulmonale in Children with Congenital Lung Disease and Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Elena M. Vasilyeva, PhD,ScD¹

    2013-03-01

    Full Text Available Significant changes in the levels of the potential prooxidant Cu (increase and the antioxidant Zn (decrease in plasma were revealed in children having bronchopulmonary dysplasia (BPD complicated by pulmonary arterial hypertension (PAH and chronic cor pulmonale (CCP when compared with the control. The Zn / Cu ratio in the blood plasma of patients with BPD, especially in CCP, was found to be lower than in the control group (p<0.001. This could indicate the activation of the prooxidant processes; simultaneously, the total antioxidant status (AOS decreased. No significant increase in the intracellular free (“ionized” (i form of magnesium (iMg was found; in fact, the concentration of iFe in all the patient groups was higher than in the control. An increase in the iCu and iZn levels (nonprotein-bound was observed in the blood cells of the affected children. A significant increase in the glutathione peroxidase activity in the CCP patients may indicate an accumulation of organic peroxides, and partially compensate for the lesser activity of superoxide dismutase (SOD and other antioxidants. The Zn / Cu and iZn/ iCu ratios were reduced in patients with CCP when compared with patients with PD without CCP.

  7. Antioxidant Activities of Melittis melissophyllum L. (Lamiaceae

    Directory of Open Access Journals (Sweden)

    Milena Raseta

    2011-04-01

    Full Text Available Extracts of Melittis melissophyllum leaves in ether, chloroform, ethyl acetate, n-butanol and water were evaporated to dryness and dissolved in 50% ethanol to make 10% (w/v solutions. The potential protective action of the extracts was assessed by the corresponding in vitro and in vivo tests. In the in vitro experiments extracts were tested as potential scavengers of free radicals (DPPH, O2·-, NO, and OH radicals, as well as inhibitors of liposomal peroxidation (LPx. The results obtained show that all extracts (exept n-BuOH extract are good scavengers of radicals and reduce LPx intensity in liposomes, which points to their protective (antioxidant activity. In vivo experiments were concerned with antioxidant systems (activities of GSHPx, GSHR, Px, CAT, XOD, GSH content and intensity of LPx in liver homogenate and blood-hemolysate of experimental animals after their treatment with extracts of M. melissophyllum leaves, or in combination with CCl4. On the basis of the results obtained it can be concluded that the examined extracts have protective (antioxidative effect and this antioxidative behaviour is more pronounced in liver than in blood-hemolysate. The reason is probably the fact that liver contains other enzymatic systems, which can also participate in the antioxidative mechanism. Of all the extracts the H2O one showed the highest protective activity.

  8. Effects of Heavy-ion Beams Irradiation on Survival Rate and Antioxidant Enzymes of Sweet Sorghum Seedlings

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activi- ties and lipid peroxidation of sweet sorghum. [Method] The dry seeds were irradiated by '2(36. heavy ion beams with absorbed doses: 0, 40, 80, 120, 160 and 200 Gy, respectively. Then, the seed germination potential, survival rate, antioxidant enzyme activities and lipid peroxidation of sweet sorghum were measured. [Result] Heavy-ion beams irradiation exhibited different influence on germination potential and survival rates. Germination rate showed a downward trend, but the corresponding survival curve of seedlings was saddle-shaped. The activities of SOD, POD, CAT and ASA- POD changed in different trends as well. The MDA content rose toward increasing irradiation dose, suggesting that high dose of heavy-ion beams irradiation enhanced the damage to membrane of sweet sorghum seedlings. [Conclusion] After being irra- diated, germination potential and survival rates of sweet sorghum were decreased, and antioxidant enzymes activity changed greatly. This study laid the basis for fur- ther work on breeding and improvement of sweet sorghum irradiated by ,^(12)C^(6+) heavy ion beams.

  9. Effects of Macrophytes Pyrolysis Bio-oil on Skeletonema costatum Antioxidant Enzyme Activities%水生植物热解生物油对中肋骨条藻抗氧化酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    姚远; 李锋民; 李媛媛; 单时; 李杰; 王震宇

    2013-01-01

    In order to reveal the preliminary inhibition mechanisms of aquatic plants bio-oils on Skelelonema costatum, effects of Arundo donax L. 300℃ , Ph. australis Trin. 400℃ and Typha orientalis Presl 400℃ bio-oils on the concentration change of malondialdehyde (MDA) and the activity of antioxidanl enzymes system (SOD, POD and CAT) were evaluated. The results showed that the higher the Bio-oil concentrations, the higher the MDA contents in Skeletonema costatum was, and when the Bio-oil concentration was 10 mg·L-1 , the MDA concentration increased with the reaction time. Superoxide dismutase (SOD) activity also increased with the increase of bio-oil concentration. For Arundo donax L 300℃ and Typha orientalis Presl 400℃ bio-oil, when the reaction time was longer, the SOD activity of Skeletonema costatum first increased and then decreased, and in both cases the maximum SOD activity was measured at 24 h, reaching 93.6 U·( 107 cells) -1 and 8. 23 U · ( 107 cells)-1 , respectively. For Ph. australis Trin 400℃ bio-oil, the SOD activity kept increasing within 72 h. The peroxidase ( POD ) activity of Skelelonema costatum also increased with the increase of bio-oil concentrations. In the presence of Arundo donax L. 300℃ and Ph. australis Trin 400℃ bio-oil, the POD activity of Skeletonema costatum first increased and then decreased, while with Typha orientalis Presl 400℃ bio-oil the POD activity increased with fluctuations. For all the three bio-oils, the catalase (CAT) activities increased first and then decreased when the reaction time was prolonged, and the higher the bio-oils concentration, the greater the CAT activity was. Pyrolysis bio-oils enhance the activity of antioxidant enzymes, leading to intracellular oxidative stress in the algae, which seems to be the main inhibitory mechanism for algae.%为揭示水生植物生物油抑藻机制,研究了芦竹300℃、芦苇400℃以及香蒲400℃这3种生物油对中肋骨条藻丙二醛含量变化及抗

  10. Disturbance of Antioxidant Enzymes and Purine Metabolism in the Ejaculate of Men Living in Disadvantaged Areas of Kyzylorda Region

    Directory of Open Access Journals (Sweden)

    Valentihna N. Kislitskaya

    2015-07-01

    CONCLUSIONS: According to the results of study, it was put the influence  of negative factors of the Aral Sea region in men’s sperm of reproductive  age gives to disability free-radical processes, that proves changing of ferments of ant oxidative protection Catalase and adenosine deaminase (ADA.  This disturbance in men’s sperm of reproductive age leading to increased level of oxidative stress and impaired activity of  antioxidant enzymes and purine metabolism, responsible for the abnormal transmembrane and intracellular processes, reflecting the degree of imbalance of enzymes.

  11. GLUTATHIONE AND ANTIOXIDANT ENZYMES IN THE HEPATOPANCREAS OF CRAYFISH PROCAMBARUS CLARKII (GIRARD, 1852 OF LAKE TRASIMENO (ITALY

    Directory of Open Access Journals (Sweden)

    ELIA A. C.

    2006-01-01

    Full Text Available Antioxidant parameters, such as total glutathione, glutathione S-transferase, glutathione peroxidase, glutathione reductase, glyoxalases, catalase, and some heavy metals such as, lead, cadmium and chromium were examined in hepatopancreas of both sexes of Procambarus clarkii collected seasonally from Lake Trasimeno, from winter 2002-2003 to autumn 2003. Heavy metals content in hepatopancreas in males and females of P. clarkii was low and did not vary through the sampling periods and between sexes. On the contrary, crayfish exhibited sex-dependent differences in levels of some enzyme activities and of total glutathione, and no apparent relationship was found between contaminant burdens and antioxidant indexes in hepatopancreas. Because measured metal concentrations were low, other factors, presumably, were involved in antioxidant variations in P. clarkii and these latter seemed to be affected more by biological and environmental factors, other than those related to pollutants body burdens.

  12. Determining Enzyme Activity by Radial Diffusion

    Science.gov (United States)

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  13. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi;

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  14. The Association among Antioxidant Enzymes, Autoantibodies, and Disease Severity Score in Systemic Lupus Erythematosus: Comparison of Neuropsychiatric and Nonneuropsychiatric Groups

    Directory of Open Access Journals (Sweden)

    Yu-Jih Su

    2014-01-01

    Full Text Available Background. Antioxidative capacity plays an important role in the severity of systemic lupus erythematosus (SLE, which is characterized by autoantibodies. This study aimed to determine the relationship among autoantibody titers, antioxidative stress reserve, and severity of SLE. Methods. The autoantibody titers, clinical markers, antioxidant enzyme levels, and disease activity index (SLEDAI-2k of 32 SLE patients and 16 healthy controls were compared. We also compared both the neuropsychiatric (NPSLE and nonneuropsychiatric (non-NPSLE groups. Results. Superoxide dismutase in red blood cells was significantly lower in the SLE than in the control group. CRP levels are significant higher in SLE patients than in control group (P=0.034. Among the autoantibodies, anti-U1RNP P=0.008, a-Sm P=0.027, and anti-ribosomal p P=0.028 significantly negatively correlated with glutathione levels. There has no significant correlation between SLE disease activity indexes (SLEDAI and levels of C3, C4, and antioxidant enzymes. Conclusions. Erythrocyte superoxide dismutase is significantly lower in both NPSLE and non-NPSLE groups. SLE patients have both higher CRP and autoantibodies level and decreased superoxide dismutase level than the healthy control group.

