WorldWideScience

Sample records for antioxidant defense system

  1. Free radicals, antioxidant defense systems, and schizophrenia.

    Science.gov (United States)

    Wu, Jing Qin; Kosten, Thomas R; Zhang, Xiang Yang

    2013-10-01

    The etiopathogenic mechanisms of schizophrenia are to date unknown, although several hypotheses have been suggested. Accumulating evidence suggests that excessive free radical production or oxidative stress may be involved in the pathophysiology of schizophrenia as evidenced by increased production of reactive oxygen or decreased antioxidant protection in schizophrenic patients. This review aims to summarize the basic molecular mechanisms of free radical metabolism, the impaired antioxidant defense system and membrane pathology in schizophrenia, their interrelationships with the characteristic clinical symptoms and the implications for antipsychotic treatments. In schizophrenia, there is accumulating evidence of altered antioxidant enzyme activities and increased levels of lipid peroxidation, as well as altered levels of plasma antioxidants. Moreover, free radical-mediated abnormalities may contribute to specific aspects of schizophrenic symptomatology and complications of its treatment with antipsychotic drugs, as well as the development of tardive dyskinesia (TD). Finally, the potential therapeutic strategies implicated by the accumulating data on oxidative stress mechanisms for the treatment of schizophrenia are discussed.

  2. Antioxidative defense

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals occur constantly during metabolism and take part in numerous physiological processes, such as: intra-cellular and inter-cellular signalization, gene expression, removal of damaged or senescent cells, and control of the tone of blood vessels. However, there is an increased quantity of free radicals in situations of so-called oxidative stress, when they cause serious damage to cellular membranes (peroxidation of their lipids, damage of membrane proteins, and similar, to interior cellular protein molecules, as well as DNA molecules and carbohydrates. This is precisely why the organism has developed numerous mechanisms for removing free radicals and/or preventing their production. Some of these are enzyme-related and include superoxide-dismutase, catalase, glutathione-peroxidase, and others. Other, non-enzyme mechanisms, imply antioxidative activities of vitamins E and C, provitamin A, coenzyme Q, reduced glutation, and others. Since free radicals can leave the cell that has produced them and become dispersed throughout the body, in addition to antioxidative defense that functions within cellular structures, antioxidant extra-cellular defense has also been developed. This is comprised by: transferrin, lactoferrin, haptoglobin, hemopexin, ceruloplasmin, albumins, extra-cellular isoform SOD, extracellular glutathione-peroxidase, glucose, bilirubin, urates, and many other molecules.

  3. Pineal Proteins Upregulate Specific Antioxidant Defense Systems in the Brain

    Directory of Open Access Journals (Sweden)

    Vijay K. Bharti

    2009-01-01

    Full Text Available The neuroendocrine functions of the pineal affect a wide variety of glandular and nervous system processes. Beside melatonin (MEL, the pineal gland secretes and expresses certain proteins essential for various physiological functions. It has been suggested that the pineal gland may also have an antioxidant role due to secretory product other than MEL. Therefore, the present study was designed to study the effect of buffalo (Bubalus bubalis pineal proteins (PP on the antioxidant defense system in the brain of female rats. The twenty-four rats were taken in present study and were divided into four groups: control (0 day, control (28 day, vehicle control and buffalo PP. The PP was injected 100 µg/kg BW intraperitoneal (i.p. daily for 28 days. The activities of superoxide dismutase (SOD, glutathione peroxidase (GPx, catalase (CAT, glutathione reductase (GR and reduced glutathione (GSH concentration and the levels of lipid peroxidation (LPO in the brain tissue were measured to assess the antioxidant systems. These enzymes protect from adverse effects of free radicals and help in amelioration of oxidative stress. Buffalo pineal proteins administration did not cause any effect on brain LPO, whereas GPx, GR and GSH were significantly (p < 0.05 decreased. However, SOD and CAT activities were increased to significant levels than the control in PP treated rats. Our study herein suggested that buffalo (Bubalus bubalis pineal proteins upregulates specific antioxidant defense systems and can be useful in control of various oxidative stress-induced neuronal diseases.

  4. The antioxidant defense system of Varroa destructor mites facilitates the infestation of Apis mellifera

    Directory of Open Access Journals (Sweden)

    Dmochowska-Ślęzak Kamila

    2016-06-01

    Full Text Available Varroa destructor is a parasitic mite of the Western honey bee. The activity of five antioxidant enzymes of V. destructor were analysed. Glutathione content and total antioxidant status was also evaluated. Our results suggest that antioxidant enzymes constitute the main line of defense against ROS in V. destructor, whereas low-molecular-weight antioxidants play a limited role in the antioxidant system of mites.

  5. Oxidative and antioxidative defense system in testicular torsion/detorsion

    Directory of Open Access Journals (Sweden)

    F A Elshaari

    2011-01-01

    Full Text Available Aim: The present study was aimed to assess the early effects of ischemia/reperfusion injury on the oxidants and anti-oxidant defense status in rat testicular tissue by measuring MDA, glucose-6-phosphte dehydrogenase activity and reduced glutathione levels in a designated time frame sequel to reperfusion. Animals were divided randomly into six groups (12 animals per group in the following order: Group I: Sham-operated control group (Cso without the application of the torsion. Group 2: Torsion-induced ischemia group (T30 m: Ischemia was induced through the torsion of spermatic cord for a period of 30 min. Group 3: One hour reperfusion group after detorsion (T30 mR1 h. Group 4: Twenty-four hour reperfusion group after detorsion (T30 mR24 h. Group 5: Forty-eight hours reperfusion group after detorsion (T30mR48h. Group 6: One week reperfusion group after detorsion (T30mR1wk. Results and Discussion: The oxidant-antioxidant system of the testicular tissue is altered during torsion as well as detorsion which results in the altered activities involved in the key enzyme of hexose monophosphate shunt pathway, glucose 6 phosphate dehydrogenase activity along with a reduction of glutathione (G.SH content. The increase in G6PDH activity during torsion and followed by an increase in detorsion indicates the tissue′s response to counter the oxidant stress caused by reduced blood supply. Continued exposure to such oxidant stressed physiological state of a tissue may lead to decreased capacity of the tissue to perform its physiological function such as testicular steroidogenesis and spermiogenesis shown in the present study.

  6. [Indices of lipid peroxidation and antioxidant defense system and prostanoid level in patients with uterine cancer].

    Science.gov (United States)

    Antipova, S V

    2000-10-01

    The state of peroxydal oxidation of lipids, system of antioxidant defense and content of prostanoids in patients with cancer of the corpus uteri were investigated. Syndrome of endogenous intoxication with lowering of antioxidant potential and dysbalance of cyclic nucleotides and prostaglandines was established. The severity of above-cited disorders increased significantly after operation and during conduction of radiotherapy. This demanded administration of antioxidant and detoxicational therapy in complex of preoperative preparation.

  7. Ginsan activated the antioxidant defense systems in irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jie Young; Son, Soo Jung; Ahn, Ji Yeon; Shim, Ji Young; Han, Young Soo; Jung, In Sung; Yun, Yeon Sook [KIRMS Daegu (Korea, Republic of)

    2003-07-01

    Ginsan, a polysaccharide extracted from Panax ginseng, has hematopoietic activity and is also known as a good biological-response modifier. In this investigation, we studied the effects of ginsan on the {gamma}-radiation induced alterations of some antioxidant systems in spleen of Balb/c mice. There are many data that irradiation induces Reactive Oxygen Species (ROS), which plays an important causative role in radiation damage of cell. The level of ROS in cells is regulated by enzymatic and nonenzymatic antioxidant systems. The most powerful ones among them are superoxide dismutases (SODs) catalyzing the dismutation of superoxide anion radical o{sub 2} to H{sub 2}O{sub 2}, catalase deactivating h-2O{sub 2} and reduced glutathion (GSH) detoxifying H{sub 2}O{sub 2} and other ROS> At the 5{sub th} day after sublethal whole body irradiation, splenocytes of irradiated mice expressed only marginally increased levels of Mn-SOD, however, Cu/Zn-SOD, catalase, thioredoxine reductase (TR) and thioredoxine (TRX) mRNA (135% increase compared to control), however, the combination of irradiation with ginsan increased the SODs and GPX production more effectively. In addition to the above results, we obtained the similar data of protein expression. The enzyme activities of SOD, catalase, and GPX of ginsan-treated and irradiated mice were significantly enhanced by 140, 115, 126% respectively, compared with those of irradiated mice. Based on these results, we propose that the induction of antioxidant enzymes of ginsan is at least in part due to its capacity to protect against radiation.

  8. Nicotine impact on melanogenesis and antioxidant defense system in HEMn-DP melanocytes.

    Science.gov (United States)

    Delijewski, Marcin; Wrześniok, Dorota; Otręba, Michał; Beberok, Artur; Rok, Jakub; Buszman, Ewa

    2014-10-01

    Nicotine is a compound of tobacco plants and is responsible for addictive properties of tobacco which is used by about one billion of smokers all over the world. Recently, nicotine has drawn even more attention due to its presumed neuroprotective and antioxidant features as far as common use in various forms of smoking cessation therapies. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn influence biochemical processes in human cells producing melanin. The aim of this study was to examine the impact of nicotine on melanogenesis and antioxidant defense system in cultured normal human melanocytes (HEMn-DP). Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC50 was determined to be 2.52 mM. Nicotine modulated melanin biosynthesis in normal human melanocytes. Significant changes in hydrogen peroxide content and cellular antioxidant enzymes: SOD, CAT, and GPx activities were stated in melanocytes exposed to nicotine, which indicates alterations of antioxidant defense system. The results obtained in vitro may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long-term exposition to nicotine.

  9. Ferulic acid chronic treatment exerts antidepressant-like effect: role of antioxidant defense system.

    Science.gov (United States)

    Lenzi, Juliana; Rodrigues, Andre Felipe; Rós, Adriana de Sousa; de Castro, Amanda Blanski; de Castro, Bianca Blanski; de Lima, Daniela Delwing; Magro, Débora Delwing Dal; Zeni, Ana Lúcia Bertarello

    2015-12-01

    Oxidative stress has been claimed a place in pathophysiology of depression; however, the details of the neurobiology of this condition remains incompletely understood. Recently, treatments employing antioxidants have been thoroughly researched. Ferulic acid (FA) is a phenolic compound with antioxidant and antidepressant-like effects. Herein, we investigated the involvement of the antioxidant activity of chronic oral FA treatment in its antidepressant-like effect using the tail suspension test (TST) and the forced swimming test (FST) in mice. The modulation of antioxidant system in blood, hippocampus and cerebral cortex was assessed after stress induction through TST and FST. Our results show that FA at the dose of 1 mg/kg has antidepressant-like effect without affecting locomotor activity. The stress induced by despair tests was able to decrease significantly the activities of superoxide dismutase (SOD) in the blood, catalase (CAT) in the blood and cerebral cortex and glutathione peroxidase (GSH-Px) in the cerebral cortex. Thiobarbituric acid-reactive substances (TBA-RS) levels were increased significantly in the cerebral cortex. Furthermore, the results show that FA was capable to increase SOD, CAT and GSH-Px activities and decrease TBA-RS levels in the blood, hippocampus and cerebral cortex. These findings demonstrated that FA treatment in low doses is capable to exert antidepressant-like effect with the involvement of the antioxidant defense system modulation.

  10. Melanogenesis and antioxidant defense system in normal human melanocytes cultured in the presence of chlorpromazine.

    Science.gov (United States)

    Otreba, Michał; Wrześniok, Dorota; Beberok, Artur; Rok, Jakub; Buszman, Ewa

    2015-02-01

    Chlorpromazine is used in the treatment of schizophrenia and psychotic disorders and belongs to phenothiazine class of neuroleptic drugs. It shows severe side effects such as extrapyramidal symptoms as well as ocular and skin disorders, but the mechanism is still not fully established. The aim of this study was to examine the effect of chlorpromazine on cell viability, melanogenesis and antioxidant defense system in normal human melanocytes. It has been demonstrated that chlorpromazine induces concentration dependent loss in cell viability. The value of EC(50) was calculated to be 2.53 μM. Chlorpromazine in lower concentrations (0.0001, 0.001 and 0.01 μM) increased the melanin and microphthalmia-associated transcription factor (MITF) content and tyrosinase activity, while changes of antioxidant enzymes activity were not observed. It suggests that long-term chlorpromazine therapy, even with low drug doses, may lead to hyperpigmentation disorders in skin and/or eye. The use of the analyzed drug in higher concentrations (0.1 and 1.0 μM) caused significant alterations of antioxidant enzymes activity in normal melanocytes, what may explain a potential role of chlorpromazine in the depletion of cellular antioxidant status leading to other adverse effects associated with the high-dose and/or long-term therapy.

  11. Biotransformation and nitroglycerin-induced effects on antioxidative defense system in rat erythrocytes and reticulocytes.

    Science.gov (United States)

    Marković, Snežana D; Dorđević, Nataša Z; Curčić, Milena G; Stajn, Andraš S; Spasić, Mihajlo B

    2014-01-01

    The effects of nitroglycerin (glyceryl trinitrate - GTN) are mediated by liberated nitric oxide (NO) and formed reactive nitrogen species, which induces oxidative stress during biotransformation in red blood cells (RBCs). The aim of this study was to evaluate effects of GTN on antioxidative defense system (AOS) in rat erythrocytes (without) and reticulocytes (with functional mitochondria). Rat erythrocyte and reticulocyte-rich RBC suspensions were aerobically incubated (2 h, 37°C) without (control) or in the presence of different concentrations of GTN (0.1-1.5 mM). After incubation, concentrations of non-enzymatic components of AOS, activities of antioxidative enzymes and oxidative pentose phosphate (OPP) pathway activity were followed in RBC suspensions. In rat reticulocytes, GTN decreased the activity of mitochondrial MnSOD and increased the activity of CuZnSOD. In rat RBCs, GTN induced increase of Vit E concentration (at high doses), but decreased glutathione content and activities of all glutathione-dependent antioxidative enzymes; the OPP pathway activity significantly increased. GTN biotransformation and induction of oxidative stress were followed by general disbalance of antioxidative capacities in both kinds of RBCs. We suggest that oxidative stress, MnSOD inhibition and depletion of glutathione pool in response to GTN treatment lead to decreased bioavailability of NO after GTN biotransformation in rat reticulocytes.

  12. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants

    Directory of Open Access Journals (Sweden)

    Mirza Hasanuzzaman

    2017-01-01

    Full Text Available Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS. Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG, which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I and glyoxalase II (Gly II, and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III, has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated

  13. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants

    Science.gov (United States)

    Hasanuzzaman, Mirza; Nahar, Kamrun; Hossain, Md. Shahadat; Mahmud, Jubayer Al; Rahman, Anisur; Inafuku, Masashi; Oku, Hirosuke; Fujita, Masayuki

    2017-01-01

    Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of

  14. Effects of magnetic field on the antioxidant defense system of recirculation-cultured Chlorella vulgaris.

    Science.gov (United States)

    Wang, Hai-Ying; Zeng, Xiao-Bo; Guo, Si-Yuan; Li, Zong-Tao

    2008-01-01

    Little is known about the influence of magnetic fields (MF) on growth of microalgae such as Chlorella vulgaris, which has been consumed as health food for various nutritional and pharmacological effects. This preliminary study investigated whether static MF can modulate the antioxidant system in C. vulgaris by exposing the cells to static MF generated by dual yoke electromagnets with magnetic flux density of 10-50 mT for 12 h. After exposure to 10-35 mT for 12 h, the activity of superoxide dismutases and peroxidase increased significantly compared to control cells. However, a remarkable increase of catalase activity occurred at 45 and 50 mT. The lipid peroxidation of algae cells determined by production of thiobarbituric acid-reactive substances was much increased when exposed to 35, 45, and 50 mT of MF. The scavenging ability of 2,2-diphenyl-1-picrylhydrazyl radical was decreased markedly while there was no variation of total carotenoids content in C. vulgaris cells. Assay of specific growth rate in 72 h cultivation after MF exposure was also conducted. In groups after exposure to 10-35 mT of MF, specific growth rate was significantly increased. These results suggest that 10-35 mT of static MF exposure could promote the growth of C. vulgaris and regulate its antioxidant defense system to protect cells efficiently, which could possibly enhance the growth of C. vulgaris in industrialized cultivation by MF.

  15. Brassinosteroids Denigrate the Seasonal Stress through Antioxidant Defense System in Seedlings of Brassica juncea L.

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2014-05-01

    Full Text Available The present work has been undertaken to study the effect of exogenously application of 24-epiBL and 28-homoBL on soluble protein, proline contents and antioxidant defense system of Brassica juncea L. RLM 619 under the influence of seasonal stress. It was observed that 24-epiBL and 28-homoBL treatment enhance the soluble protein, dry weight and shoot length of B. juncea seedlings under seasonal stress. If seeds treated with the different concentrations (10-6, 10-8 and 10-10 M of 24-epiBL and 28-homoBL revealed batter growth, protein and proline contents as compare to untreated seedlings. Similarly the activities of antioxidant enzymes SOD, CAT, APOX, DHAR, PPO and Auxinases were enhanced by the application of different concentration of both brassinosteroids, whereas MDA content was decrease with both brassinosteroids treatments. Then we have concluded that both brassinolides have the seasonal stress ameliorative properties in B. juncea seedlings grown under the influence of seasonal stress. This study culminates to the role of brassinolides as an anti-stress property for protection of plant from various types of stresses.

  16. Imbalanced free radicals and antioxidant defense systems in schizophrenia: A comparative study

    Institute of Scientific and Technical Information of China (English)

    LI Hui-chun; CHEN Qiao-zhen; MA Ying; ZHOU Jun-fu

    2006-01-01

    Objective: To examine changes of blood oxidative-antiovidative level in schizophrenic patients and its relationship with clinical symptoms. Methods: Forty-six Chinese patients met DSM-Ⅳ (Diagnostic and Statistical Manual of Mental Disorders-Ⅳ) criteria for schizophrenia and fifty age- and sex-matched healthy controls were enrolled in the present study. Baseline psychiatric symptom severity was assessed with brief psychiatric rating scale, positive and negative syndrome scale on the blood draw day. Fresh blood samples were collected to measure levels of nitric oxide and lipid peroxide in plasma as well as activities of superoxide dismutase, catalase and glutathione peroxidase in red blood cells by spectrophotometric assays simultaneously. Results:Comparison of the biochemical parameters indicated that the level of nitric oxide and lipid peroxide increased in patient group,which represented a positive correlation with positive scale scores; while the activities of three critical enzymes decreased and showed a negative linear correlation. Conclusion: This study showed that there are dysregulation of free radical metabolism and poor activities of the antioxidant defense systems in schizophrenic patients. Excess free radicals formation may play a critical role in the etiology of schizophrenia. Using antioxidants might be an effective therapeutic approach to partially alleviate or prevent the symptoms of schizophrenia.

  17. The relationship between yield and the antioxidant defense system in tomatoes grown under heat stress.

    Science.gov (United States)

    Rainwater, D T; Gossett, D R; Millhollon, E P; Hanna, H Y; Banks, S W; Lucas, M C

    1996-11-01

    Four putative heat-tolerant tomato (Lycopersicum esculentum) cultivars (Tamasabro, Heat Wave, LHT-24, and Solar Set) and one putative heat-sensitive tomato cultivar (Floradade) were grown in the field under non-stress (average daily temperature of 26 degrees C) and heat-stress (average daily temperature of 34 degrees C) conditions. At anthesis, approximately five weeks after being transplanted to the field, leaf samples were collected for antioxidant analyses. Yield was determined by harvesting ripe fruit seven weeks after the collection of leaf samples. Heat stress resulted in a 79.1% decrease in yield for the heat-sensitive Floradade, while the fruit yield in the heat-tolerant cultivars Heat Wave, LHT-24, Solar Set, and Tamasabro was reduced 51.5%, 22.1%, 43.8%, and 34.8% respectively. When grown under heat stress, antioxidant activities were also greater in the heat-tolerant cultivars. Superoxide dismutase (SOD) activity increased up to 9-fold in the heat-tolerant cultivars but decreased 83.1% in the heat-sensitive Floradade. Catalase, peroxidase, and ascorbate peroxidase activity increased significantly in all cultivars. Only Heat Wave showed a significant increase in glutathione reductase in response to heat stress but all heat-tolerant cultivars exhibited significantly lower oxidized ascorbate/reduced ascorbate ratios, greater reduced glutathione/oxidized glutathione rations, and greater alpha-tocopherol concentrations compared to the heat-sensitive cultivar Floridade. These data indicate that the more heat-tolerant cultivars had an enhanced capacity for scavenging active oxygen species and a more active ascorbate-glutathione cycle and suggest a strong correlation between the ability to up-regulate the antioxidant defense system and the ability of tomatoes to produce greater yields when grown under heat stress.

  18. [Effect of ecopathogenic environmental factors on the system of antioxidant defense in different parts of the rat brain].

    Science.gov (United States)

    Severynovs'ka, O V; Hryhorova, M O; Zaĭchenko, O Iu; Rybal'chenko, V K

    2006-01-01

    Influence ofecopathogenic environmental (radiation-chemical) factors on activities of superoxiddismutase, catalase and total antioxidative activity (TAA) has been investigated in morphologically and functionally different parts of rat brain. It has been found that reaction of cells in brain cortex, subcortical structures and cerebellum to these factors in all cases is revealed through the antioxidant enzyme activities decrease in all studied brain structures but in various degrees. In brain cortex, which is characterized by higher metabolic level, functional complexity and specialization, the higher level of antioxidation defense is marked both in normal state and under the action of negative factors, that allows to maintain the prooxidation-antioxidation balance. Subcortical structures were more sensitive to the heavy metal impact. Compared to the action of single factors at chronic combined influence of radiation and heavy metals on the separate antioxidative enzymes a summation effect can be observed and at aforesaid joint impact on multi-component system of antioxidation defense a partial mutual evening-out of effects of radiation and chemical agents can be marked.

  19. Daily variations of the antioxidant defense system of the lithodid crab Lithodes santolla.

    Science.gov (United States)

    Schvezov, Natasha; Lovrich, Gustavo A; Tapella, Federico; Romero, M Carolina

    2013-04-01

    Several physiological processes can induce daily variations in aerobic metabolism. Lithodes santolla is a decapod crustacean of special concern since it is a sub-Antarctic species of commercial interest. The aim of this work was to study in L. santolla the daily variations in levels of enzymatic and non-enzymatic antioxidants, lipid peroxidation and protein oxidation, and haemolymphatic pH. Males of L. santolla of commercial size were randomly dissected every 4 h during a period of 24 h. Enzymatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase and glutathione peroxidase were determined in samples of gills, muscle, hepatopancreas and haemolymph. Ascorbic acid, total glutathione, lipid peroxidation and protein oxidation were also determined in all tissues. Gills showed the highest enzymatic activity and hepatopancreas the highest concentration of non-enzymatic antioxidants. Maximum antioxidant activity was during the dark phase in gills and during the photophase in the haemolymph. Muscle showed significant daily variations, with peaks during the photophase and scotophase. Overall, an antioxidant protective mechanism is present in all tissues, where SOD and CAT represent the first line of defense. The defense mechanism in L. santolla seems to be more active during the dark phase, with slight differences among the analyzed tissues, indicating a higher metabolic rate.

  20. Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system

    Directory of Open Access Journals (Sweden)

    Bojjam V. Vardhini

    2015-01-01

    Full Text Available Various abiotic stress factors significantly contribute to major worldwide-losses in crop productivity by mainly impacting plant’s stress tolerance/adaptive capacity. The latter is largely governed by the efficiency of antioxidant defense system for the metabolism of elevated reactive oxygen species (ROS, caused by different abiotic stresses. Plant antioxidant defense system includes both enzymatic (such as superoxide dismutase, SOD, E.C. 1.15.1.1; catalase, CAT, E.C. 1.11.1.6; glutathione reductase, GR, E.C. 1.6.4.2; peroxidase, POD, E.C. 1.11.1.7; ascorbate peroxidase, APX, E.C. 1.11.1.11; guaiacol peroxidase, GPX, E.C. 1.11.1.7 and non-enzymatic (such as ascorbic acid, AsA; glutathione, GSH; tocopherols; phenolics, proline etc. components. Research reports on the status of various abiotic stresses and their impact on plant growth, development and productivity are extensive. However, least information is available on sustainable strategies for the mitigation of abiotic stress-mediated major consequences in plants. Brassinosteroids (BRs are a novel group of phytohormones with significant growth promoting nature. BRs are considered as growth regulators with pleiotropic effects, as they influence diverse physiological processes like growth, germination of seeds, rhizogenesis, senescence etc. and also confer abiotic stress resistance in plants. In the light of recent reports this paper: (a overviews major abiotic stresses and plant antioxidant defense system, (b introduces BRs and highlights their significance in general plant growth and development, and (c appraises recent literature available on BRs mediated modulation of various components of antioxidant defense system in plants under major abiotic stresses including metals/metalloids, drought, salinity, and temperature regimes. The outcome can be significant in devising future research in the current direction.

  1. Effect of vitamin E and C supplements on antioxidant defense system in cardiovascular disease patients in Zahedan, southeast Iran.

    Science.gov (United States)

    Karajibani, Mansour; Hashemi, Mohammad; Montazerifar, Farzaneh; Dikshit, Madhurima

    2010-01-01

    Oxidative stress plays an important role in the pathogenesis of cardiovascular disease (CVD). Growing evidence suggest that antioxidant vitamins might reduce the risk of disease outcomes by their ability to scavenge free radicals. The aim of the present study was to evaluate the supplementation of vitamins E and C on oxidant and antioxidant status in CVD patients. We conducted a case-control study with vitamin E (400 IU/d) and vitamin C (500 mg/d) supplementation in 40 CVD patients for 2 mo. Antioxidant (enzymatic and non-enzymatic) and oxidant status were analyzed pre and post supplementation. In the initial stage the activity of both enzymatic and non-enzymatic antioxidants were lower, while the malondialdehyde (MDA) level was elevated (pvitamin E (83.7%), C (145.3%), total antioxidant capacity (TAC) (62.8%) and a significant decrease in MDA (40%) value were observed (pvitamins E and C reduced lipid peroxidation and strengthened the antioxidant defense system. Hence, there will be beneficial effects on the heart by reducing oxidative stress in CVD patients.

  2. Molecular and structural antioxidant defenses against oxidative stress in animals.

    Science.gov (United States)

    Pamplona, Reinald; Costantini, David

    2011-10-01

    In this review, it is our aim 1) to describe the high diversity in molecular and structural antioxidant defenses against oxidative stress in animals, 2) to extend the traditional concept of antioxidant to other structural and functional factors affecting the "whole" organism, 3) to incorporate, when supportable by evidence, mechanisms into models of life-history trade-offs and maternal/epigenetic inheritance, 4) to highlight the importance of studying the biochemical integration of redox systems, and 5) to discuss the link between maximum life span and antioxidant defenses. The traditional concept of antioxidant defenses emphasizes the importance of the chemical nature of molecules with antioxidant properties. Research in the past 20 years shows that animals have also evolved a high diversity in structural defenses that should be incorporated in research on antioxidant responses to reactive species. Although there is a high diversity in antioxidant defenses, many of them are evolutionary conserved across animal taxa. In particular, enzymatic defenses and heat shock response mediated by proteins show a low degree of variation. Importantly, activation of an antioxidant response may be also energetically and nutrient demanding. So knowledge of antioxidant mechanisms could allow us to identify and to quantify any underlying costs, which can help explain life-history trade-offs. Moreover, the study of inheritance mechanisms of antioxidant mechanisms has clear potential to evaluate the contribution of epigenetic mechanisms to stress response phenotype variation.

  3. Enhancement of antioxidant defense system by epigallocatechin-3-gallate during bleomycin induced experimental pulmonary fibrosis.

    Science.gov (United States)

    Sriram, Narayanan; Kalayarasan, Srinivasan; Sudhandiran, Ganapasam

    2008-07-01

    Oxidative stress resulting from an imbalance between radical-generating and radical scavenging systems plays an important role in the pathogenesis of pulmonary fibrosis. Epigallocatechin-3-gallate (EGCG), a polyphenol and a major component of green tea, possess a potent antioxidant property. This study was designed to evaluate the potential antioxidative activity of EGCG in the plasma and lungs during bleomycin induced experimental pulmonary fibrosis. Intratracheal administration of bleomycin (6.5 U/kg body weight) to rats resulted in significant reduction of body weight, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase) and non-enzymic antioxidants (reduced glutathione, vitamin C, vitamin E and vitamin A). Elevations in lung W/D (wet weight/dry weight) ratio, hydroxyproline content was observed with a synchronized increase in lipid peroxidation markers (thiobarbituric acid reactive substances and hydroperoxides). Intraperitoneal administration of EGCG at a dose of 20 mg/kg body weight significantly improved the body weight, enzymic and non enzymic antioxidants and considerably decreased the W/D ratio, hydroxyproline and lipid peroxidation marker levels. Histological observations also correlated with the biochemical parameters. Thus, this study confirms the beneficial use of EGCG in alleviating the oxidative stress induced during pulmonary fibrosis.

  4. Antioxidative defense mechanisms in the aging brain

    Directory of Open Access Journals (Sweden)

    Jovanović Zorica

    2014-01-01

    Full Text Available Aging is an extremely complex, multifactorial process that is characterized by a gradual and continuous loss of physiological functions and responses, particularly marked in the brain. A common hallmark in aging and age-related diseases is an increase in oxidative stress and the failure of antioxidant defense systems. Current knowledge indicates that the level of glutathione progressively declines during aging. Because nerve cells are the longest-living cells that exhibit a high consumption rate of oxygen throughout an individual’s lifetime, the brain may be especially vulnerable to oxidative damage and this vulnerability increases during aging. In addition, the brain contains high concentrations of polyunsaturated fatty acids and transition metals and low antioxidative defense mechanisms. Although aging is an inevitable event, a growing volume of data confirms that antioxidant supplementation in combination with symptomatic drug treatments reduces oxidative stress and improves cognitive function in aging and age-related diseases. The present review discusses the neuroprotective effects of antioxidants in the aging brain.

  5. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.).

    Science.gov (United States)

    Xu, Xianghua; Liu, Cuiying; Zhao, Xiaoyan; Li, Renying; Deng, Wenjing

    2014-11-01

    Chemical and biological analyses were used to investigate the growth response and antioxidant defense mechanism of maize seedlings (Zea mays L.) grown in soils with 0-100 mg kg(-1) Cd. Results showed that maize seedlings have strong abilities to accumulate and tolerate high concentrations of Cd. For soil with 50 mg kg(-1) Cd, the Cd contents in roots and shoots of maize seedlings are as large as 295.6 and 153.0 mg kg(-1) DW, respectively, without visible symptoms of toxicity. Lower soil Cd concentrations lead to a decrease in reduced glutathione (GSH) content in leaves of maize seedlings, whereas higher soil Cd concentrations resulted in an increase in the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase. Maize seedlings have strong capacities to adapt to low concentrations of Cd by consuming GSH and to develop an antioxidative enzyme system to defend against high-Cd stress.

  6. Cultivated sea lettuce is a multiorgan protector from oxidative and inflammatory stress by enhancing the endogenous antioxidant defense system.

    Science.gov (United States)

    Ratnayake, Ranjala; Liu, Yanxia; Paul, Valerie J; Luesch, Hendrik

    2013-09-01

    The health-promoting effects of seaweeds have been linked to antioxidant activity that may counteract cancer-causing oxidative stress-induced damage and inflammation. Although antioxidant activity is commonly associated with direct radical scavenging activity, an alternative way to increase the antioxidant status of a cell is to enhance the endogenous (phase II) defense system consisting of cytoprotective antioxidant enzymes, including NAD(P)H:quinone oxidoreductase 1 (NQO1). These enzymes are transcriptionally regulated by the antioxidant response element (ARE) via the transcription factor Nrf2. Extracts derived from cultivated Ulva sp., a green alga regarded as a marine vegetable (sea lettuce), potently activated the Nrf2-ARE pathway in IMR-32 neuroblastoma and LNCaP prostate cancer cells. RNA interference studies showed that Nrf2 and phosphoinositide 3-kinase (PI3K) are essential for the phase II response in IMR-32 cells. Activity-enriched fractions induced Nrf2 nuclear translocation and target gene transcription, and boosted the cellular glutathione level and therefore antioxidant status. A single-dose gavage feeding of Ulva-derived fractions increased Nqo1 transcript levels in various organs. Nqo1 induction spiked in different tissues, depending on the specific chemical composition of each administered fraction. We purified and characterized four ARE inducers in this extract, including loliolide (1), isololiolide (2), a megastigmen (3), and a novel chlorinated unsaturated aldehyde (4). The ARE-active fractions attenuated lipopolysaccharide-induced iNOS and Cox2 gene expression in macrophagic RAW264.7 cells, decreasing nitric oxide (NO) and prostaglandin E2 (PGE2) production, respectively. Nqo1 activity and NO production were abrogated in nrf2(-/-) mouse embryonic fibroblasts, providing a direct link between the induction of phase II response and anti-inflammatory activity.

  7. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb

    Science.gov (United States)

    Jiang, Hongqin; Wang, Zhenzhen; Ma, Yong; Qu, Yanghua; Lu, Xiaonan; Luo, Hailing

    2015-01-01

    Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old) were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate) or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p0.05). The levels of TG (p<0.001) and LDL-C (p<0.001) were decreased with the feeding time extension, and both showed a linear trend (p<0.01). Malondialdehyde level in plasma and liver decreased linearly with the increase of lycopene inclusion levels (p<0.01). Dietary lycopene intake linearly increased the plasma antioxidant vitamin E level (p<0.001), total antioxidant capacity (T-AOC, p<0.05), and activities of catalase (CAT, p<0.01), glutathione peroxidase (GSH-Px, p<0.05) and superoxide dismutase (SOD, p<0.05). The plasma T-AOC and activities of GSH-Px and SOD decreased with the extension of the feeding time. In liver, dietary lycopene inclusion showed similar antioxidant effects with respect to activities of CAT (p<0.05, linearly) and SOD (p<0.001, linearly). Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment stress and maintain normal physiological metabolism. PMID:26104400

  8. Oral Rg1 supplementation strengthens antioxidant defense system against exercise-induced oxidative stress in rat skeletal muscles

    Directory of Open Access Journals (Sweden)

    Yu Szu-Hsien

    2012-05-01

    Full Text Available Abstract Background Previous studies reported divergent results on nutraceutical actions and free radical scavenging capability of ginseng extracts. Variations in ginsenoside profile of ginseng due to different soil and cultivating season may contribute to the inconsistency. To circumvent this drawback, we assessed the effect of major ginsenoside-Rg1 (Rg1 on skeletal muscle antioxidant defense system against exhaustive exercise-induced oxidative stress. Methods Forty weight-matched rats were evenly divided into control (N = 20 and Rg1 (N = 20 groups. Rg1 was orally administered at the dose of 0.1 mg/kg bodyweight per day for 10-week. After this long-term Rg1 administration, ten rats from each group performed an exhaustive swimming, and remaining rats considered as non-exercise control. Tibialis anterior (TA muscles were surgically collected immediately after exercise along with non-exercise rats. Results Exhaustive exercise significantly (p Conclusions This study provide compelling evidences that Rg1 supplementation can strengthen antioxidant defense system in skeletal muscle and completely attenuate the membrane lipid peroxidation induced by exhaustive exercise. Our findings suggest that Rg1 can use as a nutraceutical supplement to buffer the exhaustive exercise-induced oxidative stress.

  9. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings

    Directory of Open Access Journals (Sweden)

    Anisur eRahman

    2016-05-01

    Full Text Available The present study investigates the regulatory role of exogenous calcium (Ca in developing salt stress tolerance in rice seedlings. Hydroponically grown 13-d-old rice (Oryza sativa L. cv. BRRI dhan47 seedlings were exposed to 200 mM NaCl alone and combined with 2 mM CaCl2 and 2 mM ethylene glycol tetraacetic acid (EGTA, a Ca scavenger for three days. The salt stress caused growth inhibition, chlorosis and water shortage in the rice seedlings. The salt-induced stress disrupted ion homeostasis through Na+ influx and K+ efflux, and decreased other mineral nutrient uptake. Salt-induced stress caused oxidative stress in rice seedlings through lipid peroxidation, loss of plasma membrane integrity, higher reactive oxygen species (ROS production and methylglyoxal (MG formation. The salt-stressed rice seedlings supplemented with exogenous Ca recovered from water loss, chlorosis and growth inhibition. Calcium supplementation in the salt-stressed rice seedlings improved ion homeostasis by inhibition of Na+ influx and K+ leakage. Exogenous Ca also improved ROS and MG detoxification by improving the antioxidant defense and glyoxalase systems, respectively. On the other hand, applying EGTA along with salt and Ca again negatively affected the rice seedlings as EGTA negated Ca activity. It confirms that, the positive responses in salt-stressed rice seedlings to exogenous Ca were for Ca mediated improvement of ion homeostasis, antioxidant defense and glyoxalase system.

  10. Calcium Supplementation Improves Na+/K+ Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings

    Science.gov (United States)

    Rahman, Anisur; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    2016-01-01

    The present study investigates the regulatory role of exogenous calcium (Ca) in developing salt stress tolerance in rice seedlings. Hydroponically grown 13-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 200 mM NaCl alone and combined with 2 mM CaCl2 and 2 mM ethylene glycol tetraacetic acid (EGTA, a Ca scavenger) for 3 days. The salt stress caused growth inhibition, chlorosis and water shortage in the rice seedlings. The salt-induced stress disrupted ion homeostasis through Na+ influx and K+ efflux, and decreased other mineral nutrient uptake. Salt stress caused oxidative stress in seedlings through lipid peroxidation, loss of plasma membrane integrity, higher reactive oxygen species (ROS) production and methylglyoxal (MG) formation. The salt-stressed seedlings supplemented with exogenous Ca recovered from water loss, chlorosis and growth inhibition. Calcium supplementation in the salt-stressed rice seedlings improved ion homeostasis by inhibition of Na+ influx and K+ leakage. Exogenous Ca also improved ROS and MG detoxification by improving the antioxidant defense and glyoxalase systems, respectively. On the other hand, applying EGTA along with salt and Ca again negatively affected the seedlings as EGTA negated Ca activity. It confirms that, the positive responses in salt-stressed rice seedlings to exogenous Ca were for Ca mediated improvement of ion homeostasis, antioxidant defense and glyoxalase system. PMID:27242816

  11. Strain-Related Differences on Response of Liver and Kidney Antioxidant Defense System in Two Rat Strains Following Diazinon Exposure

    Directory of Open Access Journals (Sweden)

    Maryam Salehi

    2016-02-01

    Full Text Available Background Diazinon (DZN is one of the most organophosphates that widely used in agriculture and ectoparasiticide formulations. Its extensive use as an effective pesticide was associated with the environmental deleterious effects on biological systems. Objectives The aim of this study was to investigate the potency of DZN to affect serum biochemical parameters and the antioxidant defense system in the liver and kidney of two rat strains. Materials and Methods In this experimental study, 30 female Wistar and 30 female Norway rats were randomly divided into control and DZN groups. DZN group was divided into four subgroups: 25, 50, 100 and 200 mg/kg of DZN administered groups by i.p. injection. The parameters were evaluated after 24 hours. Results At higher doses of DZN, superoxide dismutase, catalase, glutathione S-transferase and lactate dehydrogenase activities and glutathione (GSH and malondialdehyde levels in liver and kidney of Wistar rats were higher than Norway rats. At these concentrations, DZN increased some serum biochemical indices such as liver enzymes activities and levels of urea, uric acid and creatinine in Wistar rat. Conclusions DZN at higher doses alters the oxidant-antioxidant balance in liver and kidney of both rat strains and induces oxidative stress, which is associated with a depletion of GSH and increased lipid peroxidation. However, Wistar rats are found to be more sensitive to the toxicity of DZN compared to Norway rats. In addition, the effect of DZN on liver antioxidant system was more than kidney.

  12. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  13. Lead tolerance mechanism in Conyza canadensis: subcellular distribution, ultrastructure, antioxidative defense system, and phytochelatins.

    Science.gov (United States)

    Li, Ying; Zhou, Chuifan; Huang, Meiying; Luo, Jiewen; Hou, Xiaolong; Wu, Pengfei; Ma, Xiangqing

    2016-03-01

    We used hydroponic experiments to examine the effects of different concentrations of lead (Pb) on the performance of the Pb-tolerable plant Conyza canadensis. In these experiments, most of the Pb was accumulated in the roots; there was very little Pb accumulated in stems and leaves. C. canadensis is able to take up significant amounts of Pb whilst greatly restricting its transportation to specific parts of the aboveground biomass. High Pb concentrations inhibited plant growth, increased membrane permeability, elevated antioxidant enzyme activity in roots, and caused a significant increase in root H2O2 and malondialdehyde content. Analysis of Pb content at the subcellular level showed that most Pb was associated with the cell wall fraction, followed by the nucleus-rich fraction, and with a minority present in the mitochondrial and soluble fractions. Furthermore, transmission electron microscopy and energy dispersive X-ray analysis of root cells revealed that the cell wall and intercellular space in C. canadensis roots are the main locations of Pb accumulation. Additionally, high Pb concentrations adversely affected the cellular structure of C. canadensis roots. The increased enzyme activity suggests that the antioxidant system may play an important role in eliminating or alleviating Pb toxicity in C. canadensis roots. However, the levels of non-protein sulfhydryl compounds, glutathione, and phytochelatin did not significantly change in either the roots or leaves under Pb-contaminated treatments. Our results provide strong evidence that cell walls restrict Pb uptake into the root and act as an important barrier protecting root cells, while demonstrating that antioxidant enzyme levels are correlated with Pb exposure. These findings demonstrate the roles played by these detoxification mechanisms in supporting Pb tolerance in C. canadensis.

  14. Metallothionein-mediated antioxidant defense system and its response to exercise training are impaired in human type 2 diabetes

    DEFF Research Database (Denmark)

    Scheede-Bergdahl, Celena; Penkowa, Milena; Hidalgo, Juan

    2005-01-01

    the MT-I+II-mediated antioxidant capacity and its response to exercise training in the skeletal muscle of patients with type 2 diabetes, biopsies and blood samples were taken from 13 matched subjects (type 2 diabetes n = 8, control subjects n = 5) both before and after 8 weeks of exercise training......-I+II in muscle and plasma, as well as the deficient MT-I+II response to exercise, indicate that this antioxidant defense is impaired. This study presents a novel candidate in the pathogenesis of complications related to oxidative stress in type 2 diabetes.......Oxidative stress is implicated in diabetes complications, during which endogenous antioxidant defenses have important pathophysiological consequences. To date, the significance of endogenous antioxidants such as metallothioneins I and II (MT-I+II) in type 2 diabetes remains unclear. To examine...

  15. Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    Kasperczyk, Sławomir, E-mail: kaslav@mp.pl [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Dobrakowski, Michał [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Kasperczyk, Janusz [Dept. of Environmental Medicine and Epidemiology, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Ostałowska, Alina; Zalejska-Fiolka, Jolanta; Birkner, Ewa [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland)

    2014-10-01

    The aim of this study was to determine whether beta-carotene administration reduces oxidative stress and influences antioxidant, mainly glutathione-related, defense systems in workers chronically exposed to lead. The population consisted of two randomly divided groups of healthy male volunteers exposed to lead. Workers in the first group (reference group) were not administered any antioxidants, while workers in the second group (CAR group) were treated orally with 10 mg of beta-carotene once a day for 12 weeks. Biochemical analysis included measuring markers of lead-exposure and oxidative stress in addition to the levels and activities of selected antioxidants. After treatment, levels of malondialdehyde, lipid hydroperoxides and lipofuscin significantly decreased compared with the reference group. However, the level of glutathione significantly increased compared with the baseline. Treatment with beta-carotene also resulted in significantly decreased glutathione peroxidase activity compared with the reference group, while the activities of other glutathione-related enzymes and of superoxide dismutase were not significantly changed. However, the activities of glucose-6-phosphate dehydrogenase and catalase, as well as the level of alpha-tocopherol, were significantly higher after treatment compared with the baseline. Despite controversy over the antioxidant properties of beta-carotene in vivo, our findings showed reduced oxidative stress after beta-carotene supplementation in chronic lead poisoning. - Highlights: • Beta-carotene reduces oxidative stress in lead-exposed workers. • Beta-carotene elevates glutathione level in lead-exposed workers. • Beta-carotene administration could be beneficial in lead poisoning.

  16. Changes in Antioxidant Defense System Using Different Lipid Emulsions in Parenteral Nutrition in Children after Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    María Auxiliadora Baena-Gómez

    2015-08-01

    Full Text Available Background: Traditionally, lipids used in parenteral nutrition (PN are based on ω-6 fatty acid-rich vegetable oils, such as soybean oil, with potential adverse effects involving oxidative stress. Methods: We evaluated the antioxidant defense system in children, after hematopoietic stem cell transplantation (HSCT, who were randomized to use a lipid emulsion with fish oil or soybean oil. Blood samples at baseline, at 10 days, and at the end of the PN were taken to analyze plasma retinol, α-tocopherol, β-carotene, coenzyme Q9 and coenzyme Q10 levels, and catalase (CAT, glutathione reductase (GR, glutathione peroxidase (GPOX, and superoxide dismutase (SOD levels in lysed erythrocytes. Results: An increase in plasma α-tocopherol levels in the group of patients receiving the fish oil-containing emulsion (FO compared with the group receiving the soybean emulsion was observed at day 10 of PN. Concurrently, plasma α-tocopherol increased in the FO group and β-carotene decreased in both groups at day 10 compared with baseline levels, being more significant in the group receiving the FO emulsion. Conclusion: FO-containing emulsions in PN could improve the antioxidant profile by increasing levels of α-tocopherol in children after HSCT who are at higher risk of suffering oxidative stress and metabolic disorders.

  17. Response of enzymatic and non-enzymatic antioxidant defense systems of Polygonum hydropiper to Mn stress

    Institute of Scientific and Technical Information of China (English)

    杨贤均; 邓冬梅; 刘可慧; 于方明

    2016-01-01

    The response of enzyme and non-enzymatic antioxidants of Mn hyperaccumuator,Polygonum hydropiper (P. hydropiper), to Mn stress was studied using hydroponics culture experiments to explore the mechanism of Mn tolerance in this species. Results showed that both chlorophyll and carotenoid contents significantly (p<0.05) decreased with increasing Mn treatment levels (0, 0.5, 1, 2, 4, and 8 mg/L) in hydroponics. The concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the root and shoot ofP. hydropiper were accumulated under Mn stress. Meanwhile, the anti-oxidative functions of several important enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) in plants were stimulated by Mn spike in leaves and roots, especially at low Mn stress; while sulfhydryl group (—SH) and glutathion (GSH) were likely involved in Mn detoxification ofP. hydropiper under high Mn stress.

  18. Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings.

    Science.gov (United States)

    Elloumi, Nada; Zouari, Mohamed; Chaari, Leila; Abdallah, Ferjani Ben; Woodward, Steve; Kallel, Monem

    2015-10-01

    Phosphogypsum (PG) is the solid waste product of phosphate fertilizer production and is characterized by high concentrations of salts, heavy metals, and certain natural radionuclides. The work reported in this paper examined the influence of PG amendment on soil physicochemical proprieties, along with its potential impact on several physiological traits of sunflower seedlings grown under controlled conditions. Sunflower seedlings were grown on agricultural soil substrates amended with PG at rates of 0, 2.5, and 5 %. The pH of the soil decreased but electrical conductivity and organic matter, calcium, phosphorus, sodium, and heavy metal contents increased in proportion to PG concentration. In contrast, no variations were observed in magnesium content and small increases were recorded in potassium content. The effects of PG on sunflower growth, leaf chlorophyll content, nutritional status, osmotic regulator content, heavy metal accumulation, and antioxidative enzymes were investigated. Concentrations of trace elements in sunflower seedlings grown in PG-amended soil were considerably lower than ranges considered phytotoxic for vascular plants. The 5 % PG dose inhibited shoot extension and accumulation of biomass and caused a decline in total protein content. However, chlorophyll, lipid peroxidation, proline and sugar contents, and activities of antioxidant enzymes such as superoxide dismutase and catalase increased. Collectively, these results strongly support the hypothesis that enzymatic antioxidation capacity is an important mechanism in tolerance of PG salinity in sunflower seedlings.

  19. Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity.

    Science.gov (United States)

    Wang, Jian; Lv, Mengting; Islam, Faisal; Gill, Rafaqat A; Yang, Chong; Ali, Basharat; Yan, Guijun; Zhou, Weijun

    2016-11-01

    The auxin herbicide quinclorac is widely used for controlling weeds in transplanted and direct-seeded rice fields. However, its phytotoxic responses on rice are still unknown. Therefore, in the present investigation we studied the effects of different concentrations (0, 0.1 and 0.5g/L) of quinclorac herbicide on the physiological and biochemical changes of two rice cultivars (XS 134 and ZJ 88) and further analyzed the ameliorating role of salicylic acid (SA) on quinclorac toxicity in rice plants. The results revealed that exogenous application of SA significantly increased plant biomass and total chlorophyll contents in herbicide stressed plants. The lipid peroxidation and ROS (H2O2, O2(-.), (-)OH) production were significantly increased in roots and leaves of both rice cultivars under quinclorac stress, demonstrating an oxidative burst in rice plants. Whereas, application of SA significantly lowered ROS contents under quinclorac stress. Further, exogenous SA treatment significantly modulated antioxidant enzymes and enhanced GSH concentration in stress plants. Anatomical observations of leaf and root revealed that herbicide affected internal structures, while SA played a vital role in protection from toxic effects. Expression analysis of stress hormone ABA genes (OsABA8oxs, OsNCEDs) revealed that quinclorac application enhanced stress condition in cultivar ZJ 88, while SA treatment downregulated ABA genes more in cultivar XS 134, which correlated with the enhanced tolerance to quinclorac induced oxidative stress in this cultivar. The present study delineated that SA played a critical role under quinclorac stress in both rice cultivars by regulating antioxidant defense system, reducing ROS formation and preventing the degradation of internal cell organelles.

  20. Oxidative Stress and Antioxidant Defense

    OpenAIRE

    2012-01-01

    Abstract Reactive oxygen species (ROS) are produced by living organisms as a result of normal cellular metabolism and environmental factors, such as air pollutants or cigarette smoke. ROS are highly reactive molecules and can damage cell structures such as carbohydrates, nucleic acids, lipids, and proteins and alter their functions. The shift in the balance between oxidants and antioxidants in favor of oxidants is termed “oxidative stress.” Regulation of reducing and oxidizing (redox) state i...

  1. Influence of Different Doses of Levofloxacin on Antioxidant Defense Systems and Markers of Renal and Hepatic Dysfunctions in Rats

    Directory of Open Access Journals (Sweden)

    Ebenezer Tunde Olayinka

    2015-01-01

    Full Text Available Levofloxacin (LFX is a broad spectrum fluoroquinolone antibiotic used in the treatment of infections such as pneumonia, chronic bronchitis, and sinusitis. The present study assessed the likely toxic effect of LFX on hepatic and renal tissues in rats. Twenty male Wistar rats were randomly divided into four treatment groups: A: control, B: 5 mg/kg bw LFX (half therapeutic dose, C: 10 mg/kg bw LFX (therapeutic dose, and D: 20 mg/kg bw LFX (double therapeutic dose. After seven days of administration, result indicated significant (P<0.05 increase in plasma ALT, AST, and ALP activities in the treated groups compared to control. Also, there was a significant increase in plasma creatinine, urea, and total bilirubin in the treated groups relative to control. Plasma total cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides also increased significantly in the treated groups relative to control. Also, hepatic MDA level increased significantly in all the treated groups. However, hepatic SOD, catalase, and GST activities were significantly reduced in the LFX-treated animals. Moreover, GSH and ascorbic acid levels were significantly decreased in the LFX-treated groups relative to control. In conclusion, three doses of levofloxacin depleted antioxidant defense system and induced oxidative stress and hepatic and renal dysfunctions in rats.

  2. Hypoxia tolerance and antioxidant defense system of juvenile jumbo squids in oxygen minimum zones

    Science.gov (United States)

    Trübenbach, Katja; Teixeira, Tatiana; Diniz, Mário; Rosa, Rui

    2013-10-01

    Jumbo squid (Dosidicus gigas) is a large oceanic squid endemic off the Eastern Tropical Pacific that undertakes diel vertical migrations into mesopelagic oxygen minimum zones. One of the expected physiological effects of such migration is the generation of reactive oxygen species (ROS) at the surface, promoted by the transition between hypoxia and reoxygenation states. The aim of this study was to investigate the energy expenditure rates and the antioxidant stress strategies of juvenile D. gigas under normoxia and hypoxia, namely by quantifying oxygen consumption rates, antioxidant enzyme activities [including superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)], heat shock protein expression (Hsp70/Hsc70), and lipid peroxidation [malondialdehyde (MDA) levels]. A high significant decrease (68%) in squid's metabolic rates was observed during hypoxia (p0.05), with the latter indicating no enhancement of lipid peroxidation (i.e. cellular damage) at the warmer and normoxic surface waters. The understanding of such physiological strategies that are linked to oxygen deprivation and reoxygenation phases may provide valuable information about how this species is quickly responding to the impacts of environmental stressors coupled with global climate change.

  3. [The condition of the system "peroxide oxidation of lipids-antioxidant defense" in mixed saliva of patients with chronic generalized periodontitis].

    Science.gov (United States)

    Butiyugin, I A; Volchegorskiy, I A

    2014-02-01

    The comparative analysis was made concerning conditions of the system "Peroxide oxidation of lipids-antioxidant defenses in mixed saliva of patients with chronic disseminated periodontitis of light (n = 45), mean (n = 36) and severe (n = 18) degrees. The control group consisted of 25 clinically healthy persons with intact periodontium. The study revealed that in comparison with control group, in patients with chronic disseminated periodontitis occurred an increasing of content of heptane-soluble diene conjugates, isopropanol-soluble ketodienes and conjugated trienes, ceruloplasmin and a decreasing of level of alpha-tocopherol, especially under severe degree of disease. The study also established a non-linear U-dependence between indicators of the system "Peroxide oxidation of lipids-antioxidant defenses" in mixed saliva and severity of affection of tissues of periodontium in patients with chronic disseminated dermatosis.

  4. Involvement of Antioxidative Defense System in Rice Seedlings Exposed to Aluminum Toxicity and Phosphorus Deficiency

    Institute of Scientific and Technical Information of China (English)

    GUO Tian-rong; YAO Peng-cheng; ZHANG Zi-dong; WANG Jiang-jia; WANG Mei

    2012-01-01

    Plants growing in acid soils may suffer both phosphorus (P) deficiency and aluminum (AI) toxicity.Hydroponic experiments were undertaken to assess the single and combination effects of AI toxicity and low P stress on seedling growth,chlorophyll and proline contents,antioxidative response and lipid peroxidation of two rice genotypes (Yongyou 8 and Xiushui 132) differing in AI tolerance.AI toxicity and P deficiency both inhibited rice seedling growth.The development of toxic symptoms was characterized by reduced chlorophyll content,increased proline and malondialdehyde contents in both roots and leaves,and increased peroxidase and superoxide dismutase activities in roots,but decreased in leaves.The stress condition induced more severe growth inhibition and oxidative stress in Yongyou 8,and Xiushui 132 showed higher tolerance to both AI toxicity and P deficiency.P deficiency aggravated A(I) toxicity to plant growth and induced more severe lipid peroxidation.

  5. Amelioration of Heat Stress Induced Disturbances of Antioxidant Defense System in Chicken by Brahma Rasayana

    Directory of Open Access Journals (Sweden)

    V. Ramnath

    2008-01-01

    Full Text Available Since the range of comfort zone or thermo neutral zone of domestic chickens is narrow, they become easily susceptible to heat and cold environmental stress. We evaluated Brahma Rasayana (BR supplementation on concentrations of certain oxidative stress markers associated with heat stress. A total of 48 egg type male chickens of local strain were divided into six groups (n = 8 for the study. Three groups were fed with BR orally at the rate of 2 g/kg bw daily for 10 days prior to and during the period of experiment. Two of the four groups that were exposed to heat stress (HST i.e. to a temperature of 40 ± 1°C and relative humidity of 80 ± 5% in an environmental chamber for 4 h daily for 5 or 10 days, received BR orally. The other two groups remained as BR treated and untreated non-heat stressed (NHST controls. There was a significant (P < 0.05 increase in the activities of antioxidant enzymes in blood such as catalase (CAT and superoxide dismutase (SOD, as well as liver CAT, glutathione peroxidase (GPX and glutathione reductase (GR in NHST-BR treated and HST-BR treated (both 5 and 10 days chickens when compared with untreated controls. A great deal of significant (P < 0.05 variations were seen in serum and liver reduced glutathione (GSH concentration in NHST-BR treated and HST-BR treated (both 5 and 10 days chickens. Serum and liver lipid peroxidation levels were found to be significantly (P < 0.05 higher in HST-untreated (both 5 and 10 days chickens when compared with other groups. Thus BR supplementation during HST brings about enhanced action of enzymatic and non-enzymatic antioxidants, which nullified the undesired side effects of free radicals that are generated during HST.

  6. Calcium Mitigates Arsenic Toxicity in Rice Seedlings by Reducing Arsenic Uptake and Modulating the Antioxidant Defense and Glyoxalase Systems and Stress Markers.

    Science.gov (United States)

    Rahman, Anisur; Mostofa, Mohammad Golam; Alam, Md Mahabub; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    2015-01-01

    The effect of exogenous calcium (Ca) on hydroponically grown rice seedlings was studied under arsenic (As) stress by investigating the antioxidant and glyoxalase systems. Fourteen-day-old rice (Oryza sativa L. cv. BRRI dhan29) seedlings were exposed to 0.5 and 1 mM Na2HAsO4 alone and in combination with 10 mM CaCl2 (Ca) for 5 days. Both levels of As caused growth inhibition, chlorosis, reduced leaf RWC, and increased As accumulation in the rice seedlings. Both doses of As in growth medium induced oxidative stress through overproduction of reactive oxygen species (ROS) by disrupting the antioxidant defense and glyoxalase systems. Exogenous application of Ca along with both levels of As significantly decreased As accumulation and restored plant growth and water loss. Calcium supplementation in the As-exposed rice seedlings reduced ROS production, increased ascorbate (AsA) content, and increased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes compared with seedlings exposed to As only. These results suggest that Ca supplementation improves rice seedlings tolerance to As-induced oxidative stress by reducing As uptake, enhancing their antioxidant defense and glyoxalase systems, and also improving growth and physiological condition.

  7. Effects of diazinon on antioxidant defense system and lipid peroxidation in the liver of Cyprinus carpio (L.).

    Science.gov (United States)

    Oruc, Elif

    2011-11-01

    Diazinon is a widely used organophosphorus pesticide in agriculture and environmental health, hence its adverse effects on nontarget animals, especially on fish is to be determined. The present study therefore aimed at detecting the biochemical changes caused by diazinon. To accomplish this aim, we studied the effects of sublethal concentrations (0.0036, 0.018, and 0.036 ppb) of diazinon on acetylcholine esterase activity, antioxidant enzyme activities, and lipid peroxidation in the liver of Cyprinus carpio on days 5, 15, and 30 after the exposure. The results revealed that the antioxidant enzyme activities such as superoxide dismutase, glutathione peroxidase, and catalase were induced by diazinon exposure. In addition, the highest catalytic activity of glutathione S-transferase (GST) was obtained with 1-chloro-2, 4-dinitrobenzene (CDNB). GST activity toward 1,2-dichloro-4-nitrobenzene (DCNB) was also observed in the liver, yet it was relatively low as opposed to the other substrates tested. On the other hand, hepatic malondialdehyde level did not show any significant alteration except after the exposure on day 15. The exposure of low concentrations of diazinon to C. carpio can induce oxidative stress in liver; yet restoring susceptibility and adapting to oxidative stress are likely to occur when low level of oxidative stress is administered. Furthermore, no significant change was observed in hepatic lipid peroxidation after diazinon treatment indicating that liver tissue resisted to oxidative stress by enhancing their antioxidant mechanisms. The level of lipid peroxidation was assumed to be associated with the concentrations of diazinon and experimentation periods. The induction of glutathione S-transferase and antioxidant enzyme activities were also assumed to have resulted from the defense against the toxicity of diazinon.

  8. Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2).

    Science.gov (United States)

    Alía, Mario; Ramos, Sonia; Mateos, Raquel; Bravo, Laura; Goya, Luis

    2005-01-01

    The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2.

  9. Response of antioxidant defense system in copepodCalanus sinicus Brodsky exposed to CO2-acidified seawater

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dajuan; GUO Donghui; WANG Guizhong; LI Shaojing

    2016-01-01

    Marine zooplankton responds sensitively to elevated seawater CO2 concentration. However, the underlying physiological mechanisms have not been studied well. We therefore investigated the effects of elevated CO2 concentration (0.08%, 0.20%, 0.50% and 1.00%) on antioxidant defense components, as well as two detoxification enzymes ofCalanus sinicus (copepod). The results showed that glutathione peroxidase (GPx) activity exposed to CO2-acidified seawater was significantly stimulated while other antioxidant components, including glutathione-S-transferase (GST) activity, superoxide dismutase (SOD) activity decreased significantly with reduced glutathione (GSH) level and GSH/oxidized glutathione (GSSG) value. CO2-acidified seawater exhibited stimulatory effects on adenosine triphosphatase (ATPase) activity and acetylcholinesterase (AchE) activity was inhibited. Moreover, the results of principal component analysis indicated that 75.93% of the overall variance was explained by the first two principal components. The elevated CO2 concentration may affect the metabolism and survivals of copepods through impacts these enzymes activities. Further studies are needed to focus on the synergistic effects of elevated CO2 concentration and other environmental factors on copepods.

  10. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance

    Energy Technology Data Exchange (ETDEWEB)

    Jin Xiaofen [Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Zhejiang University, Hangzhou 310029 (China); Zhejiang Provincial Key Lab of Subtropical Soil Science and Plant Nutrition, College of Environmental and Natural Resources Science, Zhejiang University, Hangzhou 310029 (China); Yang Xiaoe [Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Zhejiang University, Hangzhou 310029 (China); Zhejiang Provincial Key Lab of Subtropical Soil Science and Plant Nutrition, College of Environmental and Natural Resources Science, Zhejiang University, Hangzhou 310029 (China)], E-mail: xyang@zju.edu.cn; Islam, Ejazul [Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Zhejiang University, Hangzhou 310029 (China); Zhejiang Provincial Key Lab of Subtropical Soil Science and Plant Nutrition, College of Environmental and Natural Resources Science, Zhejiang University, Hangzhou 310029 (China); Nuclear Institute of Agriculture, Tandojam 48800, Hyderabad (Pakistan); Liu Dan [School of Tourism and Health, Zhejiang Forestry College, 311300 Lin' an (China); Mahmood, Qaisar [Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Zhejiang University, Hangzhou 310029 (China); Zhejiang Provincial Key Lab of Subtropical Soil Science and Plant Nutrition, College of Environmental and Natural Resources Science, Zhejiang University, Hangzhou 310029 (China)

    2008-08-15

    Plant growth, ultrastructural and antioxidant adaptations and glutathione biosynthesis in Cd-hyperaccumulating ecotype Sedum alfredii Hance (HE) countering high Cd environment were investigated and compared with its non Cd-hyperaccumulating ecotype (NHE). Cadmium exposure resulted in significant ultrastructural changes in root meristem and leaf mesophyll cells of S. alfredii, but damage was more pronounced in NHE even when Cd concentrations were one-tenth of those applied to HE. Cadmium stress damaged chloroplasts causing imbalanced lamellae formation coupled with early leaf senescence. Histochemical results revealed that glutathione (GSH) biosynthesis inhibition led to overproduction of hydrogen peroxide (H{sub 2}O{sub 2}) and superoxide radical (O{sub 2}{center_dot}{sup -}) in HE but not in NHE. Differences were noted in both HE and NHE for catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR) activities under various Cd stress levels. No relationship was found between antioxidative defense capacity including activities of superoxide dismutase (SOD), CAT, GPX, APX and GR as well as ascorbic acid (AsA) contents and Cd tolerance in the two ecotypes of S. alfredii. The GSH biosynthesis induction in root and shoot exposed to elevated Cd conditions may be involved in Cd tolerance and hyperaccumulation in HE of S. alfredii H.

  11. Markers of Antioxidant Defense in Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    K. Gawlik

    2016-01-01

    Full Text Available Aims. Diabetes is considered a state of increased oxidative stress. This study evaluates blood concentrations of selected markers of antioxidant defense in patients with type 2 diabetes. Methods. The study included 80 type 2 diabetes patients and 79 apparently healthy controls. Measured markers included ferric reducing ability of plasma (FRAP, reduced glutathione (GSH, glutathione peroxidase (GPx, glutathione reductase (GR, γ-glutamyltransferase (GGT and uric acid serum, and plasma and/or hemolysate levels. Results. FRAP, uric acid, CRP, and GGT levels were significantly higher in patients with diabetes. Plasma and hemolysate GR was significantly higher whereas GPx activity was significantly lower in patients with diabetes. There were no significant differences in antioxidant defense markers between patients with and without chronic diabetes complications. Fasting serum glucose correlated with plasma GPx, plasma and hemolysate GR, FRAP, and serum GGT, and HbA1c correlated with serum GGT. Only FRAP and serum uric acid were significantly higher in obese (BMI>30 kg/m2 patients with diabetes than in nonobese patients. Conclusions. Some components of antioxidant defense such as GR, uric acid, and GGT are increased in patients with type 2 diabetes. However, the whole system cannot compensate for an enhanced production of ROS as reflected by the trend toward decreased erythrocytes GSH.

  12. [Metabolism, intensity of lipid peroxidation and the antioxidant defense system in humans during chamber experiments with long-term isolation].

    Science.gov (United States)

    Markin, A A; Stroganova, L B; Vostrikova, L V; Balashov, O I; Nichiporuk, I A

    1997-01-01

    Blood biochemical parameters of lipid, protein, carbohydrate and energy metabolism were measured in a 135-day chamber experiment. Also, dynamics of the intensity of lipid peroxidation and status of the antioxidant defence system were evaluated. Results of the investigation showed that extended chamber isolation led to modifications of several biochemical parameters including hemoglobin, bilirubin, cholesterol and its fractions, elevated transaminase activity which are typical for long-term space mission. However, these were not accompanied by substantive changes in protein, energy and carbohydrate metabolisms, or intensity of free radical processes. Effects of prolonged stay in chamber was successfully counterbalanced by organism.

  13. Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling

    Directory of Open Access Journals (Sweden)

    Zhou eLi

    2015-10-01

    Full Text Available Endogenous polyamine (PA may play a critical role in tolerance to water stress in plants acting as a signaling molecule activator. Water stress caused increases in endogenous PA content in leaves, including putrescine (Put, spermidine (Spd, and spermine (Spm. Exogenous application of Spd could induce the instantaneous H2O2 burst and accumulation of cytosolic free Ca2+, and activate NADPH oxidase and CDPK gene expression in cells. To a great extent, PA biosynthetic inhibitor reduced the water stress-induced H2O2 accumulation, free cytosolic Ca2+ release, antioxidant enzyme activities and genes expression leading to aggravate water stress-induced oxidative damage, while these suppressing effects were alleviated by the addition of exogenous Spd, indicating PA was involved in water stress-induced H2O2 and cytosolic free Ca2+ production as well as stress tolerance. Dehydrin genes (Y2SK, Y2K, and SK2 were showed to be highly responsive to exogenous Spd. PA-induced antioxidant defense and dehydrin genes expression could be blocked by the scavenger of H2O2 and the inhibitors of H2O2 generation or Ca2+ channels blockers, a calmodulin antagonist, as well as the inhibitor of CDPK. These findings suggested that PA regulated tolerance to water stress in white clover associated with antioxidant defenses and dehydrins via involvement in the calcium messenger system and H2O2 signaling pathways. PA-induced H2O2 production required Ca2+ release, while PA-induced Ca2+ release was also essential for H2O2 production, suggesting an interaction between PA-induced H2O2 and Ca2+ signaling.

  14. Hydrogen Peroxide Pretreatment Mitigates Cadmium-Induced Oxidative Stress in Brassica napus L.: An Intrinsic Study on Antioxidant Defense and Glyoxalase Systems

    Science.gov (United States)

    Hasanuzzaman, Mirza; Nahar, Kamrun; Gill, Sarvajeet S.; Alharby, Hesham F.; Razafindrabe, Bam H. N.; Fujita, Masayuki

    2017-01-01

    Cadmium (Cd) is considered as one of the most toxic metals for plant growth and development. In the present study, we investigated the role of externally applied hydrogen peroxide (H2O2) in regulating the antioxidant defense and glyoxalase systems in conferring Cd-induced oxidative stress tolerance in rapeseed (Brassica napus L.). Seedlings were pretreated with 50 μM H2O2 for 24 h. These pretreated seedlings as well as non-pretreated seedlings were grown for another 48 h at two concentrations of CdCl2 (0.5 and 1.0 mM). Both the levels of Cd increased MDA and H2O2 levels and lipoxygenase activity while ascorbate (AsA) declined significantly. However, reduced glutathione (GSH) content showed an increase at 0.5 mM CdCl2, but glutathione disulfide (GSSG) increased at any level of Cd with a decrease in GSH/GSSG ratio. The activities of ascorbate peroxidase (APX) and glutathione S-transferase (GST) upregulated due to Cd treatment in dose-dependent manners, while glutathione reductase (GR) and glutathione peroxidase (GPX) increased only at 0.5 mM CdCl2 and decreased at higher dose. The activity of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) decreased under Cd stress. On the other hand, H2O2 pretreated seedlings, when exposed to Cd, AsA and GSH contents and GSH/GSSG ratio increased noticeably. H2O2 pretreatment increased the activities of APX, MDHAR, DHAR, GR, GST, GPX, and CAT of Cd affected seedlings. Thus enhancement of both the non-enzymatic and enzymatic antioxidants helped to decrease the oxidative damage as indicated by decreased levels of H2O2 and MDA. The seedlings which were pretreated with H2O2 also showed enhanced glyoxalase system. The activities of Gly I, and Gly II and the content of GSH increased significantly due to H2O2 pretreatment in Cd affected seedlings, compared to the Cd-stressed plants without H2O2 pretreatment which were vital for methylglyoxal

  15. Polyamines confer salt tolerance in mung bean (Vigna radiata L. by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense and methylglyoxal detoxification systems

    Directory of Open Access Journals (Sweden)

    Kamrun Nahar

    2016-07-01

    Full Text Available The physiological roles of PAs (putrescine, spermidine, and spermine were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2. Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, O2•– generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl and relative water content (RWC. Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase and glutathione peroxidase and glyoxalase enzyme (glyoxalase II, which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected in improved tissue water and chl content, and better seedling growth.

  16. Determination of chemopreventive role of Foeniculum vulgare and Salvia officinalis infusion on trichloroacetic acid-induced increased serum marker enzymes lipid peroxidation and antioxidative defense systems in rats.

