WorldWideScience

Sample records for antioxidant defense mechanism

  1. ENDURANCE TRAINING AND GLUTATHIONE-DEPENDENT ANTIOXIDANT DEFENSE MECHANISM IN HEART OF THE DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    Mustafa Atalay

    2003-06-01

    Full Text Available Regular physical exercise beneficially influences cardiac antioxidant defenses in normal rats. The aim of this study was to test whether endurance training can strengthen glutathione-dependent antioxidant defense mechanism and decrease lipid peroxidation in heart of the streptozotocin-induced diabetic rats. Redox status of glutathione in blood of diabetic rats in response to training and acute exercise was also examined. Eight weeks of treadmill training increased the endurance in streptozotocin-induced diabetic rats. It did not affect glutathione level in heart tissue at rest and also after exercise. On the other hand, endurance training decreased glutathione peroxidase activity in heart, while glutathione reductase and glutathione S-transferase activities were not affected either by acute exhaustive exercise or endurance training. Reduced and oxidized glutathione levels in blood were not affected by either training or acute exercise. Conjugated dienes levels in heart tissue were increased by acute exhaustive exercise and also 8 weeks treadmill training. Longer duration of exhaustion in trained group may have contributed to the increased conjugated dienes levels in heart after acute exercise. Our results suggest that endurance type exercise may make heart more susceptible to oxidative stress. Therefore it may be wise to combine aerobic exercise with insulin treatment to prevent its adverse effects on antioxidant defense in heart in patients with diabetes mellitus

  2. Polyamine metabolism influences antioxidant defense mechanism in foxtail millet (Setaria italica L.) cultivars with different salinity tolerance.

    Science.gov (United States)

    Sudhakar, Chinta; Veeranagamallaiah, Gounipalli; Nareshkumar, Ambekar; Sudhakarbabu, Owku; Sivakumar, M; Pandurangaiah, Merum; Kiranmai, K; Lokesh, U

    2015-01-01

    Polyamines can regulate the expression of antioxidant enzymes and impart plants tolerance to abiotic stresses. A comparative analysis of polyamines, their biosynthetic enzymes at kinetic and at transcriptional level, and their role in regulating the induction of antioxidant defense enzymes under salt stress condition in two foxtail millet (Setaria italica L.) cultivars, namely Prasad, a salt-tolerant, and Lepakshi, a salt-sensitive cultivar was conducted. Salt stress resulted in elevation of free polyamines due to increase in the activity of spermidine synthase and S-adenosyl methionine decarboxylase enzymes in cultivar Prasad compared to cultivar Lepakshi under different levels of NaCl stress. These enzyme activities were further confirmed at the transcript level via qRT-PCR analysis. The cultivar Prasad showed a greater decrease in diamine oxidase and polyamine oxidase activity, which results in the accumulation of polyamine pools over cultivar Lepakshi. Generation of free radicals, such as O 2 (·-) and H2O2, was also analyzed quantitatively. A significant increase in O 2 (·-) and H2O2 in the cultivar Lepakshi compared with cultivar Prasad was recorded in overall pool sizes. Further, histochemical staining showed lesser accumulation of O 2 (·-) and of H2O2 in the leaves of cultivar Prasad than cultivar Lepakshi. Our results also suggest the ability of polyamine oxidation in regulating the induction of antioxidative defense enzymes, which involve in the elimination of toxic levels of O 2 (·-) and H2O2, such as Mn-superoxide dismutase, catalase and ascorbate peroxidase. The contribution of polyamines in modulating antioxidative defense mechanism in NaCl stress tolerance is discussed.

  3. Oxidative stress and antioxidant defenses in pregnant women.

    Science.gov (United States)

    Leal, Claudio A M; Schetinger, Maria R C; Leal, Daniela B R; Morsch, Vera M; da Silva, Aleksandro Schafer; Rezer, João F P; de Bairros, André Valle; Jaques, Jeandre Augusto Dos Santos

    2011-01-01

    Oxidative stress (OS) is defined as an imbalance in the production of reactive oxygen species and the capacity of antioxidant defenses. The objective of this work was to investigate OS and antioxidant capacity in pregnant women. Parameters of the oxidative status and antioxidant capacity in serum and whole blood were evaluated in thirty-nine women with normal pregnancy. The assessment of antioxidants indicated an increase in superoxide dismutase and catalase activities (P0.05) in protein carbonylation. This study demonstrates that there is a change in the pro-oxidant and antioxidant defenses associated with body and circulation changes that are inherent to the pregnancy process.

  4. Studies on the hepatic antioxidant defense system in &lambda ...

    African Journals Online (AJOL)

    Studies on the hepatic antioxidant defense system in λ cyhalothrin-induced ... Significant (P<0.05) elevation in the level of lipid peroxidation was observed in λ ... The results of the present investigation have indicated that the tissue antioxidant defense system is operating at a lower rate despite ... HOW TO USE AJOL.

  5. Antioxidant Defenses in the Brains of Bats during Hibernation.

    Directory of Open Access Journals (Sweden)

    Qiuyuan Yin

    Full Text Available Hibernation is a strategy used by some mammals to survive a cold winter. Small hibernating mammals, such as squirrels and hamsters, use species- and tissue-specific antioxidant defenses to cope with oxidative insults during hibernation. Little is known about antioxidant responses and their regulatory mechanisms in hibernating bats. We found that the total level of reactive oxygen species (ROS and reactive nitrogen species (RNS in the brain of each of the two distantly related hibernating bats M. ricketti and R. ferrumequinum at arousal was lower than that at torpid or active state. We also found that the levels of malondialdehyde (product of lipid peroxidation of the two hibernating species of bats were significantly lower than those of non-hibernating bats R. leschenaultia and C. sphinx. This observation suggests that bats maintain a basal level of ROS/RNS that does no harm to the brain during hibernation. Results of Western blotting showed that hibernating bats expressed higher amounts of antioxidant proteins than non-hibernating bats and that M. ricketti bats upregulated the expression of some enzymes to overcome oxidative stresses, such as superoxide dismutase, glutathione reductase, and catalase. In contrast, R. ferrumequinum bats maintained a relatively high level of superoxide dismutase 2, glutathione reductase, and thioredoxin-2 throughout the three different states of hibernation cycles. The levels of glutathione (GSH were higher in M. ricketti bats than in R. ferrumequinum bats and were significantly elevated in R. ferrumequinum bats after torpor. These data suggest that M. ricketti bats use mainly antioxidant enzymes and R. ferrumequinum bats rely on both enzymes and low molecular weight antioxidants (e.g., glutathione to avoid oxidative stresses during arousal. Furthermore, Nrf2 and FOXOs play major roles in the regulation of antioxidant defenses in the brains of bats during hibernation. Our study revealed strategies used by bats

  6. Antioxidant defenses predict long-term survival in a passerine bird.

    Directory of Open Access Journals (Sweden)

    Nicola Saino

    2011-05-01

    Full Text Available Normal and pathological processes entail the production of oxidative substances that can damage biological molecules and harm physiological functions. Organisms have evolved complex mechanisms of antioxidant defense, and any imbalance between oxidative challenge and antioxidant protection can depress fitness components and accelerate senescence. While the role of oxidative stress in pathogenesis and aging has been studied intensively in humans and model animal species under laboratory conditions, there is a dearth of knowledge on its role in shaping life-histories of animals under natural selection regimes. Yet, given the pervasive nature and likely fitness consequences of oxidative damage, it can be expected that the need to secure efficient antioxidant protection is powerful in molding the evolutionary ecology of animals. Here, we test whether overall antioxidant defense varies with age and predicts long-term survival, using a wild population of a migratory passerine bird, the barn swallow (Hirundo rustica, as a model.Plasma antioxidant capacity (AOC of breeding individuals was measured using standard protocols and annual survival was monitored over five years (2006-2010 on a large sample of selection episodes. AOC did not covary with age in longitudinal analyses after discounting the effect of selection. AOC positively predicted annual survival independently of sex. Individuals were highly consistent in their relative levels of AOC, implying the existence of additive genetic variance and/or environmental (including early maternal components consistently acting through their lives.Using longitudinal data we showed that high levels of antioxidant protection positively predict long-term survival in a wild animal population. Present results are therefore novel in disclosing a role for antioxidant protection in determining survival under natural conditions, strongly demanding for more longitudinal eco-physiological studies of life-histories in

  7. Whole body exposure to low-dose γ-radiation enhances the antioxidant defense system

    International Nuclear Information System (INIS)

    Pathak, C.M.; Avti, P.K.; Khanduja, K.L.; Sharma, S.C.

    2008-01-01

    It is believed that the extent of cellular damage by low- radiation dose is proportional to the effects observed at high radiation dose as per the Linear-No-Threshold (LNT) hypothesis. However, this notion may not be true at low-dose radiation exposure in the living system. Recent evidence suggest that the living organisms do not respond to ionizing radiations in a linear manner in the low dose range 0.01-0.5Gy and rather restore the homeostasis both in vivo and in vitro by normal physiological mechanisms such as cellular and DNA repair processes, immune reactions, antioxidant defense, adaptive responses, activation of immune functions, stimulation of growth etc. In this study, we have attempted to find the critical radiation dose range and the post irradiation period during which the antioxidant defense systems in the lungs, liver and kidneys remain stimulated in these organs after whole body exposure of the animals to low-dose radiation

  8. Antioxidants of Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Maja Kozarski

    2015-10-01

    Full Text Available Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  9. Hepatoprotective effect of Picrorrhiza kurroa on antioxidant defense ...

    African Journals Online (AJOL)

    The hepatoprotective effect of the ethanol extract of Picrorrhiza kurroa rhizomes and roots (PK) on liver mitochondrial antioxidant defense system in isoniazid and rifampicin-induced hepatitis in rats was investigated. In liver mitochondria of antitubercular drugs administered rats, a significant elevation in the level of lipid ...

  10. COMBINED EFFECTS OF CO2 AND O3 ON ANTIOXIDATIVE AND PHOTOPROTECTIVE DEFENSE SYSTEMS IN NEEDLES OF PONDEROSA PINE

    Science.gov (United States)

    To determine interactive effects of important environmental stresses on biochemical defense mechanisms of tree seedlings, we studied responses to elevated O3 and elevated atmospheric CO2 on antioxidative and photoprotective systems in needles of ponderosa pine (Pinus ponderosa Do...

  11. Antioxidant Defenses in Plants with Attention to Prunus and Citrus spp.

    Directory of Open Access Journals (Sweden)

    Milvia Luisa Racchi

    2013-11-01

    Full Text Available This short review briefly introduces the formation of reactive oxygen species (ROS as by-products of oxidation/reduction (redox reactions, and the ways in which the antioxidant defense machinery is involved directly or indirectly in ROS scavenging. Major antioxidants, both enzymatic and non enzymatic, that protect higher plant cells from oxidative stress damage are described. Biochemical and molecular features of the antioxidant enzymes superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX are discussed because they play crucial roles in scavenging ROS in the different cell compartments and in response to stress conditions. Among the non enzymatic defenses, particular attention is paid to ascorbic acid, glutathione, flavonoids, carotenoids, and tocopherols. The operation of ROS scavenging systems during the seasonal cycle and specific developmental events, such as fruit ripening and senescence, are discussed in relation to the intense ROS formation during these processes that impact fruit quality. Particular attention is paid to Prunus and Citrus species because of the nutritional and antioxidant properties contained in these commonly consumed fruits.

  12. Differential stimulation of antioxidant defense in various organs of mice after whole body exposure to low-dose gamma radiation

    International Nuclear Information System (INIS)

    Pathak, C.M.; Avti, P.K.; Khanduja, K.L.; Sharma, S.C.

    2007-01-01

    It has been generally considered that any dose of ionizing radiation is detrimental to the living organisms, however low the radiation dose may be. The much relied upon 'Linear-No-Threshold' (LNT) hypothesis dose not have any convincing experimental evidence regarding the damaging effects at very low-doses and low-dose rates. Generally, the deleterious biological effects have been inferred theoretically by extrapolating the known effects of high radiation dose to low-dose range. Recently, it has been reported that the living organisms do not respond to ionizing radiations in a linear manner in the low-dose range 0.01-0.50 Gy and rather restore the homeostasis both in-vivo and in-vitro by normal physiological mechanisms such as, cellular and DNA repair processes, immune reactions, antioxidant defense, adaptive responses, activation of immune functions; stimulation of growth etc. In this study, we have attempted to find: (i) the critical radiation dose range and the post irradiation period during which the antioxidant defense systems in the lungs, liver and kidneys remain stimulated; and (ii) to evaluate the degree to which these defense mechanisms remain stimulated in these organs after whole body exposure of the animal to low-dose radiation

  13. Effect of in vivo heart irradiation on the development of antioxidant defenses and cardiac functions in the rat

    International Nuclear Information System (INIS)

    Benderitter, M.; Assem, M.; Maupoil, V.

    1995-01-01

    During radiotherapy of thoracic tumors, the heart is often included in the primary treatment volume, and chronic impairment of myocardial function occurs. The cellular biomolecules are altered directly by radiation or damaged indirectly by free radical production. The purpose of this investigation was to evaluate the biochemical and functional response of the rat heart to a single high dose of radiation. The effect of 20 Gy local X irradiation was determined in the heart of Wistar rats under general anesthesia. Mechanical performances were measured in vitro using an isolated perfused working heart model, and cardiac antioxidant defenses were also evaluated. Hearts were studied at 1 and 4 months after irradiation. This single dose of radiation induced a marked drop in the mechanical activity of the rat heart: aortic output was significantly reduced (18% less than control values) at 1 month postirradiation and remained depressed for the rest of the experimental period (21% less than control 4 months after treatment). This suggests the development of myocardial failure after irradiation. The decline of functional parameters was associated with changes in antioxidant defenses. The decrease in cardiac levels of vitamin E (-30%) was associated with an increase in the levels of Mn-SOD and glustathione peroxidase (+45.5% and +32%, respectively, at 4 months postirradiation). However, cardiac vitamin C and catalase levels remained constant. Since these antioxidant defenses were activated relatively long after irradiation, it is suggested that this was probable due to the production of free radical species associated with the development of inflammation. 49 refs., 8 figs., 1 tab

  14. Defense Mechanisms: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    This bibliography includes studies of defense mechanisms, in general, and studies of multiple mechanisms. Defense mechanisms, briefly and simply defined, are the unconscious ego defendants against unpleasure, threat, or anxiety. Sigmund Freud deserves the clinical credit for studying many mechanisms and introducing them in professional literature.…

  15. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2017-01-01

    Full Text Available Diabetic retinopathy (DR is one of the most common microvascular complications of diabetes and is the leading cause of blindness in young adults. Oxidative stress has been implicated as a critical cause of DR. Metabolic abnormalities induced by high-glucose levels are involved in the development of DR and appear to be influenced by oxidative stress. The imbalance between reactive oxygen species (ROS production and the antioxidant defense system activates several oxidative stress-related mechanisms that promote the pathogenesis of DR. The damage caused by oxidative stress persists for a considerable time, even after the blood glucose concentration has returned to a normal level. Animal experiments have proved that the use of antioxidants is a beneficial therapeutic strategy for the treatment of DR, but more data are required from clinical trials. The aims of this review are to highlight the improvements to our understanding of the oxidative stress-related mechanisms underlying the development of DR and provide a summary of the main antioxidant therapy strategies used to treat the disease.

  16. BaP-metals co-exposure induced tissue-specific antioxidant defense in marine mussels Mytilus coruscus.

    Science.gov (United States)

    Chen, Siyu; Qu, Mengjie; Ding, Jiawei; Zhang, Yifei; Wang, Yi; Di, Yanan

    2018-04-18

    Both benzo(α)pyrene (BaP) and metals are frequently found in marine ecosystem and can cause detrimental effects in marine organism, especially the filter feeder-marine mussels. Although the biological responses in mussels have been well-studied upon the single metal or BaP exposure, the information about antioxidant defense, especially in different tissues of mussels, are still limited. Considering the variety of contaminants existing in the actual marine environment, single BaP (56 μg/L) and the co-exposure with Cu, Cd and Pb (50 μg/L, 50 μg/L and 3 mg/L respectively) were applied in a 6 days exposure followed by 6 days depuration experiment. The alterations of superoxide dismutase (SOD), catalase (CAT) activities and total antioxidant capacity (TAC) level were assessed in haemolymph, gills and digestive glands of marine mussels, Mytilus coruscus. An unparalleled change in antioxidant biomarkers was observed in all cells/tissues, with the SOD activity showing higher sensitivity to exposure. A tissue-specific response showing unique alteration in gill was investigated, indicating the different function of tissues during stress responses. Depressed antioxidant effects were induced by BaP-metals co-exposure, indicating the interaction may alter the intact properties of BaP. To our knowledge, this is the first research to explore the antioxidant defense induced by combined exposure of BaP-metals regarding to tissue-specific responses in marine mussels. The results and experimental model will provide valuable information and can be utilized in the investigation of stress response mechanisms, especially in relation to tissue functions in marine organism in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System.

    Science.gov (United States)

    Huang, Yanyan; Liu, Zhen; Liu, Chaoqun; Ju, Enguo; Zhang, Yan; Ren, Jinsong; Qu, Xiaogang

    2016-06-01

    In this work, for the first time, we constructed a novel multi-nanozymes cooperative platform to mimic intracellular antioxidant enzyme-based defense system. V2 O5 nanowire served as a glutathione peroxidase (GPx) mimic while MnO2 nanoparticle was used to mimic superoxide dismutase (SOD) and catalase (CAT). Dopamine was used as a linker to achieve the assembling of the nanomaterials. The obtained V2 O5 @pDA@MnO2 nanocomposite could serve as one multi-nanozyme model to mimic intracellular antioxidant enzyme-based defense procedure in which, for example SOD, CAT, and GPx co-participate. In addition, through assembling with dopamine, the hybrid nanocomposites provided synergistic antioxidative effect. Importantly, both in vitro and in vivo experiments demonstrated that our biocompatible system exhibited excellent intracellular reactive oxygen species (ROS) removal ability to protect cell components against oxidative stress, showing its potential application in inflammation therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease.

    Science.gov (United States)

    Zehra, Andleeb; Meena, Mukesh; Dubey, Manish Kumar; Aamir, Mohd; Upadhyay, R S

    2017-11-02

    Plant defense against their pathogens can be induced by a complex network of different inducers. The present study investigates the synergistic effect of Trichoderma harzianum, exogenous salicylic acid (SA) and methyl jasmonate (MeJA) over the response and regulation of the antioxidant defense mechanisms and lipid peroxidation in tomato plants against Fusarium wilt disease. In the present work, tomato plants were infected by Fusarium oxysporum f. sp. lycopersici 3 days after inoculated with T. harzianum and/or sprayed daily for 3 days with chemical inducers (SA and MeJA). Plants were analysed at 0, 24, 48, 72 and 96 h after inoculation with Fusarium oxysporum f. sp. lycopersici. Infection of tomato plants by pathogen led to strong reduction in the dry weight of roots and shoots with the enhanced concentration of H 2 O 2 and varying degree of lipid peroxidation. Concurrently, exogenous SA, when applied with pathogen greatly enhanced H 2 O 2 content as well as activities of antioxidant enzymes except catalase (CAT) and ascorbate peroxidase (APx). The pathogen challenged plants pretreated with T. harzianum and MeJA together exhibited less lipid peroxidation and as well as the elevated level of ascorbic acid and enhanced activities of antioxidant enzymes. All applied treatments protected tomato seedlings against Fusarium wilt disease but the percentage of protection was found higher in plants pretreated with the combination of T. harzianum and chemical inducers.

  19. Antioxidants of edible mushrooms

    NARCIS (Netherlands)

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M.; Griensven, Van Leo

    2015-01-01

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic

  20. Inorganic Arsenic Induces NRF2-Regulated Antioxidant Defenses in Both Cerebral Cortex and Hippocampus in Vivo.

    Science.gov (United States)

    Zhang, Yang; Duan, Xiaoxu; Li, Jinlong; Zhao, Shuo; Li, Wei; Zhao, Lu; Li, Wei; Nie, Huifang; Sun, Guifang; Li, Bing

    2016-08-01

    Inorganic arsenic is reported to induce the reactive oxygen species-mediated oxidative stress, which is supposed to be one of the main mechanisms of arsenic-related neurological diseases. Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of antioxidant defense systems, up-regulates the expression of target genes to fight against oxidative damages caused by harmful substances, including metals. In the present study, mice were used as a model to investigate the oxidative stress levels and the expressions of NRF2-regulated antioxidant substances in both cerebral cortex and hippocampus with 5, 10 and 20 mg/kg NaAsO2 exposure intra-gastrically. Our results showed that acute NaAsO2 treatment resulted in decreased total anti-oxidative capacity (T-AOC) and increased maleic dialdehyde production in the nervous system. We also detected rapidly elevation of NRF2 protein levels by enhancement of Nrf2 transcription, especially at 20 mg/kg NaAsO2 exposure group. In the meantime, mRNA and protein levels of Nrf2 encoding antioxidant enzymes heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase 1 (NQO1) and glutathione S-transferase (GST) were consistently elevated time- and dose-dependently both in the cerebral cortex and hippocampus. Taken together, the presence study demonstrated the activation of NRF2 pathway, an early antioxidant defensive response, in both cerebral cortex and hippocampus upon inorganic arsenic (iAs) exposure in vivo. A better knowledge on the roles of NRF2 pathway in maintaining cellular redox homeostasis would be helpful for the strategies on improvement of neurotoxicity related to this metalloid.

  1. Protection of human cultured cells against oxidative stress by Rhodiola rosea without activation of antioxidant defenses.