  15. Effect of Chitosan Coating on the Postharvest Quality and Antioxidant Enzyme System Response of Strawberry Fruit during Cold Storage

    Directory of Open Access Journals (Sweden)

    Milena Petriccione

    2015-09-01

    Full Text Available The effectiveness of chitosan fruit coating to delay the qualitative and nutraceutical traits of three strawberry cultivars, namely “Candonga”, “Jonica” and “Sabrina”, as well as the effects of chitosan on antioxidant enzymes were evaluated. The fruits were coated with 1% and 2% chitosan solution and stored at 2 °C for nine days. Samples were taken every three days. Physico-chemical (weight loss, soluble solid content and titratable acidity and nutraceutical (total polyphenol, anthocyanin, flavonoid, ascorbic acid content and antioxidant capacity properties along with the enzymatic activity (catalase (CAT, ascorbate peroxidase (APX, polyphenol oxidase (PPO, guaiacol peroxidase (GPX and lipoxygenase (LOX were evaluated. Chitosan treatment significantly reduced water loss and delayed the qualitative changes in color, titratable acidity and ascorbic acid content in dose- and cultivar-dependent manners. Additionally, changes in the total polyphenol, anthocyanin and flavonoid contents and the antioxidant capacity of chitosan-coated strawberry fruits were delayed. Chitosan coating enhanced the activity of some antioxidant enzymes, preventing flesh browning and reducing membrane damage. A global view of the responses of the three strawberry cultivars to chitosan coating and storage temperature was obtained using principal component analysis. Chitosan-coated fruit exhibited a slower rate of deterioration, compared to uncoated fruit in all tested cultivars.

  16. Antioxidant enzyme activities and SNP/InDel analysis of cotton varieties differring in salt tolerance%耐盐差异性不同棉花品种的抗氧化酶活性及SNP/InDel分析

    Institute of Scientific and Technical Information of China (English)

    何林池; 王康; 魏小云; 荣平; 王亚峰

    2014-01-01

    为探讨亲缘关系较近的耐盐棉花品种中棉所35与盐敏感棉花品种中棉所12耐盐差异性,用100 mmol/L、200 mmol/L、300 mmol/L及400 mmol/L NaCl处理棉花幼苗,调查这2个棉花品种在盐胁迫下过氧化氢酶( CAT)、过氧化物酶( POD)、超氧化物歧化酶( SOD)等抗氧化酶活性的变化以及对中棉所35和中棉所12的SNP/In-Del(单核苷酸多态性/碱基缺失或插入)进行了初步鉴定。结果显示,相比于盐敏感品种中棉所12,耐盐品种中棉所35的SOD活性随盐浓度上升变化较小,表现出较高的稳定性。盐敏感材料中棉所12的CAT及POD活性的变化趋势与中棉所35基本保持一致,在一定盐浓度内,随着盐浓度的上升而上升,超过一定的盐浓度后活性下降;盐敏感品种中棉所12的CAT及POD活性整体上低于耐盐品种中棉所35。此外,发现亲缘关系很近而耐盐水平差异显著的中棉所35和中棉所12存在点突变和插入/缺失,说明这些SNP/InDel可能对耐盐性状有重要的调控功能。%In order to explore the mechanism underlying the salt tolerance of two cotton varieties with close genetic rela-tionship, CCRI 35(salt-tolerant) and CCRI 12(salt-sensitive) were treated with 100 mmol/L, 200 mmol/L, 300 mmol/L, and 400 mmol/L NaCl respectively, and the activities of the antioxidant enzymes, including catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) were measured. The results showed that the SOD activity of CCRI 35 was independent of salt con-centration, suggestive of high level of stability. The two cotton varieties had similar variation tendency of CAT and POD activities increased with the increase of salt level and decreased after wards. The activities of CAT and POD were lower in salt-sensitive va-riety CCRI 12 than those in salt-resistant variety CCRI 35. In addition, single nucleotide polymorphisms ( SNPs) and insertion/ deletion (InDel) between CCRI 35 and CCRI 12 were detected, indicating that

  17. Effects of Acid Rain Stress on Antioxidant Enzyme Activity and Chlorophyll Fluorescence in Leaves of Gazania Hybrids%酸雨对勋章菊保护酶活性及叶绿素荧光参数的影响

    Institute of Scientific and Technical Information of China (English)

    侯维; 潘远智

    2013-01-01

    In this paper,pot experiments were conducted to study the effect of simulated acid rain that included four different pH values (5.6,4.5,3.5,2.5) on the membrane permeability,malondialdehyde (MDA) content and antioxidant enzyme activity,chlorophyll (Chl) content,and chlorophyll fluorescence in of leaves Gazania Hybrids.The membrane permeability and MDA content increased significantly after acid rain stress and with an extremely significant correlation between them.The dismutase (SOD),catalase (CAT) and peroxidase (POD) activities were showed a single-peak curve which was firstly increased and then decreased,and the maximum activity of SOD,CAT and POD were observed at pH4.5.Chl a,Chl b,total chlorophyll content,Chl a/b,the PS Ⅱ photochemical efficiency (Fv/ Fm) and the PS Ⅱ potential activity (Fv/Fo),actual PS Ⅱ photochemical quantum yield (ΦpsⅡ) and qP decreased accordingly with the decreasing of pH value,while qN increased.The study showed that G.Hybrids has strong resistance to acid rain stress and the visible damage threshold was less than pH 3.5.Therefore,G.Hybrids can be considered as one of the landscaping and vegetation constructing plants in the acid rain-hit areas.%采用盆栽方法,以不同pH值(5.6、4.5、3.5、2.5)的模拟酸雨胁迫试验,探讨其对勋章菊(Gazania Hybrids)叶片质膜透性、MDA含量、保护酶活性、叶绿素含量及叶绿素荧光参数的影响.结果表明,随pH值的降低,勋章菊叶片质膜透性和MDA含量呈逐渐升高的趋势,且二者呈显著正相关;SOD、CAT和POD活性呈先升高后下降的单峰曲线变化,其中SOD、CAT和POD活性最大值均出现在pH4.5处理;叶绿素a、叶绿素b、叶绿素a+b的含量、叶绿素a/b、PSⅡ最大光化学效率(Fv/Fm)、PSⅡ的潜在活性(Fv/Fo)、PSⅡ实际光化学量子产量(Φps.Ⅱ)、光化学淬灭系数(qP)均随pH值的降低而下降,非光化学淬灭系数(qN)随pH值的降低而升高.模拟酸雨对勋章菊叶片

  18. 耐盐差异性不同棉花品种的抗氧化酶活性及SNP/InDel分析%Antioxidant enzyme activities and SNP/InDel analysis of cotton varieties differring in salt tolerance

    Institute of Scientific and Technical Information of China (English)

    何林池; 王康; 魏小云; 荣平; 王亚峰

    2014-01-01

    为探讨亲缘关系较近的耐盐棉花品种中棉所35与盐敏感棉花品种中棉所12耐盐差异性,用100 mmol/L、200 mmol/L、300 mmol/L及400 mmol/L NaCl处理棉花幼苗,调查这2个棉花品种在盐胁迫下过氧化氢酶( CAT)、过氧化物酶( POD)、超氧化物歧化酶( SOD)等抗氧化酶活性的变化以及对中棉所35和中棉所12的SNP/In-Del(单核苷酸多态性/碱基缺失或插入)进行了初步鉴定。结果显示,相比于盐敏感品种中棉所12,耐盐品种中棉所35的SOD活性随盐浓度上升变化较小,表现出较高的稳定性。盐敏感材料中棉所12的CAT及POD活性的变化趋势与中棉所35基本保持一致,在一定盐浓度内,随着盐浓度的上升而上升,超过一定的盐浓度后活性下降;盐敏感品种中棉所12的CAT及POD活性整体上低于耐盐品种中棉所35。此外,发现亲缘关系很近而耐盐水平差异显著的中棉所35和中棉所12存在点突变和插入/缺失,说明这些SNP/InDel可能对耐盐性状有重要的调控功能。%In order to explore the mechanism underlying the salt tolerance of two cotton varieties with close genetic rela-tionship, CCRI 35(salt-tolerant) and CCRI 12(salt-sensitive) were treated with 100 mmol/L, 200 mmol/L, 300 mmol/L, and 400 mmol/L NaCl respectively, and the activities of the antioxidant enzymes, including catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) were measured. The results showed that the SOD activity of CCRI 35 was independent of salt con-centration, suggestive of high level of stability. The two cotton varieties had similar variation tendency of CAT and POD activities increased with the increase of salt level and decreased after wards. The activities of CAT and POD were lower in salt-sensitive va-riety CCRI 12 than those in salt-resistant variety CCRI 35. In addition, single nucleotide polymorphisms ( SNPs) and insertion/ deletion (InDel) between CCRI 35 and CCRI 12 were detected, indicating that

  19. Antioxidant activities of fractions from longan pericarps

    Directory of Open Access Journals (Sweden)

    Xuena Yang

    2014-06-01

    Full Text Available The antioxidant activities of ethanolic crude extract (LPCE and its four different solvent sub-fractions (namely, diethyl ether fraction (LPDF, ethyl acetate fraction (LPEF, n-butyl alcohol fraction (LPBF and residue fraction (LPR from longan pericarps were investigated employing various systems including 2,2-diphenyl-1-picrylhydrazyl (DPPH/ 2,2'-amino-di(2-ethyl-benzothiazoline sulphonic acid-6ammonium salt (ABTS/hydroxyl radical scavenging activity, total phenolic content and reducing power. Each extract showed concentration-dependent antioxidant activity. LPEF showed the highest scavenging activity against DPPH, ABTS and hydroxyl radicals with EC50 values of 0.506, 0.228 and 4.489 mg/mL, respectively. LPEF showed the highest reducing power with EC50 values of 0.253 mg/mL. The next was LPDF with EC50 values of 0.260 mg/mL. LPEF possessed the highest total phenolic content (230.816 mg/g, expressed as gallic acid equivalents, followed by LPDF, LPBF, LPCE and LPR. The results suggested that longan pericarp fractions possessed significant antioxidant activities and could be a promising source of natural antioxidant.

  20. Effects of NaCl stress on antioxidative enzymes of glycine Soja sieb.

    Science.gov (United States)

    Li, Yan

    2009-03-15

    The activity of anti-oxidant enzymes (Superoxide dismutase (SOD), Peroxidase (POD), Catalase (CAT) and parameters of oxidative stress malondialdehyde (MDA) of shoots were investigated in S. sieb naturally salt-resistant halophyte. The seedlings of S. sieb were treated with varying (0, 80, 160 and 240 mM) NaCl stress. The results showed that NaCl played an important role in growth of S. sieb. It made obviously promotion of certain NaCl concentration to growth of S. sieb, the seeflings of S. sieb grew best under 80 mM salt stress. MDA concentration of S. sieb obviously decreased under 80 mM salt stress then increased with salt concentration increased. The activities of SOD, POD and CAT increased with the increase of the concentration of NaCl in S. sieb. The salt tolerance of this halophyte under salt stress condition are probably due to its ability to exhibit high SOD, POD and CAT enzyme activities and Soluble Sugar (SS) concentration.