    Science.gov (United States)

    Celik, Ismail; Isik, Ismail

    2008-01-10

    Today's world is increasingly seeking ways to replace the synthetic drugs with the therapeutic power of natural products. This study was designed to investigate the protective effects of Foeniculum vulgare (FV) and Salvia officinalis (SO) waters infusions against carcinogen chemical trichloroacetic acid (TCA)-exposure in rats. The chemopreventive potential of the plant infusions were evaluated by measuring levels of serum marker enzymes [aspartate aminotransferase (AST), alanin aminotransferase (ALT), creatine phosphokinase (CPK), acid phosphatase (ACP), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH)], antioxidant defense systems [Reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)] and lipid peroxidation level (Malondialdehyde = MDA) in various tissues of rats. Female Sprague-Dawley rats, weighing 150-200 g, were randomly allotted into four experimental groups. While the control group (A) received only natural spring water, the treatment B group (0.2% TCA) supplied with the drinking water containing 0.2% TCA, the treatment C (TCA + FV infusion) and D (TCA + SO infusion) groups drank the drinking water containing 0.2% TCA and 2.5% the plant grains and leaves ad libitum for 50 days during experiment. At the end of the 50 days experiment, TCA and the plant's infusions caused different affect on the serum marker enzymes, tissues antioxidant defense systems and lipid peroxidation against TCA-exposed in rats with comparison to those of TCA exposed and control rats. According to the results, both TCA and TCA + plants infusions caused a significant increase in serum AST, ALT and CPK activity. Non-enzymic antioxidant GSH level significantly increased in the brain whereas reduced in the erythrocytes and kidney of TCA + FV and TCA + SO as compared to TCA group and control. While MDA content slightly increased in tissues of TCA group in comparison to those of control, significantly

  17. Effect of Tridax procumbens on liver antioxidant defense system during lipopolysaccharide-induced hepatitis in D-galactosamine sensitised rats.

    Science.gov (United States)

    Ravikumar, Vilwanathan; Shivashangari, Kanchi Subramanian; Devaki, Thiruvengadam

    2005-01-01

    The present study was carried out to assess the effect of chloroform insoluble fraction of ethanolic extract of Tridax procumbens (TP) against D-Galactosamine/Lipopolysaccharide (D-GalN/LPS)-induced hepatitis in rats. Induction of rats with D-GalN/LPS (300 mg/kg body weight/30 microg/kg body weight) led to a marked increase in lipid peroxidation as measured by thiobarbituric acid reactive substances (TBARS) in liver. Further there was a decline in the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione s-transferase and the levels of non-enzymic antioxidants namely reduced glutathione, vitamin C and vitamin E. These biochemical alterations were normalised upon pretreatment with TP extract. Thus, the above results suggest that TP (300 mg/kg body weight orally for 10 days) is very effective in allievating the D-GalN/LPS-induced oxidative stress suggesting its antioxidant property.

  18. Toxic effects of crude-oil-contaminated soil in aquatic environment on Carassius auratus and their hepatic antioxidant defense system

    Institute of Scientific and Technical Information of China (English)

    WANG Yuanyuan; ZHOU Qixing; PENG Shengwei; MA Lena Q; NIU Xiaowei

    2009-01-01

    Under the indoor simulant conditions, toxic effects of crude-oil-contaminated soil which was put into aquatic environment on the young fishes Carassius auratus and their hepatic antioxidant system after a 20-d exposure were investigated. Results showed that the relationship between the mortality of C. auratus and the exposed doses could be divided to 3 phases: fishes exposed to the low dose groups (0.5--5.0 g/L) were dead due to the ingestion of crude-oil-contaminated soils in aquatic environment; at the medium dose groups (5.0--25.0 g/L) fishes were dead due to the penetration of toxic substances; at the high dose groups (25.0--50.0 g/L) fishes were dead due to environmental stress. The highest mortality and death speed were found in the 1.0 g/L dose group, and the death speed was sharply increased in the 50.0 g/L dose group in the late phase of the exposure. The activity of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and the content of malaondialdehyde (MDA) in the hepatic tissues of C. auratus were induced significantly. The activity of SOD was first increased and then decreased, and was significantly inhibited in the 50.0 g/L dose group. The activity of CAT was highly induced, and restored to a little more than the control level when the exposed doses exceeded 10.0 g/L. The activity of GST was the most sensitive, it was significantly induced in all dose groups, and the highest elevation was up to 6 times in the 0.5 g/L dose group compared with the control. The MDA content was significantly elevated in the 50.0 g/L dose group, and the changes of the MDA content were opposite with the changes of the GST activity.

  19. Comparison of gamma- and beta radiation stress responses on anti-oxidative defense system and DNA modifications in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoeck, Arne [SCK.CEN, Boeretang 200 2400 Mol (Belgium); University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Horemans, Nele; Van Hees, May; Nauts, Robin; Vandenhove, Hildegarde [SCK.CEN, Boeretang 200 2400 Mol (Belgium); Knapen, Dries; Blust, Ronny [University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2014-07-01

    frond have been implemented in a dosimetric model derived from ERICA tool. This enabled a reliable comparison of dose-dependent endpoints between gamma- and beta radiation. Dose rates varied from 15 and 1500 mGy/hr, and 19 from 19000 μGy/hr for gamma- and beta radiation respectively. The classic growth related endpoints, like biomass and frond area, were measured and compared with biochemical and molecular endpoints. Therefore, DNA modifications were analyzed to evaluate biological DNA damage and ROS accumulation in plants together with activities of anti-oxidative enzymes to evaluate oxidative stress response. A dose-response curve with 60 percent growth inhibition was determined for gamma radiation and morphological growth effects in root system were observed for beta radiation. Preliminary results showed similar responses in peroxidase activities between both radiation types. These results and ongoing investigations will help to unravel the differences and similarities in response mechanisms for various radiation types in plant systems. As multiple levels in biological organisation of the organism were considered, and also different dose rates taken into account, this approach allows a better understanding the toxic mode of action of radiation stress in higher plants. This research was supported by the European Commission Contract Fission-2010-3.5.1-269672 to Strategy for Allied Radioecology (www.star-radioecology.org) and a project of the Fund for Scientific Research (FWO-Vlaanderen, G.A040.11N) (authors)

  20. Application of Plant-Growth-Promoting Fungi Trichoderma longibrachiatum T6 Enhances Tolerance of Wheat to Salt Stress through Improvement of Antioxidative Defense System and Gene Expression

    Science.gov (United States)

    Zhang, Shuwu; Gan, Yantai; Xu, Bingliang

    2016-01-01

    Soil salinity is a serious problem worldwide that reduces agricultural productivity. Trichoderma longibrachiatum T6 (T6) has been shown to promote wheat growth and induce plant resistance to parasitic nematodes, but whether the plant-growth-promoting fungi T6 can enhance plant tolerance to salt stress is unknown. Here, we determined the effect of plant-growth-promoting fungi T6 on wheat seedlings’ growth and development under salt stress, and investigated the role of T6 in inducing the resistance to NaCl stress at physiological, biochemical, and molecular levels. Wheat seedlings were inoculated with the strain of T6 and then compared with non-inoculated controls. Shoot height, root length, and shoot and root weights were measured on 15 days old wheat seedlings grown either under 150 mM NaCl or in a controlled setting without any NaCl. A number of colonies were re-isolated from the roots of wheat seedlings under salt stress. The relative water content in the leaves and roots, chlorophyll content, and root activity were significantly increased, and the accumulation of proline content in leaves was markedly accelerated with the plant growth parameters, but the content of leaf malondialdehyde under saline condition was significantly decreased. The antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in wheat seedlings were increased by 29, 39, and 19%, respectively, with the application of the strain of T6 under salt stress; the relative expression of SOD, POD, and CAT genes in these wheat seedlings were significantly up-regulated. Our results indicated that the strain of T6 ameliorated the adverse effects significantly, protecting the seedlings from salt stress during their growth period. The possible mechanisms by which T6 suppresses the negative effect of NaCl stress on wheat seedling growth may be due to the improvement of the antioxidative defense system and gene expression in the stressed wheat plants. PMID:27695475

  1. Environmental exposure to lead induces oxidative stress and modulates the function of the antioxidant defense system and the immune system in the semen of males with normal semen profile

    Energy Technology Data Exchange (ETDEWEB)

    Kasperczyk, Aleksandra; Dobrakowski, Michał [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland); Czuba, Zenon P. [Dept. of Microbiology and Immunology, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland); Horak, Stanisław [I-st Chair and Clin. Dept. of Gynecology, Obstetrics and Gynecological Oncology, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Batorego 15, 41-902 Bytom (Poland); Kasperczyk, Sławomir, E-mail: kaslav@mp.pl [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland)

    2015-05-01

    We investigated the associations between environmental exposure to lead and a repertoire of cytokines in seminal plasma of males with normal semen profile according to the WHO criteria. Based on the median lead concentration in seminal plasma, 65 samples were divided into two groups: low (LE) and high exposure to lead (HE). Differences in semen volume and the pH, count, motility and morphology of sperm cells were not observed between the examined groups. The total oxidant status value and the level of protein sulfhydryl groups as well as the activities of manganese superoxide dismutase and catalase were significantly higher in the HE group, whereas the total antioxidant capacity value and the activities of glutathione reductase and glutathione-S-transferase were depressed. IL-7, IL-10, IL-12, and TNF-α levels were significantly higher in the HE group compared with the LE group. Environmental exposure to lead is sufficient to induce oxidative stress in seminal plasma and to modulate antioxidant defense system. - Highlights: • Lead induces oxidative stress in seminal plasma in human. • Lead modulates antioxidant defense system in seminal plasma in human. • Lead does not change a Th1/Th2 imbalance in seminal plasma in human.

  2. Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation

    Directory of Open Access Journals (Sweden)

    Abd-Ellatef GF

    2017-02-01

    cytokines tumor necrosis factor-α and nitric oxide were significantly ameliorated in DMBA-administered rats treated with ulvan polysaccharides as compared to DMBA-administered control. Conclusion: In conclusion, ulvan polysaccharides at the level of initiation and promotion might have potential chemopreventive effects against breast carcinogenesis. These preventive effects may be mediated through the augmentation of apoptosis, suppression of oxidative stress and inflammation, and enhancement of antioxidant defense system. Keywords: breast carcinogenesis, cancer initiation, cancer promotion, Ulva lactuca polysaccharides, DMBA, oxidative stress, apoptosis

  3. Responses of antioxidant defense system to polyfluorinated dibenzo-p-dioxins (PFDDs) exposure in liver of freshwater fish Carassius auratus.

    Science.gov (United States)

    Li, Chenguang; Qin, Li; Qu, Ruijuan; Sun, Ping; Wang, Zunyao

    2016-04-01

    In this study, we evaluated the toxicity of ten polyfluorinated dibenzo-p-dioxins (PFDDs) congeners to freshwater fish Carassius auratus, by determining the antioxidative responses and lipid peroxidation in the liver after the fish were injected with two different concentrations (10 and 100 µmol/kg) of individual PFDDs for 3 and 14 days. The results showed that oxidative stress was obviously induced in some PFDDs-treated groups, as implied by the significantly inhibited antioxidants levels (superoxide dismutase, catalase, reduced glutathione, and glutathione S-transferase) and elevated malondialdehyde content. In addition, the oxidative stress inducing ability was variable for different PFDDs congeners, which was related with the substitution number and position of fluorine atom. Based on the calculated integrated biomarker response (IBR) values, the toxicity was ranked as 2,3,7,8-FDD>Octa-FDD>1,2,3,4,7-FDD>1,3,6,8-FDD>1,2,3,4,6,7-FDD>1,2,6,7-FDD>1,2,7-FDD>DD>2,7-FDD>2-FDD. This study can enhance the general understanding of the PFDDs induced oxidative stress in aquatic organisms.

  4. Crocus sativus L. (saffron) attenuates isoproterenol-induced myocardial injury via preserving cardiac functions and strengthening antioxidant defense system.

    Science.gov (United States)

    Sachdeva, Jaspreet; Tanwar, Vineeta; Golechha, Mahaveer; Siddiqui, Khalid M; Nag, Tapas C; Ray, Ruma; Kumari, Santosh; Arya, Dharamvir S

    2012-09-01

    Saffron (dried stigmas of Crocus sativus L.), a naturally derived plant product, has long been used as a traditional ancient medicine against various human diseases. The aim of the series of experiments was to systematically determine whether saffron exerts cardioprotection in isoproterenol-induced myocardial damage. Male Wistar rats (150-175 g) were divided into five groups: control, isoproterenol (ISO) and three saffron (200, 400 and 800 mg/kg) treatment groups. Aqueous extract of saffron or vehicle was administered orally to rats for four weeks. On days 28 and 29, the animals in ISO and saffron treatment groups were administered ISO (85 mg/kg, s.c.) at an interval of 24 h. On day 30, after recording hemodynamics and left ventricular functions, animals were sacrificed for biochemical, histopathological and electromicroscopical examinations. Isoproterenol challenged animals showed depressed hemodynamics and left ventricular functions as evident by decreased left ventricular rate of peak positive and negative pressure change and elevated left ventricular end-diastolic pressure. Structural and ultrastructural studies further confirmed the damage which was reconfirmed by increased thiobarbituric acid reactive substances (psaffron at all the doses exerted significant cardioprotective effect by preserving hemodynamics and left ventricular functions, maintaining structural integrity and augmenting antioxidant status. Among the different doses used, saffron at 400mg/kg dose exhibited maximum protective effects which could be due to maintenance of the redox status of the cell reinforcing its role as an antioxidant.

  5. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II-the developmental pattern of neurons in relation to oxidative stress and antioxidant defense system.

    Science.gov (United States)

    Ahmed, O M; Ahmed, R G; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M

    2012-10-01

    Excessive concentrations of free radicals in the developing brain may lead to neurons maldevelopment and neurons damage and death. Thyroid hormones (THs) states play an important role in affecting the modulation of oxidative stress and antioxidant defense system. Thus, the objective of this study was to clarify the effect of hypothyroidism and hyperthyroidism in rat dams on the neurons development of different brain regions of their offspring at several postnatal weeks in relation to changes in the oxidative stress and antioxidant defense system. The adult female rats were administered methimazole (MMI) in drinking water (0.02% w/v) from gestation day 1 to lactation day 21 to induce hypothyroidism and exogenous thyroxine (T4) in drinking water (0.002% w/v) beside intragastric incubation of 50--200 T4 μg/kg body weight (b. wt.) to induce hyperthyroidism. In normal female rats, the sera total thyroxine (TT4) and total triiodothyronine (TT3) levels were detectably increased at day 10 post-partum than those at day 10 of pregnancy. Free thyroxine (FT4), free triiodothyronine (FT3), thyrotropin (TSH) and growth hormone (GH) concentrations in normal offspring were elevated at first, second and third postnatal weeks in an age-dependent manner. In hypothyroid group, a marked depression was observed in sera of dam TT3 and TT4 as well as offspring FT3, FT4 and GH, while there was a significant increase in TSH level with the age progress. The reverse pattern to latter state was recorded in hyperthyroid group. Concomitantly, in control offspring, the rate of neuron development in both cerebellar and cerebral cortex was increased in its density and complexity with age progress. This development may depend, largely, on THs state. Both maternal hypothyroidism and hyperthyroidism caused severe growth retardation in neurons of these regions of their offspring from the first to third weeks. Additionally, in normal offspring, seven antioxidant enzymes, four non-enzymatic antioxidants

  6. Effects of anthracene on filtration rates, antioxidant defense system, and redox proteomics in the Mediterranean clam Ruditapes decussatus (Mollusca: Bivalvia).

    Science.gov (United States)

    Sellami, Badreddine; Khazri, Abdelhafidh; Louati, Héla; Dellali, Mohamed; Driss, Mouhamed Ridha; Aïssa, Patricia; Mahmoudi, Ezzeddine; Hamouda, Beyrem; Coelho, Ana Varela; Sheehan, David

    2015-07-01

    This study aimed at analyzing the impact of a toxic polyaromatic hydrocarbon (PAH), anthracene (ANT), on Ruditapes decussatus collected from a Tunisian coastal lagoon (Bizerte Lagoon). Filtration rates, several antioxidant enzymes--superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione transferase (GST)--as well as indices of protein oxidation status were determined in various tissues of this bivalve. Specimens were exposed to 100 μg/L of ANT for 2 days. ANT levels were evaluated using HPLC and were detected in the gill and digestive gland at different amounts. ANT exposure altered the behavior of bivalves by changing the siphon movement and decreasing filtration rate significantly. The enzymatic results indicated that ANT exposure affected the oxidative stress status of the gills of R. decussatus. In addition, modification of proteins was detected in the gills using redox proteomics after ANT treatment. Three protein spots were successfully identified by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-MS). These proteins can be roughly related to muscle contraction function. In contrast, no significant modification of enzymatic and protein responses was detected in the digestive gland after ANT treatment. These data demonstrate that combined behavioral and biochemical analyses are a powerful tool to provide valuable insights into possible mechanisms of toxicity of anthracene in R. decussatus. Additionally, the results highlight the potential of the gill as a valuable candidate for investigating PAH toxicity.

  7. Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice.

    Science.gov (United States)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Singh, Pradyumna Kumar; Kumar, Smita; Dwivedi, Sanjay; Trivedi, Prabodh Kumar; Pandey, Vivek; Norton, Gareth John; Dhankher, Om Parkash; Tripathi, Rudra Deo

    2015-11-15

    Arsenic (As) contamination is a global issue, with South Asia and South East Asia being worst affected. Rice is major crop in these regions and can potentially pose serious health risks due to its known As accumulation potential. Sulfur (S) is an essential macronutrient and a vital element to combat As toxicity. The aim of this study was to investigate the role of S with regards to As toxicity in rice under different S regimes. To achieve this aim, plants were stressed with AsIII and AsV under three different S conditions (low sulfur (0.5mM), normal sulfur (3.5mM) and high sulfur (5.0mM)). High S treatment resulted in increased root As accumulation, likely due to As complexation through enhanced synthesis of thiolic ligands, such as non-protein thiols and phytochelatins, which restricted As translocation to the shoots. Enzymes of S assimilatory pathways and downstream thiolic metabolites were up-regulated with increased S supplementation; however, to maintain optimum concentrations of S, transcript levels of sulfate transporters were down-regulated at high S concentration. Oxidative stress generated due to As was counterbalanced in the high S treatment by reducing hydrogen peroxide concentration and enhancing antioxidant enzyme activities. The high S concentration resulted in reduced transcript levels of Lsi2 (a known transporter of As). This reduction in Lsi2 expression level is a probable reason for low shoot As accumulation, which has potential implications in reducing the risk of As in the food chain.

  8. Impact of osmotic stress on seedling growth observations, membrane characteristics and antioxidant defense system of different wheat genotypes

    Directory of Open Access Journals (Sweden)

    Bardees M. Mickky

    2017-03-01

    Full Text Available The objective of the present study was to find out a straightforward technique for screening the tolerance of ten wheat genotypes to two levels of osmotic stress at early seedling stage. Data revealed that polyethylene glycol-induced drought had general negative effect on seedling morphological characters indicated by plumule and radicle length, number of adventitious roots as well as seedling biomass and water content. Water deficit could also suppress membrane integrity by stimulating lipid peroxidation with marked increase in membrane leakage and subsequent decrease in its stability index. For all the addressed germination parameters and seedling membrane features, the impact of severe drought was more pronounced than that of moderate drought. Simultaneously, moderate stress could activate peroxidase, polyphenol oxidase and ascorbic peroxidase of the studied genotypes; but these enzymes were inhibited by severe stress. The activity of catalase, superoxide dismutase and glutathione reductase was conversely retarded by drought whether at moderate or severe level. More interestingly, a novel function “Stress Impact Index; SII” was introduced to rank the estimated morpho-physiological traits (SIItrait as well as the considered genotypes (SIIgenotype according to their sensitivity to stress. Values of SIItrait implied that germination parameters were generally affected by drought more intensively than membrane characteristics and finally came the antioxidant enzymes with the least degree of suppression when applying stress. Based on the magnitudes of SIIgenotype, Sids 13 seemed to be the most drought-tolerant wheat cultivar while Shandawel 1 could be the most sensitive one at their juvenile growth stage.

  9. [Toxicological evaluation of colloidal nano-sized silver stabilized polyvinylpyrrolidone. III. Enzymological, biochemical markers, state of antioxidant defense system].

    Science.gov (United States)

    Gmoshinsky, I V; Shipelin, V A; Vorozhko, I V; Sentsova, T B; Soto, S Kh; Avren'eva, L I; Guseva, G V; Kravchenko, L V; Khotimchenko, S A; Tutelyan, V A

    2016-01-01

    Nanosized colloidal silver (NCS) with primary nanoparticles (NPs) size in the range of 10-80 nm in aqueous suspension was administered to rats with initial weight 80±10 gfor the first 30 day intragastrically and for lasting 62 days with the diet consumed in doses of 0.1; 1.0 and 10 mg/kg of body weight b.w) per day based on silver (Ag). The control animals received deionized water and carrier of NPs - aqueous solution of stabilizer polyvinylpyrrolidone. Activity (Vmax) was determined in liver of microsomal mixed function monooxygenase isoforms CYP 1A1, 1A2 and 2B1 against their specific substrates, the activity of liver conjugating enzymes (glutathione-S-transferase and UDP-glucuronosyltransferase) in the microsomal fraction and a cytosol, and the overall and non-sedimentable activities of lysosomal hydrolases. In blood plasma there were evaluated malonic dialdehyde, PUFA diene conjugates, in erythrocytes - the activity of antioxidant enzymes. A set of standard biochemical indicators of blood serum was also determined. The studies revealed changes in a number of molecular markers of toxic action. Among them - the increase in the activity of key enzymes I and II stages of detoxification of xenobiotics, indicating its functional overvoltage; reducing the activity of glutathione peroxidase (GP), the total arylsulfatase A and B, β-galactosidase (in the absence of changes in their non-sedimentable activity), levels of uric acid, increased alkaline phosphatase activity. These changes occurred mainly at the dose Ag of 10 mg/kg b.w., except for the GP to which the threshold dose was 1 mg/kg b.w. No significant changes in the studied markers in a dose Ag 0,1 mg/kg b.w. were identified. Possible mechanisms of the toxic action of silver NPs are discussed.

  10. Gallic Acid Ameliorates Cyclophosphamide-Induced Neurotoxicity in Wistar Rats Through Free Radical Scavenging Activity and Improvement in Antioxidant Defense System.

    Science.gov (United States)

    Oyagbemi, Ademola Adetokunbo; Omobowale, Temidayo Olutayo; Saba, Adebowale Bernard; Olowu, Ebunoluwa Racheal; Dada, Racheal Omolola; Akinrinde, Akinleye Stephen

    2016-01-01

    Cyclophosphamide (CPA) is a widely used anticancer chemotherapeutic agent and its toxicity has been associated with its toxic metabolites phosphormide mustard. Therefore, the ameliorative effect of Gallic acid against neurotoxicity was examined in this study. Sixty rats were grouped into 10 rats per group. Group 1 received saline orally. Group 2 received CPA at 100 mg/kg single dose intraperitoneally on day 1. Groups 3 and 4 were treated with Gallic acid (GA) at 60 and 120 mg/kg body weight only for 10 days and also received a single dose of CPA (100 mg/kg) intraperitoneally on day 1, respectively. Rats in groups 5 and 6 received GA at 60 and 120 mg/kg body weight only for 10 days. Groups 3, 4, 5, and 6 received GA orally. The cerebellar and cerebral malondialdehyde (MDA) contents and hydrogen peroxide generation were significantly (p < .05) elevated. The cerebellar and cerebral catalase (CAT), superoxide dismutase and glutathione-S-transferase (GST) activities were significantly (p < .05) reduced in CPA treated group. The activity of glutathione peroxidase (GPx) was significantly increased in rats that were treatment with CPA. Also, nitrite content was significantly elevated in the brain of rats that received the toxic dose of CPA. All these findings suggest that treatment with GA (60 and 120 mg/kg) ameliorated the neurotoxicity induced by CPA via reduction of oxidative stress and increase in antioxidant defense system. Combining all, chemotherapeutic agents with structure/function similar to GA could be of potential benefit to the pharmaceutical industries as an adjuvant in chemotherapy with little or no side effects.

  11. Lipid Peroxidative Damage on Cisplatin Exposure and Alterations in Antioxidant Defense System in Rat Kidneys: A Possible Protective Effect of Selenium

    Directory of Open Access Journals (Sweden)

    Branka I. Ognjanović

    2012-02-01

    Full Text Available Cisplatin (Cis-diamminedichloroplatinum II, CP is an important chemotherapeutic agent, useful in the treatment of several cancers, but with several side effects such as nephrotoxicity. The present study investigated the possible protective effect of selenium (Se against CP-induced oxidative stress in the rat kidneys. Male Wistar albino rats were injected with a single dose of cisplatin (7 mg CP/kg b.m., i.p. and selenium (6 mg Se/kg b.m, as Na2SeO3, i.p., alone or in combination. The obtained results showed that CP increased lipid peroxidation (LPO and decreased reduced glutathione (GSH concentrations, suggesting the CP-induced oxidative stress, while Se treatment reversed this change to control values. Acute intoxication of rats with CP was followed by statistically significant decreased activity of antioxidant defense enzymes: superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px, glutathione reductase (GR and glutathione-S-transferase (GST. Treatment with Se reversed CP-induced alterations of antioxidant defense enzyme activities and significantly prevented the CP-induced kidney damage.

  12. Lipid peroxidative damage on Cisplatin exposure and alterations in antioxidant defense system in rat kidneys: a possible protective effect of selenium.

    Science.gov (United States)

    Ognjanović, Branka I; Djordjević, Nataša Z; Matić, Miloš M; Obradović, Jasmina M; Mladenović, Jelena M; Stajn, Andraš Š; Saičić, Zorica S

    2012-01-01

    Cisplatin (Cis-diamminedichloroplatinum II, CP) is an important chemotherapeutic agent, useful in the treatment of several cancers, but with several side effects such as nephrotoxicity. The present study investigated the possible protective effect of selenium (Se) against CP-induced oxidative stress in the rat kidneys. Male Wistar albino rats were injected with a single dose of cisplatin (7 mg CP/kg b.m., i.p.) and selenium (6 mg Se/kg b.m, as Na(2)SeO(3), i.p.), alone or in combination. The obtained results showed that CP increased lipid peroxidation (LPO) and decreased reduced glutathione (GSH) concentrations, suggesting the CP-induced oxidative stress, while Se treatment reversed this change to control values. Acute intoxication of rats with CP was followed by statistically significant decreased activity of antioxidant defense enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and glutathione-S-transferase (GST). Treatment with Se reversed CP-induced alterations of antioxidant defense enzyme activities and significantly prevented the CP-induced kidney damage.

  13. Antioxidant Defenses in the Brains of Bats during Hibernation.

    Science.gov (United States)

    Yin, Qiuyuan; Ge, Hanxiao; Liao, Chen-Chong; Liu, Di; Zhang, Shuyi; Pan, Yi-Hsuan

    2016-01-01

    Hibernation is a strategy used by some mammals to survive a cold winter. Small hibernating mammals, such as squirrels and hamsters, use species- and tissue-specific antioxidant defenses to cope with oxidative insults during hibernation. Little is known about antioxidant responses and their regulatory mechanisms in hibernating bats. We found that the total level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the brain of each of the two distantly related hibernating bats M. ricketti and R. ferrumequinum at arousal was lower than that at torpid or active state. We also found that the levels of malondialdehyde (product of lipid peroxidation) of the two hibernating species of bats were significantly lower than those of non-hibernating bats R. leschenaultia and C. sphinx. This observation suggests that bats maintain a basal level of ROS/RNS that does no harm to the brain during hibernation. Results of Western blotting showed that hibernating bats expressed higher amounts of antioxidant proteins than non-hibernating bats and that M. ricketti bats upregulated the expression of some enzymes to overcome oxidative stresses, such as superoxide dismutase, glutathione reductase, and catalase. In contrast, R. ferrumequinum bats maintained a relatively high level of superoxide dismutase 2, glutathione reductase, and thioredoxin-2 throughout the three different states of hibernation cycles. The levels of glutathione (GSH) were higher in M. ricketti bats than in R. ferrumequinum bats and were significantly elevated in R. ferrumequinum bats after torpor. These data suggest that M. ricketti bats use mainly antioxidant enzymes and R. ferrumequinum bats rely on both enzymes and low molecular weight antioxidants (e.g., glutathione) to avoid oxidative stresses during arousal. Furthermore, Nrf2 and FOXOs play major roles in the regulation of antioxidant defenses in the brains of bats during hibernation. Our study revealed strategies used by bats against oxidative

  14. Microglia antioxidant systems and redox signaling

    DEFF Research Database (Denmark)

    Vilhardt, F; Haslund-Vinding, J; Jaquet, V;

    2017-01-01

    't stand alone however, and are not always pernicious. We discuss in general terms, and where available in microglia, GSH synthesis and relation to cystine import and glutamate export, and the thioredoxin system as the most important antioxidative defense mechanism, and further, we discuss in the context...

  15. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.).

    Science.gov (United States)

    Zhang, Yongping; Xu, Shuang; Yang, Shaojun; Chen, Youyuan

    2015-05-01

    Cadmium (Cd) is a widespread toxic heavy metal that usually causes deleterious effects on plant growth and development. Salicylic acid (SA), a naturally existing phenolic compound, is involved in specific responses to various environmental stresses. To explore the role of SA in the tolerance of melon (Cucumis melo L.) to Cd stress, the influence of SA application on the growth and physiological processes was compared in the two melon cultivars Hamilv (Cd-tolerant) and Xiulv (Cd-sensitive) under Cd stress. Under 400-μM Cd treatment, Hamilv showed a higher biomass accumulation, more chlorophyll (Chl), greater photosynthesis, and less oxidative damage compared to Xiulv. Foliar spraying of 0.1 mM SA dramatically alleviated Cd-induced growth inhibition in the two melon genotypes. Simultaneously, SA pretreatment attenuated the decrease in Chl content, photosynthetic capacity, and PSII photochemistry efficiency in Cd-stressed plants. Furthermore, exogenous SA significantly reduced superoxide anion production and lipid peroxidation, followed by increase in the activities of antioxidant enzyme superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, and content of soluble protein and free proline in both the genotypes under Cd stress. The effect of SA was more conspicuous in Xiulv than Hamilv, reflected in the biomass, photosynthetic pigments, stomatal conductance, water use efficiency, and antioxidant enzymes. These results suggest that exogenous spray of SA can alleviate the adverse effects of Cd on the growth and photosynthesis of both the melon cultivars, mostly through promoting antioxidant defense capacity. It also indicates that SA-included protection against Cd damage is to a greater extent more pronounced in Cd-sensitive genotype than Cd-tolerant genotype.

  16. Synergistic defensive mechanism of phytochelatins and antioxidative enzymes in Brassica chinensis L. against Cd stress

    Institute of Scientific and Technical Information of China (English)

    CHEN LiQin; GUO YiFei; YANG LiMin; WANG QiuQuan

    2008-01-01

    Brassica chinensis L. was chosen and exposed to different concentrations of Cd exposure to evaluate its Cd-accumulating capacity and its potential cellular defensive mechanisms. Cd accumulation in the shoots and roots of B. chinensis was up to 1348.3±461.8 and 3761.0±795.0 mg per killogram of dry weight, respectively, under 200 μmol/L of Cd exposure. Increasing Cd accumulation in the plant was accompanied by rapid accumulation of phytochelatins (PCs), and the sequestration of Cd by PCs pro-vided a primary cellular mechanism for Cd detoxification and tolerance of B. chinensis. Furthermore, malondialdehyde formation, hydrogen peroxide content and antioxidative enzyme activities such as superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase were observed in the shoots of Cd-stressed B. chinensis. Increasing enzyme activities in response to concentrations of 5 to 50 μmol/L Cd showed an efficient defense against oxidative stress, suggesting that the antioxidative system was a secondary defensive mechanism. These resulted in reduced free Cd damage and en-hanced Cd accumulation and tolerance. Glutathione plays a pivotal role in these two detoxification pathways. In general, these results suggested that PCs and the antioxidative system are synergistic in combatting Cd-induced oxidative stress and that they play important roles in Cd detoxification of B. chinensis, and also give a deep understanding of the natural defensive mechanisms in plants under heavy metal stress.

  17. Concepts of oxidative stress and antioxidant defense in Crohn's disease.

    Science.gov (United States)

    Alzoghaibi, Mohammed A

    2013-10-21

    Oxygen free radical and lipid peroxides (oxidative stress) are highly reactive and represent very damaging compounds. Oxidative stress could be a major contributing factor to the tissue injury and fibrosis that characterize Crohn's disease. An imbalance between increased reactive oxygen species levels and decreased antioxidant defenses occurs in Crohn's patients. Decreased blood levels of vitamins C and E and decreased intestinal mucosal levels of CuZn superoxide dismutase, glutathione, vitamin A, C, E, and β-carotene have been reported for Crohn's patients. Increased levels of proinflammatory cytokines, such as interleukin-1 and -8 and tumor necrosis factor, have been detected in inflammatory bowel disease. Oxidative stress significantly increased the production of neutrophils, chemokines, and interleukin-8. These effects were inhibited by antioxidant vitamins and arachidonic acid metabolite inhibitors in human intestinal smooth muscle cells isolated from the bowels of Crohn's disease patients. The main pathological feature of Crohn's disease is an infiltration of polymorphonuclear neutrophils and mononuclear cells into the affected part of the intestine. Activated neutrophils produce noxious substances that cause inflammation and tissue injury. Due to the physiological and biochemical actions of reactive oxygen species and lipid peroxides, many of the clinical and pathophysiological features of Crohn's disease might be explained by an imbalance of increased reactive oxygen species and a net decrease of antioxidant molecules. This review describes the general concepts of free radical, lipid peroxide and antioxidant activities and eventually illustrates their interferences in the development of Crohn's strictures.

  18. Ballistic Missile Defense System (BMDS)

    Science.gov (United States)

    2015-12-01

    Estimate RDT&E - Research , Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined TY - Then...all ranges and in all phases of flight. Following guidance from the President, the Secretary of Defense approved the Ballistic Missile Defense (BMD...based Midcourse Defense (GMD) system to enhance our capability against Intercontinental Ballistic Missiles. We are currently sustaining 30

  19. Overexpression of the Maize psbA Gene Enhances Drought Tolerance Through Regulating Antioxidant System, Photosynthetic Capability, and Stress Defense Gene Expression in Tobacco.

    Science.gov (United States)

    Huo, Yongjin; Wang, Meiping; Wei, Yangyang; Xia, Zongliang

    2015-01-01

    The psbA (encoding D1 protein) plays an important role in protecting photosystem II (PSII) from oxidative damage in higher plants. In our previous study, the role of the psbA from maize (Zea mays. L) in response to SO2 stress was characterized. To date, information about the involvement of the psbA gene in drought response is scarce. Here we found that overexpression (OE) of ZmpsbA showed increased D1 protein abundance and enhanced drought stress tolerance in tobacco. The drought-tolerant phenotypes of the OE lines were accompanied by increases of key antioxidant enzymes SOD, CAT, and POD activities, but decreases of hydrogen peroxide, malondialdehyde, and ion leakage. Further investigation showed that the OE plants had much less reductions than the wild-type in the net photosynthesis rate (Pn), stomatal conductance (Gs), and the maximal photochemical efficiency of PSII (Fv/Fm) during drought stress; indicating that OE of ZmpsbA may alleviate photosynthesis inhibition during drought. qRT-PCR analysis revealed that there was significantly increased expression of NtLEA5, NtERD10C, NtAREB, and NtCDPK2 in ZmpsbA-OE lines. Together, our results indicate that ZmpsbA improves drought tolerance in tobacco possibly by alleviating photosynthesis reduction, reducing reactive oxygen species accumulation and membrane damage, and modulating stress defense gene expression. ZmpsbA could be exploited for engineering drought-tolerant plants in molecular breeding of crops.

  20. Overexpression of the Maize psbA Gene Enhances Drought Tolerance Through Regulating Antioxidant System, Photosynthetic Capability, and Stress Defense Gene Expression in Tobacco

    Directory of Open Access Journals (Sweden)

    Yongjin eHuo

    2016-01-01

    Full Text Available The psbA (encoding D1 protein plays an important role in protecting photosystem II (PSII from oxidative damage in higher plants. In our previous study, the role of the psbA from maize (Zea mays. L in response to SO2 stress was characterized. To date, information about the involvement of the psbA gene in drought response is scarce. Here we found that overexpression (OE of ZmpsbA showed increased D1 protein abundance and enhanced drought stress tolerance in tobacco. The drought-tolerant phenotypes of the OE lines were accompanied by increases of key antioxidant enzymes SOD, CAT, and POD activities, but decreases of hydrogen peroxide, malondialdehyde and ion leakage. Further investigation showed that the OE plants had much less reductions than the wild-type in the net photosynthesis rate (Pn, stomatal conductance (Gs, and the maximal photochemical efficiency of PSII (Fv/Fm during drought stress; indicating that overexpression of ZmpsbA may alleviate photosynthesis inhibition during drought. qRT-PCR analysis revealed that there was significantly increased expression of NtLEA5, NtERD10C, NtAREB, and NtCDPK2 in ZmpsbA-OE lines. Together, our results indicate that ZmpsbA improves drought tolerance in tobacco possibly by alleviating photosynthesis reduction, reducing ROS accumulation and membrane damage, and modulating stress defense gene expression. ZmpsbA could be exploited for engineering drought-tolerant plants in molecular breeding of crops.

  1. Dual effects of a mixture of grape pomace (Campbell Early) and Omija fruit ethanol extracts on lipid metabolism and the antioxidant defense system in diet-induced obese mice

    Science.gov (United States)

    Han, Hye Jin; Jung, Un Ju; Kim, Hye-Jin; Moon, Byoung Seok; Cho, Su-Jung; Park, Yong Bok; Lee, Dong Gun

    2015-01-01

    BACKGROUND/OBJECTIVES We investigated the effects of a combination of grape pomace (Vitis labrusca, Campbell Early) and Omija fruit (Schizandra chinensis, Baillon) ethanol extracts on lipid metabolism and antioxidant defense system in diet-induced obese mice. MATERIALS/METHODS Forty male C57BL/6J mice were divided into four groups and fed high-fat diet (control group, CON) or high-fat diet added 0.5% grape pomace extract (GPE), 0.05% Omija fruit extract (OFE) or 0.5% GPE plus 0.05% OFE (GPE+OFE) for 12 weeks. RESULTS In contrast to the GPE- or OFE-supplemented groups, the GPE+OFE group showed significantly lower body weight and white adipose tissue weights than the CON group. Moreover, GPE+OFE supplementation significantly decreased plasma total cholesterol and increased the plasma HDL-cholesterol/total-cholesterol ratio (HTR) compared to the control diet. The hepatic triglyceride level was significantly lower in the GPE+OFE and GPE groups by increasing β-oxidation and decreasing lipogenic enzyme compared to the CON group. Furthermore, GPE+OFE supplementation significantly increased antioxidant enzyme activities with a simultaneous decrease in liver H2O2 content compared to the control diet. CONCLUSIONS Together our results suggest that supplementation with the GPE+OFE mixture may be more effective in improving adiposity, lipid metabolism and oxidative stress in high-fat diet-fed mice than those with GPE and OFE alone. PMID:26060533

  2. Polyamine and nitric oxide crosstalk: Antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems.

    Science.gov (United States)

    Nahar, Kamrun; Hasanuzzaman, Mirza; Alam, Md Mahabub; Rahman, Anisur; Suzuki, Toshisada; Fujita, Masayuki

    2016-04-01

    Cadmium (Cd) contamination is a serious agricultural and environmental hazard. The study investigates cross-protection roles of putrescine (Put, 0.2 mM) and nitric oxide (sodium nitroprusside; SNP, 1 mM) in conferring Cd (CdCl2, 1.5 mM) tolerance in mung bean (Vigna radiata L. cv. BARI Mung-2) seedlings. Cadmium stress increased root and shoot Cd content, reduced growth, destroyed chlorophyll (chl), modulated proline (Pro) and reduced leaf relative water content (RWC), increased oxidative damage [lipid peroxidation, H2O2 content, O2(∙-) generation rate, lipoxygenase (LOX) activity], methylglyoxal (MG) toxicity. Put and/or SNP reduced Cd uptake, increasd phytochelatin (PC) content, reduced oxidative damage enhancing non-enzymatic antioxidants (AsA and GSH) and activities of enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST), and glutathione peroxidase (GPX)]. Exogenous Put and/or SNP modulated endogenous polyamines, PAs (putrescine, Put; spermidine, Spd; spermine, Spm), and NO; improved glyoxalase system in detoxifying MG and improved physiology and growth where combined application showed better effects which designates possible crosstalk between NO and PAs to confer Cd-toxicity tolerance.

  3. Attenuation of cellular antioxidant defense mechanisms in kidney of rats intoxicated with carbofuran.

    Science.gov (United States)

    Kaur, Bhupindervir; Khera, Alka; Sandhir, Rajat

    2012-10-01

    Carbofuran, an anticholinestrase carbamate, is commonly used as an insecticide. Its toxic effect on kidney is less established. The present study was designed to investigate the effect of carbofuran on kidneys and to understand the mechanism involved in its nephrotoxicity. Male Wistar rats were divided into two groups of eight animals each; control animals received sunflower oil (vehicle) and carbofuran exposed animals were treated with carbofuran (1 mg/kg body weight) orally for 28 days. At the end of the treatment, significant increase was observed in urea and creatinine levels in serum along with the inhibition of acetylcholinesterase, suggesting nephrotoxicity. The antioxidant defense system of animals treated with carbofuran was altered in terms of increased lipid peroxidation, reduced glutathione, and total thiols and decreased activity of antioxidant enzymes (superoxide dismutase and catalase). The results indicate that carbofuran is nephrotoxic and increased oxidative stress appears to be involved in its nephrotoxic effects.

  4. Involvement of Polyamine Oxidase in Abscisic Acid induced Cytosolic Antioxidant Defense in Leaves of Maize

    Institute of Scientific and Technical Information of China (English)

    Beibei Xue; Aying Zhang; Mingyi Jiang

    2009-01-01

    Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H2O2) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H2O2. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H2O2, a Spd catabolic product.

  5. Triiodothyronine and melatonin influence antioxidant defense mechanism in a teleost Anabas testudineus (Bloch): in vitro study.

    Science.gov (United States)

    Sreejith, P; Beyo, R S; Divya, L; Vijayasree, A S; Manju, M; Oommen, O V

    2007-06-01

    The effect of the hormones triiodothyronine (T3) and melatonin on antioxidant defense system was studied in 6-propyl thiouracil (6-PTU)-treated or photoperiod-exposed teleost Anabas testudineus. 6-PTU (2 microg/g) treatment or photoperiod exposure (24 h) increased malondialdehyde (MDA) and conjugated dienes (CD) concentrations, indicating increased lipid peroxidation (LPO) in the experimental conditions. T3 or melatonin (10(-6) M) treatment for 15 min in vitro in PTU-treated fish reversed the activity of superoxide dismutase (SOD), catalase and glutathione content. T3-treated group showed no change in glutathione peroxidase (GPx) activity, whereas melatonin treatment decreased its activity. T3 inhibited glutathione reductase (GR) activity. Photoperiod exposure (physiological pinealotomy) induced a stressful situation in this teleost, as evidenced by LPO products and antioxidant enzyme activities. Melatonin and T3 treatment for 15 min in vitro also reversed the effect of photoperiod on peroxidation products and the SOD and catalase activities. GR activity decreased in photoperiod-exposed group and melatonin and T3 treatment reversed the activities. The antioxidant enzymes responded to the stress situation after 6-PTU treatment and photoperiod exposure by altering their activities. The study suggested an independent effect of T3 and melatonin on antioxidant defence mechanism in different physiological situations in fish.

  6. Systemic defense signaling in tomato

    Institute of Scientific and Technical Information of China (English)

    LI Changbao; SUN Jiaqiang; JIANG Hongling; WU Xiaoyan; LI Chuanyou

    2005-01-01

    The wound-inducible expression of proteinase inhibitors (PIs) genes in tomato provides a powerful model system to elucidate the signal transduction pathway of sys- temic defense response. An increasing body of evidence indi- cates that systemin and jasmonic acid (JA) work in the same signaling pathway to activate the expression of PIs and other defense-related genes. However, little is known about how systemin and JA interact to regulate cell to cell communica- tion over long distances. Genetic analysis of the systemin/JA signaling pathway in tomato plants provides a unique opportunity to dissect the mechanism by which peptide and oxylipin signals interact to coordinate systemic expression of defense-related genes. Previously, it has been proposed that systemin is the long-distance mobile signal for systemic expression of defense related genes. However, recent genetic approach provided new evidence that jasmonic acid, rather than systemin, functions as the systemic wound signal, and that the peptide systemin works to regulate the biosynthesis of JA.

  7. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses

    Directory of Open Access Journals (Sweden)

    J.G. Scandalios

    2005-07-01

    Full Text Available Molecular oxygen (O2 is the premier biological electron acceptor that serves vital roles in fundamental cellular functions. However, with the beneficial properties of O2 comes the inadvertent formation of reactive oxygen species (ROS such as superoxide (O2·-, hydrogen peroxide, and hydroxyl radical (OH·. If unabated, ROS pose a serious threat to or cause the death of aerobic cells. To minimize the damaging effects of ROS, aerobic organisms evolved non-enzymatic and enzymatic antioxidant defenses. The latter include catalases, peroxidases, superoxide dismutases, and glutathione S-transferases (GST. Cellular ROS-sensing mechanisms are not well understood, but a number of transcription factors that regulate the expression of antioxidant genes are well characterized in prokaryotes and in yeast. In higher eukaryotes, oxidative stress responses are more complex and modulated by several regulators. In mammalian systems, two classes of transcription factors, nuclear factor kB and activator protein-1, are involved in the oxidative stress response. Antioxidant-specific gene induction, involved in xenobiotic metabolism, is mediated by the "antioxidant responsive element" (ARE commonly found in the promoter region of such genes. ARE is present in mammalian GST, metallothioneine-I and MnSod genes, but has not been found in plant Gst genes. However, ARE is present in the promoter region of the three maize catalase (Cat genes. In plants, ROS have been implicated in the damaging effects of various environmental stress conditions. Many plant defense genes are activated in response to these conditions, including the three maize Cat and some of the superoxide dismutase (Sod genes.

  8. A Systematic Review of Oxidative Stress and Safety of Antioxidants in Diabetes: Focus on Islets and Their Defense

    Directory of Open Access Journals (Sweden)

    Udayakumar Karunakaran

    2013-04-01

    Full Text Available A growing body of evidence suggests that hyperglycemia-induced oxidative stress plays an important role in diabetic complications, especially β-cell dysfunction and failure. Under physiological conditions, reactive oxygen species serve as second messengers that facilitate signal transduction and gene expression in pancreatic β-cells. However, under pathological conditions, an imbalance in redox homeostasis leads to aberrant tissue damage and β-cell death due to a lack of antioxidant defense systems. Taking into account the vulnerability of islets to oxidative damage, induction of endogenous antioxidant enzymes or exogenous antioxidant administration has been proposed as a way to protect β-cells against diabetic insults. Here, we consider recent insights into how the redox response becomes deregulated under diabetic conditions, as well as the therapeutic benefits of antioxidants, which may provide clues for developing strategies aimed at the treatment or prevention of diabetes associated with β-cell failure.

  9. Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers.

    Science.gov (United States)

    Noreen, Zahra; Ashraf, Muhammad

    2009-11-01

    The present work describes whether the changes in the activities of antioxidant enzymes and the levels of some non-enzymatic antioxidants could be used as markers of salt tolerance in nine genetically diverse pea (Pisum sativum) cultivars. All cultivars were exposed to four levels of NaCl i.e., 0, 40, 80 and 120mM in sand culture. Plant fresh biomass, total phenolics, total soluble proteins, hydrogen peroxide (H(2)O(2)), malondialdehyde (MDA), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in leaves while different forms of tocopherols (alpha-, gamma- and Delta-tocopherol) in fresh seed of salt-stressed and non-stressed plants were analyzed. On the basis of percent inhibition in shoot biomass at the highest salt level (120mM) cultivars 2001-35, 2001-55 and Climax were ranked as tolerant (percent inhibition less than 60%), 2001-20, 9800-5 and 9800-10 moderately tolerant (percent inhibition 60-70%), and 2001-40, 9200 and Tere 2 salt sensitive (percent inhibition more than 70%). Salt stress markedly enhanced the activities of SOD and POD, levels of total phenolics and gamma- and Delta-tocopherols, and decreased the total soluble proteins and CAT activity, while the internal levels of H(2)O(2) remained unaffected in all pea cultivars. Although salt-induced oxidative stress occurred in all pea cultivars, the response of salt-tolerant and salt-sensitive cultivars with respect to the generation of enzymatic and non-enzymatic metabolites measured in the present study was not consistent. Of different antioxidant enzymes and metabolites analyzed, only CAT activity was found to be a reliable marker of salt tolerance in the set of pea cultivars examined.

  10. Effect of long dose exposure of Podophyllum hexandrum methanol extract on antioxidant defense system and body and organ weight changes of albino rats

    Institute of Scientific and Technical Information of China (English)

    Showkat Ahmad Ganie; Bilal Ahmad Zargar; Akbar Masood; Mohmmad Afzal Zargar

    2012-01-01

    Objective: The present study was undertaken to investigate the effect of long dose administration of methanol rhizome extract of Podophyllum hexandrum and hydrogen peroxide on lipid peroxidation of erythrocytes, antioxidant enzyme status of rat liver, kidney, lung and brain tissue and body weight and organ weight changes of albino rats. Methods: The body and organ weight was monitored with digital scale balance and lipid peroxidation of RBC ghost membrane was monitored by measuring malonaldehyde (MDA). Antioxidant enzymes were assayed by standard procedures. Results: Our study showed that administration of H2O2 (0.1%) in drinking water of the rats for 25 weeks increased the malondialdehyde levels in erythrocytes of all the rats. However, rats receiving Podophyllum hexandrum extract and α- tocopherol had lower MDA levels in a dose dependent manner, which indicates decreased lipid peroxidation in these rats. Our results also showed decrease in the activity of glutathione reductase, glutathione-S-transferase and reduced glutathione levels in different organs of H2O2 treated rats. Rats receiving methanolic extract of Podophyllum hexandrum at the concentration of 5, 10 and 15mg% for 25 weeks increased the activity of glutathione reductase, glutathione-S-transferase and glutathione levels in different organs of the rats indicates the protective effect of the plant in combating oxidative stress undergone by the rats. No significant variation (P< 0.05) in the organ weights between the control and the treated groups was observed after 25 weeks of treatment. Conclusions: In conclusion, this study presents strong evidence of the nontoxic effect of the methanol extract of Podophyllumhexandrum. The findings also demonstrate that Podophyllum hexandrum methanol extract increased the levels of antioxidant enzymes and decreased lipid peroxidation in albino rats and explained the extensive utilization of the plant in traditional medicine.

  11. Antioxidant System in Dermatology

    Directory of Open Access Journals (Sweden)

    Şemsettin Karaca

    2009-06-01

    Full Text Available In healthy body, oxygen species and antioxidant defence mechanisms work in balance. Overproduction or inadequate removal of reactive oxygen species result in oxidative stress, leading to lipid peroxidation, DNA mutation or breakage, activation or inactivation of enzymes, protein oxidation. Clinically, these cause several unfavorable effects included erythema, edema, wrinkles, photoaging, inflammation, autoimmune reactions, hipersensitivity reactions, keratinization disorders, neoplastic or preneoplastic lesions. Although reactive oxygen species play a role in various skin diseases, their biological targets and pathogenic mode of action are still not fully understood. In addition, strategies in the therapeutic management of reactive oxygen species effects in are still lacking. The aim of this review is to give information to readers about reactive oxygen species, antioxidants and skin disorders influenced by reactive oxygen species.

  12. Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi.

    Science.gov (United States)

    Azevedo, Maria-Manuel; Carvalho, Agostinho; Pascoal, Cláudia; Rodrigues, Fernando; Cássio, Fernanda

    2007-05-15

    Aquatic hyphomycetes are fungi that play a key role in plant litter decomposition in streams. Even though these fungi occur in metal-polluted streams, the mechanisms underlying their tolerance to metals are poorly documented. We addressed the effects of Zn and Cu in Varicosporium elodeae and Heliscus submersus by examining metal adsorption to cell walls, plasma membrane integrity and production of reactive oxygen species at metal concentrations inhibiting biomass production in 50% or 80%. The activity of the enzymes catalase, superoxide dismutase and glucose-6-phosphate dehydrogenase was measured to elucidate their role in coping with oxidative stress induced by metals at short- (14 h) and long- (8 days) term exposure. Results show that V. elodeae was more susceptible to the toxic effects induced by Cu and Zn than H. submersus, as indicated by more extensive inhibition of biomass production. Both metals, particularly Cu, induced oxidative stress in the two fungal species, as shown by the noticeable recovery of biomass production in the presence of an antioxidant agent. In both fungi, Cu induced a more severe disruption of plasma membrane integrity than Zn. Our studies on antioxidant defenses showed that catalase had a greater role alleviating stress induced by Zn and Cu than superoxide dismutase. Chronic metal stress also stimulated the production of NADPH, via the pentose phosphate pathway by increasing the activity of glucose-6-phosphate dehydrogenase. Our results suggest that the tolerance of aquatic hyphomycetes to Cu and Zn is associated with the ability of these fungi to initiate an efficient antioxidant defense system.

  13. A temporal analysis of the relationships between social stress, humoral immune response and glutathione-related antioxidant defenses.

    Science.gov (United States)

    Gonçalves, Luciane; Dafre, Alcir Luiz; Carobrez, Sonia Gonçalves; Gasparotto, Odival Cezar

    2008-10-10

    The exposure to different kinds of stress impacts on the reactive oxygen species production with potential risk to the integrity of the tissues. Psychological or biological stress is responsible for a significant increase in the oxidative stress markers and also for activation of the antioxidant defense system. In this study, we analyzed the relationships between social stress, humoral immune response and glutathione-related antioxidant defenses. Groups of male Swiss mice were subjected to different lengths of social stress exposure (social confrontation) which varied from 1 up to 13 days. As a biological stressor, 10(9) sheep red blood cells (SRBC)/mL were injected by intraperitoneal route. As controls, animals not subjected to social stress and/or injected with vehicle solution were used. The serum samples and the cerebral cortex were collected at 4 h, 3, 5, 7, 9, 11, and 13 days after the end of social confrontation. The results indicated that the antioxidant enzymes activities were affected by psychological as well as by biological stressor. These alterations were dependent on the timing of stress exposure which resulted in a positive or in a negative correlation between the antibody titres to SRBC and antioxidant enzymes. We also discuss the possible role of SRBC injection in the modulation of the effects of psychosocial stress on antioxidant metabolism.

  14. SWATH label-free proteomics analyses revealed the roles of oxidative stress and antioxidant defensing system in sclerotia formation of Polyporus umbellatus

    Science.gov (United States)

    Li, Bing; Tian, Xiaofang; Wang, Chunlan; Zeng, Xu; Xing, Yongmei; Ling, Hong; Yin, Wanqiang; Tian, Lixia; Meng, Zhixia; Zhang, Jihui; Guo, Shunxing

    2017-01-01

    Understanding the initiation and maturing mechanisms is important for rational manipulating sclerotia differentiation and growth from hypha of Polyporus umbellatus. Proteomes in P. umbellatus sclerotia and hyphae at initial, developmental and mature phases were studied. 1391 proteins were identified by nano-liquid chromatograph-mass spectrometry (LC-MS) in Data Dependant Acquisition mode, and 1234 proteins were quantified successfully by Sequential Window Acquisition of all THeoretical fragment ion spectra-MS (SWATH-MS) technology. There were 347 differentially expressed proteins (DEPs) in sclerotia at initial phase compared with those in hypha, and the DEP profiles were dynamically changing with sclerotia growth. Oxidative stress (OS) in sclerotia at initial phase was indicated by the repressed proteins of respiratory chain, tricarboxylic acid cycle and the activation of glycolysis/gluconeogenesis pathways were determined based on DEPs. The impact of glycolysis/gluconeogenesis on sclerotium induction was further verified by glycerol addition assays, in which 5% glycerol significantly increased sclerotial differentiation rate and biomass. It can be speculated that OS played essential roles in triggering sclerotia differentiation from hypha of P. umbellatus, whereas antioxidant activity associated with glycolysis is critical for sclerotia growth. These findings reveal a mechanism for sclerotial differentiation in P. umbellatus, which may also be applicable for other fungi.

  15. SWATH label-free proteomics analyses revealed the roles of oxidative stress and antioxidant defensing system in sclerotia formation of Polyporus umbellatus

    Science.gov (United States)

    Li, Bing; Tian, Xiaofang; Wang, Chunlan; Zeng, Xu; Xing, Yongmei; Ling, Hong; Yin, Wanqiang; Tian, Lixia; Meng, Zhixia; Zhang, Jihui; Guo, Shunxing

    2017-01-01

    Understanding the initiation and maturing mechanisms is important for rational manipulating sclerotia differentiation and growth from hypha of Polyporus umbellatus. Proteomes in P. umbellatus sclerotia and hyphae at initial, developmental and mature phases were studied. 1391 proteins were identified by nano-liquid chromatograph-mass spectrometry (LC-MS) in Data Dependant Acquisition mode, and 1234 proteins were quantified successfully by Sequential Window Acquisition of all THeoretical fragment ion spectra-MS (SWATH-MS) technology. There were 347 differentially expressed proteins (DEPs) in sclerotia at initial phase compared with those in hypha, and the DEP profiles were dynamically changing with sclerotia growth. Oxidative stress (OS) in sclerotia at initial phase was indicated by the repressed proteins of respiratory chain, tricarboxylic acid cycle and the activation of glycolysis/gluconeogenesis pathways were determined based on DEPs. The impact of glycolysis/gluconeogenesis on sclerotium induction was further verified by glycerol addition assays, in which 5% glycerol significantly increased sclerotial differentiation rate and biomass. It can be speculated that OS played essential roles in triggering sclerotia differentiation from hypha of P. umbellatus, whereas antioxidant activity associated with glycolysis is critical for sclerotia growth. These findings reveal a mechanism for sclerotial differentiation in P. umbellatus, which may also be applicable for other fungi. PMID:28134344

  16. Protective effects of L-arginine on pulmonary oxidative stress and antioxidant defenses during exhaustive exercise in rats

    Institute of Scientific and Technical Information of China (English)

    Wan-teng LIN; Suh-ching YANG; Kung-tung CHEN; Chi-chang HUANG; Ning-yuean LEE

    2005-01-01

    Aim: To assess the effects of L-arginine (L-Arg) supplementation on pulmonary oxidative stress and antioxidant defenses in rats after exhaustive exercise. Methods:Rats were randomly divided into four groups: sedentary control (SC), sedentary control with L-Arg treatment (SC+Arg), exhaustive exercise with control diet (E)and exhaustive exercise with L-Arg treatment (E+Arg). Rats in groups SC+Arg and E+Arg received a 2% L-Arg diet. Rats in groups E and E+Arg underwent an exhaustive running test on a motorized treadmill. Pulmonary oxidative stress indices [xanthine oxidase (XO), myeloperoxidase (MPO), and malondialdehyde (MDA)] and antioxidant defense systems [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and glutathione (GSH)] were investigated in this study. Results: L-Arg supplementation significantly reduced exercise-induced elevations of XO and MPO activities in lung. LArg reversed the exercise-induced increase in SOD and GR activities, but increased CAT and GPX activities. L-Arg administration also significantly increased the GSH levels in plasma. Conclusion: L-Arg supplementation can prevent elevations of XO and MPO activities in the lung and favorably influence pulmonary antioxidant defense systems after exhaustive exercise.

  17. Captopril and Valsartan May Improve Cogniti ve Function Through Potentiation of the Brain Antioxidant Defense System and Attenuation of Oxidative/Nitrosative Damage in STZ - Induced Dementia in Rat

    Directory of Open Access Journals (Sweden)

    Yasaman Arjmand Abbassi

    2016-12-01

    Full Text Available Purpose: Previous findings have shown the crucial roles of brain renin-angiotensin system (RAS in pathogenesis of Alzheimer’s disease (AD. Since RAS inhibitors may have beneficial effects on dementia and cognitive function in elderly people, the aim of present study was to examine the neuroprotective actions of captopril and valsartan on memory function and neuronal damage in experimental model of AD. Methods: Adult forty male Wistar rats (220-280g were randomly divided into 5 groups; Control, Vehicle, Alzheimer and treatment groups. AD was induced by the injections of streptozotocin (3mg/kg, bilateral intracerebroventricular at days 1&3. Treated rats received orally captopril (50mg/kg/day and valsartan (30mg/kg/day. Memory function and histological assessments were done at termination of experiment. Finally, superoxide dismutase (SOD and catalase (CAT activities as well as malondialdehyde (MDA and NOx contents were determined. Results: There was a significant increase in the mean value of latency in Alzheimer group (66%. Captopril and valsartan considerably decreased this value in both treatment groups (45% and 72%, respectively. In Alzheimer group the activities of brain’s SOD and CAT reduced (40% and 47%, respectively in accompany with an increase in MDA and NOx contents (49% and 50%, respectively. Captopril and valsartan significantly increased the activities of brain’s SOD and CAT concomitant reduction in MDA and NOx contents. Also, histopathological damages noticeably decreased in both treatment groups. Conclusion: Our findings indicate that RAS inhibition by using captopril and valsartan potentiates the antioxidant defense system of brain and reduces oxidative/nitrosative stress in accompany with neuronal damage during AD.

  18. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate.

    Science.gov (United States)

    Riganti, Chiara; Gazzano, Elena; Polimeni, Manuela; Aldieri, Elisabetta; Ghigo, Dario

    2012-08-01

    The pentose phosphate pathway, one of the main antioxidant cellular defense systems, has been related for a long time almost exclusively to its role as a provider of reducing power and ribose phosphate to the cell. In addition to this "traditional" correlation, in the past years multiple roles have emerged for this metabolic cascade, involving the cell cycle, apoptosis, differentiation, motility, angiogenesis, and the response to anti-tumor therapy. These findings make the pentose phosphate pathway a very interesting target in tumor cells. This review summarizes the latest discoveries relating the activity of the pentose phosphate pathway to various aspects of tumor metabolism, such as cell proliferation and death, tissue invasion, angiogenesis, and resistance to therapy, and discusses the possibility that drugs modulating the pathway could be used as potential tools in tumor therapy.

  19. Epigallocatechin-3-gallate prevents lipid peroxidation and enhances antioxidant defense system via modulating hepatic nuclear transcription factors in heat-stressed quails.

    Science.gov (United States)

    Sahin, K; Orhan, C; Tuzcu, M; Ali, S; Sahin, N; Hayirli, A

    2010-10-01

    Epigallocatechin-3-gallate (EGCG), a polyphenol derived from green tea, exerts antioxidant effects. Oxidative stress is one of the consequences of heat stress (HS), which also depresses performance in poultry. This experiment was conducted to elucidate the action mode of EGCG in alleviation of oxidative stress in heat-stressed quail (Coturnix coturnix japonica). A total of 180 five-week-old female Japanese quails were reared either at 22°C for 24 h/d (thermoneutral, TN) or 34°C for 8 h/d (HS) for 12 wk. Birds in both environments were randomly fed 1 of 3 diets: basal diet and basal diet added with 200 or 400 mg of EGCG/kg of diet. Each of the 2×3 factorially arranged groups was replicated in 10 cages, each containing 3 quails. Performance variables [feed intake (FI) and egg production (EP)], oxidative stress biomarkers [malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)] and hepatic transcription factors [nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)] were analyzed using 2-way ANOVA. Exposure to HS caused reductions in FI by 9.7% and EP by 14.4%, increased hepatic MDA level by 84.8%, and decreased hepatic SOD, CAT, and GSH-Px activities by 25.8, 52.3, and 45.5%, respectively (P<0.0001 for all). The hepatic NF-κB expression was greater (156 vs. 82%) and Nrf2 expression was lower (84 vs. 118%) for quails reared under the HS environment than for those reared under the TN environment (P<0.0001 for both). In response to increasing supplemental EGCG level, there were linear increases in FI from 29.6 to 30.9 g/d and EP from 84.3 to 90.1%/d, linear decreases in hepatic MDA level from 2.82 to 1.72 nmol/g and Nrf2 expression from 77.5 to 123.3%, and linear increases in hepatic SOD (146.4 to 182.2), CAT (36.2 to 47.1), and GSH-Px (13.5 to 18.5) activities (U/mg of protein) and NF-κB expression (149.7 to 87.3%) (P<0.0001 for all). Two

  20. Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Muhammad A Farooq

    2016-04-01

    Full Text Available Methyl jasmonate (MJ is an important plant growth regulator, involved in plant defense against abiotic stresses, however its possible function in response to metal stress is poorly understood. In the present study, the effect of MJ on physiological and biochemical changes of the plants exposed to arsenic (As stress were investigated in two Brassica napus L. cultivars (ZS 758 – a black seed type, and Zheda 622 – a yellow seed type. The As treatment at 200 µM was more phytotoxic, however its combined application with MJ resulted in significant increase in leaf chlorophyll fluorescence, biomass production and reduced malondialdehyde content compared with As stressed plants. The application of MJ minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS synthesis (H2O2 and OH- in leaves and the maintenance of high redox states of glutathione and ascorbate. Enhanced enzymatic activities and gene expression of important antioxidants (SOD, APX, CAT, POD, secondary metabolites (PAL, PPO, CAD and induction of lypoxygenase gene suggest that MJ plays an effective role in the regulation of multiple transcriptional pathways which were involved in oxidative stress responses. The content of As was higher in yellow seeded plants (cv. Zheda 622 as compared to black seeded plants (ZS 758. The application of MJ significantly reduced the As content in leaves and roots of both cultivars. Findings of the present study reveal that MJ improves ROS scavenging through enhanced antioxidant defense system, secondary metabolite and reduced As contents in both the cultivars.

  1. Long-term consumption of aspartame and brain antioxidant defense status.

    Science.gov (United States)

    Abhilash, M; Sauganth Paul, M V; Varghese, Mathews V; Nair, R Harikumaran

    2013-04-01

    The present study investigated the effect of long-term intake of aspartame, a widely used artificial sweetener, on antioxidant defense status in the rat brain. Male Wistar rats weighing 150-175 g were randomly divided into three groups as follows: The first group was given aspartame at a dose of 500 mg/kg body weight (b.w.); the second group was given aspartame at dose of 1,000 mg/kg b.w., respectively, in a total volume of 3 mL of water; and the control rats received 3 mL of distilled water. Oral intubations were done in the morning, daily for 180 days. The concentration of reduced glutathione (GSH) and the activity of glutathione reductase (GR) were significantly reduced in the brain of rats that had received the dose of 1,000 mg/kg b.w. of aspartame, whereas only a significant reduction in GSH concentration was observed in the 500-mg/kg b.w. aspartame-treated group. Histopathological examination revealed mild vascular congestion in the 1,000 mg/kg b.w. group of aspartame-treated rats. The results of this experiment indicate that long-term consumption of aspartame leads to an imbalance in the antioxidant/pro-oxidant status in the brain, mainly through the mechanism involving the glutathione-dependent system.

  2. Antioxidant Defense by Thioredoxin Can Occur Independently of Canonical Thiol-Disulfide Oxidoreductase Enzymatic Activity

    Directory of Open Access Journals (Sweden)

    Miryoung Song

    2016-03-01

    Full Text Available The thiol-disulfide oxidoreductase CXXC catalytic domain of thioredoxin contributes to antioxidant defense in phylogenetically diverse organisms. We find that although the oxidoreductase activity of thioredoxin-1 protects Salmonella enterica serovar Typhimurium from hydrogen peroxide in vitro, it does not appear to contribute to Salmonella’s antioxidant defenses in vivo. Nonetheless, thioredoxin-1 defends Salmonella from oxidative stress resulting from NADPH phagocyte oxidase macrophage expression during the innate immune response in mice. Thioredoxin-1 binds to the flexible linker, which connects the receiver and effector domains of SsrB, thereby keeping this response regulator in the soluble fraction. Thioredoxin-1, independently of thiol-disulfide exchange, activates intracellular SPI2 gene transcription required for Salmonella resistance to both reactive species generated by NADPH phagocyte oxidase and oxygen-independent lysosomal host defenses. These findings suggest that the horizontally acquired virulence determinant SsrB is regulated post-translationally by ancestrally present thioredoxin.

  3. Risk Management Programs for Defense Acquisition Systems

    Science.gov (United States)

    2007-11-02

    The audit objective was to evaluate the effectiveness of risk management programs for Defense acquisition systems. Specifically, we determined whether DoD risk management policies and procedures for Defense acquisition systems were effectively implemented and what impact risk management programs bad on reducing program risks and costs. We also reviewed management controls as they applied to the audit objectives.

  4. Reactive Oxygen Species, Lipid Peroxidation and Antioxidative Defense Mechanism

    Directory of Open Access Journals (Sweden)

    Hossam S. EL-BELTAGI

    2013-05-01

    Full Text Available Lipid peroxidation can be defined as the oxidative deterioration of lipids containing any number of carbon-carbon double bonds. Lipid peroxidation is a well-established mechanism of cellular injury in both plants and animals, and is used as an indicator of oxidative stress in cells and tissues. Lipid peroxides are unstable and decompose to form a complex series of compounds including reactive carbonyl compounds. The oxidation of linoleates and cholesterol is discussed in some detail. Analytical methods for studying lipid peroxidation were mentioned. Various kinds of antioxidants with different functions inhibit lipid peroxidation and the deleterious effects caused by the lipid peroxidation products.

  5. Nonenzymatic antioxidants in saliva of patients with systemic lupus erythematosus.

    Science.gov (United States)

    Moori, M; Ghafoori, H; Sariri, R

    2016-03-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody-directed self-antigens, immune complex formation and immune deregulation, resulting in damage to essentially all the organs. SLE is associated with the increased production of free radicals. Increase in free radicals or impaired antioxidant defense system in SLE causes oxidative stress. Considering that saliva could be a reflection of the state of health, the purpose of this study was to evaluate some antioxidants in the saliva and serum of patients with SLE and compare these with healthy individuals. This could help us in obtaining a possible marker in saliva in the future. During the course of the practical part of the project, 30 patients with SLE and 30 healthy controls were investigated. After centrifugation of un-stimulated saliva and blood samples, they were examined using spectrophotometric methods and the results were analyzed by statistical software. According to the results, concentrations of malondialdehyde, uric acid and total antioxidants were significantly increased but the level of reduced glutathion was reduced significantly in the saliva and serum of SLE patients as compared to controls. It is therefore suggested that antioxidant power is impaired in saliva and serum of SLE patients. As there was a positive correlation between the antioxidant level of saliva and blood serum, the antioxidant status of saliva could be an indicator of serum antioxidants.