    Science.gov (United States)

    Schriner, Samuel E; Avanesian, Agnesa; Liu, Yanxia; Luesch, Hendrik; Jafari, Mahtab

    2009-09-01

    Rhodiola rosea root has been long used in traditional medical systems in Europe and Asia as an adaptogen to increase an organism's resistance to physical stress. Recent research has demonstrated its ability to improve mental and physical stamina, to improve mood, and to help alleviate high-altitude sickness. We have also recently found that R. rosea is able to extend the life span of Drosophila melanogaster. The mode of action of R. rosea is currently unknown; it has been suggested by some to act as an antioxidant, whereas others have argued that it may actually be a pro-oxidant and act through a hormetic mechanism. We found that R. rosea supplementation could protect cultured cells against ultraviolet light, paraquat, and H(2)O(2). However, it did not alter the levels of the major antioxidant defenses nor did it markedly activate the antioxidant response element or modulate heme-oxygenase-1 expression levels at relevant concentrations. In addition, R. rosea extract was not able to significantly degrade H(2)O(2) in vitro. These results suggest that in human cultured cells R. rosea does not act as an antioxidant and that its mode of action cannot be sufficiently explained through a pro-oxidant hormetic mechanism.

  2. Long-term consumption of aspartame and brain antioxidant defense status.

    Science.gov (United States)

    Abhilash, M; Sauganth Paul, M V; Varghese, Mathews V; Nair, R Harikumaran

    2013-04-01

    The present study investigated the effect of long-term intake of aspartame, a widely used artificial sweetener, on antioxidant defense status in the rat brain. Male Wistar rats weighing 150-175 g were randomly divided into three groups as follows: The first group was given aspartame at a dose of 500 mg/kg body weight (b.w.); the second group was given aspartame at dose of 1,000 mg/kg b.w., respectively, in a total volume of 3 mL of water; and the control rats received 3 mL of distilled water. Oral intubations were done in the morning, daily for 180 days. The concentration of reduced glutathione (GSH) and the activity of glutathione reductase (GR) were significantly reduced in the brain of rats that had received the dose of 1,000 mg/kg b.w. of aspartame, whereas only a significant reduction in GSH concentration was observed in the 500-mg/kg b.w. aspartame-treated group. Histopathological examination revealed mild vascular congestion in the 1,000 mg/kg b.w. group of aspartame-treated rats. The results of this experiment indicate that long-term consumption of aspartame leads to an imbalance in the antioxidant/pro-oxidant status in the brain, mainly through the mechanism involving the glutathione-dependent system.

  3. UVA Irradiation of Dysplastic Keratinocytes: Oxidative Damage versus Antioxidant Defense

    Science.gov (United States)

    Nechifor, Marina T.; Niculiţe, Cristina M.; Urs, Andreea O.; Regalia, Teodor; Mocanu, Mihaela; Popescu, Alexandra; Manda, Gina; Dinu, Diana; Leabu, Mircea

    2012-01-01

    UVA affects epidermal cell physiology in a complex manner, but the harmful effects have been studied mainly in terms of DNA damage, mutagenesis and carcinogenesis. We investigated UVA effects on membrane integrity and antioxidant defense of dysplastic keratinocytes after one and two hours of irradiation, both immediately after exposure, and 24 h post-irradiation. To determine the UVA oxidative stress on cell membrane, lipid peroxidation was correlated with changes in fatty acid levels. Membrane permeability and integrity were assessed by propidium iodide staining and lactate dehydrogenase release. The effects on keratinocyte antioxidant protection were investigated in terms of catalase activity and expression. Lipid peroxidation increased in an exposure time-dependent manner. UVA exposure decreased the level of polyunsaturated fatty acids, which gradually returned to its initial value. Lactate dehydrogenase release showed a dramatic loss in membrane integrity after 2 h minimum of exposure. The cell ability to restore membrane permeability was noted at 24 h post-irradiation (for one hour exposure). Catalase activity decreased in an exposure time-dependent manner. UVA-irradiated dysplastic keratinocytes developed mechanisms leading to cell protection and survival, following a non-lethal exposure. The surviving cells gained an increased resistance to apoptosis, suggesting that their pre-malignant status harbors an abnormal ability to control their fate. PMID:23222638

  4. Activity of the Antioxidant Defense System in a Typical Bioinsecticide-and Synthetic Insecticide-treated Cowpea Storage Beetle F. (Coleoptera: Chrysomelidae

    Directory of Open Access Journals (Sweden)

    Ayodele O. Kolawole

    2014-01-01

    Full Text Available The non-enzymatic and enzymatic antioxidant defense systems play a major role in detoxification of pro-oxidant endobiotics and xenobiotics. The possible involvement of beetle non-enzymatic [α-tocopherol, glutathione (GSH, and ascorbic acid] and enzymatic [catalase (CAT, superoxide dismutase (SOD, peroxidase (POX, and polyphenol oxidase (PPO] antioxidant defense system on the insecticidal activity of synthetic insecticides (cypermethrin, 2,2-dicholorovinyl dimethyl phosphate, and λ-cyhalothrin and ethanolic plant extracts of Tithonia diversifolia, Cyperus rotundus, Hyptis suaveolens leaves , and Jatropha Curcas seeds was investigated. 2,2-Dicholorovinyl dimethyl phosphate (DDVP; 200 ppm, LC 50 = 13.24 ppm and T. diversifolia (20,000 ppm resulted in 100% beetle mortality at 96-hour post-treatment. The post-treatments significantly increased the beetle α-tocopherol and GSH contents. Activities of CAT, SOD, POX, and PPO were modulated by the synthetic insecticides and bioinsecticides to diminish the adverse effect of the chemical stresses. Quantitative and qualitative allelochemical compositions of bioinsecticides and chemical structure of synthetic insecticides possibly account and for modulation of their respective enzyme activities. Altogether, oxidative stress was enormous enough to cause maladaptation in insects. This study established that oxidative imbalance created could be the molecular basis of the efficacy of both insecticides and bio-insecticides. Two, there was development of functional but inadequate antioxidant defense mechanism in the beetle.

  5. Exploring the Caste-Specific Multi-Layer Defense Mechanism of Formosan Subterranean Termites, Coptotermes formosanus Shiraki

    Directory of Open Access Journals (Sweden)

    Abid Hussain

    2017-12-01

    Full Text Available The survival and foraging of Coptotermes formosanus Shiraki in a microbe-rich environment reflect the adaptation of an extraordinary, sophisticated defense mechanism by the nest-mates. We aimed to explore the host pathogen interaction by studying caste-specific volatile chemistry and genes encoding the antioxidant defense of winged imagoes, nymphs, soldiers and workers of Formosan subterranean termites. Qualitative analyses of C. formosanus Shiraki performed by HS-SPME/GC-MS showed considerable variations in the chemical composition of volatile organic compounds (VOCs and their proportions among all the castes. Winged imagoes produced the most important compounds such as naphthalene and n-hexanoic acid. The antifungal activity of these compounds along with nonanal, n-pentadecane, n-tetradecane, n-heptadecane and methyl octanoate against the conidial suspensions of Metarhizium anisopliae and Beauveria bassiana isolates enable us to suggest that the failure of natural fungal infection in the nest is due to the antiseptic environment of the nest, which is mainly controlled by the VOCs of nest-mates. In addition, conidial germination of M. anisopliae and B. bassiana isolates evaluated on the cuticle of each caste showed significant variations among isolates and different castes. Our results showed that the conidia of M. anisopliae 02049 exhibited the highest germination on the cuticle of all the inoculated castes. Moreover, we recorded the lowest germination of the conidia of B. bassiana 200436. Caste-specific germination variations enabled us to report for the first time that the cuticle of winged imagoes was found to be the most resistant cuticle. The analysis of the transcriptome of C. formosanus Shiraki revealed the identification of 17 genes directly involved in antioxidant defense. Expression patterns of the identified antioxidant genes by quantitative real-time PCR (qPCR revealed the significantly highest upregulation of CAT, GST, PRXSL, Cu

  6. Oxidative Stress and Antioxidant Defense Mechanisms Linked to Exercise During Cardiopulmonary and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Kelsey Fisher-Wellman

    2009-01-01

    Full Text Available Oxidative stress has been implicated in the pathophysiology of multiple human diseases, in addition to the aging process. Although various stimuli exist, acute exercise is known to induce a transient increase in reactive oxygen and nitrogen species (RONS, evident by several reports of increased oxidative damage following acute bouts of aerobic and anaerobic exercise. Although the results are somewhat mixed and appear disease dependent, individuals with chronic disease experience an exacerbation in oxidative stress following acute exercise when compared to healthy individuals. However, this increased oxidant stress may serve as a necessary “signal” for the upregulation in antioxidant defenses, thereby providing protection against subsequent exposure to prooxidant environments within susceptible individuals. Here we present studies related to both acute exercise-induced oxidative stress in those with disease, in addition to studies focused on adaptations resulting from increased RONS exposure associated with chronic exercise training in persons with disease.

  7. Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity.

    Science.gov (United States)

    Guo, Hong; Hu, Li-Min; Wang, Shao-Xia; Wang, Yu-Lin; Shi, Fang; Li, Hui; Liu, Yang; Kang, Li-Yuan; Gao, Xiu-Mei

    2011-12-31

    An increasing number of studies has indicated that hypoxic-ischemic-induced cerebral injury is partly mediated via oxidative stress. Recent researches have focused on searching for drug and herbal manipulations to protect against hypoxic-ischemic-induced oxidative cell damage. Scutellarin is a flavonoid derived from the Erigeron breviscapus (vant.) and has been reported to exhibit neuroprotective properties. However, its precise mechanism, particularly its antioxidation mechanism, remains elusive. In the present study, we investigated the neuroprotective effects of scutellarin on middle cerebral artery occlusion (MCAO)-induced brain damage in rats, and oxygen-glucose deprivation (OGD)-induced toxicity in primary culture of rat cortical neurons. In vivo, intraperitoneal injections of scutellarin (20 and 60 mg/kg) improved the neurological score and diminished the percentage of brain infarct volume. At the same time, scutellarin significantly increased superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) level in ischemic brain tissues, enhancing endogenous antioxidant activity. Moreover, pretreatment of scutellarin (25, 50 and 100 μM) protected neurons against lethal stimuli, decreased the percentage of apoptotic cells and inhibited reactive oxygen species (ROS) generation in OGD-induced primary cortical neurons in vitro. These results suggest that the preventive and therapeutic potential of scutellarin in cerebral injury patients is, at least in part, ascribed to augmentation of cellular antioxidant defense capacity.

  8. Photochemistry and photobiology of actinic erythema: defensive and reparative cutaneous mechanisms

    Directory of Open Access Journals (Sweden)

    A.C. Tedesco

    1997-05-01

    Full Text Available Sunlight is part of our everyday life and most people accept it as beneficial to our health. With the advance of our knowledge in cutaneous photochemistry, photobiology and photomedicine over the past four decades, the terrestrial solar radiation has become a concern of dermatologists and is considered to be a major damaging environmental factor for our skin. Most photobiological effects (e.g., sunburn, suntanning, local and systemic immunosuppression, photoaging or dermatoheliosis, skin cancer and precancer, etc. are attributed to ultraviolet radiation (UVR and more particularly to UVB radiation (290-320 nm. UVA radiation (320-400 nm also plays an important role in the induction of erythema by the photosensitized generation of reactive oxygen species (singlet oxygen (1O2, superoxide (O2.- and hydroxyl radicals (.OH that damage DNA and cellular membranes, and promote carcinogenesis and the changes associated with photoaging. Therefore, research efforts have been directed at a better photochemical and photobiological understanding of the so-called sunburn reaction, actinic or solar erythema. To survive the insults of actinic damage, the skin appears to have different intrinsic defensive mechanisms, among which antioxidants (enzymatic and non-enzymatic systems play a pivotal role. In this paper, we will review the basic aspects of the action of UVR on the skin: a photochemical reactions resulting from photon absorption by endogenous chromophores; b the lipid peroxidation phenomenon, and c intrinsic defensive cutaneous mechanisms (antioxidant systems. The last section will cover the inflammatory response including mediator release after cutaneous UVR exposure and adhesion molecule expression

  9. Therapeutic Hypothermia Reduces Oxidative Damage and Alters Antioxidant Defenses after Cardiac Arrest

    Science.gov (United States)

    Hackenhaar, Fernanda S.; Medeiros, Tássia M.; Heemann, Fernanda M.; Behling, Camile S.; Putti, Jordana S.; Mahl, Camila D.; Verona, Cleber; da Silva, Ana Carolina A.; Guerra, Maria C.; Gonçalves, Carlos A. S.; Oliveira, Vanessa M.; Riveiro, Diego F. M.; Vieira, Silvia R. R.

    2017-01-01

    After cardiac arrest, organ damage consequent to ischemia-reperfusion has been attributed to oxidative stress. Mild therapeutic hypothermia has been applied to reduce this damage, and it may reduce oxidative damage as well. This study aimed to compare oxidative damage and antioxidant defenses in patients treated with controlled normothermia versus mild therapeutic hypothermia during postcardiac arrest syndrome. The sample consisted of 31 patients under controlled normothermia (36°C) and 11 patients treated with 24 h mild therapeutic hypothermia (33°C), victims of in- or out-of-hospital cardiac arrest. Parameters were assessed at 6, 12, 36, and 72 h after cardiac arrest in the central venous blood samples. Hypothermic and normothermic patients had similar S100B levels, a biomarker of brain injury. Xanthine oxidase activity is similar between hypothermic and normothermic patients; however, it decreases posthypothermia treatment. Xanthine oxidase activity is positively correlated with lactate and S100B and inversely correlated with pH, calcium, and sodium levels. Hypothermia reduces malondialdehyde and protein carbonyl levels, markers of oxidative damage. Concomitantly, hypothermia increases the activity of erythrocyte antioxidant enzymes superoxide dismutase, glutathione peroxidase, and glutathione S-transferase while decreasing the activity of serum paraoxonase-1. These findings suggest that mild therapeutic hypothermia reduces oxidative damage and alters antioxidant defenses in postcardiac arrest patients. PMID:28553435

  10. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  11. Free Radicals and Antioxidants in Cardiovascular Health and Disease

    African Journals Online (AJOL)

    Free radicals can be overproduced or the natural antioxidant system defenses weakened, first resulting in oxidative stress, and then leading to oxidative injury ... Keywords: Oxidative stress, cardiovascular disease, atherosclerosis, inflammation, cell signaling and transduction mechanisms, antioxidants, dietary phenolics.

  12. Antiviral Defense Mechanisms in Honey Bees

    Science.gov (United States)

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  13. The Effect of Hydroxylated Fullerene Nanoparticles on Antioxidant Defense System in Brain Ischemia Rat

    Directory of Open Access Journals (Sweden)

    2017-05-01

    Full Text Available Background and Objectives: According to the previous findings, brain ischemia attenuates the brain antioxidant defense system. This study aimed to investigate the effect of hydroxylated fullerene nanoparticle on antioxidant defense system in ischemic brain rat. Methods: In this Experimental study, rats were divided into three groups (n=6 in each group: sham, ischemic control, and ischemic treatment group. Brain ischemia was induced by middle cerebral artery (MCA occlusion for 90 minutes followed by a 24-hour reperfusion. Ischemic treatment animals received fullerene nanoparticles intraperitoneally at a dose of 10mg/kg immediately after the end of MCA occlusion. After 24-h reperfusion period, brain catalase and superoxide dismutase (SOD, and glutathione activities were assessed by biochemical methods. The data were analyzed using one-way ANOVA and Tukey post-hoc test. Results: The mean glutathione level and catalase and SOD activities in sham animals were 1±0.18%, 1±0.20%, and 1±0.04%, respectively. Induction of brain ischemia decreased the value of glutathione level and catalase and SOD activities in control ischemic rats and their values were obtained to be 0.55±0.09%, 0.44±0.05%, and 0.86±0.02%, respectively. Fullerene significantly increased the activities of catalase (0.93±0.29% and SOD (1.33±0.22% in ischemic treatment group compared to ischemic control rats, but did not change the glutathione level (0.52±0.25%. Conclusion: The results of this study showed that treatment with fullerene nanoparticles improves the brain antioxidant defense system, which is weakened during brain ischemia, through increasing catalase and SOD activities.

  14. A novel lung slice system with compromised antioxidant defenses

    Energy Technology Data Exchange (ETDEWEB)

    Hardwick, S.J.; Adam, A.; Cohen, G.M. (Univ. of London (England)); Smith, L.L. (Imperial Chemical Industries PLC, Cheshire (England))

    1990-04-01

    In order to facilitate the study of oxidative stress in lung tissue, rat lung slices with impaired antioxidant defenses were prepared and used. Incubation of lung slices with the antineoplastic agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (100 {mu}M) in an amino acid-rich medium for 45 min produced a near-maximal (approximately 85%), irreversible inhibition of glutathione reductase, accompanied by only a modest (approximately 15%) decrease in pulmonary nonprotein sulfhydryls (NPSH) and no alteration in intracellular ATP, NADP{sup +}, and NADPH levels. The amounts of NADP(H), ATP, and NPSH were stable over a 4-hr incubation period following the removal from BCNU. The viability of the system was further evaluated by measuring the rate of evolution of {sup 14}CO{sub 2} from D-({sup 14}C(U))-glucose. The rates of evolution were almost identical in the compromised system when compared with control slices over a 4-hr time period. By using slices with compromised oxidative defenses, preliminary results have been obtained with paraquat, nitrofurantoin, and 2,3-dimethoxy-1,4-naphthoquinone.

  15. A novel lung slice system with compromised antioxidant defenses

    International Nuclear Information System (INIS)

    Hardwick, S.J.; Adam, A.; Cohen, G.M.; Smith, L.L.

    1990-01-01

    In order to facilitate the study of oxidative stress in lung tissue, rat lung slices with impaired antioxidant defenses were prepared and used. Incubation of lung slices with the antineoplastic agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (100 μM) in an amino acid-rich medium for 45 min produced a near-maximal (approximately 85%), irreversible inhibition of glutathione reductase, accompanied by only a modest (approximately 15%) decrease in pulmonary nonprotein sulfhydryls (NPSH) and no alteration in intracellular ATP, NADP + , and NADPH levels. The amounts of NADP(H), ATP, and NPSH were stable over a 4-hr incubation period following the removal from BCNU. The viability of the system was further evaluated by measuring the rate of evolution of 14 CO 2 from D-[ 14 C(U)]-glucose. The rates of evolution were almost identical in the compromised system when compared with control slices over a 4-hr time period. By using slices with compromised oxidative defenses, preliminary results have been obtained with paraquat, nitrofurantoin, and 2,3-dimethoxy-1,4-naphthoquinone

  16. Antioxidant Property of Jobelyn as the Possible Mechanism Underlying

    Directory of Open Access Journals (Sweden)

    Solomon Umukoro

    2013-01-01

    Full Text Available   Introduction: Amnesia or loss of memory is the cardinal hallmark of Alzheimer’s disease (AD, a progressive neurodegenerative disorder associated with ageing process. Although, AD had been discovered over a century ago, drugs which could cure or halt the progression of the disease are yet to see the light of the day. However, there has been a growing interest in the use of phytomedicines with multipronged mechanisms of action that could target various aspects of the pathologies of AD. Jobelyn (JB is a potent antioxidant African polyherbal formulation with active components that have been acclaimed to show neuroprotection. T his investigation was carried out to evaluate whether JB has anti-amnesic and antioxidant activities.   Methods: The alteration of alternation behavior in the Y-maze paradigm was utilized as the test for memory function in mice. The effect of JB on a cetylcholinesterase (AChE activity, malondialdehyde (MDA level and the concentrations of glutathione (GSH in the frontal cortex and hippocampus were assessed in rats as means of providing insight into the mechanism underlying its anti-amnesic activity. The animals were given JB (1, 2.5 or 5mg/kg, i.p. daily for 7 days before the biochemical assays or test for memory functions were carried out.   Results: JB was found to produce a significant increase in the level of alternation behavior compared with the control, suggesting anti-amnesic activity. Also, JB reversed the memory impairment induced by scopolamine, which further indicates anti-amnesic property. Furthermore, JB demonstrated a significant inhibition of MDA formation in the frontal cortex and hippocampus of rats, indicating antioxidant property. In addition, it increased the defense armory of the brain tissues, as it significantly increased the concentrations of GSH in the frontal cortex and hippocampus of rats. However, JB did not demonstrate any inhibitory effect against AChE activity in the frontal cortex and

  17. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.).

    Science.gov (United States)

    Xu, Xianghua; Liu, Cuiying; Zhao, Xiaoyan; Li, Renying; Deng, Wenjing

    2014-11-01

    Chemical and biological analyses were used to investigate the growth response and antioxidant defense mechanism of maize seedlings (Zea mays L.) grown in soils with 0-100 mg kg(-1) Cd. Results showed that maize seedlings have strong abilities to accumulate and tolerate high concentrations of Cd. For soil with 50 mg kg(-1) Cd, the Cd contents in roots and shoots of maize seedlings are as large as 295.6 and 153.0 mg kg(-1) DW, respectively, without visible symptoms of toxicity. Lower soil Cd concentrations lead to a decrease in reduced glutathione (GSH) content in leaves of maize seedlings, whereas higher soil Cd concentrations resulted in an increase in the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase. Maize seedlings have strong capacities to adapt to low concentrations of Cd by consuming GSH and to develop an antioxidative enzyme system to defend against high-Cd stress.