  1. 铜胁迫和间作对玉米抗氧化酶活性及丙二醛含量的影响%Effects of Copper Stresses and Intercropping on Antioxidant Enzyme Activities and Malondialdehyde Contents in Maize

    Institute of Scientific and Technical Information of China (English)

    王晓维; 黄国勤; 徐健程; 聂亚平; 万进荣; 杨潇一; 杨文亭

    2014-01-01

    With industrial development, the area of arable land contaminated by heavy metals is steadily increasing around the world, espe-cially in developing countries. Intercropping has shown the potential to phytoremediate heavy metal polluted soils. A pot experiment was conducted to explore the antioxidant responses of maize to copper(Cu)pollution in red soil under maize-pea intercropping. Five Cu concentrations(0, 100, 200, 400, 600 mg·kg -1)and two cropping patterns(maize monoculture and maize-pea intercropping)were de-signed. Plant biomass, Cu contents, antioxidant enzyme activities(SOD, CAT, POD)and MDA contents of maize were measured. Com-pared with those in the monoculture, the aboveground and underground dry biomass of maize in high Cu2+ concentration(600 mg·kg-1)were increased by 20% and 36.6%, respectively, under the intercropping system. However, Cu contents in the aboveground were reduced by 86.81%, 44.57%, 22.01% and 86.81%, but root Cu increased by 78.89%, 24.79%, 35.29% and 24.79% in 100, 200, 400 mg·kg-1 and 600 mg·kg-1 treatments, respectively, under the intercropping system, compared with the maize monoculture. Significant difference in plant Cu was present between intercropping and monoculture. The SOD, POD, CAT activities and MDA content in leaves and roots of maize all in-creased with increasing Cu2+ concentrations. But Cu2+ addition at 600 mg·kg-1 caused CAT activity decrease. Compared to the monoculture, SOD activity under maize-pea intercropping increased by 48.07%~117.27% in roots and 11.30%~46.90% in leaves. Cropping patterns had no significant effect on POD activity under the same Cu2+ stress. In 0~400 mg·kg-1 Cu stresses, CAT activities in maize leaves were signifi-cantly increased by 71.37%, 140.40%, 229.80% and 161.75% respectively under the intercropping over the monoculture, whereas no sig-nificant difference in the CAT activities in roots was observed between two cropping systems. The intercropping practice reduced MDA con-tents in

  2. Effect of a polybrominated diphenyl ether congener (BDE-47) on growth and antioxidative enzymes of two mangrove plant species, Kandelia obovata and Avicennia marina, in South China.

    Science.gov (United States)

    Wang, Ying; Zhu, Haowen; Tam, Nora Fung Yee

    2014-08-30

    The effects of BDE-47 on the growth and antioxidative responses of the seedlings of Kandelia obovata (Ko) and Avicennia marina (Am) were compared in an 8-week hydroponic culture spiked with different levels of BDE-47, 0.1, 1, 5 and 10 mg l(-1). The two highest BDE-47 levels significantly suppressed the growth and increased the activities of three antioxidative enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), of Ko in week 1. However, SOD and POD activities at high levels of BDE-47 became lower than the control in week 8. On the contrary, growth of Am was not affected at all contamination levels, and the activities of three enzymes were enhanced by BDE-47 in weeks 1 and 4, but such stimulatory effect became insignificant in week 8. Avicennia was more tolerant to BDE-47 toxicity than Kandelia, as its antioxidative enzymes could better counter-balance the oxidative stress caused by BDE-47. PMID:24631399

  3. Antioxidant activity of puha (Sonchus oleraceus L.) as assessed by the cellular antioxidant activity (CAA) assay.

    Science.gov (United States)

    McDowell, Arlene; Thompson, Scott; Stark, Mirjam; Ou, Zong-Quan; Gould, Kevin S

    2011-12-01

    There is considerable interest in antioxidant dietary components that can be protective against degenerative diseases in humans. Puha (Sonchus oleraceus L.) is a rich source of polyphenols, and exhibits strong antioxidant activity as measured by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. However, the potential of puha to protect against degenerative diseases requires that low molecular weight antioxidants (LMWA) are absorbed by, and active in, human cells. The cellular antioxidant activity (CAA) assay was used to investigate the antioxidant activity of puha leaf extracts. Preparation methods of freezing and freeze-drying reduced the total polyphenolic content compared with fresh puha, but did not affect the LMWA potential as determined by the DPPH assay. The IC(50) values were 0.012 ± 0.003 mg/mL and 0.010 ± 0.005 mg/mL for freeze-dried and fresh puha leaves, respectively. Using the CAA assay, it was shown that LMWAs from foliar extracts of puha were effectively absorbed into HepG2 cells, and exerted antioxidant activity at levels comparable to those of extracts from blueberry fruits, the much-touted antioxidant superfood. Methylene blue staining of HepG2 cells indicated that puha extracts were not cytotoxic at concentrations below 100 mg DW/mL. The data indicate the potential of puha as a nutraceutical supplement for human health.

  4. Antioxidant Activity of Ecdysteroids from Serratula strangulata

    Institute of Scientific and Technical Information of China (English)

    DAI,Jing-Qiu(戴静秋); CAI,Yu-Jun(蔡育军); SHI,Yan-Ping(师彦平); ZHANG,Yong-Hong(张永红); LIU,Zhong-Li(刘中立); YANG,Li(杨立); LI,Yu(李瑜)

    2002-01-01

    One new ecdysteroid, (24R)-24-(2-hydroxyethyl)-20-hydroxyecdysone (3), as well as three known ecdysteroids, has been isolated from Chinese herb Serratula strangulata and these compounds 1-4 showed effective antioxidant activity on AAPH-induced hemolysis of human RBC and Fe2+ + cysteine-induced lipid peroxidation of liver microsome.

  5. SYNTHESIS AND ANTIOXIDANT ACTIVITY OF TWO ISOESPINTANOL

    Directory of Open Access Journals (Sweden)

    Paula Galeano

    2011-01-01

    Full Text Available The antioxidant activity of isoespintanol (1 hemisynthetic analogues, 4-bromo-2- isopropyl-3,6-dimethoxy-5-methylphenol (2 and 3-isopropyl-6-methylbenzene- 1,2,4-triol (3, was evaluated using ABTS, DPPH and FRAP assays. Partial rationalization of the results is provided in terms of quantum chemical calculations of bond dissociation enthalpy (BDE and ionization potential (IP.

  6. Antioxidant activity and nutritional status in anorexia nervosa: effects of weight recovery.

    Science.gov (United States)

    Oliveras-López, María-Jesús; Ruiz-Prieto, Inmaculada; Bolaños-Ríos, Patricia; De la Cerda, Francisco; Martín, Franz; Jáuregui-Lobera, Ignacio

    2015-04-01

    Few studies are focused on the antioxidant status and its changes in anorexia nervosa (AN). Based on the hypothesis that renutrition improves that status, the aim was to determine the plasma antioxidant status and the antioxidant enzymes activity at the beginning of a personalized nutritional program (T0) and after recovering normal body mass index (BMI) (T1). The relationship between changes in BMI and biochemical parameters was determined. Nutritional intake, body composition, anthropometric, hematological and biochemical parameters were studied in 25 women with AN (19.20 ± 6.07 years). Plasma antioxidant capacity and antioxidant enzymes activity were measured. Mean time to recover normal weight was 4.1 ± 2.44 months. Energy, macronutrients and micronutrients intake improved. Catalase activity was significantly modified after dietary intake improvement and weight recovery (T0 = 25.04 ± 1.97 vs. T1 = 35.54 ± 2.60 μmol/min/mL; p < 0.01). Total antioxidant capacity increased significantly after gaining weight (T0 = 1033.03 ± 34.38 vs. T1 = 1504.61 ± 99.73 μmol/L; p < 0.01). Superoxide dismutase activity decreased (p < 0.05) and glutathione peroxidase did not change. Our results support an association between nutrition improvement and weight gain in patients with AN, followed by an enhancement of antioxidant capacity and catalase antioxidant system. PMID:25830944

  7. Antioxidant Activity and Nutritional Status in Anorexia Nervosa: Effects of Weight Recovery

    Directory of Open Access Journals (Sweden)

    María-Jesús Oliveras-López

    2015-03-01

    Full Text Available Few studies are focused on the antioxidant status and its changes in anorexia nervosa (AN. Based on the hypothesis that renutrition improves that status, the aim was to determine the plasma antioxidant status and the antioxidant enzymes activity at the beginning of a personalized nutritional program (T0 and after recovering normal body mass index (BMI (T1. The relationship between changes in BMI and biochemical parameters was determined. Nutritional intake, body composition, anthropometric, hematological and biochemical parameters were studied in 25 women with AN (19.20 ± 6.07 years. Plasma antioxidant capacity and antioxidant enzymes activity were measured. Mean time to recover normal weight was 4.1 ± 2.44 months. Energy, macronutrients and micronutrients intake improved. Catalase activity was significantly modified after dietary intake improvement and weight recovery (T0 = 25.04 ± 1.97 vs. T1 = 35.54 ± 2.60μmol/min/mL; p < 0.01. Total antioxidant capacity increased significantly after gaining weight (T0 = 1033.03 ± 34.38 vs. T1 = 1504.61 ± 99.73 μmol/L; p < 0.01. Superoxide dismutase activity decreased (p < 0.05 and glutathione peroxidase did not change. Our results support an association between nutrition improvement and weight gain in patients with AN, followed by an enhancement of antioxidant capacity and catalase antioxidant system.