  6. Scuba diving activates vascular antioxidant system.

    Science.gov (United States)

    Sureda, A; Batle, J M; Ferrer, M D; Mestre-Alfaro, A; Tur, J A; Pons, A

    2012-07-01

    The aim was to study the effects of scuba diving immersion on plasma antioxidant defenses, nitric oxide production, endothelin-1 and vascular endothelial growth factor levels. 9 male divers performed an immersion at 50 m depth for a total time of 35 min. Blood samples were obtained before diving at rest, immediately after diving, and 3 h after the diving session. Leukocyte counts, plasma 8oxoHG, malondialdehyde and nitrite levels significantly increased after recovery. Activities of lactate dehydrogenase, creatine kinase, catalase and superoxide significantly increased immediately after diving and these activities remained high after recovery. Plasma myeloperoxidase activity and protein levels and extracellular superoxide dismutase protein levels increased after 3 h. Endothelin-1 concentration significantly decreased after diving and after recovery. Vascular endothelial growth factor concentration significantly increased after diving when compared to pre-diving values, returning to initial values after recovery. Scuba diving at great depth activated the plasma antioxidant system against the oxidative stress induced by elevated pO₂ oxygen associated with hyperbaria. The decrease in endothelin-1 levels and the increase in nitric oxide synthesis could be factors that contribute to post-diving vasodilation. Diving increases vascular endothelial growth factor plasma levels which can contribute to the stimulation of tissue resistance to diving-derived oxidative damage.

  7. Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails.

    Science.gov (United States)

    Hermes-Lima, M; Storey, J M; Storey, K B

    1998-07-01

    The roles of enzymatic antioxidant defenses in the natural tolerance of environmental stresses that impose changes in oxygen availability and oxygen consumption on animals is discussed with a particular focus on the biochemistry of estivation and metabolic depression in pulmonate land snails. Despite reduced oxygen consumption and PO2 during estivation, which should also mean reduced production of oxyradicals, the activities of antioxidant enzymes, such as superoxide dismutase and catalase, increased in 30 day-estivating snails. This appears to be an adaptation that allows the snails to deal with oxidative stress that takes place during arousal when PO2 and oxygen consumption rise rapidly. Indeed, oxidative stress was indicated by increased levels of lipid peroxidation damage products accumulating in hepatopancreas within minutes after arousal was initiated. The various metabolic sites responsible for free radical generation during arousal are still unknown but it seems unlikely that the enzyme xanthine oxidase plays any substantial role in this despite being implicated in oxidative stress in mammalian models of ischemia/reperfusion. We propose that the activation of antioxidant defenses in the organs of Otala lactea during estivation is a preparative mechanism against oxidative stress during arousal. Increased activities of antioxidant enzymes have also observed under other stress situations in which the actual production of oxyradicals should decrease. For example, antioxidant defenses are enhanced during anoxia exposure in garter snakes Thamnophis sirtalis parietalis (10 h at 5 degrees C) and leopard frogs Rana pipiens (30 h at 5 degrees C) and during freezing exposure (an ischemic condition due to plasma freezing) in T. sirtalis parietalis and wood frogs Rana sylvatica. It seems that enhancement of antioxidant enzymes during either anoxia or freezing is used as a preparatory mechanism to deal with a physiological oxidative stress that occurs rapidly within the

  8. The role of disorders of the prooxidant-antioxidant system in diabetes etiopathology

    Directory of Open Access Journals (Sweden)

    Małgorzata Mrowicka

    2011-08-01

    Full Text Available Chronic hyperglycemia is believed to play a pivotal role in the development of diabetic complications. It was found that hyperglycemia triggered a number of mechanisms that evoke overproduction of reactive oxygen species (ROS. Diabetes mellitus is associated with an increased level of free radicals, disturbances of the enzymatic antioxidant defense system and lower concentration of exogenous antioxidants. In consequence, these abnormalities lead to a redox imbalance called oxidative stress. The aim of the present study is to summarize the role of reactive oxygen species and changes in the antioxidant defense system in the development of diabetic complications.

  9. Activity of antioxidative defense enzymes in the blood of patients with liver echinococcosis

    Directory of Open Access Journals (Sweden)

    Lilić Aleksandar

    2007-01-01

    Full Text Available Background/Aim. Chronic echinococcocal disease is the parasite human disease caused by the penetration of larval (asexual stages of the canine tapeworm (Echinococcus granulosus in the liver of humans. After the penetration of the parasite, the host organism react by activating complement- depending immune response. The aim of this study was to elucidate the influence of larval form of Echinococcus granulosus in the liver on the activity of antioxidative defense enzymes in the blood of patients before and after the surgical intervention. Methods. We investigated the activity of antioxidative defense enzymes: copper/zinc containing superoxide dismutase (CuZn SOD, catalase (CAT, glutathione peroxidase (GSH-Px, glutathione reductase (GR and glutathione-S-transferase (GST in the blood of patients before and after the surgical intervention in respect to the controls, clinically healthy persons. Results. Our results showed that the activity of the GSH-Px was significantly decreased in the plasma of the patients with echinocococal disease before the surgery in respect to the controls. The activity of GST was significantly higher in the blood of the patients after the surgery in comparison to the controls. Conclusion. Chronic liver echinoccocal disease caused significant changes of some antioxidative defense enzymes, first of all Se-dependent enzyme GSH-Px, which could be a suitabile biomarker in the biochemical evaluation of the disease. This work represents a first comprehensive study of the activity of antioxidative defense enzymes in cronic liver echinococcocosis in the patients before and after the surgical intervention in respect to the clinically healthy persons.

  10. ENDURANCE TRAINING AND GLUTATHIONE-DEPENDENT ANTIOXIDANT DEFENSE MECHANISM IN HEART OF THE DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    Mustafa Atalay

    2003-06-01

    Full Text Available Regular physical exercise beneficially influences cardiac antioxidant defenses in normal rats. The aim of this study was to test whether endurance training can strengthen glutathione-dependent antioxidant defense mechanism and decrease lipid peroxidation in heart of the streptozotocin-induced diabetic rats. Redox status of glutathione in blood of diabetic rats in response to training and acute exercise was also examined. Eight weeks of treadmill training increased the endurance in streptozotocin-induced diabetic rats. It did not affect glutathione level in heart tissue at rest and also after exercise. On the other hand, endurance training decreased glutathione peroxidase activity in heart, while glutathione reductase and glutathione S-transferase activities were not affected either by acute exhaustive exercise or endurance training. Reduced and oxidized glutathione levels in blood were not affected by either training or acute exercise. Conjugated dienes levels in heart tissue were increased by acute exhaustive exercise and also 8 weeks treadmill training. Longer duration of exhaustion in trained group may have contributed to the increased conjugated dienes levels in heart after acute exercise. Our results suggest that endurance type exercise may make heart more susceptible to oxidative stress. Therefore it may be wise to combine aerobic exercise with insulin treatment to prevent its adverse effects on antioxidant defense in heart in patients with diabetes mellitus

  11. Biomarkers of oxidative stress and of antioxidative defense: Relationship to intervention with antioxidant-rich foods

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Young, Jette Feveile; Loft, Steffen

    2001-01-01

    The antioxidant actions of single food items or extracts rich in flavonoids (e.g., apple and black currant juice, grape skin extract, tea extract and parsley) were evaluated in short-term human trials [Denmark; date not given]. An overall weak trend toward decreased lipid oxidation with increased...... polyphenol intake was observed. There was an increased oxidative stress response toward plasma proteins from food items rich in polyphenols and vitamin C and a decreased response when fruits and vegetables were omitted using a controlled diet. There also was a similar trend toward increased antioxidant...

  12. Antioxidant enzymatic defenses and oxidative damage in Dentex dentex fed on different dietary macronutrient levels.

    Science.gov (United States)

    Pérez-Jiménez, Amalia; Hidalgo, M Carmen; Morales, Amalia E; Arizcun, Marta; Abellán, Emilia; Cardenete, Gabriel

    2009-11-01

    A wide range of antioxidant mechanisms are present in fish maintaining an adequate "oxidative balance". When this balance tilts in favor of the oxidant agents "oxidative stress" arises with detrimental effects in molecules of great biological importance. Little has been reported about the influence of different dietary energy sources on antioxidant defenses in fish. The influence of different dietary macronutrient combinations on the key antioxidant enzyme activity, the oxidative damage to lipids and proteins and the possible modifications in the SOD isoenzymatic pattern were evaluated in liver, white muscle, heart and erythrocytes of common dentex (Dentex dentex). Four experimental diets with different protein:lipid:carbohydrate ratios (43/16/28; 43/24/4; 38/19/28 and 38/24/13) were formulated. In general, neither different dietary macronutrient levels nor the interaction among them induces substantial modifications in enzymatic antioxidant defense mechanisms. Two constitutive SOD isoforms, CuZn-SOD I and Mn-SOD, were detected in the tissues analyzed in all experimental groups, independently of diet formulation, but, a third SOD isoenzyme, CuZn-SOD II seems to be induced in white muscle by higher dietary protein levels. Densitometric analyses of western blotting membranes revealed higher CuZn-SOD expression in the heart of dentex fed on lower dietary protein levels, although these differences did not correlate with the SOD activity. Finally, a direct relation exists between the lipid or protein intake level and occurrence of oxidative damage in different tissue components.

  13. Effects of salinity on survival, growth and antioxidant defense system of Siganus guttatus%盐度对点篮子鱼的存活、生长及抗氧化防御系统的影响

    Institute of Scientific and Technical Information of China (English)

    王妤; 庄平; 章龙珍; 刘鉴毅; 赵峰

    2011-01-01

    Rabbit fish (Siganus guttatus) (67.76 ± 26.12 )g were reared under different salinities (fresh water, salinity 5,10,20 and control group (the local seawater) )to study the response of survival, growth and antioxidant defense system to salinity.The rabbit fish which were fed twice everyday were held in 500 L conical plastic tank with 95 cm in height and 95 cm in diameter for 40 days and three parallels each group.After 40 d, six fish each group were taken randomly to collect the samples of the gill, liver, kidney and muscle.The results showed that the abnormal phenomenon was not found.The survival rate of salinity 5,10,20 and the control group during the experimental period was 100%.However,the abnormal phenomenon of the rabbit fish in fresh water was found (the food consumption was reduced)on the sixth day.They fasted from the 7th day and began to die from 9thd.Feed was recovered from the 13th day.However, death continued.The fish in fresh water died out after 27 d.Specific growth rate(SGR) in different salinities did not show significant differences.The body weight in salinity 10 was significantly higher than that in salinity 5 and 20.However, no significant difference was observed between salinity 10 and the control group.The total length in salinity 5 was significantly lower than other groups.In order to study the response of antioxidant defense system to salinity, the activity of superoxide dismutase ( SOD), catalase ( CAT ), superoxide anion radical, hydroxyl radical of rabbit fish were measured.The activities of SOD, CAT, superoxide anion radical and hydroxyl radical in gill, liver, kidney, muscle of rabbit fish, reared under salinity 10,20, returned to normal levels ( the level of control group ) after 48 d.No significant differences were observed among each group of each index.However, the activities of SOD and superoxide anion radical in gill of rabbit fish under salinity 5 were significantly higher than that under salinity 10,20 and the control group

  14. Resveratrol increases antioxidant defenses and decreases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats.

    Science.gov (United States)

    Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André

    2014-06-01

    Astrocytes are responsible for modulating neurotransmitter systems and synaptic information processing, ionic homeostasis, energy metabolism, maintenance of the blood-brain barrier, and antioxidant and inflammatory responses. Our group recently published a culture model of cortical astrocytes obtained from adult Wistar rats. In this study, we established an in vitro model for hippocampal astrocyte cultures from adult (90 days old) and aged (180 days old) Wistar rats. Resveratrol, a polyphenol found in grapes and red wine, exhibits antioxidant, anti-inflammatory, anti-aging and neuroprotective effects that modulate glial functions. Here, we evaluated the effects of resveratrol on GSH content, GS activity, TNF-α and IL-1β levels in hippocampal astrocytes from newborn, adult and aged Wistar rats. We observed a decrease in antioxidant defenses and an increase in the inflammatory response in hippocampal astrocytes from adult and aged rats compared to classical astrocyte cultures from newborn rats. Resveratrol prevented these effects. These findings reinforce the neuroprotective effects of resveratrol, which are mainly associated with antioxidant and anti-inflammatory activities.

  15. 达乌里胡枝子抗氧化防御系统对增强UV-B辐射的动态响应%Responses of Antioxidant Defense System of Lespedeza davurica to Enhanced UV-B Radiation

    Institute of Scientific and Technical Information of China (English)

    郝文芳; 杜润峰; 王龙飞

    2012-01-01

    为探究增强UV-B辐射对达乌里胡枝子(Lespedeza davrica)抗氧化能力的影响,采用盆栽试验研究其在不同UV-B辐射强度(CK=0,T1=1.944 kJ· m-2 ·d-1,T2=3.002 kJ·m-2·d-1)下的抗氧化保护系统相关指标的动态响应,UV-B辐射处理持续15 d,每3d取样一次至结束后第3d再取样一次.结果表明:随着处理时间的延长,增强UV-B辐射使超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性降低,抗坏血酸过氧化物酶(APX)和过氧化物酶(POD)活性升高,且SOD,POD和CAT的活性随着辐射强度的增加而降低,APX活性在开始处理9d内随着辐射强度的增加而增加,此后随着辐射强度的增加而降低;增强UV-B辐射使抗坏血酸(AsA)含量增加,类胡萝卜素(Car)含量降低,且二者的含量均随着辐射强度的增加而降低;增强UV-B辐射使超氧阴离子(Oi-)、丙二醛(MDA)含量升高,O2·-含量和MDA含量均随着辐射强度的增加而增加.UV-B处理结束后,除SOD活性、POD活性、AsA含量呈下降趋势外,其他指标都呈上升趋势.通过隶属函数法综合评价得出:增强UV-B辐射降低了达乌里胡枝子的抗氧化能力,随着UV-B辐射强度的增加,抗氧化能力降低.%The objective of this study was to investigate the effects of different UV-B radiation intensity (CK, T1. T2)on antioxidant defense system and other related indicators of Lespedeza davurica (Laxm. ) Schindl. Malonaldehyde (MDA), ascorbic acid (AsA) and carotenoid (Car) contents, as well as superox-ide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities of leaves from Lespedeza davurica under different UV-B radiation intensity were investigated. Samples were collected once every three days. The UV-B treatment was continued 15 days. Result indicated that SOD and POD activities decreased, APX and POD activities increased with UV-B radiation enhanced during the whole treatment time. SOD, POD and CAT activities decreased with UV

  16. Iron-ascorbate-mediated lipid peroxidation causes epigenetic changes in the antioxidant defense in intestinal epithelial cells: impact on inflammation.

    Directory of Open Access Journals (Sweden)

    Sabrina Yara

    Full Text Available INTRODUCTION: The gastrointestinal tract is frequently exposed to noxious stimuli that may cause oxidative stress, inflammation and injury. Intraluminal pro-oxidants from ingested nutrients especially iron salts and ascorbic acid frequently consumed together, can lead to catalytic formation of oxygen-derived free radicals that ultimately overwhelm the cellular antioxidant defense and lead to cell damage. HYPOTHESIS: Since the mechanisms remain sketchy, efforts have been exerted to evaluate the role of epigenetics in modulating components of endogenous enzymatic antioxidants in the intestine. To this end, Caco-2/15 cells were exposed to the iron-ascorbate oxygen radical-generating system. RESULTS: Fe/Asc induced a significant increase in lipid peroxidation as reflected by the elevated formation of malondialdehyde along with the alteration of antioxidant defense as evidenced by raised superoxide dismutase 2 (SOD2 and diminished glutathione peroxidase (GPx activities and genes. Consequently, there was an up-regulation of inflammatory processes illustrated by the activation of NF-κB transcription factor, the higher production of interleukin-6 and cycloxygenase-2 as well as the decrease of IκB. Assessment of promoter's methylation revealed decreased levels for SOD2 and increased degree for GPx2. On the other hand, pre-incubation of Caco-2/15 cells with 5-Aza-2'-deoxycytidine, a demethylating agent, or Trolox antioxidant normalized the activities of SOD2 and GPx, reduced lipid peroxidation and prevented inflammation. CONCLUSION: Redox and inflammatory modifications in response to Fe/Asc -mediated lipid peroxidation may implicate epigenetic methylation.

  17. Alternations of salivary antioxidant enzymes in systemic lupus erythematosus.

    Science.gov (United States)

    Zaieni, S H; Derakhshan, Z; Sariri, R

    2015-11-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with chronic systemic inflammation. Oxidative stress may play a role in the pathogenesis of SLE. An increase in free radicals or an impaired antioxidant defense system in SLE causes oxidative stress. Therefore, oxidative damage plays an important role in the pathogenesis of SLE. Variations in antioxidant activity have been previously studied in serum of patients with this disease. However, salivary factors have not been evaluated. Considering that saliva, the noninvasive biological fluid, could be a reflection of the state of health, the purpose of this study was evaluation of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) activity in the saliva of patients with SLE. During the course of the practical part of the project, 30 patients with SLE and 30 healthy controls were selected to donate their saliva samples. After centrifugation of un-stimulated saliva, biological activity of POD, CAT and SOD were evaluated on their appropriate substrates using spectrophotometric methods and the results were statistically analyzed. The results showed that activities of antioxidant enzymes SOD and CAT were significantly reduced in saliva of SLE patients as compared to controls. The results suggest that antioxidant status was impaired in the saliva of SLE patients, and antioxidant status of saliva could be one of the non-invasive markers for SLE.

  18. EFFECTS OF PROLONGED EXERCISE ON OXIDATIVE STRESS AND ANTIOXIDANT DEFENSE IN ENDURANCE HORSE

    Directory of Open Access Journals (Sweden)

    Susanna Kinnunen

    2005-12-01

    Full Text Available Increased oxidative stress during prolonged endurance exercise may end up with muscle damage, fatigue and decreased physical performance. We have recently shown that acute exercise at moderate intensity induced lipid peroxidation, protein oxidation and oxygen radical absorbance capacity (ORAC in trained trotters. The aim of this study was to measure the changes in oxidative stress and antioxidant defense following an 80-km ride in the blood of endurance horses. Blood samples were collected before and immediately after the ride. Unlike to our previous studies performed on trotters, in endurance horses there were no measurable changes in antioxidants or oxidative stress marker lipid hydroperoxides (LPO after prolonged exercise. ORAC, vitamin E and lipid hydroperoxide (LPO concentration or glutathione related enzyme activities were not altered due to the 80-km ride. However, the base line levels of oxidative stress marker were higher in endurance horses compared to trotters. A positive correlation between the pre-ride LPO concentration and erythrocyte glutathione peroxidase (GPx activity after the ride was observed, which may indicate a protective response of glutathione peroxidase against exercise-induced oxidative stress. Our results suggest that endurance horses have higher oxidative stress levels compared to trotters and a single 80-km ride probably did not suffice to induce oxidative stress and to activate antioxidant defense mechanisms.

  19. Department of Defense Healthcare Management System Modernization (DHMSM)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Department of Defense Healthcare Management System Modernization (DHMSM) Defense...Secretary of Defense PB - President’s Budget RDT&E - Research, Development, Test, and Evaluation SAE - Service Acquisition Executive TBD - To Be...DSN Fax: Date Assigned: November 16, 2015 Program Information Program Name Department of Defense Healthcare Management System Modernization

  20. TO ASSESS THE MAGNITUDE OF OXIDATIVE STRESS AND ANTIOXIDANT DEFENSE IN PREECLAMPSIA

    Directory of Open Access Journals (Sweden)

    Richa Pramod Priyamvada

    2016-07-01

    Full Text Available Preeclampsia is a multifactorial disease. Recent studies show that free radical induced endothelial injury may be a factor in pathogenesis of preeclampsia and that a biochemical imbalance occurs with an increase of oxidative stress, lipoperoxidation and deficient antioxidants. AIMS AND OBJECTIVES To evaluate parameters of oxidative stress and antioxidant defense in preeclampsia and thereby find any aetiological correlation. MATERIALS AND METHODS Study was carried on pregnant and non-pregnant women placed in four groups. This study was done to assess Malondialdehyde (MDA, as marker of oxidative stress and Total Antioxidant Capacity (TAC measured by Ferric Reducing Ability of Plasma (FRAP in normal pregnancy and preeclampsia and comparing with non-pregnant females. RESULTS Study shows rise in MDA level highest in severe preeclampsia (192.8 followed by mild preeclampsia (151.8 than in normal pregnancy (105.9, and non-pregnant (95.8 showing significant increase in levels of MDA (p<0.0001 in preeclamptic patients. TAC measured by FRAP significantly highest in severe preeclampsia (1725.6 followed by mild preeclampsia (1507 than in normal pregnancy (1203.3 and although there was increase in TAC in normal pregnant compared to non-pregnant (1173.7, increase was statistically insignificant. CONCLUSION Preeclampsia shows markedly increased oxidative stress as evidenced by significantly increased levels of malondialdehyde. There was strong correlation between total antioxidant capacity with severity of preeclampsia.

  1. Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit.

    Science.gov (United States)

    Mastouri, Fatemeh; Björkman, Thomas; Harman, Gary E

    2012-09-01

    Some plant-symbiotic strains of the genus Trichoderma colonize roots and induce profound changes in plant gene expression that lead to enhanced growth, especially under biotic and abiotic stresses. In this study, we tested the hypothesis that one of the protective mechanisms enhanced by T. harzianum T22 colonization is the antioxidant defense mechanism. Having established that strain T22 modulates the expression of the genes encoding antioxidant enzymes, the status of antioxidant defense of tomato seedlings in response to colonization by T22 and water deficit was investigated. Total ascorbate or glutathione levels were not affected by either stimuli, but under water deficit, antioxidant pools became more oxidized (lower ratios of reduced to oxidized forms), whereas colonized plants maintained redox state as high as or higher than unstressed and untreated plants. The enhanced redox state of colonized plants could be explained by their higher activity of ascorbate and glutathione-recycling enzymes, higher activity of superoxide dismutase, catalase, and ascorbate peroxidase, in both root and shoot throughout the experiment. Similar enzymes were induced in uncolonized plants in response to water-deficit stress but to a lower extent when compared with colonized plants. This orchestrated enhancement in activity of reactive oxygen species (ROS)-scavenging pathways in colonized plants in response to stress supports the hypothesis that enhanced resistance of colonized plants to water deficit is at least partly due to higher capacity to scavenge ROS and recycle oxidized ascorbate and glutathione, a mechanism that is expected to enhance tolerance to abiotic and biotic stresses.

  2. The 5'-AMP-Activated Protein Kinase (AMPK Is Involved in the Augmentation of Antioxidant Defenses in Cryopreserved Chicken Sperm.

    Directory of Open Access Journals (Sweden)

    Thi Mong Diep Nguyen

    Full Text Available Semen cryopreservation is a unique tool for the management of animal genetic diversity. However, the freeze-thaw process causes biochemical and physical alterations which make difficult the restoration of sperm energy-dependent functions needed for fertilization. 5'-AMP activated protein kinase (AMPK is a key sensor and regulator of intracellular energy metabolism. Mitochondria functions are known to be severely affected during sperm cryopreservation with deleterious oxidative and peroxidative effects leading to cell integrity and functions damages. The aim of this study was thus to examine the role of AMPK on the peroxidation/antioxidant enzymes defense system in frozen-thawed sperm and its consequences on sperm functions. Chicken semen was diluted in media supplemented with or without AMPK activators (AICAR or Metformin [MET] or inhibitor (Compound C [CC] and then cryopreserved. AMPKα phosphorylation, antioxidant enzymes activities, mitochondrial potential, ATP, citrate, viability, acrosome reaction ability (AR and various motility parameters were negatively affected by the freeze-thaw process while reactive oxygen species (ROS production, lipid peroxidation (LPO and lactate concentration were dramatically increased. AICAR partially restored superoxide dismutase (SOD, Glutathione Peroxidase (GPx and Glutathione Reductase (GR, increased ATP, citrate, and lactate concentration and subsequently decreased the ROS and LPO (malondialdehyde in frozen-thawed semen. Motility parameters were increased (i.e., + 23% for motility, + 34% for rapid sperm as well as AR (+ 100%. MET had similar effects as AICAR except that catalase activity was restored and that ATP and mitochondrial potential were further decreased. CC showed effects opposite to AICAR on SOD, ROS, LPO and AR and motility parameters. Taken together, our results strongly suggest that, upon freeze-thaw process, AMPK stimulated intracellular anti-oxidative defense enzymes through ATP regulation

  3. Intelligent systems for strategic power infrastructure defense

    Science.gov (United States)

    Jung, Ju-Hwan

    A fault or disturbance in a power system can be severe due to the sources of vulnerability such as human errors, protection and control system failures, a failure of communication networks to deliver critical control signals, and market and load uncertainties. There have been several catastrophic failures resulting from disturbances involving the sources of vulnerability while power systems are designed to withstand disturbances or faults. To avoid catastrophic failures or minimize the impact of a disturbance(s), the state of the power system has to be analyzed correctly and preventive or corrective self-healing control actions have to be deployed. This dissertation addresses two aspects of power systems: Defense system and diagnosis, both concerned with the power system analysis and operation during events involving faults or disturbances. This study is intended to develop a defense system that is able to assess power system vulnerability and to perform self-healing control actions based on the system-wide analysis. In order to meet the requirements of the system-wide analysis, the defense system is designed with multi-agent system technologies. Since power systems are dynamic and uncertain the self-healing control actions need to be adaptive. This study applies the reinforcement learning technique to provide a theoretical basis for adaptation. One of the important issues in adaptation is the convergence of the learning algorithm. An appropriate convergence criterion is derived and an application with a load-shedding scheme is demonstrated in this study. This dissertation also demonstrates the feasibility of the defense system and self-healing control actions through multi-agent system technologies. The other subject of this research is to investigate the methodology for on-line fault diagnosis using the information from Sequence-of-Events Recorders (SER). The proposed multiple-hypothesis analysis generates one or more hypothetical fault scenarios to interpret the

  4. INFLUENCE OF CHRONIC EXERCISE ON RED CELL ANTIOXIDANT DEFENSE, PLASMA MALONDIALDEHYDE AND TOTAL ANTIOXIDANT CAPACITY IN HYPERCHOLESTEROLEMIC RABBITS

    Directory of Open Access Journals (Sweden)

    Mohsen Alipour

    2006-12-01

    Full Text Available Despite the knowledge on the antiatherogenic effects of exercise, the mechanism by which exercise reduces atherogenic risk remains unknown. In this study, we investigated the hypothesis that chronic exercise-induced oxidative stress may increase plasma total antioxidant capacity and antioxidant defense in the red cells. For 8 weeks, 60 male Dutch rabbits were fed rabbit chow with or without the addition of 2% cholesterol. The animals were further divided into rest and exercise groups (n = 15 for each group. Animals in exercise groups ran on a rodent treadmill at 15 m/min for 10 to 60 minutes gradually for 5 days per week for a total of 8 weeks. At the end of experiments, blood samples were collected and glutathione peroxidase (GPX, superoxide dismutase (SOD, and catalase (CAT activities were determined in red blood cells. Total antioxidant capacity (TAC, malondialdehyde (MDA and total thiol (T-SH levels were measured in plasma. Thoracic aorta and carotid arteries were isolated for histological examination to evaluate atherosclerosis. Eight weeks of chronic exercise reduced atherogenic diet-induced atherosclerotic lesions in all the arteries studied, along with positive changes in cholesterol profile, especially increase of serum HDL-C level. Plasma MDA, TAC and T-SH concentrations were enhanced by exercise in both control and hypercholesterolemic diet groups. Erythrocyte catalase activity was significantly increased by chronic exercise (p < 0.05, whereas total SOD activity rose with exercise only in the control group. Surprisingly, GPX activity was significantly reduced (P < 0.05 in response to exercise in the control group and also in the high cholesterol diet group. Exercise is a useful tool for the prevention and regression of atherosclerosis which is evident by our findings of the enhancement of plasma TAC and positive change in serum cholesterol profile. However, the effect of exercise on red cell antioxidant activities is limited in the

  5. Compartmentalization of oxidative stress and antioxidant defense in the larval gut of Spodoptera littoralis.

    Science.gov (United States)

    Krishnan, Natraj; Sehnal, Frantisek

    2006-09-01

    Allelochemicals play important roles in the plant defense against herbivorous insects. They act as feeding deterrents, interfere with digestion and nutrient absorption, and cause production of potentially dangerous oxidative radicals. This study demonstrates that the distributions of oxidative radicals and of the antioxidant enzymes that eliminate them are compartmentalized in the digestive tract of Spodoptera littoralis larvae. Feeding on diets supplemented with the tannic acid (TA), alpha-solanine, and demissidine, respectively, did not affect the rate of food passage through the digestive tract of larvae but 1.25, 2.5, and 5% TA evoked a strong oxidative response. The amount of the superoxide anion in the foregut tissue and content increased up to 70-fold and the titer of total peroxides in the foregut content about 3-fold. This oxidative stress was associated with enhanced carbonyl content in the foregut tissue proteins, indicative of certain tissue deterioration. Extensive foregut damage was probably prevented by elevated activity of the glutathione S-transferase peroxidase. A complex antioxidant response was elicited in the midgut. The activities of superoxide dismutase and catalase increased significantly in the midgut tissue and content, and the activity of ascorbate peroxidase rose in the midgut tissue. The enzymes apparently eliminated oxidative radicals passing to midgut from the foregut with the food bolus and thereby prevented carbonylation of the midgut proteins. We postulate that the generation of oxidative radicals in the foregut and the induction of antioxidant defense in the midgut are controlled processes and that their compartmentalization is an important functional feature of the digestive tract. The glycoalkaloid alpha-solanine and the aglycone demissidine applied at 0.05 and 0.1% concentrations had no effect on any of the examined parameters.

  6. Modulation of antioxidant defense and immune response in zebra fish (Danio rerio) using dietary sodium propionate.

    Science.gov (United States)

    Safari, Roghieh; Hoseinifar, Seyed Hossein; Kavandi, Morteza

    2016-12-01

    The present study explores the effect of dietary sodium propionate on mucosal immune response and expression of antioxidant enzyme genes in zebra fish (Danio rerio). Six hundred healthy zebra fish (0.42 ± 0.06 g) supplied, randomly stocked in 12 aquariums and fed on basal diets supplemented with different levels of sodium propionate [0 (control), 5, 10 and 20 g kg(-1)] for 8 weeks. At the end of the feeding trial, mucosal immune parameters (TNF-α, IL-1β, Lyz), antioxidant enzyme (SOD, CAT) as well as heat shock protein 70 (HSP70) gene expression were measured. The results revealed feeding on sodium propionate significantly up-regulated inflammatory response genes (TNF-α, IL-1β, Lyz) in a dose-dependent manner (P fish fed the basal diet and deceased with elevation of sodium propionate levels in the diet. These results showed beneficial effects of dietary sodium propionate on mucosal immune response as well as the antioxidant defense of zebra fish.

  7. Inhibiting Glutathione Metabolism in Lung Lining Fluid as a Strategy to Augment Antioxidant Defense.

    Science.gov (United States)

    Joyce-Brady, Martin; Hiratake, Jun

    2011-07-01

    Glutathione is abundant in the lining fluid that bathes the gas exchange surface of the lung. On the one hand glutathione in this extracellular pool functions in antioxidant defense to protect cells and proteins in the alveolar space from oxidant injury; on the other hand, it functions as a source of cysteine to maintain cellular glutathione and protein synthesis. These seemingly opposing functions are regulated through metabolism by gamma-glutamyl transferase (GGT, EC 2.3.2.2). Even under normal physiologic conditions, lung lining fluid (LLF) contains a concentrated pool of GGT activity exceeding that of whole lung by about 7-fold and indicating increased turnover of glutathione at the epithelial surface of the lung. With oxidant stress LLF GGT activity is amplified even further as glutathione turnover is accelerated to meet the increased demands of cells for cysteine. Mouse models of GGT deficiency confirmed this biological role of LLF GGT activity and revealed the robust expansiveness and antioxidant capacity of the LLF glutathione pool in the absence of metabolism. Acivicin, an irreversible inhibitor of GGT, can be utilized to augment LLF fluid glutathione content in normal mice and novel GGT inhibitors have now been defined that provide advantages over acivicin. Inhibiting LLF GGT activity is a novel strategy to selectively augment the extracellular LLF glutathione pool. The enhanced antioxidant capacity can maintain lung epithelial cell integrity and barrier function under oxidant stress.

  8. Influence of fasting on muscle composition and antioxidant defenses of market-size Sparus macrocephalus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The study was conducted to investigate fasting effects on flesh composition and antioxidant defenses of market-size Sparus macrocephalus. Two hundred fish (main initial weight 580 g) were divided into two groups (control and fasted) and reared in 6 cages. After two weeks of adaptation, group Ⅰ fasted for 28 d; group Ⅱ was fed normally as a control. In 3, 7, 14, 21 and 28 d,6 fish per group were sampled for proximate flesh composition, liver antioxidant enzyme activities and malondialdehyde flesh content analyses. In fasted fish, the reduction of lipid content in muscle occurred after day 3, and, compared to controls, the content of protein decreased from day 14, the activities of liver antioxidative enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPX) increased from day 3, and flesh malondialdehyde levels increased from day 21. Flesh fat reduction shows that fasting may be used as a technique to reduce flesh lipid content in Sparus macrocephalus. However, considering flesh protein loss and the subsequent oxidative stress, the fasting technique should be used with precautions.

  9. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.

    Science.gov (United States)

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2014-08-01

    The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains.

  10. Involvement of Protein Phosphorylation in Water Stress-induced Antioxidant Defense in Maize Leaves

    Institute of Scientific and Technical Information of China (English)

    Shu-cheng Xu; Hai-dong Ding; Feng-xia Su; A-ying Zhang; Ming-yi Jiang

    2009-01-01

    Using pharmacological and biochemical approaches, the role of protein phosphorylation and the interrelationship between water stress-enhanced kinase activity, antioxidant enzyme activity, hydrogen peroxide (H2O2) accumulation and endogenous abscisic acid in maize (Zea mays L.) leaves were investigated. Water-stress upregulated the activities of total protein phosphorylation and Ca2+ -dependent protein kinase, and the upregulation was blocked in abscisic acid-deficient vp5 mutant. Furthermore, pretreatments with a nicotinamide adenine dinucleotide phosphate oxidase inhibitor and a scavenger of H2O2 significantly reduced the increased activities of total protein kinase and Ca2+-dependent protein kinase in maize leaves exposed to water stress. Pretreatments with different protein kinase inhibitors also reduced the water stress-induced H2O2 production and the water stress-enhanced activities of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase. The data suggest that protein phosphorylation and H2O2 generation are required for water stress-induced antioxidant defense in maize leaves and that crosstalk between protein phosphorylation and H2O2 generation may occur.

  11. Missile Defense: Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities

    Science.gov (United States)

    2016-04-28

    Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities For over half a century , the Department of Defense (DOD) has been...or bi-annually in support of its goals for the defense of regional allies and U.S. forces deployed to Asia -Pacific, the Middle East, and Europe, known

  12. EROD activity and antioxidant defenses of sea bass (Dicentrarchus labrax) after an in vivo chronic hydrocarbon pollution followed by a post-exposure period.

    Science.gov (United States)

    Danion, Morgane; Le Floch, Stéphane; Lamour, François; Quentel, Claire

    2014-12-01

    Chronic concentrations of polycyclic aromatic hydrocarbons (PAHs) have been commonly detected in international estuaries ecosystems. Reliable indicators still need to be found in order to properly assess the impact of PAHs in fish. After an in vivo chronic exposure to hydrocarbons, the enzymatic activity of 7-ethoxyresorufin O-deethylase (EROD) and the antioxidant defense system were assessed in sea bass, Dicentrarchus labrax. A total of 45 fish were exposed to the water-soluble fraction of Arabian crude oil, similar to a complex pollution by hydrocarbons chronically observed in situ, while 45 other control fish sustained the same experimental conditions in clean seawater. Fish samples were made after a 21-day exposure period and after a 15-day recovery period in clean fresh water. Throughout the experiment, liver EROD activity was significantly higher in contaminated fish than in control fish. In addition, nonenzymatic (total glutathione) and enzymatic (GPx, SOD, and CAT) antioxidant defense parameters measured in liver were not significantly different in fish. Furthermore, in gills, glutathione content had significantly increased while SOD activity had significantly decreased in contaminated fish compared to controls. On the other hand, CAT and GPx activities were not affected. Chronic exposure to PAHs disturbing the first step (SOD) and inhibiting the second step (GPx and CAT) could induce oxidative stress in tissues by the formation of oxygen radicals. After the postexposure period, there was no significant difference between control and contaminated fish in any of the antioxidant defense parameters measured in gills, attesting to the reversibility of the effects.

  13. Antioxidant defense in Plasmodium falciparum – data mining of the transcriptome

    Directory of Open Access Journals (Sweden)

    Ginsburg Hagai

    2004-07-01

    Full Text Available Abstract The intraerythrocytic malaria parasite is under constant oxidative stress originating both from endogenous and exogenous processes. The parasite is endowed with a complete network of enzymes and proteins that protect it from those threats, but also uses redox activities to regulate enzyme activities. In the present analysis, the transcription of the genes coding for the antioxidant defense elements are viewed in the time-frame of the intraerythrocytic cycle. Time-dependent transcription data were taken from the transcriptome of the human malaria parasite Plasmodium falciparum. Whereas for several processes the transcription of the many participating genes is coordinated, in the present case there are some outstanding deviations where gene products that utilize glutathione or thioredoxin are transcribed before the genes coding for elements that control the levels of those substrates are transcribed. Such insights may hint to novel, non-classical pathways that necessitate further investigations.

  14. Endogenous antioxidant defense induction by melon superoxide dismutase reduces cardiac hypertrophy in spontaneously hypertensive rats.

    Science.gov (United States)

    Carillon, Julie; Rugale, Caroline; Rouanet, Jean-Max; Cristol, Jean-Paul; Lacan, Dominique; Jover, Bernard

    2014-08-01

    We assessed the influence of SODB, a melon superoxide dismutase (SOD), on left ventricular (LV) hypertrophy in SHR. SODB (4 or 40U SOD) was given orally for 4 or 28 days to SHR. For each treatment period, LV weight index (LVWI) and cardiomyocytes size were measured. SOD, glutathione peroxidase (GPx) and catalase expressions, and LV production and presence of superoxide anion were determined. Pro-inflammatory markers were also measured. SODB reduced LVWI and cardiomyocytes size after 4 or 28 days. Cardiac SOD and GPx increased by 30-40% with SODB. The presence but not production of superoxide anion was significantly reduced by SODB. No effect of SODB was detected on inflammatory status in any group. The beneficial effect of SODB on cardiac hypertrophy seems to be related to the stimulation of endogenous antioxidant defense, suggesting that SODB may be of interest as a dietary supplementation during conventional antihypertensive therapy.

  15. A Comparative In Silico Study of the Antioxidant Defense Gene Repertoire of Distinct Lifestyle Trypanosomatid Species

    Science.gov (United States)

    Beltrame-Botelho, Ingrid Thaís; Talavera-López, Carlos; Andersson, Björn; Grisard, Edmundo Carlos; Stoco, Patricia Hermes

    2016-01-01

    Kinetoplastids are an ancestral group of protists that contains free-living species and parasites with distinct mechanisms in response to stress. Here, we compared genes involved in antioxidant defense (AD), proposing an evolution model among trypanosomatids. All genes were identified in Bodo saltans, suggesting that AD mechanisms have evolved prior to adaptation for parasitic lifestyles. While most of the monoxenous and dixenous parasites revealed minor differences from B. saltans, the endosymbiont-bearing species have an increased number of genes. The absence of these genes was mainly observed in the extracellular parasites of the genera Phytomonas and Trypanosoma. In trypanosomes, a distinction was observed between stercorarian and salivarian parasites, except for Trypanosoma rangeli. Our analyses indicate that the variability of AD among trypanosomatids at the genomic level is not solely due to the geographical isolation, being mainly related to specific adaptations of their distinct biological cycles within insect vectors and to a parasitism of a wide range of hosts. PMID:27840574

  16. Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yang, E-mail: gaoyang0898@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240 (China); Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083 (China); Miao Chiyuan [Department of Environmental Engineering, Peking University, Beijing, 100871 (China); Mao Liang [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240 (China); School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 (China); Zhou Pei [School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 (China); Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240 (China); Jin Zhiguo; Shi Wanjun [School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 (China)

    2010-09-15

    Remediation of plant-microorganism-chelates synergy has been proposed as an effective remediation method for enhancing the removal efficiency of heavy metal. Manipulation of the antioxidative system increases plant tolerance, thereby potentially enhancing the uptake capacity to heavy metal. In this study, we investigated the possibility of improving the phytoextraction of Cd and the antioxidative defense of Solanum nigrum L. by application of a new isolated strain (Paecilomyces lilacinus NH1) (PLNH1) and citric acid (CA). The results showed that application of CA or PLNH1 significantly promoted S. nigrum's growth under Cd stress, but the synergistic effect of CA and PLNH1 on S. nigrum's growth was more obvious. The coexistence of CA and PLNH1 could enhance about 30% of Cd accumulation in different organs of S. nigrum compared to the treatment without the addition of CA and PLNH1, whereas single CA or PLNH1 added treatment only enhanced about 10-15% of Cd accumulation in different organs of S. nigrum. The antioxidative defense in S. nigrum under Cd stress was significantly improved as result of application of CA and PLNH1. The responses of antioxidative enzymes to Cd stress significantly decreased following application of CA and PLNH1, and the oxidative stress experienced by the plant due to Cd in the soil was significantly alleviated.

  17. Systemic antioxidants and skin health.

    Science.gov (United States)

    Nguyen, Gloria; Torres, Abel

    2012-09-01

    Most dermatologists agree that antioxidants help fight free radical damage and can help maintain healthy skin. They do so by affecting intracellular signaling pathways involved in skin damage and protecting against photodamage, as well as preventing wrinkles and inflammation. In today's modern world of the rising nutraceutical industry, many people, in addition to applying topical skin care products, turn to supplementation of the nutrients missing in their diets by taking multivitamins or isolated, man-made nutraceuticals, in what is known as the Inside-Out approach to skin care. However, ingestion of large quantities of isolated, fragmented nutrients can be harmful and is a poor representation of the kind of nutrition that can be obtained from whole food sources. In this comprehensive review, it was found that few studies on oral antioxidants benefiting the skin have been done using whole foods, and that the vast majority of current research is focused on the study of compounds in isolation. However, the public stands to benefit greatly if more research were to be devoted toward the impact that physiologic doses of antioxidants (obtained from fruits, vegetables, and whole grains) can have on skin health, and on health in general.

  18. Issues in defense training systems immersive displays

    Science.gov (United States)

    Gaylord, Philip

    2006-05-01

    Display technology for DOD immersive projector-based flight training systems are at a crossroads as CRT technology slowly disappears from the market place. From the DOD perspective, emerging technologies arrive poorly matched to satisfy training needs. The DOD represents a minority voice in the marketplace. Current issues include: Satisfying requirements for black level, brightness and contrast ratio, Establishing standard metrics for resolution, system performance and reliability, Obtaining maintainability and self-calibration in multi-channel arrays, Reducing screen cross-reflection in wrap-around immersive display arrays. Laser, DLP, and LCOS projector systems are compared for their current acceptance and problems in defense flight training systems. General requirements of visual display systems are discussed and contrasted for flight trainers for low flyers (helicopters) high flyers (tactical aircraft) in real-time immersive, networked systems. FLIR and NVG simulation techniques are described.

  19. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model.

    Science.gov (United States)

    Tamaki, Naofumi; Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.

  20. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model

    Directory of Open Access Journals (Sweden)

    Naofumi Tamaki

    2016-01-01

    Full Text Available The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.

  1. Nitric Oxide Reduces Hydrogen Peroxide Accumulation Involved in Water Stress-induced Subcellular Anti-oxidant Defense in Maize Plants

    Institute of Scientific and Technical Information of China (English)

    Jianrong Sang; Mingyi Jiang; Fan Lin; Shucheng Xu; Aying Zhang; Mingpu Tan

    2008-01-01

    Nitric oxide (NO) Is a bioactive molecule involved in many biological events, and has been reported as pro-oxidant as well as anti-oxidant in plants. In the present study, the sources of NO production under water stress, the role of NO in water stress-induced hydrogen peroxide (H2O2) accumulation and subcellular activities of anti-oxidant enzymes in leaves of maize (Zea mays L.) plants were investigated. Water stress Induced defense increases in the generation of NO In maize mesphyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. Water stress-induced defense increases in the production of NO were blocked by pretreatments with Inhibitors of NOS and nitrate reductase (NR), suggesting that NO is produced from NOS and NR in leaves of maize plants exposed to water stress. Water stress also induced increases in the activities of the chloroplastic and cytosolic anti-oxidant enzymes superoxide dismutase (SOD), ascorbate peroxidass (APX), and glutathione reductase (GR), and the increases in the activities of anti-oxidant enzymes were reduced by pretreatments with inhibitors of NOS and NR. Exogenous NO increases the activities of water stress-induced subcellular anti-oxidant enzymes, which decreases accumulation of H2O2. Our results suggest that NOS and NR are involved in water strese-induced NO production and NOS is the major source of NO. The potential ability of NO to scavenge H2O2 is, at least in part, due to the induction of a subcellular anti-oxidant defense.

  2. OsHK3 is a crucial regulator of abscisic acid signaling involved in antioxidant defense in rice

    Institute of Scientific and Technical Information of China (English)

    Feng Wen; Tingting Qin; Yao Wang; Wen Dong; Aying Zhang; Mingpu Tan; Mingyi Jiang

    2015-01-01

    In this study, the role of the rice (Oryza sativa L.) histidine kinase OsHK3 in abscisic acid (ABA)‐induced antioxi-dant defense was investigated. Treatments with ABA, H2O2, and polyethylene glycol (PEG) induced the expression of OsHK3 in rice leaves, and H2O2 is required for ABA‐induced increase in the expression of OsHK3 under water stress. Subcel ular localization analysis showed that OsHK3 is located in the cytoplasm and the plasma membrane. The transient expres-sion analysis and the transient RNA interference test in rice protoplasts showed that OsHK3 is required for ABA‐induced upregulation in the expression of antioxidant enzymes genes and the activities of antioxidant enzymes. Further analysis showed that OsHK3 functions upstream of the calcium/calmodulin‐dependent protein kinase OsDMI3 and the mito-gen‐activated protein kinase OsMPK1 to regulate the activities of antioxidant enzymes in ABA signaling. Moreover, OsHK3 was also shown to regulate the expression of nicotinamide adenine dinucleotide phosphate oxidase genes, OsrbohB and OsrbohE, and the production of H2O2 in ABA signaling. Our data indicate that OsHK3 play an important role in the regulation of ABA‐induced antioxidant defense and in the feedback regula-tion of H2O2 production in ABA signaling.

  3. Endomorphins, endogenous opioid peptides, provide antioxidant defense in the brain against free radical-induced damage.

    Science.gov (United States)

    Lin, Xin; Yang, Ding-Jian; Cai, Wen-Qing; Zhao, Qian-Yu; Gao, Yan-Feng; Chen, Qiang; Wang, Rui

    2003-11-20

    Oxidative stress has been considered to be a major cause of cellular injuries in a variety of chronic health problems, such as carcinogenesis and neurodegenerative disorders. The brain appears to be more susceptible to oxidative damage than other organs. Therefore, the existence of antioxidants may be essential in brain protective systems. The antioxidative and free radical scavenging effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, have been investigated in vitro. The oxidative damage was initiated by a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrocholoride) (AAPH) and hydrogen peroxide (H2O2). The linoleic acid peroxidation, DNA and protein damage were monitored by formation of hydroperoxides, by plasmid pBR 322 DNA nicking assay and single-cell alkaline electrophoresis, and by SDS-polyacrylamide gel electrophoresis. Endomorphins can inhibit lipid peroxidation, DNA strand breakage, and protein fragmentation induced by free radical. Endomorphins also reacted with galvinoxyl radicals in homogeneous solution, and the pseudo-first-order rate constants were determined spectrophotometrically by following the disappearance of galvinoxyl radicals. In all assay systems, EM1 was more potent than EM2 and GSH, a major intracellular water-soluble antioxidant. We propose that endomorphins are one of the protective systems against free radical-induced damage in the brain.

  4. Effects of aerial exposure on antioxidant defenses in the brown mussel Perna perna

    Directory of Open Access Journals (Sweden)

    Eduardo Alves de Almeida

    2006-03-01

    Full Text Available Investigations were carried out to evaluate the antioxidant defenses in digestive gland of mussels Perna perna held in air for 4 hours, exposed to air for 4 hours followed by submersion in water for 30 minutes, and constantly submerged for 4.5 hours. No differences were observed in CAT and GPx activities and in the levels of total GSH. Mussels exposed to air had significantly higher SOD activity, possibly related to a preparative mechanism of defense against oxidative stress during reoxygenation.Mexilhões são periodicamente submetidos a condições de hipóxia seguido de normóxia, como resultado das oscilações nos níveis de maré. Tais condições podem causar um aumento na produção de espécies reativas de oxigenio (EROs nos tecidos, devido a um aumento no fluxo de oxigênio e de equivalentes redutores. Para proteger as células contra as EROs, os organismos possuem enzimas antioxidantes tais como a superóxido dismutase (SOD, catalase (CAT e glutationa peroxidase (GPx, assim como o tripeptídeo glutationa (GSH. Neste trabalho, estas defesas antioxidantes foram avaliadas em glândulas digestivas de mexilhões Perna perna expostos ao ar por 4 horas seguido de re-submersão em água do mar por 30 minutos e constantemente submersos por 4,5 horas. Nenhuma diferença foi observada nas atividades da CAT e GPx, assim como nos níveis de GSH total. Mexilhões expostos ao ar tiveram atividade da SOD significativamente maior, possivelmente relacionado a um mecanismo de defesa preparativo contra o estresse oxidativo durante a reoxigenação.

  5. Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes.

    Science.gov (United States)

    Park, Song-Young; Kwak, Yi-Sub

    2016-04-01

    Exercise mediates an excessive free radical production leading to oxidative stress (OS). The body has natural antioxidant systems that help decrease OS, and these systems may be enhanced with exercise training. However, only a few studies have investigated the differences in resting OS and antioxidant capacity (AOC) between aerobically trained athletes (ET), anaerobically trained athletes (RT), and untrained individuals (UT). Therefore, this study sought to investigate the resting and postexercise OS and AOC in ET, RT, and UT. Sixty healthy young males (26.6±0.8 yr) participated in this study. Subjects were divided into three groups, ET, RT, and UT by distinct training background. Resting plasma malondialdehyde (MDA) and protein carbonyls (PC) were not significantly different in ET, RT, and UT. However, MDA and PC were significantly increased following a graded exercise test (GXT) in UT but not in ET and RT. Resting total antioxidant capacity (TAC) levels and TAC were not different in ET, RT, and UT. Interestingly, TAC levels significantly decreased after the GXT in all groups. Additionally, UT showed lower post-exercise TAC levels compared to ET and RT. These results showed that ET, RT, and UT have similar OS and AOC at rest. However, both ET and RT have greater AOC against exercise mediated OS compared to UT. These findings may explain, at least in part, why both aerobic and anaerobic types of exercise training improve redox balance. However, it appears there is no specific exercise type effect in terms of redox balance.

  6. ABA Affects Brassinosteroid-Induced Antioxidant Defense via ZmMAP65-1a in Maize Plants.

    Science.gov (United States)

    Zhu, Yuan; Liu, Weijuan; Sheng, Yu; Zhang, Juan; Chiu, Tsanyu; Yan, Jingwei; Jiang, Mingyi; Tan, Mingpu; Zhang, Aying

    2015-07-01

    Brassinosteroids (BRs) and ABA co-ordinately regulate water deficit tolerance in maize leaves. ZmMAP65-1a, a maize microtubule-associated protein (MAP) which plays an essential role in BR-induced antioxidant defense, has been characterized previously. However, the interactions among BR, ABA and ZmMAP65-1a in water deficit tolerance remain unexplored. In this study, we demonstrated that ABA was required for BR-induced antioxidant defense via ZmMAP65-1a by using biochemical blocking and ABA biosynthetic mutants. The expression of ZmMAP65-1a in maize leaves and mesophyll protoplasts could be increased under polyethylene glycol- (PEG) stimulated water deficit and ABA treatments. Furthermore, the importance of ABA in the early pathway of BR-induced water deficit tolerance was demonstrated by limiting ABA availability. Blocking ABA biosynthesis biochemically or by a null mutation inhibited the downstream gene expression of ZmMAP65-1a and the activity of ZmMAPK5 in the pathway. It also affected the activities of BR-induced antioxidant defense-related enzymes, namely ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD) and NADPH oxidase. In addition, combining results from transiently overexpressed or silenced ZmMAP65-1a in mesophyll protoplasts, we discovered that ZmMAP65-1a mediated the ABA-induced gene expression and activities of APX and SOD. Surprisingly, silencing of ZmMAP65-1a in mesophyll protoplasts did not alter the gene expression of ZmCCaMK and vice versa in response to ABA. Taken together, our data indicate that water deficit-induced ABA is a key mediator in BR-induced antioxidant defense via ZmMAP65-1a in maize.

  7. Antioxidative Defense Enzymes in Placenta Protect Placenta and Fetus in Inherited Thrombophilia from Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Jelena Bogdanovic Pristov

    2009-01-01

    Full Text Available Our aim was to investigate the activities of antioxidative defense enzymes in the placenta, fetal blood and amnion fluid in inherited thrombophilia. Thrombophilia was associated with nearly threefold increase of activity (p < 0.001 of the placental catalase (81.1 ± 20.6 U/mg of proteins in controls and 270.0 ± 69.9 U/mg in thrombophilic subjects, glutathione (GSH peroxidase (C: 20.2 ± 10.1 U/mg; T: 60.0 ± 15.5 U/mg, and GSH reductase (C: 28.9 ± 5.6 U/mg; T: 72.7 ± 23.0 U/mg. The placental activities of superoxide dismutating enzymes—MnSOD and CuZnSOD, did not differ in controls and thrombophilia. Likewise, the activities of catalase and SOD in the fetal blood, and the level of ascorbyl radical which represents a marker of oxidative status of amniotic fluid, were similar in controls and thrombophilic subjects. From this we concluded that in thrombophilia, placental tissue is exposed to H2O2-mediated oxidative stress, which could be initiated by pro-thrombic conditions in maternal blood. Increased activity of placental H2O2-removing enzymes protects fetus and mother during pregnancy, but may increase the risk of postpartum thrombosis.

  8. Modulation of antioxidant defense by Alpinia galanga and Curcuma aromatica extracts correlates with their inhibition of UVA-induced melanogenesis.

    Science.gov (United States)

    Panich, Uraiwan; Kongtaphan, Kamolratana; Onkoksoong, Tassanee; Jaemsak, Kannika; Phadungrakwittaya, Rattana; Thaworn, Athiwat; Akarasereenont, Pravit; Wongkajornsilp, Adisak

    2010-04-01

    Ultraviolet A (UVA) irradiation is suggested to contribute to melanogenesis through promoting cellular oxidative stress and impairing antioxidant defenses. An overproduction of melanin can be associated with melanoma skin cancer and hyperpigmentation. Therefore, developing effective antimelanogenic agents is of importance. Alpinia galanga (AG) and Curcuma aromatica (CA) are traditional medicinal plants widely used for skin problems. Hence, this study investigated the antimelanogenic effects of AG and CA extracts (3.8-30 microg/ml) by assessing tyrosinase activity, tyrosinase mRNA levels, and melanin content in human melanoma cells (G361) exposed to UVA. The roles in protecting against melanogenesis were examined by evaluating their inhibitory effects on UVA-induced cellular oxidative stress and modulation of antioxidant defenses including antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx), and intracellular glutathione (GSH). In addition, possible active compounds accountable for biological activities of the extracts were identified by thin layer chromatography (TLC)-densitometric analysis. Our study demonstrated that UVA (8 J/cm(2)) induced both tyrosinase activity and mRNA levels and UVA (16 J/cm(2))-mediated melanin production were suppressed by the AG or CA extracts at noncytotoxic concentrations. Both extracts were able to protect against UVA-induced cellular oxidant formation and depletion of CAT and GPx activities and GSH content in a dose-dependent manner. Moreover, TLC-densitometric analysis detected the presence of eugenol and curcuminoids in AG and CA, respectively. This is the first report representing promising findings on AG and CA extract-derived antityrosinase properties correlated with their antioxidant potential. Inhibiting cellular oxidative stress and improving antioxidant defenses might be the mechanisms by which the extracts yield the protective effects on UVA-dependent melanogenesis.

  9. Effect of magnetic fields on antioxidative defense and fitness-related traits of Baculum extradentatum (insecta, phasmatodea).

    Science.gov (United States)

    Todorović, Dajana; Mirčić, Dejan; Ilijin, Larisa; Mrdaković, Marija; Vlahović, Milena; Prolić, Zlatko; Mataruga, Vesna Perić

    2012-04-01

    This study aimed to determine the effect of magnetic fields on the antioxidative defense and fitness-related traits of Baculum extradentatum. Following exposure to magnetic fields, antioxidative defense (superoxide dismutase (SOD), catalase (CAT) activities, and total glutathione (GSH) content) and fitness-related traits (egg mortality, development dynamics, and mass of nymphs) were monitored in nymphs. The experimental groups were: control (kept out of influence of the magnets), a group exposed to a constant magnetic field (CMF) of 50 mT, and a group exposed to an alternating magnetic field (AMF) of 50 Hz, 6 mT. We found increased SOD and CAT activities in animals exposed to constant and AMFs, whereas GSH activity was not influenced by experimental magnetic fields. No differences were found in egg mortality between control and experimental groups. Significant differences in the time of development between the control and the CMF group were observed, as well as between the CMF and the AMF group. No differences were found in the mass of the nymphs between the three experimental groups. In conclusion, CMF and AMF have the possibility to modulate the antioxidative defense and some of the fitness-related traits in B. extradentatum.

  10. Diet supplementation with a specific melon concentrate improves oviduct antioxidant defenses and egg characteristics in laying hens.

    Science.gov (United States)

    Carillon, J; Barbé, F; Barial, S; Saby, M; Sacy, A; Rouanet, J-M

    2016-08-01

    The objectives of this study were to investigate the effects of a specific melon concentrate on oviduct antioxidant defenses and egg characteristics of laying hens.Lohmann Brown hens were assigned to 2 treatment groups (n = 16 in each). One group was supplemented with the melon concentrate (26 mg/kg of feed) during 6 wk. The other group was composed of untreated hens, which served as control. Eggs were collected, weighed (yolk, albumen, shell), and analyzed (Haugh unit and albumen pH relevant for egg freshness) at the end of the supplementation period. Antioxidant status was evaluated in the oviduct measuring antioxidant enzymes by western blotting.This study demonstrated that the melon concentrate could ameliorate egg weight, and particularly yolk contribution to egg weight and egg shell weight. An increase in endogenous antioxidant defenses in the oviduct after this melon concentrate supplementation could explain the better egg characteristics. The improvement of egg quality, due to melon concentrate, may have important economic implications for future breeding programs, particularly if these effects generalize from hens to other poultry species, or even other livestock animal species.

  11. THE DEFENSE PLANNING SYSTEMS AND THEIR IMPLICATIONS

    Directory of Open Access Journals (Sweden)

    Laszlo STICZ

    2010-01-01

    Full Text Available Defense planning in the Alliance is a fundamental element of the arrangements which enable its member countries to enjoy the crucial political, military and resource advantages of collective defense and other common military efforts to enhance security and stability. In this respect, the aim of this paper is to outline the role of the Armed Forces and the specific processes aiming to achieve the ultimate goal of a nation regarding national security, with focus on defense planning and the PDPS.

  12. Role of Ginkgo Biloba Extract Supplement in Regulation of Rat Hepatic Tissue Antioxidant System after Chronic Ethanol Administration

    Institute of Scientific and Technical Information of China (English)

    姚平; 宋方方; 周绍良; 李柯; 孙秀发; 刘烈刚

    2004-01-01

    THE FORMATION OF REACTIVE oxygen spe-cies (ROS) is a naturally occurring intracellular meta-bolic process. These harmful species are known tocause oxidative damage to a number of moleculesin cells, including membrane lipids, proteins, andnucleic acids.1 The potential harmful effects of thesespecies are controlled by the cellular antioxidant de-fense system.2 In addition, antioxidant enzymes, suchas superoxide dismutase (SOD), catalase (CAT), glu-tathione peroxidase (GPX), and glutathionereductase, are essen...

  13. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves

    Institute of Scientific and Technical Information of China (English)

    Shucheng Xu

    2010-01-01

     The role of a calcium-dependent and calmodulin(CaM)stimulated protein kinase in abscisic acid(ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays).In-gel kinase assays showed that treatments with ABA or H2O2 induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly.Furthermore,we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase Ⅱ (CaMK Ⅱ)inhibitor KN-93 or CaM antagonist W-7.Treatments with ABA or H2O2 not only induced the acti vation of the 52-kDa protein kinase,but also enhanced the total activities of the antioxidant enzymes,including catalase,ascorbate peroxidase,glutathione reductase,and superoxide dismutase.Such enhancements were blocked by pretreatment with a CaMK inhibitor and a reactive oxygen species(ROS)inhibitor or scavenger.Pretreatment with the CaMK inhibitor also substantially arrested the ABA-induced H2O2 production.Kinase activity enhancements induced by ABA were attenuated by pretreatment with an ROS inhibitor or scavenger.These results suggest that the 52-kDa CaMK is involved in ABA-induced antioxidant defense and that cross-talk between CaMK and H2O2 plays a pivotal role in ABA signaling.We infer that CaMK acts both upstream and downstream of H2O2,but mainly acts between ABA and H2O2 in ABA-induced antioxidant-defensive signaling.

  14. Biosensors for antioxidant evaluation in biological systems.

    Science.gov (United States)

    Mello, Lucilene Dornelles; Kisner, Alexandre; Goulart, Marilia Oliveira Fonseca; Kubota, Lauro Tatsuo

    2013-02-01

    The prevention of oxidative reactions in a biological medium as well as the role of reactive oxygen species (ROS) in chronic degenerative diseases are questions that continue to be investigated. Electrochemical biosensors have shown attractive features to evaluate the oxidative stress condition at a level comparable to chromatographic and spectroscopic techniques. The biosensors developed so far are based on direct analysis of specific indicators such as biomarkers of oxidative stress on the monitoring of reactive oxygen species the free radicals in cells or tissues, aiming to obtain a correlation between the index obtained from these indicators with the oxidative stress levels in cells. In this review we will provide an overview of the development of electrochemical biosensors to evaluate the content of antioxidants and reactive oxygen species in physiological systems. Some discussion regarding the analysis of antioxidant capacity at the single cell level is also presented.

  15. Effect of long term intake of aspartame on antioxidant defense status in liver.

    Science.gov (United States)

    Abhilash, M; Paul, M V Sauganth; Varghese, Mathews V; Nair, R Harikumaran

    2011-06-01

    The present study evaluates the effect of long term intake of aspartame, the artificial sweetener, on liver antioxidant system and hepatocellular injury in animal model. Eighteen adult male Wistar rats, weighing 150-175 g, were randomly divided into three groups as follows: first group was given aspartame dissolved in water in a dose of 500 mg/kg b.wt.; the second group was given a dose of 1000 mg/kg b.wt.; and controls were given water freely. Rats that had received aspartame (1000 mg/kg b.wt.) in the drinking water for 180 days showed a significant increase in activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and γ-glutamyl transferase (GGT). The concentration of reduced glutathione (GSH) and the activity of glutathione peroxidase (GPx), and glutathione reductase (GR) were significantly reduced in the liver of rats that had received aspartame (1000 mg/kg b.wt.). Glutathione was significantly decreased in both the experimental groups. Histopathological examination revealed leukocyte infiltration in aspartame-treated rats (1000 mg/kg b.wt.). It can be concluded from these observations that long term consumption of aspartame leads to hepatocellular injury and alterations in liver antioxidant status mainly through glutathione dependent system.

  16. Deception used for Cyber Defense of Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wayne F. Boyer; Miles A. McQueen

    2009-05-01

    Control system cyber security defense mechanisms may employ deception to make it more difficult for attackers to plan and execute successful attacks. These deceptive defense mechanisms are organized and initially explored according to a specific deception taxonomy and the seven abstract dimensions of security previously proposed as a framework for the cyber security of control systems.

  17. Defense Globalization: Impacts on the United States Defense Acquisition System

    Science.gov (United States)

    2007-12-01

    munitions and sub-systems to fit these U.S. platforms. One such case involved Rafael developing the Popeye missile to be used on the Israeli...version of the McDonnell Douglas F-4E. In the late 1980s, the USAF viewed the Popeye as a short- term solution to its requirement for smart munitions and...purchased the Popeye directly “off the shelf” from Rafael. The USAF then went on to partner with Rafael in modifying and marketing the munitions to

  18. Antioxidant defense response induced by Trichoderma viride against Aspergillus niger Van Tieghem causing collar rot in groundnut (Arachis hypogaea L.).

    Science.gov (United States)

    Gajera, H P; Katakpara, Zinkal A; Patel, S V; Golakiya, B A

    2016-02-01

    The study was conducted to examine the antioxidant enzymes induced by Trichoderma viride JAU60 as initial defense response during invasion of rot pathogen Aspergillus niger Van Tieghem in five groundnut varieties under pot culture. Seed treatment of T. viride JAU60 reduced 51-58% collar rot disease incidence in different groundnut varieties under pathogen infected soil culture. The activities of the antioxidant enzymes, viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) and ascorbate peroxidase (APX, EC 1.11.1.11), elevated in response to pathogen infection, in higher rate by tolerant varieties (J-11 and GG-2) compared with susceptible (GAUG-10, GG-13, GG-20) and further induced by T. viride treatment. Trichoderma treatment remarkably increased the 2.3 fold SOD, 5 fold GPX and 2.5 fold APX activities during disease development in tolerant varieties and the same was found about 1.2, 1.5 and 2.0 folds, respectively, in susceptible varieties. Overall, T. viride JAU60 treated seedlings (T3) witnessed higher activities of SOD (1.5 fold), GPX (3.25 fold) and APX (1.25 fold) than pathogen treatment (T2) possibly suggest the induction of antioxidant defense response by Trichoderma bio-controller to combat oxidative burst produced by invading pathogen.

  19. The Enzymatic Antioxidant System of Human Spermatozoa

    Directory of Open Access Journals (Sweden)

    Cristian O’Flaherty

    2014-01-01

    Full Text Available The ejaculated spermatozoon, as an aerobic cell, must fight against toxic levels of reactive oxygen species (ROS generated by its own metabolism but also by other sources such as abnormal spermatozoa, chemicals and toxicants, or the presence of leukocytes in semen. Mammalian spermatozoa are extremely sensitive to oxidative stress, a condition occurring when there is a net increase in ROS levels within the cell. Opportunely, this specialized cell has a battery of antioxidant enzymes (superoxide dismutase, peroxiredoxins, thioredoxins, thioredoxins reductases, and glutathione s-transferases working in concert to assure normal sperm function. Any impairment of the antioxidant enzymatic activities will promote severe oxidative damage which is observed as plasma membrane lipid peroxidation, oxidation of structural proteins and enzymes, and oxidation of DNA bases that lead to abnormal sperm function. Altogether, these damages occurring in spermatozoa are associated with male infertility. The present review contains a description of the enzymatic antioxidant system of the human spermatozoon and a reevaluation of the role of its different components and highlights the necessity of sufficient supply of reducing agents (NADPH and reduced glutathione to guarantee normal sperm function.

  20. The Nrf2 System as a Potential Target for the Development of Indirect Antioxidants

    Directory of Open Access Journals (Sweden)

    Mi-Kyoung Kwak

    2010-10-01

    Full Text Available Oxidative stress causes damage to multiple cellular components such as DNA, proteins, and lipids, and is implicated in various human diseases including cancer, neurodegeneration, inflammatory diseases, and aging. In response to oxidative attack, cells have developed an antioxidant defense system to maintain cellular redox homeostasis and to protect cells from damage. The thiol-containing small molecules (e.g. glutathione, reactive oxygen species-inactivating enzymes (e.g. glutathione peroxidase, and phase 2 detoxifying enzymes (e.g. NAD(PH: quinine oxidoreductase 1 and glutathione-S-transferases are members of this antioxidant system. NF-E2-related factor 2 (Nrf2 is a CNC-bZIP transcription factor which regulates the basal and inducible expression of a wide array of antioxidant genes. Following dissociation from the cytosolic protein Keap1, a scaffolding protein which binds Nrf2 and Cul3 ubiquitin ligase for proteasome degradation, Nrf2 rapidly accumulates in the nucleus and transactivates the antioxidant response element in the promoter region of many antioxidant genes. The critical role of Nrf2 has been demonstrated by various animal studies showing that mice with a targeted disruption of the nrf2 gene are prone to develop lesions in response to environmental toxicants/carcinogens, drugs, and inflammatory insults. In this review, we discuss the role of the Nrf2 system, with particular focus on Nrf2-controlled target genes and the potential pleiotropic effects of Nrf2 activation of indirect antioxidants.

  1. Antioxidant potential of yerba mate (Ilex paraguariensis St. Hil. extracts in Saccharomyces cerevisae deficient in oxidant defense genes

    Directory of Open Access Journals (Sweden)

    A. C. Piovezan-Borges

    Full Text Available Abstract Yerba-mate (Ilex paraguariensis St. Hil is mainly consumed as “chimarrão”, a hot drink highly appreciated in Brazil, Argentina, Paraguay and Uruguay. This study evaluated the antioxidant potential of aqueous extracts of I. paraguariensis precipitated with ethanol. The leaves were processed as for tea product (TM and oxidized (OX. The antioxidant potential was evaluated in cells of Saccharomyces cerevisiae deficient in antioxidant defense genes. Three strains evaluated were: a wild (EG and two mutants (ctt1Δ e ctt1Δsod1Δ. These strains were pre-treated with the yerba-mate extracts (TM e OX and submitted to oxidative stress induced by hydrogen peroxide. None of the extracts produced loss of cell viability. The extracts exerted antioxidant activity, protecting the strains (except sod1∆ctt1∆. The TM extract was more effective than OX. I. paraguariensis extracts showed a potential to be explored in the development of new products.

  2. Paraoxonases-2 and -3 Are Important Defense Enzymes against Pseudomonas aeruginosa Virulence Factors due to Their Anti-Oxidative and Anti-Inflammatory Properties

    Directory of Open Access Journals (Sweden)

    Eva-Maria Schweikert

    2012-01-01

    Full Text Available The pathogen Pseudomonas aeruginosa causes serious damage in immunocompromised patients by secretion of various virulence factors, among them the quorum sensing N-(3-oxododecanoyl-L-homoserine lactone (3OC12 and the redox-active pyocyanin (PCN. Paraoxonase-2 (PON2 may protect against P. aeruginosa infections, as it efficiently inactivates 3OC12 and diminishes PCN-induced oxidative stress. This defense could be circumvented because 3OC12 mediates intracellular Ca2+-rise in host cells, which causes rapid inactivation and degradation of PON2. Importantly, we recently found that the PON2 paralogue PON3 prevents mitochondrial radical formation. Here we investigated its role as additional potential defense mechanism against P. aeruginosa infections. Our studies demonstrate that PON3 diminished PCN-induced oxidative stress. Moreover, it showed clear anti-inflammatory potential by protecting against NF-κB activation and IL-8 release. The latter similarly applied to PON2. Furthermore, we observed a Ca2+-mediated inactivation and degradation of PON3, again in accordance with previous findings for PON2. Our results suggest that the anti-oxidative and anti-inflammatory functions of PON2 and PON3 are an important part of our innate defense system against P. aeruginosa infections. Furthermore, we conclude that P. aeruginosa circumvents PON3 protection by the same pathway as for PON2. This may help identifying underlying mechanisms in order to sustain the protection afforded by these enzymes.