  18. Antioxidant Defense Mechanisms of Salinity Tolerance in Rice Genotypes

    Directory of Open Access Journals (Sweden)

    Mohammad Golam Kibria

    2017-05-01

    Full Text Available In order to elucidate the role of antioxidant responses in salinity tolerance in rice genotypes under salt stress, experiments were conducted using four rice varieties, including salt-sensitive BRRI dhan 28 and three salt-tolerant varieties BRRI dhan 47, BINA dhan 8 and BINA dhan 10. Thirty-day-old rice seedlings were transplanted into pots. At the active tillering stage (35 d after transplanting, plants were exposed to different salinity levels (0, 20, 40 and 60 mmol/L NaCl. Salt stress caused a significant reduction in growth for all the rice genotypes. Growth reduction was higher in the salt-sensitive genotype than in the salt-tolerant ones, and BINA dhan 10 showed higher salt tolerance in all measured physiological parameters. The reduction in shoot and root biomass was found to be minimal in BINA dhan 10. Chlorophyll content significantly decreased under salt stress except for BINA dhan 10. Proline content significantly increased in salt-tolerant rice genotypes with increased salt concentration, and the highest proline content was obtained from BINA dhan 10 under salt stress. Catalase and ascorbate peroxidase activities significantly decreased in salt-sensitive genotype whereas significantly increased in salt-tolerant ones with increasing salt concentration. However, salt stress significantly decreased guaiacol peroxidase activity in all the rice genotypes irrespective of salt tolerance. K+/Na+ ratio also significantly decreased in shoots and roots of all the rice genotypes. The salt-tolerant genotype BINA dhan 10 maintained higher levels of chlorophyll and proline contents as well as catalase and ascorbate peroxidase activities under salt stress, thus, this might be the underlying mechanism for salt tolerance.

  19. The role of disorders of the prooxidant-antioxidant system in diabetes etiopathology

    Directory of Open Access Journals (Sweden)

    Małgorzata Mrowicka

    2011-08-01

    Full Text Available Chronic hyperglycemia is believed to play a pivotal role in the development of diabetic complications. It was found that hyperglycemia triggered a number of mechanisms that evoke overproduction of reactive oxygen species (ROS. Diabetes mellitus is associated with an increased level of free radicals, disturbances of the enzymatic antioxidant defense system and lower concentration of exogenous antioxidants. In consequence, these abnormalities lead to a redox imbalance called oxidative stress. The aim of the present study is to summarize the role of reactive oxygen species and changes in the antioxidant defense system in the development of diabetic complications.

  20. Radiolysis: an efficient method of studying radicalar antioxidant mechanisms

    International Nuclear Information System (INIS)

    Gardes-Albert, M.; Jore, D.

    1998-01-01

    The use of the radiolysis method for studying radicalar antioxidant mechanisms offers the different following possibilities: 1- quantitative evaluation of antioxidant activity of molecules soluble in aqueous or non aqueous media (oxidation yields, molecular mechanisms, rate constants), 2- evaluation of the yield of prevention towards polyunsaturated fatty acids peroxidation, 3- evaluation of antioxidant activity towards biological systems such as liposomes or low density lipoproteins (LDL), 4- simple comparison in different model systems of drags effect versus natural antioxidants. (authors)

  1. Antioxidant defense gene analysis in Brassica oleracea and Trifolium repens exposed to Cd and/or Pb.

    Science.gov (United States)

    Bernard, F; Dumez, S; Brulle, F; Lemière, S; Platel, A; Nesslany, F; Cuny, D; Deram, A; Vandenbulcke, F

    2016-02-01

    This study focused on the expression analysis of antioxidant defense genes in Brassica oleracea and in Trifolium repens. Plants were exposed for 3, 10, and 56 days in microcosms to a field-collected suburban soil spiked by low concentrations of cadmium and/or lead. In both species, metal accumulations and expression levels of genes encoding proteins involved and/or related to antioxidant defense systems (glutathione transferases, peroxidases, catalases, metallothioneins) were quantified in leaves in order to better understand the detoxification processes involved following exposure to metals. It appeared that strongest gene expression variations in T. repens were observed when plants are exposed to Cd (metallothionein and ascorbate peroxidase upregulations) whereas strongest variations in B. oleracea were observed in case of Cd/Pb co-exposures (metallothionein, glutathione transferase, and peroxidase upregulations). Results also suggest that there is a benefit to use complementary species in order to better apprehend the biological effects in ecotoxicology.

  2. Emotional exhaustion and defense mechanisms in intensive therapy unit nurses.

    Science.gov (United States)

    Regan, Anna; Howard, Ruth A; Oyebode, Jan R

    2009-05-01

    Contrary to its original conceptualization, research has found that emotional demands do not lead to burnout in nurses. According to psychoanalytic theory, unconscious defense mechanisms may protect nurses from conscious awareness of work-related anxiety. This prevents self-report and may explain research findings. The maturity of defense style influences how anxiety is managed. Immature defenses prevent the conscious processing necessary for resolution of anxiety. Therefore, it is hypothesized that the use of immature defenses will lead to emotional exhaustion. This cross-sectional study used questionnaires to explore the defense mechanisms of 87 Intensive Therapy Unit nurses. Although the sample endorsed a predominantly mature defense style, the use of immature defenses predicted emotional exhaustion. Also, lower levels of reported stress associated with emotional demands predicted emotional exhaustion. Although this strongly implies the mediating role of immature defense mechanisms, the results were not statistically significant.

  3. Evaluation of Antioxidant and Antifungal Activities of Polyphenol-rich ...

    African Journals Online (AJOL)

    therapeutic activity against certain diseases. Methods: Analysis of ... hydroxyl radical (HO-) and nitric oxide (NO) radical are ... medicinal and aromatic plant section, Life. Sciences ..... Many antioxidant defenses depend on ... Mechanisms of cell.

  4. Ego defense mechanisms in Pakistani medical students: a cross sectional analysis

    Directory of Open Access Journals (Sweden)

    Khalid Roha

    2010-01-01

    Full Text Available Abstract Background Ego defense mechanisms (or factors, defined by Freud as unconscious resources used by the ego to reduce conflict between the id and superego, are a reflection of how an individual deals with conflict and stress. This study assesses the prevalence of various ego defense mechanisms employed by medical students of Karachi, which is a group with higher stress levels than the general population. Methods A questionnaire based cross-sectional study was conducted on 682 students from five major medical colleges of Karachi over 4 weeks in November 2006. Ego defense mechanisms were assessed using the Defense Style Questionnaire (DSQ-40 individually and as grouped under Mature, Immature, and Neurotic factors. Results Lower mean scores of Immature defense mechanisms (4.78 were identified than those for Neurotic (5.62 and Mature (5.60 mechanisms among medical students of Karachi. Immature mechanisms were more commonly employed by males whereas females employed more Neurotic mechanisms than males. Neurotic and Immature defenses were significantly more prevalent in first and second year students. Mature mechanisms were significantly higher in students enrolled in Government colleges than Private institutions (p Conclusions Immature defense mechanisms were less commonly employed than Neurotic and Mature mechanisms among medical students of Karachi. The greater employment of Neurotic defenses may reflect greater stress levels than the general population. Employment of these mechanisms was associated with female gender, enrollment in a private medical college, and students enrolled in the first 2 years of medical school.

  5. Metallothionein-mediated antioxidant defense system and its response to exercise training are impaired in human type 2 diabetes

    DEFF Research Database (Denmark)

    Scheede-Bergdahl, Celena; Penkowa, Milena; Hidalgo, Juan

    2005-01-01

    lower levels of MT-I+II were also detected in the plasma of type 2 diabetic subjects compared with control subjects. These results suggest that, in control subjects, the MT-I+II defense system is active and inducible within skeletal muscle tissue and plasma. In type 2 diabetes, reduced levels of MT......Oxidative stress is implicated in diabetes complications, during which endogenous antioxidant defenses have important pathophysiological consequences. To date, the significance of endogenous antioxidants such as metallothioneins I and II (MT-I+II) in type 2 diabetes remains unclear. To examine....... Immunohistochemical analysis revealed reduced MT-I+II levels in the skeletal muscle of type 2 diabetic subjects compared with control subjects. Control subjects produced a robust increase of MT-I+II in response to training; however, in type 2 diabetes, MT-I+II levels remained essentially unchanged. Significantly...

  6. Fructose-enriched diet induces inflammation and reduces antioxidative defense in visceral adipose tissue of young female rats.

    Science.gov (United States)

    Kovačević, Sanja; Nestorov, Jelena; Matić, Gordana; Elaković, Ivana

    2017-02-01

    The consumption of refined, fructose-enriched food continuously increases and has been linked to development of obesity, especially in young population. Low-grade inflammation and increased oxidative stress have been implicated in the pathogenesis of obesity-related disorders including type 2 diabetes. In this study, we examined alterations in inflammation and antioxidative defense system in the visceral adipose tissue (VAT) of fructose-fed young female rats, and related them to changes in adiposity and insulin sensitivity. We examined the effects of 9-week fructose-enriched diet applied immediately after weaning on nuclear factor κB (NF-κB) intracellular distribution, and on the expression of pro-inflammatory cytokines (IL-1β and TNFα) and key antioxidative enzymes in the VAT of female rats. Insulin signaling in the VAT was evaluated at the level of insulin receptor substrate-1 (IRS-1) protein and its inhibitory phosphorylation on Ser 307 . Fructose-fed rats had increased VAT mass along with increased NF-κB nuclear accumulation and elevated IL-1β, but not TNFα expression. The protein levels of antioxidative defense enzymes, mitochondrial manganese superoxide dismutase 2, and glutathione peroxidase, were reduced, while the protein content of IRS-1 and its inhibitory phosphorylation were not altered by fructose diet. The results suggest that fructose overconsumption-related alterations in pro-inflammatory markers and antioxidative capacity in the VAT of young female rats can be implicated in the development of adiposity, but do not affect inhibitory phosphorylation of IRS-1.

  7. Stereoselective phytotoxicity of HCH mediated by photosynthetic and antioxidant defense systems in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Qiong; Zhou, Cong; Zhang, Quan; Qian, Haifeng; Liu, Weiping; Zhao, Meirong

    2013-01-01

    Hexachlorocyclohexane (HCH) has been used for plant protection and sanitation world-widely, and its isomers have been detected in water, soil, and air as well as in vegetation. As a sink for lipophilic pollutants, vegetation is very important for the degradation and fate of organic contamination; however, little was known about their phytotoxicity and mechanisms of toxic effect. In this study, the stereoselective phototoxicity of four isomers (α, β, γ, and δ) of HCHs mediated by independent as well as interconnecting systems of photosynthesis and enzymatic antioxidant defense system in Arabidopsis thaliana were assessed. Our results revealed that all the HCHs not only stimulated the activities of catalase (CAT) and peroxidase (POD), but also inhibited the activity of superoxide dismutase (SOD). In photosynthesis system, the photosynthetic efficiency of PSI and PSII were all down regulated. Meanwhile, results from both systems showed that δ-HCH was the most toxic one, while α-HCH the least in Arabidopsis thaliana. For the first time, stereoselective effects of different isomers of HCH in plant were demonstrated. And the results suggest that it requires further research to fully elucidate the environmental toxicity and their mechanisms.

  8. Stereoselective phytotoxicity of HCH mediated by photosynthetic and antioxidant defense systems in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Qiong Zhang

    Full Text Available BACKGROUND: Hexachlorocyclohexane (HCH has been used for plant protection and sanitation world-widely, and its isomers have been detected in water, soil, and air as well as in vegetation. As a sink for lipophilic pollutants, vegetation is very important for the degradation and fate of organic contamination; however, little was known about their phytotoxicity and mechanisms of toxic effect. In this study, the stereoselective phototoxicity of four isomers (α, β, γ, and δ of HCHs mediated by independent as well as interconnecting systems of photosynthesis and enzymatic antioxidant defense system in Arabidopsis thaliana were assessed. PRINCIPAL FINDINGS: Our results revealed that all the HCHs not only stimulated the activities of catalase (CAT and peroxidase (POD, but also inhibited the activity of superoxide dismutase (SOD. In photosynthesis system, the photosynthetic efficiency of PSI and PSII were all down regulated. Meanwhile, results from both systems showed that δ-HCH was the most toxic one, while α-HCH the least in Arabidopsis thaliana. CONCLUSIONS: For the first time, stereoselective effects of different isomers of HCH in plant were demonstrated. And the results suggest that it requires further research to fully elucidate the environmental toxicity and their mechanisms.

  9. Polyphenol Oxidase as a Biochemical Seed Defense Mechanism

    Directory of Open Access Journals (Sweden)

    E. Patrick Fuerst

    2014-12-01

    Full Text Available Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO, when wild oat (Avena fatua L. caryopses and seeds were challenged with seed-decaying Fusarium fungi. These studies suggest that dormant seeds are capable of mounting a defense response to pathogens. The pathogen-induced PPO activity from wild oat was attributed to a soluble isoform of the enzyme that appeared to result, at least in part, from proteolytic activation of a latent PPO isoform. PPO activity was also induced in wild oat hulls (lemma and palea, non-living tissues that cover and protect the caryopsis. These results are consistent with the hypothesis that seeds possess inducible enzyme-based biochemical defenses arrayed on the exterior of seeds and these defenses represent a fundamental mechanism of seed survival and longevity in the soil. Enzyme-based biochemical defenses may have broader implications since they may apply to other defense enzymes as well as to a diversity of plant species and ecosystems.

  10. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis.

    Science.gov (United States)

    Einor, D; Bonisoli-Alquati, A; Costantini, D; Mousseau, T A; Møller, A P

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and -0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    Energy Technology Data Exchange (ETDEWEB)

    Phung, Thu-Ha; Jung, Sunyo, E-mail: sjung@knu.ac.kr

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.

  12. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    International Nuclear Information System (INIS)

    Phung, Thu-Ha; Jung, Sunyo

    2015-01-01

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F v /F m , as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H 2 O 2 production and greater increases in H 2 O 2 -decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress

  13. Comparative antioxidant and hypoglycaemic effects of aqueous ...

    African Journals Online (AJOL)

    DEYAKS PLC

    2013-10-02

    Oct 2, 2013 ... acid reactive substance (TBARS), aspartatate aminotransfrease (AST), alanine ... from diseases in antioxidant defense potential ... is a renewed and growing interest in the use of plant- ..... is a critical pathogenic mechanism that initiates a .... Stress and Nitric Oxide Related Parameters in Type II Diabetes.

  14. Adversity Quotient and Defense Mechanism of Secondary School Students

    Science.gov (United States)

    Nikam, Vibhawari B.; Uplane, Megha M.

    2013-01-01

    The present study was conducted to explore the relationship between Adversity Quotient (AQ) and Defense Mechanism (DM) of secondary school students. The aim of the study was to ascertain relationship between Adversity Quotient and Defense mechanism i. e. Turning against object (TAO), Projection (PRO), Turning against self (TAS), Principalisation…

  15. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet

    Directory of Open Access Journals (Sweden)

    Yang Ching-Hsiu

    2008-09-01

    Full Text Available Abstract Background Pioglitazone was reported to improve hepatic steatosis and necroinflammation in human studies. To investigate whether the hepato-protective effect of pioglitazone was associated with an improvement of antioxidant defense mechanism, oxidative DNA damage and repair activity were determined in a high fat diet model. Male C57BL/6 mice were respectively fed with a 30% fat diet, the same diet with pioglitazone 100 mg/kg/day, or a chow diet as control for 8 weeks. Tissue oxidative stress was indicated by malondialdehyde concentration. Oxidative DNA damage was detected by immunohistochemical 8-oxoG staining. Enzymatic antioxidant defense was detected by the real-time PCR of superoxide dismutase (Sod1, Sod2 and DNA glycosylase (Ogg1, MutY. Oxidative DNA repair was detected by immunohistochemical staining and western blotting of OGG1 expression. Results Our results show that hepatic steatosis was induced by a high-fat diet and improved by adding pioglitazone. Malondialdehyde concentration and 8-oxoG staining were strongly increased in the high-fat diet group, but attenuated by pioglitazone. Gene expressions of antioxidant defense mechanism: Sod1, Sod2, Ogg1 and MutY significantly decreased in the high-fat diet group but reversed by pioglitazone co-administration. Conclusion The attenuation of hepatic oxidative DNA damage by pioglitazone in a high-fat diet may be mediated by up-regulation of the antioxidant defense mechanism and oxidative DNA repair activity. The diminution of oxidative damage may explain the clinical benefit of pioglitazone treatment in patients with non-alcoholic fatty liver disease.

  16. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet

    Science.gov (United States)

    Hsiao, Pi-Jung; Hsieh, Tusty-Jiuan; Kuo, Kung-Kai; Hung, Wei-Wen; Tsai, Kun-Bow; Yang, Ching-Hsiu; Yu, Ming-Lung; Shin, Shyi-Jang

    2008-01-01

    Background Pioglitazone was reported to improve hepatic steatosis and necroinflammation in human studies. To investigate whether the hepato-protective effect of pioglitazone was associated with an improvement of antioxidant defense mechanism, oxidative DNA damage and repair activity were determined in a high fat diet model. Male C57BL/6 mice were respectively fed with a 30% fat diet, the same diet with pioglitazone 100 mg/kg/day, or a chow diet as control for 8 weeks. Tissue oxidative stress was indicated by malondialdehyde concentration. Oxidative DNA damage was detected by immunohistochemical 8-oxoG staining. Enzymatic antioxidant defense was detected by the real-time PCR of superoxide dismutase (Sod1, Sod2) and DNA glycosylase (Ogg1, MutY). Oxidative DNA repair was detected by immunohistochemical staining and western blotting of OGG1 expression. Results Our results show that hepatic steatosis was induced by a high-fat diet and improved by adding pioglitazone. Malondialdehyde concentration and 8-oxoG staining were strongly increased in the high-fat diet group, but attenuated by pioglitazone. Gene expressions of antioxidant defense mechanism: Sod1, Sod2, Ogg1 and MutY significantly decreased in the high-fat diet group but reversed by pioglitazone co-administration. Conclusion The attenuation of hepatic oxidative DNA damage by pioglitazone in a high-fat diet may be mediated by up-regulation of the antioxidant defense mechanism and oxidative DNA repair activity. The diminution of oxidative damage may explain the clinical benefit of pioglitazone treatment in patients with non-alcoholic fatty liver disease. PMID:18822121

  17. Study of General health, resiliency, and defense mechanisms in patients with migraine headache

    Directory of Open Access Journals (Sweden)

    Alireza Aghayusefi

    2013-06-01

    Full Text Available Background: Migraine is a neurological disease that the etiology, several factors affect its onset or its exacerbation. One of the factors affecting disease is psychological factors such as defense mechanisms, resiliency, and general health. This study assessed the relationship between general health, resiliency, and general defense mechanisms, and also predicts the general health of people with migraine headaches that have a high resiliency and use mature defense mechanisms. Material and Methods: 50 women with migraine headache in the city of Bushehr using defense mechanisms, resiliency, and general health questionnaires were studied. For statistical analysis, Pearson correlation and multiple regression tests were used by SPSS 17 software. Results: The results showed that most of the defense mechanisms of migraine sufferers are Immature and Neuroticism. There is significant negative correlation between the deterioration of general health and resiliency as well as the mature defense mechanism (p=0/003, and also there is a significant positive correlation between this deterioration with neuroticism (p=0/040 and immature defense mechanisms (p=0/041. On the other hand there is significant negative correlation between resiliencies with immature (p=0/009 and neuroticism defense mechanisms (p=0/04, and also with mature defense mechanism has a significant positive correlation (p=0/003. Also, as more people use the mature defense mechanism, their deterioration of general health will be reduced, but this relationship will be stronger with the presence of resiliency. So migraine people use the mature defense mechanisms with high resiliency will have more favorable general health (less deterioration of general health. Conclusion: This study showed that migraine patients use the mature defense mechanisms with high resiliency will have more favorable general health (less deterioration of general health.

  18. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Einor, D., E-mail: daniel@einor.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Bonisoli-Alquati, A., E-mail: andreabonisoli@gmail.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA 70803 (United States); Costantini, D., E-mail: davidcostantini@libero.it [Department of Biology, University of Antwerp, Wilrijk, B-2610, Antwerp (Belgium); Mousseau, T.A., E-mail: mousseau@sc.edu [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Faculty of Bioscience and Biotechnology, Chubu University, Kasugai (Japan); Møller, A.P., E-mail: anders.moller@u-psud.fr [Laboratoire d' Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 362, F-91405 Orsay Cedex (France)

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and − 0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. - Highlights: • There is interest in variation in metabolic effects of chronic low-dose ionizing radiation • A random effect meta-analysis of effect sizes of radioactive contamination was performed • We found significant effects of radiation on oxidative damage and antioxidant response • We found significant heterogeneity among

  19. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants

    Directory of Open Access Journals (Sweden)

    Mirza Hasanuzzaman

    2017-01-01

    Full Text Available Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS. Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG, which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I and glyoxalase II (Gly II, and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III, has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated

  20. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants

    Science.gov (United States)

    Hasanuzzaman, Mirza; Nahar, Kamrun; Hossain, Md. Shahadat; Mahmud, Jubayer Al; Rahman, Anisur; Inafuku, Masashi; Oku, Hirosuke; Fujita, Masayuki

    2017-01-01

    Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of

  1. Antioxidants, mechanisms, and recovery by membrane processes.

    Science.gov (United States)

    Bazinet, Laurent; Doyen, Alain

    2017-03-04

    Antioxidants molecules have a great interest for bio-food and nutraceutical industries since they play a vital role for their capacity to reduce oxidative processes. Consequently, these molecules, generally present in complex matrices, have to be fractionated and purified to characterize them and to test their antioxidant activity. However, as natural or synthetics antioxidant molecules differ in terms of structural composition and physico-chemical properties, appropriate separation technologies must be selected. Different fractionation technologies are available but the most commonly used are filtration processes. Indeed, these technologies allow fractionation according to molecular size (pressure-driven processes), charge, or both size and charge (electrically driven processes). In this context, and after summarizing the reaction mechanisms of the different classes and nature of antioxidants as well as membrane fractionation technologies, this manuscript presents the specific applications of these membranes processes for the recovery of antioxidant molecules.