  8. Increased Tolerance of Citrus (Citrus tangerina Seedlings to Soil Water Deficit after Mycorrhizal Inoculation: Changes in Antioxidant Enzyme Defense System

    Directory of Open Access Journals (Sweden)

    Qiu-Dan NI

    2013-12-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF can enhance tolerance of plants to soil water deficit, whereas morphological observations of reactive oxygen species and antioxidant enzyme system are poorly studied. The present study thereby evaluated temporal variations of the antioxidant enzyme system in citrus (Citrus tangerina seedlings colonized by Glomus etunicatum and G. mosseae over a 12-day period of soil drying. Root colonization by G. etunicatum and G. mosseae decreased with soil drying days from 32.0 to 1.0% and 50.1 to 4.5% in 0-day to 12-day, respectively. Compared to the non-AM controls, the AMF colonized plants had significantly lower tissue (both leaves and roots hydrogen peroxide (H2O2 and superoxide anion radical (O2•– concentrations during soil water deficit, whereas 1.03–1.92, 1.25–1.84 and 1.18–1.69 times higher enzyme activity in superoxide dismutase, peroxidase (POD and catalase. In situ leaf H2O2 and root POD location also showed that AM seedlings had less leaf H2O2 but higher root POD accumulation. Furthermore, significantly higher root infection and antioxidant enzymatic activities in plants colonized with G. mosseae expressed than with G. etunicatum during the soil drying. These results demonstrated that the AMs could confer greater tolerance of citrus seedlings to soil water deficit through an enhancement in their antioxidant enzyme defence system whilst an decrease level in H2O2 and O2•–.

  9. Antioxidant activity of Moringa oleifera tissue extracts.

    Science.gov (United States)

    Santos, Andréa F S; Argolo, Adriana C C; Paiva, Patrícia M G; Coelho, Luana C B B

    2012-09-01

    Moringa oleifera is an important source of antioxidants, tools in nutritional biochemistry that could be beneficial for human health; the leaves and flowers are used by the population with great nutritional importance. This work investigates the antioxidant activity of M. oleifera ethanolic (E1) and saline (E2) extracts from flowers (a), inflorescence rachis (b), seeds (c), leaf tissue (d), leaf rachis (e) and fundamental tissues of stem (f). The radical scavenging capacity (RSC) of extracts was determined using dot-blots on thin layer chromatography stained with a 0.4 mM 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) solution; spectrophotometric assays were recorded (515 nm). Antioxidant components were detected in all E1 and E2 from a, b and d. The best RSC was obtained with E1d; the antioxidants present in E2 reacted very slowly with DPPH. The chromatogram revealed by diphenylborinate-2-ethylamine methanolic solution showed that the ethanolic extract from the flowers, inflorescence rachis, fundamental tissue of stem and leaf tissue contained at least three flavonoids; the saline extract from the flowers and leaf tissue revealed at least two flavonoids. In conclusion, M. oleifera ethanolic and saline extracts contain antioxidants that support the use of the plant tissues as food sources. PMID:22294387

  10. Antioxidant activity of Moringa oleifera tissue extracts.

    Science.gov (United States)

    Santos, Andréa F S; Argolo, Adriana C C; Paiva, Patrícia M G; Coelho, Luana C B B

    2012-09-01

    Moringa oleifera is an important source of antioxidants, tools in nutritional biochemistry that could be beneficial for human health; the leaves and flowers are used by the population with great nutritional importance. This work investigates the antioxidant activity of M. oleifera ethanolic (E1) and saline (E2) extracts from flowers (a), inflorescence rachis (b), seeds (c), leaf tissue (d), leaf rachis (e) and fundamental tissues of stem (f). The radical scavenging capacity (RSC) of extracts was determined using dot-blots on thin layer chromatography stained with a 0.4 mM 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) solution; spectrophotometric assays were recorded (515 nm). Antioxidant components were detected in all E1 and E2 from a, b and d. The best RSC was obtained with E1d; the antioxidants present in E2 reacted very slowly with DPPH. The chromatogram revealed by diphenylborinate-2-ethylamine methanolic solution showed that the ethanolic extract from the flowers, inflorescence rachis, fundamental tissue of stem and leaf tissue contained at least three flavonoids; the saline extract from the flowers and leaf tissue revealed at least two flavonoids. In conclusion, M. oleifera ethanolic and saline extracts contain antioxidants that support the use of the plant tissues as food sources.

  11. Antioxidant activity of Sphaerococcus coronopifolius associated bacteria

    Directory of Open Access Journals (Sweden)

    Nádia Fino

    2014-06-01

    Full Text Available Associated bacteria living on macroalgae surfaces are an interesting source of new secondary metabolites with biological activities. The aim of this study was the isolation and identification of epiphytic bacteria from the marine algae Sphaerococcus coronopifolius and the evaluation of the antioxidant activity of the bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1 extraction. Antioxidant activity was evaluated by quantification of total phenolic content (TPC, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity and oxygen radical absorbent capacity (ORAC. The extracts with higher antioxidant activity were tested on MCF-7 and HepG-2 cell lines in oxidative stress conditions induced by H2O2 at 0.2 mM and 0.5 mM, respectively. In total were isolated 21 Sphaerococcus coronopifolius associated bacteria and identified as Vibrio sp. (28.57%, Shewanella sp. (23.81%, Pseudoalteromonas sp. (19.05%, Bacillus sp. (9.52% and Halomonas sp. (9.52%. Two (9.52% of them presented less than 90% Basic Local Alignment Search Tool (BLAST match. The epiphytic bacteria with the most antioxidant potential evaluated by ORAC and DPPH methods were Sp2, Sp12, Sp23, Sp25 and Sp27. The strain Sp4 show high antioxidant activity in all antioxidant methods (ORAC, DPPH and TPC. In oxidative stress conditions on MCF-7 cell line, the extracts of bacteria (1mg.ml-1: 24hours Sp4 (16.15%, Sp25 (17.95% and Sp27 (10.65% prevented the cell death induced by H2O2. In the HepG-2 cell line was the extracts of Sp2 (9.01%, Sp4 (11.21%, Sp12 (7.20% and Sp23 (8.81% bacteria that high prevented the oxidative stress condition induced by H2O2. In conclusion, the Sphaerococcus coronopifolius associated bacteria can be an interesting and excellent source of marine natural compounds with antioxidant activity.

  12. Antioxidant activity of wheat and buckwheat flours

    Directory of Open Access Journals (Sweden)

    Sedej Ivana J.

    2010-01-01

    Full Text Available Antioxidative activities of wheat flours (type 500 and wholegrain and buckwheat flours (light and wholegrain were tested using 1,1-diphenyl-2-picrylhydrazyl (DPPH·-scavenging activity, reducing power and chelating activity on Fe2+. Also, the content of the total phenolics of ethanolic extracts was estimated. Polyphenolics content (expressed as gallic acid equivalent, GAE in wheat flours varied between 37.1 and 137.2 μg GAE/g extract, while its content in buckwheat flour were at least four time higher and ranged between 476.3 and 618.9μg GAE/g extract. Ethanolic extracts of buckwheat flours exhibited higher antioxidant activities in all the assays, except for chelating activity. Regarding all the obtained results, it can be concluded that bakery products produced with buckwheat flour could be regarded as potential functional foods.

  13. GST-TAT-SOD: Cell Permeable Bifunctional Antioxidant Enzyme-A Potential Selective Radioprotector.

    Science.gov (United States)

    Pan, Jianru; He, Huocong; Su, Ying; Zheng, Guangjin; Wu, Junxin; Liu, Shutao; Rao, Pingfan

    2016-01-01

    Superoxide dismutase (SOD) fusion of TAT was proved to be radioprotective in our previous work. On that basis, a bifunctional recombinant protein which was the fusion of glutathione S-transferase (GST), SOD, and TAT was constructed and named GST-TAT-SOD. Herein we report the investigation of the cytotoxicity, cell-penetrating activity, and in vitro radioprotective effect of GST-TAT-SOD compared with wild SOD, single-function recombinant protein SOD-TAT, and amifostine. We demonstrated that wild SOD had little radioprotective effect on irradiated L-02 and Hep G2 cells while amifostine was protective to both cell lines. SOD-TAT or GST-TAT-SOD pretreatment 3 h prior to radiation protects irradiated normal liver cells against radiation damage by eliminating intracellular excrescent superoxide, reducing cellular MDA level, enhancing cellular antioxidant ability and colony formation ability, and reducing apoptosis rate. Compared with SOD-TAT, GST-TAT-SOD was proved to have better protective effect on irradiated normal liver cells and minimal effect on irradiated hepatoma cells. Besides, GST-TAT-SOD was safe for normal cells and effectively transduced into different organs in mice, including the brain. The characteristics of this protein suggest that it may be a potential radioprotective agent in cancer therapy better than amifostine. Fusion of two antioxidant enzymes and cell-penetrating peptides is potentially valuable in the development of radioprotective agent. PMID:27313832

  14. Development of microalgae biomaterials with enhanced antioxidant activity using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younghwa; Park, Hyunjin; Choi, Soojeong; Lee, Jaehwa [Silla Univ., Busan (Korea, Republic of)

    2013-07-01

    By increasing the antioxidant products (e. g. antioxidant enzyme, carotenoid, phycobiliproteins, chlorophyll, lipid phenolic compounds, etc.) in microalgae, it could be useful for industry. In this study, mutants of fresh water microalgae Arthrospira platensis (A. platensis) by high energy electron beam were isolated and characterized. Those selected mutants showed higher growth rate than parental strain. The antioxidant enzyme activity (SOD and POD), flavonoid, phenolic compound and phycocyanin of mutants were increased about 2 times compared to wild type. Moreover, DPPH radical scavenging activity was increased about 20%. Microalgae species with improved growth rate and enhanced active compounds make the commercial process more feasible in industry. Using microalgae mutants with increased antioxidant products, it is useful to develop microalgae biomaterials for neutraceuticals.