  3. Antioxidants

    Science.gov (United States)

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  4. Effects of diets based on foods from conventional versus organic production on intake and excretion of flavonoids and markers of antioxidative defense in humans

    DEFF Research Database (Denmark)

    Grinder-Pedersen, Lisbeth; Rasmussen, Salka E.; Bügel, Susanne

    2003-01-01

    Different food production methods may result in differences in the content of secondary metabolites such as polyphenolic compounds. The present study compared conventionally (CPD) and organically produced (OPD) diets in a human crossover intervention study (n = 16) with respect to the intake...... both interventions. Most markers of antioxidative defense did not differ between the diets, but intake of OPD resulted in an increased protein oxidation and a decreased total plasma antioxidant capacity compared to baseline (P

  5. Molecular identification of three novel glutaredoxin genes that play important roles in antioxidant defense in Helicoverpa armigera.

    Science.gov (United States)

    Zhang, Song-Dou; Shen, Zhong-Jian; Liu, Xiao-Ming; Li, Zhen; Zhang, Qing-Wen; Liu, Xiao-Xia

    2016-08-01

    Glutaredoxins (Grxs), also known as thioltransferases, play key roles in maintaining intracellular redox balance and protecting cells from oxidative damage in plants and mammals. We tested whether Grxs play important roles in antioxidant defense in insects using the moth, Helicoverpa armigera. We obtained the full-length cDNA sequences of three novel Grx genes, named HaGrx, HaGrx3, and HaGrx5. Sequence analysis indicated that HaGrx shared a high amino acid identity (58%-78%) and a CPYC motif of conserved redox activity with homologues from other selected insect species. In contrast, HaGrx3 and HaGrx5 both shared a CGF(S/G) motif, a conserved catalytic domain, with other orthologous genes. Quantitative real-time PCR results revealed that HaGrx, HaGrx3, and HaGrx5 exhibited temporally- and spatially-dependent patterns of expression. The mRNA expression of HaGrx, HaGrx3, and HaGrx5 was induced by various temperature stresses and H2O2 treatments. We further investigated the knockdown of HaGrx, HaGrx3, and HaGrx5 in H. armigera larvae and found that most of the selected antioxidant genes were up regulated. However, Tpx was down regulated, and further interpretation of the complementary functions of these antioxidant genes is still required. We also determined the effect of HaGrx, HaGrx3, and HaGrx5 knockdown on antioxidant enzymatic activity and metabolite content. The enzymatic activities of SOD, CAT, and POD, and the metabolite contents of hydrogen peroxide, ascorbate, protein carbonyl, and total GSH increased after RNAi mediated knockdown of HaGrx, HaGrx3, and HaGrx5. These results supported our hypothesis that HaGrx, HaGrx3, and HaGrx5 play important roles in antioxidant defense of Helicoverpa armigera and provided a theoretical basis for further in-depth study of physiological function in the insect glutaredoxin family genes.

  6. Effect of tacrolimus on the cauda epididymis in rats: analysis of epididymal biochemical markers or antioxidant defense enzymes.

    Science.gov (United States)

    Hisatomi, Akihiko; Sakuma, Shozo; Fujiwara, Michio; Seki, Jiro

    2008-01-14

    The effect of tacrolimus on epididymal biochemical markers was investigated following single daily subcutaneous doses of 1, 2 and 3 mg kg(-1) day(-1) for 2 weeks to male adult rats. The tacrolimus 2 and 3 mg kg(-1) day(-1) groups showed a significant and dose-dependent decrease in sperm count in the cauda epididymis. Among tissue levels of L-carnitine, alpha-glucosidase and acid phosphatase, only L-carnitine level in the cauda epididymis was significantly reduced in the tacrolimus 3 mg kg(-1)day(-1) group. However, no significant difference was seen in the plasma L-carnitine. It was suggested that lowering of L-carnitine in the cauda epididymis was attributable to the adverse effect on epididymal function to transport and/or concentrate L-carnitine. Since L-carnitine has been reported to have antioxidant potential, antioxidant defense enzymes in the cauda epididymis such as superoxide dismutase (SOD), catalase, glutathione peroxidase and glutathione reductase were evaluated. The results showed no significant differences in activities, confirming that the treatment with tacrolimus did not affect the activities of these antioxidant enzymes. In conclusion, this study indicates that tacrolimus induces a decrease in L-carnitine level in the cauda epididymis, which is probably caused by impairment of epididymal function to transport and/or concentrate L-carnitine from bloodstream, and a decrease in sperm count.

  7. Oxidative damage, skin aging, antioxidants and a novel antioxidant rating system.

    Science.gov (United States)

    Palmer, Debbie M; Kitchin, Jennifer Silverman

    2010-01-01

    It is believed that oxidative stress is caused by an imbalance between the production of reactive oxygen and a biological system's ability to neutralize the reactive intermediates. Oxidative damage occurs because of both intrinsic and extrinsic mechanisms. Together, intrinsic and extrinsic damage are the primary causes of skin aging. The skin uses a series of intrinsic antioxidants to protect itself from free radical damage. Naturally occurring extrinsic antioxidants have also been widely shown to offset and alleviate these changes. Unlike sunscreens, which have an SPF rating system to guide consumers in their purchases, there is no widely accepted method to choose antioxidant anti-aging products. ORAC (Oxygen Radical Absorbance Capacity) and ABEL-RAC (Analysis By Emitted Light-Relative Antioxidant Capacity), are both accepted worldwide as a standard measure of the antioxidant capacity of foods, and are rating systems that could be applied to all antioxidant skincare products. The standardization of antioxidant creams could revolutionize the cosmeceutical market and give physicians and consumers the ability to compare and choose effectively.

  8. Phenolipids as antioxidants in emulsified systems

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Bayrasy, Christelle; Laguerre, Mickäel

    to an increase of the antioxidative effect. When the phenolic compound reaches a certain point of lipophilicity its antioxidative effect decreases. Thus, the polar paradox hypothesis is not valid when the alkyl chain length is above a certain length. Futhermore, the length of the alkyl chain for optimal...... antioxidant effect has been shown to be influenced by the specific phenolic compound and the type of emulsion. The overall aim for our work was to evaluate phenolipids with different lipophilicity as antioxidants in emulsified food. In the study presented here caffeic, ferulic and coumaric acid were selected...... along with their corresponding alkyl esters (C4-C20). The methods used to evaluate the antioxidative effect of the different phenolipids were the CAT assay (o/w emulsion), antioxidant assays (DPPH, Iron chelating and reducing power) and partitioning studies. Moreover, the results from the CAT assay...

  9. Effect of Rare Earths on Plants under Supplementary Ultraviolet-B Radiation: Ⅱ. Effect of Cerium on Antioxidant Defense System in Rape Seedlings under Supplementary Ultraviolet-B Radiation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Effects of cerium (Ce3 + ) on membranous protective enzymes in rape seedlings exposed to two levels of enhanced ultraviolet-B radiation (UV-B, 280 ~ 320 nm) were studied by hydroponics in the laboratory. The results show that the chlorophyll content decreases and membrane permeability increases in the leaves under UV-B irradiation with an intenposed to a low level of UV-B radiation. POD activity in leaves exposed to a high level of UV-B radiation is enhanced constantly. The sensitivities of these enzymes to UV-B radiation are SOD > CAT > POD. The injury by UV-B radiation on the functions of protective enzymes is lightened, their ability to scavenge radicals is improved, and the membrane permeability is maintained by Ce. Furthermore, the protective effect of cerium is more obvious in plants exposed to low levels of UV-B radiation than to high levels of it. Accordingly, all results prove that the protective effect of Ce on plants under UV-B radiation is realized through the protective system of plants.

  10. Efficacy of a Low Dose of Estrogen on Antioxidant Defenses and Heart Rate Variability

    Directory of Open Access Journals (Sweden)

    Cristina Campos

    2014-01-01

    Full Text Available This study tested whether a low dose (40% less than the pharmacological dose of 17-β estradiol would be as effective as the pharmacological dose to improve cardiovascular parameters and decrease cardiac oxidative stress. Female Wistar rats (n=9/group were divided in three groups: (1 ovariectomized (Ovx, (2 ovariectomized animals treated for 21 days with low dose (LE; 0.2 mg, and (3 high dose (HE; 0.5 mg 17-β estradiol subcutaneously. Hemodynamic assessment and spectral analysis for evaluation of autonomic nervous system regulation were performed. Myocardial superoxide dismutase (SOD and catalase (CAT activities, redox ratio (GSH/GSSG, total radical-trapping antioxidant potential (TRAP, hydrogen peroxide, and superoxide anion concentrations were measured. HE and LE groups exhibited an improvement in hemodynamic function and heart rate variability. These changes were associated with an increase in the TRAP, GSH/GSSG, SOD, and CAT. A decrease in hydrogen peroxide and superoxide anion was also observed in the treated estrogen groups as compared to the Ovx group. Our results indicate that a low dose of estrogen is just as effective as a high dose into promoting cardiovascular function and reducing oxidative stress, thereby supporting the approach of using low dose of estrogen in clinical settings to minimize the risks associated with estrogen therapy.

  11. Benfotiamine upregulates antioxidative system in activated BV-2 microglia cells.

    Science.gov (United States)

    Bozic, Iva; Savic, Danijela; Stevanovic, Ivana; Pekovic, Sanja; Nedeljkovic, Nadezda; Lavrnja, Irena

    2015-01-01

    Chronic microglial activation and resulting sustained neuroinflammatory reaction are generally associated with neurodegeneration. Activated microglia acquires proinflammatory cellular profile that generates oxidative burst. Their persistent activation exacerbates inflammation, which damages healthy neurons via cytotoxic mediators, such as superoxide radical anion and nitric oxide. In our recent study, we have shown that benfotiamine (S-benzoylthiamine O-monophosphate) possesses anti-inflammatory effects. Here, the effects of benfotiamine on the pro-oxidative component of activity of LPS-stimulated BV-2 cells were investigated. The activation of microglia was accompanied by upregulation of intracellular antioxidative defense, which was further promoted in the presence of benfotiamine. Namely, activated microglia exposed to non-cytotoxic doses of benfotiamine showed increased levels and activities of hydrogen peroxide- and superoxide-removing enzymes-catalase and glutathione system, and superoxide dismutase. In addition, benfotiamine showed the capacity to directly scavenge superoxide radical anion. As a consequence, benfotiamine suppressed the activation of microglia and provoked a decrease in NO and (·)O(-) 2 production and lipid peroxidation. In conclusion, benfotiamine might silence pro-oxidative activity of microglia to alleviate/prevent oxidative damage of neighboring CNS cells.

  12. Antioxidant defenses in human blood plasma and extra-cellular fluids.

    Science.gov (United States)

    Stocker, Roland

    2016-04-01

    I had the fortune to be introduced to Helmut Sies during the mid 1980s, while working as a post-doctoral scientist at the University of California, Berkeley. At that time, Helmut was a frequent visitor of the Bruce Ames' laboratory and a leading authority in antioxidants and oxidative stress. His concepts, ideas and willingness to listen and make constructive suggestions have been far-reaching and visionary. Moreover, they have also been highly infectious, so much so that much of my research to this day has been on the same topic. The following is a personal recount on how the field of antioxidants has evolved since those exciting days in Berkeley.

  13. ANTIOXIDANT ACTIVITY OF MAJORANA HORTENSIS LEAVES SUBJECTED TO OXIDATIVE STRESS IN AN IN VITRO SYSTEM

    Directory of Open Access Journals (Sweden)

    Palaniswamy Radha

    2011-06-01

    Full Text Available Oxidative stress can arise from an imbalance between the generation and elimination of reactive oxygen species leading to the excess levels, which in turn cause various diseases and cell death. Reactive oxygen species can be eliminated by a number of enzymic and non-enzymic antioxidant defense mechanisms. This was studied in Majorana hortensis using in vitro model simulating the in vivo system. Precision-cut goat liver slices were challenged with a standard oxidant (H2O2 both in the presence and in the absence of the different extracts of the leaves. The enzymic and non-enzymic antioxidants were analyzed in the homogenate of the liver slices after incubation. The oxidant treated liver slices showed a decrease in the levels of antioxidants compared to the untreated control. But in the presence of the leaf extracts, the antioxidant status was reverted back to a significant extent. Thus, the results showed that the leaf extracts of the candidate plant can improve the antioxidant status in the goat liver slices exposed in vitro to oxidative stress.

  14. Experimental evidence for protein oxidative damage and altered antioxidant defense in patients with medium-chain acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Derks, Terry G J; Touw, Catharina M L; Ribas, Graziela S; Biancini, Giovana B; Vanzin, Camila S; Negretto, Giovanna; Mescka, Caroline P; Reijngoud, Dirk Jan; Smit, G Peter A; Wajner, Moacir; Vargas, Carmen R

    2014-01-01

    The objective of this study was to test whether macromolecule oxidative damage and altered enzymatic antioxidative defenses occur in patients with medium-chain acyl coenzyme A dehydrogenase (MCAD) deficiency. We performed a cross-sectional observational study of in vivo parameters of lipid and prote

  15. Influence of subacute treatment of some plant growth regulators on serum marker enzymes and erythrocyte and tissue antioxidant defense and lipid peroxidation in rats.

    Science.gov (United States)

    Celik, Ismail; Tuluce, Yasin; Isik, Ismail

    2006-01-01

    This study aims to investigate the effects of the plant growth regulators (PGRs) (2,3,5-triiodobenzoic acid (TIBA), Naphthaleneacetic acid (NAA), and 2,4-dichlorofenoxyacetic acid (2,4-D)) on serum marker enzymes (aspartate aminotransferase (AST), alanin aminotransferase (ALT), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH)), antioxidant defense systems (reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST), and catalase (CAT)), and lipid peroxidation content (malondialdehyde = MDA) in various tissues of rats. 50 and 100 ppm of PGRs as drinking water were administered orally to rats (Sprague-Dawley albino) ad libitum for 25 days continuously. The PGRs treatment caused different effects on the serum marker enzymes, antioxidant defense systems, and the MDA content in experimented rats compared to controls. Results showed that TIBA caused a significant decrease in serum AST activity with both the dosage whereas serum CPK was significantly increased with 100 ppm dosage of TIBA. Meanwhile, serum AST, CPK, and LDH activities were significantly increased with both dosage of NAA and 2,4-D. The lipid peroxidation end-product MDA significantly increased in the all tissues treated with both dosages of PGRs without any change in the brain and erythrocyte of rats treated with both the dosages of 2,4-D. The GSH depletion in the kidney and brain tissues of rats treated with both dosages of PGRs was found to be significant. Furthermore, the GSH depletion in the erythrocyte of rats treated with both dosages of PGRs except 50 ppm dosage of 2,4-D was significant too. Also, the GSH level in the liver was significantly depleted with 50 ppm of 2,4-D and NAA, whereas the GSH depletion in the same tissue did not significantly change with the treatment. The activity of antioxidant enzymes was also seriously affected by PGRs; SOD significantly decreased in the liver, heart, kidney, and brain of rats treated with

  16. Effects of AHLs(N-hexanoyl-DL-homoserine lactone, C6-HSL)on growth and antioxidant defense system of Chlorella vulgaris%AHLs信号分子对小球藻生长及抗氧化酶系统的影响

    Institute of Scientific and Technical Information of China (English)

    毕相东; 周文礼; 邢克智; 唐学玺

    2012-01-01

    The effects of AHLs (N-hexanoyl-DL-homoserine ]actone,C6-HSL) on growth and antioxidani defense system of Chlorella vulgaris were studied in present study. The results showed that that low concentrations of C6-HSL (50,190 and 200 nmol/L) could increase the relative growth rate of C. Vulgaris obviously at 8 h (P < 0. 05). The higher concentrations of C6-HSL ( ≥400 nmol/L) could decrease the relative growth rate of C. Vulgaris obviously (P <0. 05) ,and exhibit the high concenrtration-dependent inhibition effects. 50 nmol/L C6-HSL could activate the defense response of C. Vulgaris in a short time (4 h),intreasft activities of SOD,POD, CAT and GPX of C. Vulgaris obviously (P <0.05) ,and decrease MDA content significantly (P <0. 05). Compared to low concentrations , the antioxidative enzymes of C. Vulgaris were increased to a peak then decreased, and the MDA content of C. Vulgaris were increased significantly 0 to 24 h exposure to 400 nmol/L C6-HSL (P<0.05).%以小球藻(Chlorella vulgaris)为试验材料,研究AHLs信号分子(N-hexanoyl-DL-homoserine lactone,C6-HSL)对小球藻生长及抗氧化酶系统的影响.结果表明:C6-HSL对小球藻生长的影响表现为低浓度促进而高浓度抑制的效应.低浓度C6-HSL(50、100及200 nmol/L)8 h时即可显著提高小球藻的相对生长率(P<0.05),高浓度C6-HSL(≥400 nmol/L)24 h时均可显著降低小球藻的相对生长率(P<0.05),且表现出较强的浓度依赖性抑制作用.50 nmol/(1)C6-HSL即可在4h时激活藻细胞防御性反应,显著提高SOD、POD、CAT及GPX的活性(P<0.05),同时显著降低MDA的含量(P<0.05);与低浓度组相比,400 nmol/L C6-HSL作用下,藻细胞抗氧化酶活性均经历先升高后降低的过程,24 h内藻细MDA含量显著升高(P<0.05).

  17. Possible role of glutamine synthetase in the NO signaling response in root nodules by contributing to the antioxidant defenses

    Directory of Open Access Journals (Sweden)

    Liliana Santos Silva

    2013-09-01

    Full Text Available Nitric oxide (NO is emerging as an important regulatory player in the Rhizobium-legume symbiosis. The occurrence of NO during several steps of the symbiotic interaction suggests an important, but yet unknown, signaling role of this molecule for root nodule formation and functioning. The identification of the molecular targets of NO is key for the assembly of the signal transduction cascade that will ultimately help to unravel NO function. We have recently shown that the key nitrogen assimilatory enzyme Glutamine Synthetase (GS is a molecular target of NO in root nodules of Medicago truncatula, being post-translationally regulated by tyrosine nitration in relation to nitrogen fixation. In functional nodules of M. truncatula NO formation has been located in the bacteroid containing cells of the fixation zone, where the ammonium generated by bacterial nitrogenase is released to the plant cytosol and assimilated into the organic pools by plant GS. We propose that the NO-mediated GS post-translational inactivation is connected to nitrogenase inhibition induced by NO and is related to metabolite channeling to boost the nodule antioxidant defenses. Glutamate, a substrate for GS activity is also the precursor for the synthesis of glutathione (GSH, which is highly abundant in root nodules of several plant species and known to play a major role in the antioxidant defense participating in the ascorbate/GSH cycle. Existing evidence suggests that upon NO-mediated GS inhibition, glutamate could be channeled for the synthesis of GSH. According to this hypothesis, GS would be involved in the NO-signaling responses in root nodules and the NO-signaling events would meet the nodule metabolic pathways to provide an adaptive response to the inhibition of symbiotic nitrogen fixation by reactive nitrogen species (RNS.

  18. Lipophilized phenolics as antioxidants in fish oil enriched food systems

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Nielsen, Nina Skall; Jacobsen, Charlotte

    work better as antioxidants in bulk oil, whereas lipophilic compounds are better antioxidants in emulsions. Phenolics have in general shown to posses antioxidative properties, which depend upon their structure i.e. number and location of –OH groups. However, many of these compounds are polar. Our...... hypothesis is that lipophilization of such polar phenolic compounds may improve their efficacy in fish oil enriched food systems. Our study aimed at evaluating rutin and dihydrocaffeic acid and their esters as antioxidants in o/w emulsion model system and milk enriched with fish oil. Moreover, the effect...... of the chain length of the fatty acid was investigated. The effect of the compounds was evaluated by determination of primary and secondary oxidation products. Further, these findings were combined with antioxidant assay and partitioning studies. Preliminary data showed that the lipophilization improve...

  19. Intracerebroventricular administration of N-acetylaspartic acid impairs antioxidant defenses and promotes protein oxidation in cerebral cortex of rats.

    Science.gov (United States)

    Pederzolli, Carolina Didonet; Rockenbach, Francieli Juliana; Zanin, Fernanda Rech; Henn, Nicoli Taiana; Romagna, Eline Coan; Sgaravatti, Angela M; Wyse, Angela T S; Wannmacher, Clóvis M D; Wajner, Moacir; de Mattos Dutra, Angela; Dutra-Filho, Carlos S

    2009-06-01

    N-acetylaspartic acid (NAA) is the biochemical hallmark of Canavan Disease, an inherited metabolic disease caused by deficiency of aspartoacylase activity. NAA is an immediate precursor for the enzyme-mediated biosynthesis of N-acetylaspartylglutamic acid (NAAG), whose concentration is also increased in urine and cerebrospinal fluid of patients affected by CD. This neurodegenerative disorder is clinically characterized by severe mental retardation, hypotonia and macrocephaly, and generalized tonic and clonic type seizures. Considering that the mechanisms of brain damage in this disease remain not fully understood, in the present study we investigated whether intracerebroventricular administration of NAA or NAAG elicits oxidative stress in cerebral cortex of 30-day-old rats. NAA significantly reduced total radical-trapping antioxidant potential, catalase and glucose 6-phosphate dehydrogenase activities, whereas protein carbonyl content and superoxide dismutase activity were significantly enhanced. Lipid peroxidation indices and glutathione peroxidase activity were not affected by NAA. In contrast, NAAG did not alter any of the oxidative stress parameters tested. Our results indicate that intracerebroventricular administration of NAA impairs antioxidant defenses and induces oxidative damage to proteins, which could be involved in the neurotoxicity of NAA accumulation in CD patients.

  20. A Comprehensive Review on Nickel (II And Chromium VI Toxicities - Possible Antioxidant (Allium Sativum Linn Defenses

    Directory of Open Access Journals (Sweden)

    Kusal K.Das

    2009-12-01

    Full Text Available The toxicity associated with nickel (II and chromium (VI is mainly due to generation of reactive oxygen species (ROS with subsequent oxidative deterioration of biological macromolecules. Both nickel and chromium can generate free radicals (FR directly from molecular oxygen in a two step process to produce superoxide anion and in continued process, produce highly toxic hydroxyl radical. The pro-oxidative effects are compounded by fact that they also inhibit antioxidant enzymes and deplete intracellular glutathione. Garlic (Allium sativum has played an important dietary and medicinal role throughout the history of mankind. Garlic has the potential to enhance the endogenous antioxidant status in nickel as well as hexavalent chromium induced lipid peroxidation in normal and diabetic rats.

  1. Anti-hepatotoxic and anti-oxidant defense potential of Tridax procumbens

    Directory of Open Access Journals (Sweden)

    Hemalatha Reddipalli

    2008-01-01

    Full Text Available Tridax procumbens is a widely occurring medicinal herb used by ethnomedical practitioners. With increased use of chemicals and alcohol besides growing incidence of viruses and autoimmune diseases, the incidence of liver injury is growing for which conventional drugs used for treatment are often inadequate. Various models are adopted in pharmological studies for inducing hepatitis/ liver injury similar to those observed in human viral hepatitis, diabetes and oxidative stress. D-galactosamine with lipopolysacchride (LPS, carbontetrachloride (CCl 4 and paracetamol intoxication, diabetes induced with alloxan are widely used on rodents for this purpose. In vitro studies on Tridax procumbens (TP revealed the anti-oxidant potential of the herb with chloroform fraction of the ethanolic extract showing maximum activity. It is also reported to possess anti-oxidant minerals such as iron, magnesium, copper and zinc. In vivo studies on rodents on the anti-oxidant potential of TP induced through LPS, CCl 4, alloxan and paracetamol intoxication induced hepatitis confirmed the results from in vitro studies as a potential anti-hepatotoxic herb.

  2. Cerebral Epiphyseal Proteins and Melatonin Modulate the Hepatic and Renal Antioxidant Defense of Rats

    Directory of Open Access Journals (Sweden)

    Vijay K. Bharti

    2011-01-01

    Full Text Available The cerebral epiphysis (pineal gland secrets melatonin and number of other proteins and peptides. It was thus hypothesized that antioxidant properties of epiphyseal proteins and melatonin could potentially benefit from exogenous therapies. In view of the therapeutic potential of these proteins, the present experiment was conducted to investigate the effect of buffalo epiphyseal proteins (BEP, at 100 μg/kg BW, i.p. and melatonin (MEL, at 10 mg/kg BW, i.p on changes in hepatic and renal antioxidant enzymes of adult female Wistar rats. Buffalo epiphyseal proteins significantly (P<.05 increased hepatic lipid peroxidation (LPO, superoxide dismutase (SOD, glutathione reductase (GR, glutathione peroxidase (GPx, reduced glutathione (GSH, and renal LPO, catalase (CAT, GR, GSH, GPx levels as compared to control animals. Similarly, MEL treatment significantly (P<.05 up-regulated hepatic SOD and GPx activity, whereas CAT, GR, GPx, and GSH levels in renal tissues were increased while SOD and LPO remained unaffected. Buffalo epiphyseal protein treatment produced greater effects on hepatic GPx and renal CAT and GSH levels than did MEL. These findings support the conclusion that buffalo epiphyseal proteins and melatonin activate a number of antioxidant mechanisms in hepatic and renal tissues.

  3. Multiple operating system rotation environment moving target defense

    Science.gov (United States)

    Evans, Nathaniel; Thompson, Michael

    2016-03-22

    Systems and methods for providing a multiple operating system rotation environment ("MORE") moving target defense ("MTD") computing system are described. The MORE-MTD system provides enhanced computer system security through a rotation of multiple operating systems. The MORE-MTD system increases attacker uncertainty, increases the cost of attacking the system, reduces the likelihood of an attacker locating a vulnerability, and reduces the exposure time of any located vulnerability. The MORE-MTD environment is effectuated by rotation of the operating systems at a given interval. The rotating operating systems create a consistently changing attack surface for remote attackers.

  4. Antioxidant defenses of mycorrhizal fungus infection against SO(2)-induced oxidative stress in Avena nuda seedlings.

    Science.gov (United States)

    Huang, L L; Yang, C; Zhao, Y; Xu, X; Xu, Q; Li, G Z; Cao, J; Herbert, S J; Hao, L

    2008-11-01

    Colonization of arbuscular mycorrhizal fungi Glomus mosseae increased Avena nuda seedling tolerance to SO(2) exposure, as indicated by elevated total plant biomass and ameliorative photosynthetic rate, when compared to the non-mycorrhizal plants. This is associated with an improved antioxidant capacity as shown by enhanced superoxide dismutase and catalase activity, increased ascorbic acid and glutathione content, and reduced malondialdehyde and hydrogen peroxide level in the mycorrhizal plants relative to the non-mycorrhizal plants under SO(2) exposure. The mycorrhizal fungi colonization had no effect on the stomatal conductance. To our knowledge, this is the first finding of this sort.

  5. Hydrogen Sulfide Alleviates Postharvest Senescence of Grape by Modulating the Antioxidant Defenses.

    Science.gov (United States)

    Ni, Zhi-Jing; Hu, Kang-Di; Song, Chang-Bing; Ma, Run-Hui; Li, Zhi-Rong; Zheng, Ji-Lian; Fu, Liu-Hui; Wei, Zhao-Jun; Zhang, Hua

    2016-01-01

    Hydrogen sulfide (H2S) has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2 (∙-)) in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX) and catalase (CAT) and decreased those of lipoxygenase (LOX) in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation.

  6. Effect of heavy metals on growth response and antioxidant defense protection in Bacillus cereus.

    Science.gov (United States)

    Behera, Madhumita; Dandapat, Jagneshwar; Rath, Chandi Charan

    2014-11-01

    Bacterial cells in aerobic environment generate reactive oxygen species which may lead to oxidative stress, induced by a wide range of environmental factors including heavy metals. In the present context an attempt has been made to determine the toxic impact of cadmium and copper on growth performance, oxidative stress, and relative level of antioxidant protection in Bacillus cereus. Outcome of this study suggests that both the metal ions depleted the growth rate in this organism with respect to time and concentration of the metal ions. CdCl2 exposure induced extracellular glutathione (GSH) production, whereas, its level was declined in response to CuSO4. Superoxide dismutase (SOD) activity and hydrogen peroxide (H2 O2 ) content was elevated under CdCl2 stress but the activity of catalase (CAT) was inhibited. In contrast, incubation of bacteria with CuSO4 exhibited decreased SOD activity with concomitant rise in CAT activity and H2 O2 content. We also observed elevation of intracellular GSH level in this bacteria following supplementation of N-acetyl cysteine (NAC) in the medium. Overall findings of this study indicated differential toxicity of CdCl2 and CuSO4 in inducing oxidative stress, depleting growth rate and the possible involvement of GSH and CAT in adaptive antioxidant response.

  7. Hydrogen Sulfide Alleviates Postharvest Senescence of Grape by Modulating the Antioxidant Defenses

    Directory of Open Access Journals (Sweden)

    Zhi-Jing Ni

    2016-01-01

    Full Text Available Hydrogen sulfide (H2S has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA, hydrogen peroxide (H2O2, and superoxide anion (O2∙- in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX and catalase (CAT and decreased those of lipoxygenase (LOX in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation.

  8. Changes in antioxidant defense status in hypercholesterolemic rats treated with Ajuga iva.

    Science.gov (United States)

    Bouderbala, S; Lamri-Senhadji, M; Prost, J; Lacaille-Dubois, M A; Bouchenak, M

    2008-06-01

    The aim of the study was to investigate the effect of aqueous extract of Ajuga iva (Ai) on serum and tissues lipid peroxidation as well as antioxidant enzymes activities in red blood cells (RBC) and tissues, in high hypercholesterolemic rats (HC). Male Wistar rats (n=12) were fed on 1% cholesterol-enriched diet for 15d. After this adaptation phase, hypercholesterolemic rats (total cholesterol=6.5+/-0.6mol/l) were divided into two groups fed the same diet and treated or not with Ai for 15d. Thiobarbituric acid reactive substances (TBARS) concentrations in serum, LDL-HDL(1), HDL(2) and HDL(3) were respectively, 5-, 7.8-, 2.3- and 5-fold lower in Ai treated than untreated hypercholesterolemic groups. TBARS concentrations were 1.4-fold lower in heart and 2.8-fold higher in kidney in Ai-HC treated than untreated HC group. Superoxide dismutase activity was respectively, 1.2- and 1.4-fold higher in RBC and muscle in Ai treated than untreated group. In RBC, Ajuga iva treatment enhanced glutathione peroxidase (GSH-Px) (+9%) and glutathione reductase (GSSH-Red) (+12%) in Ai-HC treated than untreated HC group. GSSH-Red activity was 1.4- and 1.5-fold higher in adipose tissue and heart, respectively and 3.7-fold lower in kidney in Ai treated than untreated group. Liver catalase activity was 1.6-fold higher in Ai treated than untreated group. Adipose tissue and muscle total glutathione content represented in Ai treated group 35% and 36% of the value noted in untreated group. Nitric oxide values of liver, adipose tissue and heart were 3.3-, 2.5- and 3.4-fold higher in Ai-HC than HC group. Ajuga iva treatment enhanced alpha-tocopherol contents (+25%) in Ai treated than untreated group. In conclusion, Ajuga iva treatment is more effective to improve the antioxidant capacity of RBC than that of tissues. Indeed, Ai is able to reduce the oxidative stress in hypercholesterolemic rats by increasing the antioxidant enzymes activity.

  9. Dietary Curcumin Increases Antioxidant Defenses in Lung, Ameliorates Radiation-Induced Pulmonary Fibrosis, and Improves Survival in Mice

    Science.gov (United States)

    Lee, James C.; Kinniry, Paul A.; Arguiri, Evguenia; Serota, Matthew; Kanterakis, Stathis; Chatterjee, Shampa; Solomides, Charalambos C.; Javvadi, Prashanthi; Koumenis, Constantinos; Cengel, Keith A.; Christofidou-Solomidou, Melpo

    2010-01-01

    The effectiveness of lung radiotherapy is limited by radiation tolerance of normal tissues and by the intrinsic radiosensitivity of lung cancer cells. The chemopreventive agent curcumin has known antioxidant and tumor cell radiosensitizing properties. Its usefulness in preventing radiation-induced pneumonopathy has not been tested previously. We evaluated dietary curcumin in radiation-induced pneumonopathy and lung tumor regression in a murine model. Mice were given 1%or 5%(w/w) dietary curcumin or control diet prior to irradiation and for the duration of the experiment. Lungs were evaluated at 3 weeks after irradiation for acute lung injury and inflammation by evaluating bronchoalveolar lavage (BAL) fluid content for proteins, neutrophils and at 4 months for pulmonary fibrosis. In a separate series of experiments, an orthotopic model of lung cancer using intravenously injected Lewis lung carcinoma (LLC) cells was used to exclude possible tumor radioprotection by dietary curcumin. In vitro, curcumin boosted antioxidant defenses by increasing heme oxygenase 1 (HO-1) levels in primary lung endothelial and fibroblast cells and blocked radiation-induced generation of reactive oxygen species (ROS). Dietary curcumin significantly increased HO-1 in lungs as early as after 1 week of feeding, coinciding with a steady-state level of curcumin in plasma. Although both 1% and 5% w/w dietary curcumin exerted physiological changes in lung tissues by significantly decreasing LPS-induced TNF-α production in lungs, only 5%dietary curcumin significantly improved survival of mice after irradiation and decreased radiation-induced lung fibrosis. Importantly, dietary curcumin did not protect LLC pulmonary metastases from radiation killing. Thus dietary curcumin ameliorates radiation-induced pulmonary fibrosis and increases mouse survival while not impairing tumor cell killing by radiation. PMID:20426658

  10. Pistacia Atlantica Extract Enhances Exercise-Mediated Improvement of Antioxidant Defense in Vistar Rats

    Directory of Open Access Journals (Sweden)

    Parvin Farzanegi

    2014-07-01

    Full Text Available Exercise training causes increased oxidative stress. Pistacia Atlantica Extract (Mastic is known to have a protective effect against oxidative stress and inflammation. We examined the effects of exercise training with and without Pistacia Atlantica extract administration on antioxidant markers in vistar rats. Twenty-eight Vistar female rats (six to eight weeks old, 150-200 g weight allocated into training (n = 14 and control (n = 14 groups and further divided into saline + control (n = 7, saline + training (n = 7, mastic +control (n = 7, and mastic + raining (n = 7. The training groups were given exercise on a treadmill at 25 m/min (0% grade for 60 min/day, 5 days/week for eight weeks. Mastic groups were administered at a dose 100 mg/kg (7.5 μL/g of body weight, orally. Seventy-two hours after the last training session, the rats were sacrificed and their liver tissues were excised for tissue oxidative stress markers which were detected by ELISA method. Mastic, Exercise, and Exercise+ Mastic attenuated MDA compared to control (p<0.01. Exercise + Mastic showed a stronger suppressive effect than Mastic and exercise. Mastic and Exercise significantly the increase in SOD compared with control (p<0.05. Exercise + Mastic showed further additive effects on increasing SOD (p<0.001. These results suggest that Mastic supplementation and exercise alone induced positive adaptations in modulating oxidant and antioxidant levels without causing the reduced/oxidized glutathione ratio (GSH/GSSG in liver of vistar rats, but the combined intervention is more effective than either intervention alone.

  11. Blue Rose perimeter defense and security system

    Science.gov (United States)

    Blackmon, F.; Pollock, J.

    2006-05-01

    An in-ground perimeter security system has been developed by the Naval Undersea Warfare Center Division Newport based upon fiber optic sensor technology. The system, called Blue Rose, exploits the physical phenomenon of Rayleigh optical scattering, which occurs naturally in optical fibers used traditionally for Optical Time Domain Reflectometry techniques to detect sound and vibration transmitted by intruders such as people walking or running and moving vehicles near the sensor. The actual sensor is a single-mode optical fiber with an elastomeric coating that is buried in the ground. A long coherence length laser is used to transmit encoded light down the fiber. Minute changes in the fiber in response to the intrusion produce phase changes to the returning backscattered light signal. The return light signal contains both the actual intrusion sound and the location information of where along the fiber the intrusion has occurred. A digital, in-ground, Blue Rose system has been built and is now operational at NUWC. Due to the low cost of the optical fiber sensor and unique benefits of the system, the Blue Rose system provides an advantage in long perimeter or border security applications and also reduces security manning requirements and therefore overall cost for security.

  12. Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources

    Directory of Open Access Journals (Sweden)

    Vesna Hadži-Tašković Šukalović

    2016-12-01

    Full Text Available Antioxidant systems of maize root cell walls grown on different nitrogen sources were evaluated. Plants were grown on a medium containing only NO3- or the mixture of NO3-+NH4+, in a 2:1 ratio. Eleven-day old plants, two days after the initiation of lateral roots, were used for the experiments. Cell walls were isolated from lateral roots and primary root segments, 2-7 cm from tip to base, representing zones of intense or decreased growth rates, respectively. Protein content and the activity of enzymes peroxidase, malate dehydrogenase and ascorbate oxidase ionically or covalently bound to the walls, as well as cell wall phenolic content and antioxidant capacity, were determined. Cell walls of plants grown on mixed N possess more developed enzymatic antioxidant systems and lower non-enzymatic antioxidant defenses than cell walls grown on NO3-. Irrespective of N treatment, the activities of all studied enzymes and protein content were higher in cell walls of lateral compared to primary roots. Phenolic content of cell walls isolated from lateral roots was higher in NO3--grown than in mixed N grown plants. No significant differences could be observed in the isozyme patterns of cell wall peroxidases isolated from plants grown on different nutrient solution. Our results indicate that different N treatments modify the antioxidant systems of root cell walls. Treatment with NO3- resulted in an increase of constitutive phenolic content, while the combination of NO3-+NH4+ elevated the redox enzyme activities in root cell walls.

  13. Performance of the Defense Acquisition System. 2014 Annual Report

    Science.gov (United States)

    2014-06-13

    contractors to “win the franchise ” to become the sole-source producer of a system. Contractors are often willing to accept lower development...margins to win this production franchise . 86 Performance of the Defense Acquisition System, 2014 Figure 3-1. Final Margin on MDAP Development and...profits if the contractors determine the longer-term benefits from “winning the franchise ” form a good investment. Both types of sole-source contracts

  14. The 6-a-day study: effects of fruit and vegetables on markers of oxidative stress and antioxidative defense in healthy nonsmokers

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Pedersen, A.; Hermetter, A.;

    2004-01-01

    Background: Fruit and vegetables contain both nutritive and nonnutritive factors that might contribute to redox (antioxidant and prooxidant) actions. Objective: We investigated the relative influence of nutritive and nonnutritive factors in fruit and vegetables on oxidative damage and enzymatic...... defense. Design: A 25-d intervention study with complete control of dietary intake was performed in 43 healthy male and female nonsmokers who were randomly assigned to 1 of 3 groups. In addition to a basic diet devoid of fruit and vegetables, the fruit and vegetables (Fruveg) group received 600 g fruit...... and vegetables/d; the placebo group received a placebo pill, and the supplement group received a vitamin pill designed to contain vitamins and minerals corresponding to those in 600 g fruit and vegetables. Biomarkers of oxidative damage to protein and lipids and of antioxidant nutrients and defense enzymes were...

  15. Design Skills and Prototyping for Defense Systems

    Science.gov (United States)

    2015-04-30

    Abrams tank. New variants are being ordered to maintain the single production plant in Lima , Ohio, even though the Army has sufficient quantities to...References Arena, M. V., Leonard, R. S., Murray, S. E., & Younossi, O. (2006). Historical cost growth of completed weapon system programs. Santa Monica, CA...development (R- 4161-ACQ). Santa Monica, CA: RAND. Drezner, J. A., & Huang, M. (2009). On prototyping: Lessons from RAND research. Santa Monica

  16. Strategic Defense System; Integrated Logistics Support Plan.

    Science.gov (United States)

    2007-11-02

    WEAPONS SBI SBL GBL NPB iiiwiiiii BSTS SSTS AOS CC/SOIF NTB :-.’-’\\.;v::v-X’X:.’:^v::v:.-:vS...Validation of test methods C. Evaluate test results IV. Simulation and Modelling A. Methodology B. Requirements C. Validation D. National Test Bed n...equipment and the systems they support; - On-the-job training capabilities incorporated in the prime equipment design as a method of reducing the need

  17. System Earned Readiness Management for Defense Acquisition

    Science.gov (United States)

    2009-01-01

    Pugh  1991),  Kasser’s  ( Kasser  2004)  First  Requirements   Elucidator  Demonstration  (FRED),  Integrated  Design  Model...Council  on  Systems   Engineering  (NCOSE),  Seattle,  Washington.   Kasser ,  J.  E.  (2004).  "The  first  requirements

  18. Defense Systems Modernization and Sustainment Initiative

    Science.gov (United States)

    2014-03-31

    Maintainers Developer’s Analysis Tool The Developer’s Analysis Tool supports software and system developers to design and debug the health...Faces • PHP - Scripting language embedded in HTML Database and Communication Protocols The analysis of database technologies and communication...to be loaded and graphed, as well as the ability to save the data into CSV fdes for use in MATLAB. The tool was generally used for debugging purposes

  19. Metabolism and antioxidant defense in the larval chironomid Tanytarsus minutipalpus: adjustments to diel variations in the extreme conditions of Lake Magadi

    Science.gov (United States)

    Wood, Chris M.; Bergman, Harold L.; Johannsson, Ora E.; Laurent, Pierre; Chevalier, Claudine; Kisipan, Mosiany L.; Kavembe, Geraldine D.; Papah, Michael B.; Brix, Kevin V.; De Boeck, Gudrun; Maina, John N.; Ojoo, Rodi O.; Bianchini, Adalto

    2017-01-01

    ABSTRACT Insect larvae are reported to be a major component of the simple but highly productive trophic web found in Lake Magadi (Kenya, Africa), which is considered to be one of the most extreme aquatic environments on Earth. Previous studies show that fish must display biochemical and physiological adjustments to thrive under the extreme conditions of the lake. However, information for invertebrates is lacking. In the present study, the occurrence of the larval chironomid Tanytarsus minutipalpus is reported in Lake Magadi for the first time. Additionally, changes in larval metabolism and antioxidant defense correlated with diel variations in the extremely hostile environmental conditions of the lake are described. Wide variations in water temperature (20.2-29.3°C) and dissolved oxygen content (3.2-18.6 mg O2 l−1) were observed at different times of day, without significant change in water pH (10.0±0.03). Temperature and dissolved oxygen were higher at 13:00 h (29.3±0.4°C and 18.6±1.0 mg O2 l−1) and 19:00 h (29.3±0.8°C and 16.2±1.6 mg O2 l−1) and lower at 01:00 h (21.1±0.1°C and 10.7±0.03 mg O2 l−1) and 07:00 h (20.2±0.4°C and 3.2±0.7 mg O2 l−1). Significant and parallel increases in parameters related to metabolism (cholinesterase, glucose, cholesterol, urea, creatinine and hemoglobin) and the antioxidant system (SOD, GPx, GR, GSH and GSSG) were observed in larvae collected at 13:00 h. In contrast, no significant changes were observed in pro-oxidants (ROS and NO), TOSC and oxidative damage parameters (LPO and DNA damage). Therefore, the observed increases in temperature and dissolved O2 content in Lake Magadi were associated with changes in the antioxidant system of T. minutipalpus larvae. Adjustments performed by the chironomid larvae were efficient in maintaining body homeostasis, as well as protecting biomolecules against oxidative damage, so that oxidative stress did not occur. GSH-GSSG and GPx-GR systems appeared to

  20. Metabolism and antioxidant defense in the larval chironomid Tanytarsus minutipalpus: adjustments to diel variations in the extreme conditions of Lake Magadi

    Directory of Open Access Journals (Sweden)

    Lucas F. Bianchini

    2017-01-01

    Full Text Available Insect larvae are reported to be a major component of the simple but highly productive trophic web found in Lake Magadi (Kenya, Africa, which is considered to be one of the most extreme aquatic environments on Earth. Previous studies show that fish must display biochemical and physiological adjustments to thrive under the extreme conditions of the lake. However, information for invertebrates is lacking. In the present study, the occurrence of the larval chironomid Tanytarsus minutipalpus is reported in Lake Magadi for the first time. Additionally, changes in larval metabolism and antioxidant defense correlated with diel variations in the extremely hostile environmental conditions of the lake are described. Wide variations in water temperature (20.2-29.3°C and dissolved oxygen content (3.2-18.6 mg O2 l−1 were observed at different times of day, without significant change in water pH (10.0±0.03. Temperature and dissolved oxygen were higher at 13:00 h (29.3±0.4°C and 18.6±1.0 mg O2 l−1 and 19:00 h (29.3±0.8°C and 16.2±1.6 mg O2 l−1 and lower at 01:00 h (21.1±0.1°C and 10.7±0.03 mg O2 l−1 and 07:00 h (20.2±0.4°C and 3.2±0.7 mg O2 l−1. Significant and parallel increases in parameters related to metabolism (cholinesterase, glucose, cholesterol, urea, creatinine and hemoglobin and the antioxidant system (SOD, GPx, GR, GSH and GSSG were observed in larvae collected at 13:00 h. In contrast, no significant changes were observed in pro-oxidants (ROS and NO, TOSC and oxidative damage parameters (LPO and DNA damage. Therefore, the observed increases in temperature and dissolved O2 content in Lake Magadi were associated with changes in the antioxidant system of T. minutipalpus larvae. Adjustments performed by the chironomid larvae were efficient in maintaining body homeostasis, as well as protecting biomolecules against oxidative damage, so that oxidative stress did not occur. GSH-GSSG and GPx-GR systems appeared to

  1. Testosterone enhances functional recovery after stroke through promotion of antioxidant defenses, BDNF levels and neurogenesis in male rats.

    Science.gov (United States)

    Fanaei, Hamed; Karimian, Seyed Morteza; Sadeghipour, Hamid Reza; Hassanzade, Gholamreza; Kasaeian, Amir; Attari, Fatemeh; Khayat, Samira; Ramezani, Vahid; Javadimehr, Mani

    2014-04-16

    It is reported that circulating testosterone levels decrease after cerebral ischemia. The aim of this study was to evaluate the effects of testosterone on oxidative stress, brain-derived neurotrophic factor (BDNF) levels, neurogenesis, histological damage and sensorimotor recovery in a castrated male rat model of focal cerebral ischemia. Animals were divided into four groups. For all animals, castrations were conducted 7 days before transient middle cerebral artery occlusion (MCAO) was done and cerebral ischemia was induced. The first group served as sham. Second was MCAO group and received vehicle only, third was MCAO group that was post-treated with testosterone and the fourth was MCAO group post-treated with testosterone and flutamide. Treatment only with testosterone significantly weakened oxidative stress and increased BDNF levels and sensorimotor recovery during a 10 days period. Rats receiving testosterone demonstrated a significant reduction in infarct volume and a significant increase in neurogenesis on 10th day after focal cerebral ischemia. Our results for the first time showed a potential advantageous effect of testosterone after cerebral ischemia in male rats, which was probably mediated by promoting antioxidant defenses, BDNF levels and neurogenesis.

  2. Alleviation of alcoholic liver injury by betaine involves an enhancement of antioxidant defense via regulation of sulfur amino acid metabolism.

    Science.gov (United States)

    Jung, Young Suk; Kim, Sun Ju; Kwon, Do Young; Ahn, Chul Won; Kim, Young Soon; Choi, Dal Woong; Kim, Young Chul

    2013-12-01

    Previous studies suggested that the hepatoprotective activity of betaine is associated with its effects on sulfur amino acid metabolism. We examined the mechanism by which betaine prevents the progression of alcoholic liver injury and its therapeutic potential. Rats received a liquid ethanol diet for 6 wk. Ethanol consumption elevated serum triglyceride and TNFα levels, alanine aminotransferase and aspartate aminotransferase activities, and lipid accumulation in liver. The oxyradical scavenging capacity of liver was reduced, and expression of CD14, TNFα, COX-2, and iNOS mRNAs was induced markedly. These ethanol-induced changes were all inhibited effectively by betaine supplementation. Hepatic S-adenosylmethionine, cysteine, and glutathione levels, reduced in the ethanol-fed rats, were increased by betaine supplementation. Methionine adenosyltransferase and cystathionine γ-lyase were induced, but cysteine dioxygenase was down-regulated, which appeared to account for the increment in cysteine availability for glutathione synthesis in the rats supplemented with betaine. Betaine supplementation for the final 2 wk of ethanol intake resulted in a similar degree of hepatoprotection, revealing its potential therapeutic value in alcoholic liver. It is concluded that the protective effects of betaine against alcoholic liver injury may be attributed to the fortification of antioxidant defense via improvement of impaired sulfur amino acid metabolism.

  3. The Dual Role of Nrf2 in Nonalcoholic Fatty Liver Disease: Regulation of Antioxidant Defenses and Hepatic Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Sílvia S. Chambel

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a progressive liver disease with ever-growing incidence in the industrialized world. It starts with the simple accumulation of lipids in the hepatocyte and can progress to the more severe nonalcoholic steatohepatitis (NASH, which is associated with inflammation, fibrosis, and cirrhosis. There is increasing awareness that reactive oxygen species and electrophiles are implicated in the pathogenesis of NASH. Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2 is a positive regulator of the expression of a battery of genes involved in the protection against oxidative/electrophilic stress. In rodents, Nrf2 is also known to participate in hepatic fatty acid metabolism, as a negative regulator of genes that promote hepatosteatosis. We review relevant evidence in the literature that these two mechanisms may contribute to the protective role of Nrf2 in the development of hepatic steatosis and in the progression to steatohepatitis, particularly in young animals. We propose that age may be a key to explain contradictory findings in the literature. In summary, Nrf2 mediates the crosstalk between lipid metabolism and antioxidant defense mechanisms in experimental models of NAFLD, and the nutritional or pharmacological induction of Nrf2 represents a promising potential new strategy for its prevention and treatment.

  4. Prooxidative effects of aspartame on antioxidant defense status in erythrocytes of rats

    Indian Academy of Sciences (India)

    Marko D Prokić; Milica G Paunović; Miloš M Matić; Nataša Z Djordjević; Branka I Ognjanović; Andraš Š Štajn; Zorica S Saičić

    2014-12-01

    Since aspartame (L-aspartyl-L-phenylalanine methyl ester, ASP) is one of the most widely used artificial sweeteners, the aim of the present study was to investigate its effects on serum glucose and lipid levels as well as its effects on oxidative/antioxidative status in erythrocytes of rats. The experiment included two groups of animals: the control group was administered with water only, while the experimental group was orally administered with ASP (40 mg/kg b.w.) daily, for a period of six weeks. When compared with the control group, the group administrated with ASP indicated higher values of serum glucose, cholesterol and triglycerides. Significantly increased concentrations of superoxide anion (O2•−), hydrogen peroxide (H2O2), peroxynitrite (ОNОО−) and lipid peroxides (LPO) were recorded in the erythrocytes of ASP treated group in comparison to the control group. In the course of chronic ASP administration, the following was observed: the concentration of reduced glutathione (GSH) and the activity of catalase (CAT) increased. Thus, these findings suggest that long-term consumption of ASP leads to hyperglycemia and hyperlipidemia, as well as to oxidative stress in erythrocytes.

  5. Prooxidative effects of aspartame on antioxidant defense status in erythrocytes of rats.

    Science.gov (United States)

    Prokic, Marko D; Paunovic, Milica G; Matic, Milos M; Djordjevic, Natasa Z; Ognjanovic, Branka I; Stajn, Andras S; Saicic, Zorica S

    2014-12-01

    Since aspartame (L-aspartyl-L-phenylalanine methyl ester, ASP) is one of the most widely used artificial sweeteners, the aim of the present study was to investigate its effects on serum glucose and lipid levels as well as its effects on oxidative/antioxidative status in erythrocytes of rats. The experiment included two groups of animals: the control group was administered with water only, while the experimental group was orally administered with ASP (40 mg/kg b.w.) daily, for a period of six weeks. When compared with the control group, the group administrated with ASP indicated higher values of serum glucose, cholesterol and triglycerides. Significantly increased concentrations of superoxide anion (O2 .-), hydrogen peroxide (H2O2), peroxynitrite (?N??-) and lipid peroxides (LPO) were recorded in the erythrocytes of ASP treated group in comparison to the control group. In the course of chronic ASP administration, the following was observed: the concentration of reduced glutathione (GSH) and the activity of catalase (CAT) increased. Thus, these findings suggest that long-term consumption of ASP leads to hyperglycemia and hyperlipidemia, as well as to oxidative stress in erythrocytes.

  6. Effect of low doses of herbicide paraquat on antioxidant defense in Drosophila.

    Science.gov (United States)

    Krůček, Tomáš; Korandová, Michala; Šerý, Michal; Frydrychová, Radmila Čapková; Krůček, Tomáš; Korandová, Michala; Szakosová, Klára

    2015-04-01

    Despite a high toxicity, paraquat is one of the most widely used herbicides in the world. Our study evaluated the effect of paraquat exposure on antioxidant response and locomotion activity in Drosophila melanogaster. We examined the enzymatic activity of superoxide dismutase (SOD) and catalase, and the transcript levels of both enzymes. Flies were exposed to a wide range of paraquat concentrations (0.25 μM to 25 mM) for 12 h. SOD, at both transcript and enzymatic levels, revealed a biphasic dose-response curve with the peak at 2.5 μM paraquat. A similar dose-response curve was observed at transcript levels of catalase. Males revealed higher susceptibility to paraquat exposure, displaying higher lethality, increased levels of SOD activity, and increased peroxide levels than in females. We found that the exposure of females to 2.5 μM paraquat leads to an increase in locomotion activity. Because susceptibility to paraquat was enhanced by mating, the study supports the hypothesis of elevation of stress sensitivity as a physiological cost of reproduction.

  7. Redox-dependent induction of antioxidant defenses by phenolic diterpenes confers stress tolerance in normal human skin fibroblasts: Insights on replicative senescence.

    Science.gov (United States)

    Carvalho, Ana C; Gomes, Andreia C; Pereira-Wilson, Cristina; Lima, Cristovao F

    2015-06-01

    Mild stress-induced hormesis represents a promising strategy for targeting the age-related accumulation of molecular damage and, therefore, for preventing diseases and achieving healthy aging. Fruits, vegetables, and spices contain a wide variety of hormetic phytochemicals, which may explain the beneficial health effects associated with the consumption of these dietary components. In the present study, the induction of cellular antioxidant defenses by the phenolic diterpenes carnosic acid (CA) and carnosol (CS) were studied in normal human skin fibroblasts, and insights into the aging process at the cellular level investigated. We observed that CA and CS induced several cytoprotective enzymes and antioxidant defenses in human fibroblasts, whose induction was dependent on the cellular redox state for CS and associated with Nrf2 signaling for both compounds. The stress response elicited by preincubation with CS conferred a cytoprotective action against a following oxidant challenge with tert-butyl hydroperoxide, confirming its hormetic effect. Preincubation of normal fibroblasts with CS also protected against hydrogen peroxide-induced premature senescence. Furthermore, cultivation of middle passage normal human skin fibroblasts in the presence of CS ameliorated the physiological state of cells during replicative senescence. Our results support the view that mild stress-induced antioxidant defenses by CS can confer stress tolerance in normal cells and may have important implications in the promotion of healthy aging.

  8. X-box binding protein 1 is essential for the anti-oxidant defense and cell survival in the retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Yimin Zhong

    Full Text Available Damage to the retinal pigment epithelium (RPE is an early event in the pathogenesis of age-related macular degeneration (AMD. X-box binding protein 1 (XBP1 is a key transcription factor that regulates endoplasmic reticulum (ER homeostasis and cell survival. This study aimed to delineate the role of endogenous XBP1 in the RPE. Our results show that in a rat model of light-induced retinal degeneration, XBP1 activation was suppressed in the RPE/choroid complex, accompanied by decreased anti-oxidant genes and increased oxidative stress. Knockdown of XBP1 by siRNA resulted in reduced expression of SOD1, SOD2, catalase, and glutathione synthase and sensitized RPE cells to oxidative damage. Using Cre/LoxP system, we generated a mouse line that lacks XBP1 only in RPE cells. Compared to wildtype littermates, RPE-XBP1 KO mice expressed less SOD1, SOD2, and catalase in the RPE, and had increased oxidative stress. At age 3 months and older, these mice exhibited apoptosis of RPE cells, decreased number of cone photoreceptors, shortened photoreceptor outer segment, reduced ONL thickness, and deficit in retinal function. Electron microscopy showed abnormal ultrastructure, Bruch's membrane thickening, and disrupted basal membrane infolding in XBP1-deficient RPE. These results indicate that XBP1 is an important gene involved in regulation of the anti-oxidant defense in the RPE, and that impaired activation of XBP1 may contribute to RPE dysfunction and cell death during retinal degeneration and AMD.

  9. Brachycorynella asparagi (Mordv.) Induced—Oxidative Stress and Antioxidative Defenses of Asparagus officinalis L.

    Science.gov (United States)

    Borowiak-Sobkowiak, Beata; Woźniak, Agnieszka; Bednarski, Waldemar; Formela, Magda; Samardakiewicz, Sławomir; Morkunas, Iwona

    2016-01-01

    The aim of this study was to investigate whether and to what extent oxidative stress is induced in leaves of one- and two-month-old plants of Asparagus officinalis L. cv. Argenteuil infested by Brachycorynella asparagi (Mordvilko) at a varied population size. The pest B. asparagi has been described as the most damaging species feeding on asparagus. Analyses using electron paramagnetic resonance (EPR) demonstrated generally higher concentrations of semiquinone radicals with g-values of 2.0045 ± 0.0005 and 2.0026 ± 0.0005 in Asparagus officinalis (A. officinalis) leaves after Brachycorynella asparagi (B. asparagi) infestation than in the control. Observations of leaves under a confocal microscope showed a post-infestation enhanced generation of the superoxide anion radical (O2•−) and hydrogen peroxide (H2O2) in comparison to the control. Strong fluctuations in Mn2+ ion levels detected by EPR spectroscopy versus time were detected in leaves infested by aphids, which may indicate the involvement of these ions in the control of O2•− production. An enhanced superoxide dismutase activity is an important element in leaf defense against oxidative stress. Visible symptoms were found in aphid-infested A. officinalis. Damage to leaves of one- and two-month-old A. officinalis plants by the aphid B. asparagi was dependent on the intensity, duration of infestation and plant age. PMID:27775613

  10. Brachycorynella asparagi (Mordv. Induced—Oxidative Stress and Antioxidative Defenses of Asparagus officinalis L.

    Directory of Open Access Journals (Sweden)

    Beata Borowiak-Sobkowiak

    2016-10-01

    Full Text Available The aim of this study was to investigate whether and to what extent oxidative stress is induced in leaves of one- and two-month-old plants of Asparagus officinalis L. cv. Argenteuil infested by Brachycorynella asparagi (Mordvilko at a varied population size. The pest B. asparagi has been described as the most damaging species feeding on asparagus. Analyses using electron paramagnetic resonance (EPR demonstrated generally higher concentrations of semiquinone radicals with g-values of 2.0045 ± 0.0005 and 2.0026 ± 0.0005 in Asparagus officinalis (A. officinalis leaves after Brachycorynella asparagi (B. asparagi infestation than in the control. Observations of leaves under a confocal microscope showed a post-infestation enhanced generation of the superoxide anion radical (O2•− and hydrogen peroxide (H2O2 in comparison to the control. Strong fluctuations in Mn2+ ion levels detected by EPR spectroscopy versus time were detected in leaves infested by aphids, which may indicate the involvement of these ions in the control of O2•− production. An enhanced superoxide dismutase activity is an important element in leaf defense against oxidative stress. Visible symptoms were found in aphid-infested A. officinalis. Damage to leaves of one- and two-month-old A. officinalis plants by the aphid B. asparagi was dependent on the intensity, duration of infestation and plant age.

  11. The interaction between nonalcoholic steatosis, anthropometric indicators and disturbance of lipid peroxidation and antioxidant defense in patients with signs of obesity

    Directory of Open Access Journals (Sweden)

    Filippova A.Yu.

    2016-12-01

    Full Text Available Aim - to study charac­teristics of indicators of lipid peroxidation (LPO and antioxidant system (AOS, depending on the body mass index (BMI in patients with non-alcoholic steatosis (NASP in combination with obesity (OB and pathology of the biliary tract (BT. The study involved 100 patients with NASP in combination with OB and BT pathology, who at the time of sonographic and morphological study of liver biopsy presented signs of hepatic steatosis. Among the patients there were 19 men and 81 women. The average age of patients - (53,67 ± 1,11 years. The control group consisted of 20 practically healthy persons (PHP. BMI is determined by the formula Quetelet. Depending on the degree of BMI increase all patients with NASH and obe­sity were divided into three groups: 1 group – with BМI 25-29,9 kg/m2– ex­cessive body mass; 2 group – with BMI 30-34,9 kg/m2– obesity of I degree; 3 group – with BMI 35–39,9 kg/m2– obesity of ІІ degree. Status of LPO system was assessed by the concentration of malondialdehyde in plasma and red blood cells and the content of lipid peroxidation intermediates in the two phases of the lipid extract – isolated double bonds, diene conjugates, oksidien conjugates and the final LPO products – schiff bases. Factors of antioxidant defense activity were assessed by ceruloplasmin (CP, superoxide dismutase (SOD and catalase in erythrocyte hemolysate. All LPO indicators have been activated in the two phases of lipid extract (from p<0,05 to p<0,001 when compared with a group of PHP and p<0,05 as compared to other groups of patients and depended on increasing BMI. Indicators of AOS – SOD and catalase in all NASP groups practically did not differ from PHP parameters and did not depend on the increase of BMI. From the CP side a compensatory increase in its activity in response to the intensification of LPO was revealed. In NASP patients in combination with OB and comorbid disorders of BT the course of the disease

  12. Shift in aggregation, ROS generation, antioxidative defense, lysozyme and acetylcholinesterase activities in the cells of an Indian freshwater sponge exposed to washing soda (sodium carbonate).

    Science.gov (United States)

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2016-09-01

    Washing soda, chemically identified as anhydrous sodium carbonate, is a popular cleaning agent among the rural and urban populations of India which often contaminates the freshwater ponds and lakes, the natural habitat of sponge Eunapius carteri. Present investigation deals with estimation of cellular aggregation, generation of ROS and activities of antioxidant enzymes, lysozyme and acetylcholinesterase in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Prolonged treatment of washing soda inhibited the degree of cellular aggregation. Experimental exposure of 8 and 16mg/l of sodium carbonate for 48h elevated the physiological level of reactive oxygen species (ROS) generation in the agranulocytes, semigranulocytes and granulocytes of E. carteri, whereas, treatment of 192h inhibited the ROS generation in three cellular morphotypes. Activities of superoxide dismutase, catalase and glutathione-S-transferase were recorded to be inhibited under prolonged exposure of washing soda. Washing soda mediated inhibition of ROS generation and depletion in the activities of antioxidant enzymes were indicative to an undesirable shift in cytotoxic status and antioxidative defense in E. carteri. Inhibition in the activity of lysozyme under the treatment of sodium carbonate was suggestive to a severe impairment of the innate immunological efficiency of E. carteri distributed in the washing soda contaminated habitat. Washing soda mediated inhibition in the activity of acetylcholinesterase indicated its neurotoxicity in E. carteri. Washing soda, a reported environmental contaminant, affected adversely the immunophysiological status of E. carteri with reference to cellular aggregation, oxidative stress, antioxidative defense, lysozyme and acetylcholinesterase activity.

  13. ASSOCIATION BETWEEN ENZYMATIC AND NON-ENZYMATIC ANTIOXIDANT DEFENSE WITH ALZHEIMER DISEASE

    Directory of Open Access Journals (Sweden)

    A. Vaisi-Raygani

    2008-04-01

    Full Text Available The etiopathogenesis of dementia in Alzheimer's disease (AD is still unclear. However, long-term oxidative stress is believed to be one of the major contributing factors in progression of neuronal degeneration and decline of cognitive function in AD. In order to assess the presence of oxidative stress in AD, we examined the enzymatic activities of the erythrocyte Cu-Zn superoxide dismutase (Cu-Zn SOD, glutathione peroxidase (GSH-Px, catalase (CAT, and plasma level of total antioxidant status (TAS in AD and control groups (age and sex-matched. The results showed that the Cu-Zn SOD activity was significantly higher and the level of GSH-Px and TAS activities were significantly lower in AD subjects than that in the control group (2111±324 U/grHb, 43.7±11.6 U/grHb, and 1.17 ±0.23 mmol/L compared with 1371±211 U/gHb; t= -2.17, p=0.036, 56.3±9.5 U/gHb; t=3.8, p=0.014, and 1.54±0.2 mmol/L; t=11.18, P<0.001, respectively. While, the erythrocyte CAT activity was lower in AD subjects compared to the control group, the difference was not statistically significant (t=1.3, P=0.15. These findings support the idea that the oxidative stress plays an important role in the pathogenesis underlying AD neurodegeneration. In addition, the enzymatic activity of the erythrocyte Cu-Zn SOD and GSH-Px and the plasma level of TAS can be used as a measure of the oxidative stress and a marker for pathological changes in the brain of patients with AD.

  14. Passive automatic anti-piracy defense system of ships

    Science.gov (United States)

    Szustakowski, M.; Życzkowski, M.; Ciurapiński, W.; Karol, M.; Kastek, M.; Stachowiak, R.; Markowski, P.

    2013-10-01

    The article describes the technological solution for ship self-defense against pirate attacks. The paper presents the design solutions in the field of direct physical protection. All the solutions are connected with the latest optoelectronic and microwave systems and sensors to detect, recognize and the threat posed by pirates. In particular, tests of effectiveness and the detection-range of technology demonstrator developed by a team of authors were carried out.

  15. Effect of nonylphenol on male reproduction: Analysis of rat epididymal biochemical markers and antioxidant defense enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Hamdy A.A., E-mail: hamdyaali@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah (Saudi Arabia); Domènech, Òscar [Department of Physical Chemistry, Faculty of Pharmacy, Barcelona University (Spain); Banjar, Zainy M. [Department of Medical Biology, School of Medicine, King Abdulaziz University, Jeddah (Saudi Arabia)

    2012-06-01

    The mechanism by which nonylphenol (NP) interferes with male reproduction is not fully elucidated. Therefore, the present study was conducted to evaluate the effect of NP on male reproductive organ's weight, sperm characteristics, and to elucidate the nature and mechanism of action of NP on the epididymis. Adult male Wistar rats were gavaged with NP, dissolved in corn oil, at 0, 100, 200 or 300 mg/kg/day for 30 consecutive days. Control rats were gavaged with vehicle (corn oil) alone. Body weight did not show any significant change while, absolute testes and epididymides weights were significantly decreased. Sperm count in cauda and caput/corpus epididymides, and sperm motility was significantly decreased. Daily sperm production was significantly decreased in a dose-related manner. Sperm transit time in cauda epididymis was significantly decreased by 300 mg/kg, while in the caput/corpus epididymis it was significantly decreased by 200 and 300 mg/kg of NP. Plasma LDH was significantly increased while; plasma testosterone was significantly decreased in a dose-related pattern. In the epididymal sperm, NP decreased acrosome integrity, Δψm and 5′-nucleotidase activity. Hydrogen peroxide (H{sub 2}O{sub 2}) production and LPO were significantly increased in a dose-related pattern. The activities of SOD, CAT and GPx were significantly decreased in the epididymal sperm. In conclusion, this study revealed that NP treatment impairs spermatogenesis and has a cytotoxic effect on epididymal sperm. It disrupts the prooxidant and antioxidant balance. This leads oxidative stress in epididymal sperms of rat. Moreover, the reduction in sperm transit time may affect sperm quality and fertility potential. -- Highlights: ► The nature and mechanism of action of NP on rat epididymis were elucidated. ► NP decreased sperm count, motility, daily sperm production and sperm transit time. ► NP decreased sperm acrosome integrity, Δψm and 5′-nucleotidase activity. ► Plasma

  16. Reproduction and love: strategies of the organism's cellular defense system?

    Science.gov (United States)

    De Loof, A; Huybrechts, R; Kotanen, S

    1998-08-01

    A novel view is presented which states that primordial germ cells and their descendants can be regarded as 'cancerous cells' which emit signals that activate a whole array of cellular defensive mechanisms by the somatoplasm. These cells have become unrestrained in response to the lack of typical cell adhesion properties of epithelial cells. From this point of view: (1) the encapsulation of oocytes by follicle cells, vitelline membrane and egg shell; (2) the suppression of gonadal development in larval life; (3) the production of sex steroid hormones and of vitellogenin; and (4) the expulsion of the gametes from the body fit into a general framework for a defense strategy of the somatoplasm against germ line cells. Accordingly, the origin of sexual reproduction appears to be a story of failure and intercellular hostility rather than a 'romantic' and altruistic event. Yet, it has resulted in evolutionary success for the system in which it has evolved; probably through realizing feelings of 'pleasure' associated with reproduction.

  17. Tea extracts antioxidative potential in emulsified lipid systems

    Directory of Open Access Journals (Sweden)

    Anna Gramza-Michałowska

    2008-09-01

    Full Text Available Tea leaves (Camelia sinensis L. extracts are source of polyphenols, i.e. antioxidant components. Research showed possible tea extracts use in food technology, influencing contained lipids stability improvement. The aim of the research was comparison of different teas extracts activity in emulsified lipid system. The present research examined different teas: white, green, yellow, oolong and black aqueous and ethanol extracts. To evaluate the most potent addition level different tea extracts concentrations were chosen. Linoleic acid oxidative stability was measured by linoleic acid conjugated dienes produc-tion monitoring. Emulsions with additives were incubated 19 hours at 37°C in darkness. Results showed different tea extracts antioxidant activity, dependent on its concentration in examined system. Highest antioxidant activity, comparable to BHT and rosemary ex-tract was found in lipid sample with addition of yellow tea ethanol extract.

  18. Evolution of System Safety at NASA as Related to Defense-in-Depth

    Science.gov (United States)

    Dezfuli, Homayoon

    2015-01-01

    Presentation given at the Defense-in-Depth Inter-Agency Workshop on August 26, 2015 in Rockville, MD by Homayoon Dezfuli. The presentation addresses the evolution of system safety at NASA as related to Defense-in-Depth.

  19. Active infrared systems: possible roles in ballistic missile defense?

    Science.gov (United States)

    Paleologue, A.

    2006-05-01

    Active Infra-Red (IR) systems developed in the past ten years are now available for missile defense applications. The main purpose of this paper is to describe the advantages an active IR system could offer to a ballistic missile defense (BMD). The active IR system considered in this paper is a LIDAR (LIght Detection And Ranging) system. Historically, the Lincoln Laboratory in the USA began using lasers in the early 1960's. The initial applications included the development of a LIDAR system enabling the measurement of the distance between the earth and the moon in 1962. Satellite tracking using LIDAR began early in 1973. Today, technological developments, with the miniaturization of systems and increased performance levels, have enabled new ambitious projects such as the Discrimination Interceptor Technology Program (DITP) program started in 1998 and the use of LIDAR to help in the discrimination of future exo-atmospheric interceptors within the framework of BMD. The first part of this paper presents the possible contribution of LIDAR to BMD: the main roles, objectives, and strategic advantages. The second part gives a brief overview of the technological features of a generic LIDAR instrument, rapidly addressing laser sources, detectors, optics and electronics. Finally, a modeling of an IR LIDAR system, limited solely to direct detection, and an estimation of performance levels will be presented. A list of possible IR active discriminators will be then presented on the basis of the previous analysis and proposed as new constraints in the design of discrete objects.