  2. Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses.

    Science.gov (United States)

    Li, Shi-Weng; Zeng, Xiao-Ying; Leng, Yan; Feng, Lin; Kang, Xiao-Hu

    2018-06-08

    In vitro experiments were performed to determine whether auxin can mediate the formation of adventitious roots in response to heavy metal and drought stresses using a model rooting plant, mung bean [Vigna radiata (L.) Wilczek]. The treatments with CdCl 2 or mannitol alone significantly inhibited the formation and growth of adventitious roots in mung bean seedlings. In contrast, when CdCl 2 or mannitol was applied together with indole-3-butyric acid (IBA), IBA considerably cancelled the inhibition of adventitious rooting by stresses. Treatment with CdCl 2 or mannitol alone significantly increased the soluble protein and malondialdehyde (MDA) contents. CdCl 2 and mannitol stress each induced differentially significant changes in the activities of antioxidative enzyme and antioxidant levels during adventitious rooting. Notably, both CdCl 2 and mannitol stress strongly reduced the peroxidase (POD) and ascorbate peroxidase (APX) activities and glutathione (GSH) and phenols levels. Catalase and superoxide dismutase (SOD) activity were enhanced by CdCl 2 but reduced by mannitol. CdCl 2 increased the ascorbate acid (ASA) level, which was decreased by mannitol. Furthermore, when CdCl 2 or mannitol was applied together with IBA, IBA counteracted the CdCl 2 - or mannitol-induced increase or decrease in certain antioxidants, MDA, and antioxidative enzymes. These results suggest that Cd and mannitol stress inhibition of adventitious rooting is associated with the regulation of antioxidative enzymes and antioxidants in cells to defense the oxidative stress. Moreover, IBA alleviates the effects of Cd and mannitol stress on the rooting process partially through the regulation of antioxidative defense systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Poor maternal nutrition leads to alterations in oxidative stress, antioxidant defense capacity, and markers of fibrosis in rat islets: potential underlying mechanisms for development of the diabetic phenotype in later life.

    Science.gov (United States)

    Tarry-Adkins, Jane L; Chen, Jian-Hua; Jones, Richard H; Smith, Noel H; Ozanne, Susan E

    2010-08-01

    Low birth weight is associated with glucose intolerance, insulin resistance, and type 2 diabetes (T2D) in later life. Good evidence indicates that the environment plays an important role in this relationship. However, the mechanisms underlying these relationships are defined poorly. Islets are particularly susceptible to oxidative stress, and this condition combined with fibrosis is thought to be instrumental in T2D pathogenesis. Here we use our maternal low-protein (LP) rat model to determine the effect of early diet on oxidative stress and fibrosis in pancreatic islets of male offspring at 3 and 15 mo of age. Islet xanthine oxidase (XO) expression was increased in 15-mo LP offspring, which suggests increased oxidative-stress. Manganese superoxide-dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), and heme oxygenase-1 (HO-1) (antioxidant enzymes) were reduced significantly in LP offspring, which indicated impairment of oxidative defense. Expression of fibrosis markers collagen I and collagen III also increased in 15-mo LP offspring. Angiotensin II receptor type I (AT(II)R(1)), induced by hyperglycemia and oxidative-stress, was significantly up-regulated in 15-mo LP offspring. Lipid peroxidation was also increased in 15-mo LP animals. We conclude that maternal protein restriction causes age-associated increased oxidative stress, impairment of oxidative defense, and fibrosis. These findings provide mechanisms by which suboptimal early nutrition can lead to T2D development later in life.

  4. Genome Defense Mechanisms in Neurospora and Associated Specialized Proteins

    Directory of Open Access Journals (Sweden)

    Ranjan Tamuli

    2010-06-01

    Full Text Available Neurospora crassa, the filamentous fungus possesses widest array of genome defense mechanisms known to any eukaryotic organism, including a process called repeat-induced point mutation (RIP. RIP is a genome defense mechanism that hypermutates repetitive DNA sequences; analogous to genomic imprinting in mammals. As an impact of RIP, Neurospora possesses many fewer genes in multigene families than expected. A DNA methyltransferase homologue, RID was shown to be essential for RIP. Recently, a variant catalytic subunit of translesion DNA polymerase zeta (Pol zeta has been found to be essential for dominant RIP suppressor phenotype. Meiotic silencing and quelling are two other genome defense mechanisms in Neurospora, and proteins required for these two processes have been identified through genetic screens.

  5. Rock mechanics contributions from defense programs

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1992-02-01

    An attempt is made at illustrating the many contributions to rock mechanics from US defense programs, over the past 30-plus years. Large advances have been achieved in the technology-base area covering instrumentation, material properties, physical modeling, constitutive relations and numerical simulations. In the applications field, much progress has been made in understanding and being able to predict rock mass behavior related to underground explosions, cratering, projectile penetration, and defense nuclear waste storage. All these activities stand on their own merit as benefits to national security. But their impact is even broader, because they have found widespread applications in the non-defense sector; to name a few: the prediction of the response of underground structures to major earthquakes, the physics of the earth's interior at great depths, instrumentation for monitoring mine blasting, thermo-mechanical instrumentation useful for civilian nuclear waste repositories, dynamic properties of earthquake faults, and transient large-strain numerical modeling of geological processes, such as diapirism. There is not pretense that this summary is exhaustive. It is meant to highlight success stories representative of DOE and DOD geotechnical activities, and to point to remaining challenges

  6. Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Muhammad A Farooq

    2016-04-01

    Full Text Available Methyl jasmonate (MJ is an important plant growth regulator, involved in plant defense against abiotic stresses, however its possible function in response to metal stress is poorly understood. In the present study, the effect of MJ on physiological and biochemical changes of the plants exposed to arsenic (As stress were investigated in two Brassica napus L. cultivars (ZS 758 – a black seed type, and Zheda 622 – a yellow seed type. The As treatment at 200 µM was more phytotoxic, however its combined application with MJ resulted in significant increase in leaf chlorophyll fluorescence, biomass production and reduced malondialdehyde content compared with As stressed plants. The application of MJ minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS synthesis (H2O2 and OH- in leaves and the maintenance of high redox states of glutathione and ascorbate. Enhanced enzymatic activities and gene expression of important antioxidants (SOD, APX, CAT, POD, secondary metabolites (PAL, PPO, CAD and induction of lypoxygenase gene suggest that MJ plays an effective role in the regulation of multiple transcriptional pathways which were involved in oxidative stress responses. The content of As was higher in yellow seeded plants (cv. Zheda 622 as compared to black seeded plants (ZS 758. The application of MJ significantly reduced the As content in leaves and roots of both cultivars. Findings of the present study reveal that MJ improves ROS scavenging through enhanced antioxidant defense system, secondary metabolite and reduced As contents in both the cultivars.

  7. Application of radiobiological techniques in studying antioxidant mechanisms: evaluation of their radioprotective, antioxidative and antiviral activities

    International Nuclear Information System (INIS)

    Hmamouchi, M.

    2000-01-01

    In the medical field, the oxidation phenomenon is the source of several pathologies (diabetes, cystic fibrosis, cancers,...). The natural oxidants are used as food preserving and skin ageing moderators. Several plant extracts with antioxidant activity were studied, this important antioxidant activity is probably due to their richness of compounds: polyphenols, phenolic acids, tocopherols, carotenoids, flavonoids,... Many techniques for evaluation and reactional mechanism study of the antioxidative activity are used. After selection, extraction, fractionation, activity screening, chemical analyses of molecules contained in the best active extracts, biological properties research of isolated redox pharmacophore, we have : - determined the structure of active products by spectroscopy and chromatography; - studied the antioxidative properties by EPR and spin trapping of the obtained extracts and molecules. The results of this first part of our work consists in evaluating the antioxidative degree of a great number of natural active principles, extracted from moroccan plants and pur obtained products. The second part consists in studying the action mechanisms using the LDL labelling (F. M.)

  8. Review of the Book “Defense Mechanisms. Coping Strategies. Self-Regulation”

    Directory of Open Access Journals (Sweden)

    Stoil Mavrodiev

    2012-10-01

    Full Text Available This book deals with coping strategies and defense mechanisms as two kinds of self-regulation of human behaviour. The defense mechanisms are described with some examples of fiction books.

  9. Biobreeding rat islets exhibit reduced antioxidative defense and N-acetyl cysteine treatment delays type 1 diabetes

    Science.gov (United States)

    Bogdani, Marika; Henschel, Angela M.; Kansra, Sanjay; Fuller, Jessica M.; Geoffrey, Rhonda; Jia, Shuang; Kaldunski, Mary L.; Pavletich, Scott; Prosser, Simon; Chen, Yi-Guang; Lernmark, Åke; Hessner, Martin J.

    2014-01-01

    Islet-level oxidative stress has been proposed as a trigger for type 1 diabetes (T1D), and release of cytokines by infiltrating immune cells further elevates reactive oxygen species (ROS), exacerbating β cell duress. To identify genes/mechanisms involved with diabeto-genesis at the β cell level, gene expression profiling and targeted follow-up studies were used to investigate islet activity in the biobreeding (BB) rat. Forty-day-old spontaneously diabetic lymphopenic BB DRlyp/lyp rats (before T cell insulitis) as well as nondiabetic BB DR+/+ rats, nondiabetic but lymphopenic F344lyp/lyp rats, and healthy Fischer (F344) rats were examined. Gene expression profiles of BB rat islets were highly distinct from F344 islets and under-expressed numerous genes involved in ROS metabolism, including glutathione S-transferase (GST) family members (Gstm2, Gstm4, Gstm7, Gstt1, Gstp1, and Gstk1), superoxide dismutases (Sod2 and Sod3), peroxidases, and peroxiredoxins. This pattern of under-expression was not observed in brain, liver, or muscle. Compared with F344 rats, BB rat pancreata exhibited lower GST protein levels, while plasma GST activity was found significantly lower in BB rats. Systemic administration of the antioxidant N-acetyl cysteine to DRlyp/lyp rats altered abundances of peripheral eosinophils, reduced severity of insulitis, and significantly delayed but did not prevent diabetes onset. We find evidence of β cell dysfunction in BB rats independent of T1D progression, which includes lower expression of genes related to antioxidative defense mechanisms during the pre-onset period that may contribute to overall T1D susceptibility. PMID:23111281

  10. EFFECT OF PHYSICAL EXERCISE ON LIPID PEROXIDATION AND ANTIOXIDANT ASCORBIC ACID DEFENSE

    Directory of Open Access Journals (Sweden)

    Ljiljana M. Popović

    2006-06-01

    Full Text Available Strenuous exercises greatly increase oxygen consumption in the whole body, especially in skeletal muscles. Large part of oxygen consumption is reduced to H2O and ATP, but smaller part (2-5% results in an increased leakage of electrons from the mitochondrial respiratory chain, forming various reactive oxygen species ─ ROS (O2˙¯, H2O2 i OH˙. These free radicals are capable of triggering a chain of damaging biochemical and physiological reactions (oxidative stress, lipid peroxidation,as a base for skeletal muscles damage after exercise. MDA (malondialdehide is a marker of exercise induced lipid peroxidation process. L–ascorbic acid is a major aqueous-phase antioxidant. To estimate antioxidant role of ascorbic acid we use rate between dehidroascorbate and ascorbate. In this paper those markers were determinated in 30 students, in rest and after treadmill running protocol (Bruce Treadmill Protocol. It was found that after the treadmill test , plasma MDA level had increased from 3,04 to 4,39 μM/L. Plasma ascorbic acid was also found to be higher after the treadmill test comparing to rest level (from 55,4 to 67,6 μM/L. DHA/A level in rest was 1,62 and after treadmill test it increased to 2,05. These results suggests that strenuous exercise increased process of lipid peroxidation, but in the same time increased ascorbic acid level in plasma and DHA/A rate indicates stronger antioxidant defense system.

  11. Acute Exercise Increases Plasma Total Antioxidant Status and Antioxidant Enzyme Activities in Untrained Men

    Directory of Open Access Journals (Sweden)

    C. Berzosa

    2011-01-01

    Full Text Available Antioxidant defences are essential for cellular redox regulation. Since free-radical production may be enhanced by physical activity, herein, we evaluated the effect of acute exercise on total antioxidant status (TAS and the plasma activities of catalase, glutathione reductase, glutathione peroxidase, and superoxide dismutase and its possible relation to oxidative stress resulting from exercise. Healthy untrained male subjects (=34 performed three cycloergometric tests, including maximal and submaximal episodes. Venous blood samples were collected before and immediately after each different exercise. TAS and enzyme activities were assessed by spectrophotometry. An increase of the antioxidant enzyme activities in plasma was detected after both maximal and submaximal exercise periods. Moreover, under our experimental conditions, exercise also led to an augmentation of TAS levels. These findings are consistent with the idea that acute exercise may play a beneficial role because of its ability to increase antioxidant defense mechanisms through a redox sensitive pathway.

  12. Early Family Relationships Predict Children’s Emotion Regulation and Defense Mechanisms

    Directory of Open Access Journals (Sweden)

    Jallu Lindblom

    2016-12-01

    Full Text Available Early family relationships have been suggested to influence the development of children’s affect regulation, involving both emotion regulation and defense mechanisms. However, we lack research on the specific family predictors for these two forms of affect regulation, which have been conceptualized to differ in their functions and accessibility to consciousness. Accordingly, we examine how the (a quality and (b timing of family relationships during infancy predict child’s later emotion regulation and defense mechanisms. Parents (N = 703 reported autonomy and intimacy in marital and parenting relationships at the child’s ages of 2 and 12 months, and the child’s use of emotion regulation and immature and neurotic defenses at 7 to 8 years. As hypothesized, the results showed that functional early family relationships predicted children’s efficient emotion regulation, whereas dysfunctional relationships predicted reliance on defense mechanisms in middle childhood. Further, results showed a timing effect for neurotic defenses, partially confirming our hypothesis of early infancy being an especially important period for the development of defense mechanisms. The findings are discussed from the viewpoints of attachment and family dynamics, emotional self-awareness, and sense of security.

  13. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    Science.gov (United States)

    Ahmed, Romana; Hossen, Md. Sakib; Ahmmed, Istiyak; Rumpa, Nur-E-Noushin; Sulaiman, Siti Amrah

    2017-01-01

    Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats (n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation. PMID:28261310

  14. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    Directory of Open Access Journals (Sweden)

    Romana Ahmed

    2017-01-01

    Full Text Available Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH radical-scavenging activity and ferric reducing antioxidant power (FRAP values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO- induced myocardial infarction in rats. Male Wistar rats (n=32 were pretreated orally with an ethanol extract of MP (100 mg/kg/day for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  15. Construction and characteristics of questionnaire for the assessment of defense mechanisms: MOD

    Directory of Open Access Journals (Sweden)

    Džamonja-Ignjatović Tamara

    2014-01-01

    Full Text Available Defense mechanisms are psychological constructs of key importance for the assessment of personality and planning therapeutic process. Their assessment is mainly based on interview, observation and projective techniques. Questionnaires, as the self-assessment techniques, apparently are not suitable method for unconscious processes such as defense mechanisms. The paper presents the results of construction of the questionnaire for the assessment of defense mechanisms, abbreviated called MOD (Mechanisms of Defense, which represents an attempt to clarify conceptualization and operationalization of these constructs through a variety of behavioral and emotional manifestations, personal attitudes and beliefs, patterns of interpersonal relationships and feedback from environment. Research objectives included testing of metric characteristics and the factor structure of the questionnaire, as well as its validity for differentiating subjects from clinical and non-clinical populations. The questionnaire has 110 items assessed at the 5-point Likert scale for evaluation of 20 defense mechanisms. The sample consisted of 194 subjects of both sexes, of which 136 students of psychology and social work and 58 nonpsychotic patients from clinical populations. The results showed that the reliability of the scale varies from high to unsatisfactory (Cronbach alpha .82- .35, although for most subscales is around .65-.70. The most of defense mechanisms has one factor structure, whereas from about a third of the subscales two principal components were isolated. Analysis of the structure of mature defense mechanisms clearly derived out four factors corresponding to the presumed mechanisms of defense, while for the groups of neurotic and immature mechanisms were not obtained pure solutions. The questionnaire successfully differentiate clinical from non-clinical sample, based on higher scores on mature and lower scores on immature mechanisms, while the groups did not differ

  16. Oxidative damage and antioxidant defense in thymus of malnourished lactating rats.

    Science.gov (United States)

    Gavia-García, Graciela; González-Martínez, Haydeé; Miliar-García, Ángel; Bonilla-González, Edmundo; Rosas-Trejo, María de Los Ángeles; Königsberg, Mina; Nájera-Medina, Oralia; Luna-López, Armando; González-Torres, María Cristina

    2015-01-01

    Malnutrition has been associated with oxidative damage by altered antioxidant protection mechanisms. Specifically, the aim of this study was to evaluate oxidative damage (DNA and lipid) and antioxidant status (superoxide dismutase [SOD], glutathione peroxidase [GPx], and catalase [CAT] mRNA, and protein expression) in thymus from malnourished rat pups. Malnutrition was induced during the lactation period by the food competition method. Oxidative DNA damage was determined quantifying 8-oxo-7, 8-dihydro-2'-deoxyguanosine adduct by high-performance liquid chromatography. Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. Levels of gene and protein expression of SOD, GPx, and CAT were evaluated by real-time polymerase chain reaction and Western blot, respectively. Antioxidant enzyme activities were measured spectrophotometrically. Oxidative DNA damage and lipid peroxidation significantly increased in second-degree (MN-2) and third-degree malnourished (MN-3) rats compared with well-nourished rats. Higher amounts of oxidative damage, lower mRNA expression, and lower relative concentrations of protein, as well as decreased antioxidant activity of SOD, GPx, and CAT were associated with the MN-2 and MN-3 groups. The results of this study demonstrated that higher body-weight deficits were related to alterations in antioxidant protection, which contribute to increased levels of damage in the thymus. To our knowledge, this study demonstrated for the first time that early in life, malnutrition leads to increased DNA and lipid oxidative damage, attributable to damaged antioxidant mechanisms including transcriptional and enzymatic activity alterations. These findings may contribute to the elucidation of the causes of previously reported thymus dysfunction, and might explain partially why children and adults who have overcome child undernourishment experience immunologic deficiencies. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. 6-shogaol-rich extract from ginger up-regulates the antioxidant defense systems in cells and mice.

    Science.gov (United States)

    Bak, Min-Ji; Ok, Seon; Jun, Mira; Jeong, Woo-Sik

    2012-07-04

    The rhizome of ginger (Zingiber officinale Roscoe) is known to have several bioactive compounds including gingerols and shogaols which possess beneficial health properties such as anti-inflammatory and chemopreventive effects. Based on recent observations that 6-shogaol may have more potent bioactivity than 6-gingerol, we obtained a 6-shogaol-rich extract from ginger and examined its effects on the nuclear factor E2-related factor2 (Nrf2)/antioxidant response element (ARE) pathway in vitro and in vivo. 6-Shogaol-rich extract was produced by extracting ginger powder with 95% ethanol at 80 °C after drying at 80 °C (GEE8080). GEE8080 contained over 6-fold more 6-shogaol compared to the room temperature extract (GEE80RT). In HepG2 cells, GEE8080 displayed much stronger inductions of ARE-reporter gene activity and Nrf2 expression than GEE80RT. GEE8080 stimulated phosphorylations of mitogen-activated protein kinases (MAPKs) such as ERK, JNK, and p38. Moreover, the GEE8080-induced expressions of Nrf2 and HO-1 were attenuated by treatments of SB202190 (a p38 specific inhibitor) and LY294002 (an Akt specific inhibitor). In a mouse model, the GEE8080 decreased the diethylnitrosamine (DEN)-mediated elevations of serum aspartate transaminase and alanine transaminase as well as the DEN-induced hepatic lipid peroxidation. Inductions of Nrf2 and HO-1 by GEE8080 were also confirmed in the mice. In addition, the administration of GEE8080 to the mice also restored the DEN-reduced activity and protein expression of hepatic antioxidant enzymes such as superoxide dismutase, glutathione peroxidase and catalase. In conclusion, GEE8080, a 6-shogaol-rich ginger extract, may enhance antioxidant defense mechanism through the induction of Nrf2 and HO-1 regulated by p38 MAPK and PI3k/Akt pathway in vitro and in vivo.

  18. Narcissism and defense mechanisms in women

    Directory of Open Access Journals (Sweden)

    Sabina Bele

    2014-06-01

    Full Text Available The purpose of this research was to examine how the level of covert and overt narcissism is connected to the frequency of the use of defense mechanisms such as denial, repression, regression, projection, compensation, projection, intellectualization, reaction formation, displacement, dissociation, and somatoform dissociation. We can distinguish healthy narcissism, an appropriate self-evaluation, from pathological narcissism, unrealistic self-evalutaion hiding sense of one's own unworthiness with self-idealization and grandiose thinking. When combined with low/no empathy and exploiting of others, one is diagnosed with narcissistic personality disorder. In this research we focused on narcissism as a personality trait, keeping in mind that we can differentiate between more covert or overt form of narcissism. We also focused on defense mechanisms protecting an individual from stimuli that are either endangering self-esteem or produce anxiety. Although their use is often unconscious, recent findings support the thesis that an individual can observe and report them. Our sample comprised 203 women. We used Narcissistic Personality Inventory, The Hypersensitive Narcissism Scale, The Life Style Index, The Dissociative Experience Scale, and Somatoform Dissociation Questionnaire. Results indicated that women with higher levels of covert narcissism as a personality trait use defense mechanisms, especially regression on earlier developmental stage, compensation deficits on other areas, projection unwanted or unacceptable aspects, reaction formation, and dissociation (absorption, depersonalization and derealization more often than women with higher levels of overt narcissism. The later use more compensation as a way of dealing with loss, intellectualization as a rational response instead of emotional one, and regression.