  15. Development of microalgae biomaterials with enhanced antioxidant activity using electron beam

    International Nuclear Information System (INIS)

    By increasing the antioxidant products (e. g. antioxidant enzyme, carotenoid, phycobiliproteins, chlorophyll, lipid phenolic compounds, etc.) in microalgae, it could be useful for industry. In this study, mutants of fresh water microalgae Arthrospira platensis (A. platensis) by high energy electron beam were isolated and characterized. Those selected mutants showed higher growth rate than parental strain. The antioxidant enzyme activity (SOD and POD), flavonoid, phenolic compound and phycocyanin of mutants were increased about 2 times compared to wild type. Moreover, DPPH radical scavenging activity was increased about 20%. Microalgae species with improved growth rate and enhanced active compounds make the commercial process more feasible in industry. Using microalgae mutants with increased antioxidant products, it is useful to develop microalgae biomaterials for neutraceuticals

  16. Effect of Cadmium on Seed Germination and Antioxidative Enzymes Activities in Cotyledon of Solanum nigrum L.%镉对龙葵种子萌发及子叶抗氧化酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    刘金光; 张玉秀; 史沛丽; 柴团耀

    2012-01-01

    . Furthermore, the activities of calalase (CAT) and ascorbate peroxidase (APX) in S. nigrum cotyledon were strongly enhanced at 100-150 μmol·L-1 Cd, whereas superoxide dismutase(SOD) activity decreased, yet maintained a relatively high level. Taken together, these data indicated that 5. nigrum might tolerate less than 150 μmol·L-1 of Cd and antioxidant enzymes play an important role in counteracting the deleterious effects of Cd.

  17. RSM based optimized enzyme-assisted extraction of antioxidant phenolics from underutilized watermelon (Citrullus lanatus Thunb.) rind.

    Science.gov (United States)

    Mushtaq, Muhammad; Sultana, Bushra; Bhatti, Haq Nawaz; Asghar, Muhammad

    2015-08-01

    Enzyme assisted solvent extraction (EASE) of phenolic compounds from watermelon (C. lanatus) rind (WMR) was optimized using Response Surface Methodology (RSM) with Rotatable Central Composite Design (RCCD). Four variables each at five levels i.e. enzyme concentration (EC) 0.5-6.5 %, pH 6-9, temperature (T) 25-75 °C and treatment time (t) 30-90 min, were augmented to get optimal yield of polyphenols with maximum retained antioxidant potential. The polyphenol extracts obtained under optimum conditions were evaluated for their in-vitro antioxidant activities and characterized for individual phenolic profile by RP-HPLC-DAD. The results obtained indicated that optimized EASE enhanced the liberation of antioxidant phenolics up to 3 folds on fresh weight basis (FW) as compared to conventional solvent extraction (CSE), with substantial level of total phenolics (173.70 mg GAE/g FW), TEAC 279.96 mg TE/g FW and DPPH radical scavenging ability (IC50) 112.27 mg/mL. Chlorogenic acid (115.60-1611.04), Vanillic acid (26.13-2317.01) and Sinapic acid (113.01-241.12 μg/g) were major phenolic acid found in EASEx of WMR. Overall, it was concluded that EASE might be efficient and green technique to revalorize under-utilized WMR into potent antioxidant phenolic for their further application in food and nutraceutical industries.

  18. Seasonal variations of melatonin in ram seminal plasma are correlated to those of testosterone and antioxidant enzymes

    Directory of Open Access Journals (Sweden)

    Muiño-Blanco Teresa

    2010-06-01

    Full Text Available Abstract Background Some breeds of sheep are highly seasonal in terms of reproductive capability, and these changes are regulated by photoperiod and melatonin secretion. These changes affect the reproductive performance of rams, impairing semen quality and modifying hormonal profiles. Also, the antioxidant defence systems seem to be modulated by melatonin secretion, and shows seasonal variations. The aim of this study was to investigate the presence of melatonin and testosterone in ram seminal plasma and their variations between the breeding and non-breeding seasons. In addition, we analyzed the possible correlations between these hormones and the antioxidant enzyme defence system activity. Methods Seminal plasma from nine Rasa Aragonesa rams were collected for one year, and their levels of melatonin, testosterone, superoxide dismutase (SOD, glutathione reductase (GRD, glutathione peroxidase (GPX and catalase (CAT were measured. Results All samples presented measurable quantities of hormones and antioxidant enzymes. Both hormones showed monthly variations, with a decrease after the winter solstice and a rise after the summer solstice that reached the maximum levels in October-November, and a marked seasonal variation (P Conclusions These results show the presence of melatonin and testosterone in ram seminal plasma, and that both hormones have seasonal variations, and support the idea that seasonal variations of fertility in the ram involve interplay between melatonin and the antioxidant defence system.

  19. Antidiabetic effect of Punica granatum flowers: effect on hyperlipidemia, pancreatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes.

    Science.gov (United States)

    Bagri, Priyanka; Ali, Mohd; Aeri, Vidhu; Bhowmik, Malay; Sultana, Shahnaz

    2009-01-01

    The present study investigated the effects of Punica granatum aqueous extract (PgAq) on streptozotocin (STZ) induced diabetic rats by measuring fasting blood glucose, lipid profiles (atherogenic index), lipid peroxidation (LPO) and activities of both non-enzymatic and enzymatic antioxidants. Diabetes was induced by single intraperitoneal injection of STZ (60 mg/kg) to albino Wistar rats. The increase in blood glucose level, total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), very low density lipoprotein (VLDL), LPO level with decrease in high density lipoprotein cholesterol (HDL-C), reduced glutathione (GSH) content and antioxidant enzymes namely, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) were the salient features observed in diabetic rats. On the other hand, oral administration of PgAq at doses of 250 mg/kg and 500 mg/kg for 21 days resulted in a significant reduction in fasting blood glucose, TC, TG, LDL-C, VLDL-C and tissue LPO levels coupled with elevation of HDL-C, GSH content and antioxidant enzymes in comparison with diabetic control group. The results suggest that PG could be used, as a dietary supplement, in the treatment of chronic diseases characterized by atherogenous lipoprotein profile, aggravated antioxidant status and impaired glucose metabolism and also in their prevention. PMID:18950673

  20. Antioxidant and Antiacetylcholinesterase Activity of Teucrium hyrcanicum

    Directory of Open Access Journals (Sweden)

    Fereshteh Golfakhrabadi

    2015-01-01

    Full Text Available Background: Teucrium hyrcanicum belonging to the Lamiaceae family is a native plant in Iran; it is called Maryam nokhodi-e-jangali in Farsi. Objective: The aim of this study is to evaluate acetylcholinesterase inhibition (AChEI, antioxidant activity and flavonoids content of T. hyrcanicum methanol extract. Materials and Methods: The air-dried and the ground aerial parts of T. hyrcanicum were extracted by percolation method with methanol. Antioxidant activity of the extract was investigated by using 2,2′-diphenyl-1-picrylhydrazyl (DPPH and ferric reducing antioxidant power assay (FRAP methods. In addition, AChEI and flavonoid content of T. hyrcanicum methanol extract were measured. Results: The results showed that total flavonoid content of T. hyrcanicum in reference to the standard curve for quercetin was 20.70 ± 0.05 mg quercetin equivalents/g of extract. In the FRAP method, the antioxidant activity of T. hyrcanicum extract and butyl hydroxyanisole (BHA (as a positive control were 657.5 ± 0.04 and 880 ± 0.06 mmol Fe II/1 g dried extract. According to results of DPPH assay, half maximal inhibitory concentration (IC 50 value for DPPH radical-scavenging activities of T. hyrcanicum methanol extract, vitamin E and BHA were 74.6, 14.12 and 7.8 μg/mL, respectively. IC 50 value for AChEI of T. hyrcanicum and donepezil as a positive control were 2.12 mg/mL and 0.013 mg/mL. Conclusion: The results of the present study showed T. hyrcanicum is a natural antioxidant that the flavonoid content can be responsible for extract effects.

  1. Responses of Antioxidant Enzymes in Catfish Exposed to Liquid Crystals from E-Waste

    Directory of Open Access Journals (Sweden)

    Hongtao Yu

    2008-06-01

    Full Text Available Liquid crystals (LCs are typically elongated organic molecules with a non-uniform distribution of electrical charges leading to a dipole. LCs are widely used in displays of computers and other electronic devices. The rapid obsolescence rate of electronics results in large amounts of liquid crystal displays (LCDs entering the environment. Data on health effects of LCs on living creatures are currently limited to some acute toxicity tests by a few major LC manufacturers. These tests concluded that the vast majority of LCs are not acutely toxic. Since the amount of LCs in electronic devices is very small, the health effects of LCs at low concentrations or doses become important. Catfish were used as the test animals in this study. Four major enzymes of the fish’s antioxidant defense system catalase (CAT, superoxide dismutase (SOD, selenium-dependent glutathione peroxidase (Se-GPx, and glutathione-Stransferase (GST were chosen as biomarkers to examine effects of LCs, which were taken from obsolete laptop personal computers made in the early 1990s. The catfish were fed with food containing different contents of LCs for 40 days. Activities of the four chosen enzymes in fish livers were assayed. The results showed that there were significant inductions of CAT, SOD, and Se-GPx activities in response to the LC doses. The plots of the enzyme activities versus LC doses suggested an occurrence of oxidative stress when the dose reached about 20 μg LC/g fish·d. It was concluded that LCs can cause pollutant-induced stress to catfish at low doses. CAT, SOD and Se-GPx are effective biomarkers to give early warning on potential health effects of LCs on some aquatic lives including catfish.

  2. The effects of pycnogenol on antioxidant enzymes in a mouse model of ozone exposure

    OpenAIRE

    Lee, Min-Sung; Moon, Kuk-Young; Bae, Da-Jeong; Park, Moo-Kyun; Jang, An-Soo

    2013-01-01

    Background/Aims Ozone is an environmentally reactive oxidant, and pycnogenol is a mixture of flavonoid compounds extracted from pine tree bark that have antioxidant activity. We investigated the effects of pycnogenol on reactive nitrogen species, antioxidant responses, and airway responsiveness in BALB/c mice exposed to ozone. Methods Antioxidant levels were determined using high performance liquid chromatography with electrochemical detection. Nitric oxide (NO) metabolites in bronchoalveolar...