  20. Control Systems Cyber Security:Defense in Depth Strategies

    Energy Technology Data Exchange (ETDEWEB)

    David Kuipers; Mark Fabro

    2006-05-01

    Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecture that requires: Maintenance of various field devices, telemetry collection, and/or industrial-level process systems Access to facilities via remote data link or modem Public facing services for customer or corporate operations A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.

  1. Roles of sirtuins in the regulation of antioxidant defense and bioenergetic function of mitochondria under oxidative stress.

    Science.gov (United States)

    Wu, Y-T; Wu, S-B; Wei, Y-H

    2014-09-01

    In addition to serving as the power house of mammalian cells, mitochondria are crucial for the maintenance of cellular homeostasis in response to physiological or environmental changes. Several lines of evidence suggest that posttranslational modification (PTM) of proteins plays a pivotal role in the regulation of the bioenergetic function of mitochondria. Among them, reversible lysine acetylation of mitochondrial proteins has been established as one of the key mechanisms in cellular response to energy demand by modulating the flux of a number of key metabolic pathways. In this article, we focus on the role of Sirt3-mediated deacetylation in: (1) flexibility of energy metabolism, (2) activation of antioxidant defense, and (3) maintenance of cellular redox status in response to dietary challenge and oxidative stress. We suggest that oxidative stress-elicited down-regulation of Sirt3 plays a role in the pathophysiology of diabetes, cardiac hypotrophy, mitochondrial diseases, and age-related diseases. Besides, the physiological role of newly identified lysine acylation mediated by Sirt5 and its biochemical effects on oxidative metabolism are also discussed. Moreover, we have integrated the regulatory function of several protein kinases that are involved in the phosphorylation of mitochondrial enzymes during oxidative stress. Finally, the functional consequence of the synergistic regulation through diverse protein modifications is emphasized on the maintenance of the bioenergetic homeostasis and metabolic adaptation of the animal and human cells. Together, we have provided an updated review of PTM in mitochondrial biology and their implications in aging and human diseases through an intricate regulation of energy metabolism under oxidative stress.

  2. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance.

    Science.gov (United States)

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Tohge, Takayuki; Takayuki, Tohge; Fernie, Alisdair R; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-03-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity.

  3. Grain and bean lysates improve function of endothelial progenitor cells from human peripheral blood: involvement of the endogenous antioxidant defenses.

    Directory of Open Access Journals (Sweden)

    Daniela Lucchesi

    protective effect of lysates on EPCs exposed to oxidative stress through the involvement of antioxidant systems. Lisosan G seems to activate the Nrf-2/ARE pathways.

  4. Martial art training enhances the glutathione antioxidant system in middle-aged adults.

    Science.gov (United States)

    Douris, Peter C; Elokda, Ahmed S; Handrakis, John P; Principal, Suze; Rondo, Eleni; Bovell, Juan; Coughlin, William P; Mastroianni, Charles N; Wong, Michael J; Zimmerman, Thomas

    2009-08-01

    The purpose of this study was to compare the antioxidant capacity of physically active middle-aged martial artists to age-matched sedentary controls. Nine sedentary subjects (mean age 52.9 yr) and 9 martial artists (mean age 51.8 yr) who practice Soo Bahk Do, a Korean martial art and were age- and sex-matched performed a graded exercise test (GXT) using a modified Bruce protocol. Ages ranged from 41 to 58 years. A GXT has been shown to be an effective technique for inducing oxidative stress. Glutathione (GSH) is the body's most highly concentrated antioxidant, is the central component of the antioxidant system, and plays an essential role in protecting tissues against oxidative stress. Free radical oxidation leads to the transformation of GSH to glutathione disulfide (GSSG). Venous blood samples for GSH and GSSG were collected before and immediately after the GXT. Repeated measures analysis of variance were performed on the resting baseline values and immediate post-GXT values of GSH, GSSG, and GSH:GSSG to compare groups. The blood GSH, GSSG, and GSH:GSSG levels were significantly different (p < 0.001) between the 2 groups at rest and after the GXT. The Soo Bahk Do practitioners had higher resting levels of GSH and lower levels of GSSG and responded more effectively to acute oxidative stress than the age-matched sedentary controls. Soo Bahk Do appears to enhance the antioxidant defense system and may be an effective intervention for improving overall health by protecting against the adverse effects of oxidative stress that is associated with the free radical theory of aging. Health professionals should be aware of alternative methods of training, conditioning, and exercise that can improve the general adaptation response to oxidative stress.

  5. Effects of non steroidal anti-inflammatory drugs on the antioxidant defense system and the membrane functions in the rat intestine Efectos de los fármacos aniinflamatorios no esteroideos sobre el sistema de defensa antioxidante y las funciones de membrana en el intestino de rata

    Directory of Open Access Journals (Sweden)

    P. Nair

    2006-12-01

    Full Text Available In the present study the effects of two cycloxygenase-2 (COX-2 selective inhibitors, celecoxib and nimesulide as compared to a non-selective COX inhibitor, aspirin was studied in the rat intestine. Female Wistar rats weighing between 150-175 g were divided into four groups having 8 animals each as follows: Group 1(Control, Group 2- Aspirin (40 mg/kg, Group 3- Nimesulide (10 mg/kg and Group 4- Celecoxib (10 mg/kg. After 35 days of treatment the animals were sacrificed, intestine removed and the effects on the antioxidant defense system, membrane composition and functions along with the membrane specific enzymes were studied in different regions of the intestine. The study showed a significant increase in the lipid peroxide levels as TBA-reactive substance as well as the conjugated dienes, except for celecoxib treated group which showed a decrease. Significant decrease was also observed in the level of reduced glutathione (GSH, superoxide dismutase (SOD, glutathione-s-transferase and catalase activities for aspirin and nimesulide group while Celecoxib caused an increase in glutathione reductase (GR. Aspirin and nimesulide exhibited an increase in the brush border membrane (BBM bound enzyme activities like sucrase, lactase, maltase and alkaline phosphatase in the small intestine while celecoxib showed decrease in lactase, maltase and alkaline phosphatase. The phospholipid content increased only for aspirin treated group while cholesterol decreased in all the treatment groups. Also celecoxib treatment brought about an increase in glycolipid content. The membrane fluidity was studied by the rotational diffusion of 1, 6, diphenyl, 1, 3, 5 hexatriene (DPH incorporated in the membrane and the fluorescence polarization (p, fluorescence anisotropy(r, anisotropy parameter [r0/r -1]-1 and order parameter [S² = (4/3r - 0.1/ r0] were recorded. No significant change in the fluorescence parameters were observed in the BBM and the liposomes made from the BBM

  6. The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk/benefit profile

    Directory of Open Access Journals (Sweden)

    Di Benedetto Giulia

    2008-09-01

    Full Text Available Abstract This review will discuss some issues related to the risk/benefit profile of the use of dietary antioxidants. Thus, recent progress regarding the potential benefit of dietary antioxidants in the treatment of chronic diseases with a special focus on immune system and neurodegenerative disorders will be discussed here. It is well established that reactive oxygen species (ROS play an important role in the etiology of numerous diseases, such as atherosclerosis, diabetes and cancer. Among the physiological defense system of the cell, the relevance of antioxidant molecules, such as glutathione and vitamins is quite well established. Recently, the interest of researchers has, for example, been conveyed on antioxidant enzyme systems, such as the heme oxygenase/biliverdin reductase system, which appears modulated by dietary antioxidant molecules, including polyphenols and beta-carotene. These systems possibly counteract oxidative damage very efficiently and finally modulate the activity of oxidative phenomena occurring, for instance, during pathophysiological processes. Although evidence shows that antioxidant treatment results in cytoprotection, the potential clinical benefit deriving from both nutritional and supplemental antioxidants is still under wide debate. In this line, the inappropriate assumption of some lipophylic vitamins has been associated with increased incidence of cancer rather than with beneficial effects.

  7. Enzymatic Antioxidant Systems in Early Anaerobes: Theoretical Considerations

    Science.gov (United States)

    Ślesak, Ireneusz; Ślesak, Halina; Zimak-Piekarczyk, Paulina; Rozpądek, Piotr

    2016-05-01

    It is widely accepted that cyanobacteria-dependent oxygen that was released into Earth's atmosphere ca. 2.5 billion years ago sparked the evolution of the aerobic metabolism and the antioxidant system. In modern aerobes, enzymes such as superoxide dismutases (SODs), peroxiredoxins (PXs), and catalases (CATs) constitute the core of the enzymatic antioxidant system (EAS) directed against reactive oxygen species (ROS). In many anaerobic prokaryotes, the superoxide reductases (SORs) have been identified as the main force in counteracting ROS toxicity. We found that 93% of the analyzed strict anaerobes possess at least one antioxidant enzyme, and 50% have a functional EAS, that is, consisting of at least two antioxidant enzymes: one for superoxide anion radical detoxification and another for hydrogen peroxide decomposition. The results presented here suggest that the last universal common ancestor (LUCA) was not a strict anaerobe. O2 could have been available for the first microorganisms before oxygenic photosynthesis evolved, however, from the intrinsic activity of EAS, not solely from abiotic sources.

  8. OsDMI3 Is a Novel Component of Abscisic Acid Signaling in the Induction of Antioxidant Defense in Leaves of Rice

    Institute of Scientific and Technical Information of China (English)

    Ben Shi; Lan Ni; Aying Zhang; Jianmei Cao; Hong Zhang; Tingting Qin; Mingpu Tan; Jianhua Zhang; Mingyi Jiang

    2012-01-01

    Ca2+ and calmodulin (CaM) have been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense.However,it is unknown whether Ca2+/CaM-dependent protein kinase (CCaMK) is involved in the process.In the present study,the role of rice CCaMK,OsDMI3,in ABA-induced antioxidant defense was investigated in leaves of rice (Oryza sativa) plants.Treatments with ABA,H2O2,and polyethylene glycol (PEG) induced the expression of OsDMI3 and the activity of OsDMI3,and H2O2 is required for the ABA-induced increases in the expression and the activity of OsDMI3 under water stress.Subcellular localization analysis showed that OsDMI3 is located in the nucleus,the cytoplasm,and the plasma membrane.The analysis of the transient expression of OsDMI3 in rice protoplasts and the RNA interference (RNAi) silencing of OsDMI3 in rice protoplasts showed that OsDMI3 is required for ABA-induced increases in the expression and the activities of superoxide dismutase (SOD) and catalase (CAT).Further,the oxidative damage induced by higher concentrations of PEG and H2O2 was aggravated in the mutant of OsDMI3.Moreover,the analysis of the RNAi silencing of OsDMI3 in protoplasts and the mutant of OsDMI3 showed that higher levels of H2O2 accumulation require OsDMI3 activation in ABA signaling,but the initial H2O2 production induced by ABA is not dependent on the activation of OsDMI3 in leaves of rice plants.Our data reveal that OsDMI3 is an important component in ABA-induced antioxidant defense in rice.

  9. The C2H2-type Zinc Finger Protein ZFP182 is Involved in Abscisic Acid-Induced Antioxidant Defense in Rice

    Institute of Scientific and Technical Information of China (English)

    Hong Zhang; Lan Ni; Yanpei Liu; Yunfei Wang; Aying Zhang; Mingpu Tan; Mingyi Jiang

    2012-01-01

    C2H2-type zinc finger proteins (ZFPs) are thought to play important roles in modulating the responses of plants to drought,salinity and oxidative stress.However,direct evidence is lacking for the involvement of these ZFPs in abscisic acid (ABA)-induced antioxidant defense in plants.In this study,the role of the rice (Oryza sativa L.sub.japonica cv.Nipponbare) C2H2-type ZFP ZFP182 in ABA-induced antioxidant defense and the relationship between ZFP182 and two rice MAPKs,OsMPK1 and OsMPK5 in ABA signaling were investigated.ABA treatment induced the increases in the expression of ZFP182,OsMPK1 and OsMPK5,and the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in rice leaves.The transient gene expression analysis and the transient RNA interference (RNAi) analysis in protoplasts showed that ZFP182,OsMPK1 and OsMPK5 are involved in ABA-induced up-regulation in the activities of SOD and APX.Besides,OsMPK1 and OsMPK5 were shown to be required for the up-regulation in the expression of ZFP182 in ABA signaling,but ZFP182 did not mediate the ABA-induced up-regulation in the expression of OsMPK1 and OsMPK5.These results indicate that ZFP182 is required for ABA-induced antioxidant defense and the expression of ZFP182 is regulated by rice MAPKs in ABA signaling.

  10. Lycium chinensis Mill attenuates glutamate induced oxidative toxicity in PC12 cells by increasing antioxidant defense enzymes and down regulating ROS and Ca(2+) generation.

    Science.gov (United States)

    Olatunji, Opeyemi J; Chen, Hongxia; Zhou, Yifeng

    2016-03-11

    Lycium chinensis Mill is a famous traditional Chinese medicine which displays several medicinal activities including antioxidant and neuroprotective activities. However, the mechanism of action towards the neuroprotective action has not been fully elucidated. This work was aimed at investigating the neuroprotective effects of L. chinensis Mill against glutamate-induced oxidative neurotoxicity in PC12 cells. Oxidative cell death was induced with 5mM glutamate in PC12 cells. Cell viability, LDH release, intracellular Ca(2+) concentration, reactive oxygen species (ROS) accumulation, GSH-Px, CAT and SOD antioxidant enzyme levels were measured. Our results indicated that pretreatment of PC12 cells with L. chinensis Mill extracts markedly attenuated the loss of cell viability, the release of lactate dehydrogenase (LDH), Ca(2+) overload, ROS generation, and cell apoptosis induced by glutamate toxicity. Furthermore, L. chinensis Mill extracts also significantly increased the levels of innate antioxidant enzymes GSH-Px, SOD and CAT in glutamate-induced PC12 cells. Conclusively, our results provided substantial evidence that L. chinensis Mill protected PC12 cells against glutamate-induced cell death by attenuating ROS generation, Ca(2+) influx, and increased the antioxidant defense capacity of PC12 cells against oxidative stress damages, suggesting the possible potential of extracts from the plant as sources of bioactive molecules in the treatment of neurodegenerative disorders.

  11. Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers.

    Science.gov (United States)

    Tattini, Massimiliano; Loreto, Francesco; Fini, Alessio; Guidi, Lucia; Brunetti, Cecilia; Velikova, Violeta; Gori, Antonella; Ferrini, Francesco

    2015-08-01

    The hypothesis was tested that isoprenoids and phenylpropanoids play a prominent role in countering photooxidative stress, following the depletion of antioxidant enzyme activity in plants exposed to severe drought stress under high solar irradiance and high temperatures. Platanus × acerifolia, a high isoprene-emitting species, was drought-stressed during summer (WS) and compared with unstressed controls (WW). Water relations and photosynthetic parameters were measured under mild, moderate, and severe drought stress conditions. Volatile and nonvolatile isoprenoids, antioxidant enzymes, and phenylpropanoids were measured with the same time course, but in four different periods of the day. Drought severely inhibited photosynthesis, whereas it did not markedly affect the photochemical machinery. Isoprene emission and zeaxanthin concentration were higher in WS than in WW leaves, particularly at mild and moderate stresses, and during the hottest hours of the day. The activities of catalase and ascorbate peroxidase steeply declined during the day, while the activity of guaiacol peroxidase and the concentration of quercetin increased during the day, peaking in the hottest hours in both WW and WS plants. Our experiment reveals a sequence of antioxidants that were used daily by plants to orchestrate defense against oxidative stress induced by drought and associated high light and high temperature. Secondary metabolites seem valuable complements of antioxidant enzymes to counter oxidative stress during the hottest daily hours.

  12. Plant mating system transitions drive the macroevolution of defense strategies.

    Science.gov (United States)

    Campbell, Stuart A; Kessler, André

    2013-03-05

    Understanding the factors that shape macroevolutionary patterns in functional traits is a central goal of evolutionary biology. Alternative strategies of sexual reproduction (inbreeding vs. outcrossing) have divergent effects on population genetic structure and could thereby broadly influence trait evolution. However, the broader evolutionary consequences of mating system transitions remain poorly understood, with the exception of traits related to reproduction itself (e.g., pollination). Across a phylogeny of 56 wild species of Solanaceae (nightshades), we show here that the repeated, unidirectional transition from ancestral self-incompatibility (obligate outcrossing) to self-compatibility (increased inbreeding) leads to the evolution of an inducible (vs. constitutive) strategy of plant resistance to herbivores. We demonstrate that inducible and constitutive defense strategies represent evolutionary alternatives and that the magnitude of the resulting macroevolutionary tradeoff is dependent on the mating system. Loss of self-incompatibility is also associated with the evolution of increased specificity in induced plant resistance. We conclude that the evolution of sexual reproductive variation may have profound effects on plant-herbivore interactions, suggesting a new hypothesis for the evolution of two primary strategies of plant defense.

  13. Tissue Specificity of a Response of the Pro- and Antioxidative System After Resuscitation

    Directory of Open Access Journals (Sweden)

    A. G. Zhukova

    2005-01-01

    Full Text Available This investigation was undertaken to study the resistance of membrane structures and the level of the intracellular defense systems of the heart, brain, and liver in animals with active versus passive behavior in different periods (days 7 and 30 after resuscitation made 10 minutes following systemic circulatory arrest. All the animals in which systemic circulation had been stopped were survivors with the cession of neurological deficit. The activity of antioxidative defense enzymes, such as cata-lase and superoxide dismutase, in cardiac, cerebral, and hepatic tissues was assayed by spectrophotometry using the conventional methods. The level of stress-induced protein HSP70 was measured in the tissue cytosolic fraction by the Western blotting assay. The activity of Ca2+ transport in the myocardial sarcoplasmic reticulum was determined on an Orion EA 940 ionomer («Orion Research», USA having a Ca2+-selective electrode. The findings show a significant tissue specificity in different postresuscitative periods (days 7 and 30 and varying (protective to damaging cardiac, cerebral, and hepatic responses in active and passive animals to hypoxia.

  14. Compromised Rat Testicular Antioxidant Defence System by Hypothyroidism before Puberty

    Directory of Open Access Journals (Sweden)

    Dipak K. Sahoo

    2012-01-01

    Full Text Available Altered thyroid function during early stages of development is known to affect adversely testicular growth, physiology, and antioxidant defence status at adulthood. The objective of the present study is to investigate the modulation of antioxidant defence status in neonatal persistent hypothyroid rats before their sexual maturation and also to identify the specific testicular cell populations vulnerable to degeneration during neonatal hypothyroidism in immature rats. Hypothyroidism was induced in neonates by feeding the lactating mother with 0.05% 6-n-propyl-2-thiouracil (PTU through the drinking water. From the day of parturition till weaning (25 day postpartum, the pups received PTU through mother's milk (or drinking water and then directly from drinking water containing PTU for the remaining period of experimentation. On the 31st day postpartum, the animals were sacrificed for the study. An altered antioxidant defence system marked by elevated SOD, CAT, and GR activities, with decreased GPx and GST activities were observed along with increased protein carbonylation, disturbed redox status in hypothyroid immature rat testis. This compromised testicular antioxidant status might have contributed to poor growth and development by affecting the spermatogenesis and steroidogenesis in rats before puberty as indicated by reduced germ cell number, complete absence of round spermatids, decreased seminiferous tubule diameter, and decreased testosterone level.

  15. Effect of treadmill exercise and Ferula gummosa on myocardial HSP72, vascular function, and antioxidant defenses in spontaneously hypertensive rats.

    Science.gov (United States)

    Gholitabar, Samira; Roshan, Valiollah Dabidi

    2013-01-01

    This study evaluates the effect of treadmill exercise and Ferula gummosa (FG) on heat shock protein (HSP72), biomarkers related to vascular function, and oxidant/antioxidant system in the heart tissue of spontaneously hypertensive rats treated with N(ω)-nitro-L-arginine-methyl ester (L-NAME). Fifty adult male Wistar rats are randomly classified into five groups: treadmill exercise, FG, combination of treadmill exercise + FG, L-NAME, and saline. Treadmill exercise was performed between 25 and 64 minutes at the speed of 15-22 m per minute for 8 weeks and five sessions a week. The FG will be fed through gavage with 90 mg/kg dosage. Hypertension was induced by l-NAME (10 mg/kg) for 8 weeks and six sessions a week. Administration of L-NAME for 8 weeks caused significant increase in HSP72, angiotensin-converting enzyme (ACE), and protein carbonyl (PC), and significant decrease in glutathione peroxidase (GPx) and nitric oxide (NO) level, when compared with the saline group. In contrast, both treadmill exercise and/or FG protocols, in particular, the combined protocol, led to the improvement in HSP72 and balance in oxidant/antioxidant process and inhibited vascular dysfunction, when compared with the L-NAME group. Moreover, no significant differences were detected in the HSP72 level between rats in the treadmill exercise and FG groups. These results provide a rationale for an inhibitory role and a cardioprotective effect of lifestyle related to the health in the attenuation of hypertension-induced cardiotoxicity.

  16. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis.

    Science.gov (United States)

    Yang, Tao; Zhang, Liang; Hao, Hongyan; Zhang, Peng; Zhu, Haowei; Cheng, Wei; Wang, Yongli; Wang, Xinyu; Wang, Chongying

    2015-12-01

    Salt stress from soil or irrigation water limits plant growth. A T-DNA insertion mutant in C24, named athspr (Arabidopsis thaliana heat shock protein-related), showed several phenotypes, including reduced organ size and enhanced sensitivity to environmental cues. The athspr mutant is severely impaired under salinity levels at which wild-type (WT) plants grow normally. AtHSPR encodes a nuclear-localized protein with ATPase activity, and its expression was enhanced by high salinity and abscisic acid (ABA). Overexpression (OE) of AtHSPR significantly enhanced tolerance to salt stress by increasing the activities of the antioxidant system and by maintaining K(+) /Na(+) homeostasis. Quantitative RT-PCR analyses showed that OE of AtHSPR increased the expression of ABA/stress-responsive, salt overly sensitive (SOS)-related and antioxidant-related genes. In addition, ABA content was reduced in athspr plants with or without salt stress, and exogenous ABA restored WT-like salt tolerance to athspr plants. athspr exhibited increased leaf stomatal density and stomatal index, slower ABA-induced stomatal closure and reduced drought tolerance relative to the WT. AtHSPR OE enhanced drought tolerance by reducing leaf water loss and stomatal aperture. Transcript profiling in athspr showed a differential salt-stress response for genes involved in accumulation of reactive oxygen species (ROS), ABA signaling, cell death, stress response and photosynthesis. Taken together, our results suggested that AtHSPR is involved in salt tolerance in Arabidopsis through modulation of ROS levels, ABA-dependent stomatal closure, photosynthesis and K(+) /Na(+) homeostasis.

  17. Antioxidant system breakdown in brain of feral golden grey mullet (Liza aurata) as an effect of mercury exposure.

    Science.gov (United States)

    Mieiro, C L; Ahmad, I; Pereira, M E; Duarte, A C; Pacheco, M

    2010-08-01

    Although brain has been recognized as a primary target for mercury toxicity in mammals, the effects of this metal in fish brain are scarcely described. Thus, the main objective of this study was to assess the mercury threat to feral fish (Liza aurata) by estimating the antioxidant defenses and peroxidative damage in brain, keeping in mind the association with mercury accumulation. Sampling was carried out in an estuarine area historically affected by discharges from a chlor-alkali industry-Laranjo Basin (Ria de Aveiro, Portugal). Total mercury (T-Hg) in brain increased towards the contamination source, clearly indicating mercury exposure. An overall antioxidant depletion was verified in brain of fish collected at the mercury-contaminated stations, since total glutathione content and the studied antioxidant enzymes (catalase-CAT, glutathione peroxidase-GPx, glutathione-S-transferase-GST and glutathione reductase-GR) significantly decreased. In addition, this breakdown of the redox-defense system was significantly correlated with the accumulated T-Hg levels. Unexpectedly, fish exhibited unaltered lipid peroxidation levels, pointing out a higher propensity of mercury to inhibit enzymes than to oxidatively damage lipids in the brain. Nevertheless, an increased susceptibility of the fish's brain was identified, leaving the organ more vulnerable to oxidative stress-related challenges. Overall, the current findings provide information to better understand mechanisms of mercury neurotoxicity in fish.

  18. Depth perception and defensive system activation in a 3-D environment

    Directory of Open Access Journals (Sweden)

    Emmanuelle eCombe

    2011-08-01

    Full Text Available To survive, animals must be able to react appropriately (in temporal and behavioral terms when facing a threat. One of the essential parameters considered by the defensive system is the distance of the threat, the defensive distance. In this study, we investigate the visual depth cues that could be considered as an alarm cue for the activation of the defensive system. For this purpose, we performed an active-escape pain task in a virtual three-dimensional environment. In two experiments, we manipulated the nature and consistency of different depth cues: vergence, linear perspective, and angular size. By measuring skin conductance responses, we characterized the situations that activated the defensive system. We show that the angular size of the predator was sufficient information to trigger responses from the defensive system, but we also demonstrate that vergence, which can delay the emotional response in inconsistent situations, is also a highly reliable cue for the activation of the defensive system.

  19. Missile Defense: DOD’s Report Provides Limited Insight on Testing Options for the Ground-based Midcourse Defense System

    Science.gov (United States)

    2014-04-30

    Cochran Ranking Member Subcommittee on Defense Committee on Appropriations United States Senate The Honorable Howard P. " Buck " McKeon Chairman The...System Component Mission Location Ground Based Interceptor (GBI) The interceptor consists of a silo-based, three-stage booster stack and a “hit-to

  20. Control Systems Cyber Security: Defense-in-Depth Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Mark Fabro

    2007-10-01

    Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecture that requires: • Maintenance of various field devices, telemetry collection, and/or industrial-level process systems • Access to facilities via remote data link or modem • Public facing services for customer or corporate operations • A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.

  1. The Effect of a 12-Week Moderate Intensity Interval Training Program on the Antioxidant Defense Capability and Lipid Profile in Men Smoking Cigarettes or Hookah: A Cohort Study

    Directory of Open Access Journals (Sweden)

    Abdessalem Koubaa

    2015-01-01

    Full Text Available Aim. To examine the impact of interval training program on the antioxidant defense capability and lipid profile in men smoking cigarettes or hookah unable or unwilling to quit smoking. Methods. Thirty-five participants performed an interval training (2 : 1 work : rest ratio 3 times a week for 12 weeks at an intensity of 70% of VO2max. All subjects were subjected to a biochemical test session before and after the training program. Results. The increase of total antioxidant status (TAS, glutathione peroxidase (GPx, and α-tocopherol, is significant only for cigarette smokers (CS and hookah smokers (HS groups. The decrease of malondialdehyde (MDA and the increase of glutathione reductase (GR are more pronounced in smokers groups compared to those of nonsmokers (NS. Superoxide dismutase (SOD increases in NS, CS, and HS groups by 10.1%, 19.5%, and 13.3%, respectively (P<0.001. Likewise, a significant improvement of high-density lipoprotein cholesterol (HDL-C and TC/HDL-C ratio was observed in CS and HS groups (P<0.05. Conclusion. Although the interval training program does not have a significant effect on blood lipid levels, it seems to be very beneficial in the defense and prevention programs of oxidative stress.

  2. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome.

    Science.gov (United States)

    Zanatta, Ângela; Rodrigues, Marília Danyelle Nunes; Amaral, Alexandre Umpierrez; Souza, Débora Guerini; Quincozes-Santos, André; Wajner, Moacir

    2016-09-01

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease.

  3. Strategic Planning and Management in Defense Systems Acquisition

    Science.gov (United States)

    2014-04-30

    somewhere in the middle on the usefulness reports, included scenario planning, Balanced Scorecard , use of process consultants, and use of industry...Program analysis/assessment  Needs assessment  Mission/strategy mapping  SWOT analyses  Root cause analyses  Balanced Scorecard  Stakeholder...bäÉîÉåíÜ=^ååì~ä=^Åèìáëáíáçå= oÉëÉ~êÅÜ=póãéçëáìã= qÜìêëÇ~ó=pÉëëáçåë= sçäìãÉ=ff= = Strategic Planning and Management in Defense Systems Acquisition

  4. 76 FR 44293 - Defense Acquisition Regulations System; Defense Federal Acquisition Regulation Supplement; Only...

    Science.gov (United States)

    2011-07-25

    ... presented by the Under Secretary of Defense for Acquisition, Technology, & Logistics in a memorandum dated... offered price. These provisions must also be used in acquisitions of commercial items conducted using part...--ACQUISITION OF COMMERCIAL ITEMS 4. Add new section 212.205 to read as follows: 212.205 Offers. (c) When...

  5. Performance of the Defense Acquisition System, 2015 Annual report

    Science.gov (United States)

    2015-09-16

    Secretary of Defense, Acquisition, Technology, ,and Logistics (USD[AT&L]),3000 Defense Pentagon,,Washington,,DC, 20301 8. PERFORMING ORGANIZATION...Report. Washington, DC: Under Secretary of Defense, Acquisition, Technology, and Logistics (USD[AT&L]), September, 2015. 3000 Defense Pentagon...FY 2014 at reversing the trend and meeting our goal. 23.0% 23.0% 23.0% 23.0% 22.2% 22.2% 22.3% 22.3% 22.5% 22.5% 21.4% 23.1% 24.6% 21.8

  6. Irrigation with industrial wastewater activates antioxidant system and osmoprotectant accumulation in lettuce, turnip and tomato plants.

    Science.gov (United States)

    Hashem, H A; Hassanein, R A; El-Deep, M H; Shouman, A I

    2013-09-01

    We focused on the impact of industrial wastes on the water quality of the El-Amia drain in Egypt and the effect of irrigation with industrial wastewater on the growth, cell membranes, photosynthetic pigment content, the antioxidant system and selected osmoprotectants (proline, total amino nitrogen and soluble sugars) in three crop plants: turnip, tomato and lettuce. Furthermore, the present work focused on the analysis of the heavy metal content and its accumulation in the studied plants. For this purpose, water samples were collected 1, 10 and 19 km from the beginning of the drain and used for irrigation, with fresh water as a control. We found that industrial wastewater contained significant amounts of heavy metals (Cd, Ni and Co) warranted a pollution problem as their amounts exceed the maximum recommended concentrations according to FAO guidelines for trace metals in irrigation water. The three crop plants accumulate significant amounts of heavy metals in their shoots and roots and showed a significant decrease in leaf area, fresh weight and dry weight of shoots and roots, accompanied by a marked reduction in photosynthetic pigment content and damage to cell membranes, as indicated by increased electrolyte leakage and a lower membrane stability index. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, soluble sugar and total amino nitrogen content in response to irrigation with wastewater may be defense mechanisms induced in response to heavy metal stress.

  7. Salmonella proteomics under oxidative stress reveals coordinated regulation of antioxidant defense with iron metabolism and bacterial virulence.

    Science.gov (United States)

    Fu, Jiaqi; Qi, Linlu; Hu, Mo; Liu, Yanhua; Yu, Kaiwen; Liu, Qian; Liu, Xiaoyun

    2017-02-11

    Salmonella Typhimurium is a bacterial pathogen that can cause widespread gastroenteritis. Salmonella encounters reactive oxygen species both under free-living conditions and within their mammalian host during infection. To study its response to oxidative stress, we performed the first large-scale proteomic profiling of Salmonella upon exposure to H2O2. Among 1600 detected proteins, 83 proteins showed significantly altered abundance. Interestingly, only a subset of known antioxidants was induced, likely due to distinct regulatory mechanisms. In addition, we found elevation of several Salmonella acquired phage products with potential contribution to DNA repair under oxidative stress. Furthermore, we observed robust induction of iron-uptake systems and disruption of these pathways led to bacterial survival defects under H2O2 challenge. Importantly, this work is the first to report that oxidative stress severely repressed the Salmonella type III secretion system (T3SS), reducing its virulence. Biological significance Salmonella, a Gram-negative bacterial pathogen, encounters reactive oxygen species (ROS) both endogenously and exogenously. To better understand its response to oxidative stress, we performed the first large-scale profiling of Salmonella protein expression upon H2O2 treatment. Among 1600 quantified proteins, the abundance of 116 proteins was altered significantly. Notably, iron acquisition systems were induced to promote bacterial survival under oxidative stress. Furthermore, we are the first to report that oxidative stress severely repressed Salmonella type III secretion system and hence reduced its virulence. We believe that these findings will not only help us better understand the molecular mechanisms that Salmonella has evolved to counteract ROS but also the global impact of oxidative stress on bacterial physiology.

  8. Effect of Vitamin E and Selenium Supplement on Paraoxonase-1 Activity, Oxidized Low Density Lipoprotein and Antioxidant Defense in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza Rashidi

    2011-08-01

    Full Text Available Introduction: The aim of the present study was to assess the effects of vitamin E and selenium supplementation on serum paraoxonase (PON1 activity, lipid peroxidation and antioxidant defense in streptozotocin-induced diabetic rats. Methods: Thirty two female Sprague Dawley rats were divided into 3 groups: the control group (n=8 received a standard diet; streptozotocin (STZ-induced diabetic rats (n=12, received corn oil and physiological solution; and vitamin E and selenium supplemented diabetic rats (n=12 were treated with oral administration of vitamin E (300 mg/kg and sodium selenite (0.5 mg/kg once a day for 4 weeks. Results: Significantly lower total antioxidant status (TAS, PON1and erythrocyte SOD activities and a higher fasting plasma glucose level were observed in the diabetic rats compared to the control. A significant increase in SOD and GPX activities in vitamin E and selenium supplemented diabetic group was observed after 5 weeks of the experiment. Compared to the normal rats, malondialdehyde (MDA and oxidized LDL (Ox-LDL levels were higher in the diabetic animals; however, these values reduced significantly following vitamin E and selenium supplementation. Conclusion: Vitamin E and selenium supplementation in diabetic rats has hypolipidemic, hypoglycemic and antioxidative effects and may slow down the progression of diabetic complications through its protective effect on PON1 activity and lipoproteins oxidation.

  9. Evaluation of hydroxyapatite-bioglass and hydroxyapatite-ethyl vinyl acetate composite extracts on antioxidant defense mechanism and genotoxicity: an in vitro study.

    Science.gov (United States)

    Arun, M; Silja, P K; Mohanan, P V

    2011-09-01

    Hydroxyapatite-bioglass (HA BG) and hydroxyapatite-ethyl vinyl acetate (HA EVA) are two composite materials that have been developed for bone substitution. Their activity on antioxidant defense mechanism and genotoxicity has not been investigated before. To further confirm its biocompatibility, the present study was undertaken to investigate the effect of HA BG and HA EVA on mice liver antioxidant mechanism along with chromosomal aberrations in human lymphocytes. Physiological saline extract of HA BG and HA EVA showed no adverse effect on liver antioxidant mechanism compared to the cyclophosphamide (CP)-induced toxicity on mice liver homogenate. The results were judged from the in vitro studies made on reduced glutathione, glutathione reductase and lipid peroxidation. These results were well supported by CP- and mytomycin C (MC)-induced genotoxicity studies on human lymphocytes in the presence and absence of a metabolic activator (S9). Hence, it was suggested that these tests could be considered for preliminary toxicological screening of materials intended for clinical applications ahead of in vivo animal model evaluation.

  10. An Analysis of the Defense Acquisition Strategy for Unmanned Systems

    Science.gov (United States)

    2014-03-01

    funding for aviation applications from 1917 to 1927 is shown in Figure 7. The figure shows a dramatic drop in defense procurement following the Treaty ...of Versailles . Figure 7. Defense Aviation Appropriations 1917–1927 (from Lorell, 2003) 25 Figure 8 shows a pronounced gap between the

  11. Prevention of postoperative atrial fibrillation: novel and safe strategy based on the modulation of the antioxidant system

    Directory of Open Access Journals (Sweden)

    Ramón eRodrigo

    2012-04-01

    Full Text Available Postoperative atrial fibrillation (AF is the most common arrhythmia following cardiac surgery with extracorporeal circulation. The pathogenesis of postoperative AF is multifactorial. Oxidative stress, caused by the unavoidable ischemia-reperfusion event occurring in this setting, is a major contributory factor. ROS-derived effects could result in lipid peroxidation, protein carbonylation or DNA oxidation of cardiac tissue, thus leading to functional and structural myocardial remodeling. The vulnerability of myocardial tissue to the oxidative challenge is also dependent on the activity of the antioxidant system. High ROS levels, overwhelming this system, should result in deleterious cellular effects, such as the induction of necrosis, apoptosis or autophagy. Nevertheless, tissue exposure to low to moderate ROS levels could trigger a survival response with a trend to reinforce the antioxidant defense system. Administration of n-3 polyunsaturated fatty acids (PUFA, known to involve a moderate ROS production, is consistent with a diminished vulnerability to the development of postoperative AF. Accordingly, supplementation of n-3 PUFA successfully reduced the incidence of postoperative AF after coronary bypass grafting. This response is due to an up-regulation of antioxidant enzymes, as shown in experimental models. In turn, non-enzymatic antioxidant reinforcement through vitamin C administration prior to cardiac surgery has also reduced the postoperative AF incidence. Therefore, it should be expected that a mixed therapy result in an improvement of the cardioprotective effect by modulating both components of the antioxidant system. We present available evidence supporting the view of an effective prevention of postoperative AF including a 2-step therapeutic strategy: n-3 PUFA followed by vitamin C supplementation to patients scheduled for cardiac surgery with extracorporeal circulation. The present study should encourage the design of clinical

  12. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    Energy Technology Data Exchange (ETDEWEB)

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  13. Antioxidant Activity of Flaxseed Extracts in Lipid Systems

    Directory of Open Access Journals (Sweden)

    Adriana Slavova-Kazakova

    2015-12-01

    Full Text Available The aim of this work was to compare the antioxidant activity of the extract of flaxseed and its alkaline hydrolysate in two model systems: lipid autoxidation of triacylglycerols of sunflower oil (TGSO—in a homogeneous lipid media and during β-carotene-linoleate emulsion system. In addition, pure lignans were tested. The material was defatted with hexane and then phenolic compounds were extracted using dioxane-ethanol (50:50, v/v mixture. Carbohydrates were removed from the crude extract using an Amberlite XAD-16 column chromatography. The content of total phenolic compounds in the crude extract and after alkaline hydrolysis was determined using a Folin-Ciocalteu’s phenol reagent. Individual phenolic compounds were determined by nordihydroguaiaretic acid (RP-HPLC method in gradient system. The alkaline hydrolysis increased the content of total phenolics in the extract approximately by 10%. In the extracts of flaxseed, phenolic compounds were present in the form of macromolecular complex. In the alkaline hydrolysate, secoisolariciresinol diglucoside (SDG was found as the main phenolic compound. Small amounts of p-coumaric and ferulic acids were also determined. SDG and both extracts were not able to inhibit effectively lipid autoxidation. The kinetics of TGSO autoxidation at 80 °C in absence and in presence of the extract before hydrolysis (EBH and after hydrolysis (EAH was monitored and compared with known standard antioxidants. Ferulic acid (FA and butylated hydroxyl toluene (BHT showed much higher antioxidant efficiency and reactivity than that of both extracts. Secoisolariciresinol (SECO showed a higher activity in both model systems than SDG. However, the activity of SECO was much lower than that of nordihydroquaiaretic acid (NDGA.

  14. Defense Information Systems Agency Management of Trouble Tickets for Electronic Commerce/Electronic Data Interchange

    Science.gov (United States)

    2007-11-02

    received, 15 were requests for quotes. The causes were break down of modems, and failure of computer equipment and software at the Columbus and Ogden...transaction identified on the trouble ticket? Yes 15 No 115 7. Do you have access to the trouble ticket resolution diary at Ogden NEP? Yes 10 No 120 8...Information Systems Agency, Arlington, VA Defense Megacenter Columbus , OH Defense Megacenter Mechanicsburg, PA Defense Megacenter Ogden, UT Non

  15. Juglans mandshurica leaf extract protects skin fibroblasts from damage by regulating the oxidative defense system.

    Science.gov (United States)

    Park, Gunhyuk; Jang, Dae Sik; Oh, Myung Sook

    2012-05-01

    Skin is mainly damaged by genetic and environmental factors such as ultraviolet light, xenobiotics, hormonal changes, heat, and smoking. ROS production is commonly involved in the pathogenesis of skin damage induced by these factors, causing skin aging, including wrinkling, by activating the metalloproteinases (MMP-1) that break down type I collagen (COL1A1). The walnut tree Juglans mandshurica MAX. (JM) is found in China, Siberia and Korea. JM has been reported to have various pharmacological activities, such as anti-tumor, anti-oxidative, and anti-bacterial effects. In the present study, we investigated the protective effect of JM leaf extract (JME) against oxidative stress in HS68 human skin fibroblasts. JME significantly and dose-dependently protected HS68 cells against H₂O₂-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Other assays demonstrated that JME protected HS68 cells by regulating ROS production and increasing levels of glutathione, heme oxygenase-1, and activated NF-E2-related factor 2. JME additionally prevented the elevation of MMP-1 and reduction of COL1A1 induced by H₂O₂. It also inhibited H₂O₂-induced phosphorylation of ERK, p38, and JNK. These results indicate that JME protects human skin fibroblasts from H₂O₂-induced damage by regulating the oxidative defense system.

  16. Activation of antioxidant defenses in whole saliva by psychosocial stress is more manifested in young women than in young men.

    Directory of Open Access Journals (Sweden)

    Viktoriia Tsuber

    Full Text Available Psychosocial stress has been long known to have deleterious effects on health. Nevertheless, an exposure to moderate stressors enhances resilience and promotes health benefits. Male and female organisms differ in many aspects of health and disease. The aim of this study was to investigate antioxidant activity and oxidative damage in saliva in a psychosocial stress paradigm in men and women. Here, we show that an acute stressor of moderate strength augments antioxidant activity and decreases oxidative damage in whole saliva of young people. An examination stress caused a significant increase of catalase activity, accompanied by a decrease of levels of oxidized proteins. Levels of thiobarbituric acid-reacting substances did not increase at stress, indicating that lipid peroxidation was not activated. The stress-induced alterations were more manifested in young women compared to young men. Thus, antioxidant protective mechanisms are more activated by a moderate stressor in young women than in young men.

  17. THE PLANNING, PROGRAMING, BUDGETING SYSTEM AND ITS IMPLEMENTATION IN THE SERBIAN MINISTRY OF DEFENSE

    Directory of Open Access Journals (Sweden)

    Sasa RADUSKI

    2010-01-01

    Full Text Available The main purpose of introducing the PPBES to the Serbian Ministry of Defense and the Serbian Armed Forces is to provide a rational management of resources and to maintain and build capacity of the Ministry and the Serbian Armed Forces in order to achieve their goals, objectives and missions.Expected results of implementation of the PPBES are reflected in increasing the efficiency and rationalization of the defense planning to a higher level, ensuring compatibility with defense planning and budgeting system of the state and developing a foundation for the effective management of defense resources.

  18. Piezomechatronic-based systems in aircraft, space, and defense applications

    Science.gov (United States)

    Maillard, T.; Claeyssen, F.; LeLetty, R.; Sosnicki, O.; Pages, A.; Vazquez Carazo, A.

    2009-05-01

    In Space & Defense fields, there is a trend for miniaturisation in active optics, fine instruments, robotic missions, microsatellites, UAVs, MAVs which directly impact on the design of actuators. A new generation of small and smart actuators such like piezoelectric (piezo) actuators, are responding to this trend, thanks to their capacity to offer high energy density and to support both extreme and various requirements. In Space vehicles, UAVs, missiles, military vehicles, etc., onboard place and available electric power can be very limited. For instance, a micro satellite often must operate all its instruments with less than 100W of power. As a result, allocated electric power per actuator is typically between 0.1 to 10W. This is also the case in small UAVs and in MAVs. Because of the high cost of embedded mass, space & military actuators need also to offer high output energy to mass ratio. One of the main difficulties is often the ability to withstand launching vibrations and shocks. Space environments add other constrains. A clear example is the vacuum conditions, which can induce difficulties to release the heat out off the actuator or for out gassing near optics. Other critical spacerelated environmental conditions include the thermal operation range required as well as the radiation-resistant requirements. In other situations, actuator strength to humidity is often an issue, especially for piezoelectric ceramics. Thus, the success of the application relies not only on design issues but also on material reliability. Specific actions at this level are needed to be undertaken to secure space projects. To cope with these issues and to illustrate the trend, the piezo actuators and mechanisms from Cedrat are presented. They have been initially developed and qualified to meet space requirements but logically found also applications in defense and micro aerial vehicle fields, for various micromechatronic functions. The paper presents typical applications and piezo

  19. Food-grade argan oil supplementation in molasses enhances fermentative performance and antioxidant defenses of active dry wine yeast.

    Science.gov (United States)

    Gamero-Sandemetrio, Esther; Torrellas, Max; Rábena, María Teresa; Gómez-Pastor, Rocío; Aranda, Agustín; Matallana, Emilia

    2015-12-01

    The tolerance of the yeast Saccharomyces cerevisiae to desiccation is important for the use of this microorganism in the wine industry, since active dry yeast (ADY) is routinely used as starter for must fermentations. Both biomass propagation and dehydration cause cellular oxidative stress, therefore negatively affecting yeast performance. Protective treatments against oxidative damage, such as natural antioxidants, may have important biotechnological implications. In this study we analysed the antioxidant capacity of pure chemical compounds (quercetin, ascorbic acid, caffeic acid, oleic acid, and glutathione) added to molasses during biomass propagation, and we determine several oxidative damage/response parameters (lipid peroxidation, protein carbonylation, protective metabolites and enzymatic activities) to assess their molecular effects. Supplementation with ascorbic, caffeic or oleic acids diminished the oxidative damage associated to ADY production. Based on these results, we tested supplementation of molasses with argan oil, a natural food-grade ingredient rich in these three antioxidants, and we showed that it improved both biomass yield and fermentative performance of ADY. Therefore, we propose the use of natural, food-grade antioxidant ingredients, such as argan oil, in industrial processes involving high cellular oxidative stress, such as the biotechnological production of the dry starter.

  20. Cannabidiol Post-Treatment Alleviates Rat Epileptic-Related Behaviors and Activates Hippocampal Cell Autophagy Pathway Along with Antioxidant Defense in Chronic Phase of Pilocarpine-Induced Seizure.

    Science.gov (United States)

    Hosseinzadeh, Mahshid; Nikseresht, Sara; Khodagholi, Fariba; Naderi, Nima; Maghsoudi, Nader

    2016-04-01

    Abnormal and sometimes severe behavioral and molecular symptoms are usually observed in epileptic humans and animals. To address this issue, we examined the behavioral and molecular aspects of seizure evoked by pilocarpine. Autophagy can promote both cell survival and death, but there are controversial reports about the neuroprotective or neurodegenerative effects of autophagy in seizure. Cannabidiol has anticonvulsant properties in some animal models when used as a pretreatment. In this study, we investigated alteration of seizure scores, autophagy pathway proteins, and antioxidant status in hippocampal cells during the chronic phase of pilocarpine-induced epilepsy after treatment with cannabidiol. Cannabidiol (100 ng, intracerebroventricular injection) delayed the chronic phase of epilepsy. Single administration of cannabidiol during the chronic phase of seizure significantly diminished seizure scores such as mouth clonus, head nodding, monolateral and bilateral forelimb clonus and increased the activity of catalase enzyme and reduced glutathione content. Such a protective effect in the behavioral scores of epileptic rats was also observed after repeated administrations of cannabidiol at the onset of the silent phase. Moreover, the amount of Atg7, conjugation of Atg5/12, Atg12, and LC3II/LC3I ratio increased significantly in epileptic rats treated with repeated injections of cannabidiol. In short, our results suggest that post-treatment of Cannabidiol could enhance the induction of autophagy pathway and antioxidant defense in the chronic phase of epilepsy, which could be considered as the protective mechanisms of cannabidiol in a temporal lobe epilepsy model.

  1. Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum).

    Science.gov (United States)

    Sun, Chengliang; Lu, Lingli; Liu, Lijuan; Liu, Wenjing; Yu, Yan; Liu, Xiaoxia; Hu, Yan; Jin, Chongwei; Lin, Xianyong

    2014-03-01

    • Nitric oxide (NO) is an important signaling molecule involved in the physiological processes of plants. The role of NO release in the tolerance strategies of roots of wheat (Triticum aestivum) under aluminum (Al) stress was investigated using two genotypes with different Al resistances. • An early NO burst at 3 h was observed in the root tips of the Al-tolerant genotype Jian-864, whereas the Al-sensitive genotype Yang-5 showed no NO accumulation at 3 h but an extremely high NO concentration after 12 h. Stimulating NO production at 3 h in the root tips of Yang-5 with the NO donor relieved Al-induced root inhibition and callose production, as well as oxidative damage and ROS accumulation, while elimination of the early NO burst by NO scavenger aggravated root inhibition in Jian-864. • Synthesis of early NO in roots of Jian-864 was mediated through nitrate reductase (NR) but not through NO synthase. Elevated antioxidant enzyme activities were induced by Al stress in both wheat genotypes and significantly enhanced by NO donor, but suppressed by NO scavenger or NR inhibitor. • These results suggest that an NR-mediated early NO burst plays an important role in Al resistance of wheat through modulating enhanced antioxidant defense to adapt to Al stress.

  2. Antioxidant Defense Enzyme Genes and Asthma Susceptibility: Gender-Specific Effects and Heterogeneity in Gene-Gene Interactions between Pathogenetic Variants of the Disease

    Directory of Open Access Journals (Sweden)

    Alexey V. Polonikov

    2014-01-01

    Full Text Available Oxidative stress resulting from an increased amount of reactive oxygen species and an imbalance between oxidants and antioxidants plays an important role in the pathogenesis of asthma. The present study tested the hypothesis that genetic susceptibility to allergic and nonallergic variants of asthma is determined by complex interactions between genes encoding antioxidant defense enzymes (ADE. We carried out a comprehensive analysis of the associations between adult asthma and 46 single nucleotide polymorphisms of 34 ADE genes and 12 other candidate genes of asthma in Russian population using set association analysis and multifactor dimensionality reduction approaches. We found for the first time epistatic interactions between ADE genes underlying asthma susceptibility and the genetic heterogeneity between allergic and nonallergic variants of the disease. We identified GSR (glutathione reductase and PON2 (paraoxonase 2 as novel candidate genes for asthma susceptibility. We observed gender-specific effects of ADE genes on the risk of asthma. The results of the study demonstrate complexity and diversity of interactions between genes involved in oxidative stress underlying susceptibility to allergic and nonallergic asthma.

  3. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    Energy Technology Data Exchange (ETDEWEB)

    Phung, Thu-Ha; Jung, Sunyo, E-mail: sjung@knu.ac.kr

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.

  4. Protective effect of butyrate against ethanol-induced gastric ulcers in mice by promoting the anti-inflammatory, anti-oxidant and mucosal defense mechanisms.

    Science.gov (United States)

    Liu, Jiaming; Wang, Fangyan; Luo, Haihua; Liu, Aihua; Li, Kangxin; Li, Cui; Jiang, Yong

    2016-01-01

    Gastric ulcers (GUs) are a common type of peptic ulcer. Alcohol overdose is one of the main causes of GU, which is difficult to prevent. Although the protective effect of butyrate on inflammation-related diseases is well understood, its effect on GUs has not been reported. We investigated the protective effects of butyrate against ethanol-induced lesions to the gastric mucosa in mice and the underlying mechanisms. BALB/c mice were orally pretreated with butyrate for 30min prior to the establishment of the GU model by challenge with absolute ethanol. Ethanol administration produced apparent mucosal injuries with morphological and histological damage, whereas butyrate pretreatment reduced the gastric mucosal injuries in a dose-dependent manner. Butyrate pretreatment also significantly ameliorated contents of malondialdehyde (MDA) and carbonyl proteins, and decreased levels of IL-1β, TNF-α and IL-6. The Western blot results consistently demonstrated that butyrate pretreatment attenuated the phosphorylation of NF-κB p65, p38 MAPK and ERKs in the gastric tissues. Additionally, gastric wall mucus (GWM), a parameter reflecting mucosal defense, was clearly increased by butyrate pretreatment. Butyrate pretreatment protects the gastric mucosa against ethanol-induced lesions by strengthening the mucosal defense and anti-oxidant and anti-inflammatory activities. As a necessary substance for the body, butyrate may be applied to the prevention and treatment of GUs.

  5. Department of Defense (DOD) Automated Biometric Identification System (ABIS) Version 1.2: Initial Operational Test and Evaluation Report

    Science.gov (United States)

    2015-05-01

    Director, Operational Test and Evaluation Department of Defense (DOD) Automated Biometric Identification System (ABIS) Version 1.2 Initial...Operational Test and Evaluation Report May 2015 This report on the Department of Defense (DOD) Automated Biometric Identification System...COVERED - 4. TITLE AND SUBTITLE Department of Defense (DOD) Automated Biometric Identification System (ABIS) Version 1.2 Initial Operational Test

  6. Diabetic beta-cells can achieve self-protection against oxidative stress through an adaptive up-regulation of their antioxidant defenses.

    Directory of Open Access Journals (Sweden)

    Grégory Lacraz

    Full Text Available BACKGROUND: Oxidative stress (OS, through excessive and/or chronic reactive oxygen species (ROS, is a mediator of diabetes-related damages in various tissues including pancreatic beta-cells. Here, we have evaluated islet OS status and beta-cell response to ROS using the GK/Par rat as a model of type 2 diabetes. METHODOLOGY/PRINCIPAL FINDINGS: Localization of OS markers was performed on whole pancreases. Using islets isolated from 7-day-old or 2.5-month-old male GK/Par and Wistar control rats, 1 gene expression was analyzed by qRT-PCR; 2 insulin secretion rate was measured; 3 ROS accumulation and mitochondrial polarization were assessed by fluorescence methods; 4 antioxidant contents were quantified by HPLC. After diabetes onset, OS markers targeted mostly peri-islet vascular and inflammatory areas, and not islet cells. GK/Par islets revealed in fact protected against OS, because they maintained basal ROS accumulation similar or even lower than Wistar islets. Remarkably, GK/Par insulin secretion also exhibited strong resistance to the toxic effect of exogenous H(2O(2 or endogenous ROS exposure. Such adaptation was associated to both high glutathione content and overexpression (mRNA and/or protein levels of a large set of genes encoding antioxidant proteins as well as UCP2. Finally, we showed that such a phenotype was not innate but spontaneously acquired after diabetes onset, as the result of an adaptive response to the diabetic environment. CONCLUSIONS: The GK/Par model illustrates the effectiveness of adaptive response to OS by beta-cells to achieve self-tolerance. It remains to be determined to what extend such islet antioxidant defenses upregulation might contribute to GK/Par beta-cell secretory dysfunction.

  7. MUSCLE FIBER SPECIFIC ANTIOXIDATIVE SYSTEM ADAPTATION TO SWIM TRAINING IN RATS: INFLUENCE OF INTERMITTENT HYPOXIA

    Directory of Open Access Journals (Sweden)

    Olga Gonchar

    2005-06-01

    Full Text Available The aim of the present study was to examine the influence of intermittent hypoxia at rest and in combination with long-term high-intensity swimming exercise on lipid peroxidation and antioxidant defense system adaptation in skeletal muscles differing in fiber type composition. High-intensity chronic exercise was performed as swimming training with load that corresponded to ~ 75 % VO2max (30 min·day-1, 5 days·wk-1, for 4 wk. Intermittent hypoxic training (IHT consisted of repeated episodes of hypoxia (12%O2, 15 min, interrupted by equal periods of recovery (5 sessions/day, for 2 wk. Sessions of IHT were used during the first two weeks and during the last two weeks of chronic exercise. Oxidative (red gastrocnemius and soleus, mix and glycolytic (white gastrocnemius muscles were sampled. Our results indicated that high-intensity swim training in combination with sessions of IHT induced more profound antioxidative adaptations in skeletal muscles than the exercise training only. This adaptation has muscle fiber type specificity and is reflected in significantly elevated superoxide dismutase and catalase activities in highly oxidative muscle only. Training adaptation of GSH system (reduced glutathione content, activities of glutathione reductase, glutathione peroxidase, NADPH-supplying enzyme glucose-6-phosphate dehydrogenase occurred both in slow- and fast-twitch muscles. However, this process was more effective in oxidative muscles. IHT attenuated the increase in TBARS content induced by high-intensity swimming training. The test on exercise tolerance demonstrated a significant elevation of the swimming time to exhaustion after IHT at rest and after IHT in conjunction with high-intensity exercise in comparison with untrained and chronically exercised rats. These results confirmed that sessions of IHT might improve exercise tolerance and increase maximal work capacity

  8. Analysis of System Training Impact for Major Defense Acquisition Programs (MDAPs): Training Systems Acquisition

    Science.gov (United States)

    2012-07-01

    evidenced in our other case studies. However, with the rapid production and deployment of the vehicles in 2007–2008, the operators began to experience...Background The Patriot system began because of the need to replace an aging and limited air defense system in the 1970s, the Nike -Hercules, and...The program sponsors of the Patriot also desired to take advantage of technological innovation and information superiority to enhance overall

  9. The Role of the Nrf2/ARE Antioxidant System in Preventing Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Robert E. Smith

    2016-11-01

    Full Text Available It is widely believed that consuming foods and beverages that have high concentrations of antioxidants can prevent cardiovascular diseases and many types of cancer. As a result, many articles have been published that give the total antioxidant capacities of foods in vitro. However, many antioxidants behave quite differently in vivo. Some of them, such as resveratrol (in red wine and epigallocatechin gallate or EGCG (in green tea can activate the nuclear erythroid-2 like factor-2 (Nrf2 transcription factor. It is a master regulator of endogenous cellular defense mechanisms. Nrf2 controls the expression of many antioxidant and detoxification genes, by binding to antioxidant response elements (AREs that are commonly found in the promoter region of antioxidant (and other genes, and that control expression of those genes. The mechanisms by which Nrf2 relieves oxidative stress and limits cardiac injury as well as the progression to heart failure are described. Also, the ability of statins to induce Nrf2 in the heart, brain, lung, and liver is mentioned. However, there is a negative side of Nrf2. When over-activated, it can cause (not prevent cardiovascular diseases and multi-drug resistance cancer.

  10. Antioxidant activity of X-34 in synaptosomal and neuronal systems.

    Science.gov (United States)

    Kanski, Jaroslaw; Sultana, Rukhsana; Klunk, William; Butterfield, D Allan

    2003-10-24

    Inhibiting aggregation and deposition of amyloid beta-peptide (Abeta) in brain is a therapeutic strategy for Alzheimer's disease (AD). A Congo-red-like molecule, X-34, is reported to bind to Abeta deposits. Oxidative stress associated with Abeta is hypothesized to be critical for the neurotoxic properties of this peptide. The present study was undertaken to test the hypothesis that X-34, with its salicylate groups, would act as an antioxidant. When challenged by hydroxyl or peroxyl free radicals or Abeta(1-42), oxidative stress and neurotoxicity occurred in neural systems as assessed by several indices. However, pretreatment of synaptosomes and primary neuronal cell culture with X-34 greatly ameliorated lipid peroxidation induced by these free radicals and Abeta(1-42). Protein oxidation was not prevented by X-34. These results are discussed in terms of potential therapeutic use of X-34 and related compounds in AD.

  11. Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome

    Directory of Open Access Journals (Sweden)

    Mateusz Maciejczyk

    2017-04-01

    Full Text Available Rare pleiotropic genetic disorders, Ataxia-telangiectasia (A-T, Bloom syndrome (BS and Nijmegen breakage syndrome (NBS are characterised by immunodeficiency, extreme radiosensitivity, higher cancer susceptibility, premature aging, neurodegeneration and insulin resistance. Some of these functional abnormalities can be explained by aberrant DNA damage response and chromosomal instability. It has been suggested that one possible common denominator of these conditions could be chronic oxidative stress caused by endogenous ROS overproduction and impairment of mitochondrial homeostasis. Recent studies indicate new, alternative sources of oxidative stress in A-T, BS and NBS cells, including NADPH oxidase 4 (NOX4, oxidised low-density lipoprotein (ox-LDL or Poly (ADP-ribose polymerases (PARP. Mitochondrial abnormalities such as changes in the ultrastructure and function of mitochondria, excess mROS production as well as mitochondrial damage have also been reported in A-T, BS and NBS cells. A-T, BS and NBS cells are inextricably linked to high levels of reactive oxygen species (ROS, and thereby, chronic oxidative stress may be a major phenotypic hallmark in these diseases. Due to the presence of mitochondrial disturbances, A-T, BS and NBS may be considered mitochondrial diseases. Excess activity of antioxidant enzymes and an insufficient amount of low molecular weight antioxidants indicate new pharmacological strategies for patients suffering from the aforementioned diseases. However, at the current stage of research we are unable to ascertain if antioxidants and free radical scavengers can improve the condition or prolong the survival time of A-T, BS and NBS patients. Therefore, it is necessary to conduct experimental studies in a human model.

  12. Performance of phytochemical antioxidant systems in refined-bleached-deodorized palm olein during frying.

    Science.gov (United States)

    Jaswir, Irwandi; Che Man, Yaacob B; Hassan, Torla H

    2005-01-01

    Antioxidants are important inhibitory compounds against the oxidative deterioration of food. This study investigated the effects of various phytochemical antioxidant systems [oleoresin rosemary (OR), oleoresin sage (OS) and citric acid (CA)] on the physico-chemical characteristics of refined, bleached and deodorized (RBD) palm olein during the frying of potato chips. The effects of various mixtures of the antioxidants on the oil was also studied in repeated deep frying. The response surface methodology was used to optimize the composition of mixed antioxidants used. A comparative study was carried out with synthetic antioxidants. Samples of the oil after frying were analyzed for different physical and chemical properties. OR and OS were found to be effective phytochemical antioxidants protecting RBD palm olein against oxidative deterioration during frying.

  13. Evaluating Defense Architecture Frameworks for C4I System Using Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Abdullah S. Alghamdi

    2009-01-01

    Full Text Available Problem statement: The Command, Control, Communications, Computers and Intelligence (C4I Systems provided situational awareness about operational environment and supported in decision making and directed to operative environment. These systems had been used by various agencies like defense, police, investigation, road, rail, airports, oil and gas related department. However, the increase use of C4I system had made it more important and attractive. Consequently interest in design and development of C4I system had increased among the researchers. Many defense industry frameworks were available but the problem was a suitable selection of a framework in design and development of C4I system. Approach: This study described the concepts, tool and methodology being used for evaluation analysis of different frameworks by Analytic Hierarchy Process (AHP. Results: We had compared different defense industry frameworks like Department of Defense Architecture Framework (DODAF, Ministry of Defense Architecture Framework (MODAF and NATO Architecture Framework (NAF and found that AHP is fairly good tool in terms of analysis. Conclusion: Different defense industry frameworks such as DODAF, MODAF and NAF had been evaluated and compared using AHP.

  14. Effect of Zinc Supplementation on Antioxidant Defenses and Oxidative Stress Markers in Patients Undergoing Chemotherapy for Colorectal Cancer: a Placebo-Controlled, Prospective Randomized Trial.

    Science.gov (United States)

    Ribeiro, Sofia Miranda de Figueiredo; Braga, Camila Bitu Moreno; Peria, Fernanda Maris; Domenici, Fernanda Aparecida; Martinez, Edson Zangiacomi; Feres, Omar; da Rocha, José Joaquim Ribeiro; da Cunha, Selma Freire de Carvalho

    2016-01-01

    The study aimed to investigate the effect of oral zinc supplementation on antioxidant defenses and oxidative stress markers during chemotherapy for colorectal cancer. Twenty-four patients who had undergone surgical resection of colorectal cancer participated in this placebo-controlled, prospective randomized study. The supplementation was started in the perioperative period, in which 10 patients received 70 mg of zinc (zinc group, n = 10) and 14 patients received placebo (placebo group, n = 14) for 16 weeks. Approximately 45 days after surgical resection of tumor, all patients received a chemotherapeutic regimen (capecitabine, capecitabine combined with oxaliplatin or 5-fluorouracil). Vitamin C, vitamin E, antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx), and lipid peroxidation markers malondialdehyde (MDA) and 8-isoprostane were determined before the first, second, third, and fourth chemotherapy cycles. Compared with the placebo group, the zinc group presented higher SOD values before the first, second, and fourth chemotherapy cycles and lower GPx values before the third cycle. There were no statistical differences between the study groups in vitamin C, vitamin E, MDA, or 8-isoprostane plasma values. Longitudinal analysis revealed decreased vitamin E concentration in the placebo group before the second and fourth cycles as compared with the initial values. Zinc supplementation during chemotherapy cycles increased SOD activity and maintained vitamin E concentrations. Although no effect of zinc supplementation on oxidative stress markers was observed, the increase in SOD activity indicates a production of stable free radicals, which may have a positive effect in cancer treatment.

  15. The protective role of DJ-1 in ultraviolet-induced damage of human skin: DJ-1 levels in the stratum corneum as an indicator of antioxidative defense.

    Science.gov (United States)

    Ishiwatari, Shioji; Takahashi, Minako; Yasuda, Chie; Nakagawa, Maho; Saito, Yoshiro; Noguchi, Noriko; Matsukuma, Shoko

    2015-12-01

    DJ-1 is a multifunctional protein associated with Parkinson's disease and plays a significant role in protecting nerve cells from oxidative stress. DJ-1 is expressed in the skin, although its function there is unknown. In this study, we investigated DJ-1 function in keratinocytes. DJ-1 was induced by H2O2 exposure and UV irradiation in keratinocytes. DJ-1 knockdown with small interfering RNA (siRNA) increased reactive oxygen species (ROS) and lactate dehydrogenase (LDH) release after UVB irradiation, suggesting that DJ-1 reduces ROS and might protect skin cells from UV damage in vitro. To investigate the in vivo role of DJ-1 in the skin, we determined DJ-1 levels in human stratum corneum samples obtained by the tape-stripping method. DJ-1 levels in the stratum corneum (scDJ-1) correlated with total antioxidant capacity. We also examined the effect of scDJ-1 on changes in skin after UVB irradiation. DJ-1 was elevated in SC from the upper arm 1 to 2 weeks after UVB irradiation. One day after UVB irradiation, L* (brightness) and a* (redness) values, indicators of skin color, were altered regardless of scDJ-1 expression. However, these values recovered more quickly in subjects with high scDJ-1 expression than in those with low scDJ-1 expression. These data suggest that DJ-1 in skin plays a significant role in protection against UV radiation and oxidative stress, and that DJ-1 levels in the SC might be an indicator of antioxidative defense against UV-induced damage.

  16. Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB Pathways.

    Directory of Open Access Journals (Sweden)

    Bidya Dhar Sahu

    Full Text Available Acute renal failure is a serious complication of the anticancer drug cisplatin. The potential role of baicalein, a naturally occurring bioflavonoid on cisplatin-induced renal injury is unknown. Here, we assessed the effect of baicalein against a murine model of cisplatin-induced acute renal failure and investigated the underlying possible mechanisms. Renal function, kidney histology, inflammation, oxidative stress, renal mitochondrial function, proteins involved in apoptosis, nuclear translocation of Nrf2 and effects on intracellular signaling pathways such as MAPKs, and NF-κB were assessed. Pretreatment with baicalein ameliorated the cisplatin-induced renal oxidative stress, apoptosis and inflammation and improved kidney injury and function. Baicalein inhibited the cisplatin-induced expression of iNOS, TNF-α, IL-6 and mononuclear cell infiltration and concealed redox-sensitive transcription factor NF-κB activation via reduced DNA-binding activity, IκBα phosphorylation and p65 nuclear translocation in kidneys. Further studies demonstrated baicalein markedly attenuated cisplatin-induced p38 MAPK, ERK1/2 and JNK phosphorylation in kidneys. Baicalein also restored the renal antioxidants and increased the amount of total and nuclear accumulation of Nrf2 and downstream target protein, HO-1 in kidneys. Moreover, baicalein preserved mitochondrial respiratory enzyme activities and inhibited cisplatin-induced apoptosis by suppressing p53 expression, Bax/Bcl-2 imbalance, cytochrome c release and activation of caspase-9, caspase-3 and PARP. Our findings suggest that baicalein ameliorates cisplatin-induced renal damage through up-regulation of antioxidant defense mechanisms and down regulation of the MAPKs and NF-κB signaling pathways.

  17. Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB Pathways.

    Science.gov (United States)

    Sahu, Bidya Dhar; Mahesh Kumar, Jerald; Sistla, Ramakrishna

    2015-01-01

    Acute renal failure is a serious complication of the anticancer drug cisplatin. The potential role of baicalein, a naturally occurring bioflavonoid on cisplatin-induced renal injury is unknown. Here, we assessed the effect of baicalein against a murine model of cisplatin-induced acute renal failure and investigated the underlying possible mechanisms. Renal function, kidney histology, inflammation, oxidative stress, renal mitochondrial function, proteins involved in apoptosis, nuclear translocation of Nrf2 and effects on intracellular signaling pathways such as MAPKs, and NF-κB were assessed. Pretreatment with baicalein ameliorated the cisplatin-induced renal oxidative stress, apoptosis and inflammation and improved kidney injury and function. Baicalein inhibited the cisplatin-induced expression of iNOS, TNF-α, IL-6 and mononuclear cell infiltration and concealed redox-sensitive transcription factor NF-κB activation via reduced DNA-binding activity, IκBα phosphorylation and p65 nuclear translocation in kidneys. Further studies demonstrated baicalein markedly attenuated cisplatin-induced p38 MAPK, ERK1/2 and JNK phosphorylation in kidneys. Baicalein also restored the renal antioxidants and increased the amount of total and nuclear accumulation of Nrf2 and downstream target protein, HO-1 in kidneys. Moreover, baicalein preserved mitochondrial respiratory enzyme activities and inhibited cisplatin-induced apoptosis by suppressing p53 expression, Bax/Bcl-2 imbalance, cytochrome c release and activation of caspase-9, caspase-3 and PARP. Our findings suggest that baicalein ameliorates cisplatin-induced renal damage through up-regulation of antioxidant defense mechanisms and down regulation of the MAPKs and NF-κB signaling pathways.

  18. A teleostan homolog of catalase from black rockfish (Sebastes schlegelii): insights into functional roles in host antioxidant defense and expressional responses to septic conditions.