  19. The antioxidant response of the liver of male Swiss mice raised on a AIN 93 or commercial diet

    OpenAIRE

    Caetano, Aline C; da Veiga, Lucimara F; Capaldi, Fl?via R; de Alencar, Severino M; Azevedo, Ricardo A; Bezerra, Rosangela MN

    2013-01-01

    Abstract Background Reactive oxygen species (ROS) are formed under natural physiological conditions and are thought to play an important role in many human diseases. A wide range of antioxidants are involved in cellular defense mechanisms against ROS, which can be generated in excess during stressful conditions, these include enzymes and non-enzymatic antioxidants. The aim of this study was to evaluate the antioxid...

  20. Study of a new alternative antioxidant in soybean plants subjected to abiotic stress

    International Nuclear Information System (INIS)

    Zilli, C.; Santa Cruz, D.; Caggiano, E.; Romanello, M.; Tomaro, M.; Balestrasse, K.

    2010-01-01

    We have recently, demonstrated that the induction of heme oxygenase-1 (HO-1) plays a protective role for soybean plants against oxidative stress produced by cadmium and UV-B radiation. At this moment we propose to investigate if the enzyme has the same capacity against another type of abiotic stress, such as drought, for to demonstrate that heme oxygenase acts as an enzyme of plant antioxidant defense system under several different stress situations, as occur in mammalian tissues. To carry out this objective we propose to study, in leaf, root and nodule of soybean plants, the oxidative stress generation; the behavior of classical antioxidant system; the behavior of HO-1 activity and protein and gene expression; the effect of its reaction products and inhibitors on the oxidative stress parameters; the signaling mechanism that produce HO-1 induction and the immunohistochemistry localization of the enzyme in the different plant tissues. The results obtained let us undoubtedly demonstrate the involvement of HO-1 in the antioxidant defense system in plants. This finding will allow the increase in the knowledge of the defense mechanisms in interesting economic plants for our country, such as soybean, and against drought, an abiotic stress considered one of the most important factors limiting plant performance and yield worldwide. (authors)

  1. Effects of aerial exposure on antioxidant defenses in the brown mussel Perna perna

    Directory of Open Access Journals (Sweden)

    Eduardo Alves de Almeida

    2006-03-01

    Full Text Available Investigations were carried out to evaluate the antioxidant defenses in digestive gland of mussels Perna perna held in air for 4 hours, exposed to air for 4 hours followed by submersion in water for 30 minutes, and constantly submerged for 4.5 hours. No differences were observed in CAT and GPx activities and in the levels of total GSH. Mussels exposed to air had significantly higher SOD activity, possibly related to a preparative mechanism of defense against oxidative stress during reoxygenation.Mexilhões são periodicamente submetidos a condições de hipóxia seguido de normóxia, como resultado das oscilações nos níveis de maré. Tais condições podem causar um aumento na produção de espécies reativas de oxigenio (EROs nos tecidos, devido a um aumento no fluxo de oxigênio e de equivalentes redutores. Para proteger as células contra as EROs, os organismos possuem enzimas antioxidantes tais como a superóxido dismutase (SOD, catalase (CAT e glutationa peroxidase (GPx, assim como o tripeptídeo glutationa (GSH. Neste trabalho, estas defesas antioxidantes foram avaliadas em glândulas digestivas de mexilhões Perna perna expostos ao ar por 4 horas seguido de re-submersão em água do mar por 30 minutos e constantemente submersos por 4,5 horas. Nenhuma diferença foi observada nas atividades da CAT e GPx, assim como nos níveis de GSH total. Mexilhões expostos ao ar tiveram atividade da SOD significativamente maior, possivelmente relacionado a um mecanismo de defesa preparativo contra o estresse oxidativo durante a reoxigenação.

  2. Effects of in vivo chronic exposure to pendimethalin on EROD activity and antioxidant defenses in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Danion, Morgane; Le Floch, Stéphane; Lamour, François; Quentel, Claire

    2014-01-01

    Pendimethalin, an herbicide active substance frequently used in terrestrial systems, has detected in European aquatic ecosystems. Reliable indicators still need to be found in order to properly assess the impact of pesticides in fish. After an in vivo chronic exposure to pendimethalin, the detoxification process and the antioxidant defense system were assessed in 120 adult rainbow trout, Oncorhynchus mykiss. Four nominal exposure conditions were tested: control (C), 500 ng L(-1) (P500), 800 ng L(-1) (P800) and the commercial formulation Prowl(®) at 500 ng L(-1) (Pw500). Fish samples were made after a 28 day exposure period (D28) and after a fifteen day recovery period in clean fresh water (D43). At D28, ethoxyresorufin-O-deethylase (EROD) activity was not activated in liver in spite of the pendimethalin uptake in fish. At D43, EROD activity in fish exposed to the commercial product was lower than in control fish, which may be explained by the high presence of herbicide in fish (613±163 ng g bile(-1)). Furthermore, antioxidant defense responses were set up by trout in gills and liver following chronic exposure to 800 ng L(-1) of pendimethalin concentration. While the glutathione content (GSH) decreased in gills, it increased in liver associated with higher activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD). These disturbances could lead to reactive oxygen species production and oxidative stress in the vital organs in fish. After fifteen days in clean water, while the SOD activity was restored, the GSH content and GPx activity were still significantly disturbed in fish exposed to pendimethalin in comparison with control. These significant differences between treatments in antioxidant defenses parameters measured, attesting to the irreversibility of the effects. © 2013 Published by Elsevier Inc.

  3. Total anti-oxidant capacity of saliva in chronic periodontitis patients before and after periodontal treatment.

    Science.gov (United States)

    Shirzaiy, M; Ansari, S M; Dehghan, J H; Ghaeni, S H

    2014-01-01

    Periodontal disease is among the most common inflammatory conditions which is associated with many different factors. One of the contributing factors to the pathogenesis of this condition may compromise the defensive mechanism of antioxidants. The present study evaluates the antioxidant capacity of saliva in periodontal patients before and after periodontal treatment. In this cross sectional study, 31 patients systemically healthy non smokers with chronic periodontitis were recruited. The antioxidant capacity of saliva was measured before the initial phase of periodontal therapy and after completion of the treatment. Data were analyzed using SPSS 19 software. Paired T-Test, Independent sample T-test and ANOVA tests were used as appropriated. The mean and standard deviation antioxidant capacity of the saliva after the treatment.(0.962± 0.287µM)was significantly higher than before the treatment (0.655 ± 0.281 µM ,pperiodontal treatment was higher among men than among women; however, the difference was not significant (P=0.07). The mean difference of salivary antioxidant capacity was not significantly differed among different ages (P=0.772). The antioxidant capacity of saliva was higher after periodontal therapy among patients with periodontal disease, however the change was not varied across the ages and gender. Therefore, the alterations in the defensive mechanism of antioxidants could be the key factors contribute to the pathogenesis of periodontal diseases.

  4. DETERMINATION OF DEFENSE MECHANISM IN Phaseolus ...

    African Journals Online (AJOL)

    Administrator

    Field studies were conducted to determine the role of defense mechanism in various parameters associated with plant protection subjected to UV-B radiation in Phaseolus trilobus Ait. commonly used as green manure and fodder. Spectrophotometric analysis showed that UV-B radiation decreases the chlorophyll content ...

  5. Cyclic AMP signaling restricts activation and promotes maturation and antioxidant defenses in astrocytes.

    Science.gov (United States)

    Paco, Sonia; Hummel, Manuela; Plá, Virginia; Sumoy, Lauro; Aguado, Fernando

    2016-04-23

    cAMP signaling produces dramatic changes in astrocyte morphology and physiology. However, its involvement in phenotype acquisition and the transcriptionally mediated mechanisms of action are largely unknown. Here we analyzed the global transcriptome of cultured astroglial cells incubated with activators of cAMP pathways. A bulk of astroglial transcripts, 6221 annotated genes, were differentially regulated by cAMP signaling. cAMP analogs strongly upregulated genes involved in typical functions of mature astrocytes, such as homeostatic control, metabolic and structural support to neurons, antioxidant defense and communication, whereas they downregulated a considerable number of proliferating and immaturity-related transcripts. Moreover, numerous genes typically activated in reactive cells, such as scar components and immunological mediators, were repressed by cAMP. GSEA analysis contrasting gene expression profiles with transcriptome signatures of acutely isolated astrocytes and in situ evaluation of protein levels in these cells showed that cAMP signaling conferred mature and in vivo-like transcriptional features to cultured astrocytes. These results indicate that cAMP signaling is a key pathway promoting astrocyte maturation and restricting their developmental and activation features. Therefore, a positive modulation of cAMP signaling may promote the normal state of differentiated astrocytes and favor the protection and function of neuronal networks.

  6. Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yang, E-mail: gaoyang0898@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240 (China); Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083 (China); Miao Chiyuan [Department of Environmental Engineering, Peking University, Beijing, 100871 (China); Mao Liang [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240 (China); School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 (China); Zhou Pei [School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 (China); Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240 (China); Jin Zhiguo; Shi Wanjun [School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240 (China)

    2010-09-15

    Remediation of plant-microorganism-chelates synergy has been proposed as an effective remediation method for enhancing the removal efficiency of heavy metal. Manipulation of the antioxidative system increases plant tolerance, thereby potentially enhancing the uptake capacity to heavy metal. In this study, we investigated the possibility of improving the phytoextraction of Cd and the antioxidative defense of Solanum nigrum L. by application of a new isolated strain (Paecilomyces lilacinus NH1) (PLNH1) and citric acid (CA). The results showed that application of CA or PLNH1 significantly promoted S. nigrum's growth under Cd stress, but the synergistic effect of CA and PLNH1 on S. nigrum's growth was more obvious. The coexistence of CA and PLNH1 could enhance about 30% of Cd accumulation in different organs of S. nigrum compared to the treatment without the addition of CA and PLNH1, whereas single CA or PLNH1 added treatment only enhanced about 10-15% of Cd accumulation in different organs of S. nigrum. The antioxidative defense in S. nigrum under Cd stress was significantly improved as result of application of CA and PLNH1. The responses of antioxidative enzymes to Cd stress significantly decreased following application of CA and PLNH1, and the oxidative stress experienced by the plant due to Cd in the soil was significantly alleviated.

  7. Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid

    International Nuclear Information System (INIS)

    Gao Yang; Miao Chiyuan; Mao Liang; Zhou Pei; Jin Zhiguo; Shi Wanjun

    2010-01-01

    Remediation of plant-microorganism-chelates synergy has been proposed as an effective remediation method for enhancing the removal efficiency of heavy metal. Manipulation of the antioxidative system increases plant tolerance, thereby potentially enhancing the uptake capacity to heavy metal. In this study, we investigated the possibility of improving the phytoextraction of Cd and the antioxidative defense of Solanum nigrum L. by application of a new isolated strain (Paecilomyces lilacinus NH1) (PLNH1) and citric acid (CA). The results showed that application of CA or PLNH1 significantly promoted S. nigrum's growth under Cd stress, but the synergistic effect of CA and PLNH1 on S. nigrum's growth was more obvious. The coexistence of CA and PLNH1 could enhance about 30% of Cd accumulation in different organs of S. nigrum compared to the treatment without the addition of CA and PLNH1, whereas single CA or PLNH1 added treatment only enhanced about 10-15% of Cd accumulation in different organs of S. nigrum. The antioxidative defense in S. nigrum under Cd stress was significantly improved as result of application of CA and PLNH1. The responses of antioxidative enzymes to Cd stress significantly decreased following application of CA and PLNH1, and the oxidative stress experienced by the plant due to Cd in the soil was significantly alleviated.

  8. The levels of psychological functioning of personality and the mechanisms of defense

    OpenAIRE

    Benítez Camacho, Erika; Chávez-León, Enrique; Ontiveros Uribe, Martha Patricia; Yunes Jiménez, Arlette; Náfate López, Omar

    2010-01-01

    Otto Kernberg states three types of personality organizations, also named psychological functional levels. They reflect the patient's predominant psychological characteristics: identity integration grade, defense mechanisms, and reality test. In mental disorders, the predominant defensive influences significantly in the severity and evolution of the suffering. Objectives The objective of the actual study was to determine the usage of defense mechanisms by patients with some mental disorder, g...

  9. Studies on defense mechanism against xenobiotics in rats, using gold as a model

    International Nuclear Information System (INIS)

    Sugawa-Katayama, Yohko; Kojima, Akiko; Nakano, Yukihiro.

    1994-01-01

    For self-protection, a living organism has a special mechanism to prevent xenobiotics from being absorbed through the gastrointestinal tract. This led to the present study on the defense mechanism of the gastrointestinal tract where foods are digested and absorbed. The results obtained from this study showed that 1) starvation caused an insufficiency of the defense mechanism against xenobiotics in jejunal absorptive cells and Kupffer cells, 2) after refeeding diets, a reparative process occurred at the damaged cell sites, resulting in recovery of the defense mechanism against xenobiotics, and 3) a 5% fat diet seemed to be the best fat level for recovery of the defense mechanism against xenobiotics. In the nutritional point of view, the 5% fat diet is equivalent to 0.11 in fat energy ratio (fat energy/total energy of the diet). These data suggest that a diet with a much lower fat energy (equivalent to 0.11) can give a good effect on recovery of the defense mechanism against xenobiotics in the gastrointestinal tract and the liver. (author)

  10. Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Shimada, Akihiko; Sugimoto, Masaki; Kudoh, Hisaaki

    2012-01-01

    The mechanism of polymer oxidation by radiation and thermal ageing was investigated for the life evaluation of cables installed in radiation environments. The antioxidant as a stabilizer was very effective for thermal oxidation with a small content in polymers, but was not effective for radiation oxidation. The ionizing radiation induced the oxidation to result in chain scission even at low temperature, because the free radicals were produced and the antioxidant could not stop the oxidation of radicals with the chain scission. A new mechanism of antioxidant effect for polymer oxidation was proposed. The effect of antioxidant was not the termination of free radicals in polymer chains such as peroxy radicals, but was the depression of initial radical formation in polymer chains by thermal activation. The antioxidant molecule was assumed to delocalize the activated energy in polymer chains by the Boltzmann statics (distribution) to result in decrease in the probability of radical formation at a given temperature. The interaction distance (delocalization volume) by one antioxidant molecule was estimated to be 5–10 nm by the radius of sphere in polymer matrix, though the value would depend on the chemical structure of antioxidant. - Highlights: ► Interaction of antioxidant on polymer oxidation is discussed for thermal and radiation ageings. ► Antioxidant is very effective for thermal oxidation, but not for radiation induced oxidation. ► Interaction of antioxidant is not the termination reaction of radicals on polymers. ► Antioxidant is supposed to reduce the provability of polymer radical formation by thermal activation. ► Mechanism of polymer oxidation may not be chain reaction via peroxy radical and hydro-peroxide.

  11. Influence of TiO{sub 2} nanoparticles on cellular antioxidant defense and its involvement in genotoxicity in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Petkovic, Jana; Zegura, Bojana; Filipic, Metka, E-mail: metka.filipic@nib.si [Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, SI-1000 Ljubljana (Slovenia)

    2011-07-06

    We investigated the effects of two types of TiO{sub 2} nanoparticles (<25 nm anatase, TiO{sub 2}-An; <100 nm rutile, TiO{sub 2}-Ru) on cellular antioxidant defense in HepG2 cells. We previously showed that in HepG2 cells, TiO{sub 2} nanoparticles are not toxic, although they induce oxidative DNA damage, production of intracellular reactive oxygen species, and up-regulation of mRNA expression of DNA-damage-responsive genes (p53, p21, gadd45{alpha} and mdm2). In the present study, we measured changes in mRNA expression of several antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase, nitric oxide synthase, glutathione reductase and glutamate-cysteine ligase. As reduced glutathione has a central role in cellular antioxidant defense, we determined the effects of TiO{sub 2} nanoparticles on changes in the intracellular glutathione content. To confirm a role for glutathione in protection against TiO{sub 2}-nanoparticle-induced DNA damage, we compared the extent of TiO{sub 2}-nanoparticle-induced DNA damage in HepG2 cells that were glutathione depleted with buthionine-(S,R)-sulfoximine pretreatment and in nonglutathione-depleted cells. Our data show that both types of TiO{sub 2} nanoparticles up-regulate mRNA expression of oxidative-stress-related genes, with TiO{sub 2}-Ru being a stronger inducer than TiO{sub 2}-An. Both types of TiO{sub 2} nanoparticles also induce dose-dependent increases in intracellular glutathione levels, and in glutathione-depleted cells, TiO{sub 2}-nanoparticle-induced DNA damage was significantly greater than in nonglutathione-depleted cells. Interestingly, the glutathione content and the extent of DNA damage were significantly higher in TiO{sub 2}-An- than TiO{sub 2}-Ru-exposed cells. Thus, we show that TiO{sub 2} nanoparticles cause activation of cellular antioxidant processes, and that intracellular glutathione has a critical role in defense against this TiO{sub 2}-nanoparticle-induced DNA damage.

  12. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mohammed Saeed-Zidane

    Full Text Available Various environmental insults including diseases, heat and oxidative stress could lead to abnormal growth, functions and apoptosis in granulosa cells during ovarian follicle growth and oocyte maturation. Despite the fact that cells exposed to oxidative stress are responding transcriptionally, the potential release of transcripts associated with oxidative stress response into extracellular space through exosomes is not yet determined. Therefore, here we aimed to investigate the effect of oxidative stress in bovine granulosa cells in vitro on the cellular and exosome mediated defense mechanisms. Bovine granulosa cells were aspirated from ovarian follicles and cultured in DMEM/F-12 Ham culture medium supplemented with 10% exosome-depleted fetal bovine serum. In the first experiment sub-confluent cells were treated with 5 μM H2O2 for 40 min to induce oxidative stress. Thereafter, cells were subjected to ROS and mitochondrial staining, cell proliferation and cell cycle assays. Furthermore, gene and protein expression analysis were performed in H2O2-challenged versus control group 24 hr post-treatment using qRT-PCR and immune blotting or immunocytochemistry assay, respectively. Moreover, exosomes were isolated from spent media using ultracentrifugation procedure, and subsequently used for RNA isolation and qRT-PCR. In the second experiment, exosomes released by granulosa cells under oxidative stress (StressExo or those released by granulosa cells without oxidative stress (NormalExo were co-incubated with bovine granulosa cells in vitro to proof the potential horizontal transfer of defense molecules from exosomes to granulosa cells and investigate any phenotype changes. Exposure of bovine granulosa cells to H2O2 induced the accumulation of ROS, reduced mitochondrial activity, increased expression of Nrf2 and its downstream antioxidant genes (both mRNA and protein, altered the cell cycle transitions and induced cellular apoptosis. Granulosa cells

  13. Antioxidant Property of Jobelyn as the Possible Mechanism Underlying its Anti-amnesic Activity in Rodents

    Directory of Open Access Journals (Sweden)

    Solomon Umukoro

    2013-02-01

    Full Text Available Introduction: Amnesia or loss of memory is the cardinal hallmark of Alzheimer’s disease (AD, a progressive neurodegenerative disorder associated with ageing process. Although, AD had been discovered over a century ago, drugs which could cure or halt the progression of the disease are yet to see the light of the day. However, there has been a growing interest in the use of phytomedicines with multipronged mechanisms of action that could target various aspects of the pathologies of AD. Jobelyn (JB is a potent antioxidant African polyherbal formulation with active components that have been acclaimed to show neuroprotection. This investigation was carried out to evaluate whether JB has anti-amnesic and antioxidant activities. Methods: The alteration of alternation behavior in the Y-maze paradigm was utilized as the test for memory function in mice.  The effect of JB on acetylcholinesterase (AChE activity, malondialdehyde (MDA level and the concentrations of glutathione (GSH in the frontal cortex and hippocampus were assessed in rats as means of providing insight into the mechanism underlying its anti-amnesic activity. The animals were given JB (1, 2.5 or 5mg/kg, i.p. daily for 7 days before the biochemical assays or test for memory functions were carried out.  Results: JB was found to produce a signi.cant increase in the level of alternation behavior compared with the control, suggesting anti-amnesic activity. Also, JB reversed the memory impairment induced by scopolamine, which further indicates anti-amnesic property. Furthermore, JB demonstrated a signi.cant inhibition of MDA formation in the frontal cortex and hippocampus of rats, indicating antioxidant property.  In addition, it increased the defense armory of the brain tissues, as it signi.cantly increased the concentrations of GSH in the frontal cortex and hippocampus of rats. However, JB did not demonstrate any inhibitory effect against AChE activity in the frontal cortex and hippocampus

  14. Antioxidant defense in Plasmodium falciparum – data mining of the transcriptome

    Directory of Open Access Journals (Sweden)

    Ginsburg Hagai

    2004-07-01

    Full Text Available Abstract The intraerythrocytic malaria parasite is under constant oxidative stress originating both from endogenous and exogenous processes. The parasite is endowed with a complete network of enzymes and proteins that protect it from those threats, but also uses redox activities to regulate enzyme activities. In the present analysis, the transcription of the genes coding for the antioxidant defense elements are viewed in the time-frame of the intraerythrocytic cycle. Time-dependent transcription data were taken from the transcriptome of the human malaria parasite Plasmodium falciparum. Whereas for several processes the transcription of the many participating genes is coordinated, in the present case there are some outstanding deviations where gene products that utilize glutathione or thioredoxin are transcribed before the genes coding for elements that control the levels of those substrates are transcribed. Such insights may hint to novel, non-classical pathways that necessitate further investigations.