  3. Effects of grafting on eggplant growth and antioxidant enzyme activities under carbendazim stress%多菌灵胁迫下嫁接对茄子生长和抗氧化酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    周宝利; 李娟; 高平; 孟兆华; 陈志霞

    2012-01-01

    以野生茄托鲁巴姆(Solanum torvum)为砧木,以栽培品种西安绿茄(S.melongena)为接穗进行嫁接,测定不同施入频次多菌灵条件下嫁接茄子和自根茄子果实中的农药残留、生长发育状况和抗逆生理指标.结果表明,经过多菌灵施药1次、2次、3次处理后,嫁接茄果实中农药残留量比自根茄分别降低了12.7% ~49.6%、11.4% ~63.1%、13.5%~44.1%;嫁接茄株高、茎粗、植株鲜重和鲜果重相对于自根茄明显增加;嫁接茄根系活力比自根茄增加了6.8% ~29.3%、8.7% ~24.5%、11.1% ~28.6%;嫁接茄叶片过氧化氢酶(CAT)活性、过氧化物酶(POD)活性、谷胱甘肽过氧化物酶(GSH-PX)活性相对于自根茄明显增加,而相对电导率比自根茄降低了16.3%~27.3%,19.7% ~ 31.9%、20.5% ~36.1%;嫁接茄丙二醛含量比自根茄降低了21.4%~31.6%、24.6% ~ 37.9%、23.7%~39.0%.试验结果显示,施药2次和3次,各指标变化相对于施药1次明显.因此,在多菌灵胁迫下,嫁接茄子果实中的农药残留降低,植株长势明显增强,有关酶的代谢活性显著提高,从而缓解了多菌灵胁迫对茄子造成的危害.%Taking the wild eggplant (Solanum torvum) as rootstock and the cultivated eggplant ( S. melongena) cultivar ' Xi' anliiqie' as scion, this paper studied the fruits' pesticide residue , growth indices, and antioxidant enzyme activities of grafted and self-rooted eggplants under the stress of different frequencies carbendazim application. After applying carbendazim for once, twice, and three times, the fruits' pesticide residue of grafted eggplants decreased by 12. 7% -49.6% , 11.4% -63. 1% , and 13. 5% -44. 1% , respectively, as compared with that of self-rooted eggplants. The plant height, stem diameter, and plant and fruit fresh weights of grafted eggplants were obviously higher than those of self-rooted eggplants, and the root activity of grafted

  4. Antidiabetic and antioxidant activity of Scoparia dulcis linn.

    Directory of Open Access Journals (Sweden)

    M R Mishra

    2013-01-01

    Full Text Available The hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on both in vitro and in vivo models along with determination of total extractable polyphenol. Methanol extract of Scoparia dulcis contains 4.9% and water extract contains 3.2% of total extractable polyphenol. The antioxidant activity showed very promising result in both the tested methods that is 2,2-diphenyl-1-picrylhydrazyl and ferric ion reducing capacity. The antioxidant activity is directly correlated to the antidiabetic potential of drug. The two enzymes (amylase and glycosidase found in intestine are responsible for the increasing postprandial glucose in body. In vitro model was performed on these enzymes and the results showed that methanol extract of Scoparia dulcis was effective to check the postprandial glucose level. The in vivo hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on streptozotocin-induced diabetes mellitus showed significant inhibition of blood glucose level as compared to control and similar to that of standard glibenclamide. The overall data potentiates the traditional value of Scoparia dulcis as an antidiabetic drug.

  5. Antidiabetic and Antioxidant Activity of Scoparia dulcis Linn.

    Science.gov (United States)

    Mishra, M R; Mishra, A; Pradhan, D K; Panda, A K; Behera, R K; Jha, S

    2013-09-01

    The hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on both in vitro and in vivo models along with determination of total extractable polyphenol. Methanol extract of Scoparia dulcis contains 4.9% and water extract contains 3.2% of total extractable polyphenol. The antioxidant activity showed very promising result in both the tested methods that is 2,2-diphenyl-1-picrylhydrazyl and ferric ion reducing capacity. The antioxidant activity is directly correlated to the antidiabetic potential of drug. The two enzymes (amylase and glycosidase) found in intestine are responsible for the increasing postprandial glucose in body. In vitro model was performed on these enzymes and the results showed that methanol extract of Scoparia dulcis was effective to check the postprandial glucose level. The in vivo hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on streptozotocin-induced diabetes mellitus showed significant inhibition of blood glucose level as compared to control and similar to that of standard glibenclamide. The overall data potentiates the traditional value of Scoparia dulcis as an antidiabetic drug. PMID:24403665

  6. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  7. Evaluation of antioxidant activities of Hippophae rhamnoides Linn leaves extracts

    Institute of Scientific and Technical Information of China (English)

    JavidAli; BashirAhmad

    2015-01-01

    Objective: To investigate the antioxidant activity of aqueous, methanol, ethanol, acetone, ethyl acetate, chloroform and n-hexane extracts of Hippophae rhamnoides (H. rhamnoides) leaves. Methods: Antioxidant activity was evaluated by using in-vitro antioxidant assays model 1, 1’-diphenyl-2-picrylhydrazyl radical-scavenging activity. The antioxidant activities were compared with standard antioxidant agents such as ascorbic acid. Results: The antioxidant activities (% inhibition) of all the tested extracts were increased in the order i.e. menthol > ethanol > aqueous > acetone > chloroform > ethyl acetate > n-hexane. The methanol extract EC50 (µg/mL) value was compatible with vitamin C (standard). The antioxidant activity of H. rhamnoides leaves extracts increased in a dose dependent manner. Conclusions: It was observed that H. rhamnoides was a potential resource of antioxidants and thus could put off numerous radical linked diseases.

  8. Evaluation of antioxidant activities of Hippophae rhamnoides Linn leaves extracts

    Directory of Open Access Journals (Sweden)

    Javid Ali

    2015-05-01

    Full Text Available Objective: To investigate the antioxidant activity of aqueous, methanol, ethanol, acetone, ethyl acetate, chloroform and n-hexane extracts of Hippophae rhamnoides (H. rhamnoides leaves. Methods: Antioxidant activity was evaluated by using in-vitro antioxidant assays model 1, 1’-diphenyl-2-picrylhydrazyl radical-scavenging activity. The antioxidant activities were compared with standard antioxidant agents such as ascorbic acid. Results: The antioxidant activities (% inhibition of all the tested extracts were increased in the order i.e. menthol > ethanol > aqueous > acetone > chloroform > ethyl acetate > n-hexane. The methanol extract EC50 (µg/mL value was compatible with vitamin C (standard. The antioxidant activity of H. rhamnoides leaves extracts increased in a dose dependent manner. Conclusions: It was observed that H. rhamnoides was a potential resource of antioxidants and thus could put off numerous radical linked diseases.

  9. Size distribution of fullerenol nanoparticles in cell culture medium and their influence on antioxidative enzymes in Chinese hamster ovary cells

    Directory of Open Access Journals (Sweden)

    Srđenović Branislava U.

    2015-01-01

    Full Text Available Fullerenol (C60(OH24 nanoparticles (FNP have a significant role in biomedical research due to their numerous biological activities, some of which are cytoprotective and antioxidative properties. The aim of this study was to measure distribution of fullerenol nanoparticles and zeta potential in cell medium RPMI 1640 with 10% fetal bovine serum (FBS and to investigate the influence of FNP on Chinese hamster ovary cells (CHO-K1 survival, as well as to determine the activity of three antioxidative enzymes: superoxide-dismutase, glutathione-reductase and glutathione-S-transferase in mitomycin C-treated cell line. Our investigation implies that FNP, as a strong antioxidant, influence the cellular redox state and enzyme activities and thus may reduce cell proliferation, which confirms that FNP could be exploited for its use as a cytoprotective agent.[Projekat Ministarstva nauke Republike Srbije, br. III45005 i Pokrajinski Sekretarijat za nauku i tehnološki razvoj Vojvodine, grant number 114-451-2056/2011-01

  10. Antioxidant activity of Aquilaria malaccensis (thymelaeaceae leaves

    Directory of Open Access Journals (Sweden)

    A.W.N Huda

    2009-01-01

    Full Text Available The phytochemical and antioxidant activity of Aquilaria malaccensis leaves were investigated. The sequential maceration extraction methods utilizing solvents with different polarities namely hexane, ethyl acetate and methanol yielded the corresponding crude extract. The extracts were subjected to preliminary phytochemical screening and revealed the presence of alkaloids, flavanoids, triterpenoids, steroids and saponins. The phytochemical screening suggests that flavanoids present in this species might provide a great value of antioxidant activity. Preliminary screenings of the free radical scavenging activity on the extracts of the plants with 2, 2-Diphenyl-1-picrylhydrazyl (DPPH were tested and showed positive result. Quarcetine was used as reference standard. The extracts exhibited strong antioxidant activity radical scavenging activity with IC 50 value of 8.0 Χ 10 2 μg/ml, 1.6 Χ 10 2 μg/ml, 1.4 Χ 10 2 μg/ml, 30.0 μg/ml and 3.33 μg/ ml for hexane, DCM, ethyl acetate, methanol and quarcetine respectively.

  11. Effect of Atrazine on Antioxidant Enzyme and Its Bioaccumulation in Kidney of Crucian Carp, Carassius auratus

    Institute of Scientific and Technical Information of China (English)

    MENG Shunlong; CHEN Jiazhang; WU Wei; HU Gengdong; QU Jianhong; YOU Yang

    2011-01-01

    Etrazine is one of the most widely used herbicides in China and the world. Acute and chronic toxicity tests werc carried out to assess the possible toxicity effect of atrazine on crucian carp (Carassius auratus). Results showed that 96 h LC,. of atrazine to Carassius auratus was 105.94 mg. L-1. The enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferases (GST) in kidney of Carassius auratus were all influenced by atraizine, and CAT was more sensitive to atrazine compared with SOD and GST. Atrazine residues in kidney of Carassius aura/us reached the stable state at day 19, and the bioaccumulation factors (BAF) of atrazine in kidney of Carassius auratus treated with 1.0 mg. L-1 and 10.0 mg. L-1 atrazine were 8.3 and 4.4, respectively. The research demonstrated that atrazine could cause oxidative stress to fish kidney, but atrazine was not easy to accumulate in Carassius auratus kidney, and the antioxidant enzymes could be used as biomarker to the early detection of pollution.

  12. Blood antioxidant enzymes as markers of exposure or effect in coal miners.

    OpenAIRE

    Perrin-Nadif, R; Auburtin, G; Dusch, M; Porcher, J. M.; Mur, J M

    1996-01-01

    OBJECTIVE--To investigate if blood Cu++/Zn++ superoxide dismutase, glutathione peroxidase, catalase, and total plasma antioxidant activities could be markers of biological activity resulting from exposure to respirable coal mine dust in active miners, and of pneumoconiosis in retired miners. METHODS--Blood samples were randomly obtained from active surface workers (n = 30) and underground miners (n = 34), and from retired miners without (n = 21), and with (n = 33) pneumoconiosis. Antioxidant ...