    Science.gov (United States)

    Elvitigala, Don Anushka Sandaruwan; Priyathilaka, Thanthrige Thiunuwan; Whang, Ilson; Nam, Bo-Hye; Lee, Jehee

    2015-05-01

    Antioxidative defense renders a significant protection against environmental stress in organisms and maintains the correct redox balance in cells, thereby supporting proper immune function. Catalase is an indispensable antioxidant in organisms that detoxifies hydrogen peroxides produced in cellular environments. In this study, we sought to molecularly characterize a homolog of catalase (RfCat), identified from black rockfish (Sebastes schlegelii). RfCat consists of a 1581 bp coding region for a protein of 527 amino acids, with a predicted molecular weight of 60 kD. The protein sequence of RfCat harbored similar domain architecture to known catalases, containing a proximal active site signature and proximal heme ligand signature, and further sharing prominent homology with its teleostan counterparts. As affirmed by multiple sequence alignments, most of the functionally important residues were well conserved in RfCat. Furthermore, our phylogenetic analysis indicates its common vertebrate ancestral origin and a close evolutionary relationship with teleostan catalases. Recombinantly expressed RfCat demonstrated prominent peroxidase activity that varied with different substrate and protein concentrations, and protected against DNA damage. RfCat mRNA was ubiquitously expressed among different tissues examined, as detected by qPCR. In addition, RfCat mRNA expression was modulated in response to pathogenic stress elicited by Streptococcus iniae and poly I:C in blood and spleen tissues. Collectively, our findings indicate that RfCat may play an indispensable role in host response to oxidative stress and maintain a correct redox balance after a pathogen invasion.

  19. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ruijuan; Wang, Xinghao; Wang, Zunyao, E-mail: wangzun315cn@163.com; Wei, Zhongbo; Wang, Liansheng

    2014-06-30

    Highlights: • Cd and OH-MWCNTs have a synergistic effect on Carassius auratus. • OH-MWCNTs significantly increased Cd accumulation in liver after 12 d exposure. • Co-exposure to Cd and OH-MWCNTs evoked severe hepatic oxidative stress. - Abstract: The effects of cadmium, hydroxylated multi-walled carbon nanotubes, and their mixture on metal accumulation and antioxidant defenses were studied using the goldfish Carassius auratus as the test organism. The fish were exposed to 0.1 mg/L Cd, 0.5 mg/L OH-MWCNTs, or 0.1 mg/L Cd + 0.5 mg/L OH-MWCNTs for 3 and 12 days. Then, the Cd concentration was determined in the gill, liver and muscle. Moreover, hepatic antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase), glutathione level and malondialdehyde content were also measured. A continuous accumulation of Cd was observed throughout the experimental period. Cd accumulation in tissues occurred in the following order: gill > liver > muscle at 3 days and liver > gill > muscle at 12 days. The concentrations of Cd in the livers of fish exposed to the combination of Cd + OH-MWCNTs were significantly higher than those in fish exposed to either single chemical after 12 d of exposure. Meanwhile, the mixture evoked severe oxidative stress in the exposed fish, as indicated by significant inhibition of SOD, CAT and GPx activity, a remarkable decrease in GSH level, and simultaneous elevation of MDA content. These results suggested that the effect of the combined factors on metal accumulation and oxidative stress biomarkers was more obvious than that of single factors at longer exposure durations.

  20. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity

    Energy Technology Data Exchange (ETDEWEB)

    Song Alin [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li Zhaojun [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Zhang Jie [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Xue Gaofeng; Fan Fenliang [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Liang Yongchao, E-mail: ycliang@caas.ac.cn [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003 (China)

    2009-12-15

    A series of hydroponics experiments were performed to investigate roles of silicon (Si) in enhancing cadmium (Cd) tolerance in two pakchoi (Brassica chinensis L.) cultivars: i.e. cv. Shanghaiqing, a Cd-sensitive cultivar, and cv. Hangyoudong, a Cd-tolerant cultivar. Plants were grown under 0.5 and 5 mg Cd L{sup -1} Cd stress without or with 1.5 mM Si. Plant growth of the Cd-tolerant cultivar was stimulated at the lower Cd level, but was decreased at the higher Cd level when plants were treated with Cd for one week. However, Plant growth was severely inhibited at both Cd levels as stress duration lasted for up to three weeks. Plant growth of the Cd-sensitive cultivar was severely inhibited at both Cd levels irrespective of Cd stress duration. Addition of Si increased shoot and root biomass of both cultivars at both Cd levels and decreased Cd uptake and root-to-shoot transport. Superoxide dismutase, catalase and ascorbate peroxidase activities decreased, but malondialdehyde and H{sub 2}O{sub 2} concentrations increased at the higher Cd level, which were counteracted by Si added. Ascorbic acid, glutathione and non-protein thiols concentrations increased at the higher Cd level, which were further intensified by addition of Si. The effects of Si and Cd on the antioxidant enzyme activity were further verified by isoenzyme analysis. Silicon was more effective in enhancing Cd tolerance in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. It can be concluded that Si-enhanced Cd tolerance in B. chinensis is attributed mainly to Si-suppressed Cd uptake and root-to-shoot Cd transport and Si-enhanced antioxidant defense activity.

  1. Zinc reduces copper toxicity induced oxidative stress by promoting antioxidant defense in freshly grown aquatic duckweed Spirodela polyrhiza L.

    Science.gov (United States)

    Upadhyay, RishiKesh; Panda, Sanjib Kumar

    2010-03-15

    The mechanism by which Zn promotes Cu toxicity in duckweed Spirodela polyrhiza L. was investigated in order to understand the possible interaction between these two metals. Cu uptake was gradually declined by Zn. The induction of oxidative stress is shown by increased levels of lipid peroxidation, total peroxide, superoxide anion and lipoxygenase activity. Zn interaction reduced the oxidative damage. However, only Zn-treated plants did not show alteration in the above observed parameters. The activities of antioxidant enzymes catalase, ascorbate peroxidase and peroxidase showed a very high increase in activity in Cu+Zn treatment as compared to Cu or Zn alone-treated plants. Thus, this study demonstrates that zinc reversed the effect of copper, combating against Cu induced oxidative damage and improvement of duckweed's growth and toxicity under natural condition.

  2. Long-term melatonin treatment reduces ovarian mass and enhances tissue antioxidant defenses during ovulation in the rat

    Directory of Open Access Journals (Sweden)

    L.G.A. Chuffa

    2011-03-01

    Full Text Available Melatonin regulates the reproductive cycle, energy metabolism and may also act as a potential antioxidant indoleamine. The present study was undertaken to investigate whether long-term melatonin treatment can induce reproductive alterations and if it can protect ovarian tissue against lipid peroxidation during ovulation. Twenty-four adult female Wistar rats, 60 days old (± 250-260 g, were randomly divided into two equal groups. The control group received 0.3 mL 0.9% NaCl + 0.04 mL 95% ethanol as vehicle, and the melatonin-treated group received vehicle + melatonin (100 µg·100 g body weight-1·day-1 both intraperitoneally daily for 60 days. All animals were killed by decapitation during the morning estrus at 4:00 am. Body weight gain and body mass index were reduced by melatonin after 10 days of treatment (P < 0.05. Also, a marked loss of appetite was observed with a fall in food intake, energy intake (melatonin 51.41 ± 1.28 vs control 57.35 ± 1.34 kcal/day and glucose levels (melatonin 80.3 ± 4.49 vs control 103.5 ± 5.47 mg/dL towards the end of treatment. Melatonin itself and changes in energy balance promoted reductions in ovarian mass (20.2% and estrous cycle remained extensive (26.7%, arresting at diestrus. Regarding the oxidative profile, lipid hydroperoxide levels decreased after melatonin treatment (6.9% and total antioxidant substances were enhanced within the ovaries (23.9%. Additionally, melatonin increased superoxide dismutase (21.3%, catalase (23.6% and glutathione-reductase (14.8% activities and the reducing power (10.2% GSH/GSSG ratio. We suggest that melatonin alters ovarian mass and estrous cyclicity and protects the ovaries by increasing superoxide dismutase, catalase and glutathione-reductase activities.

  3. Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice.

    Directory of Open Access Journals (Sweden)

    Thomas E Sussan

    Full Text Available BACKGROUND: Oxidative stress and inflammation are two critical factors that drive the formation of plaques in atherosclerosis. Nrf2 is a redox-sensitive transcription factor that upregulates a battery of antioxidative genes and cytoprotective enzymes that constitute the cellular response to oxidative stress. Our previous studies have shown that disruption of Nrf2 in mice (Nrf2(-/- causes increased susceptibility to pulmonary emphysema, asthma and sepsis due to increased oxidative stress and inflammation. Here we have tested the hypothesis that disruption of Nrf2 in mice causes increased atherosclerosis. PRINCIPAL FINDINGS: To investigate the role of Nrf2 in the development of atherosclerosis, we crossed Nrf2(-/- mice with apoliporotein E-deficient (ApoE(-/- mice. ApoE(-/- and ApoE(-/-Nrf2(-/- mice were fed an atherogenic diet for 20 weeks, and plaque area was assessed in the aortas. Surprisingly, ApoE(-/-Nrf2(-/- mice exhibited significantly smaller plaque area than ApoE(-/- controls (11.5% vs 29.5%. This decrease in plaque area observed in ApoE(-/-Nrf2(-/- mice was associated with a significant decrease in uptake of modified low density lipoproteins (AcLDL by isolated macrophages from ApoE(-/-Nrf2(-/- mice. Furthermore, atherosclerotic plaques and isolated macrophages from ApoE(-/-Nrf2(-/- mice exhibited decreased expression of the scavenger receptor CD36. CONCLUSIONS: Nrf2 is pro-atherogenic in mice, despite its antioxidative function. The net pro-atherogenic effect of Nrf2 may be mediated via positive regulation of CD36. Our data demonstrates that the potential effects of Nrf2-targeted therapies on cardiovascular disease need to be investigated.

  4. Linear systems analysis of activating processes of complement system as a defense mechanism.

    Science.gov (United States)

    Hirayama, H; Yoshii, K; Ojima, H; Kawai, N; Gotoh, S; Fukuyama, Y

    1996-01-01

    The complement system is an important element of the host defense mechanism, although its kinetics and characteristics as a system are still unclear. We have investigated its temporal changes and system properties from the view point of system engineering. The temporal changes of sequential activating processes of the system were expressed by 26 non-linear differential equations using reported values of rate constants and serum concentration for each component. The intermediate products in the activating processes increased parabolically while the membrane attack component as the final product, increased linearly. The little change in inactive precursors afforded validity for system linearization. Linear systems analysis revealed that the system which was insensitive to the changes in rate constants was unstable. The system became stable when the feed-back input from the final product was set to operate on the first step of the activating processes. Seven uncontrollable variables were insensitive to changes in rate constants or system optimization that minimized the changes in concentrations of components in the complement system. The singular values of the complement system were reduced and the impulse responses of the system were improved when the system was optimized. When stronger minimization was imposed on the changes of concentration of the components in the complement system, the singular values were reduced more, the magnitude of the impulse responses was depressed further and the responses terminated earlier than those when the elements in the weighting matrix of concentration of the components were set to be unity. By this potent minimization, the influences of changes in rate constants on the singular values were diminished. The present theoretical analysis is presented to evaluate the ability of defense mechanism of complement system.

  5. New insights of an old defense system: structure, function, and clinical relevance of the complement system.

    Science.gov (United States)

    Ehrnthaller, Christian; Ignatius, Anita; Gebhard, Florian; Huber-Lang, Markus

    2011-01-01

    The complement system was discovered a century ago as a potent defense cascade of innate immunity. After its first description, continuous experimental and clinical research was performed, and three canonical pathways of activation were established. Upon activation by traumatic or surgical tissue damage, complement reveals beneficial functions of pathogen and danger defense by sensing and clearing injured cells. However, the latest research efforts have provided a more distinct insight into the complement system and its clinical subsequences. Complement has been shown to play a significant role in the pathogenesis of various inflammatory processes such as sepsis, multiorgan dysfunction, ischemia/reperfusion, cardiovascular diseases and many others. The three well-known activation pathways of the complement system have been challenged by newer findings that demonstrate direct production of central complement effectors (for example, C5a) by serine proteases of the coagulation cascade. In particular, thrombin is capable of producing C5a, which not only plays a decisive role on pathogens and infected/damaged tissues, but also acts systemically. In the case of uncontrolled complement activation, "friendly fire" is generated, resulting in the destruction of healthy host tissue. Therefore, the traditional research that focuses on a mainly positive-acting cascade has now shifted to the negative effects and how tissue damage originated by the activation of the complement can be contained. In a translational approach including structure-function relations of this ancient defense system, this review provides new insights of complement-mediated clinical relevant diseases and the development of complement modulation strategies and current research aspects.

  6. A two-level formal specification of a defense communications system

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, G.H. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.; Kemmerer, R.A. [Univ. of California, Santa Barbara, CA (United States). Reliable Software Group

    1994-04-01

    Computer systems are being used in critical situations with sensitive data, which makes it very important to ensure that these systems perform as desired. The defense communications system contains particularly sensitive data. A two-level ASLAN formal specification of a defense communications system is presented. The ASLAN model is designed to enhance the understanding of critical requirements and demands of the defense communications system. For the top-level (high-level) specifications, the structural details of the actual network are actual network are abstracted to allow more time for examining the interactions between the sites and the network. At this level, DataGrams move through the network, although the actual routing decisions are not specified. More details are added in the second-level specification. At this level, structure is added to the network.

  7. Development of the Defense Documentation Center Remote On-Line Retrieval System - Past, Present and Future.

    Science.gov (United States)

    Bennertz, Richard K.

    The document highlights in nontechnical language the development of the Defense Documentation Center (DDC) Remote On-Line Retrieval System from its inception in 1967 to what is planned. It describes in detail the current operating system, equipment configuration and associated costs, user training and system evaluation and may be of value to other…

  8. 75 FR 65439 - Defense Federal Acquisition Regulation Supplement; Electronic Subcontracting Reporting System

    Science.gov (United States)

    2010-10-25

    ... Supplement; Electronic Subcontracting Reporting System AGENCY: Defense Acquisition Regulations System... Electronic Subcontracting Reporting System (eSRS). The FAR has been revised to reflect use of the eSRS...--Summary Subcontract Report, for submission of small business subcontract reports. DATES: Effective...

  9. 77 FR 11355 - Defense Federal Acquisition Regulation Supplement; Business Systems-Definition and Administration...

    Science.gov (United States)

    2012-02-24

    ... Defense Federal Acquisition Regulation Supplement; Business Systems--Definition and Administration (DFARS... proposed rule for Business Systems-- Definition and Administration (DFARS Case 2009-D038) in the Federal... contractor business systems, DoD has clarified the definition and administration of contractor...

  10. Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation.

    Directory of Open Access Journals (Sweden)

    Juan José Lázaro

    2013-11-01

    Full Text Available Mitochondrial respiration provides the energy needed to drive metabolic and transport processes in cells. Mitochondria are a significant site of reactive oxygen species (ROS production in plant cells, and redox-system components obey fine regulation mechanisms that are essential in protecting the mitochondrial integrity. In addition to ROS, there are compelling indications that nitric oxide (NO. can be generated in this organelle by both reductive and oxidative pathways. ROS and reactive nitrogen species (RNS play a key role in signaling but they can also be deleterious via oxidation of macromolecules. The high production of ROS obligates mitochondria to be provided with a set of ROS scavenging mechanisms. The first line of mitochondrial antioxidants is composed of superoxide dismutase and the enzymes of the ascorbate-glutathione cycle, which are not only able to scavenge ROS but also to repair cell damage and possibly serve as redox sensors. The dithiol-disulfide exchanges form independent signaling nodes and act as antioxidant defense mechanisms as well as sensor proteins modulating redox signaling during development and stress adaptation. The presence of thioredoxin (Trx, peroxiredoxin (Prx and sulfiredoxin (Srx in the mitochondria has been recently reported. Cumulative results obtained from studies in salt stress models have demonstrated that these redox proteins play a significant role in the establishment of salt tolerance. The Trx/Prx/Srx system may be subjected to a fine regulated mechanism involving post-translational modifications, among which S-glutathionylation and S-nitrosylation seem to exhibit a critical role that is just beginning to be understood. This review summarizes our current knowledge in antioxidative systems in plant mitochondria, their interrelationships, mechanisms of compensation and some unresolved questions, with special focus on their response to abiotic stress.

  11. Prevention of lipid oxidation in omega-3 enriched oofds by antioxidants and the use of delivery systems

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte

    oxidation products. Efficients strategies to prevent lipid oxidation are therefore required. Such strategies include addition of antioxidants or the use of omega-3 delivery emulsions. However, antioxidant efficacy in complex omega-3 enriched foods are influenced by many factors including the lipophilicity...... of the antioxidants. Selection of the optimal antioxidant system is therefore a major challenge. Likewise, a range of factors can influence the ability of omega-3 delivery systems to protect the omega-3 fatty acids against oxidation after addition to food systems. These challenges will be discussed...... in this presentation and examples from the authors own research on antioxidants and omega-3 delivery systems will be given....

  12. [Changes in the oxidant-antioxidant system activity in patients with hepatic failure treated with hyperbaric oxygenation and actoprotectors].

    Science.gov (United States)

    Lakhin, R E; Belozerova, L A; Maksimets, V A; Romanov, D M

    1999-01-01

    Effects of hyperbaric oxygenation, bemitil, and solcoseryl used in preoperative treatment of patients with hepatic failure on the oxidant-antioxidant system are studied. Lipid peroxidation (LPO) was assessed from changes in the levels of malonic dialdehyde and diene conjugate and the antioxidant system from the number of SH-groups. Hyperbaric oxygenation led to activation of LPO processes. Bemitil decreased the intensity of LPO by extending the potentialities of the antioxidant system. Antioxidant properties of solcoseryl were not realized through the thiol buffer of the antioxidant system. Only a course of treatment with this drug brings about a stable effect.

  13. Antioxidant activity stimulated by ultraviolet radiation in the nervous system of a crustacean

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, Gabriela, E-mail: gabrielahollmann@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Ferreira, Gabrielle de Jesus, E-mail: gabi_ferreiira@hotmail.com [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Geihs, Márcio Alberto, E-mail: geihs@hotmail.com [Programa de Pós Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS 96201-900 (Brazil); Vargas, Marcelo Alves, E-mail: biovargas@gmail.com [Programa de Pós Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS 96201-900 (Brazil); and others

    2015-03-15

    Highlights: • Ultraviolet (UV) radiation produces biological damage, principally oxidative stress. • We analyzed oxidative stress in the central nervous system (CNS) of a crab. • The damage was evaluated using biochemical tests and immunohistochemistry. • We verified the occurrence of apoptosis in the brain of the UV-exposed crabs. • Environmental doses of UV can cause oxidative damage to CNS, including apoptosis. - Abstract: Ultraviolet (UV) radiation can produce biological damage, principally oxidative stress, by increasing the production of reactive oxygen species (ROS). This study evaluated biochemical impairments related to the oxidative stress induced by UVA, UVB and UVA + UVB (solar simulator-SIM) in environmental doses, during five consecutive days of exposure, in the brain and eyestalk of the crab Ucides cordatus. We evaluated these regions by sampling on the 1st, 3rd and 5th days of UV exposure for lipid peroxidation (LPO), antioxidant capacity against the peroxyl radical (ACAP), and the activities of catalase (CAT), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). Immunohistochemical and immunoblotting assays were performed for anti-activated-caspase 3 in the brains. After the first day of exposure, LPO increased in the eyestalks and brains of the UV-exposed animals; ACAP, and CAT, GPX and GST activities also increased in the brains. On the third day, the LPO values in the eyestalk remained high in the UV-exposed groups, while ACAP decreased in the brain and eyestalk and CAT activity remained high in all irradiated groups in both regions. On the fifth day, LPO decreased in the eyestalk and brain of the UV-exposed groups. These results may have been a consequence of the antioxidant defense system (ADS) activity, since CAT activity was high in both regions, ACAP was high in the eyestalks of the SIM group, and GPX activity remained high in the eyestalks of the UVA and UVB groups. Immunohistochemical assays and immunoblotting

  14. Network attack detection and defense: securing industrial control systems for critical infrastructures (Dagstuhl Seminar 14292)

    NARCIS (Netherlands)

    Dacer, Marc; Kargl, Frank; König, Hartmut; Valdes, Alfonso

    2014-01-01

    This report documents the program and the outcomes of Dagstuhl Seminar 14292 “Network Attack Detection and Defense: Securing Industrial Control Systems for Critical Infrastructures”. The main objective of the seminar was to discuss new approaches and ideas for securing industrial control systems. It

  15. 75 FR 71560 - Defense Federal Acquisition Regulation Supplement; Cost and Software Data Reporting System (DFARS...

    Science.gov (United States)

    2010-11-24

    ... is provided for contractors with accounting software that does not accommodate the additional data... Acquisition Regulation Supplement; Cost and Software Data Reporting System (DFARS Case 2008-D027) AGENCY... Cost and Software Data Reporting system requirements for Major Defense Acquisition Programs and...

  16. Checkout and start-up of the integrated DWPF (Defense Waste Processing Facility) melter system

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.E.; Hutson, N.D.; Miller, D.H.; Morrison, J.; Shah, H.; Shuford, J.A.; Glascock, J.; Wurzinger, F.H.; Zamecnik, J.R.

    1989-11-11

    The Integrated DWPF Melter System (IDMS) is a one-ninth-scale demonstration of the Defense Waste Processing Facility (DWPF) feed preparation, melter, and off-gas systems. The IDMS will be the first engineering-scale melter system at SRL to process mercury and flowsheet levels of halides and sulfates. This report includes a summary of the IDMS program objectives, system and equipment descriptions, and detailed discussions of the system checkout and start-up. 10 refs., 44 figs., 20 tabs.

  17. Effects of Rhizobium inoculation on Trifolium resupinatum antioxidant system under sulfur dioxide pollution

    Directory of Open Access Journals (Sweden)

    Ladan Bayat

    2014-01-01

    Full Text Available Introduction: Plant growth stimulating rhizobacteria are beneficial bacteria that can cause resistance to various stresses in plants. One of these stresses is SO2 air pollution. SO2 is known as a strong damaging air pollutant that limits growth of plants. The aim of this study is evaluation of the effects of bacterial inoculation with native and standard Rhizobium on Persian clover root growth and antioxidants activity and capacity under air SO2 pollution. Materials and methods: In this study, 31 days plants (no-inoculated and inoculated with two strains of Rhizobium exposed to the different concentrations of SO2 (0 as a control, 0.5, 1, 1.5 and 2 ppm for 5 consecutive days and 2 hours per day. Results: Results showed different concentrations of SO2 had a significant effect on Persian clover root weight and antioxidant system. Increasing SO2 stress decreased root fresh and dry weight and antioxidant capacities (IC50 and increased antioxidant activities (I% of Persian clover leaves significantly in comparison to the control plants (under 0 ppm and increased SOD, CAT and GPX activity. Inoculation of Persian clover plants with native and standard Rhizobium increased root weight and did not show a significant effect on antioxidants activity and capacity, but interaction between Rhizobium inoculation and SO2 treatment reduced significantly the stress effects of high concentration of SO2 on root growth and antioxidants activity and capacity. In fact, level of this change of root growth and antioxidant system under SO2 pollution stress in inoculated plants was lower than in the non-inoculated plants. Discussion and conclusion: As a result, an increase in SO2 concentration caused a decrease in root weight, increase in antioxidants activity and capacity of Persian clover. Inoculation with Rhizobium strains could alleviate the effect of SO2 pollution on antioxidant system by effects on root growth.

  18. Role of two-sided crosstalk between NO and H2S on improvement of mineral homeostasis and antioxidative defense in Sesamum indicum under lead stress.

    Science.gov (United States)

    Amooaghaie, Rayhaneh; Zangene-Madar, Faezeh; Enteshari, Shekoofeh

    2017-05-01

    H2S and NO are two important gasotransmitters that modulate stress responses in plants. There are the contradictory data on crosstalk between NO and H2S in the studies. Hence, in the present study, the role of interplay between NO and H2S was assessed on the Pb tolerance of Sesamum indicum using pharmacological and biochemical approaches. Results revealed that Pb stress reduced the plant growth and the content of photosynthetic pigments and Fv/Fm ratio, increased the lipid peroxidation and the H2O2 content, elevated the endogenous contents of nitric oxide (NO), H2S and enhanced the activities of antioxidant enzymes (except APX). Additionally, concentrations of most mineral ions (K, P, Mg, Fe, Mn and Zn) in both shoots and roots decreased. Pb accumulation in roots was more than it in shoots. Both sodium hydrosulfide (NaHS as a donor of H2S) and sodium nitroprusside (SNP as an NO donor) improved the plant growth, the chlorophyll and carotenoid contents and PSII efficiency, reduced oxidative damage, increased the activities of antioxidant enzymes and reduced the proline content in Pb-stressed plants. Furthermore, both NaHS and SNP significantly restricted the uptake and translocation of Pb, thereby minimizing antagonistic effects of Pb on essential mineral contents in sesame plants. NaHS increased the NO generation and many NaHS-induced responses were completely reversed by cPTIO, as the specific NO scavenger. Applying SNP also enhanced H2S release levels in roots of Pb-stressed plants and only some NO-driven effects were partially weakened by hypotuarine (HT), as the scavenger of H2S.These findings proposed for the first time that two-sided interplay between H2S and NO might confer an increased tolerance to Pb stress via activating the antioxidant systems, reducing the uptake and translocation of Pb, and harmonizing the balance of mineral nutrient.

  19. [Lipid peroxidation and the system of antioxidant protection in rats following a 13-day space flight on the Kosmos-1887 biosatellite].

    Science.gov (United States)

    Markin, A A; Delenian, N V

    1992-01-01

    After a 13-day space mission, in the rats flown on Cosmos-1887 biosatellite the parameters of lipid peroxidation and antioxidant defense system--the contents of diene conjugates, malonic dialdehyde, Schiff bases, tocopherol, total antioxidant activity (in blood plasma only), antioxidant enzyme activity (in tissues only)--superoxide dismutase, catalase, glutathio peroxidase, glutathio reductase have been measured in the blood plasma, myocardium, skeletal muscles and liver. The liver level of diene conjugates, Schiff bases and tocopherol decreased, and an activity of superoxide dismutase and catalase increased. In the skeletal muscles there was an elevation of diene conjugate contents followed by the decreases in malonic dialdehyde and superoxide dismutase activity. In rat myocardium, superoxide dismutase activity and tocopherol levels increased significantly. In the blood plasma the levels of tocopherol, malonic dialdehyde and total antioxidant activity were elevated. It is concluded that the observed changes in lipid peroxidation developed probably in response to an effect of the last dynamic stage of space flight and during re-adapting to the Earth environments.

  20. A Study on Anti-oxidative Activity of Soybean Peptides with Linoleic Acid Peroxidation Systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Soybean bioactive peptides(SBPs) were prepared from the isolated soybean protein by proteolysis with an alkaline protease, alcalase, at 50 ℃ and pH = 8. 0. The dependence of hydrolysis time on hydrolysis degree and molecular weight distribution were examined. The hydrolysate was fractionated on a Sephadex G-25 column and the anti-oxidative activities of the fractions were detected by the method of pyrogallol auto-oxidation. The average chain length of soybean peptides that have anti-oxidative activity was estimated to be about 7. The anti-oxidative properties of the soybean peptide were also studied by using linoleic acid peroxidation systems. The optimal condition of the peroxidation system was set up, Vc/Cu2 + as the inducer at pH = 7.4 and 25 ℃. In addition, soybean peptides show higher antioxidative activity compared with GSH.

  1. Physiological antioxidant system and oxidative stress in stomach cancer patients with normal renal and hepatic function

    Directory of Open Access Journals (Sweden)

    E Prabhakar Reddy

    2010-04-01

    Full Text Available Role of free radicals has been proposed in the pathogenesis of many diseases. Gastric cancer is a common disease worldwide, and leading cause of cancer death in India. Severe oxidative stress produces reactive oxygen species (ROS and induces uncontrolled lipid peroxidation. Albumin, uric acid (UA and Bilirubin are important physiological antioxidants. We aimed to evaluate and assess the role of oxidative stress (OS and physiological antioxidant system in stomach cancer patients. Lipid peroxidation measured as plasma Thio Barbituric Acid Reactive substances (TBARS, was found to be elevated significantly (p=0.001 in stomach cancer compared to controls along with a decrease in plasma physiological antioxidant system. The documented results were due to increased lipid peroxidation and involvement of physiological antioxidants in scavenging free radicals but not because of impaired hepatic and renal functions.

  2. Antioxidant effect of seaweed extracts in food emulsion systems enriched with fish oil

    DEFF Research Database (Denmark)

    Larsen, Ditte Baun; Farvin, Sabeena; Jacobsen, Charlotte

    Natural antioxidants derived from marine algae have a high content of bioactive components with potential for improving oxidative stability of lipids in food systems. In this presentation we will discuss results from our ongoing work on the brown algae Fucus vesiculosus. This seaweed contains...... a wide range of polyphenols with potential antioxidant activity. Thus, in vitro antioxidant properties of F. vesiculosus extracts have been found to be related to the total polyphenolic content. It has been suggested that the primary antioxidant activity comes from secondary metabolites...... such as phlorotannins, a dominant polyphenolic compound. However, studies on the effectiveness of seaweed extracts in food model systems are sparse, therefore there is a need to look further into this area. Results obtained in our lab with different extracts of F. Vesiculosus in a range of different food models...

  3. Rapid antioxidant capacity screening in herbal extracts using a simple flow injection-spectrophotometric system.

    Science.gov (United States)

    Mrazek, Nookrai; Watla-iad, Kanchana; Deachathai, Suwanna; Suteerapataranon, Siripat

    2012-05-01

    A simple flow injection (FI)-spectrophotometric system for the screening of antioxidant capacity in herbal extracts was developed. The analysis was based on the color disappearance due to the scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by antioxidant compounds. DPPH and ascorbic acid were used as reagent and antioxidant standard, respectively. Effects of the DPPH concentration, DPPH flow rate, and reaction coil length on sensitivity were studied. The optimized condition provided the linear range of 0.010-0.300mM ascorbic acid with less than 5%RSD(n=10). Detection limit and quantitation limit were 0.004 and 0.013mM, respectively. Comparison of antioxidant capacity in some herbal extracts determined by the FI system and a standard method was carried out and no significant difference was obtained.

  4. Seasonal variations in the antioxidant defence systems and lipid peroxidation of the digestive gland of mussels.

    Science.gov (United States)

    Viarengo, A; Canesi, L; Pertica, M; Livingstone, D R

    1991-01-01

    1. The seasonal variations in the level of antioxidant compounds (glutathione (GSH), vitamin E, carotenoids) and in the activity of antioxidant enzymes, superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), GSH-peroxidase (EC 1.11.1.9) in the digestive gland of mussels (Mytilus sp.) were evaluated. The lipid peroxidation process was also measured by determining the tissue concentration of malondialdehyde (MDA). 2. The physiological fluctuations of the antioxidant defence systems were inversely related to the accumulation of lipid peroxidation products (MDA) in the tissue. The observed seasonal variations are presumably related to the changing metabolic status of the animals, itself dependent on such factors as gonad ripening and food availability. 3. In particular, the obtained data indicate that a reduction of the antioxidant defence systems, occurring during winter, could be directly responsible for an enhanced susceptibility of mussels tissues to oxidative stress, as indicated by the high MDA concentration observed in this period.

  5. Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS)

    Energy Technology Data Exchange (ETDEWEB)

    Durling, R L; Price, D E; Spero, K K

    2005-06-06

    For over ten years, the Counterproliferation Analysis and Planning System (CAPS) at Lawrence Livermore National Laboratory (LLNL) has been a planning tool used by U.S. combatant commands for mission support planning against foreign programs engaged in the manufacture of weapons of mass destruction (WMD). CAPS is endorsed by the Secretary of Defense as the preferred counterproliferation tool to be used by the nation's armed services. A sister system, the Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging CAPS expertise designed to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors, HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented.

  6. Vulnerability And Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS)

    Energy Technology Data Exchange (ETDEWEB)

    Durling, Jr., R L; Price, D E; Spero, K K

    2005-01-03

    For over ten years, the Counterproliferation Analysis and Planning System (CAPS) at Lawrence Livermore National Laboratory (LLNL) has been a planning tool used by U.S. combatant commands for mission support planning against foreign programs engaged in the manufacture of weapons of mass destruction (WMD). CAPS is endorsed by the Secretary of Defense as the preferred counterproliferation tool to be used by the nation's armed services. A sister system, the Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging CAPS expertise designed to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors, HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities is presented.

  7. Network Randomization and Dynamic Defense for Critical Infrastructure Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Adrian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Mitchell Tyler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamlet, Jason [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stout, William M.S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Erik [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-04-01

    Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and development to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.

  8. Microbial community induces a plant defense system under growing on the lunar regolith analogue

    Science.gov (United States)

    Zaetz, Irina; Mytrokhyn, Olexander; Lukashov, Dmitry; Mashkovska, Svitlana; Kozyrovska, Natalia; Foing, Bernard H.

    The lunar rock considered as a potential source of chemical elements essential for plant nutrition, however, this substrate is of a low bioavailability. The use of microorganisms for decomposition of silicate rocks and stimulation of plant growth is a key idea in precursory scenario of growing pioneer plants for a lunar base (Kozyrovska et al., 2004; 2006; Zaetz et al., 2006). In model experiments a consortium of well-defined plant-associated bacteria were used for growing of French marigold (Tagetes patula L.) in anorthosite, analogous to a lunar rock. Inoculated plants appeared better seed germination, more fast development and also increased accumulation of K, Mg, Mn, Co, Cu and lowered level of the toxic Zn, Ni, Cr, comparing to control tagetes'. Bacteria regulate metal homeostasis in plants by changing their bioavailability and by stimulating of plant defense mechanisms. Inoculated plants were being accommodated to growth under stress conditions on anorthosite used as a substrate. In contrast, control plants manifested a heavy metal-induced oxidative stress, as quantified by protein carbonyl accumulation. Depending on the plant organ sampled and developmental stage there were increases or loses in the antioxidant enzyme activities (guaiacol peroxidase and glutathione-S-transferase). These changes were most evident in inoculated plants. Production of phenolic compounds, known as antioxidants and heavy metal chelators, is rised in variants of inoculated marigolds. Guaiacol peroxidase plays the main role, finally, in a reducing toxicity of heavy metals in plant leaves, while glutathione-S-transferase and phenolics overcome stress in roots.

  9. Second Line of Defense Virtual Private Network Guidance for Deployed and New CAS Systems

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Surya V.; Thronas, Aaron I.

    2010-01-01

    This paper discusses the importance of remote access via virtual private network (VPN) for the Second Line of Defense (SLD) Central Alarm System (CAS) sites, the requirements for maintaining secure channels while using VPN and implementation requirements for current and future sites.

  10. 75 FR 25165 - Defense Federal Acquisition Regulation Supplement; Cost and Software Data Reporting System

    Science.gov (United States)

    2010-05-07

    ... reporting requirements that are essential for the DoD to estimate the cost of current and future weapon... and not cost allocations. The description will also show how the data from the offeror's accounting... Regulation Supplement; Cost and Software Data Reporting System AGENCY: Defense Acquisition Regulations...

  11. Antioxidants of edible mushrooms

    NARCIS (Netherlands)

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M.; Griensven, Van Leo

    2015-01-01

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic

  12. BASICS OF INTEGRAL APPROACH TO IMPROVEMENT OF INNOVATION SYSTEM IN DEFENSE INDUSTRY COMPLEX OF RUSSIA

    OpenAIRE

    Анатолий Андреевич Чудин

    2014-01-01

    The author develops integral approach to improvement of innovation system as exemplified by defense industry complex (DIC) of Russia. Integral approach includes the elements of 3 approaches: system, synergetic and geotrion. This approach contains conceptual, modeling-projecting and realizing parts and the principles, mechanisms and technologies aimed for improvement of management of innovation system in Russia. DIC of Russia is an earth object – it is complex of complexes which is supposed to...

  13. Liposome as a delivery system for carotenoids: comparative antioxidant activity of carotenoids as measured by ferric reducing antioxidant power, DPPH assay and lipid peroxidation.

    Science.gov (United States)

    Tan, Chen; Xue, Jin; Abbas, Shabbar; Feng, Biao; Zhang, Xiaoming; Xia, Shuqin

    2014-07-16

    This study was conducted to understand how carotenoids exerted antioxidant activity after encapsulation in a liposome delivery system, for food application. Three assays were selected to achieve a wide range of technical principles, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, ferric reducing antioxidant powder (FRAP), and lipid peroxidation inhibition capacity (LPIC) during liposome preparation, auto-oxidation, or when induced by ferric iron/ascorbate. The antioxidant activity of carotenoids was measured either after they were mixed with preformed liposomes or after their incorporation into the liposomal system. Whatever the antioxidant model was, carotenoids displayed different antioxidant activities in suspension and in liposomes. The encapsulation could enhance the DPPH scavenging and FRAP activities of carotenoids. The strongest antioxidant activity was observed with lutein, followed by β-carotene, lycopene, and canthaxanthin. Furthermore, lipid peroxidation assay revealed a mutually protective relationship: the incorporation of either lutein or β-carotene not only exerts strong LPIC, but also protects them against pro-oxidation elements; however, the LPIC of lycopene and canthaxanthin on liposomes was weak or a pro-oxidation effect even appeared, concomitantly leading to the considerable depletion of these encapsulated carotenoids. The antioxidant activity of carotenoids after liposome encapsulation was not only related to their chemical reactivity, but also to their incorporation efficiencies into liposomal membrane and modulating effects on the membrane properties.

  14. Towards an integrated defense system for cyber security situation awareness experiment

    Science.gov (United States)

    Zhang, Hanlin; Wei, Sixiao; Ge, Linqiang; Shen, Dan; Yu, Wei; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    In this paper, an implemented defense system is demonstrated to carry out cyber security situation awareness. The developed system consists of distributed passive and active network sensors designed to effectively capture suspicious information associated with cyber threats, effective detection schemes to accurately distinguish attacks, and network actors to rapidly mitigate attacks. Based on the collected data from network sensors, image-based and signals-based detection schemes are implemented to detect attacks. To further mitigate attacks, deployed dynamic firewalls on hosts dynamically update detection information reported from the detection schemes and block attacks. The experimental results show the effectiveness of the proposed system. A future plan to design an effective defense system is also discussed based on system theory.

  15. Applicability of Unmanned Aerial Systems to Homeland Defense Missions

    Science.gov (United States)

    2006-12-01

    criticism after bungled and untimely responses to Hurricane Hugo in 1988 and the Loma Prieta earthquake in 1989. However, a 1991 GAO study...1 A. EFFECTIVE USE OF UNMANNED AERIAL SYSTEMS ........................1 B. HISTORY OF UNMANNED AERIAL SYSTEMS AND...assistance was invaluable. xiv THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION A. EFFECTIVE USE OF

  16. Defense strategies for infrastructures with multiple systems of components

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S [ORNL; Ma, Chris Y. T. [Purdue University; Hausken, K. [University of Stavanger; Zhuang, Jun [University at Buffalo (SUNY); He, Fei [University at Buffalo (SUNY); Yao, David K. Y. [Purdue University

    2016-01-01

    In several critical infrastructures correlations between the constituent systems represent certain vulnerabilities: disruptions to one may propagate to others and possibly to the entire infrastructure. The correlations between the systems are characterized in two ways in this paper: (i) the aggregate failure correlation function specifies the conditional failure probability of the infrastructure given the failure of an individual system, and (ii) the pairwise correlation function between two systems specifies the failure probability of one system given the failure of the other. The survival probabilities of individual systems satisfy firstorder differential conditions that generalize the contest success functions and statistical independence conditions. We formulate a problem of ensuring the resilience of an infrastructure as a game between the provider and attacker; their utility functions are sums of infrastructure survival probability terms and cost terms, both expressed in terms of the numbers of system components attacked and reinforced. We derive Nash Equilibrium conditions and sensitivity functions that highlight the dependence of infrastructure resilience on the cost terms, correlation functions, and individual system survival probabilities. We apply these results to models of distributed cloud computing and energy grid infrastructures.

  17. Antioxidative Properties of Stearoyl Ascorbate in a Food Matrix System.

    Science.gov (United States)

    Wiboonsirikul, Jintana; Watanabe, Yoshiyuki; Omori, Ayako; Khuwijitjaru, Pramote; Adachi, Shuji

    2016-06-01

    Stearoyl ascorbate or 6-O-stearoyl l-ascorbate is a lipophilic derivative of l-ascorbic acid and is commercially used in foods as a fat-soluble antioxidant and surfactant to overcome the disadvantages of using l-ascorbic acid. The objective of this research is to evaluate the antioxidative ability of stearoyl ascorbate, in the presence of wheat starch or gluten as a matrix, by measuring the unoxidized methyl linoleate available in the mixture of them after oxidation under accelerated conditions compared to that when using ascorbic acid. We observed that stearoyl ascorbate and ascorbic acid exhibited mutually adjacent antioxidative ability against oxidation of the methyl linoleate at a molar ratio of 0.0001 in presence of either wheat starch or gluten. In addition, the oxidation process in the mixture containing either stearoyl ascorbate or ascorbic acid was significantly slower than that in the mixture without stearoyl ascorbate or ascorbic acid. Moreover, by altering the initiation and propagation periods of the oxidation process, the mixture containing the stearoyl ascorbate and gluten as the matrix exhibited conspicuously slower oxidation than the mixture containing either the wheat starch or stearoyl ascorbate alone. However, increase in the ratio of stearoyl ascorbate to methyl linoleate to 0.001 or higher resulted in adverse effects due to acceleration of the oxidation process.

  18. Oxidative stress and the antioxidant enzyme system in the developing brain

    Directory of Open Access Journals (Sweden)

    So-Yeon Shim

    2013-03-01

    Full Text Available Preterm infants are vulnerable to the oxidative stress due to the production of large amounts of free radicals, antioxidant system insufficiency, and immature oligodendroglial cells. Reactive oxygen species (ROS play a pivotal role in the development of periventricular leukomalacia. The three most common ROS are superoxide (O2&#8226;-, hydroxyl radical (OH&#8226;, and hydrogen peroxide (H2O2. Under normal physiological conditions, a balance is maintained between the production of ROS and the capacity of the antioxidant enzyme system. However, if this balance breaks down, ROS can exert toxic effects. Superoxide dismutase, glutathione peroxidase, and catalase are considered the classical antioxidant enzymes. A recently discovered antioxidant enzyme family, peroxiredoxin (Prdx, is also an important scavenger of free radicals. Prdx1 expression is induced at birth, whereas Prdx2 is constitutively expressed, and Prdx6 expression is consistent with the classical antioxidant enzymes. Several antioxidant substances have been studied as potential therapeutic agents; however, further preclinical and clinical studies are required before allowing clinical application.

  19. Evaluation of antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems.

    Science.gov (United States)

    Kratchanova, Maria; Denev, Petko; Ciz, Milan; Lojek, Antonin; Mihailov, Atanas

    2010-01-01

    This study investigates the influence of extraction system on the extractability of polyphenol compounds and antioxidant activity of various medicinal plants. Oxygen radical absorbance capacity (ORAC) and total polyphenol content of 25 Bulgarian medicinal plants subjected to water or 80 % acetone extractions were investigated and compared. The type of extragent significantly influenced the efficiency of the polyphenol extraction and the antioxidant activity. In all cases ORAC results and total polyphenol content were higher for acetone extraction than for water extraction. The acetone extract of peppermint had the highest ORAC value - 2917 micromol Trolox equivalent (TE)/g dry weight (DW) and polyphenol content - 20216 mg/100 g DW. For water extraction thyme exhibited the highest ORAC antioxidant activity - 1434 micromol TE/g DW. There was a significant linear correlation between the concentration of total polyphenols and ORAC in the investigated medicinal plants. It can be concluded that the solvent used affects significantly the polyphenol content and the antioxidant activity of the extract and therefore it is recommended to use more than one extraction system for better assessment of the antioxidant activity of natural products. Several of the investigated herbs contain substantial amounts of free radical scavengers and can serve as a potential source of natural antioxidants for medicinal and commercial uses.

  20. Bacteriophage exclusion, a new defense system

    Science.gov (United States)

    Barrangou, Rodolphe; van der Oost, John

    2015-01-01

    The ability to withstand viral predation is critical for survival of most microbes. Accordingly, a plethora of phage resistance systems has been identified in bacterial genomes (Labrie et al, 2010), including restriction-modification systems (R-M) (Tock & Dryden, 2005), abortive infection (Abi) (Chopin et al, 2005), Argonaute-based interference (Swarts et al, 2014), as well as clustered regularly interspaced short palindromic repeats (CRISPR) and associated protein (Cas) adaptive immune system (CRISPR-Cas) (Barrangou & Marraffini, 2014; Van der Oost et al, 2014). Predictably, the dark matter of bacterial genomes contains a wealth of genetic gold. A study published in this issue of The EMBO Journal by Goldfarb et al (2015) unveils bacteriophage exclusion (BREX) as a novel, widespread bacteriophage resistance system that provides innate immunity against virulent and temperate phage in bacteria. PMID:25502457

  1. A Recommender System in the Cyber Defense Domain

    Science.gov (United States)

    2014-03-27

    Constraint-based recommender systems: technologies and research issues”. Proceedings of the 10th international conference on Electronic commerce , ICEC... Electronic Commerce ”. In Knowledge-Based Electronic Markets, Papers from the AAAI Workshop, 78–83, 2000. [28] Walker-Brown, Andrew. “The art of the...systems have been studied for decades, but only in their original domain of retail customer suggestions. The same algorithms and techniques could have

  2. Department of Defense Air Traffic Control and Airspace Management Systems

    Science.gov (United States)

    1989-08-08

    Electronic Tabular Display System ( ETABS ) under development by the FAA. The FACTS-3200, an advanced 32 bit digital processor, is being added to the system... software compatible with FDIO. 2.1.1.4.2 Radar Facility Communications In general, military radar facilities employ or share the twenty-series family of...program is providing incremental changes to the existing radios by adding more frequencies, computer memory and software improvements, and equipment

  3. Antioxidants of Edible Mushrooms.

    Science.gov (United States)

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M; van Griensven, Leo

    2015-10-27

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  4. Antioxidants of Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Maja Kozarski

    2015-10-01

    Full Text Available Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  5. Nrf2 and cardiovascular defense.

    Science.gov (United States)

    Howden, Reuben

    2013-01-01

    The cardiovascular system is susceptible to a group of diseases that are responsible for a larger proportion of morbidity and mortality than any other disease. Many cardiovascular diseases are associated with a failure of defenses against oxidative stress-induced cellular damage and/or death, leading to organ dysfunction. The pleiotropic transcription factor, nuclear factor-erythroid (NF-E) 2-related factor 2 (Nrf2), regulates the expression of antioxidant enzymes and proteins through the antioxidant response element. Nrf2 is an important component in antioxidant defenses in cardiovascular diseases such as atherosclerosis, hypertension, and heart failure. Nrf2 is also involved in protection against oxidant stress during the processes of ischemia-reperfusion injury and aging. However, evidence suggests that Nrf2 activity does not always lead to a positive outcome and may accelerate the pathogenesis of some cardiovascular diseases (e.g., atherosclerosis). The precise conditions under which Nrf2 acts to attenuate or stimulate cardiovascular disease processes are unclear. Further studies on the cellular environments related to cardiovascular diseases that influence Nrf2 pathways are required before Nrf2 can be considered a therapeutic target for the treatment of cardiovascular diseases.

  6. Nrf2 and Cardiovascular Defense

    Directory of Open Access Journals (Sweden)

    Reuben Howden

    2013-01-01

    Full Text Available The cardiovascular system is susceptible to a group of diseases that are responsible for a larger proportion of morbidity and mortality than any other disease. Many cardiovascular diseases are associated with a failure of defenses against oxidative stress-induced cellular damage and/or death, leading to organ dysfunction. The pleiotropic transcription factor, nuclear factor-erythroid (NF-E 2-related factor 2 (Nrf2, regulates the expression of antioxidant enzymes and proteins through the antioxidant response element. Nrf2 is an important component in antioxidant defenses in cardiovascular diseases such as atherosclerosis, hypertension, and heart failure. Nrf2 is also involved in protection against oxidant stress during the processes of ischemia-reperfusion injury and aging. However, evidence suggests that Nrf2 activity does not always lead to a positive outcome and may accelerate the pathogenesis of some cardiovascular diseases (e.g., atherosclerosis. The precise conditions under which Nrf2 acts to attenuate or stimulate cardiovascular disease processes are unclear. Further studies on the cellular environments related to cardiovascular diseases that influence Nrf2 pathways are required before Nrf2 can be considered a therapeutic target for the treatment of cardiovascular diseases.

  7. Modular Open System Architecture for Reducing Contamination Risk in the Space and Missile Defense Supply Chain

    Science.gov (United States)

    Seasly, Elaine

    2015-01-01

    To combat contamination of physical assets and provide reliable data to decision makers in the space and missile defense community, a modular open system architecture for creation of contamination models and standards is proposed. Predictive tools for quantifying the effects of contamination can be calibrated from NASA data of long-term orbiting assets. This data can then be extrapolated to missile defense predictive models. By utilizing a modular open system architecture, sensitive data can be de-coupled and protected while benefitting from open source data of calibrated models. This system architecture will include modules that will allow the designer to trade the effects of baseline performance against the lifecycle degradation due to contamination while modeling the lifecycle costs of alternative designs. In this way, each member of the supply chain becomes an informed and active participant in managing contamination risk early in the system lifecycle.

  8. Motivational cues predict the defensive system in team handball: A model based on regulatory focus theory.

    Science.gov (United States)

    Debanne, T; Laffaye, G

    2015-08-01

    This study was based on the naturalistic decision-making paradigm and regulatory focus theory. Its aim was to model coaches' decision-making processes for handball teams' defensive systems based on relevant cues of the reward structure, and to determine the weight of each of these cues. We collected raw data by video-recording 41 games that were selected using a simple random method. We considered the defensive strategy (DEF: aligned or staged) to be the dependent variable, and the three independent variables were (a) numerical difference between the teams; (b) score difference between the teams; and (c) game periods. We used a logistic regression design (logit model) and a multivariate logistic model to explain the link between DEF and the three category independent variables. Each factor was weighted differently during the decision-making process to select the defensive system, and combining these variables increased the impact on this process; for instance, a staged defense is 43 times more likely to be chosen during the final period in an unfavorable situation and in a man advantage. Finally, this shows that the coach's decision-making process could be based on a simple match or could require a diagnosis of the situation based on the relevant cues.

  9. Risk Assessment and Management for Interconnected and Interactive Critical Flood Defense Systems

    OpenAIRE

    Hamedifar, Hamed

    2012-01-01

    The current State-of-the-Practice relies heavily in the deterministic characterization and assessment of performance of civil engineering infrastructure. In particular, flood defense systems, such as levees, have been evaluated within the context of Factor of Safety where the capacity of the system is compared with the expected demand. Uncertainty associated with the capacity and demand render deterministic modeling inaccurate. In particular, two structures with the same Factor of Safety can ...

  10. Department of Defense Systems Acquisition Management: Congressional Criticism and Concern

    Science.gov (United States)

    1974-05-01

    preparation period. Finally I want to thank my wife, Dolores , for her tolerance of my aca- demic preoccupation in I96O-61, 1966-67, and throughout the...policy: man on firing line adjusts to actual situation Washington finds out only occasionally, acci- dentally ; need dependable system to insure

  11. ANTIOXIDANT DEFENSE SYSTEM CORRECTION IN TREATMENT OF PAYIENTS WITH INFERTILITY AND PERITONEAL ENDOMETRIOSIS

    Directory of Open Access Journals (Sweden)

    Dubinskaya, E.D.

    2016-09-01

    The findings suggest that the efficiency of the proposed comprehensive treatment techniques (laparoscopy and subsequent course of therapeutic plasmapheresis of patients with peritoneal endometriosis and infertility and with point mutations in the gene NAT2. The use of plasmapheresis  is pathogenetically justified in patients of the studied group.

  12. 2014 Assessment of the Ballistic Missile Defense System (BMDS)

    Science.gov (United States)

    2015-03-23

    and necessary training aids and devices are not currently available and are not scheduled to become available for several years. Analyses of data...and Evaluation ( IOT &E) flight tests for the Aegis BMD 4.0 system and SM-3 Block IB missile. Outcome. INTERCEPT. The ship detected, tracked...missiles in a raid scenario. FTX-18 was the last of the three IOT &E test missions. Outcome. THREE SIMULATED INTERCEPTS. The ship detected, tracked

  13. Planning for a Department of Defense Mail Service Pharmacy System

    Science.gov (United States)

    1991-12-01

    USERS UNCLASSIFIED 22a NAME OF RESPONSrBE INDIVIDUAL 22b TELEPHONE (include Area Code) 22( OFFICE SYMBOL Dr. Keebom Kant (408) 646-3106 AS/Kk DD Form...number of prescriptions to be filled by a MSP system shows an Increase of 6.8% over FY 1991 demand. 30 The de-and fo: ind- vidu phaarm a- etica ! Z...c

  14. Department of Defense Gateway Information System (DGIS) Users’ Guide

    Science.gov (United States)

    1993-10-01

    WELCOME TO T711 DoD QATEWAY INFO•MATION SYSTEM >~~»~1?W flXAIONTRANSFERn MODULES i directory D01S Directory of Resources 2 comunicate Connect to...Deuce ?hb-aom~ology. Economics , ilak Wedical Weseaerb,- , ducatlon Literature ’Consumer Realth) - ,istory Musaic, L ibrary ’Theater, * ~ Psychology ...for the selected database. Paitt" -t’ TOnact I Introduction to C~ona.Comand Langtuage West o INFO topics 𔃽 ,. IERS In National tecnical . Informaion

  15. Transportni sistem u funkciji odbrane zemlje / The transportation system in function of defense of country

    Directory of Open Access Journals (Sweden)

    Radomir Jovanović

    2005-11-01

    Full Text Available Transportni sistem zemlje postoji i funkcioniše u miru, a od izuzetnog značaja je za odbranu zemlje. Uticaj ovog sistema na odbranu nije samo direktan, nego i indirektan, jer skoro svi sistemi uključeni u ovaj proces zavise od njega. U odnosu na mirnodopsko stanje, osnovna karakteristika funkcionisanja transportnog sistema u ratuje izvršavanje zadataka u uslovima razaranja infrastrukture, višestrukog povećanja transportnih zahteva i neprekidna izloženost udarima svih elemenata sistema. Zato su pripreme za funkcionisanje u takvim uslovima od izuzetnog značaja. / The transportation system of a country exists and functions in peace and it is very important for the defense of the country. The transportation system has not only direct but also indirect influence on defense, because almost all systems included in defense are dependent on it. When compared to peace, the basic characteristics of its functioning in war is carrying out the tasks in conditions of infrastructure destruction, multiplied transportation demands and continuous blow of all elements of the system. For all these reasons the preparations for transportation system functioning in those conditions are of exceptional importance.

  16. Use of the Homeland-Defense Operational Planning System (HOPS) for Emergency Management

    Energy Technology Data Exchange (ETDEWEB)

    Durling, Jr., R L; Price, D E

    2005-12-16

    The Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging Lawrence Livermore National Laboratory's expertise in weapons systems and in sparse information analysis to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors, HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented.

  17. Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS)

    Energy Technology Data Exchange (ETDEWEB)

    Price, D E; Durling, R L

    2005-10-10

    The Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging Lawrence Livermore National Laboratory's expertise in weapons systems and in sparse information analysis to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors, HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented.

  18. Application of System and Integration Readiness Levels to Department of Defense Research and Development

    Science.gov (United States)

    2016-07-01

    this paper shows matrix notation in both reduced tensor notation and matrix notation as a convenience for a multidisciplinary audience. SRLj, [SRL...Doctrine, Organization, Training, materiel, Leadership and Education, Personnel, Facilities -Policy). 257Defense ARJ, July 2016, Vol. 23 No. 3 : 248–273 July...teaches courses on the subject. Dr. Ross led the creation of the Environmental Laser Test Facility to test high-energy laser systems and

  19. Influence of roasting on the antioxidant activity and HMF formation of a cocoa bean model systems.

    Science.gov (United States)

    Oliviero, Teresa; Capuano, Edoardo; Cämmerer, Bettina; Fogliano, Vincenzo

    2009-01-14

    During the roasting of cocoa beans chemical reactions lead to the formation of Maillard reaction (MR) products and to the degradation of catechin-containing compounds, which are very abundant in these seeds. To study the modifications occurring during thermal treatment of fat and antioxidant rich foods, such as cocoa, a dry model system was set up and roasted at 180 degrees C for different times. The role played in the formation of MR products and in the antioxidant activity of the system by proteins, catechin, and cocoa butter was investigated by varying the model system formulation. Results showed that the antioxidant activity decreased during roasting, paralleling catechin concentration, thus suggesting that this compound is mainly responsible for the antioxidant activity of roasted cocoa beans. Model system browning was significantly higher in the presence of catechin, which contributed to the formation of water-insoluble melanoidins, which are mainly responsible for browning. HMF concentration was higher in casein-containing systems, and its formation was strongly inhibited in the presence of catechin. No effects related to the degree of lipid oxidation could be observed. Data from model systems obtained by replacing fat with water showed a much lower rate of MR development and catechin degradation but the same inhibitory effect of catechin on HMF formation.

  20. MLDS: Multi-Layer Defense System for Preventing Advanced Persistent Threats

    Directory of Open Access Journals (Sweden)

    Daesung Moon

    2014-12-01

    Full Text Available Here we report on the issue of Advanced Persistent Threats (APT, which use malware for the purpose of leaking the data of large corporations and government agencies. APT attacks target systems continuously by utilizing intelligent and complex technologies. To overthrow the elaborate security network of target systems, it conducts an attack after undergoing a pre-reconnaissance phase. An APT attack causes financial loss, information leakage, etc. They can easily bypass the antivirus system of a target system. In this paper, we propose a Multi-Layer Defense System (MLDS that can defend against APT. This system applies a reinforced defense system by collecting and analyzing log information and various information from devices, by installing the agent on the network appliance, server and end-user. It also discusses how to detect an APT attack when one cannot block the initial intrusion while continuing to conduct other activities. Thus, this system is able to minimize the possibility of initial intrusion and damages of the system by promptly responding through rapid detection of an attack when the target system is attacked.

  1. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid

    DEFF Research Database (Denmark)

    Meyer, Anne Merete Boye; Jacobsen, Charlotte Munch

    1996-01-01

    Meyer, A. S. & C. Jacobsen, 1996. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid, J. Food Lipids, 3, 139-147.......Meyer, A. S. & C. Jacobsen, 1996. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid, J. Food Lipids, 3, 139-147....

  2. Dose-dependent short-term study of di-n-butyl phthalate on the testicular antioxidant system of Wistar rats.

    Science.gov (United States)

    Nair, Neena

    2015-02-01

    Di-n-butyl phthalate (DBP), a xenobiotic, is widely used in industries as a softener for polyvinyl chloride resins. The aim of the present study was to evaluate whether DBP induces oxidative stress in testes of Wistar rats. DBP at doses of 500, 1,000 and 1,500 mg/kg b.wt. (doses below LD50) was given orally for 7 days. After 24 hrs from the last dose, the animals were killed under ether anesthesia. Nonsignificant increase in testicular weight was observed. Histological studies indicated a dose-related degeneration of germinal, Leydig and Sertoli cells along with loss of spermatozoa in the lumen. The concentrations of malondialdehyde (TBARS), lipid hydroperoxides, water-soluble antioxidant capacity, glutathione-S-transferase, catalase and trace elements-zinc and copper increased while concentrations of total protein, lipid soluble antioxidant capacity, ascorbic acid, glutathione, total superoxide dismutase (SOD), Cu-ZnSOD, MnSOD, glutathione peroxidase, glutathione reductase and metallothionein decreased at all the dose levels. The data suggests that the cellular functions were adversely affected due to impairment of spermatogenesis indicative of oxidative stress as evident by altered antioxidative defense system which appears to mediate through hypothalamo-pituitary-gonadal axis. The spectrum of changes in testes reflects its susceptibility to phthalate even at low dose with the potential to interfere with critical reproductive function.

  3. Ozone Therapy on Rats Submitted to Subtotal Nephrectomy: Role of Antioxidant System

    Directory of Open Access Journals (Sweden)

    José Luis Calunga

    2005-01-01

    Full Text Available Chronic renal failure (CRF represents a world health problem. Ozone increases the endogenous antioxidant defense system, preserving the cell redox state. The aim of this study is to evaluate the effect of ozone/oxygen mixture in the renal function, morphology, and biochemical parameters, in an experimental model of CRF (subtotal nephrectomy. Ozone/oxygen mixture was applied daily, by rectal insufflation (0.5 mg/kg for 15 sessions after the nephrectomy. Renal function was evaluated, as well as different biochemical parameters, at the beginning and at the end of the study (10 weeks. Renal plasmatic flow (RPF, glomerular filtration rate (GFR, the urine excretion index, and the sodium and potassium excretions (as a measurement of tubular function in the ozone group were similar to those in Sham group. Nevertheless, nephrectomized rats without ozone (positive control group showed the lowest RPF, GFR, and urine excretion figures, as well as tubular function. Animals treated with ozone showed systolic arterial pressure (SAP figures lower than those in the positive control group, but higher values compared to Sham group. Serum creatinine values and protein excretion in 24 hours in the ozone group were decreased compared with nephrectomized rats, but were still higher than normal values. Histological study demonstrated that animals treated with ozone showed less number of lesions in comparison with nephrectomized rats. Thiobarbituric acid reactive substances were significantly increased in nephrectomized and ozone-treated nephrectomized rats in comparison with Sham group. In the positive control group, superoxide dismutase (SOD and catalase (CAT showed the lowest figures in comparison with the other groups. However, ozone/oxygen mixture induced a significant stimulation in the enzymatic activity of CAT, SOD, and glutathione peroxidase, as well as reduced glutathione in relation with Sham and positive control groups. In this animal model of CRF, ozone

  4. Hepatoprotective effects of Nigella sativa L and Urtica dioica L on lipid peroxidation, antioxidant enzyme systems and liver enzymes in carbon tetrachloride-treated rats

    Institute of Scientific and Technical Information of China (English)

    Mehmet Kanter; Omer Coskun; Mustafa Budancamanak

    2005-01-01

    AIM: To investigate the effects of Nigella sativa L (NS)and Urtica dioica L (UD) on lipid peroxidation, antioxidant enzyme systems and liver enzymes in CCl4-treated rats.METHODS: Fifty-six healthy male Wistar albino rats were used in this study. The rats were randomly allotted into one of the four experimental groups: A (CCl4-only treated), B (CCl4+UD treated), C (CCl4+NS treated) and D (CCl4+UD+NS treated), each containing 14 animals.All groups received CCl4 (0.8 mL/kg of body weight, sc,twice a week for 60 d). Tn addition, B, C and D groups also received daily J.p. injections of 0.2 mL/kg NS or/and 2 mL/kg UD oils for 60 d. Group A, on the other hand,received only 2 mL/kg normal saline solution for 60 d.Blood samples for the biochemical analysis were taken by cardiac puncture from randomly chosen-seven rats in each treatment group at beginning and on the 60th d of the experiment.RESULTS: The CCl4 treatment for 60 d increased thelipid peroxidation and liver enzymes,and also decreasedthe antioxidant enzyme levels. NS or UD treatment (aloneor combination) for 60 d decreased the elevated lipidperoxidation and liver enzyme levels and also increasedthe reduced antioxidant enzyme levels.The weight ofrats decreased in group A,and increased in groups B, Cand D.CONCLUSION: NS and UD decrease the lipid peroxidation and liver enzymes, and increase the antioxidant defense system activity in the CCl4-treated rats.

  5. Rat testicular mitochondrial antioxidant defence system and its modulation by aging.

    Science.gov (United States)

    Sahoo, D K; Roy, Anita; Chainy, G B N

    2008-12-01

    Accumulation of oxidative damage caused by reactive oxygen species (ROS) underlies fundamental changes found during aging. In the present study, age related effect on testicular mitochondrial oxidant generation and antioxidant defence profile was investigated in Wistar rats at 3 months (young adults), 12 months (old adults) and 24 months (senescent animals) of age. Mitochondrial oxidative stress parameters viz., lipid peroxidation (LPx), protein carbonylation, hydrogen peroxide (H2O2) generation and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), levels of total, oxidized (GSSG) and reduced glutathione (GSH) were studied to find out their roles in maintenance of mitochondrial glutathione redox pool as a function of age. Increased levels of LPx, H2O2 and decreased GSH content accompanied by a decline in activities of SOD, GPx and GR with advancing age suggest that antioxidant defense profile of testicular mitochondria exhibit age related alterations which might play a critical role in regulating physiological functions of the testis such as steroidogenesis and spermatogenesis.

  6. A Process Model for Deployment Planning of Ground-based Air Defense System Against Asymmetric Homeland Threat

    Science.gov (United States)

    2009-01-01

    A Process Model for Deployment Planning of Ground-based Air Defense System Against Asymmetric Homeland Threat Ronald L. Cypert Scientific...units, along with coordination at the state and federal agency level, a dynamic process modeling capability was chosen to chart the myriad...COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE A Process Model for Deployment Planning of Ground-based Air Defense System Against

  7. Improving Asthma during Pregnancy with Dietary Antioxidants: The Current Evidence

    Directory of Open Access Journals (Sweden)

    Vicki L. Clifton

    2013-08-01

    Full Text Available The complication of asthma during pregnancy is associated with a number of poor outcomes for the mother and fetus. This may be partially driven by increased oxidative stress induced by the combination of asthma and pregnancy. Asthma is a chronic inflammatory disease of the airways associated with systemic inflammation and oxidative stress, which contributes to worsening asthma symptoms. Pregnancy alone also intensifies oxidative stress through the systemic generation of excess reactive oxidative species (ROS. Antioxidants combat the damaging effects of ROS; yet antioxidant defenses are reduced in asthma. Diet and nutrition have been postulated as potential factors to combat the damaging effects of asthma. In particular, dietary antioxidants may play a role in alleviating the heightened oxidative stress in asthma. Although there are some observational and interventional studies that have shown protective effects of antioxidants in asthma, assessment of antioxidants in pregnancy are limited and there are no antioxidant intervention studies in asthmatic pregnancies on asthma outcomes. The aims of this paper are to (i review the relationships between oxidative stress and dietary antioxidants in adults with asthma and asthma during pregnancy, and (ii provide the rationale for which dietary management strategies, specifically increased dietary antioxidants, might positively impact maternal asthma outcomes. Improving asthma control through a holistic antioxidant dietary approach might be valuable in reducing asthma exacerbations and improving asthma management during pregnancy, subsequently impacting perinatal health.

  8. Improving asthma during pregnancy with dietary antioxidants: the current evidence.

    Science.gov (United States)

    Grieger, Jessica A; Wood, Lisa G; Clifton, Vicki L

    2013-08-14

    The complication of asthma during pregnancy is associated with a number of poor outcomes for the mother and fetus. This may be partially driven by increased oxidative stress induced by the combination of asthma and pregnancy. Asthma is a chronic inflammatory disease of the airways associated with systemic inflammation and oxidative stress, which contributes to worsening asthma symptoms. Pregnancy alone also intensifies oxidative stress through the systemic generation of excess reactive oxidative species (ROS). Antioxidants combat the damaging effects of ROS; yet antioxidant defenses are reduced in asthma. Diet and nutrition have been postulated as potential factors to combat the damaging effects of asthma. In particular, dietary antioxidants may play a role in alleviating the heightened oxidative stress in asthma. Although there are some observational and interventional studies that have shown protective effects of antioxidants in asthma, assessment of antioxidants in pregnancy are limited and there are no antioxidant intervention studies in asthmatic pregnancies on asthma outcomes. The aims of this paper are to (i) review the relationships between oxidative stress and dietary antioxidants in adults with asthma and asthma during pregnancy, and (ii) provide the rationale for which dietary management strategies, specifically increased dietary antioxidants, might positively impact maternal asthma outcomes. Improving asthma control through a holistic antioxidant dietary approach might be valuable in reducing asthma exacerbations and improving asthma management during pregnancy, subsequently impacting perinatal health.

  9. SERPINA3K plays antioxidant roles in cultured pterygial epithelial cells through regulating ROS system.

    Directory of Open Access Journals (Sweden)

    Chengpeng Zhu

    Full Text Available We recently demonstrated that SERPINA3K, a serine proteinase inhibitor, has antioxidant activity in the cornea. Here we investigated the antioxidant effects of SERPINA3K on the pterygial, which is partially caused by oxidative stress in pathogenesis. The head part of primary pterygial tissue was dissected and then cultured in keratinocyte serum-free defined medium (KSFM. The cultured pterygial epithelial cells (PECs were treated with SERPINA3K. The cell proliferation and migration of PECs were measured and analyzed. Western blot and quantitative real-time polymerase chain reaction (PCR assay were performed. It showed that SERPINA3K significantly suppressed the cell proliferation of PECs in a concentration-dependent manner, compared with cultured human conjunctival epithelial cells. SERPINA3K also inhibited the cell migration of PECs. Towards its underlying mechanism, SERPINA3K had antioxidant activities on the PECs by significantly inhibiting NADPH oxidase 4 (NOX4, which is an important enzyme of ROS generation, and by elevating the levels of key antioxidant factors of ROS: such as NAD(PH dehydrogenase (quinone 1 (NQO1, NF-E2-related factor-2 (NRF2 and superoxide dismutases (SOD2. Meanwhile, SERPINA3K down-regulated the key effectors of Wnt signaling pathway: β-catenin, nonphospho-β-catenin, and low-density lipoprotein receptor-related protein 6 (LRP6. We provided novel evidence that SERPINA3K had inhibitory effects on pterygium and SERPINA3K played antioxidant role via regulating the ROS system and antioxidants.

  10. Redox regulation and antioxidative defence in Arabidopsis leaves viewed from a systems biology perspective.

    Science.gov (United States)

    Wormuth, Dennis; Heiber, Isabelle; Shaikali, Jehad; Kandlbinder, Andrea; Baier, Margarete; Dietz, Karl-Josef

    2007-04-30

    Redox regulation is a central control element in cell metabolism. It is employed to adjust photosynthesis and the antioxidant defence system of leaves to the prevailing environment. During recent years progress has been made in describing the redox-dependent alterations in metabolism, the thiol/disulfide proteome, the redox-dependent and cross-talking signalling pathways and the target genes of redox regulation. Some transcription factors have been identified as proteins that perform thiol/disulfide transitions linked to the redox-regulation of specific plant promoters. In addition first mathematical models have been designed to simulate antioxidant defence and predict its response. Taken together, a profound experimental data set has been generated which allows to approach a systems biology type of understanding of antioxidant defence in photosynthesising cells in the near future. Since oxidative stress is likely to limit plant growth under stress, such a systematic understanding of antioxidant defence will help to define novel targets for breeding stress-tolerant plants.

  11. Antioxidant activities of Juniperus foetidissima essential oils against several oxidative systems

    Directory of Open Access Journals (Sweden)

    S. A. Emami

    2011-08-01

    Full Text Available The present study aimed to evaluate the antioxidant activity of essential oils obtained from branchlets of male and female trees as well as fruits of Juniperus foetidissima Willd., Cupressaceae, from Iran. For this purpose, essential oils of J. foetidissima were phytochemically analyzed and different concentrations of them were tested in five oxidative systems: 1 low-density lipoprotein oxidation; 2 linoleic acid peroxidation; 3 red blood cell hemolysis; 4 hemoglobin glycation; and 5 insulin glycation assays. In all employed systems, antioxidant effects were observed from the three tested oils though in varying degrees. The most promising activities of the oils were observed against hemoglobin and insulin glycation. Antioxidant activities of the oils did not appear to be dose-dependent. In addition, no consistent superiority in antioxidant effects was observed from a single oil in different assays. In view of the current results, J. foetidissima branchlet and fruit oils could be regarded as effective natural products with anti-glycation activity.