  15. Antioxidant defense in quiescent cells determines selectivity of electron transport chain inhibition-induced cell death

    Czech Academy of Sciences Publication Activity Database

    Blecha, Jan; Novais, Silvia Magalhaes; Rohlenová, Kateřina; Novotná, Eliška; Lettlová, Sandra; Schmitt, S.; Zischka, H.; Neužil, Jiří; Rohlena, Jakub

    2017-01-01

    Roč. 112, NOV 2017 (2017), s. 253-266 ISSN 0891-5849 R&D Projects: GA ČR GA16-22823S; GA ČR GA17-20904S; GA ČR GA16-12719S; GA MZd(CZ) NV16-31604A; GA MŠk(CZ) LM2015062; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Electron transport chain * Supercomplexes * Antioxidant defense * SOD2 Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 5.606, year: 2016

  16. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model

    Science.gov (United States)

    Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses. PMID:26798423

  17. Evaluation of Polyphenol Content and Antioxidant Properties of some Fruit Seeds

    Directory of Open Access Journals (Sweden)

    Liana Claudia Salanţă

    2015-11-01

    Full Text Available A diversity of secondary plant metabolite with an antioxidant character are present in the vegetal extracts, such as: tocopherols, carotenoids, phenolic acids, flavonoids, etc. These compounds intervene in the cellular defense mechanisms against the free radicals and oxidative stress, as they possess anticancer and anti mutation effect. The aim of this work was to study the antioxidant capacity and polyphenol content of methanolic extracts obtained from seeds of fruits: Vitis vinifera, Malus domestica and Citrullus lanatus. Grape seeds have a high content of antioxidants and polyphenols compounds, due to this, it is recommended their used in obtaining functional food with benefit on the human body.

  18. 6-Shogaol-Rich Extract from Ginger Up-Regulates the Antioxidant Defense Systems in Cells and Mice

    Directory of Open Access Journals (Sweden)

    Mira Jun

    2012-07-01

    Full Text Available The rhizome of ginger (Zingiber officinale Roscoe is known to have several bioactive compounds including gingerols and shogaols which possess beneficial health properties such as anti-inflammatory and chemopreventive effects. Based on recent observations that 6-shogaol may have more potent bioactivity than 6-gingerol, we obtained a 6-shogaol-rich extract from ginger and examined its effects on the nuclear factor E2-related factor2 (Nrf2/antioxidant response element (ARE pathway in vitro and in vivo. 6-Shogaol-rich extract was produced by extracting ginger powder with 95% ethanol at 80 °C after drying at 80 °C (GEE8080. GEE8080 contained over 6-fold more 6-shogaol compared to the room temperature extract (GEE80RT. In HepG2 cells, GEE8080 displayed much stronger inductions of ARE-reporter gene activity and Nrf2 expression than GEE80RT. GEE8080 stimulated phosphorylations of mitogen-activated protein kinases (MAPKs such as ERK, JNK, and p38. Moreover, the GEE8080-induced expressions of Nrf2 and HO-1 were attenuated by treatments of SB202190 (a p38 specific inhibitor and LY294002 (an Akt specific inhibitor. In a mouse model, the GEE8080 decreased the diethylnitrosamine (DEN-mediated elevations of serum aspartate transaminase and alanine transaminase as well as the DEN-induced hepatic lipid peroxidation. Inductions of Nrf2 and HO-1 by GEE8080 were also confirmed in the mice. In addition, the administration of GEE8080 to the mice also restored the DEN-reduced activity and protein expression of hepatic antioxidant enzymes such as superoxide dismutase, glutathione peroxidase and catalase. In conclusion, GEE8080, a 6-shogaol-rich ginger extract, may enhance antioxidant defense mechanism through the induction of Nrf2 and HO-1 regulated by p38 MAPK and PI3k/Akt pathway in vitro and in vivo.

  19. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.

    Science.gov (United States)

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2014-08-01

    The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Defense mechanisms in schizotypal, borderline, antisocial, and narcissistic personality disorders.

    Science.gov (United States)

    Perry, J Christopher; Presniak, Michelle D; Olson, Trevor R

    2013-01-01

    Numerous authors have theorized that defense mechanisms play a role in personality disorders. We reviewed theoretical writings and empirical studies about defenses in schizotypal, borderline, antisocial, and narcissistic personality disorders, developing hypotheses about these differential relationships. We then examined these hypotheses using dynamic interview data rated for defenses in a study of participants (n = 107) diagnosed with these four personality disorder types. Overall, the prevalence of immature defenses was substantial, and all four disorders fit within the broad borderline personality organization construct. Defenses predicted the most variance in borderline and the least variance in schizotypal personality disorder, suggesting that dynamic factors played the largest role in borderline and the least in schizotypal personality. Central to borderline personality were strong associations with major image-distorting defenses, primarily splitting of self and other's images, and the hysterical level defenses, dissociation and repression. Narcissistic and antisocial personality disorders shared minor image-distorting defenses, such as omnipotence or devaluation, while narcissistic also used splitting of self-images and antisocial used disavowal defenses like denial. Overall, differential relationships between specific defenses and personality disorder types were largely consistent with the literature, and consistent with the importance that the treatment literature ascribes to working with defenses.

  1. Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium.

    Science.gov (United States)

    Pukkila-Worley, Read; Ausubel, Frederick M

    2012-02-01

    Intestinal epithelial cells provide an essential line of defense for Caernohabditis elegans against ingested pathogens. Because nematodes consume microorganisms as their food source, there has presumably been selection pressure to evolve and maintain immune defense mechanisms within the intestinal epithelium. Here we review recent advances that further define the immune signaling network within these cells and suggest mechanisms used by the nematode to monitor for infection. In reviewing studies of pathogenesis that use this simple model system, we hope to illustrate some of the basic principles of epithelial immunity that may also be of relevance in higher order hosts. Copyright © 2012. Published by Elsevier Ltd.

  2. Vaginal orgasm is associated with less use of immature psychological defense mechanisms.

    Science.gov (United States)

    Brody, Stuart; Costa, Rui Miguel

    2008-05-01

    Freud implied a link between inability to have a vaginal orgasm and psychosexual immaturity. Since Kinsey, many sexologists have asserted that no such link exists. However, empirical testing of the issue has been lacking. The objective was to determine the relationship between different sexual behavior triggers of female orgasm and use of immature psychological defense mechanisms. Women reported their past month frequency of different sexual behaviors and corresponding orgasm rates and completed the Defense Style Questionnaire (DSQ-40). The association between ability to have vaginal intercourse orgasm (versus clitoral orgasm) and the use of DSQ-40 immature psychological defense mechanisms (associated with various psychopathologies) was examined. In a sample of 94 healthy Portuguese women, vaginal orgasm (triggered solely by penile-vaginal intercourse) was associated with less use of DSQ-40 immature defenses. Vaginal orgasm was associated with less somatization, dissociation, displacement, autistic fantasy, devaluation, and isolation of affect. Orgasm from clitoral stimulation or combined clitoral-intercourse stimulation was not associated with less use of immature defenses, and was associated with more use of some immature defenses. In one regression analysis, more masturbation and less vaginal orgasm consistency made independent contributions to the statistical prediction of immature defenses. In another regression analysis, any use of extrinsic clitoral stimulation for intercourse orgasm, and lack of any vaginal orgasm, made independent contributions to the statistical prediction of immature defenses. Vaginally anorgasmic women had immature defenses scores comparable to those of established (depression, social anxiety disorder, panic disorder, and obsessive-compulsive disorder) outpatient psychiatric groups. Results were not confounded by social desirability responding or relationship quality. The results linking penile-vaginal orgasm with less use of immature

  3. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways.

    Science.gov (United States)

    Azad, Gajendra Kumar; Tomar, Raghuvir S

    2014-08-01

    Ebselen, an organoselenium compound, mimics glutathione peroxidase activity. It is a multifunctional compound, which catalyzes several essential reactions for the protection of cellular components from oxidative and free radical damage. Based on a number of in vitro and in vivo studies, various mechanisms are proposed to understand the biomedical actions of ebselen in health and diseases. It modulates metallo-proteins, enzymatic cofactors, gene expression, epigenetics, antioxidant defenses and immune systems. Owing to these properties, ebselen is currently under clinical trials for the prevention and treatment of various disorders such as cardiovascular diseases, arthritis, stroke, atherosclerosis, and cancer. A few ebselen-based pharmaceutical agents are under extensive investigation. As ebselen has been shown to have significant cellular toxicity, appropriate studies are needed to redesign the ebselen-based therapy for clinical trials. This review summarizes current understanding of the biochemical and molecular properties, and pharmacological applications of ebselen and future directions in this area of research.

  4. Redox mechanism of reactive oxygen species in exercise

    Directory of Open Access Journals (Sweden)

    Feng He

    2016-11-01

    Full Text Available It is well known that regular exercise benefits health. However, unaccustomed and/or exhaustive exercise can generate excessive reactive oxygen species (ROS, leading to oxidative stress-related tissue damage and impaired muscle contractility. ROS are produced in both aerobic and anaerobic exercise. Although mitochondria, NADPH oxidases and xanthine oxidase have all been identified as contributors to ROS production, the exact redox mechanisms underlying exercise-induced oxidative stress remain elusive. Interestingly, moderate exposure to ROS is necessary to induce the body’s adaptive responses such as the activation of antioxidant defense mechanisms. Dietary antioxidant manipulation can also reduce ROS levels and muscle fatigue, as well as enhance exercise recovery. To elucidate the complex role of ROS in exercise, this article updates on new findings of ROS origins within skeletal muscles associated with various types of exercises such as endurance, sprint and mountain climbing, corresponding antioxidant defense systems as well as dietary manipulation against damage caused by ROS.

  5. Colors and Some Morphological Traits as Defensive Mechanisms in Anurans

    Directory of Open Access Journals (Sweden)

    Luís Felipe Toledo

    2009-01-01

    Full Text Available Anurans may be brightly colored or completely cryptic. Generally, in the former situation, we are dealing with aposematism, and the latter is an example of camouflage. However, these are only simple views of what such colorations really mean and which defensive strategy is implied. For instance, a brightly colored frog may be part of a mimicry ring, which could be either Batesian, Müllerian, or Browerian. These are only examples of the diversity of color-usage systems as defensive strategies. Unfortunately, reports on the use of colors as defensive mechanisms are widespread in the available literature, and the possible functions are rarely mentioned. Therefore, we reviewed the literature and added new data to this subject. Then, we the use of colors (as defensive mechanism into categories. Mimicry was divided into the subcategories camouflage, homotypy, and nondeceitful homotypy, and these groups were also subcategorized. Dissuasive coloration was divided into behavioral display of colors, polymorphism, and polyphenism. Aposematism was treated apart, but aposematic colorations may be present in other defensive strategies. Finally, we propose functions and forms of evolution for some color systems in post-metamorphic anurans and hope that this review can be the basis for future research, even on other animal groups.

  6. GSR is not essential for the maintenance of antioxidant defenses in mouse cochlea: Possible role of the thioredoxin system as a functional backup for GSR.

    Directory of Open Access Journals (Sweden)

    Chul Han

    Full Text Available Glutathione reductase (GSR, a key member of the glutathione antioxidant defense system, converts oxidized glutathione (GSSG to reduced glutathione (GSH and maintains the intracellular glutathione redox state to protect the cells from oxidative damage. Previous reports have shown that Gsr deficiency results in defects in host defense against bacterial infection, while diquat induces renal injury in Gsr hypomorphic mice. In flies, overexpression of GSR extended lifespan under hyperoxia. In the current study, we investigated the roles of GSR in cochlear antioxidant defense using Gsr homozygous knockout mice that were backcrossed onto the CBA/CaJ mouse strain, a normal-hearing strain that does not carry a specific Cdh23 mutation that causes progressive hair cell degeneration and early onset of hearing loss. Gsr-/- mice displayed a significant decrease in GSR activity and GSH/GSSG ratios in the cytosol of the inner ears. However, Gsr deficiency did not affect ABR (auditory brainstem response hearing thresholds, wave I amplitudes or wave I latencies in young mice. No histological abnormalities were observed in the cochlea of Gsr-/- mice. Furthermore, there were no differences in the activities of cytosolic glutathione-related enzymes, including glutathione peroxidase and glutamate-cysteine ligase, or the levels of oxidative damage markers in the inner ears between WT and Gsr-/- mice. In contrast, Gsr deficiency resulted in increased activities of cytosolic thioredoxin and thioredoxin reductase in the inner ears. Therefore, under normal physiological conditions, GSR is not essential for the maintenance of antioxidant defenses in mouse cochlea. Given that the thioredoxin system is known to reduce GSSG to GSH in multiple species, our findings suggest that the thioredoxin system can support GSSG reduction in the mouse peripheral auditory system.

  7. Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers

    International Nuclear Information System (INIS)

    Kasperczyk, Sławomir; Dobrakowski, Michał; Kasperczyk, Janusz; Ostałowska, Alina; Zalejska-Fiolka, Jolanta; Birkner, Ewa

    2014-01-01

    The aim of this study was to determine whether beta-carotene administration reduces oxidative stress and influences antioxidant, mainly glutathione-related, defense systems in workers chronically exposed to lead. The population consisted of two randomly divided groups of healthy male volunteers exposed to lead. Workers in the first group (reference group) were not administered any antioxidants, while workers in the second group (CAR group) were treated orally with 10 mg of beta-carotene once a day for 12 weeks. Biochemical analysis included measuring markers of lead-exposure and oxidative stress in addition to the levels and activities of selected antioxidants. After treatment, levels of malondialdehyde, lipid hydroperoxides and lipofuscin significantly decreased compared with the reference group. However, the level of glutathione significantly increased compared with the baseline. Treatment with beta-carotene also resulted in significantly decreased glutathione peroxidase activity compared with the reference group, while the activities of other glutathione-related enzymes and of superoxide dismutase were not significantly changed. However, the activities of glucose-6-phosphate dehydrogenase and catalase, as well as the level of alpha-tocopherol, were significantly higher after treatment compared with the baseline. Despite controversy over the antioxidant properties of beta-carotene in vivo, our findings showed reduced oxidative stress after beta-carotene supplementation in chronic lead poisoning. - Highlights: • Beta-carotene reduces oxidative stress in lead-exposed workers. • Beta-carotene elevates glutathione level in lead-exposed workers. • Beta-carotene administration could be beneficial in lead poisoning

  8. Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    Kasperczyk, Sławomir, E-mail: kaslav@mp.pl [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Dobrakowski, Michał [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Kasperczyk, Janusz [Dept. of Environmental Medicine and Epidemiology, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Ostałowska, Alina; Zalejska-Fiolka, Jolanta; Birkner, Ewa [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland)

    2014-10-01

    The aim of this study was to determine whether beta-carotene administration reduces oxidative stress and influences antioxidant, mainly glutathione-related, defense systems in workers chronically exposed to lead. The population consisted of two randomly divided groups of healthy male volunteers exposed to lead. Workers in the first group (reference group) were not administered any antioxidants, while workers in the second group (CAR group) were treated orally with 10 mg of beta-carotene once a day for 12 weeks. Biochemical analysis included measuring markers of lead-exposure and oxidative stress in addition to the levels and activities of selected antioxidants. After treatment, levels of malondialdehyde, lipid hydroperoxides and lipofuscin significantly decreased compared with the reference group. However, the level of glutathione significantly increased compared with the baseline. Treatment with beta-carotene also resulted in significantly decreased glutathione peroxidase activity compared with the reference group, while the activities of other glutathione-related enzymes and of superoxide dismutase were not significantly changed. However, the activities of glucose-6-phosphate dehydrogenase and catalase, as well as the level of alpha-tocopherol, were significantly higher after treatment compared with the baseline. Despite controversy over the antioxidant properties of beta-carotene in vivo, our findings showed reduced oxidative stress after beta-carotene supplementation in chronic lead poisoning. - Highlights: • Beta-carotene reduces oxidative stress in lead-exposed workers. • Beta-carotene elevates glutathione level in lead-exposed workers. • Beta-carotene administration could be beneficial in lead poisoning.

  9. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb.

    Science.gov (United States)

    Jiang, Hongqin; Wang, Zhenzhen; Ma, Yong; Qu, Yanghua; Lu, Xiaonan; Luo, Hailing

    2015-07-01

    Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old) were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate) or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p0.05). The levels of TG (pCAT, pCAT (p<0.05, linearly) and SOD (p<0.001, linearly). Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment stress and maintain normal physiological metabolism.

  10. Antioxidant Activity during Tumor Progression: A Necessity for the Survival of Cancer Cells?

    Science.gov (United States)

    Hawk, Mark A; McCallister, Chelsea; Schafer, Zachary T

    2016-10-13

    Antioxidant defenses encompass a variety of distinct compounds and enzymes that are linked together through their capacity to neutralize and scavenge reactive oxygen species (ROS). While the relationship between ROS and tumorigenesis is clearly complex and context dependent, a number of recent studies have suggested that neutralizing ROS can facilitate tumor progression and metastasis in multiple cancer types through distinct mechanisms. These studies therefore infer that antioxidant activity may be necessary to support the viability and/or the invasive capacity of cancer cells during tumor progression and metastasis. Here, we discuss some of the accumulating evidence suggesting a role for antioxidant activity in facilitating tumor progression.

  11. Antioxidant Activity during Tumor Progression: A Necessity for the Survival of Cancer Cells?

    Directory of Open Access Journals (Sweden)

    Mark A. Hawk

    2016-10-01

    Full Text Available Antioxidant defenses encompass a variety of distinct compounds and enzymes that are linked together through their capacity to neutralize and scavenge reactive oxygen species (ROS. While the relationship between ROS and tumorigenesis is clearly complex and context dependent, a number of recent studies have suggested that neutralizing ROS can facilitate tumor progression and metastasis in multiple cancer types through distinct mechanisms. These studies therefore infer that antioxidant activity may be necessary to support the viability and/or the invasive capacity of cancer cells during tumor progression and metastasis. Here, we discuss some of the accumulating evidence suggesting a role for antioxidant activity in facilitating tumor progression.

  12. DMPD: The interferon regulatory factor family in host defense: mechanism of action. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502370 The interferon regulatory factor family in host defense: mechanism of acti....html) (.csml) Show The interferon regulatory factor family in host defense: mechanism of action. PubmedID 1...7502370 Title The interferon regulatory factor family in host defense: mechanism

  13. The Comparison of Defense Mechanism Styles and Personality Characteristics in Addicts and Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Mohsen Ahmadi

    2012-11-01

    Full Text Available Aim: The purpose of this study was to comprise of psychological defense mechanism styles and personality characteristics in addicts and healthy individuals. Method: In this causal-comparative study, 70 addicts person (with an average age of 37.29±9.81and the age range 23 to 58 years were selected via accessible sampling method of clinics and Hamadan’s addicted self-representing center during the Autumn of 2011, The number of 70 relatives of these people that demographic variables were matched as possible with the comparison group were selected. Both groups were asked to respond to the defense mechanism style and Eysenk personality Questionnaires. Results: The result of this study showed that the scores mean of addicts were higher than healthy people on immature defense mechanism style, neourotism, and neurotic and extraversion personality characteristics and lower than in mature defense style variables. Conclusion: Based on the result of this study there was a significant difference between addict individuals and healthy people in defense mechanism and personality characteristics.

  14. Brassinosteroids Denigrate the Seasonal Stress through Antioxidant Defense System in Seedlings of Brassica juncea L.

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2014-05-01

    Full Text Available The present work has been undertaken to study the effect of exogenously application of 24-epiBL and 28-homoBL on soluble protein, proline contents and antioxidant defense system of Brassica juncea L. RLM 619 under the influence of seasonal stress. It was observed that 24-epiBL and 28-homoBL treatment enhance the soluble protein, dry weight and shoot length of B. juncea seedlings under seasonal stress. If seeds treated with the different concentrations (10-6, 10-8 and 10-10 M of 24-epiBL and 28-homoBL revealed batter growth, protein and proline contents as compare to untreated seedlings. Similarly the activities of antioxidant enzymes SOD, CAT, APOX, DHAR, PPO and Auxinases were enhanced by the application of different concentration of both brassinosteroids, whereas MDA content was decrease with both brassinosteroids treatments. Then we have concluded that both brassinolides have the seasonal stress ameliorative properties in B. juncea seedlings grown under the influence of seasonal stress. This study culminates to the role of brassinolides as an anti-stress property for protection of plant from various types of stresses.

  15. Nutraceutical Antioxidants as Novel Neuroprotective Agents

    Directory of Open Access Journals (Sweden)

    Daniel A. Linseman

    2010-11-01

    Full Text Available A variety of antioxidant compounds derived from natural products (nutraceuticals have demonstrated neuroprotective activity in either in vitro or in vivo models of neuronal cell death or neurodegeneration, respectively. These natural antioxidants fall into several distinct groups based on their chemical structures: (1 flavonoid polyphenols like epigallocatechin 3-gallate (EGCG from green tea and quercetin from apples; (2 non-flavonoid polyphenols such as curcumin from tumeric and resveratrol from grapes; (3 phenolic acids or phenolic diterpenes such as rosmarinic acid or carnosic acid, respectively, both from rosemary; and (4 organosulfur compounds including the isothiocyanate, L-sulforaphane, from broccoli and the thiosulfonate allicin, from garlic. All of these compounds are generally considered to be antioxidants. They may be classified this way either because they directly scavenge free radicals or they indirectly increase endogenous cellular antioxidant defenses, for example, via activation of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2 transcription factor pathway. Alternative mechanisms of action have also been suggested for the neuroprotective effects of these compounds such as modulation of signal transduction cascades or effects on gene expression. Here, we review the literature pertaining to these various classes of nutraceutical antioxidants and discuss their potential therapeutic value in neurodegenerative diseases.