  13. Antioxidant activity of taxifolin: an activity-structure relationship.

    Science.gov (United States)

    Topal, Fevzi; Nar, Meryem; Gocer, Hulya; Kalin, Pınar; Kocyigit, Umit M; Gülçin, İlhami; Alwasel, Saleh H

    2016-08-01

    Taxifolin is a kind of flavanonol, whose biological ability. The objectives of this study were to investigate the antioxidants and antiradical activities of taxifolin by using different in vitro bioanalytical antioxidant methods including DMPD√(+), ABTS√(+), [Formula: see text], and DPPH√-scavenging effects, the total antioxidant influence, reducing capabilities, and Fe(2+)-chelating activities. Taxifolin demonstrated 81.02% inhibition of linoleic acid emulsion peroxidation at 30 µg/mL concentration. At the same concentration, standard antioxidants including trolox, α-tocopherol, BHT, and BHA exhibited inhibitions of linoleic acid emulsion as 88.57, 73.88, 94.29, and 90.12%, respectively. Also, taxifolin exhibited effective DMPD√(+), ABTS√(+), [Formula: see text], and DPPH√-scavenging effects, reducing capabilities, and Fe(2+)-chelating effects. The results obtained from this study clearly showed that taxifolin had marked antioxidant, reducing ability, radical scavenging and metal-chelating activities. Also, this study exhibits a scientific shore for the significant antioxidant activity of taxifolin and its structure-activity insight. PMID:26147349

  14. Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species

    Directory of Open Access Journals (Sweden)

    Amal Ahmed Morsy

    2012-01-01

    Full Text Available Background: Heavy metals are major environmental pollutant when they present in high concentration in soil and have toxic effects on growth and development of plants. Industrial activities result in heavy metal pollution of large areas of land, which greatly affects natural vegetation. Understanding the mechanism of how plants combat heavy metals adverse effects is hence of great importance. Materials and Methods: Two different localities were chosen; one locality was in the vicinity of gypsum factory and the other one was 25 km away from the factory. Two Zygophyllum species (Z. album and Z. coccineum were naturally grown in the studied areas. The effects of soil heavy metal stress on shoot heavy metal concentrations, lipid peroxidation, antioxidant enzyme activities and the root plasma membrane (PM lipid composition were analyzed. Results: Heavy metal concentrations and Lipid peroxidation increased in the shoot of both species grown in the polluted area. The activities of ascorbate oxidase (ASO, guaiacal peroxidase (GPX, ascorbate peroxidase (APX and superoxide dismutase (SOD were increased whereas these of catalase (CAT were decreased in both species under the polluted conditions. PM total lipids, phospholipids, glycolipids and sterols were decreased in Z. album and Z. coccineum as a result of the polluted soil. Heavy metal stress increased phosphatidylethanolamine (PE and decreased phosphatidylinositol (PI and phophatidylglycerol (PG, with no significant change in phosphatidylcholine (PC in the root PM of both species. Phosphatidylserine (PS decreased in the PM of Z. album whereas it increased in the PM of Z. coccineum under the pollution conditions. Heavy metal stress changed the composition and concentration of fatty acids of the root PM, resulting in increased sat/unsat ratio of both species. Conclusion: the results suggest that efficient antioxidant machinery and favorable PM lipid homeostasis are important to enable Zygophyllum species

  15. 女贞子提取物对运动训练大鼠不同组织抗氧化酶活性及GSH含量影响%Effect of Ligustrum lucidum extracts on training rat tissue antioxidant enzyme activities and GSH content

    Institute of Scientific and Technical Information of China (English)

    戚世媛; 熊正英

    2013-01-01

    通过建立大鼠递增大强度耐力跑台训练试验模型,测定大鼠力竭时间和抗氧化酶活性及GSH含量影响.结果表明,女贞子提取物可增加力竭运动状态下铜、锌超氧化物歧化酶(Cu-Zn-SOD)、锰超氧化物歧化酶(Mn-SOD)、谷光甘肽过氧化物酶(GSH-Px)活性及还原性谷胱甘肽(GSH)含量.可见补充女贞子提取物可显著提高大鼠各组织抗氧化酶活性,减轻力竭运动对大鼠各组织造成脂质过氧化损伤,具有明显抵抗脂质过氧化功能,对大鼠运动能力提高有良好作用.%The thesis aimed at investigating the effects of Ligustrum lucidum extracts on different organizational activities of exhaustive exercise in rats,its antioxidant and the possible mechanisms of improving the body's resistance to fatigue.The experimental model of increasing endurance treadmill training in rats,was established,and the exhaustive time,antioxidant enzyme activities and GSH content in rats were measured.The results showed that Ligustrum lucidum extract increased copper,zinc superoxide dismutase (Cu-Zn-SOD),manganese superoxide dismutase (Mn-SOD),glutathione peroxidase (GSH-Px)activity and reduced glutathione (GSH) content of different organizations in exhaustive exercise rats.Supplementary with Ligustrum lucidum extracts significantly increased antioxidant enzyme activity,reduced lipid peroxidation damage caused by exhaustive exercise and lipid peroxidation of organization in rats,and played a good role in improving athletic capacity in rats.

  16. Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater

    International Nuclear Information System (INIS)

    The utility of antioxidant enzymes, viz glutathione-S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), as biomarkers of heavy metal pollution in water was investigated using the Allium cepa (onion) system. These antioxidant enzymes were assayed in onion bulbs exposed to certain heavy metals taken separately, the test metals taken in combination as well as the industrial wastewater especially found to contain these metals. GST exhibited significantly enhanced activity upon treatment with individual heavy metals. However, GR, SOD and CAT did not show such a pronounced increase in activities. At higher heavy metal concentrations, GR, SOD and CAT showed a steep decline while GST activity still showed a rise. Moreover, APX, GPX and MDHAR also exhibited remarkable induction with increase in the concentration of individual heavy metals. However, there was no significant change in DHAR activity with respect to the controls. Metabolites like ascorbate (ASC) and glutathione (GSH) exhibited significant decline with increase in the concentration of individual heavy metals while the level of H2O2 continued to display the rise up to a heavy metal concentration of 100 μM, after which it showed a gradual decline. A. cepa bulbs treated with wastewater sample showed enzyme activity profiles similar to that shown with heavy metals, thereby suggesting the presence of heavy metals in the test wastewater. Atomic absorption spectrophotometry also detected large amounts of Cd, Cr, Cu, Hg, Pb and Zn in the test water sample. The metal mixture, containing the amounts of heavy metals equivalent to those found in the wastewater, resulted in steep declines in GR, SOD and CAT activities in A. cepa while GST showed a rise. However, when this metal mixture was diluted to 2000-fold, GR, SOD and CAT also showed enhanced

  17. Chemical Characterization, Antioxidant and Enzymatic Activity of Brines from Scandinavian Marinated Herring Products

    DEFF Research Database (Denmark)

    Gringer, Nina; Osman, Ali; Nielsen, Henrik Hauch;

    2014-01-01

    Brines generated during the last marination step in the production of marinated herring (Clupea harengus) were chemically characterized and analyzed for antioxidant and enzyme activities. The end-products were vinegar cured, spice cured and traditional barrel-salted herring with either salt...... or spices. The chemical characterization encompassed pH, dry matter, ash, salt, fatty acids, protein, polypeptide pattern, iron and nitrogen. The antioxidant activity was tested with three assays measuring: iron chelation, reducing power and radical scavenging activity. The enzymatic activity for peroxidase...... and protease were also tested. Results revealed that the brine can contain up to 56.7 mg protein/ mL, up to 20.1 mg fatty acid/mL, good antioxidant activity, high amounts of the antioxidative amino acids lysine, alanine, and glycine, and high enzymatic activity. The potential of using the protein-rich fraction...

  18. Antioxidant and antiproliferative activities of common fruits.

    Science.gov (United States)

    Sun, Jie; Chu, Yi-Fang; Wu, Xianzhong; Liu, Rui Hai

    2002-12-01

    Consumption of fruits and vegetables has been associated with reduced risk of chronic diseases such as cardiovascular disease and cancer. Phytochemicals, especially phenolics, in fruits and vegetables are suggested to be the major bioactive compounds for the health benefits. However, the phenolic contents and their antioxidant activities in fruits and vegetables were underestimated in the literature, because bound phenolics were not included. This study was designed to investigate the profiles of total phenolics, including both soluble free and bound forms in common fruits, by applying solvent extraction, base digestion, and solid-phase extraction methods. Cranberry had the highest total phenolic content, followed by apple, red grape, strawberry, pineapple, banana, peach, lemon, orange, pear, and grapefruit. Total antioxidant activity was measured using the TOSC assay. Cranberry had the highest total antioxidant activity (177.0 +/- 4.3 micromol of vitamin C equiv/g of fruit), followed by apple, red grape, strawberry, peach, lemon, pear, banana, orange, grapefruit, and pineapple. Antiproliferation activities were also studied in vitro using HepG(2) human liver-cancer cells, and cranberry showed the highest inhibitory effect with an EC(50) of 14.5 +/- 0.5 mg/mL, followed by lemon, apple, strawberry, red grape, banana, grapefruit, and peach. A bioactivity index (BI) for dietary cancer prevention is proposed to provide a new alternative biomarker for future epidemiological studies in dietary cancer prevention and health promotion.