  12. Antioxidant components of naturally-occurring oils exhibit marked anti-inflammatory activity in epithelial cells of the human upper respiratory system

    Directory of Open Access Journals (Sweden)

    Biswal Shyam

    2011-07-01

    Full Text Available Abstract Background The upper respiratory tract functions to protect lower respiratory structures from chemical and biological agents in inspired air. Cellular oxidative stress leading to acute and chronic inflammation contributes to the resultant pathology in many of these exposures and is typical of allergic disease, chronic sinusitis, pollutant exposure, and bacterial and viral infections. Little is known about the effective means by which topical treatment of the nose can strengthen its antioxidant and anti-inflammatory defenses. The present study was undertaken to determine if naturally-occurring plant oils with reported antioxidant activity can provide mechanisms through which upper respiratory protection might occur. Methods Controlled exposure of the upper respiratory system to ozone and nasal biopsy were carried out in healthy human subjects to assess mitigation of the ozone-induced inflammatory response and to assess gene expression in the nasal mucosa induced by a mixture of five naturally-occurring antioxidant oils - aloe, coconut, orange, peppermint and vitamin E. Cells of the BEAS-2B and NCI-H23 epithelial cell lines were used to investigate the source and potential intracellular mechanisms of action responsible for oil-induced anti-inflammatory activity. Results Aerosolized pretreatment with the mixed oil preparation significantly attenuated ozone-induced nasal inflammation. Although most oil components may reduce oxidant stress by undergoing reduction, orange oil was demonstrated to have the ability to induce long-lasting gene expression of several antioxidant enzymes linked to Nrf2, including HO-1, NQO1, GCLm and GCLc, and to mitigate the pro-inflammatory signaling of endotoxin in cell culture systems. Nrf2 activation was demonstrated. Treatment with the aerosolized oil preparation increased baseline levels of nasal mucosal HO-1 expression in 9 of 12 subjects. Conclusions These data indicate that selected oil-based antioxidant

  13. Characterization and antioxidant activity of bovine serum albumin and sulforaphane complex in different solvent systems

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xueyan; Zhou, Rui; Jing, Hao, E-mail: h200521@cau.edu.cn

    2014-02-15

    Modes and influencing factors of bovine serum albumin (BSA) and sulforaphane (SFN) interaction will help us understand the interaction mechanisms and functional changes of bioactive small molecule and biomacromolecule. This study investigated interaction mechanisms of BSA and SFN and associated antioxidant activity in three solvent systems of deionized water (dH{sub 2}O), dimethyl sulfoxide (DMSO) and ethanol (EtOH), using Fourier transform infrared spectroscopy (FT-IR), fluorescence spectroscopy, synchronous fluorescence spectroscopy, DPPH and ABTS radical scavenging assays. The results revealed that SFN had ability to quench BSA's fluorescence in static modes, and to interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues, while the Trp residues were highly sensitive, which was demonstrated by fluorescence at 340 nm. Hydrophobic forces, hydrogen bonds and van der Waals interactions were all involved in BSA and SFN interaction, which were not significantly changed by three solvents. The binding constant values and binding site numbers were in a descending order of dH{sub 2}O>DMSO>EtOH. The values of free energy change were in a descending order of dH{sub 2}O>DMSO>EtOH, which indicated that the binding forces were in a descending order of dH{sub 2}O>DMSO>EtOH. There was no significant difference in antioxidant activity between SFN and BSA–SFN. Moreover, three solvents had not significant influence on antioxidant activity of SFN and BSA–SFN. -- Highlights: • We report interaction mechanisms of BSA and sulforaphane in three solvent systems. • We report antioxidant activity of BSA–sulforaphane complex in three solvent systems. • Decreasing the solvent polarity will decrease the binding of BSA and sulforaphane. • Three solvents had not influence on antioxidant activity of BSA–sulforaphane.

  14. Effect of Herbal Preparation on Heavy Metal (Cadmium) Induced Antioxidant System in Female Wistar Rats

    OpenAIRE

    2011-01-01

    Cadmium is one of the elements found to damage antioxidant systems in mammals. To ameliorate cadmium toxicity and to prevent oxidative stress, natural products may be useful. In Indian ethnobotanical practice, a mixture of 17 herbal products is used to fortify the reproductive system of women after parturition and to reverse ovarian oxidative stress. Oral administration of this extract to rats exposed to cadmium was useful in reversing oxidative stress. Two different doses of cadmium (50 ppm ...

  15. Defense Industry Clusters in Turkey

    Directory of Open Access Journals (Sweden)

    Kadir Alpaslan Demir

    2016-06-01

    Full Text Available All countries strive for a capable national defense supported by a strong national defense industry. Supporting national defense with imported defense systems has many limitations and risks because the terms of arms trade agreements between countries may easily be influenced by the political climate of the signatories. As a result, establishing an independent national defense requires a strong national defense industry. Furthermore, exporting defense systems may be an important source of national income. National defense industries mostly consist of large-scale defense firms that have the resources required for big defense contracts. However, small to medium enterprises (SMEs do not have the necessary resources, therefore they are at a disadvantage. To overcome this handicap and be part of the business, defense industry clusters mostly consisting of SMEs are being established. Provided that there is good national planning and support in this area, defense clusters consisting of SMEs may play a significant role in industry. SMEs have a chance to offer specialized services, special or customized products when needed. As a result, large defense firms subcontract certain portions of defense projects to SMEs. Since 2010, Turkey has shown signs of continuous improvement in defense industry clustering. In parallel with these developments, this study discusses the importance of clustering in the defense industry, briefly presents the state of the Turkish defense industry as highlighted by national statistics, and presents the current status of defense clusters in Turkey. The novelty of this article consists in its assessment of Turkish defense clusters.

  16. Ethernet-based integrated surveillance system for homeland security and homeland defense

    Science.gov (United States)

    Schooley, Michael G.; Thompson, Dean

    2004-09-01

    This report documents the results of an internal DRS effort to develop an Ethernet based integrated defense system to improve defense of cities, harbors, airports, power production, energy supplies, bridges, monuments, dams and so forth. Results of the integration of multiple SCOUT LPI radars and multiple Electro-optical targeting systems will be provided, illustrating the benefits of interfacing surveillance radars with imaging sensors to confirm detection and provide visual recognition and identification. An analysis of the handover errors will be provided including errors due to; sensor platforms location and orientation uncertainty, target location measurement errors, data latency and motion prediction errors, which contribute to target handoff and the re-acquisition timeline. These predictions will be compared to measured results. The system architecture will be defined including; security, support for both stationary and moving sensor platforms, remote control of sensor systems and distribution of imagery through the network and remote diagnostics, maintenance and software upgrades. Growth capabilities include secure wireless communication to/from moving platforms, integration with sonar and seismic sensors, cooperative location of friendly forces and acoustic detection and triangulation of gunshots with automated cueing of sensors and security forces to the shooters most probable location. The use of ad hoc multi-hopping wireless networking supplements hardwire networks, augments disaster response capabilities, provides high-speed communications for moving platforms and supplements GPS outage areas.

  17. DMPD: Toll-like receptors and the host defense against microbial pathogens: bringingspecificity to the innate-immune system. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15075354 Toll-like receptors and the host defense against microbial pathogens: brin... the host defense against microbial pathogens: bringingspecificity to the innate-...immune system. PubmedID 15075354 Title Toll-like receptors and the host defense against microbial pathogens:

  18. Nano-constructed Carriers Loaded With Antioxidant: Boon For Cardiovascular System.

    Science.gov (United States)

    Jain, Ashay; Kesharwani, Prashant; Garg, Neeraj Kumar; Jain, Atul; Nirbhavane, Pradip; Dwivedi, Nitin; Banerjee, Sanjeev; Iyer, Arun K; Iqbal Mohd Amin, Mohd Cairul

    2015-01-01

    In the last couple of decades antioxidant agents have entered the health market as an easy and attractive means of managing diseases. These agents are of enormous interest for an increasingly health-concerned society, and may be particularly relevant for prophylaxis of a number of diseases i.e. arthritis, cancer, metabolic and cardiovascular diseases, osteoporosis, cataracts, brain disorders, etc. Antioxidants are also favorable to vascular healthiness and symbolize useful compounds because they are able to diminish overall cardiovascular risk by acting analogous to first line therapy or as adjuvants in case of failure or in situations where first line therapy cannot be used. Furthermore, well-designed trials are indeed needed to improve the therapeutic efficacy and health benefits of antioxidants. Numerous in vivo proof-of-concepts studies are offered to underline the feasibility of nanostructure system in order to optimizing the delivery of cardiovascular drugs. The present review highlights the recent approaches for management of cardiovascular disease using different vesicular and particulate carriers, including liposomes, nanoparticles, and nanoemulsions, with a primary emphasis on those which are expected to enhance the antioxidants level.

  19. The relationship between the antioxidant system, oxidative stress and dialysis-related amyloidosis in hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Gulperi Celik

    2013-01-01

    Full Text Available End-stage renal disease (ESRD is associated with several complications that are partly due to excess amounts of reactive oxygen species and/or decreased antioxidant activity. Dialysis-related amyloidosis (DRA has also been linked to increased oxidative stress. The aim of this study was to investigate the relationships between the antioxidant system, including superoxide dismutase (SOD, malonyldialdehyde (MDA, various biochemical parameters and shoulder amyloidosis, in hemodialysis patients. We studied 107 non-diabetic chronic dialysis patients. The SOD levels correlated with right and left biceps tendon thickness (r = -0.219, P = 0.048 and r = -0.236, P = 0.031, respectively, MDA (r = -0.429, P = 0.000 and albumin levels (r = -0.319, P = 0.001. MDA levels correlated with right and left biceps thickness (r = 0.291, P = 0.006 and r = 0.337, P = 0.001, respectively and β2 microglobulin levels (r = 0.455, P = 0.000. We also identified the statistically significant relationships between MDA levels and supraspinatus tendon thickening (greater than 7 mm and right and left biceps tendon thickness (P = 0.022, P = 0.040 and P = 0.005, respectively. Our data suggest the complex relationship between antioxidants and oxidative stress and further support the roles of oxidative stress and antioxidants in DRA.

  20. Urolithins display both antioxidant and pro-oxidant activities depending on assay system and conditions.

    Science.gov (United States)

    Kallio, Tuija; Kallio, Johanna; Jaakkola, Mari; Mäki, Marianne; Kilpeläinen, Pekka; Virtanen, Vesa

    2013-11-13

    The biological effects of polyphenolic ellagitannins are mediated by their intestinal metabolites, urolithins. This study investigated redox properties of urolithins A and B using ORAC assay, three cell-based assays, copper-initiated pro-oxidant activity (CIPA) assay, and cyclic voltammetry. Urolithins were strong antioxidants in the ORAC assay, but mostly pro-oxidants in cell-based assays, although urolithin A was an antioxidant in cell culture medium. Parent compound ellagic acid was a strong extracellular antioxidant, but showed no response in the intracellular assay. The CIPA assay confirmed the pro-oxidant activity of ellagitannin metabolites. In the cell proliferation assay, urolithins but not ellagic acid decreased growth and metabolism of HepG2 liver cells. In cyclic voltammetry, the oxidation of urolithin A was partly reversible, but that of urolithin B was irreversible. These results illustrate how strongly measured redox properties depend on the employed assay system and conditions and emphasize the importance of studying pro-oxidant and antioxidant activities in parallel.

  1. Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese.

    Science.gov (United States)

    Parashar, Akshaya; Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

    2014-09-01

    The aim was to explore the responses of varied doses of manganese in mustard plants and also to test the proposition that salicylic acid induced up-regulation of antioxidant system which protect photosynthetic apparatus. Seeds were sown in pots and allowed to germinate under natural environmental conditions. At 10 days stage, soils in the pots were enriched with different levels (0, 3, 6, or 9 mM) of Mn for three days and allowed to grow till 30 day stage. At 31st day, foliage of plants was sprayed with 10 μM of salicylic acid (SA) and then allowed to grow till 45 days. Then plants were harvested to assess various growth, leaf gas exchange traits and biochemical parameters. Mn-treated plants had diminished growth, water relations and photosynthetic attributes along with carbonic anhydrase activity whereas; the level of lipid peroxidation, electrolyte leakage, accumulation of H2O2 along with proline accumulation and antioxidant enzymes increased in a concentration dependent manner. Follow-up application of SA to the Mn-stressed plants improved growth, water relations and photosynthetic traits, accelerated the activity of antioxidant enzymes and also the accumulation of proline. SA mediated tolerance to Mn-stressed plants could have due to up-regulation of antioxidant enzymes and proline accumulation.

  2. Chronic exposure to MDMA (ecstasyinduces DNA damage, impairs functional antioxidant cellular defenses, enhances the lipid peroxidation process and alters testes histopathology in male rat

    Directory of Open Access Journals (Sweden)

    Nadia Gamal Zaki, ** Laila Abdel Kawy

    2013-04-01

    decreased testosterone secretion. The results suggested that graded doses of ecstasy elicit depletion of antioxidant defence system and induce oxidative stress in testis of rats. In conclusion: the adverse effect of ecstasy on male reproduction may be due to induction of oxidative stress

  3. Functional anatomy of the explosive defensive system of bombardier beetles (Coleoptera, Carabidae, Brachininae).

    Science.gov (United States)

    Di Giulio, Andrea; Muzzi, Maurizio; Romani, Roberto

    2015-09-01

    This paper provides the first comparative anatomical study of the explosive pygidial defensive system of bombardier beetles in species classified in three brachinine subtribes: Brachinus (Brachinina), Pheropsophus (Pheropsophina) and Aptinus (Aptinina). We investigated the morphology and ultrastructure of this system using optical, fluorescence, and focused ion beam (FIB/SEM) microscopy. In doing so, we characterized and comparatively discussed: (1) the ultrastructure of the gland tissues producing hydroquinones and hydrogen peroxide (secretory lobes), and those producing catalases and peroxidases (accessory glands); (2) the complex anatomy of the collecting duct; (3) the arrangement of the muscular bundles and the folding of the cuticle of the reservoir, suggesting a functional division of this chamber (dynamic part and storage part); (4) the great structural diversity of sculpticles inside the reaction chamber, where we could recognize six main types of microsculpture located in specific districts of the chamber. Additionally, using fluorescence microscopy, we highlighted the presence of resilin in two structures strongly subjected to mechanical stress during the discharge, the valve and the turrets of the reaction chamber. The results of this paper give a solid anatomic overview of the most popular beetle defensive system, contributing to the debate on its evolution within the Carabidae.

  4. Composition and antioxidant capacity of low-salt meat emulsion model systems containing edible seaweeds.

    Science.gov (United States)

    López-López, I; Bastida, S; Ruiz-Capillas, C; Bravo, L; Larrea, M T; Sánchez-Muniz, F; Cofrades, S; Jiménez-Colmenero, F

    2009-11-01

    The study was designed to determine the influence of the addition of edible seaweeds, Sea Spaghetti (Himanthalia elongata), Wakame (Undaria pinnatifida), and Nori (Porphyra umbilicalis), on fatty acid composition, amino acid profile, protein score, mineral content and antioxidant capacity in low-salt meat emulsion model systems. The addition of seaweeds caused an increase (P<0.05) in n-3 polyunsaturated fatty acids (PUFA) and a decrease (P<0.05) in the n-6/n-3 PUFA ratio. The thrombogenic index significantly decreased (P<0.05) in Nori and Wakame meat samples. Meat systems made with added seaweeds had lower (P<0.05) sodium contents than control samples. In general, addition of seaweeds to products increased (P<0.05) the concentrations of K, Ca, Mg and Mn. The presence of Nori caused an increase (P<0.05) in levels of serine, glycine, alanine, valine, tyrosine, phenylalanine and arginine, whereas Wakame and Sea Spaghetti produced no significant changes in amino acid profiles in the model systems. The inclusion of Sea Spaghetti increased the sulphur amino acid score by 20%. The added seaweeds supplied the meat samples with soluble polyphenolic compounds, which increased the antioxidant capacity of the systems. The polyphenol supply and antioxidant increase were greatest (P<0.05) in the samples containing Sea Spaghetti.

  5. Functional state of rat cardiomyocytes and blood antioxidant system under psycho-emotional stress

    Institute of Scientific and Technical Information of China (English)

    Zurab Kuchukashvili; Ketevan Menabde; Matrona Chachua; George Burjanadze; Manana Chipashvili; Nana Koshoridze

    2011-01-01

    We studied the functionality of the antioxidant system in laboratory rat cardiomyocytes and blood under psychoemotional stress.It was found that 40-day isolation and violation of diurnal cycle among the animals were accompanied by the intensification of lipid peroxidation process and marked with a reduced activity of antioxidant system enzymes, such as catalase and superoxide dismutase activity.The results suggested that psycho-emotional stress was accompanied by oxidative stress, causing a reduction in the intensity of energy metabolism in cardiomyocytes, which was further strengthened by the fact that the activity of the enzymes involved in ATP synthesis in mitochondria was reduced.Based on the results, we proposed that psychological stress is one of the factors contributing to the development of various cardiac diseases.

  6. 32 CFR 37.1025 - Must I report information to the Defense Assistance Awards Data System?

    Science.gov (United States)

    2010-07-01

    ... SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Executing the Award Reporting Information About the Award § 37.1025 Must I report information to the Defense... 32 National Defense 1 2010-07-01 2010-07-01 false Must I report information to the...

  7. Bifurcation and complex dynamics of a discrete-time predator-prey system involving group defense

    Directory of Open Access Journals (Sweden)

    S. M. Sohel Rana

    2015-09-01

    Full Text Available In this paper, we investigate the dynamics of a discrete-time predator-prey system involving group defense. The existence and local stability of positive fixed point of the discrete dynamical system is analyzed algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-Sacker bifurcation in the interior of R+2 by using bifurcation theory. Numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamical behaviors, including phase portraits, period-7, 20-orbits, attracting invariant circle, cascade of period-doubling bifurcation from period-20 leading to chaos, quasi-periodic orbits, and sudden disappearance of the chaotic dynamics and attracting chaotic set. The Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors.

  8. Configuration of Risk Monitor System by PLant Defense-In.Depth Monitor and Relability Monitor

    DEFF Research Database (Denmark)

    Yoshikawa, Hidekazu; Lind, Morten; Yang, Ming;

    2012-01-01

    A new method of risk monitor system of a nuclear power plant has been proposed from the aspect by what degree of safety functions incorporated in the plant system is maintained by multiple barriers of defense-in-depth (DiD). Wherein, the central idea is plant DiD risk monitor and reliability...... monitor derived from the four aspects of (i) design principle of nuclear safety to realize DiD concept, (ii) definition of risk and risk to be monitored, (iii) severe accident phenomena as major risk, (iv) scheme of risk ranking, and (v) dynamic risk display. In this paper, the overall frame...... of the proposed frame on risk monitor system is summarized and the detailed discussion is made on the definitions of major terminologies of risk, risk ranking, anatomy of fault occurrence, two-layer configuration of risk monitor, how to configure individual elements of plant DiD risk monitor and its example...

  9. A glutathione-based system for defense against carbonyl stress in Haemophilus influenzae

    Directory of Open Access Journals (Sweden)

    Kidd Stephen P

    2012-07-01

    Full Text Available Abstract Background adhC from Haemophilus influenzae encodes a glutathione-dependent alcohol dehydrogenase that has previously been shown to be required for protection against killing by S-nitrosoglutathione (GSNO. This group of enzymes is known in other systems to be able to utilize substrates that form adducts with glutathione, such as aldehydes. Results Here, we show that expression of adhC is maximally induced under conditions of high oxygen tension as well as specifically with glucose as a carbon source. adhC could also be induced in response to formaldehyde but not GSNO. An adhC mutant was more susceptible than wild-type Haemophilus influenzae Rd KW20 to killing by various short chain aliphatic aldehydes, all of which can be generated endogenously during cell metabolism but are also produced by the host as part of the innate immune response. Conclusions These results indicate that AdhC plays a role in defense against endogenously generated reactive carbonyl electrophiles in Haemophilus influenzae and may also play a role in defense against the host innate immune system.

  10. Catalase prevents maternal diabetes-induced perinatal programming via the Nrf2-HO-1 defense system.

    Science.gov (United States)

    Chang, Shiao-Ying; Chen, Yun-Wen; Zhao, Xin-Ping; Chenier, Isabelle; Tran, Stella; Sauvé, Alexandre; Ingelfinger, Julie R; Zhang, Shao-Ling

    2012-10-01

    We investigated whether overexpression of catalase (CAT) in renal proximal tubular cells (RPTCs) could prevent the programming of hypertension and kidney disease in the offspring of dams with maternal diabetes. Male offspring of nondiabetic and diabetic dams from two transgenic (Tg) lines (Hoxb7-green fluorescent protein [GFP]-Tg [controls] and Hoxb7/CAT-GFP-Tg, which overexpress CAT in RPTCs) were studied from the prenatal period into adulthood. Nephrogenesis, systolic blood pressure, renal hyperfiltration, kidney injury, and reactive oxygen species (ROS) generation were assessed. Gene expression of transforming growth factor-β1 (TGF-β1), nuclear factor erythroid 2p45-related factor-2 (Nrf2), and heme oxygenase-1 (HO-1) was tested in both in vitro and in vivo studies. Renal dysmorphogenesis was observed in offspring of Hoxb7-GFP-Tg dams with severe maternal diabetes; the affected male offspring displayed higher renal ROS generation and developed hypertension and renal hyperfiltration as well as renal injury with heightened TGF-β1 expression in adulthood. These changes were ameliorated in male offspring of diabetic Hoxb7/CAT-GFP-Tg dams via the Nrf2-HO-1 defense system. CAT promoted Nrf2 nuclear translocation and HO-1 gene expression, seen in both in vitro and in vivo studies. In conclusion, CAT overexpression in the RPTCs ameliorated maternal diabetes-induced perinatal programming, mediated, at least in part, by triggering the Nrf2-HO-1 defense system.

  11. Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains.

    Science.gov (United States)

    Abreu, Renata Viana; Silva-Oliveira, Eliane Moretto; Moraes, Márcio Flávio Dutra; Pereira, Grace Schenatto; Moraes-Santos, Tasso

    2011-10-01

    Coffee is a popular beverage consumed worldwide and its effect on health protection has been well studied throughout literature. This study investigates the effect of chronic coffee and caffeine ingestion on cognitive behavior and the antioxidant system of rat brains. The paradigms of open field and object recognition were used to assess locomotor and exploratory activities, as well as learning and memory. The antioxidant system was evaluated by determining the activities of glutathione reductase (GR), glutathione peroxidase (GPx) and superoxide dismutase (SOD), as well as the lipid peroxidation and reduced glutathione content. Five groups of male rats were fed for approximately 80 days with different diets: control diet (CD), fed a control diet; 3% coffee diet (3%Co) and 6% coffee diet (6%Co), both fed a diet containing brewed coffee; 0.04% caffeine diet (0.04%Ca) and 0.08% caffeine diet (0.08%Ca), both fed a control diet supplemented with caffeine. The estimated caffeine intake was approximately 20 and 40 mg/kg per day, for the 3%Co-0.04%Ca and 6%Co-0.08%Ca treatments, respectively. At 90 days of life, the animals were subjected to the behavioral tasks and then sacrificed. The results indicated that the intake of coffee, similar to caffeine, improved long-term memory when tested with object recognition; however, this was not accompanied by an increase in locomotor and exploratory activities. In addition, chronic coffee and caffeine ingestion reduced the lipid peroxidation of brain membranes and increased the concentration of reduced-glutathione. The activities of the GR and SOD were similarly increased, but no change in GPx activity could be observed. Thus, besides improving cognitive function, our data show that chronic coffee consumption modulates the endogenous antioxidant system in the brain. Therefore, chronic coffee ingestion, through the protection of the antioxidant system, may play an important role in preventing age-associated decline in the cognitive

  12. Host Active Defense Responses Occur within 24 Hours after Pathogen Inoculation in the Rice Blast System

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-hua; JIA Yu-lin; LIN Hui; Adair INTERN; Barbara VALENT; J. Neil RUTGER

    2007-01-01

    Phenotypical, cytological and molecular responses of rice to the fungus Magnaporthe grisea were studied using rice cultivars and lesion mimic plants. The cultivar Katy was susceptible to several virulent M. grisea isolates, and a Sekiguchi like-lesion mimic mutant of Katy (LmmKaty) showed enhanced resistance to these isolates. Lesion mimic phenotype of LmmKaty was rapidly induced by virulent M. grisea isolates or by avirulent ones only at high levels of inoculum.Autofluorescence (a sign of an active defense response) was visible under ultraviolet light 24 h after localized inoculation in the incompatible interaction, whereas, not evident in the compatible interaction. Autofluorescence was also observed in LmmKaty 20 h after pathogen inoculation, indicating that rapid cell death is a mechanism of LmmKaty to restrict pathogen invasion. Rapid accumulations of defense related (DR) gene transcripts, phenylalanine ammonia lyase and β-glucanase,were observed beginning at 6 h and were obvious at 16 h and 24 h after inoculation in an incompatible interaction. Rapid transcript accumulations of PR-1 and chitinase had occurred by 24 h after inoculation in an incompatible interaction.Accumulations of these transcripts were delayed in the compatible interaction. These results indicate that host active defense responses occur 24 h after pathogen inoculation and that LmmKaty exhibits enhanced resistance to M. grisea. It is suggested that the autofluorescence and expression of the DR genes after heavy inoculation are important cytological and molecular markers respectively for early determination of the host response to M. grisea in the rice blast system.

  13. [The activity of prooxidant-antioxidant system in loach embryos under the action of microwave radiation].

    Science.gov (United States)

    Iaremchuk, M M; Dyka, M V; Sanahurs'kyĭ, D I

    2014-01-01

    Electromagnetic radiation (EMR) affects biological organisms, primarily on the cellular level. However, the effects of EMR at low-intensity exposure on animals and state of metabolic systems are not fully defined yet. Thus, research of microwave radiation influence on the processes of lipid peroxidation and antioxidant protection system is important for understanding the mechanisms of EMR action on the cell, in particular, and organism development on the whole. The content of lipid peroxidation products--lipid hydroperoxides, thiobarbituric acid reactive substances and the activity of antioxidant enzymes--superoxide dismutase, glutathione peroxidase and catalase in loach embryos under the action of microwave radiation (GSM-900 MHz, SAR = 1.1 Vt/kg) lasting 1; 5; 10 and 20 min during early embryogenesis were studied. It has been found that content of lipid peroxidation products in germ cells undergoes significant changes under the action of low-intensity EMR. The effect of microwave radiation (1, 5, 10 min) leads to the increase of superoxide dismutase activity, nevertheless, 20 min exposure decreased this index to the level of control values as it is shown. It has been established that EMR at frequencies used for mobile communications reduce the activity of antioxidant protection system components, especially catalase and glutathione peroxidase. The growth of catalase activity at the 10-cell stage of blastomere division (P < 0.05) is an exception. The results of two-way analysis of variance attest that microwave radiation factor causes the large part of all observable modifications.

  14. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence.

    Science.gov (United States)

    Koonin, Eugene V

    2017-02-10

    Complementarity between nucleic acid molecules is central to biological information transfer processes. Apart from the basal processes of replication, transcription and translation, complementarity is also employed by multiple defense and regulatory systems. All cellular life forms possess defense systems against viruses and mobile genetic elements, and in most of them some of the defense mechanisms involve small guide RNAs or DNAs that recognize parasite genomes and trigger their inactivation. The nucleic acid-guided defense systems include prokaryotic Argonaute (pAgo)-centered innate immunity and CRISPR-Cas adaptive immunity as well as diverse branches of RNA interference (RNAi) in eukaryotes. The archaeal pAgo machinery is the direct ancestor of eukaryotic RNAi that, however, acquired additional components, such as Dicer, and enormously diversified through multiple duplications. In contrast, eukaryotes lack any heritage of the CRISPR-Cas systems, conceivably, due to the cellular toxicity of some Cas proteins that would get activated as a result of operon disruption in eukaryotes. The adaptive immunity function in eukaryotes is taken over partly by the PIWI RNA branch of RNAi and partly by protein-based immunity. In this review, I briefly discuss the interplay between homology and analogy in the evolution of RNA- and DNA-guided immunity, and attempt to formulate some general evolutionary principles for this ancient class of defense systems.

  15. Effect of Systemic Antioxidant Allopurinol Therapy on Skin Flap Survival

    Science.gov (United States)

    Rasti Ardakani, Mehdi; Al-Dam, Ahmed; Rashad, Ashkan; Shayesteh Moghadam, Ali

    2017-01-01

    BACKGROUND It has been reported that systemic administration of allopurinol improves cell survival. This study was aimed to evaluate effects of allopurinol on skin flaps in dogs. METHODS Twenty dogs underwent one skin flap surgery with a 2-week interval. The first procedure was performed according to the standard protocols. The second phase was started by a 1-week pretreatment with allopurinol. Length of the necrotic zone was measured and recorded daily. At each phase, flaps were removed and sent for histopathological study after 1 week observation. RESULTS Mean length of the necrotic zone in allopurinol treated skin flaps has been significantly less than normal flaps over all 7 days of observation (p<0.0001). Histopathology study showed less inflammation and more normal tissue structure in the allopurinol treated skin flaps. CONCLUSION It was demonstrated that systemic administration of allopurinol significantly improved skin flap survival. PMID:28289614

  16. Crystalline fibrillar gel formation in aqueous surfactant-antioxidant system.

    Science.gov (United States)

    Joseph, Linet Rose; Tata, B V R; Sreejith, Lisa

    2015-08-01

    Cetyltrimethylammonium bromide (CTAB) is a well-known cationic surfactant capable to micellize into diverse morphologies in aqueous medium. We observed the formation of an opaque gel state from aqueous CTAB solution in the presence of the aromatic additive, para-coumaric acid (PCA). Optical microscopic images revealed the presence of large fibrils in the system at room temperature. Gel nature of the fibrils was confirmed by rheological measurements. Presence of interstitial water in the fibrils was recognized with Raman spectroscopy. On heating the sample above 30 (°) C, the fibrillar gel state changes to a transparent liquid state with Newtonian flow properties. Dynamic light scattering study hinted the presence of small micelles in the solution above 30 (°) C. Thus the system showed a temperature-dependent structural transition from opaque water-swollen gel to transparent micellar liquid. The formation of water-swollen fibrillar network is attributed to surfactant-additive intermolecular interactions in aqueous medium. Transition to micelle phase above 30 (°) C is related to Kraft transition which is observed at significantly lower temperature for CTAB in the absence of PCA. The structural features of PCA play a key role in promoting fibrillar network formation and elevating the Kraft transition in aqueous solution of CTAB.

  17. Leaf Photosynthetic Activity and Antioxidant Defense Associated with Sub1 QTL in Rice Subjected to Submergence and Subsequent Re-aeration

    Institute of Scientific and Technical Information of China (English)

    Debabrata PANDA; Ramani Kumar SARKAR

    2012-01-01

    The influence of submergence on photosynthesis and antioxidant capacities in rice varieties Swarna and Swarna-Sub1 with or without Sub1 QTL were evaluated under control,simulated complete submergence and subsequent re-aeration.The leaf photosynthetic rate and stomatal conductance decreased in the both varieties during the progression of submergence as compared to the control plants,but significant varietal differences were observed after 1 d of submergence.Submergence also altered the PSll activity,as reflected in a decrease in the values of Fo,Fm and Fv/Fm and degradation of chlorophyll,more in Swama than in Swarna-Sub1.During early submergence period,the activities of superoxide dismutase (SOD),ascorbate peroxidase (APX),dehydroascorbate reductase (DHAR),glutathione reductase (GR) against reactive oxygen species were increased in the both varieties.However,with the progress of submergence period (after 7 d),the activities of SOD,catalase (CAT),APX,guaiacol peroxidase (GPX),GR and DHAR declined,more in Swama than in Swarna-Sub1.During re-aeration,Swarna-Sub1 showed significant increase of above antioxidant enzymes but not in Swarna.Swama-Sub1 improves photosynthetic activity,showing higher photosynthetic rate compared to Swarna under submergence and subsequent re-aeration because of less degradation of chlorophyll,higher stomatal conductance,and efficient PSll activity along with better antioxidant protection from oxidative damage.

  18. Antioxidative Defense Responses to lead-induced Oxidative Stress in Glycine max L. CV. Merrill grown in Different pH Gradient

    Directory of Open Access Journals (Sweden)

    Mishra, Pankaj Kishor

    2013-04-01

    Full Text Available Physiological and biochemical changes as well as the activities of anti-oxidative enzymes under lead (Pb2+ phytotoxicity were investigated in 20 days old soybean (Glycine max L. seedlings grown hydroponically in the laboratory under different pH conditions. The rapid uptake of Pb 2+ was observed immediately after the start of treatment. The quantity of accumulation of Pb2+ was much higher in roots than in shoots, its level rising with increasing pH from 3.0 to 8.0 . Not only that, an oxidative stress conditions were observed due to increased level of superoxide anion radical and hydrogen peroxide in shoots and root cells of 20 days old seedlings when treated with Pb(NO32 at a concentration of 0, 500, 1000 and 2000 μM. Spectrometric assays of seedlings showed increased level of activities of antioxidant enzymes like catalase, peroxidase and glutathione reductase. The presence of thiobarbituric acid reacting substances (TBARS indicates the enhanced lipid peroxidation compared to controls. The alteration in the activities of the antioxidant enzymes and the induction of lipid peroxidation reflects the presence of Pb2+, which may cause oxidative stress.

  19. Determination of Carbonyl Group Content in Plasma Proteins as a Useful Marker to Assess Impairment in Antioxidant Defense in Patients with Eales′ Disease

    Directory of Open Access Journals (Sweden)

    Rajesh Mohanraj

    2004-01-01

    Full Text Available Purpose: Formation of protein carbonyl groups is considered an early biomarker for the oxidant/antioxidant barrier impairment in various inflammatory diseases. We evaluated the intensity of free radical reactions in patients with Eales′ disease, an idiopathic inflammatory condition of the retina. Methods: Twenty patients with Eales′ disease in active vasculitis stage, 15 patients with Eales′ disease in healed vasculitis stage and 20 healthy control subjects were recruited for the study. Plasma protein carbonyl groups,plasma glutathione (GSH superoxide dismutase (SOD activity and thiobarbituric acid reactive substances (TBARS were determined in erythrocytes. Results: Plasma protein carbonyl content was elevated by a factor of 3.5 and 1.8 respectively in active and healed vasculitis stages. The increase of carbonyl group content in active and healed stage of patients with Eales′ disease correlated with diminished SOD activity and GSH content. There was also increased accumulation of TBARS in active and healed vasculitis stages of Eales′ disease, and this correlated with diminished SOD activity. Conclusion: Our results showed that protein carbonyl group content increases with severity of Eales′ disease. The increase in carbonyl content correlated with diminished antioxidant status. This confirms an earlier report that free radical mediated tissue damage occurs in Eales′ disease. The determination of protein carbonyl content may be used as a simple biomarker to monitor the efficacy of antioxidant supplementation in controlling retinal vasculitis in patients with Eales′ disease.

  20. The Roles of 4β-Hydroxywithanolide E from Physalis peruviana on the Nrf2-Anti-Oxidant System and the Cell Cycle in Breast Cancer Cells.

    Science.gov (United States)

    Peng, Chieh Yu; You, Bang Jau; Lee, Chia Lin; Wu, Yang Chang; Lin, Wen Hsin; Lu, Te Ling; Chang, Fei-Ching; Lee, Hong Zin

    2016-01-01

    4[Formula: see text]-Hydroxywithanolide E is an active component of the extract of Physalis peruviana that has been reported to exhibit antitumor effects. Although the involvement of reactive oxygen species (ROS) production and the ataxia-telangiectasia mutated protein (ATM)-dependent DNA damage signaling pathway in 4[Formula: see text]-hydroxywithanolide E-induced apoptosis of breast cancer MCF-7 cells was demonstrated in our previous study, the relationship between ROS production and the cellular defense system response in 4[Formula: see text]-hydroxywithanolide E-induced cell death requires further verification. The present study suggests that ROS play an important role in 4[Formula: see text]-hydroxywithanolide E-induced MCF-7 cell death in which anti-oxidants, such as glutathione or N-acetylcysteine, can resist the 4[Formula: see text]-hydroxywithanolide E-induced accumulation of ROS and cell death. Furthermore, N-acetylcysteine or glutathione can reverse the 4[Formula: see text]-hydroxywithanolide E-induced changes in the cell cycle distribution and the expression of cell cycle regulators. We found that the 4[Formula: see text]-hydroxywithanolide E-induced ROS accumulation was correlated with the upregulation of Nrf2 and Nrf2-downstream genes, such as antioxidative defense enzymes. In general, the activity of Nrf2 is regulated by the Ras signalling pathway. However, we demonstrated that Nrf2 was activated during 4[Formula: see text]-hydroxywithanolide E-induced MCF-7 cell death in spite of the 4[Formula: see text]-hydroxywithanolide E-induced inhibition of the Ras/Raf/ERK pathway. The activity and protein expression of superoxide dismutase and catalase were involved in the 4[Formula: see text]-hydroxywithanolide E-induced ROS production in MCF-7 cells. Furthermore, 4[Formula: see text]-hydroxywithanolide E was demonstrated to significantly reduce the sizes of the tumor nodules in the human breast cancer MDA-MB231 xenograft tumor model.

  1. The Sinorhizobium (Ensifer) fredii HH103 Type 3 Secretion System Suppresses Early Defense Responses to Effectively Nodulate Soybean.

    Science.gov (United States)

    Jiménez-Guerrero, Irene; Pérez-Montaño, Francisco; Monreal, José Antonio; Preston, Gail M; Fones, Helen; Vioque, Blanca; Ollero, Francisco Javier; López-Baena, Francisco Javier

    2015-07-01

    Plants that interact with pathogenic bacteria in their natural environments have developed barriers to block or contain the infection. Phytopathogenic bacteria have evolved mechanisms to subvert these defenses and promote infection. Thus, the type 3 secretion system (T3SS) delivers bacterial effectors directly into the plant cells to alter host signaling and suppress defenses, providing an appropriate environment for bacterial multiplication. Some rhizobial strains possess a symbiotic T3SS that seems to be involved in the suppression of host defenses to promote nodulation and determine the host range. In this work, we show that the inactivation of the Sinorhizobium (Ensifer) fredii HH103 T3SS negatively affects soybean nodulation in the early stages of the symbiotic process, which is associated with a reduction of the expression of early nodulation genes. This symbiotic phenotype could be the consequence of the bacterial triggering of soybean defense responses associated with the production of salicylic acid (SA) and the impairment of the T3SS mutant to suppress these responses. Interestingly, the early induction of the transcription of GmMPK4, which negatively regulates SA accumulation and defense responses in soybean via WRKY33, could be associated with the differential defense responses induced by the parental and the T3SS mutant strain.

  2. Effect of herbal preparation on heavy metal (cadmium) induced antioxidant system in female Wistar rats.

    Science.gov (United States)

    Dailiah Roopha, P; Padmalatha, C

    2012-06-01

    Cadmium is one of the elements found to damage antioxidant systems in mammals. To ameliorate cadmium toxicity and to prevent oxidative stress, natural products may be useful. In Indian ethnobotanical practice, a mixture of 17 herbal products is used to fortify the reproductive system of women after parturition and to reverse ovarian oxidative stress. Oral administration of this extract to rats exposed to cadmium was useful in reversing oxidative stress. Two different doses of cadmium (50 ppm and 200 ppm) were given to Wistar rats aged 45 and 65 days. An herbal extract derived from 17 plants was administered orally every day at a dose level of 200 mg/kg of body weight to the rats exposed to cadmium. A battery of enzymes involved in antioxidant activity in the ovary, including superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione-s-transferase (GST) were measured in the control, cadmium-exposed rats without treatment and in the cadmium-exposed rats treated with herbal extract. The reduction in SOD, catalase, GPx and GST activity after cadmium exposure improved significantly in the rats treated with the herbal extract (p antioxidant enzymes due to cadmium exposure was reversed significantly with herbal extract administration. The synergistic effect of each bioactive compound in different herbal extracts requires further study.

  3. Digital Array Radar for Ballistic Missile Defense and Counter-Stealth Systems Analysis and Parameter Tradeoff Study

    Science.gov (United States)

    2006-09-14

    Missile BMD Ballistic Missile Defense CAS Computer Algebra System CDD Capability Development Document CONOPS Concept of Operations CONUS Continental...this section. Analysis and calculations described in this section were conducted using Waterloo Maple® 7 Computer Algebra System (CAS). Initially...When two or more electromagnetic waves combine, their electric fields are integrated vectorially at each point in space for any

  4. Oxidants, antioxidants and carcinogenesis.

    Science.gov (United States)

    Ray, Gibanananda; Husain, Syed Akhtar

    2002-11-01

    Reactive oxygen metabolites (ROMs), such as superoxide anions (O2*-) hydrogen peroxide (H2O2), and hydroxyl radical (*OH), malondialdehyde (MDA) and nitric oxide (NO) are directly or indirectly involved in multistage process of carcinogenesis. They are mainly involved in DNA damage leading sometimes to mutations in tumour suppressor genes. They also act as initiator and/or promotor in carcinogenesis. Some of them are mutagenic in mammalian systems. O2*-, H2O2 and *OH are reported to be involved in higher frequencies of sister chromatid exchanges (SCEs) and chromosome breaks and gaps (CBGs). MDA, a bi-product of lipid peroxidation (LPO), is said to be involved in DNA adduct formations, which are believed to be responsible for carcinogenesis. NO, on the other hand, plays a duel role in cancer. At high concentration it kills tumour cells, but at low concentration it promotes tumour growth and metastasis. It causes DNA single and double strand breaks. The metabolites of NO such as peroxynitrite (OONO-) is a potent mutagen that can induce transversion mutations. NO can stimulate O2*-/H2O2/*OH-induced LPO. These deleterious actions of oxidants can be countered by antioxidant defence system in humans. There are first line defense antioxidants such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). SOD converts O2*- to H2O2, which is further converted to H2O with the help of GPx and CAT. SOD inhibits *OH production. SOD also act as antipoliferative agent, anticarcinogens, and inhibitor at initiation and promotion/transformation stage in carcinogenesis. GPx is another antioxidative enzyme which catalyses to convert H2O2, to H2O. The most potent enzyme is CAT. GPx and CAT are important in the inactivation of many environmental mutagens. CAT is also found to reduce the SCE levels and chromosomal aberrations. Antioxidative vitamins such as vitamin A, E, and C have a number of biological activities such as immune stimulation, inhibition of

  5. Antioxidant properties of carnosine re-evaluated with oxidizing systems involving iron and copper ions.

    Science.gov (United States)

    Mozdzan, Monika; Szemraj, Janusz; Rysz, Jacek; Nowak, Dariusz

    2005-05-01

    Carnosine has antioxidant properties and is efficient in the treatment of chemically-induced inflammatory lesions in animals. However, some studies question its biological significance as antioxidant and show lack of protection and even pro-oxidant effect of carnosine in systems containing nickel and iron ions. The ability of carnosine to: (1) reduce Fe(3+) into Fe(2+) ions; (2) protect deoxyribose from oxidation by Fe(2+)-, Fe(3+)-, and Cu(2+)-H(2)O(2)-EDTA systems; (3) protect DNA from damage caused by Cu(2+)-, and Fe(2+)-H(2)O(2)-ascorbate systems; (4) inhibit HClO- and H(2)O(2)-peroxidase-induced luminol dependent chemiluminescence was tested in vitro. At concentration 10 mM carnosine reduced 16.6+/-0.5 nmoles of Fe(3+) into Fe(2+) ions during 20 min. incubation and added to plasma significantly increased its ferric reducing ability. Inhibition of deoxyribose oxidation by 10 mM carnosine reached 56+/-5, 40+/-11 and 30+/-11% for systems containing Fe(2+), Fe(3+) and Cu(2+) ions, respectively. The damage to DNA was decreased by 84+/-9 and 61+/-14% when Cu(2+)-, and Fe(2+)-H(2)O(2)-ascorbate systems were applied. Combination of 10 mM histidine with alanine or histidine alone (but not alanine) enhanced 1.3 and 2.3 times (Peffect on DNA. Carnosine at 10 and 20 mM decreased by more than 90% light emission from both chemiluminescent systems. It is concluded that carnosine has significant antioxidant activity especially in the presence of transition metal ions. However, hydrolysis of carnosine with subsequent histidine release may be responsible for some pro-oxidant effects.

  6. Influence of drugs with antioxidant properties on the state of the sperm antioxidant system in men with excretory-toxic forms of infertility

    Directory of Open Access Journals (Sweden)

    O.K. Onufrovych

    2013-10-01

    Full Text Available Since the development of many disorders of the reproductive function in men involves processes of free radical oxidation, the purpose of this study was to form an evaluation of the pro- and antioxidant status of sperm and to restore its biological usefulness in men with excretory-toxic forms of infertility by using drugs with antioxidant properties. It is shown that excretory-toxic forms of infertility in men are mostly caused by such infectious agents as Chlamydia (22%, Chlamydia + Ureaplasma (16%, Chlamydia + Trichomonas (13%, Ureaplasma (10%. This reduces the total number of sperm in the ejaculate by 2.7 times, and motility by 1.8 times. The number of abnormal forms increases by 1.75 times. With the development of chronic inflammation of the male sex organs sperm lipid peroxidation increases by 1.3 times while the activity of glutathione peroxidase decreases (by 2.3 times and that of glutathione reductase (by 1.7 times. We observed a close correlation between the low biological quality of sperm (low concentration, low number and motility of sperm in the ejaculate with activation of lipid peroxidation and inhibition of activity of the glutathione antioxidant system. In the case of superoxide dismutase, the negative impact of reactive oxygen species on this enzyme was not observed. A course of drugs with antioxidant properties – vitamin E, vitamin C and zinc sulfate leads to improvement in the indicators on the spermagram (mostly sperm mobility and morphology, to reduction of the number of peroxide compounds and activation of the glutathione antioxidant system. In this case, the activity of glutathione peroxidase is increased by 1.5 times and the activity of glutathione reductase by 1.3 times. The activity of superoxide dismutase at the same time approaches the norm for zoospermia. The data obtained show that one of the pathogenic factors of the chronic inflammation of male sex organs, considered as a main developmental reason for infertility

  7. Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera cultivated in organic and conventional systems

    Directory of Open Access Journals (Sweden)

    Bunea Claudiu-Ioan

    2012-07-01

    Full Text Available Abstract Background Organic agriculture involve plants which are cultivated without using synthetic pesticides, herbicides or fertilizers and promotes biodiversity, biological cycles and improve the product quality. The carotenoids, total polyphenols and the antioxidant activity from skins of some wine and table grapes cultivated in organic and conventional agriculture were studied. Results The main carotenoids identified using high performance liquid chromatography were lutein and ß-carotene. Muscat Ottonel variety has the highest ß-carotene concentration 504.9 μg/kg for organic and 593.2 μg/kg for conventional grapes. For the organic farming, the total polyphenols content were in the range of 163.23 – 1341.37 mg GAE/kg fresh weight (FW and 148.47 – 1231.38 mg GAE/kg FW for the conventional grapes. The highest ORAC values were obtained for blue-black variety Napoca in both farming system (43.5 ± 0.95 μmol TE/g organic; 40.4 ± 0.5 μmol TE/g conventional and lowest for Aromat de Iaşi (16.8 ± 0.6 μmol TE/g organic; 14.7 ± 1.6 μmol TE/g conventional. Napoca variety showed also the highest antioxidant activity measured by DPPH method in both cultivated system. Conclusion Nine grape varieties cultivated in organic and conventional systems were compared regarding the carotenoids, total polyphenols and antioxidant activity. The white grape varieties have a higher carotenoids content compared with the blue-black cultivars while the blue-black varieties contain higher TPC and exhibit higher antioxidant activity (except for Muscat Hamburg-ORAC. Vitis vinifera grape skins originating from wine or table grape varieties can be used as a potential source of natural antioxidants.

  8. Nanostructured Systems Containing Rutin: In Vitro Antioxidant Activity and Photostability Studies

    Directory of Open Access Journals (Sweden)

    Lima Fernanda

    2010-01-01

    Full Text Available Abstract The improvement of the rutin photostability and its prolonged in vitro antioxidant activity were studied by means of its association with nanostructured aqueous dispersions. Rutin-loaded nanocapsules and rutin-loaded nanoemulsion showed mean particle size of 124.30 ± 2.06 and 124.17 ± 1.79, respectively, polydispersity index below 0.20, negative zeta potential, and encapsulation efficiency close to 100%. The in vitro antioxidant activity was evaluated by the formation of free radical ·OH after the exposure of hydrogen peroxide to a UV irradiation system. Rutin-loaded nanostructures showed lower rutin decay rates [(6.1 ± 0.6 10−3 and (5.1 ± 0.4 10−3 for nanocapsules and nanoemulsion, respectively] compared to the ethanolic solution [(35.0 ± 3.7 10−3 min−1] and exposed solution [(40.1 ± 1.7 10−3 min−1] as well as compared to exposed nanostructured dispersions [(19.5 ± 0.5 10−3 and (26.6 ± 2.6 10−3, for nanocapsules and nanoemulsion, respectively]. The presence of the polymeric layer in nanocapsules was fundamental to obtain a prolonged antioxidant activity, even if the mathematical modeling of the in vitro release profiles showed high adsorption of rutin to the particle/droplet surface for both formulations. Rutin-loaded nanostructures represent alternatives to the development of innovative nanomedicines.

  9. Effect of methoxychlor on antioxidant system of goat epididymal sperm in vitro

    Institute of Scientific and Technical Information of China (English)

    Bindu Gangadharan; M. Arul Murugan; P.P. Mathur

    2001-01-01

    Aim: To evaluate the effect of methoxychlor on the antioxidant system of goat epididymal sperm. Methods:Epididymis of adult goat was obtained from local slaughter houses and sperm were collected by chopping the epididymis in modified Ringer's phosphate solution (RPS). After several washings, the sperm samples were dispersed in RPS and incubated with methoxychlor (1 μnol/L, 10 μmol/L and 100 μmol/L) and methoxychlor + vitamin C (100μmol/L each) for 3 h at 32℃. After incubation, the sperm motility and viability were assessed. An aliquot of sperm sample was homogenized, centrifuged and used for the assay of superoxide dismutase, glutathione peroxidase, glutathione reductase and lipid peroxidation. Results: In methoxychlor-incubated sperm and in sperm co-incubated with methoxychlor and vitamin C, the sperm motility and viability showed no significant changes as compared to the corresponding controls. In methoxychlor-incubated sperm the activity of superoxide dismutase, glutathione reductase and glutathione peroxidase were decreased while lipid peroxidation was increased in a dose-dependent manner. Co-incubation of sperm with methoxychlor and vitamin C showed no changes in the activity of superoxide dismutase, glutathione reductase and glutathione peroxidase and in the level of lipid peroxidation. Conclusion: Methoxychlor induced oxidative stress in epididymal sperm of goats by decreasing the levels of antioxidant enzymes. Co-incubation of sperm with methoxychlor and vitamin C, a natural antioxidant, reversed the effect of methoxychlor.

  10. Effect of lindane on testicular antioxidant system and steroidogenic enzymes in adult rats

    Institute of Scientific and Technical Information of China (English)

    R. Sujatha; K.C. Chitin; C. Latchoumycandane; P.P. Mathur

    2001-01-01

    Aim: To find out the effect of lindane on testicular antioxidant system and testicular steroidogenesis in adult male rats. Methods: Adult male rats were orally administered with lindane at a dose of 5.0 mg/kg body weight per day for 30 days. Twenty-four hours after the last treatment the rats were killed using anesthetic ether. Testes, epididymis,seminal vesicles and ventral prostate were removed and weighed. A 10% testicular homogenate was prepared and cen trifuged at 4°C. The supematant was used for various biochemical estimations. Results: The body weight and the weights of testes, epididymis, seminal vesicles and ventral prostate were reduced in lindane-treated rars. There was asignificant decline in the activities of antioxidant enzymes superoxide dismutase (SOD), catalase and glutathione reduc tase while an increase in hydrogen peroxide (H2O2) generation was observed. The specific activities of testicular steroidogenic enzymes 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase were decreased. The levels of DNA, RNA and protein were also decreased in lindane-treated rats. Conclusion: Lindane induces oxida tive stress and decreases antioxidant enzymes in adult male rats.

  11. An Update of the Defensive Barrier Function of Skin

    OpenAIRE

    Lee, Seung Hun; Jeong, Se Kyoo; Ahn, Sung Ku

    2006-01-01

    Skin, as the outermost organ in the human body, continuously confronts the external environment and serves as a primary defense system. The protective functions of skin include UV-protection, anti-oxidant and antimicrobial functions. In addition to these protections, skin also acts as a sensory organ and the primary regulator of body temperature. Within these important functions, the epidermal permeability barrier, which controls the transcutaneous movement of water and other electrolytes, is...

  12. Effect of zinc and polyphenols supplementation on antioxidative defense mechanisms and the frequency of microsatellite instability in chemically-induced mammary carcinogenesis in the rat.

    Science.gov (United States)

    Bobrowska-Korczak, Barbara; Skrajnowska, Dorota; Tokarz, Andrzej; Bialek, Slawomir; Jezierska, Ewelina

    2015-01-01

    The aim of the present study was to assess the effect of dietary supplementation (with zinc or zinc and polyphenolic compounds - resveratrol or genistein) on antioxidant enzymes (glutathione peroxidase - GPx, catalase - CAT and superoxide dismutase - SOD) and the frequency of microsatellite instability (MSI) in a widely used model of mammary carcinogenesis induced in the rat by treatment with 7,12-dimethyl-1,2-benz[a]anthracene (DMBA). The impact of selected compounds on the intensity of DMBA-induced carcinogenesis was also assessed. Sixty four Sprague-Dawley female rats were divided into study groups which, apart from the standard diet and DMBA, were treated with zinc, zinc and resveratrol or zinc and genistein via gavage for a period ranging from 40 days to 20 weeks of age. On the basis of the obtained results it can be said that synergistic reaction between Zn(II) and genistein causes a delay in cancer development as compared with the animals treated with DMBA but with no food supplementation. Supplementation with Zn(II) and polyphenolic compounds resulted in the occurrence of microsatellite instabilities in tumors. LOH (loss of heterozygosity) was found in tumor samples at microsatellite D1Mgh6 and D3Mgh9. DMBA treatment increased significantly the glutathione peroxidase activity whereas it had no effect on the SOD and CAT activities, as compared with control rats. Diet supplementation has an effect on the activity of selected antioxidant enzymes. Diet supplementation has an effect on the occurrence of microsatellite instabilities as well as on the intensity of the neoplastic process. The intensity of occurrence of microsatellite instabilities does not depend on the activity of selected antioxidant enzymes.

  13. Design of two electrode system for detection of antioxidant capacity with photoelectrochemical platform.

    Science.gov (United States)

    Han, Dongxue; Ma, Weiguang; Wang, Lingnan; Ni, Shuang; Zhang, Nan; Wang, Wei; Dong, Xiandui; Niu, Li

    2016-01-15

    Recently, a flow photoelectrochemical cell has been first developed and applied to assay global antioxidant capacity in our group. Yet, shortcomings of liquid reference electrode such as sample contaminations from the leaking of the reference solution, mechanically fragile, temperature and light sensitivity, etc. are significant restrictions for integration and miniaturization of photoelectrochemical sensing instruments, which have greatly limited their practical applications. Bearing these problems, in this work a novel two electrode flow photoelectron-chemical system (two-EPCS) has been developed for detection of antioxidant capacity. It is noteworthy that the electrochemical modulation-free mode (detection at the potential of 0.0V) is performed, which has greatly simplified the analysis process and will result in significant simplifications of the instrument integrations. During the sample analysis, both standard antioxidants and commercial beverages were detected. Results evaluated from the two-EPCS are well agreed with those of the traditional three-EPCS at low potentials. By unloading of the reference electrode, it is of great convenience to design a novel photoelectrochemical microfluidic chip based on the two-EPCS, which has also been successfully applied for antioxidant capacity assay. It is satisfactory that comparable detection concentration range and sensitivity were accomplished by applying the microfluidic chip technique. Moreover, the two-EPCS is verified to be a universal platform which does not depend on selected optoelectronic materials but pervasive for general photocatalysts. Such a two-EPCS should be considered as a feasible alternative to the three-EPCS, which will become a promising candidate for industrial and commercial photoelectrochemical sensing instrument integrations in the future.

  14. Nickel induces hyperglycemia and glycogenolysis and affects the antioxidant system in liver and white muscle of goldfish Carassius auratus L.

    Science.gov (United States)

    Kubrak, Olga I; Rovenko, Bohdana M; Husak, Viktor V; Storey, Janet M; Storey, Kenneth B; Lushchak, Volodymyr I

    2012-06-01

    The toxicity of nickel to mammals is well studied, whereas information on nickel effects on fish is scant. Goldfish exposure to 10-50 mg L(-1) of waterborne Ni(2+) for 96 h showed reduced glycogen levels by 27-33% and 37-40% in liver and white muscle, respectively, accompanied by substantial increases in blood glucose levels (by 15-99%). However, indices of oxidative damage to proteins (carbonyl proteins) and lipids (lipid peroxides) were largely unaffected by nickel exposure. In liver, the activities of antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GPx), were not affected by Ni(2+) treatment, while catalase activity was elevated by 26%. In white muscle, however, substantial increases in SOD (by 38-147%) and GPx (by 2.5-5.5-fold) activities appeared to compensate for decreased catalase activity (by 59-69%) in order to resist Ni-induced oxidative perturbations. Both hepatic and muscular glutathione reductase activities were suppressed by 10-30% and 12-21%, respectively, after goldfish exposure to all Ni(2+) concentrations used. However, the activity of glucose-6-phosphate dehydrogenase was remarkably enhanced (by 1.6-5.4-fold) in white muscle of Ni-exposed fish, indicating a strong potential increase in NADPH production under Ni exposure. Thus, the exposure of goldfish to 10-50 mg L(-1) of Ni(2+) for 96 h induces glycogenolysis and hyperglycemia, showing some similarities with a hypoxia response, and leads to a substantial activation of defense systems against reactive oxygen species in liver and white muscle in tissue-specific and concentration-dependent manner.

  15. Time-dependent alterations in growth, photosynthetic pigments and enzymatic defense systems of submerged Ceratophyllum demersum during exposure to the cyanobacterial neurotoxin anatoxin-a

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Mi-Hee; Pflugmacher, Stephan, E-mail: stephan.pflugmacher@tu-berlin.de

    2013-08-15

    Highlights: •We examined time-dependent metabolic changes in C. demersum exposed to anatoxin-a. •Biotransformation and antioxidative defense mechanisms responded positively to anatoxin-a. •Decline in chlorophylls contents was detected in company with irreversible plant growth inhibition during exposure to anatoxin-a. •Anatoxin-a exhibits phytotoxic allelopathy by provoking oxidative stress. •Macrophytes may have interactions with anatoxin-a in aquatic environments. -- Abstract: Recently, aquatic macrophytes have been considered as promising tools for eco-friendly water management with a low running cost. However, only little information is available thus far regarding the metabolic capacity of macrophytes for coping with cyanobacterial toxins (cyanotoxins) in the aquatic environment. Cyanotoxins have become emerging contaminants of great concern due to the high proliferation of cyanobacteria (cyanobacterial bloom) accelerated by eutrophication and climate change. Anatoxin-a, one of the common and major cyanotoxins, is suggested as a high priority water pollutant for regulatory consideration owing to its notoriously rapid mode of action as a neurotoxin. In this study, the time-course metabolic regulation of the submerged macrophyte Ceratophyllum demersum (C. demersum) was investigated during exposure to anatoxin-a at an environmentally relevant concentration (15 μg/L). Biotransformation and antioxidative systems in C. demersum responded positively to anatoxin-a through the promoted synthesis of most of the involved enzymes within 8 h. Maximum enzyme activities were exhibited after 24 or 48 h of exposure to anatoxin-a. However, an apparent decline in enzyme activities was also observed at longer exposure duration (168 and 336 h) in company with high steady-state levels of cell internal H{sub 2}O{sub 2}, which showed its highest level after 48 h. Meanwhile, irreversible inhibitory influence on chlorophyll content (vitality) was noticed, whereas the ratio of

  16. Application of Ultrasound in a Closed System: Optimum Condition for Antioxidants Extraction of Blackberry (Rubus fructicosus) Residues

    OpenAIRE

    2016-01-01

    Blackberry processing generates up to 20% of residues composed mainly of peel, seeds and pulp that are abundant in flavonoids. The objective of this study was to optimize the ultrasound conditions, in a closed system, for antioxidants extraction, using the response surface methodology. Blackberry (Rubus fructicosus) residues were analyzed for total phenolics, total anthocyanins, and antioxidant activity by ABTS and DPPH. The selected independent variables were ultrasound amplitude (X1: 80%–90...

  17. Protection by ozone preconditioning is mediated by the antioxidant system in cisplatin-induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Enys Rojas

    1992-01-01

    Full Text Available Background: Acute renal failure is a dose-limiting factor of cisplatin chemotherapy. Here, we show the protective effect of ozone oxidative preconditioning against cisplatin-induced renal dysfunction in rats. Ozone oxidative preconditioning is a prophylactic approach, which favors the antioxidant–pro-oxidant balance for preservation of the cell redox state by increasing antioxidant endogenous systems in various in vivo and in vitro experimental models.

  18. The Role of Oxidative Stress and Antioxidants in Diabetic Complications

    Directory of Open Access Journals (Sweden)

    Fatmah A Matough

    2012-02-01

    Full Text Available Diabetes is considered to be one of the most common chronic diseases worldwide. There is a growing scientific and public interest in connecting oxidative stress with a variety of pathological conditions including diabetes mellitus (DM as well as other human diseases. Previous experimental and clinical studies report that oxidative stress plays a major role in the pathogenesis and development of complications of both types of DM. However, the exact mechanism by which oxidative stress could contribute to and accelerate the development of complications in diabetic mellitus is only partly known and remains to be clarified. On the one hand, hyperglycemia induces free radicals; on the other hand, it impairs the endogenous antioxidant defense system in patients with diabetes. Endogenous antioxidant defense mechanisms include both enzymatic and non-enzymatic pathways. Their functions in human cells are to counterbalance toxic reactive oxygen species (ROS. Common antioxidants include the vitamins A, C, and E, glutathione (GSH, and the enzymes superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, and glutathione reductase (GRx. This review describes the importance of endogenous antioxidant defense systems, their relationship to several pathophysiological processes and their possible therapeutic implications in vivo.

  19. Cooperative function of antioxidant and redox systems against oxidative stress in male reproductive tissues

    Institute of Scientific and Technical Information of China (English)

    JunichiFujii; YoshihitoIuchi; ShingoMatsuki; TatsuyaIshii

    2003-01-01

    Reactive oxygen species (ROS) are produced under oxidative stress, such as high oxygen concentration and during the metabolic consumption of oxygen molecules. Male reproductive tissues appear to be continuously exposed to ROS produced by active metabolism. In addition, spermatozoa must pass through a high oxygen environ-ment during the mating process. Thus, to maintain viable reproductive ability, a protective mechanism against oxida-tive stress is of importance. Here, we overview our current understanding of the cooperative function of antioxidative and redox systems that are involved in male fertility. Superoxide dismutase and glutathione peroxidase are major enzymes that scavenge harmful ROS in male reproductive organs. In turn, glutathione and thioredoxin systems constitute the main redox systems that repair oxidized and damaged molecules and also play a role in regulating a variety of cellular functions. While glutathione functions as an antioxidant by donating electrons to glutathione peroxidase and thioredoxin donates electrons to peroxiredoxin as a counterpart of glutathione peroxidase. In addition,aldo-keto reductases, which detoxify carbonyl compounds produced by oxidative stress, are present at high levels in the epithelia of the genital tract and Sertoli cells of the testis. Since these systems are involved in cross-talk, a comprehensive understanding will be required to maintain the physiological functions of male reproductive system.( Asian J Andro12003 Sep; 5: 231-242)

  20. Exogenous spermidine improves seed germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression.

    Science.gov (United States)

    Li, Zhou; Peng, Yan; Zhang, Xin-Quan; Ma, Xiao; Huang, Lin-Kai; Yan, Yan-Hong

    2014-11-05

    This study was designed to determine the effect of exogenous spermidine (Spd) (30 μM) on white clover seed germination under water stress induced by polyethylene glycol 6000. Use of seed priming with Spd improved seed germination percentage, germination vigor, germination index, root viability and length, and shortened mean germination time under different water stress conditions. Seedling fresh weight and dry weight also increased significantly in Spd-treated seeds compared with control (seeds primed with distilled water). Improved starch metabolism was considered a possible reason for this seed invigoration, since seeds primed with Spd had significantly increased α-amylase/β-amylase activities, reducing sugar, fructose and glucose content and transcript level of β-amylase gene but not transcript level of α-amylase gene. In addition, the physiological effects of exogenous Spd on improving seeds' tolerance to water deficit during germination were reflected by lower lipid peroxidation levels, better cell membrane stability and significant higher seed vigour index in seedlings. Enhanced antioxidant enzyme activities (superoxide dismutase, peroxidase, catalase and ascorbate peroxidase), ascorbate-glutathione cycle (ASC-GSH cycle) and transcript level of genes encoding antioxidant enzymes induced by exogenous Spd may be one of the critical reasons behind acquired drought tolerance through scavenging of reactive oxygen species (ROS) in water-stressed white clover seeds. The results indicate that Spd plays an important function as a stress-protective compound or physiological activator.

  1. Exogenous Spermidine Improves Seed Germination of White Clover under Water Stress via Involvement in Starch Metabolism, Antioxidant Defenses and Relevant Gene Expression

    Directory of Open Access Journals (Sweden)

    Zhou Li

    2014-11-01

    Full Text Available This study was designed to determine the effect of exogenous spermidine (Spd (30 μM on white clover seed germination under water stress induced by polyethylene glycol 6000. Use of seed priming with Spd improved seed germination percentage, germination vigor, germination index, root viability and length, and shortened mean germination time under different water stress conditions. Seedling fresh weight and dry weight also increased significantly in Spd-treated seeds compared with control (seeds primed with distilled water. Improved starch metabolism was considered a possible reason for this seed invigoration, since seeds primed with Spd had significantly increased α-amylase/β-amylase activities, reducing sugar, fructose and glucose content and transcript level of β-amylase gene but not transcript level of α-amylase gene. In addition, the physiological effects of exogenous Spd on improving seeds’ tolerance to water deficit during germination were reflected by lower lipid peroxidation levels, better cell membrane stability and significant higher seed vigour index in seedlings. Enhanced antioxidant enzyme activities (superoxide dismutase, peroxidase, catalase and ascorbate peroxidase, ascorbate-glutathione cycle (ASC-GSH cycle and transcript level of genes encoding antioxidant enzymes induced by exogenous Spd may be one of the critical reasons behind acquired drought tolerance through scavenging of reactive oxygen species (ROS in water-stressed white clover seeds. The results indicate that Spd plays an important function as a stress-protective compound or physiological activator.

  2. In vitro antioxidant activities of antioxidant-enriched toothpastes.

    Science.gov (United States)

    Battino, M; Ferreiro, M S; Armeni, T; Politi, A; Bompadre, S; Massoli, A; Bullon, P

    2005-03-01

    Several forms of periodontal diseases (PD) are often associated with modified phagocytosing leukocytes and contemporary free radical production. Host antioxidant defenses could benefit from toothpastes used as adjuncts to counteract plaque-associated bacteria. The aim of the present study was to determine possible antioxidant activity (AA) of 12 differently antioxidant-enriched toothpastes, regardless of their efficacy as antimicrobial agents. Toothpastes were enriched alternatively with sodium ascorbyl phosphate, alpha-tocopherol acetate, pycnogenol, allantoin and methyl salycilate or a mixture of these. AA was tested in a cell-free system with a ABTS-decolorization assay improved by means of a flow injection analysis device. Comet assay, using NCTC 2544 keratinocytes, was performed to test if it was possible to identify any protection against in vitro DNA fragmentation provoked by a challenge with H(2)O(2) in cultures pre-incubated with toothpaste extracts. Only toothpastes containing sodium ascorbyl phosphate displayed clear AA with I(50) values ranging between 50 and 80 mg of toothpaste/ml water. COMET analysis of cells challenged with H(2)O(2) in presence of toothpaste extracts revealed a limited protection exerted by sodium ascorbyl phosphate. The results described herein indicate that toothpastes containing sodium ascorbyl phosphate possess AA. All the data were obtained in systems in vitro and the demonstration of in vivo AA is desirable. These findings could be useful in the treatment and maintenance of some forms of PD and should be considered when arranging new toothpaste formulations.

  3. Effects of various extremely low frequency magnetic fields on the free radical processes, natural antioxidant system and respiratory burst system activities in the heart and liver tissues.

    Science.gov (United States)

    Canseven, Ayse Gulnihal; Coskun, Sule; Seyhan, Nesrin

    2008-10-01

    Magnetic fields (MFs) can affect biological systems by increasing the release of free radicals that are able to alter cell defense systems and breakdown tissue homeostasis. In the present study, the effects of extremely low frequency (ELF) electromagnetic fields (EMF) were investigated on free radical levels, natural antioxidant systems and respiratory burst system activities in heart and liver tissues of guinea pigs exposed to 50 Hz MFs of 1, 2 and 3 mT for 4 h/day and 8 h/day for 5 days by measuring malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH) levels and myeloperoxidase (MPO) activity. A total of sixty-two male guinea pigs, 10-12 weeks old were studied in seven groups as control and exposure groups: Group I (control), II (1 mT, 4 h/day), III (1 mT, 8 h/day), IV (2 mT, 4 h/day), V (2 mT, 8 h/day), VI (3 mT, 4 h/day), and VII (3 mT, 8 h/day). Controls were kept under the same conditions without any exposure to MF. MDA levels increased in liver in groups II and IV, but decreased in group VII for both liver and heart tissues. NOx levels declined in heart in groups II and III and in liver in groups III, V, and VI, but increased in liver in group VII. GSH levels increased in heart in groups II, IV, V, and in liver in groups V and VI and VI, but decreased in groups II and IV in liver. MPO activity decreased in liver in groups III, IV, VI and VII with respect to controls and in heart tissues in groups II, III and IV; however, there was a significant increase MPO activity in heart in group VII. From the results, it can be concluded that the intensity and exposure duration of MFs are among the effective conditions on the formation of free radicals and behaviour of antioxidant enzymes.