  16. The Role of the Nrf2/ARE Antioxidant System in Preventing Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Robert E. Smith

    2016-11-01

    Full Text Available It is widely believed that consuming foods and beverages that have high concentrations of antioxidants can prevent cardiovascular diseases and many types of cancer. As a result, many articles have been published that give the total antioxidant capacities of foods in vitro. However, many antioxidants behave quite differently in vivo. Some of them, such as resveratrol (in red wine and epigallocatechin gallate or EGCG (in green tea can activate the nuclear erythroid-2 like factor-2 (Nrf2 transcription factor. It is a master regulator of endogenous cellular defense mechanisms. Nrf2 controls the expression of many antioxidant and detoxification genes, by binding to antioxidant response elements (AREs that are commonly found in the promoter region of antioxidant (and other genes, and that control expression of those genes. The mechanisms by which Nrf2 relieves oxidative stress and limits cardiac injury as well as the progression to heart failure are described. Also, the ability of statins to induce Nrf2 in the heart, brain, lung, and liver is mentioned. However, there is a negative side of Nrf2. When over-activated, it can cause (not prevent cardiovascular diseases and multi-drug resistance cancer.

  17. The 5'-AMP-Activated Protein Kinase (AMPK Is Involved in the Augmentation of Antioxidant Defenses in Cryopreserved Chicken Sperm.

    Directory of Open Access Journals (Sweden)

    Thi Mong Diep Nguyen

    Full Text Available Semen cryopreservation is a unique tool for the management of animal genetic diversity. However, the freeze-thaw process causes biochemical and physical alterations which make difficult the restoration of sperm energy-dependent functions needed for fertilization. 5'-AMP activated protein kinase (AMPK is a key sensor and regulator of intracellular energy metabolism. Mitochondria functions are known to be severely affected during sperm cryopreservation with deleterious oxidative and peroxidative effects leading to cell integrity and functions damages. The aim of this study was thus to examine the role of AMPK on the peroxidation/antioxidant enzymes defense system in frozen-thawed sperm and its consequences on sperm functions. Chicken semen was diluted in media supplemented with or without AMPK activators (AICAR or Metformin [MET] or inhibitor (Compound C [CC] and then cryopreserved. AMPKα phosphorylation, antioxidant enzymes activities, mitochondrial potential, ATP, citrate, viability, acrosome reaction ability (AR and various motility parameters were negatively affected by the freeze-thaw process while reactive oxygen species (ROS production, lipid peroxidation (LPO and lactate concentration were dramatically increased. AICAR partially restored superoxide dismutase (SOD, Glutathione Peroxidase (GPx and Glutathione Reductase (GR, increased ATP, citrate, and lactate concentration and subsequently decreased the ROS and LPO (malondialdehyde in frozen-thawed semen. Motility parameters were increased (i.e., + 23% for motility, + 34% for rapid sperm as well as AR (+ 100%. MET had similar effects as AICAR except that catalase activity was restored and that ATP and mitochondrial potential were further decreased. CC showed effects opposite to AICAR on SOD, ROS, LPO and AR and motility parameters. Taken together, our results strongly suggest that, upon freeze-thaw process, AMPK stimulated intracellular anti-oxidative defense enzymes through ATP regulation

  18. The Dual Role of Nrf2 in Nonalcoholic Fatty Liver Disease: Regulation of Antioxidant Defenses and Hepatic Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Sílvia S. Chambel

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a progressive liver disease with ever-growing incidence in the industrialized world. It starts with the simple accumulation of lipids in the hepatocyte and can progress to the more severe nonalcoholic steatohepatitis (NASH, which is associated with inflammation, fibrosis, and cirrhosis. There is increasing awareness that reactive oxygen species and electrophiles are implicated in the pathogenesis of NASH. Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2 is a positive regulator of the expression of a battery of genes involved in the protection against oxidative/electrophilic stress. In rodents, Nrf2 is also known to participate in hepatic fatty acid metabolism, as a negative regulator of genes that promote hepatosteatosis. We review relevant evidence in the literature that these two mechanisms may contribute to the protective role of Nrf2 in the development of hepatic steatosis and in the progression to steatohepatitis, particularly in young animals. We propose that age may be a key to explain contradictory findings in the literature. In summary, Nrf2 mediates the crosstalk between lipid metabolism and antioxidant defense mechanisms in experimental models of NAFLD, and the nutritional or pharmacological induction of Nrf2 represents a promising potential new strategy for its prevention and treatment.

  19. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II-the developmental pattern of neurons in relation to oxidative stress and antioxidant defense system.

    Science.gov (United States)

    Ahmed, O M; Ahmed, R G; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M

    2012-10-01

    Excessive concentrations of free radicals in the developing brain may lead to neurons maldevelopment and neurons damage and death. Thyroid hormones (THs) states play an important role in affecting the modulation of oxidative stress and antioxidant defense system. Thus, the objective of this study was to clarify the effect of hypothyroidism and hyperthyroidism in rat dams on the neurons development of different brain regions of their offspring at several postnatal weeks in relation to changes in the oxidative stress and antioxidant defense system. The adult female rats were administered methimazole (MMI) in drinking water (0.02% w/v) from gestation day 1 to lactation day 21 to induce hypothyroidism and exogenous thyroxine (T4) in drinking water (0.002% w/v) beside intragastric incubation of 50--200 T4 μg/kg body weight (b. wt.) to induce hyperthyroidism. In normal female rats, the sera total thyroxine (TT4) and total triiodothyronine (TT3) levels were detectably increased at day 10 post-partum than those at day 10 of pregnancy. Free thyroxine (FT4), free triiodothyronine (FT3), thyrotropin (TSH) and growth hormone (GH) concentrations in normal offspring were elevated at first, second and third postnatal weeks in an age-dependent manner. In hypothyroid group, a marked depression was observed in sera of dam TT3 and TT4 as well as offspring FT3, FT4 and GH, while there was a significant increase in TSH level with the age progress. The reverse pattern to latter state was recorded in hyperthyroid group. Concomitantly, in control offspring, the rate of neuron development in both cerebellar and cerebral cortex was increased in its density and complexity with age progress. This development may depend, largely, on THs state. Both maternal hypothyroidism and hyperthyroidism caused severe growth retardation in neurons of these regions of their offspring from the first to third weeks. Additionally, in normal offspring, seven antioxidant enzymes, four non-enzymatic antioxidants

  20. Gemfibrozil pretreatment affecting antioxidant defense system and inflammatory, but not Nrf-2 signaling pathways resulted in female neuroprotection and male neurotoxicity in the rat models of global cerebral ischemia-reperfusion.

    Science.gov (United States)

    Mohagheghi, Fatemeh; Khalaj, Leila; Ahmadiani, Abolhassan; Rahmani, Behrouz

    2013-04-01

    Two important pathophysiological mechanisms involved during cerebral ischemia are oxidative stress and inflammation. In pathological conditions such as brain ischemia the ability of free radicals production is greater than that of elimination by endogenous antioxidative systems, so brain is highly injured due to oxidation and neuroinflammation. Fibrates as peroxisome proliferator-activated receptor (PPAR)-α ligands, are reported to have antioxidant and anti-inflammatory actions. In this study, gemfibrozil, a fibrate is investigated for its therapeutic potential against global cerebral ischemia-reperfusion (I/R) injury of male and female rats. This study particularly has focused on inflammatory and antioxidant signaling pathways, such as nuclear factor erythroid-related factor (Nrf)-2, as well as the activity of some endogenous antioxidant agents. It was found that pretreatment of animals with gemfibrozil prior to I/R resulted in a sexually dimorphic outcome. Within females it proved to be protective, modulating inflammatory factors and inducing antioxidant defense system including superoxide dismutase (SOD), catalase, as well as glutathione level. However, Nrf-2 signaling pathway was not affected. It also decreased malondialdehyde level as an index of lipid peroxidation. In contrast, gemfibrozil pretreatment was toxic to males, enhancing the expression of inflammatory factors such as tumor necrosis factor-α, nuclear factor-κB, and cyclooxygenase-2, and decreasing Nrf-2 expression and SOD activity, leading to hippocampal neurodegeneration. Considering that gemfibrozil is a commonly used anti-hyperlipidemic agent in clinic, undoubtedly more investigations are crucial to exactly unravel its sex-dependent neuroprotective/neurodegenerative potential.

  1. The 6-a-day study: effects of fruit and vegetables on markers of oxidative stress and antioxidative defense in healthy nonsmokers

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Pedersen, A.; Hermetter, A.

    2004-01-01

    and vegetables/d; the placebo group received a placebo pill, and the supplement group received a vitamin pill designed to contain vitamins and minerals corresponding to those in 600 g fruit and vegetables. Biomarkers of oxidative damage to protein and lipids and of antioxidant nutrients and defense enzymes were...... lipoproteins to oxidation more efficiently than do the vitamins and minerals that fruit and vegetables are known to contain. Plasma protein carbonyl formation at lysine residues increases because of the vitamins and minerals in fruit and vegetables.......Background: Fruit and vegetables contain both nutritive and nonnutritive factors that might contribute to redox (antioxidant and prooxidant) actions. Objective: We investigated the relative influence of nutritive and nonnutritive factors in fruit and vegetables on oxidative damage and enzymatic...

  2. Antioxidant Vitamins in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Özgür Ünal

    2007-04-01

    Full Text Available OBJECTIVE: Oxidative stress can be defined as the increased production of free oxygen radicals with the effects of various facilitating factors, or the failure of the antioxidant defense mechanisms. As a result, damage occurs in the certain cellular structures, especially in the lipid ones. Although the pathogenesis of Alzheimer’s Disease (AD is still controversial, the role of the oxidative stress mechanisms in the pathogenesis is growing up gradually. OBJECTIVES: To compare the serum levels of patients with AD and normal subjects and look if any difference can be predictive in between the two groups. METHODS: In this study, the serum levels vitamin A, C and E (antioxidant vitamins were studied in 98 patients with AD, and age, sex, socioculturally and nutritionally matched 76 control subjects. RESULTS: When compared with the control subjects, vitamin A and vitamin C were found to be decreased in AD patients. There was no significant difference in the serum level of vitamin E between two groups. Two of the three vitamins known as their antioxidant properties found to be decreased especially in AD patients who are on mild stage of disease. CONCLUSION: These variations in serum levels of antioxidant vitamins can be predictive in distinguishing the patients and control subjects and as detected in the early stages of the disease, new strategies can be developed to prevent, to delay or to treat the disease

  3. Electrochemical study of the increased antioxidant capacity of flavonoids through complexation with iron(II) ions

    International Nuclear Information System (INIS)

    Porfírio, Demóstenes Amorim; Ferreira, Rafael de Queiroz; Malagutti, Andréa Renata; Valle, Eliana Maíra Agostini

    2014-01-01

    Highlights: • Metal-Flavonoid complexes exhibit greater antioxidant capacity than the free flavonoid;. • Voltammetric profile is an additional information for determining antioxidant capacity;. • Pyrogallol group is a stronger complex-forming group than the catechol;. • Morin, quercetin and fisetin increased their antioxidant capacity in 15%, 32% and 28%, respectively. - Abstract: Flavonoids are polyphenolic compounds that act as natural antioxidants in the human body through various mechanisms, with an emphasis on suppressing reactive oxygen species (ROS) formation by inhibiting enzymes, the direct capture of ROS, and the regulation/protection of antioxidant defenses. Additionally, flavonoids can coordinate with transition metals to catalyze electron transport and promote free radical capture. Recently, metal ion chelation mechanisms have generated considerable interest, as experimental data show that flavonoids in metal complexes exhibit greater antioxidant activity than free flavonoids. However, few studies have correlated the complexing properties of flavonoids with their antioxidant capacity. Thus, the aim of this study was to use the CRAC (Ceric Reducing Antioxidant Capacity) electrochemical assay to measure the antioxidant capacity of five free flavonoids and Fe 2+ -flavonoid complexes. In addition, the interactions between the flavonoids and Fe 2+ were analyzed based on the oxidation peaks formed in their cyclic voltammograms

  4. Antioxidant responses of cortex neurons to iron loading

    Directory of Open Access Journals (Sweden)

    PABLA AGUIRRE

    2006-01-01

    Full Text Available Brain cells have a highly active oxidative metabolism, yet they contain only low to moderate superoxide dismutase and catalase activities. Thus, their antioxidant defenses rely mainly on cellular reduced glutathione levels. In this work, in cortical neurons we characterized viability and changes in reduced and oxidized glutathione levels in response to a protocol of iron accumulation. We found that massive death occurred after 2 days in culture with 10 mM Fe. Surviving cells developed an adaptative response that included increased synthesis of GSH and the maintenance of a glutathione-based reduction potential. These results highlight the fundamental role of glutathione homeostasis in the antioxidant response and provide novel insights into the adaptative mechanisms of neurons subjected to progressive iron loads.

  5. Enhancement the Thermal Stability and the Mechanical Properties of Acrylonitrile-Butadiene Copolymer by Grafting Antioxidant

    Directory of Open Access Journals (Sweden)

    Abdulaziz Ibrahim Al-Ghonamy

    2010-01-01

    Full Text Available Monomeric antioxidants are widely used as effective antioxidants to protect polymers against thermal oxidation. Low molecular weight antioxidants are easily lost from polymer through migration, evaporation, and extraction. Physical loss of antioxidants is considered to be major concern in the environmental issues and safety regulation as well as long life time of polymers. The grafting copolymerization of natural rubber and o-aminophenol was carried out by using two-roll mill machine. The prepared natural rubber-graft-o-Aminophenol, NR-graft-o-AP, was analysed by using Infrared and 1H-NMR Spectroscopy techniques. The thermal stability, mechanical properties, and ultrasonic attenuation coefficient were evaluated for NBR vulcanizates containing the commercial antioxidant, N-phenyl--naphthylamine (PBN, the prepared grafted antioxidant, NR-graft-o-AP, and the control vulcanizate. Results of the thermal stability showed that the prepared NR-graft-o-AP can protect NBR vulcanizate against thermal treatment much better than the commercial antioxidant, PBN, and control mix, respectively. The prepared grafted antioxidant improves the mechanical properties of NBR vulcanizate.

  6. Enhancement the Thermal Stability and the Mechanical Properties of Acrylonitrile-Butadiene Copolymer by Grafting Antioxidant

    International Nuclear Information System (INIS)

    Al-Ghonamy, A.I.; El-Wakil, A.A.; Ramadan, M.; El-Wakil, A.A.; Ramadan, M.

    2010-01-01

    Monomeric antioxidants are widely used as effective antioxidants to protect polymers against thermal oxidation. Low molecular weight antioxidants are easily lost from polymer through migration, evaporation, and extraction. Physical loss of antioxidants is considered to be major concern in the environmental issues and safety regulation as well as long life time of polymers. The grafting copolymerization of natural rubber and o-aminophenol was carried out by using two-roll mill machine. The prepared natural rubber-graft-o-Aminophenol, NR-graft-o-AP, was analysed by using Infrared and 1H-NMR Spectroscopy techniques. The thermal stability, mechanical properties, and ultrasonic attenuation coefficient were evaluated for NBR vulcanizations containing the commercial antioxidant, N-phenyl-β-naphthylamine (PBN), the prepared grafted antioxidant, NR-graft-o-AP, and the control vulcanization. Results of the thermal stability showed that the prepared NR-graft-o-AP can protect NBR vulcanization against thermal treatment much better than the commercial antioxidant, PBN, and control mix, respectively. The prepared grafted antioxidant improves the mechanical properties of NBR vulcanization.

  7. Biology of Ageing and Role of Dietary Antioxidants

    Directory of Open Access Journals (Sweden)

    Cheng Peng

    2014-01-01

    Full Text Available Interest in relationship between diet and ageing is growing. Research has shown that dietary calorie restriction and some antioxidants extend lifespan in various ageing models. On the one hand, oxygen is essential to aerobic organisms because it is a final electron acceptor in mitochondria. On the other hand, oxygen is harmful because it can continuously generate reactive oxygen species (ROS, which are believed to be the factors causing ageing of an organism. To remove these ROS in cells, aerobic organisms possess an antioxidant defense system which consists of a series of enzymes, namely, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, and glutathione reductase (GR. In addition, dietary antioxidants including ascorbic acid, vitamin A, vitamin C, α-tocopherol, and plant flavonoids are also able to scavenge ROS in cells and therefore theoretically can extend the lifespan of organisms. In this connection, various antioxidants including tea catechins, theaflavins, apple polyphenols, black rice anthocyanins, and blueberry polyphenols have been shown to be capable of extending the lifespan of fruit flies. The purpose of this review is to brief the literature on modern biological theories of ageing and role of dietary antioxidants in ageing as well as underlying mechanisms by which antioxidants can prolong the lifespan with focus on fruit flies as an model.

  8. Antioxidant mechanism of milk mineral-high-affinity iron binding.

    Science.gov (United States)

    Allen, K; Cornforth, D

    2007-01-01

    Milk mineral (MM), a by-product of whey processing, is an effective antioxidant in meat systems, but the antioxidant mechanism has not been established. MM has been postulated to chelate iron and prevent iron-catalysis of lipid oxidation. The objective of this research was to examine this putative mechanism. MM was compared to sodium tripolyphosphate (STPP), calcium phosphate monobasic (CPM), and calcium pyrophosphate (CPP) to determine iron-binding capacity, sample solubility, and eluate soluble phosphorus after treating samples with a ferrous chloride standard. Scanning electron microscopy with energy-dispersive X-ray analysis was used to localize minerals on iron-treated MM particle surfaces. Histochemical staining for calcium was performed on raw and cooked ground beef samples with added MM. MM bound more iron per gram (P compounds, and was much less soluble (P iron across the MM particle surface, directly demonstrating iron binding to MM particles. Unlike other common chelating agents, such as STPP and citrate, histochemical staining demonstrated that MM remained insoluble in ground beef, even after cooking. The ability of MM to bind iron and remain insoluble may enhance its antioxidant effect by removing iron ions from solution. However, MM particles must be small and well distributed in order to adequately bind iron throughout the food system.

  9. Herbal antioxidant in clinical practice: A review

    Directory of Open Access Journals (Sweden)

    Shashi Alok

    2014-01-01

    Full Text Available Antioxidant-the word itself is magic. Using the antioxidant concept as a spearhead in proposed mechanisms for staving off so-called “free-radical” reactions, the rush is on to mine claims for the latest and most effective combination of free-radical scavenging compounds. We must acknowledge that such “radicals” have definitively been shown to damage all biochemical components such as DNA/RNA, carbohydrates, unsaturated lipids, proteins, and micronutrients such as carotenoids (alpha and beta carotene, lycopene, vitamins A, B6, B12, and folate. Defense strategies against such aggressive radical species include enzymes, antioxidants that occur naturally in the body (glutathione, uric acid, ubiquinol-10, and others and radical scavenging nutrients, such as vitamins A, C, and E, and carotenoids. This paper will present a brief discussion of some well- and little-known herbs that may add to the optimization of antioxidant status and therefore offer added preventive values for overall health. It is important to state at the outset that antioxidants vary widely in their free-radical quenching effects and each may be individually attracted to specific cell sites. Further evidence of the specialized nature of the carotenoids is demonstrated by the appearance of two carotenoids in the macula region of the retina where beta-carotene is totally absent.

  10. Preventive effects of Salvia officinalis L. against learning and memory deficit induced by diabetes in rats: Possible hypoglycaemic and antioxidant mechanisms.

    Science.gov (United States)

    Hasanein, Parisa; Felehgari, Zhila; Emamjomeh, Abbasali

    2016-05-27

    Learning and memory impairment occurs in diabetes. Salvia officinalis L. (SO) has been used in Iranian traditional medicine as a remedy against diabetes. We hypothesized that chronic administration of SO (400, 600 and 800mg/kg, p.o.) and its principal constituent, rosmarinic acid, would affect on passive avoidance learning (PAL) and memory in streptozocin-induced diabetic and non-diabetic rats. We also explored hypoglycemic and antioxidant activities of SO as the possible mechanisms. Treatments were begun at the onset of hyperglycemia. PAL was assessed 30days later. Retention test was done 24h after training. At the end, animals were weighed and blood samples were drawn for further analyzing of glucose and oxidant/antioxidant markers. Diabetes induced deficits in acquisition and retrieval processes. SO (600 and 800mg/kg) and rosmarinic acid reversed learning and memory deficits induced by diabetes and improved cognition of healthy rats. While the dose of 400mg/kg had no effect, the higher doses and rosmarinic acid inhibited hyperglycemia and lipid peroxidation as well as enhanced the activity of antioxidant enzymes superoxide dismutase and catalase. SO prevented diabetes-induced acquisition and memory deficits through inhibiting hyperglycemia, lipid peroxidation as well as enhancing antioxidant defense systems. Therefore, SO and its principal constituent rosmarinic acid represent a potential therapeutic option against diabetic memory impairment which deserves consideration and further examination. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb

    Directory of Open Access Journals (Sweden)

    Hongqin Jiang

    2015-07-01

    Full Text Available Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p0.05. The levels of TG (p<0.001 and LDL-C (p<0.001 were decreased with the feeding time extension, and both showed a linear trend (p<0.01. Malondialdehyde level in plasma and liver decreased linearly with the increase of lycopene inclusion levels (p<0.01. Dietary lycopene intake linearly increased the plasma antioxidant vitamin E level (p<0.001, total antioxidant capacity (T-AOC, p<0.05, and activities of catalase (CAT, p<0.01, glutathione peroxidase (GSH-Px, p<0.05 and superoxide dismutase (SOD, p<0.05. The plasma T-AOC and activities of GSH-Px and SOD decreased with the extension of the feeding time. In liver, dietary lycopene inclusion showed similar antioxidant effects with respect to activities of CAT (p<0.05, linearly and SOD (p<0.001, linearly. Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment stress and maintain normal physiological metabolism.