  19. Antioxidant activity of polyphenols in carob pods.

    Science.gov (United States)

    Kumazawa, Shigenori; Taniguchi, Masa; Suzuki, Yasuyuki; Shimura, Masayo; Kwon, Mi-Sun; Nakayama, Tsutomu

    2002-01-16

    We extracted polyphenols from carob (Ceratonia siliqua L.) pods, and evaluated the in vitro antioxidant activity of the crude polyphenol fraction (CPP). The total polyphenol content in CPP determined by the Folin-Ciocalteu method was 19.2%. The condensed tannin content determined by the vanillin and proanthocyanidin assay systems was 4.37% and 1.36%, respectively. beta-Carotene bleaching, 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, inhibition of lipid peroxidation by the erythrocyte ghost, and microsomal assay systems were used to evaluate the antioxidant activity. CPP showed a stronger inhibitory effect against the discoloration of beta-carotene than other polyphenol compounds such as catechins and procyanidins. CPP had weaker antioxidant activity in the DPPH free radical scavenging, the erythrocyte ghost, and microsomal systems than authentic polyphenol compounds at the same concentrations. The activity adjusted by the polyphenol concentration was, however, comparable to that of authentic polyphenol compounds. Considering most carob pods are discarded and not effectively utilized at present, these results suggested that carob pods could be utilized as a functional food or food ingredient.

  20. Cobalt and manganese stress in the microalga Pavlova viridis (Prymnesiophyceae): Effects on lipid peroxidation and antioxidant enzymes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pollution of marine environment has become an issue of major concern in recent years. Serious environmental pollution by heavy metals results from their increasing utilization in industrial processes and because most heavy metals are transported into the marine environment and accumulated without decomposition. The aim of the present study is to investigate the effects on growth, pigments, lipid peroxidation, and some antioxidant enzyme activities of marine microalga Pavlova. viridis, in response to elevated concentrations of cobalt (Co) and manganese (Mn), especially with regard to the involvement of antioxidative defences against heavy metal-induced oxidative stress. In response to Co2+, lipid peroxidation was enhanced compared to the control, as an indication of the oxidative damage caused by metal concentration assayed in the microalgal cells but not Mn2+. Exposure of P. viridis to the two metals caused changes in enzyme activities in a different manner, depending on the metal assayed: after Co2+ treatments, total superoxide dismutase (SOD) activity was irregular, although it was not significantly affected by Mn2+ exposure. Co2+ and Mn2+ stimulated the activities of catalase (CAT) and glutathione (GSH), whereas, glutathione peroxidase (GPX) showed a remarkable increase in activity in response to Co2+ treatments and decreased gradually with Mn2+ concentration, up to 50 μmol/L, and then rose very rapidly, reaching to about 38.98% at 200 μmol/L Mn2+. These results suggest that an activation of some antioxidant enzymes was enhanced, to counteract the oxidative stress induced by the two metals at higher concentration.

  1. Fermented wheat aleurone induces enzymes involved in detoxification of carcinogens and in antioxidative defence in human colon cells.

    Science.gov (United States)

    Stein, Katrin; Borowicki, Anke; Scharlau, Daniel; Glei, Michael

    2010-10-01

    Dietary fibre is fermented by the human gut flora resulting mainly in the formation of SCFA, for example, acetate, propionate and butyrate. SCFA, in particular butyrate, may be important for secondary cancer prevention by inducing apoptosis and inhibiting cell growth of cancer cells, thereby inhibiting the promotion and/or progression of cancer. Furthermore, SCFA could also act on primary cancer prevention by activation of detoxifying and antioxidative enzymes. We investigated the effects of fermented wheat aleurone on the expression of genes involved in stress response and toxicity, activity of drug-metabolising enzymes and anti-genotoxic potential. Aleurone was digested and fermented in vitro to obtain samples that reflect the content of the colon. HT29 cells and colon epithelial stripes were incubated with the resulting fermentation supernatant fractions (fs) and effects on mRNA expression of CAT, GSTP1 and SULT2B1 and enzyme activity of glutathione S-transferase (GST) and catalase (CAT) were measured. Fermented aleurone was also used to study the protection against H2O2-induced DNA damage in HT29 cells. The fs of aleurone significantly induced the mRNA expression of CAT, GSTP1 and SULT2B1 (HT29) and GSTP1 (epithelial stripes), respectively. The enzyme activities of GST (HT29) and CAT (HT29, epithelial stripes) were also unambiguously increased (1.4- to 3.7-fold) by the fs of aleurone. DNA damage induced by H2O2 was significantly reduced by the fs of aleurone after 48 h, whereupon no difference was observed compared with the faeces control. In conclusion, fermented aleurone is able to act on primary prevention by inducing mRNA expression and the activity of enzymes involved in detoxification of carcinogens and antioxidative defence.

  2. Phenolic compounds and antioxidant activity of rice

    Directory of Open Access Journals (Sweden)

    Melissa Walter

    2011-04-01

    Full Text Available The aim of this work was to study the phenolic compounds identified in rice, their antioxidant activity and their potential beneficial effects on health. In vitro and in vivo studies evaluating the rice grains with different pericarp colour (light brown, red and black showed potential beneficial effects on health related to the polyphenol content of the grain, such as reduction of oxidative stress, aid in the prevention of cancer, cardiovascular diseases and complications of diabetes, among others.

  3. Effect of antioxidants and associate changes in antioxidant enzymes in controlling browning and necrosis of proliferating shoots of elite Jatropha curcas L

    International Nuclear Information System (INIS)

    A high yielding elite plant of Jatropha curcas was established under aseptic condition from field-grown nodal explants. Shoots were proliferated in MS medium supplemented with 0.5 mg dm-3 benzyladenine and 0.1 mg dm-3 indolebutyric acid along with 10 mg dm-3 adenine sulphate and a combination of 15 mg dm-3 each of L-glutamine and L-arginine. However, within 15-20 d of culture incubation, tissue browning/necrosis leading to poor plant regeneration in vitro was observed. A set of different antioxidants, namely, reduced glutathione, ascorbic acid, tocopherol and cysteine were used in the medium individually and in combination to solve the problem of tissue browning and necrosis. The addition of antioxidants proved beneficial for the growth of the shoots. The optimum medium comprised of 25 mg dm-3 reduced glutathione and 10 mg dm-3 ascorbic acid, where proliferating shoots having highest leaf canopy area, remained fresh, green and regenerative up to 40 d of culture incubation without any subculture. The activities of antioxidant enzymes, such as superoxide dismutase was higher in control shoots, indicating that tissue browning/necrosis was associated with oxidative stress which was further supported by higher contents of H2O2 and phenolics in control shoots compared to the other treatments. Similarly glutathione reductase, ascorbate peroxidase and guiacol peroxidase was higher in treated shoots than control indicating that these shoots have developed antioxidant enzymatic protective system which determine the ability to survive in oxidative stress and up regulation of these enzymes would help to reduce the built up of reactive oxygen species.

  4. beta-carotene does not change markers of enzymatic and nonenzymatic antioxidant activity in human blood

    DEFF Research Database (Denmark)

    Castenmiller, J.J.M.; Lauridsen, Søren T.; Dragsted, Lars O.;

    1999-01-01

    In vitamin A-replete populations, increased concentrations of serum carotenoids have been associated with a decreased risk of degenerative diseases. The mechanism of action of carotenoids in determining antioxidant activity is largely unknown. The aim of the study was to examine the effect...... of carotenoid supplementation and spinach intake on erythrocyte enzyme antioxidant activities, serum or plasma nonenzymatic antioxidant concentrations, and concentrations of oxidatively damaged amino acids in plasma; Subjects received for 3 wk a basic diet (n = 10), a basic diet with a carotenoid supplement (n...... and erythrocyte enzyme activities were assessed, and differences among experimental groups were tested. Consumption of spinach resulted in greater (P activity and lower (P activity and serum alpha-tocopherol concentration compared...

  5. Ambient particulate air pollution and circulating antioxidant enzymes: A repeated-measure study in healthy adults in Beijing, China.

    Science.gov (United States)

    Wu, Shaowei; Wang, Bin; Yang, Di; Wei, Hongying; Li, Hongyu; Pan, Lu; Huang, Jing; Wang, Xin; Qin, Yu; Zheng, Chanjuan; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2016-01-01

    The association of systemic antioxidant activity with ambient air pollution has been unclear. A panel of 40 healthy college students underwent repeated blood collection for 12 occasions under three exposure scenarios before and after relocating from a suburban area to an urban area in Beijing, China in 2010-2011. We measured various air pollutants including fine particles (PM2.5) and determined circulating levels of antioxidant enzymes extracellular superoxide dismutase (EC-SOD) and glutathione peroxidase 1 (GPX1) in the laboratory. An interquartile range increase of 63.4 μg/m(3) at 3-d PM2.5 moving average was associated with a 6.3% (95% CI: 0.6, 12.4) increase in EC-SOD and a 5.5% (95% CI: 1.3, 9.8) increase in GPX1. Several PM2.5 chemical constituents, including negative ions (nitrate and chloride) and metals (e.g., iron and strontium), were consistently associated with increases in EC-SOD and GPX1. Our results support activation of circulating antioxidant enzymes following exposure to particulate air pollution.

  6. Estradiol Modulates Membrane-Linked ATPases, Antioxidant Enzymes, Membrane Fluidity, Lipid Peroxidation, and Lipofuscin in Aged Rat Liver

    Directory of Open Access Journals (Sweden)

    Pardeep Kumar

    2011-01-01

    Full Text Available Free radical production and oxidative stress are known to increase in liver during aging, and may contribute to the oxidative damage. These changes increase during menopausal condition in females when the level of estradiol is decreased. The objective of this study was to observe the changes in activities of membrane linked ATPases (Na+K+ ATPase, Ca2+ ATPase, antioxidant enzymes (superoxide dismutase, glutathione-S-transferase, lipid peroxidation levels, lipofuscin content and membrane fluidity occurring in livers of female rats of 3, 12 and 24 months age groups, and to see whether these changes are restored to 3 months control levels rats after exogenous administration of 17-β-estradiol (E2. The aged rats (12 and 24 months were given subcutaneous injection of E2 (0.1 μg/g body weight daily for one month. The results obtained in the present work revealed that normal aging was associated with significant decrease in the activities of membrane linked ATPases, antioxidant enzymes, membrane fluidity and an increase in lipid peroxidation and lipofuscin content in livers of aging female rats. The present study showed that E2 treatment reversed the changes to normal levels. E2 treatment may be beneficial in preventing some of the age related changes in the liver by increasing antioxidant defenses.

  7. EFFECTS OF AGE INCREMENT AND 36-WEEK EXERCISE TRAINING ON ANTIOXIDANT ENZYMES AND APOPTOSIS IN RAT HEART TISSUE