  4. IN VITRO ANTIOXIDANT ACTIVITY OF IPOEMA BILOBA

    Directory of Open Access Journals (Sweden)

    Priti Tagde

    2012-01-01

    Full Text Available Biomolecules can be oxidized by free radicals. This oxidative damage has an important etiological role in aging and the development of diseases like cancer, atherosclerosis, and other inflammatory disorders. Synthetic antioxidants, like butylated hydroxyanisole, are good free radical scavengers; however, the synthetic antioxidants can be carcinogenic. Therefore, there is an increasing interest in searching for antioxidants of natural origin.   Antioxidants with different chemical properties may recharge each other in an antioxidant network. The total antioxidant content of dietary plants may therefore be a useful tool for testing the 'antioxidant network' hypothesis. Several berries, fruits, nuts, seeds, vegetables, drinks and spices have been found to be high in total antioxidants. Initial studies in animals and humans are supportive as to the beneficial effects of dietary plants rich in total antioxidants. Additionally, antioxidants and other plant compounds may also improve the endogenous antioxidant defense through induction of antioxidant and phase 2 enzymes.1,2 Dietary plants rich in such compounds include broccoli, brussel sprouts, cabbage, kale, cauliflower, carrots, onions, tomatoes, spinach and garlic , antioxidants and other plant compounds may also improve the endogenous antioxidant defense through induction of antioxidant and phase 2 enzymes.

  5. Total antioxidant capacity in the black mussel ( Mytilus galloprovincialis) from Black Sea coasts

    Science.gov (United States)

    Moncheva, S.; Trakhtenberg, S.; Katrich, E.; Zemser, M.; Goshev, I.; Toledo, F.; Arancibia-Avila, P.; Doncheva, V.; Gorinstein, S.

    2004-03-01

    The aim of this investigation was to evaluate the total antioxidant radical scavenging capacity (TARSC) in tissue extracts for understanding biochemical adaptations involving the antioxidant defense system of a bivalve mussel, Mytilus galloprovincialis, sampled in polluted (Pol) and non-polluted (Npol) sites from Black Sea coasts. Antioxidant-rich polyphenol fractions were extracted from whole dry mussel tissue with methanol and water in different proportions. The extracts were screened for polyphenol content and their potential as antioxidants using various in vitro models, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ), β-carotene-linoleate (β-carotene) and nitric oxide (NO rad ). The total polyphenol extract of the whole mussel tissue from polluted site (TPMEPol) showed the highest antioxidant capacity among all of the extracts with the tested methods and was comparable with the antioxidant capacity of butylated hydroxyanisole (BHA). The antioxidant capacities of this extract determined by DPPH rad , β-carotene and NO rad methods and polyphenol content showed the highest correlation coefficients ( R2) such as 0.9985, 0.9915 and 0.9895, respectively. The free polyphenol extracts (FPMEPol and FPMENPol) had lower antioxidant capacity than the two others of total polyphenols (TPMEPol and TPMENPol) with three scavenging methods. Responses were linear in all tested methods and the antioxidant capacity values of soluble antioxidants showed the following relative order: Trolox>BHA>TPMEPol>TPMENPol>FPMEPol>FPMENPol. Nutritional antioxidants, such as polyphenols, were probably the main antioxidant contribution to mussel antioxidants. The mussel extracts from the polluted site exhibited higher antioxidant capacity than from the non-polluted one. The results presented in this report indicate that the antioxidant capacity of the whole tissue of the mussel extract could possibly be a useful biomarker for aquatic environments.

  6. Natural Antioxidants, Lipid Profile, Lipid Peroxidation, Antioxidant Enzymes of Different Vegetable Oils

    Directory of Open Access Journals (Sweden)

    Eqbal M.A. Dauqan

    2011-08-01

    Full Text Available Antioxidant plays a very important role in the body defense system against Reactive Oxygen Species (ROS. The free radicals also play an important role in combustion, atmospheric chemistry, biochemistry and biotechnology including human physiology. Fats and oils are energy sources that are composed mostly of triacylglycerols. Lipid ptofile are risk indicators of coronary heart disease. Various types of lipoproteins exist, but the two most abundant are Low-density Lipoprotein (LDL and High-density Lipoprotein (HDL. Lipid peroxidation is the introduction of a functional group containing two catenated oxygyen atomsinto unsturated fatty acids in a free radical reaction. Life in oxygen has led to the evolution of biochemical adaptations that exploit the reactivity of Active Oxygen Species (AOS. Antioxidant enzymes are an important protective mechanism ROS. This paper highlight the functions of antioxidants in the blood and selected organs associated with health.

  7. BASICS OF INTEGRAL APPROACH TO IMPROVEMENT OF INNOVATION SYSTEM IN DEFENSE INDUSTRY COMPLEX OF RUSSIA

    Directory of Open Access Journals (Sweden)

    Анатолий Андреевич Чудин

    2014-04-01

    Full Text Available The author develops integral approach to improvement of innovation system as exemplified by defense industry complex (DIC of Russia. Integral approach includes the elements of 3 approaches: system, synergetic and geotrion. This approach contains conceptual, modeling-projecting and realizing parts and the principles, mechanisms and technologies aimed for improvement of management of innovation system in Russia. DIC of Russia is an earth object – it is complex of complexes which is supposed to be established not only with the use of technological structure which is mainly referred to industrial society. The elements of new technological structures must be added to integral approach: knowledge economy and harmonization of society. The second, synergetic approach, is predominantly referred to post-industrial society. The third, geotrion approach, which is only being formed, is mainly referred to the society of sustainable harmonic development. Such objects were called geotrions by Russian scientist N. D. Matrusov [5], they consist of people, economy and environment (nature, territory, external opposed and interacting systems. The method of geotrion management is called integral approach. Knowledge economy can not be realized in Russia without harmonization of the country.DOI: http://dx.doi.org/10.12731/2218-7405-2014-2-13

  8. Curcumin attenuates CFA induced thermal hyperalgesia by modulation of antioxidant enzymes and down regulation of TNF-α, IL-1β and IL-6.

    Science.gov (United States)

    Singh, Ajeet Kumar; Vinayak, Manjula

    2015-03-01

    Reactive oxygen species are signaling mediators of nociceptive pathways. Exogenous administrations of antioxidants show anti-hyperalgesic effect. However, very little is known about the role of endogenous antioxidant defense system in pain pathology. Curcumin is a dietary antioxidant which shows ameliorative effect on thermal hypersensitivity, however detailed study is lacking. Present study was aimed to analyze the changes in oxidative stress, modulation of antioxidant enzymes and pro-inflammatory cytokines in complete Freund's adjuvant induced inflammatory hyperalgesia and the effect of curcumin on antioxidant defense system and pro-inflammatory cytokines. Anti-hyperalgesic activity of curcumin was evidenced after 6 h of treatment. Oxidative stress was evidenced in paw skin and spinal cord of hyperalgesic rats by high level of lipid peroxidation. A decrease in activity of antioxidant enzymes like catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase and an increase in level of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 in paw skin was observed as compared to normal rats. However, activity of antioxidant enzymes was enhanced in spinal cord. The changes were brought towards normal level after curcumin treatment. The results suggest that modulation of antioxidant defense system is early event in initiation of inflammatory hyperalgesia which might lead to initiation of other signaling pathways mediated by lipid peroxide, TNF-α, IL-1β and IL-6. Decrease in oxidative stress and down regulation of these cytokines by curcumin is suggested to be involved in its anti-hyperalgesic effect.

  9. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    Science.gov (United States)

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants.

  10. Autophagy is redundant for the host defense against systemic Candida albicans infections

    NARCIS (Netherlands)

    Smeekens, S.P.; Malireddi, R.K.; Plantinga, T.S.; Buffen, K.; Oosting, M.; Joosten, L.A.B.; Kullberg, B.J.; Perfect, J.R.; Scott, W.K.; Veerdonk, F.L. van de; Xavier, R.J.; Vosse, E. van de; Kanneganti, T.D.; Johnson, M.D.; Netea, M.G.

    2014-01-01

    Autophagy has been demonstrated to play an important role in the immunity against intracellular pathogens, but very little is known about its role in the host defense against fungal pathogens such as Candida albicans. Therefore, the role of autophagy for the host defense against C. albicans was asse

  11. Silicon induced systemic defense responses in perennial ryegrass against Magnaporthe oryzae infection

    Science.gov (United States)

    Sustainable integrated disease management for gray leaf spot of perennial ryegrass may involve use of plant defense elicitors with compatible traditional fungicides to reduce disease incidence and severity. Silicon (Si) is a potential inducer or modulator of plant defenses against different pathogen...

  12. Defense Enterprise Accounting and Management System-Increment 1 (DEAMS Inc 1)

    Science.gov (United States)

    2016-03-01

    FY - Fiscal Year IA - Information Assurance IATO - Interim Authority to Operate ICD - Initial Capability Document IEA - Information Enterprise...of the Secretary of Defense PB - President’s Budget RDT&E - Research, Development, Test, and Evaluation SAE - Service Acquisition Executive TBD...solution to achieving the Fiscal Year 2010 National Defense Authorization Act auditability requirement by 2017. It transforms financial management

  13. 32 CFR 21.200 - What is the Defense Grant and Agreement Regulatory System (DGARS)?

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false What is the Defense Grant and Agreement... Washington Headquarters Services Internet site http://www.dtic.mil/whs/directives. Paper copies may be obtained, at cost, from the National Technical Information Service, 5285 Port Royal Road, Springfield,...

  14. Stimulatory and possible antioxidant effects of High Density Green Photons (HDGP) on cellular systems.

    Science.gov (United States)

    Paslaru, L; Nastase, A; Stefan, L; Florea, R; Sorop, A; Ionescu, E; Popescu, I; Comorasan, S

    2014-01-01

    The interactions between the electromagnetic field and the biological systems were extensively investigated, with remarkable results and advanced technologies. Nevertheless, the visible domain of the spectrum has been rather neglected, since the classic physics did not allow electronic transitions induced by visible light. Recently, the interaction of light with the matter has generated a new scientific domain known in Physics as optical manipulation, with the new concepts of optical matter and optical force. This article presents the results of our work concerning in vitro effects of High Density Green Photons (HDGP) irradiation on cell cultures: stimulation of cell proliferation and migration and a possible antioxidant action.

  15. An Analysis of the First Fifteen Years of the Department of Defense Framework for Unmanned Ground Systems

    Science.gov (United States)

    2014-12-01

    270  E.  THE DARPA INTERVENTION ................................................................274  F.  SUMMARY OF ANALYSIS...28  Table 4.  Funding Agreement between DARPA and TWP ($M; from DOD, 1991) .....30  Table 5.  Requirements Articulation 1992 UGV Master...Kit CRS Common Robotic System CRS Congressional Research Service CTD Concept and Technology Demonstrations DARPA Defense Advanced Research

  16. Joint-Service Integration: An Organizational Culture Study of the United States Department of Defense Voluntary Education System

    Science.gov (United States)

    Benson, Martin K.

    2010-01-01

    The purpose of the descriptive case study with a multiple case framework was to (a) describe the organizational cultures of education programs and leaders in the United States (U.S.) Department of Defense (DoD) voluntary education system on Oahu, Hawaii; (b) determine if an overlapping common organizational culture exists; and (c) assess the…

  17. Teaching Clinical (and Nonclinical) Psychology through Applications to the Legal System: Violence Risk Assessment and the Insanity Defense

    Science.gov (United States)

    Costanzo, Marina L.; Costanzo, Mark A.

    2013-01-01

    The prediction of dangerousness and the insanity defense are two areas where psychologists provide research-based expertise to the courts. Teachers of psychology can use these topics to capture the attention of students and to show how psychological research and theory can inform and influence the legal system. Specifically, teachers can use the…

  18. Analysis of the NATO Fleet Air-Defense System%北约舰队防空体系分析

    Institute of Scientific and Technical Information of China (English)

    齐强; 王瑞麒

    2001-01-01

    介绍了以美国为首的北约舰队防空体系的构成、任务和主要防御对象。对北约舰队防空体系的最新发展动向进行了分析。针对目前北约舰队防空体系中的薄弱环节,提出了突防的具体构想。%This paper introduces the construction, tasks ,targets and analyzed the future developing tendency of the fleet air-defense system of NATO led by U.S.. According to the weak links of the defense system,this paper presents a idea to break through the defense net.

  19. Linking chloroplast antioxidant defense to carbohydrate availability: the transcript abundance of stromal ascorbate peroxidase is sugar-controlled via ascorbate biosynthesis.

    Science.gov (United States)

    Heiber, Isabelle; Cai, Wenguo; Baier, Margarete

    2014-01-01

    All genes encoding chloroplast antioxidant enzymes are nuclear-encoded and posttranscriptionally targeted to chloroplasts. The transcript levels of most of them decreased upon sucrose feeding like the transcript levels of many genes encoding components of the photosynthetic electron transport chain. However, the transcript abundance of stromal ascorbate peroxidase (s-APX; At4g08390) increased. Due to mild sugar application conditions, the plants kept the phosphorylation status of the ADP+ATP pool and the redox states of the NADPH+NADP+ and the ascorbate pools under control, which excludes them as signals in s-APX regulation. Correlation with ascorbate pool size regulation and comparison of transcript abundance regulation in the starch-biosynthetic mutant adg1, the ascorbate biosynthesis mutant vtc1, and the abscisic acid (ABA) biosynthetic mutant aba2 showed a link between sugar induction of s-APX and ascorbate biosynthesis.

  20. Euterpe edulis Extract but Not Oil Enhances Antioxidant Defenses and Protects against Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet in Rats

    Science.gov (United States)

    Freitas, Rodrigo Barros; Novaes, Rômulo Dias; Gonçalves, Reggiani Vilela; Mendonça, Bianca Gazolla; Santos, Eliziária Cardoso; Ribeiro, Andréia Queiroz; Lima, Luciana Moreira; Fietto, Luciano Gomes; Peluzio, Maria do Carmo Gouveia

    2016-01-01

    We investigated the effects of E. edulis bioproducts (lyophilized pulp [LEE], defatted lyophilized pulp [LDEE], and oil [EO]) on nonalcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in rats. All products were chemically analyzed. In vivo, 42 rats were equally randomized into seven groups receiving standard diet, HFD alone or combined with EO, LEE, or LDEE. After NAFLD induction, LEE, LDEE, or EO was added to the animals' diet for 4 weeks. LEE was rich in polyunsaturated fatty acids. From LEE degreasing, LDEE presented higher levels of anthocyanins and antioxidant capacity in vitro. Dietary intake of LEE and especially LDEE, but not EO, attenuated diet-induced NAFLD, reducing inflammatory infiltrate, steatosis, and lipid peroxidation in liver tissue. Although both E. edulis bioproducts were not hepatotoxic, only LDEE presented sufficient benefits to treat NAFLD in rats, possibly by its low lipid content and high amount of phenols and anthocyanins. PMID:27418954

  1. Moving Target Defense

    CERN Document Server

    Jajodia, Sushil; Swarup, Vipin; Wang, Cliff; Wang, X Sean

    2011-01-01

    Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats was developed by a group of leading researchers. It describes the fundamental challenges facing the research community and identifies new promising solution paths. Moving Target Defense which is motivated by the asymmetric costs borne by cyber defenders takes an advantage afforded to attackers and reverses it to advantage defenders. Moving Target Defense is enabled by technical trends in recent years, including virtualization and workload migration on commodity systems, widespread and redundant network connectivity, instr

  2. Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense.

    Science.gov (United States)

    Pandey, Poonam; Srivastava, Rajneesh Kumar; Dubey, R S

    2013-05-01

    Aluminum toxicity is a major constraint to crop production in acid soils. The present study was undertaken to examine the comparative ameliorating effects of salicylic acid, Ca and Mg on Al toxicity in rice (Oryza sativa L.) seedlings grown in hydroponics. Al treatment (0.5 mM AlCl3) caused decrease in plant vigour, loss of root plasma membrane integrity, increased contents of O 2 (∙-) , H2O2, lipid peroxidation, protein carbonyls and decline in the level of protein thiol. Al treatment caused significant changes in activity of antioxidative enzymes in rice seedlings. Exogenously added salicylic acid (60 μM), Ca (1 mM) and Mg (0.25 mM) significantly alleviated Al toxicity effects in the seedlings marked by restoration of growth, suppression of Al uptake, restoration of root plasma membrane integrity and decline in O 2 (∙-) , H2O2, lipid peroxidation and protein carbonyl contents. Salicylic acid, Ca and Mg suppressed Al-induced increase in SOD, GPX and APX activities while it elevated Al-induced decline in CAT activity. By histochemical staining of O 2 (∙-) using NBT and H2O2 using DAB, it was further confirmed that added salicylic acid, Ca or Mg decreased Al-induced accumulation of O 2 (∙-) and H2O2 in the leaf tissues. Results indicate that exogenously added salicylic acid, Ca or Mg alleviates Al toxicity in rice seedlings by suppressing Al uptake, restoring root membrane integrity, reducing ROS level and ROS induced oxidative damage and regulating the level of antioxidative enzyme activities. Further salicylic appears to be superior to Mg and Ca in alleviating Al toxicity effects in rice plants.

  3. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots

    Directory of Open Access Journals (Sweden)

    Carmen eGómez-Lama Cabanás

    2014-09-01

    Full Text Available Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets, many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR experiments aiming to: (i validate the induction of these genes, and (ii shed light on their expression pattern along time (from 1 to 15 days. Induction of olive genes potentially coding for lypoxigenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e. jerf, bHLH, WRKYs, as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mount a wide array of systemic defense responses in distant tissues (stems, leaves. This sheds light on how olive plants respond to the ‘non-hostile’ colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7.

  4. Interactive effects of early and later nutritional conditions on the adult antioxidant defence system in zebra finches.

    Science.gov (United States)

    Noguera, José C; Monaghan, Pat; Metcalfe, Neil B

    2015-07-01

    In vertebrates, antioxidant defences comprise a mixture of endogenously produced components and exogenously obtained antioxidants that are derived mostly from the diet. It has been suggested that early-life micronutritional conditions might influence the way in which the antioxidant defence system operates, which could enable individuals to adjust the activity of the endogenous and exogenous components in line with their expected intake of dietary antioxidants if the future environment resembles the past. We investigated this possibility by experimentally manipulating the micronutrient content of the diet during different periods of postnatal development in the zebra finch (Taeniopygia guttata). Birds that had a low micronutrient diet during the growth phase initially had a lower total antioxidant capacity (TAC) than those reared under a high micronutrient diet, but then showed a compensatory response, so that by the end of the growth phase, the TAC of the two groups was the same. Interestingly, we found an interactive effect of micronutrient intake early and late in development: only those birds that continued with the same dietary treatment (low or high) throughout development showed a significant increase in their TAC during the period of sexual maturation. A similar effect was also found in the level of enzymatic antioxidant defences (glutathione peroxidase; GPx). No significant effects were found in the level of oxidative damage in lipids [malondialdehyde (MDA) levels]. These findings demonstrate the importance of early and late developmental conditions in shaping multiple aspects of the antioxidant system. Furthermore, they suggest that young birds may adjust their antioxidant defences to enable them to 'thrive' on diets rich or poor in micronutrients later in life.

  5. Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria.

    Science.gov (United States)

    Peters, Leila Priscila; Carvalho, Giselle; Martins, Paula Fabiane; Dourado, Manuella Nóbrega; Vilhena, Milca Bartz; Pileggi, Marcos; Azevedo, Ricardo Antunes

    2014-01-01

    The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS). This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH) and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS) and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR) and glutathione S-transferase (GST) activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD), catalase (CAT) and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems.

  6. Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria.

    Directory of Open Access Journals (Sweden)

    Leila Priscila Peters

    Full Text Available The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS. This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR and glutathione S-transferase (GST activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD, catalase (CAT and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems.

  7. Immune multi-agent model using vaccine for cooperative air-defense system of systems for surface warship formation based on danger theory

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Xiaozhe Zhao; Beiping Xu; Wei Wang; Zhiyong Niu

    2013-01-01

    Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative air-defense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics be-tween the CASoSSWF and the BIS, and then designs the mo-dels of components and the architecture for a monitoring agent, a regulating agent, a kil er agent, a pre-warning agent and a com-municating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dy-namic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CA-SoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship forma-tion operation simulation system.

  8. Chemistry and pharmacological properties of some natural and synthetic antioxidants for heavy metal toxicity.

    Science.gov (United States)

    Flora, S J S; Shrivastava, Rupal; Mittal, Megha

    2013-01-01

    Heavy metals are known to cause oxidative deterioration of bio-molecules by initiating free radical mediated chain reaction resulting in lipid per-oxidation, protein oxidation and oxidation of nucleic acid like DNA and RNA. The development of effective dual functioning antioxidants, possessing both metal-chelating and free radical-scavenging properties should bring into play. Administration of natural and synthetic antioxidants like, quercetin, catechin, taurine, captopril, gallic acid, melatonin, N-acetyl cysteine, α- lipoic acid and others have been recognized in the disease prevention and clinical recovery against heavy metal intoxication. These antioxidants affect biological systems not only through direct quenching of free radicals but also via chelation of toxic metal(s). These antioxidants also, have the capacity to enhance cellular antioxidant defense mechanism by regenerating endogenous antioxidants, such as glutathione and vitamin C and E. They also influence cellular signaling and trigger redox sensitive regulatory pathways. The reactivity of antioxidants in protecting against heavy metal induced oxidative stress depends upon their structural properties, their partitioning abilities between hydrophilic and lipophilic environment and their hydrogen donation antioxidant properties. Herein, we review the structural, biochemical and pharmacological properties of selected antioxidants with particular reference to their ability to (i) chelate heavy metals from its complex (ii) ameliorate free radical (iii) terminate heavy metal induced free radical chain reaction (iv) regenerate endogenous antioxidants and, (v) excretion of metal without its redistribution.

  9. Report of the Defense Science Board task force on military system applications of superconductors

    Science.gov (United States)

    1988-10-01

    The Task Force found a number of superconductivity applications that could result in significant new military capabilities, including electronics and high power applications. In particular, superconducting materials could enable significant military improvements in: Magnetic Field Sensors with greatly increased sensitivity for improved detection and identification capability; Passive Microwave and Millimeter-wave Components enabling increased detection range and discrimination in clutter; Staring Infrared Focal Plane Array sensors incorporating superconducting electronics permitting significant range and sensitivity increases over current scanning IR sensors; Wideband Analog and Ultra-Fast Digital Signal Processing for radar and optical sensors; High Power Motors and Generators for ship and aircraft propulsion leading to: decreased displacement; drive system flexibility; increased range; or longer endurance on station; Magnets/Energy Storage for high power microwave, millimeter-wave or optical generators (e.g., free electron laser); capability for powering quiet propulsion systems; Electro-Magnetic Launchers capable of launching hypervelocity projectiles for antiarmor weapons and close-in ship defense weapons; and Magnetohydrodynamic (MHD) Propulsion enabling ultra quiet drives for submarines, torpedoes, and surface ships.

  10. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system.

    Science.gov (United States)

    Sarkadi, Balázs; Homolya, László; Szakács, Gergely; Váradi, András

    2006-10-01

    In this review we give an overview of the physiological functions of a group of ATP binding cassette (ABC) transporter proteins, which were discovered, and still referred to, as multidrug resistance (MDR) transporters. Although they indeed play an important role in cancer drug resistance, their major physiological function is to provide general protection against hydrophobic xenobiotics. With a highly conserved structure, membrane topology, and mechanism of action, these essential transporters are preserved throughout all living systems, from bacteria to human. We describe the general structural and mechanistic features of the human MDR-ABC transporters and introduce some of the basic methods that can be applied for the analysis of their expression, function, regulation, and modulation. We treat in detail the biochemistry, cell biology, and physiology of the ABCB1 (MDR1/P-glycoprotein) and the ABCG2 (MXR/BCRP) proteins and describe emerging information related to additional ABCB- and ABCG-type transporters with a potential role in drug and xenobiotic resistance. Throughout this review we demonstrate and emphasize the general network characteristics of the MDR-ABC transporters, functioning at the cellular and physiological tissue barriers. In addition, we suggest that multidrug transporters are essential parts of an innate defense system, the "chemoimmunity" network, which has a number of features reminiscent of classical immunology.

  11. Tenoxicam modulates antioxidant redox system and lipid peroxidation in rat brain.

    Science.gov (United States)

    Naziroğlu, Mustafa; Uğuz, Abdulhadi Cihangir; Gokçimen, Alpaslan; Bülbül, Metin; Karatopuk, Dilek Ulusoy; Türker, Yasin; Cerçi, Celal

    2008-09-01

    We investigated effects of two doses of Tenoxicam, a type 2 cyclooxygenase inhibitor, administration on lipid peroxidation and antioxidant redox system in cortex of the brain in rats. Twenty-two male Wistar rats were randomly divided into three groups. First group was used as control. 10 and 20 mg/kg body weight Tenoxicam were intramuscularly administrated to rats constituting the second and third groups for 10 days, respectively. Both dose of Tenoxicam administration resulted in significant increase in the glutathione peroxidase activity, reduced glutathione and vitamins C and E of cortex of the brain. The lipid peroxidation levels in the cortex of the brain were significantly decreased by the administration. Vitamin A and beta-carotene concentration was not affected by the administration. There was no statistical difference in all values between 10 and 20 mg Tenoxicam administrated groups. In conclusion, treatment of brain with 10 and 20 mg Tenoxicam has protective effects on the oxidative stress by inhibiting free radical and supporting antioxidant redox system.

  12. Aversive picture processing: effects of a concurrent task on sustained defensive system engagement.

    Science.gov (United States)

    Wangelin, Bethany C; Löw, Andreas; McTeague, Lisa M; Bradley, Margaret M; Lang, Peter J

    2011-01-01

    Viewing a series of aversive pictures prompts emotional reactivity reflecting sustained defensive engagement. The present study examined the effects of a concurrent visual task on autonomic, somatic, electrocortical, and facial components of this defensive state. Results indicated that emotional activation was largely preserved despite continuous visual distraction, although evidence of attenuation was observed in startle reflex and electrocortical measures. Concurrent task-specific reactivity was also apparent, suggesting that motivational circuits can be simultaneously activated by stimuli with intrinsic survival significance and instructed task significance and that these processes interact differently across the separate components of defensive engagement.

  13. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings.

    Science.gov (United States)

    Mishra, Shruti; Jha, A B; Dubey, R S

    2011-07-01

    The effects of arsenite treatment on generation of reactive oxygen species, induction of oxidative stress, response of antioxidative system, and synthesis of phytochelatins were investigated in two indica rice (Oryza sativa L.) cvs. Malviya-36 and Pant-12 grown in sand cultures for a period of 5-20 days. Arsenite (As(2)O(3); 25 and 50 μM) treatment resulted in increased formation of superoxide anion (O (2) (.-) ), elevated levels of H(2)O(2) and thiobarbituric acid reactive substances, showing enhanced lipid peroxidation. An enhanced level of ascorbate (AA) and glutathione (GSH) was observed irrespective of the variation in the level of dehydroascorbate (DHA) and oxidized glutathione (GSSG) which in turn influenced redox ratios AA/DHA and GSH/GSSG. With progressive arsenite treatment, synthesis of total acid soluble thiols and phytochelatins (PC) increased in the seedlings. Among antioxidative enzymes, the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), total ascorbate peroxidase (APX, EC 1.11.1.11), chloroplastic ascorbate peroxidase, guaiacol peroxidase (EC 1.11.1.7), monodehydroascorbate reductase (EC 1.6.5.4), and glutathione reductase (EC 1.6.4.2) increased in arsenite treated seedlings, while dehyroascorbate reductase (EC 1.8.5.1) activity declined initially during 5-10 days and increased thereafter. Results suggest that arsenite treatment causes oxidative stress in rice seedlings, increases the levels of many enzymatic and non-enzymatic antioxidants, and induces synthesis of thiols and PCs, which may serve as important components in mitigating arsenite-induced oxidative damage.

  14. Response of Daphnia's antioxidant system to spatial heterogeneity in Cyanobacteria concentrations in a lowland reservoir.

    Directory of Open Access Journals (Sweden)

    Adrianna Wojtal-Frankiewicz

    Full Text Available Many species and clones of Daphnia inhabit ecosystems with permanent algal blooms, and they can develop tolerance to cyanobacterial toxins. In the current study, we examined the spatial differences in the response of Daphnia longispina to the toxic Microcystis aeruginosa in a lowland eutrophic dam reservoir between June (before blooms and September (during blooms. The reservoir showed a distinct spatial pattern in cyanobacteria abundance resulting from the wind direction: the station closest to the dam was characterised by persistently high Microcystis biomass, whereas the upstream stations had a significantly lower biomass of Microcystis. Microcystin concentrations were closely correlated with the cyanobacteria abundance (r = 0.93. The density of daphniids did not differ among the stations. The main objective of this study was to investigate how the distribution of toxic Microcystis blooms affects the antioxidant system of Daphnia. We examined catalase (CAT activity, the level of the low molecular weight antioxidant glutathione (GSH, glutathione S-transferase (GST activity and oxidative stress parameters, such as lipid peroxidation (LPO. We found that the higher the abundance (and toxicity of the cyanobacteria, the lower the values of the antioxidant parameters. The CAT activity and LPO level were always significantly lower at the station with the highest M. aeruginosa biomass, which indicated the low oxidative stress of D. longispina at the site with the potentially high toxic thread. However, the low concentration of GSH and the highest activity of GST indicated the occurrence of detoxification processes at this site. These results demonstrate that daphniids that have coexisted with a high biomass of toxic cyanobacteria have effective mechanisms that protect them against the toxic effects of microcystins. We also conclude that Daphnia's resistance capacity to Microcystis toxins may differ within an ecosystem, depending on the bloom

  15. Effect of 28-homobrassinolide on antioxidant defence system in Raphanus sativus L. under chromium toxicity.

    Science.gov (United States)

    Sharma, Indu; Pati, Pratap Kumar; Bhardwaj, Renu

    2011-06-01

    Heavy metals have emerged as major environmental contaminants due to rapid industrialization and urbanization. The genotoxic, mutagenic and carcinogenic effects of heavy metal like chromium (Cr) on man, animals and plants have been documented. In plants, accumulation of heavy metals beyond critical levels generates oxidative stress. This stress is generally overcome by antioxidant defence system and stress shielding phytohormones. Thus, the present study has been focused to analyze the effect of one of imperative group of plant hormones, i.e., brassinosteroids (BRs) which have been reported for its protective properties for wide array of environmental stresses. Raphanus sativus L. (Pusa Chetaki) seeds pre-treated with different concentrations of 28-homobrassinolide (28-HBL) were raised under various concentrations of Cr(VI). It was observed that 28-HBL treatment considerably reduced the impact of Cr-stress on seedlings which was evinced upon analysis of morphological and biochemical parameters of 7-days old radish seedlings. The toxic effects of Cr in terms of reduced growth, lowered contents of chlorophyll (Chl), protein, proline; increased malondialdehyde (MDA) content and elevated metal uptake were ameliorated by applications of 28-HBL. Also, the activities of all the antioxidant enzymes except guaiacol peroxidase (POD), increased significantly when subjected to Cr stress in combination with 28-HBL. Overall, seed pre-soaking treatment of 28-HBL at 10(-7) M was most effective in ameliorating Cr stress. The present work emphasizes the protective role of 28-HBL on regulation of antioxidant enzymes and its possible link in amelioration of stress in plants.

  16. An Efficient Antioxidant System in a Long-Lived Termite Queen

    Science.gov (United States)

    Tasaki, Eisuke; Kobayashi, Kazuya; Matsuura, Kenji; Iuchi, Yoshihito

    2017-01-01

    The trade-off between reproduction and longevity is known in wide variety of animals. Social insect queens are rare organisms that can achieve a long lifespan without sacrificing fecundity. The extended longevity of social insect queens, which contradicts the trade-off, has attracted much attention because it implies the existence of an extraordinary anti-aging mechanism. Here, we show that queens of the termite Reticulitermes speratus incur significantly lower oxidative damage to DNA, protein and lipid and have higher activity of antioxidant enzymes than non-reproductive individuals (workers and soldiers). The levels of 8-hydroxy-2’-deoxyguanosine (oxidative damage marker of DNA) were lower in queens than in workers after UV irradiation. Queens also showed lower levels of protein carbonyls and malondialdehyde (oxidative damage markers of protein and lipid, respectively). The antioxidant enzymes of insects are generally composed of catalase (CAT) and peroxiredoxin (Prx). Queens showed more than two times higher CAT activity and more than seven times higher expression levels of the CAT gene RsCAT1 than workers. The CAT activity of termite queens was also markedly higher in comparison with other solitary insects and the queens of eusocial Hymenoptera. In addition, queens showed higher expression levels of the Prx gene RsPRX6. These results suggested that this efficient antioxidant system can partly explain why termite queens achieve long life. This study provides important insights into the evolutionary linkage of reproductive division of labor and the development of queens’ oxidative stress resistance in social insects. PMID:28076409

  17. Monitoring antioxidant defenses and free radical production in space-flight, aviation and railway engine operators, for the prevention and treatment of oxidative stress, immunological impairment, and pre-mature cell aging.

    Science.gov (United States)

    De Luca, C; Deeva, I; Mariani, S; Maiani, G; Stancato, A; Korkina, L

    2009-01-01

    Degenerative diseases, immune impairment, and premature ageing commonly affect professional categories exposed to severe environmental and psychological stress. Among these, cosmonauts routinely experience extreme conditions due to microgravity, space radiation, altered oxygen supply, physical and mental fatigue during training, spaceflight, and post-flight. Long route aviation pilots display elevated oncogenic risk, connected with cosmic radiation overexposure, and high mortality rates for cardiovascular causes. Engine drivers, like pilots, are affected by health consequences of psycho-emotional stress, and burnout syndrome. The free radical (FR)/antioxidant (AO) imbalance is a common feature in all these pathological conditions. To assess the effective relevance of oxidative stress, we analyzed blood and urine reliable markers of FR production and AO defenses in 12 Russian cosmonauts, 55 airline pilots, 63 train engine drivers, and 50 age-matched controls by measuring the following: (a) lipophilic/hydrophilic low-molecular weight AO and AO enzyme activities, (b) nitric oxide, superoxide anion, hydroperoxide production, and (c) urinary catecholamine/serotonine metabolites and lipoperoxidation markers. Cosmonauts showed elevated granulocyte superoxide and nitric oxide production, increased erythrocyte superoxide dismutase activity and glutathione oxidation, and drastically decreased plasma/leucocyte lipophilic AO levels (P monitoring of clinical biochemistry laboratory markers of AO/FR status, to tailor individually specific AO supplementation and diet regimen, and monitor treatment outcomes.

  18. Dietary flavanols exert different effects on antioxidant defenses and apoptosis/proliferation in Caco-2 and SW480 colon cancer cells.

    Science.gov (United States)

    Ramos, Sonia; Rodríguez-Ramiro, Ildefonso; Martín, María Angeles; Goya, Luis; Bravo, Laura

    2011-12-01

    Flavanols intake has been associated with reduced risk of cancer. In this study, the anticarcinogenic effects of the flavanols epicatechin (EC), epicatechin-gallate (ECG) and procyanidin B2 (PB2) on Caco-2 and SW480 colon cancer cells were investigated. Catechins showed different cytotoxicity depending on the cell line. ECG displayed strong growth inhibitory effects against SW480 cells, but was ineffective on Caco-2 cells. In contrast, PB2 did not affect Caco-2 cells, whereas promoted cell growth in SW480 cells and EC had no obvious effects on any cell line. Exposure of SW480 cells to ECG led to apoptosis as determined by caspase-3 activity, imbalance among Bcl-2 anti- and pro-apoptotic protein levels, ERK activation and AKT inhibition, whereas PB2 treatment enhanced phospho-AKT and phospho-ERK levels. Incubation of Caco-2 cells with ECG increased glutathione levels without affecting the expression of pro- and anti-apoptotic Bcl-2 proteins, AKT or ERK. The results suggest that the different cytotoxicity of flavanols is caused by their different activity and the degree of differentiation of the colon cancer cell line. Thus, ECG induced apoptosis in SW480 cells and contributed to the cytotoxic effect, whereas ECG enhanced the antioxidant potential in Caco-2 cells. PB2 activated cell proliferation and survival/proliferation pathways in SW480 cells.

  19. A time course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions (Pb2+).

    Science.gov (United States)

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2012-10-01

    We examined the effect of Pb(2+) (8 and 40 mg l(-1)) on reactive oxygen species generation and alterations in antioxidant enzymes in hydroponically grown wheat at 24, 72, and 120 h after exposure. Pb(2+) toxicity was more pronounced on root growth, and it correlated with the greater Pb accumulation in roots. Pb exposure (40 mg l(-1)) enhanced superoxide anion, H(2)O(2), and MDA content in wheat roots by 1.9- to 2.2-folds, 56-255%, and 41-90%, respectively, over the control. Pb-induced loss of membrane integrity was confirmed by the enhanced electrolyte leakage and in vivo histochemical localization. Activities of scavenging enzymes, superoxide dismutases and catalases, enhanced in Pb-treated wheat roots by 1.4- to 5.7-folds over that in the control. In contrast, the activities of ascorbate and guaiacol peroxidases and glutathione reductases decreased significantly, suggesting their non-involvement in detoxification process. The study concludes that Pb(2+)-induced oxidative damage in wheat roots involve greater H(2)O(2) accumulation and the deactivation of the related scavenging enzymes.

  20. The lactoperoxidase system links anion transport to host defense in cystic fibrosis.

    Science.gov (United States)

    Conner, Gregory E; Wijkstrom-Frei, Corinne; Randell, Scott H; Fernandez, Vania E; Salathe, Matthias

    2007-01-23

    Chronic respiratory infections in cystic fibrosis result from CFTR channel mutations but how these impair antibacterial defense is less clear. Airway host defense depends on lactoperoxidase (LPO) that requires thiocyanate (SCN-) to function and epithelia use CFTR to concentrate SCN- at the apical surface. To test whether CFTR mutations result in impaired LPO-mediated host defense, CF epithelial SCN- transport was measured. CF epithelia had significantly lower transport rates and did not accumulate SCN- in the apical compartment. The lower CF [SCN-] did not support LPO antibacterial activity. Modeling of airway LPO activity suggested that reduced transport impairs LPO-mediated defense and cannot be compensated by LPO or H2O2 upregulation.

  1. Avian host defense peptides

    NARCIS (Netherlands)

    Cuperus, Tryntsje; Coorens, M.; van Dijk, A.; Haagsman, H.P.

    2013-01-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense

  2. Patriot/Medium Extended Air Defense System Combined Aggregate Program (Patriot/MEADS CAP)

    Science.gov (United States)

    2013-12-01

    FUE - First Unit Equipped IOT &E - Initial Operational Test and Evaluation Missile Milestones SAR Baseline Dev Est Current APB Development...Acquisition Management Information Retrieval Dev Est - Development Estimate DoD - Department of Defense DSN - Defense Switched Network Econ...Milestone c FUE IOT &E Start Complete Full Rate Production Deci... AcQuisition Increment 2 Milestone C Lightweight Launcher FUE IOT &E Start

  3. The Impact of Civilian Control on Contemporary Defense Planning Systems: Challenges for South East Europe

    Science.gov (United States)

    2011-03-01

    NATO – Decisive Test for the Government of the Republic of Moldova,” Folder: Pros and Cos of NATO, November 13, 2009, http://prisa.md/eng... Barany , Zoltan. Defense Academy Publication Series. Vienna: National Defense Experience. Comparative Politics, Vol. 30, No. 1 (October 1997): 21...and Military Effectiveness: Romania. Mija, Valeriu. “Implementation of IPAP RM-NATO – Decisive Test for the Government of the Republic of Moldova

  4. Plant natriuretic peptides: Systemic regulators of plant homeostasis and defense that can affect cardiomyoblasts

    KAUST Repository

    Gehring, Christoph A.

    2010-09-01

    Immunologic evidence has suggested the presence of biologically active natriuretic peptide (NPs) hormones in plants because antiatrial NP antibodies affinity purify biologically active plant NPs (PNP). In the model plant, an Arabidopsis thaliana PNP (AtPNP-A) has been identified and characterized. AtPNP-A belongs to a novel class of molecules that share some similarity with the cell wall loosening expansins but do not contain the carbohydrate-binding wall anchor thus suggesting that PNPs and atrial natriuretic peptides are heterologs. AtPNP-A acts systemically, and this is consistent with its localization in the apoplastic extracellular space and the conductive tissue. Furthermore, AtPNP-A signals via the second messenger cyclic guanosine 3′,5′-monophosphate and modulates ion and water transport and homeostasis. It also plays a critical role in host defense against pathogens. AtPNP-A can be classified as novel paracrine plant hormone because it is secreted into the apoplastic space in response to stress and can enhance its own expression. Interestingly, purified recombinant PNP induces apo-ptosis in a dose-dependent manner and was most effective on cardiac myoblast cell lines. Because PNP is mimicking the effect of ANP in some instances, PNP may prove to provide useful leads for development of novel therapeutic NPs. Copyright © 2013 by The American Federation for Medical Research.

  5. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters.

    Science.gov (United States)

    Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N

    2016-01-01

    Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO.

  6. Contemporary strategic management approach in the defense system by U.S. methodology concept

    Directory of Open Access Journals (Sweden)

    Veselin I. Mrdak

    2013-12-01

    Full Text Available The paper wants to emphasize the importance of contemporary strategic management approachs in the defense system. Displays the work of American author Leslie Lewis and C. Robert Roll "Strategy-to- tasks: a methodology for resource allocation and management". It were used by parts of the discussion above, in order to describe the strategy-to-tasks methodology for planning, programming and budgeting system (PPBS. In developed Western countries adopted some elements of strategic management to determine and monitor the execution of strategic plans in the defense system. This trend is spreading to other countries as a result of the necessity of obeying certain methodological and technological achievements. The uncritical acceptance of a strategic management approach can cause great confusion and problems, and the terminology and scientific explanation for this trend is of great importance. Introduction PPBS is a resource management framework based on force planning concept. It was developed at the lRand Company during the late eighties and is adapted to the special needs of several DoD organization. The planning, programming and budgeting system (PPBS PPBS is DoD`ş primary system for planning and managing defense resources. It links the overall U.S. national security strategy to specific programs. It was designed to facilitate fiscally-constrained planning, programming and budgeting in terms of complete programs (i.e. forces and systems rather than through artificial budget categories. The goal is to determine forces, systems and program costs. Strategy-to-tasks and the PPBS The Strategy-To-Tasks methodology, regardless of its application, it must be consistent and supportive of each phase of the PPBS. This section describes the basics frameworks of which are adapted to resource allocation and management activities for the Special Operations Command (USSOCOM. The authors have used it during the various phases of the PPBS. The National Security

  7. Toxic effects of nitenpyram on antioxidant enzyme system and DNA in zebrafish (Danio rerio) livers.

    Science.gov (United States)

    Yan, Saihong; Wang, Jinhua; Zhu, Lusheng; Chen, Aimei; Wang, Jun

    2015-12-01

    Nitenpyram is one of the most commonly used neonicotinoid pesticide worldwide and was found to be toxic to non-target aquatic organisms. Therefore, the purpose of this study was to investigate the oxidative stress, changes in the detoxifying system and DNA damage in zebrafish induced by nitenpyram. In the present study, zebrafish (Danio rerio) were exposed to four concentrations (0.6, 1.2, 2.5, and 5.0 mg L(-1)) for 28 d and then sampled in triplicate on days 7, 14, 21 and 28. Superoxide dismutase (SOD) and catalase (CAT) activities were dramatically inhibited at most exposure times compared with the control group, except SOD at low concentration (0.6 mg L(-1)) of nitenpyram and CAT on day 21. This difference is due to the excess reactive oxygen species (ROS) produced and increased malondialdehyde (MDA) content in zebrafish livers. The activity of glutathione S-transferase (GST) increased in in the treatment groups at a higher concentration compared with the control group. We found that nitenpyram exposure could affect the antioxidant enzymes and DNA damage in the exposed zebrafish livers. Additionally, the changes in the antioxidant enzyme activities could be an adaptive response protecting against the toxicity induced by nitenpyram.

  8. Modulation of the antioxidant system in Citrus under waterlogging and subsequent drainage.

    Science.gov (United States)

    Hossain, Zahed; López-Climent, María F; Arbona, Vicent; Pérez-Clemente, Rosa M; Gómez-Cadenas, Aurelio

    2009-09-01

    Soil flooding induces an impairment of the photosynthetic system that often leads to an accumulation of reactive oxygen species (ROS) in plant tissues. Moreover, flooding release by drainage can cause a sudden oxygen burst that exacerbates oxidative damage. To examine the influence of different anoxic and post-anoxic periods on citrus physiology, citrumelo CPB4475, a moderate flood-tolerant genotype, was subjected to three different periods of soil flooding followed by drainage. Plant performance in terms of visible damage, photosynthetic activity, malondialdehyde (MDA) and hydrogen peroxide accumulation was examined together with the plant antioxidant response. The results indicated that coordinated antioxidant activity, involving increased activities of superoxide dismutase (SOD) (EC 1.15.1.1) and catalase (CAT) (EC 1.11.1.6), together with a modulation of the ascorbate-glutathione cycle, allowed plants to cope with flooding-induced oxidative stress up to a certain point. Elevated ascorbate peroxidase (APX) (EC 1.11.1.11) activity or discrete increases in AsA or glutathione concentrations seemed inefficient in maintaining low levels of oxidative damage. Waterlogging stress release by soil drainage did not improve plant performance but, on the contrary, enhanced oxidative stress and even accelerated plant injury. This appears to be the result of sudden oxygen burst soon after release of water.

  9. Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy

    Directory of Open Access Journals (Sweden)

    Barbara Marengo

    2016-01-01

    Full Text Available Reactive oxygen species (ROS and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy.

  10. Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy.

    Science.gov (United States)

    Marengo, Barbara; Nitti, Mariapaola; Furfaro, Anna Lisa; Colla, Renata; Ciucis, Chiara De; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Traverso, Nicola; Domenicotti, Cinzia

    2016-01-01

    Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy.

  11. Modulation of Fibrosis in Systemic Sclerosis by Nitric Oxide and Antioxidants

    Directory of Open Access Journals (Sweden)

    Audrey Dooley

    2012-01-01

    Full Text Available Systemic sclerosis (scleroderma: SSc is a multisystem, connective tissue disease of unknown aetiology characterized by vascular dysfunction, autoimmunity, and enhanced fibroblast activity resulting in fibrosis of the skin, heart, and lungs, and ultimately internal organ failure, and death. One of the most important and early modulators of disease activity is thought to be oxidative stress. Evidence suggests that the free radical nitric oxide (NO, a key mediator of oxidative stress, can profoundly influence the early microvasculopathy, and possibly the ensuing fibrogenic response. Animal models and human studies have also identified dietary antioxidants, such as epigallocatechin-3-gallate (EGCG, to function as a protective system against oxidative stress and fibrosis. Hence, targeting EGCG may prove a possible candidate for therapeutic treatment aimed at reducing both oxidant stress and the fibrotic effects associated with SSc.

  12. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise : Partition of ascorbic acid

    DEFF Research Database (Denmark)

    Meyer, Anne S.; Jacobsen, Charlotte

    1996-01-01

    The distribution of ascorbic acid between the lipid and aqueous phase was investigated in mayonnaises enriched with fish oil containing a synergistic antioxidant mixture of ascorbic acid, lecithin and gamma-tocopherol, i.e., the A/L/T system (Loliger and Saucy 1989). The ascorbic acid was found...... to be located in the aqueous phase indicating that the A/L/T system broke down in mayonnaises. Based on the hypothesis that synergistic antioxidant action between ascorbic acid, lecithin and tocopherol requires that the three components are in close assembly, the results offer an explanation as to why the A...

  13. Complex Dynamical Behaviors in a Predator-Prey System with Generalized Group Defense and Impulsive Control Strategy

    Directory of Open Access Journals (Sweden)

    Shunyi Li

    2013-01-01

    Full Text Available A predator-prey system with generalized group defense and impulsive control strategy is investigated. By using Floquet theorem and small amplitude perturbation skills, a local asymptotically stable prey-eradication periodic solution is obtained when the impulsive period is less than some critical value. Otherwise, the system is permanent if the impulsive period is larger than the critical value. By using bifurcation theory, we show the existence and stability of positive periodic solution when the pest eradication lost its stability. Numerical examples show that the system considered has more complicated dynamics, including (1 high-order quasiperiodic and periodic oscillation, (2 period-doubling and halving bifurcation, (3 nonunique dynamics (meaning that several attractors coexist, and (4 chaos and attractor crisis. Further, the importance of the impulsive period, the released amount of mature predators and the degree of group defense effect are discussed. Finally, the biological implications of the results and the impulsive control strategy are discussed.

  14. Deciphering Staphylococcus sciuri SAT-17 Mediated Anti-oxidative Defense Mechanisms and Growth Modulations in Salt Stressed Maize (Zea mays L.).

    Science.gov (United States)

    Akram, Muhammad S; Shahid, Muhammad; Tariq, Mohsin; Azeem, Muhammad; Javed, Muhammad T; Saleem, Seemab; Riaz, Saba

    2016-01-01

    Soil salinity severely affects plant nutrient use efficiency and is a worldwide constraint for sustainable crop production. Plant growth-promoting rhizobacteria, with inherent salinity tolerance, are able to enhance plant growth and productivity by inducing modulations in various metabolic pathways. In the present study, we reported the isolation and characterization of a salt-tolerant rhizobacterium from Kallar grass [Leptochloa fusca (L.) Kunth]. Sequencing of the 16S rRNA gene revealed its lineage to Staphylococcus sciuri and it was named as SAT-17. The strain exhibited substantial potential of phosphate solubilization as well as indole-3-acetic acid production (up to 2 M NaCl) and 1-aminocyclopropane-1-carboxylic acid deaminase activity (up to 1.5 M NaCl). Inoculation of a rifampicin-resistant derivative of the SAT-17 with maize, in the absence of salt stress, induced a significant increase in plant biomass together with decreased reactive oxygen species and increased activity of cellular antioxidant enzymes. The derivative strain also significantly accumulated nutrients in roots and shoots, and enhanced chlorophyll and protein contents in comparison with non-inoculated plants. Similar positive effects were observed in the presence of salt stress, although the effect was more prominent at 75 mM in comparison to higher NaCl level (150 mM). The strain survived in the rhizosphere up to 30 days at an optimal population density (ca. 1 × 10(6) CFU mL(-1)). It was concluded that S. sciuri strain SAT-17 alleviated maize plants from salt-induced cellular oxidative damage and enhanced growth. Further field experiments should be conducted, considering SAT-17 as a potential bio-fertilizer, to draw parallels between PGPR inoculation, elemental mobility patterns, crop growth and productivity in salt-stressed semi-arid and arid regions.

  15. Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus: antioxidant defense and role of alpha-tocopherol

    Directory of Open Access Journals (Sweden)

    Amin Kamal A

    2012-04-01

    Full Text Available Abstract Background The pyrethroid class of insecticides, including deltamethrin, is being used as substitutes for organochlorines and organophosphates in pest-control programs because of their low environmental persistence and toxicity. This study was aimed to investigate the impact of commonly used pesticides (deltamethrin on the blood and tissue oxidative stress level in catfish (Clarias gariepinus; in addition to the protective effect of α-tocopherol on deltamethrin induced oxidative stress. Catfish were divided into three groups, 1st control group include 20 fish divided into two tanks each one contain 10 fish, 2nd deltamethrin group, where Fish exposed to deltamethrin in a concentration (0.75 μg/l and 3rd Vitamin E group, Fish exposed to deltamethrin and vitamin E at a dose of 12 μg/l for successive 4 days. Serum, liver, kidney and Gills were collected for biochemical assays. Tissue oxidative stress biomarkers malondialdhyde (MDA and catalase activity in liver, kidney and gills tissues, serum liver enzymes (ALT and AST, serum albumin, total protein, urea and creatinine were analysed. Results Our results showed that 48 h. exposure to 0.75 μg/l deltamethrin significantly (p  Conclusions It could be concluded that deltamethrin is highly toxic to catfish even in very low concentration (0.75 μg/l. Moreover the effect of deltamethrin was pronounced in the liver of catfish in comparison with kidneys and gills. Moreover fish antioxidants and oxidative stress could be used as biomarkers for aquatic pollution, thus helping in the diagnosis of pollution. Adminstration of 12 μg/l α-tocopherol restored the quantified tissue and serum parameters, so supplementation of α-tocopherol consider an effective way to counter the toxicity of deltamethrin in the catfish.

  16. Characterization of a 1-cysteine peroxiredoxin from big-belly seahorse (Hippocampus abdominalis); insights into host antioxidant defense, molecular profiling and its expressional response to septic conditions.

    Science.gov (United States)

    Godahewa, G I; Perera, N C N; Elvitigala, Don Anushka Sandaruwan; Jayasooriya, R G P T; Kim, Gi-Young; Lee, Jehee

    2016-10-01

    1-cysteine peroxiredoxin (Prx6) is an antioxidant enzyme that protects cells by detoxifying multiple peroxide species. This study aimed to describe molecular features, functional assessments and potential immune responses of Prx6 identified from the big-belly seahorse, Hippocampus abdominalis (HaPrx6). The complete ORF (666 bp) of HaPrx6 encodes a polypeptide (24 kDa) of 222 amino acids, and harbors a prominent peroxiredoxin super-family domain, a peroxidatic catalytic center, and a peroxidatic cysteine. The deduced amino acid sequence of HaPrx6 shares a relatively high amino acid sequence similarity and close evolutionary relationship with Oplegnathus fasciatus Prx6. The purified recombinant HaPrx6 protein (rHaPrx6) was shown to protect plasmid DNA in the Metal Catalyzed Oxidation (MCO) assay and, together with 1,4-Dithiothreitol (DTT), protected human leukemia THP-1 cells from extracellular H2O2-mediated cell death. In addition, quantitative real-time PCR revealed that HaPrx6 mRNA was constitutively expressed in 14 different tissues, with the highest expression observed in liver tissue. Inductive transcriptional responses were observed in liver and kidney tissues of fish after treating them with bacterial stimuli, including LPS, Edwardsiella tarda, and Streptococcus iniae. These results suggest that HaPrx6 may play an important role in the immune response of the big-belly seahorse against microbial infection. Collectively, these findings provide structural and functional insights into HaPrx6.

  17. Modulation of Melanogenesis and Antioxidant Status of Melanocytes in Response to Phototoxic Action of Doxycycline.

    Science.gov (United States)

    Rok, Jakub; Buszman, Ewa; Beberok, Artur; Delijewski, Marcin; Otręba, Michał; Wrześniok, Dorota

    2015-11-01

    Doxycycline is a commonly used tetracycline antibiotic showing the broad spectrum of antibacterial action. However, the use of this antibiotic is often connected with the risk of phototoxic reactions that lead to various skin disorders. One of the factors influencing the photosensitivity reactions is the melanin content in melanocytes. In this study, the impact of doxycycline and UVA irradiation on cell viability, melanogenesis and antioxidant defense system in cultured normal human epidermal melanocytes (HEMn-DP) was examined. The exposure of cells to doxycycline and UVA radiation resulted in concentration-dependent loss in melanocytes viability and induced melanin biosynthesis. Significant changes were stated in cellular antioxidant enzymes activity: SOD, CAT and GPx, which indicates alterations of antioxidant defense system. The results obtained in vitro may explain the mechanisms of phototoxic reactions that occur in normal human epidermal melanocytes in vivo after exposure of skin to doxycycline and UVA radiation.

  18. Antioxidant role of zinc in diabetes mellitus.

    Science.gov (United States)

    Cruz, Kyria Jayanne Clímaco; de Oliveira, Ana Raquel Soares; Marreiro, Dilina do Nascimento

    2015-03-15

    Chronic hyperglycemia statue noticed in diabetes mellitus favors the manifestation of oxidative stress by increasing the production of reactive oxygen species and/or by reducing the antioxidant defense system activity. Zinc plays an important role in antioxidant defense in type 2 diabetic patients by notably acting as a cofactor of the superoxide dismutase enzyme, by modulating the glutathione metabolism and metallothionein expression, by competing with iron and copper in the cell membrane and by inhibiting nicotinamide adenine dinucleotide phosphate-oxidase enzyme. Zinc also improves the oxidative stress in these patients by reducing chronic hyperglycemia. It indeed promotes phosphorylation of insulin receptors by enhancing transport of glucose into cells. However, several studies reveal changes in zinc metabolism in individuals with type 2 diabetes mellitus and controversies remain regarding the effect of zinc supplementation in the improvement of oxidative stress in these patients. Faced with the serious challenge of the metabolic disorders related to oxidative stress in diabetes along with the importance of antioxidant nutrients in the control of this disease, new studies may contribute to improve our understanding of the role played by zinc against oxidative stress and its connection with type 2 diabetes mellitus prognosis. This could serve as a prelude to the development of prevention strategies and treatment of disorders associated with this chronic disease.

  19. Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Mori, N.; Hirayama, K. [Kumamoto University, School of Health Science, Kumamoto (Japan); Yasutake, A. [National Institute for Minamata Disease, Minamata (Japan)

    2007-11-15

    The involvement of oxidative stress has been suggested as a mechanism for neurotoxicity caused by methylmercury (MeHg), but the mechanism for MeHg selective toxicity in the central nervous system is still unclear. In this research, to clarify the mechanism of selective neurotoxicity caused by MeHg, the oxygen consumption levels, the reactive oxygen species (ROS) production rates and several antioxidant levels in mitochondria were compared among the cerebrum, cerebellum and liver of male Wistar rats. In addition, the alterations of these indexes were examined in MeHg-intoxicated rats (oral administration of 10 mg/kg day, for 5 days). Although the cerebrum and cerebellum in intact rats showed higher mitochondrial oxygen consumption levels and ROS production rates than the liver, glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities were much lower in the cerebrum and cerebellum than in the liver. Especially, the cerebellum showed the highest oxygen consumption and ROS production rate and the lowest mitochondrial glutathione (GSH) levels among the tissues examined. In the MeHg-treated rats, decrease in the oxygen consumption and increase in the ROS generation were found only in the cerebellum mitochondria, despite a lower Hg accumulation in the mitochondrial fraction compared to the liver. Since MeHg treatment produced an enhancement of ROS generation in cerebellum mitochondria supplemented with succinate substrates, MeHg-induced oxidative stress might affect the complex II-III mediated pathway in the electron transfer chain in the cerebellum mitochondria. Our study suggested that inborn factors, high production system activity and low defense system activity of ROS in the brain, would relate to the high susceptibility of the central nervous system to MeHg toxicity. (orig.)

  20. HERBAL REMEDIES AS ANTIOXIDANTS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Manoj S. Charde

    2012-01-01

    Full Text Available The primary cause of degenerative disease is not due to damaging free radicals, but rather it is due to the requirement of highly ordered cell biochemistry becoming disordered due to insufficient cellular energy to maintain the normal state of order. There is a complex defense system in the body, in which vitamins, minerals, amino acids and certain enzymes play a central role called the antioxidant system. Antioxidants are weapons for combating free radicals and mop up damaging chemicals in the body and guard against many chronic diseases. Heart disease, arthritis, cancer and many other common chronic diseases derive from the same source: fortuitous mutations caused largely by free radicals. Under optimum conditions, cells are protected against free radicals and lipid per oxidation. Antioxidants are substances, which react chemically with free radicals and render them harmless and at the same time break the vicious circle, which involves the decomposition of fatty acids & proteins, the creation of new free radicals and eventual cell death. Because free radical damage accumulates with age, people should start supplementing with antioxidants early to achieve long-term benefits. The scientific community has begun to unveil some of  the  mysteries surrounding this topic, and the media has begun whetting our thirst for knowledge.

  1. Rationale for Antioxidant Supplementation in Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Morena Marion

    2001-01-01

    Full Text Available Oxidative stress, which results from an imbalance between reactive oxygen species (ROS production and antioxidant defense mechanisms, is now a well recognized pathogenic process in hemodialysis (HD patients that could be involved in dialysis-related pathologies such as accelerated atherosclerosis, amyloidosis and anemia. This review is aimed at evaluating the rationale for preventive intervention against oxidative damage during HD as well as the putative causal factors implicated in this imbalance. The antioxidant system is severely impaired in uremic patients and impairment increases with the degree of renal failure. HD further worsens this condition mainly by losses of hydrophilic unbound small molecular weight substances such as vitamin C, trace elements and enzyme regulatory compounds. Moreover, inflammatory state due to the hemo-incompatibility of the dialysis system plays a critical role in the production of oxidants contributing further to aggravate the pro-oxidant status of uremic patients. Prevention of ROS overproduction can be achieved by improvement of dialysis biocompatibility, a main component of adequate dialysis, and further complimented by antioxidant supplementation. This could be achieved either orally or via the extracorporeal circuit. Antioxidants such as vitamin E could be bound on dialyzer membranes. Alternatively, hemolipodialysis consisting of loading HD patients with vitamin C or E via an ancillary circuit made of vitamin E-rich liposomes may be used.

  2. Program Manager: The Journal of the Defense Systems Management College. Volume 12, Number 6, November-December 1983,

    Science.gov (United States)

    1983-12-01

    of new technologies. In a recent Army conducted in-depth reviews of a small number of systems to Science Board report on artificial intelligence and...their busines addresses) to th Editor-in-Chief. Nongovernment employeas and organizations may I at $14 mmuly thrg the Superintendent of Documents, U.S...reason, we The job of all of us in the defense ac- the Affordable Acquisition Approach, must make intelligent decisions about quisition community is to

  3. [Effects of copper stress on Medicago sativa seedlings leaf antioxidative system].

    Science.gov (United States)

    Wang, Song-hua; Zhang, Hua; He, Qing-yuan

    2011-09-01

    This paper studied the effects of different concentration (0, 10, 30, 50, and 100 micromol x L(-1)) CuSO4 on the leaf physiological and biochemical characteristics of Medicago sativa seedlings cultured with 1/4-strength Hoagland nutrient solution. In treatments 30, 50, and 100 micromol x L(-1) of CuSO4, the leaf H2O2, OH., and MDA contents and Fe-SOD and EST activities increased, and GSH and AsA contents increased significantly. With increasing concentration Cu, the POD, GR, and APX activities increased gradually, and the CAT and G6PDH activities decreased after an initial increase. In treatments >10 micromol x L(-1) of Cu, the capacity of leaf antioxidative system in reactive oxygen species scavenging increased to prevent the injury from copper-induced oxidative stress.

  4. Cooperative antioxidative effects of zein hydrolysates with sage (Salvia officinalis) extract in a liposome system.

    Science.gov (United States)

    Li, Yuanyuan; Liu, Haotian; Han, Qi; Kong, Baohua; Liu, Qian

    2017-05-01

    This study investigated the cooperative antioxidative effects of sage extract (SE) and zein hydrolysates (ZH). The combination of 3mg/ml ZH and 10μg/ml SE exhibited a significant synergism in inhibition of the formation of thiobarbituric acid-reactive substances and provided superior protection of liposomes against oxidation. Zeta-potential results revealed that the interactions between liposomes and ZH were electrostatic interactions. Particle size determination further proved that ZH and SE added to oxidized liposomes significantly decreased the mean particle size. Confocal laser scanning microscopy revealed that when ZH was present in the liposome oxidizing system, the droplet sizes were obviously decreased compared to oxidized samples. ZH dispersed more uniformly and the interfacial membrane was more compact in the ZH-SE liposome. Transmission electron microscopy conveyed that the ZH-SE complex around the liposome particles could form a denser network structure, preventing radicals and oxidants from the approach of the liposomes.

  5. Ecotoxicological effects of the antioxidant additive propyl gallate in five aquatic systems.

    Science.gov (United States)

    Zurita, Jorge L; Jos, Angeles; del Peso, Ana; Salguero, Manuel; López-Artíguez, Miguel; Repetto, Guillermo

    2007-06-01

    Propyl gallate is an antioxidant widely used in foods, cosmetics and pharmaceuticals. The occurrence and fate of additives in the aquatic environment is an emerging issue in environmental chemistry. To date, there is little available information about the adverse effects of propyl gallate on aquatic organisms. Therefore, the toxic effects were investigated, using five model systems from four trophic levels. The most sensitive system was the hepatoma fish cell line PLHC-1 according to total protein content, with an EC(50) of 10 microM and a NOAEL of 1 microM at 72 h, followed by the immobilization of Daphnia magna, the inhibition of bioluminescence of Vibrio fischeri, the salmonid fish cell line RTG-2 and the inhibition of the growth of Chlorella vulgaris. Although protein content, neutral red uptake, methylthiazol metabolization and acetylcholinesterase activity were reduced in PLHC-1 cells, stimulations were observed for lysosomal function, succinate dehydrogenase, glucose-6-phosphate dehydrogenase and ethoxyresorufin-O-deethylase activities. No changes were observed in metallothionein levels. The main morphological observations were the loss of cells and the induction of cell death mainly by necrosis but also by apoptosis. The protective and toxic effects of propyl gallate were evaluated. General antioxidants and calcium chelators did not modify the toxicity of propyl gallate, but an iron-dependent lipid peroxidation inhibitor gave 22% protection. The results also suggest that propyl gallate cytotoxicity is dependent on glutathione levels, which were modulated by malic acid diethyl ester and 2-oxothiazolidine-4-carboxylic acid. According to the results, propyl gallate should be classified as toxic to aquatic organisms.

  6. TCDD and corticosterone on testicular steroidogenesis and antioxidant system of epididymal sperm in rats.

    Science.gov (United States)

    Dhanabalan, S; Mathur, P P; Latha, P

    2015-09-01

    2,3,7,8-Tetrachloro dibenzo-p-dioxin (TCDD), an endocrine-disrupting environmental pollutant, has been found to cause male reproductive toxicity. Glucocorticoids have been found to influence the metabolic pathway of TCDD. Stress, which affects the male reproductive function, is marked by an increase in the level and activity of glucocorticoids in the body. The present study was carried out to understand the effect of TCDD on testicular steroidogenesis and sperm antioxidant system under the influence of increased level of corticosterone in the body. Adult male rats were treated with either TCDD (100 ng/kg bw/ day) or corticosterone (3 mg/kg bw/day) or both for 15 days. Treatment with either TCDD or corticosterone was found to suppress the levels of steroidogenic acute regulatory protein and androgen-binding protein and reduce the activities of steroidogenic enzymes in testis while increasing oxidative stress in ventral prostate, seminal vesicles and epididymal sperm. In rats treated with both TCDD and corticosterone, the suppression of testicular steroidogenesis and increase in oxidative stress observed in ventral prostate, seminal vesicles and epididymal sperm were significant as compared to TCDD alone treated rats. The levels of Fas and FasL proteins were also increased in rats subjected to either TCDD or corticosterone treatment. In rats treated with both compounds, the increase observed in testicular levels of Fas and FasL was significant as compared to TCDD alone treated rats. Effect of TCDD on testicular steroidogenesis and antioxidant system of epididymal sperm may get enhanced under increased level of glucocorticoids in the body.

  7. Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings

    Science.gov (United States)

    Ding, Xiaotao; Jiang, Yuping; He, Lizhong; Zhou, Qiang; Yu, Jizhu; Hui, Dafeng; Huang, Danfeng

    2016-01-01

    To investigate the physiological responses of plants to high root-zone temperature (HT, 35 °C) stress mitigated by exogenous glutathione (GSH), cucumber (Cucumis sativus L.) seedlings were exposed to HT with or without GSH treatment for 4 days and following with 4 days of recovery. Plant physiological variables, growth, and gene expression related to antioxidant enzymes and Calvin cycle were quantified. The results showed that HT significantly decreased GSH content, the ratio of reduced to oxidized glutathione (GSH/GSSG), chlorophyll content, photosynthesis and related gene expression, shoot height, stem diameter, as well as dry weight. The exogenous GSH treatment clearly lessened the HT stress by increasing the above variables. Meanwhile, HT significantly increased soluble protein content, proline and malondialdehyde (MDA) content as well as O2•− production rate, the gene expression and activities of antioxidant enzymes. The GSH treatment remarkably improved soluble protein content, proline content, antioxidant enzymes activities, and antioxidant enzymes related gene expression, and reduced the MDA content and O2•− production rate compared to no GSH treatment in the HT condition. Our results suggest that exogenous GSH enhances cucumber seedling tolerance of HT stress by modulating the photosynthesis, antioxidant and osmolytes systems to improve physiological adaptation. PMID:27752105

  8. Application of Ultrasound in a Closed System: Optimum Condition for Antioxidants Extraction of Blackberry (Rubus fructicosus Residues

    Directory of Open Access Journals (Sweden)

    Quinatzin Y. Zafra-Rojas

    2016-07-01

    Full Text Available Blackberry processing generates up to 20% of residues composed mainly of peel, seeds and pulp that are abundant in flavonoids. The objective of this study was to optimize the ultrasound conditions, in a closed system, for antioxidants extraction, using the response surface methodology. Blackberry (Rubus fructicosus residues were analyzed for total phenolics, total anthocyanins, and antioxidant activity by ABTS and DPPH. The selected independent variables were ultrasound amplitude (X1: 80%–90% and extraction time (X2: 10–15 min, and results were compared with conventional extraction methods. The optimal conditions for antioxidants extraction were 91% amplitude for 15 min. The results for total phenolic content and anthocyanins and antioxidant activity by ABTS and DPPH were of 1201.23 mg gallic acid equivalent (GAE/100 g dry weight basis (dw; 379.12 mg/100 g·dw; 6318.98 µmol Trolox equivalent (TE/100 g·dw and 9617.22 µmol TE/100 g·dw, respectively. Compared to solvent extraction methods (water and ethanol, ultrasound achieved higher extraction of all compounds except for anthocyanins. The results obtained demonstrated that ultrasound is an alternative to improve extraction yield of antioxidants from fruit residues such as blackberry.

  9. Toll-like receptors are part of the innate immune defense system of sponges (demospongiae: Porifera).

    Science.gov (United States)

    Wiens, Matthias; Korzhev, Michael; Perovic-Ottstadt, Sanja; Luthringer, Bérengère; Brandt, David; Klein, Stefanie; Müller, Werner E G

    2007-03-01

    host-defense system of Metazoa.

  10. Hotline Allegations Regarding Defense Contract Management Agency Contracting Officer Actions on Several Business System Audit Reports

    Science.gov (United States)

    2014-06-20

    2 0 , 2 0 1 4 Report No. DODIG-2014-084 Hotline Allegations Regarding Defense Contract Management Agency Contracting Officer Actions on...control number. 1. REPORT DATE 20 JUN 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Hotline Allegations...i l / h o t l i n e HOTLINE Department of Defense F r a u d , W a s t e , & A b u s e Mission Our mission is to provide independent, relevant, and

  11. Analysis of effects of a new environmental pollutant, bisphenol A, on antioxidant systems in soybean roots at different growth stages

    Science.gov (United States)

    Zhang, Jiazhi; Li, Xingyi; Zhou, Li; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-03-01

    Bisphenol A (BPA) is an important industrial raw material. Because of its widespread use and increasing release into environment, BPA has become a new environmental pollutant. Previous studies about BPA’s effects in plants focus on a certain growth stage. However, the plant’s response to pollutants varies at different growth stages. Therefore, in this work, BPA’s effects in soybean roots at different growth stages were investigated by determining the reactive oxygen species levels, membrane lipid fatty acid composition, membrane lipid peroxidation, and antioxidant systems. The results showed that low-dose BPA exposure slightly caused membrane lipid peroxidation but didn’t activate antioxidant systems at the seedling stage, and this exposure did not affect above process at other growth stages; high-dose BPA increased reactive oxygen species levels and then caused membrane lipid peroxidation at all growth stages although it activated antioxidant systems, and these effects were weaker with prolonging the growth stages. The recovery degree after withdrawal of BPA exposure was negatively related to BPA dose, but was positively related to growth stage. T