  12. Cultivated Sea Lettuce is a Multiorgan Protector from Oxidative and Inflammatory Stress by Enhancing the Endogenous Antioxidant Defense System

    Science.gov (United States)

    Ratnayake, Ranjala; Liu, Yanxia; Paul, Valerie J.; Luesch, Hendrik

    2013-01-01

    The health-promoting effects of seaweeds have been linked to antioxidant activity that may counteract cancer-causing oxidative stress-induced damage and inflammation. While antioxidant activity is commonly associated with direct radical scavenging activity, an alternative way to increase the antioxidant status of a cell is to enhance the endogenous (phase II) defense system consisting of cytoprotective antioxidant enzymes, including NAD(P)H:quinone oxidoreductase 1 (NQO1). These enzymes are transcriptionally regulated by the antioxidant response element (ARE) via the transcription factor Nrf2. Extracts derived from cultivated Ulva sp., a green alga regarded as a marine vegetable (sea lettuce), potently activated the Nrf2-ARE pathway in IMR-32 neuroblastoma and LNCaP prostate cancer cells. RNA interference studies demonstrated that Nrf2 and PI3 kinase are essential for the phase II response in IMR-32 cells. Activity-enriched fractions induced Nrf2 nuclear translocation and target gene transcription, and boosted the cellular glutathione level and therefore antioxidant status. A single-dose gavage feeding of Ulva-derived fractions increased Nqo1 transcript levels in various organs. Nqo1 induction spiked in different tissues, depending on the specific chemical composition of each administered fraction. We purified and characterized four ARE inducers in this extract, including loliolide (1), isololiolide (2), a megastigmen (3), and a novel chlorinated unsaturated aldehyde (4). The ARE-active fractions attenuated lipopolysaccharide-induced iNOS and Cox2 gene expression in macrophagic RAW264.7 cells, decreasing nitric oxide (NO) and prostaglandin E2 (PGE2) production, respectively. Nqo1 activity and NO production were abrogated in nrf2−/− mouse embryonic fibroblasts, providing a direct link between the induction of phase II response and anti-inflammatory activity. PMID:24005795

  13. Shift in aggregation, ROS generation, antioxidative defense, lysozyme and acetylcholinesterase activities in the cells of an Indian freshwater sponge exposed to washing soda (sodium carbonate).

    Science.gov (United States)

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2016-09-01

    Washing soda, chemically identified as anhydrous sodium carbonate, is a popular cleaning agent among the rural and urban populations of India which often contaminates the freshwater ponds and lakes, the natural habitat of sponge Eunapius carteri. Present investigation deals with estimation of cellular aggregation, generation of ROS and activities of antioxidant enzymes, lysozyme and acetylcholinesterase in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Prolonged treatment of washing soda inhibited the degree of cellular aggregation. Experimental exposure of 8 and 16mg/l of sodium carbonate for 48h elevated the physiological level of reactive oxygen species (ROS) generation in the agranulocytes, semigranulocytes and granulocytes of E. carteri, whereas, treatment of 192h inhibited the ROS generation in three cellular morphotypes. Activities of superoxide dismutase, catalase and glutathione-S-transferase were recorded to be inhibited under prolonged exposure of washing soda. Washing soda mediated inhibition of ROS generation and depletion in the activities of antioxidant enzymes were indicative to an undesirable shift in cytotoxic status and antioxidative defense in E. carteri. Inhibition in the activity of lysozyme under the treatment of sodium carbonate was suggestive to a severe impairment of the innate immunological efficiency of E. carteri distributed in the washing soda contaminated habitat. Washing soda mediated inhibition in the activity of acetylcholinesterase indicated its neurotoxicity in E. carteri. Washing soda, a reported environmental contaminant, affected adversely the immunophysiological status of E. carteri with reference to cellular aggregation, oxidative stress, antioxidative defense, lysozyme and acetylcholinesterase activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Immature psychological defense mechanisms are associated with greater personal importance of junk food, alcohol, and television.

    Science.gov (United States)

    Costa, Rui Miguel; Brody, Stuart

    2013-10-30

    Immature psychological defense mechanisms are psychological processes that play an important role in suppressing emotional awareness and contribute to psychopathology. In addition, unhealthy food, television viewing, and alcohol consumption can be among the means to escape self-awareness. In contrast, engaging in, and responding fully to specifically penile-vaginal intercourse (PVI) is associated with indices of better emotional regulation, including less use of immature defense mechanisms. There was a lack of research on the association of immature defense mechanisms with personal importance of junk food, alcohol, television, PVI, and noncoital sex. In an online survey, 334 primarily Scottish women completed the Defense Style Questionnaire (DSQ-40), and rated the personal importance of junk food, alcohol, television, PVI, and noncoital sex. Immature defense mechanisms correlated with importance of junk food, alcohol, and television. Importance of PVI correlated with mature defenses, and less use of some component immature defenses. Importance of alcohol correlated with importance of junk food, television, and noncoital sex. Importance of junk food was correlated with importance of television and noncoital sex. The findings are discussed in terms of persons with poorer self-regulatory abilities having more interest in junk food, television, and alcohol, and less interest in PVI. © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Defense Mechanisms, Psychosomatic Symptomatology, and Conjugate Lateral Eye Movements

    Science.gov (United States)

    Gur, Raquel E.; Gur, Ruben C.

    1975-01-01

    Subjects were classified into left movers, right movers, and bidirectionals according to the characteristic direction of their eye movements in response to questions. The three groups were compared on their preferential use of defense mechanisms and on the number of psychosomatic complaints. (Author)

  16. NFE2-Related Transcription Factor 2 Coordinates Antioxidant Defense with Thyroglobulin Production and Iodination in the Thyroid Gland.

    Science.gov (United States)

    Ziros, Panos G; Habeos, Ioannis G; Chartoumpekis, Dionysios V; Ntalampyra, Eleni; Somm, Emmanuel; Renaud, Cédric O; Bongiovanni, Massimo; Trougakos, Ioannis P; Yamamoto, Masayuki; Kensler, Thomas W; Santisteban, Pilar; Carrasco, Nancy; Ris-Stalpers, Carrie; Amendola, Elena; Liao, Xiao-Hui; Rossich, Luciano; Thomasz, Lisa; Juvenal, Guillermo J; Refetoff, Samuel; Sykiotis, Gerasimos P

    2018-06-01

    by cell-autonomous regulation of Tg gene expression by Nrf2 via its direct binding to two evolutionarily conserved antioxidant response elements in an upstream enhancer. Yet, despite upregulating Tg levels, Nrf2 limits Tg iodination both under basal conditions and in response to excess iodide. Nrf2 exerts pleiotropic roles in the thyroid gland to couple cell stress defense mechanisms to iodide metabolism and the thyroid hormone synthesis machinery, both under basal conditions and in response to excess iodide.

  17. Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.

    Science.gov (United States)

    Limpisophon, Kanokrat; Schleining, Gerhard

    2017-01-01

    This study explores the potential roles of gallic acid in fish gelatin film for improving mechanical properties, UV barrier, and providing antioxidant activities. Glycerol, a common used plasticizer, also impacts on mechanical properties of the film. A factorial design was used to investigate the effects of gallic acid and glycerol concentrations on antioxidant activities and mechanical properties of fish gelatin film. Increasing the amount of gallic acid increased the antioxidant capacities of the film measured by radical scavenging assay and the ferric reducing ability of plasma assay. The released antioxidant power of gallic acid from the film was not reduced by glycerol. The presence of gallic acid not only increased the antioxidant capacity of the film, but also increased the tensile strength, elongation at break, and reduced UV absorption due to interaction between gallic acid and protein by hydrogen bonding. Glycerol did not affect the antioxidant capacities of the film, but increased the elasticity of the films. Overall, this study revealed that gallic acid entrapped in the fish gelatin film provided antioxidant activities and improved film characteristics, namely UV barrier, strength, and elasticity of the film. © 2016 Institute of Food Technologists®.

  18. Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease.

    Science.gov (United States)

    Nusaibah, S A; Siti Nor Akmar, A; Idris, A S; Sariah, M; Mohamad Pauzi, Z

    2016-12-01

    Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. [Psychometric assessment of defense mechanisms: correlation between questionnaire and expert rating. Initial study of validity].

    Science.gov (United States)

    Reister, G; Fellhauer, R F; Franz, M; Wirth, T; Schellberg, D; Schepank, H; Tress, W

    1993-01-01

    Within the limits of an epidemiological longitudinal field survey on prevalence and course of psychogenic disorders a high-risk-population suffering from medical psychogenic impairment was investigated. The study was conducted in order to verify an etiological multi-level-model of psychogenic disorders in relation to the socialempiric variables "critical life events" and "social support" as well as the depth psychological oriented construct "personality". Besides other instruments a self rating scale based on Vallant's hierarchical model of defense, i.e. the german adaptation of the DSQ (Defense Style Questionnaire) of Bond and coworkers, was used for the accurate measurement of relevant personality parameters. Although defense processes predominantly work unconscious, manifestations of defense mechanisms could be measured indirectly by means of the rating scale. Its essential dimensions separated clinical patients from a group of healthy controls. Furthermore an immature organisation of defense was found to be related to psychogenic impairment. Concerning self- and expert-rating a significant correlation between "immature defense" and the defense mechanisms "schizoid phantasy", "projection" and "acting out" was proved.

  20. Peripheral markers of oxidative stress and antioxidative defense in euthymia of bipolar disorder--Gender and obesity effects.

    Science.gov (United States)

    Bengesser, S A; Lackner, N; Birner, A; Fellendorf, F T; Platzer, M; Mitteregger, A; Unterweger, R; Reininghaus, B; Mangge, H; Wallner-Liebmann, S J; Zelzer, S; Fuchs, D; McIntyre, R S; Kapfhammer, H P; Reininghaus, E Z

    2015-02-01

    Oxidative and nitrosative stress are implicated in the pathogenesis of uni- and bipolar disorder. Herein we primarily sought to characterize markers of oxidative/nitrosative stress during euthymia in adults with bipolar disorder (BD). Oxidative markers were further evaluated in this BD sample in synopsis with excess overweight or obesity and/or comorbid metabolic syndrome (MetS). Peripheral markers of oxidative stress [i.e. thiobarbituric acid reactive substance, (TBARS), malondialdehyde (MDA), and carbonyl proteins] and antioxidant markers [e.g. total antioxidative capacity (TAC), superoxide dismutase (SOD), glutathione S-transferase (GST)] were obtained in a cohort of euthymic adults with BD (N=113) and compared to healthy controls (CG) (N=78). Additionally, anthropometric measures included the body mass index (BMI) [kg/m(2)], waist and hip circumference [cm], waist-to-hip-ratio (WHR), waist to height ratio (WtHR) as well as the IDF-defined MetS. The major finding was a significantly decreased TAC in BD compared to the CG (pobesity had significantly elevated TAC when compared to CG without concurrent MetS (pstress and antioxidative defense. Male test persons showed significantly higher peripheral markers of oxidative stress than women- female sex may exert protective effects. Furthermore, the biosignature of oxidative stress obtained herein was more pronounced in males with concurrent metabolic disorders. Our results further extend knowledge by introducing the moderating influence of gender and obesity on oxidative stress and BD. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Memories of paternal relations are associated with coping and defense mechanisms in breast cancer patients: an observational study

    Directory of Open Access Journals (Sweden)

    Chiara Renzi

    2017-11-01

    Full Text Available Abstract Background Breast cancer diagnosis and treatment represent stressful events that demand emotional adjustment, thus recruiting coping strategies and defense mechanisms. As parental relations were shown to influence emotion regulation patterns and adaptive processes in adulthood, the present study investigated whether they are specifically associated to coping and defense mechanisms in patients with breast cancer. Methods One hundred and ten women hospitalized for breast cancer surgery were administered questionnaires assessing coping with cancer, defense mechanisms, and memories of parental bonding in childhood. Results High levels of paternal overprotection were associated with less mature defenses, withdrawal and fantasy and less adaptive coping mechanisms, such as hopelessness/helplessness. Low levels of paternal care were associated with a greater use of repression. No association was found between maternal care, overprotection, coping and defense mechanisms. Immature defenses correlated positively with less adaptive coping styles, while mature defenses were positively associated to a fighting spirit and to fatalism, and inversely related to less adaptive coping styles. Conclusions These data suggest that paternal relations in childhood are associated with emotional, cognitive, and behavioral regulation in adjusting to cancer immediately after surgery. Early experiences of bonding may constitute a relevant index for adaptation to cancer, indicating which patients are at risk and should be considered for psychological interventions.

  2. Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress.

    Science.gov (United States)

    Li, Shi-Weng; Leng, Yan; Feng, Lin; Zeng, Xiao-Ying

    2014-01-01

    In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0-12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.

  3. Peculiarities of Coping and Mechanisms of Psychological Defense in Persons with Alcohol Dependence

    Directory of Open Access Journals (Sweden)

    Тинатин Владимировна Чхиквадзе

    2018-12-01

    Full Text Available The article is devoted to the study of the features of the defensive-coping behavior of alcohol dependent personality in the context of the necessity to optimize addiction therapy methods. An analysis of the range of coping strategies and mechanisms of psychological defense in alcoholism was conducted. The study involved 120 men and women between the ages of 30 and 60; 62 of them are patients with alcohol dependence, registered with the narcological clinic, and 58 people who do not have alcohol dependence. The following psychodiagnostic methods were used: “Strategic Approach to Coping Scale - SACS” (S. Hofball, “Life Style Index - LSI” (R. Plutchik, H. Kellerman & H.R. Conte. In the course of the analysis, it was found that behavioral pattern “aggressive actions” is expressed at a higher level in individuals with alcohol dependence. The leading coping strategies for both dependent respondents and the control sample are “seeking social support”, “cautious actions”, “coming into contact”. When assessing the gender characteristics of coping behavior, it was revealed that alcohol-dependent women use coping “avoidance” and “impulsive actions” more often than alcohol-dependent men. The dominant mechanisms of psychological defense for both dependent respondents and the control sample are “projection”, “intellectualization” and “negation”. There are differences between the group of respondents with alcohol dependence and the control group in the degree of tension of the defense mechanisms “substitution” and “compensation”: higher rates are observed in patients with alcoholism. The mechanism of defense “intellectualization” is more often and more intensively manifested in alcohol-dependent men, “reactive formations” - in alcoholdependent women. Identified in the course of the empirical study, the features are considered as possible “targets” for the psychological correction of an alcohol

  4. Defense High-Level Waste Leaching Mechanisms Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, J.E. (compiler)

    1984-08-01

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90/sup 0/C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations.

  5. Defense High-Level Waste Leaching Mechanisms Program. Final report

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1984-08-01

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90 0 C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations

  6. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage

    International Nuclear Information System (INIS)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J.; Rudich, Yinon

    2016-01-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. - Highlights: • Repeated exposure to urban PM cause systemic inflammation and oxidative damage to lung tissue lipids and proteins. • Repeated exposure to these PM extracts decreased transcription of Nrf2 protective genes. • Single as opposed to repeated exposure, induced confined lung response accompanied by activated defense mechanisms. • Metals, potentially from break and tire wear, drive the pulmonary response with exposure to urban PM. - Repeated exposures to urban PM water extracts

  7. Heat-induced regulation of antioxidant defense system and nutrient accumulation in hexaploid bread wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Zia, M.A.; Ashraf, M.; Akram, A.

    2014-01-01

    Ten cultivars (five registered S-24, Inqlab-91, Saher-2006, Fsd-2008, and Lasani, and five candidate cultivars P.B-18, M.P-65, S.H-20, AARI-10, and G.A-20) of spring wheat (Triticum aestivum L.) were examined for high temperature stress tolerance. Plants were grown in soil filled pots in the Botanical Garden of the Department of Botany University of Agriculture Faisalabad, Pakistan. Three different temperature regimes (30, 40 and 50 degree C) were applied at two different growth stages (tillering and boot) for three temperature durations 30, 60 and 90 min in a growth chamber. The leaf and root samples were collected after two weeks of temperature treatment and then analyzed for enzymatic and non-enzymatic antioxidants as well as inorganic nutrients (N, P, K+, Ca2+). At the end, data obtained were statistically analyzed to distinguish heat tolerant from non-tolerant wheat cultivars. After appraisal of growth, antioxidant defense system and uptake of nutrients it was found that cvs. S-24, Inqlab-91, Saher-2006, Fsd-2008, Lasani and G.A-20 exhibited better thermo-tolerance capabilities than the other wheat cultivars (P.B-18, M.P-65, S.H-20, AARI-10). Among the thermo-tolerant wheat cultivars, G.A-20 and Lasani were superior in maintaining shoot fresh weights and shoot length, high antioxidant activities and better nutrient uptake at both tillering and boot stages. The response of all cultivars to heat stress applied at the tillering stage or boot stage was almost the same. (author)

  8. Antioxidative and proline potentials as a protective mechanism in ...

    African Journals Online (AJOL)

    Stress can define as all negative factors affecting plant growth. One of the most important problems among stress factors is salt stress. Antioxidant responses are tested in Soybean (Glycine max. L.) cv., “A3935” grown under 0, 50, 100 and 150 mM NaCl in order to investigate the plants protective mechanisms against salt ...

  9. Oxidative Stress and Antioxidant Potential of One Hundred Medicinal Plants.

    Science.gov (United States)

    Hassan, Waseem; Noreen, Hamsa; Rehman, Shakila; Gul, Shehnaz; Kamal, Mohammad Amjad; Kamdem, Jean Paul; Zaman, Bakht; da Rocha, Joao B T

    2017-01-01

    Reactive species are produced in biological system because of redox reactions. The imbalance in pro-oxidant and antioxidant homeostasis leads to the production of toxic reactive oxygen and nitrogen species like hydrogen peroxide, organic peroxides, hydroxyl radicals, superoxide anion and nitric oxide. Inactivation of metabolic enzymes, oxidation of biomolecules and cellular damage are some of the prominent characteristics of reactive species. Similarly, oxidative stress has been associated with more than one hundred (100) pathologies such as atherosclerosis, diabetes, cardiovascular diseases, pancreatic and liver diseases, joint disorders, cardiac fibrosis, acute respiratory distress syndrome, neurological diseases (amyotrophic lateral sclerosis, Huntington's disorder, Parkinson's disease and Alzheimer's disease), ageing and cancer etc. The toxicity of reactive species is balanced by the integrated antioxidant systems, which include enzymatic and non-enzymatic antioxidants. Antioxidant therapies or defenses protect the biological sites by removing or quenching the free radicals (prooxidants). Medicinal plants can not only protect the oxidative damage, but also play a vital role in health maintenance and prevention of chronic degenerative diseases. This review will provide a valuable discussion of one hundred (100) well known medicinal plants, which may add to the optimization of antioxidants rank. Besides, some of the antioxidant evaluation techniques or mechanisms via which medicinal plants act as antioxidants are also described. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Effects of diets based on foods from conventional versus organic production on intake and excretion of flavonoids and markers of antioxidative defense in humans

    DEFF Research Database (Denmark)

    Grinder-Pedersen, Lisbeth; Rasmussen, Salka E.; Bügel, Susanne

    2003-01-01

    selection of more resistant varieties is of central importance to organic farming, it cannot be excluded that the observed effects originate from these differences. The food production method affected the content of the major flavonoid, quercetin, in foods and also affected urinary flavonoids and markers......Different food production methods may result in differences in the content of secondary metabolites such as polyphenolic compounds. The present study compared conventionally (CPD) and organically produced (OPD) diets in a human crossover intervention study (n = 16) with respect to the intake...... both interventions. Most markers of antioxidative defense did not differ between the diets, but intake of OPD resulted in an increased protein oxidation and a decreased total plasma antioxidant capacity compared to baseline (P

  11. Association of Ego Defense Mechanisms with Academic Performance, Anxiety and Depression in Medical Students: A Mixed Methods Study.

    Science.gov (United States)

    Waqas, Ahmed; Rehman, Abdul; Malik, Aamenah; Muhammad, Umer; Khan, Sarah; Mahmood, Nadia

    2015-09-30

     Ego defense mechanisms are unconscious psychological processes that help an individual to prevent anxiety when exposed to a stressful situation. These mechanisms are important in psychiatric practice to assess an individual's personality dynamics, psychopathologies, and modes of coping with stressful situations, and hence, to design appropriate individualized treatment. Our study delineates the relationship of ego defense mechanisms with anxiety, depression, and academic performance of Pakistani medical students.  This cross-sectional study was done at CMH Lahore Medical College and Fatima Memorial Hospital Medical and Dental College, both in Lahore, Pakistan, from December 1, 2014 to January 15, 2015. Convenience sampling was used and only students who agreed to take part in this study were included. The questionnaire consisted of three sections: 1) Demographics, documenting demographic data and academic scores on participants' most recent exams; 2) Hospital Anxiety and Depression Scale (HADS); and 3) Defense Style Questionnaire-40 (DSQ-40). The data were analyzed with SPSS v. 20. Mean scores and frequencies were calculated for demographic variables and ego defense mechanisms. Bivariate correlations, one-way ANOVA, and multiple linear regression were used to identify associations between academic scores, demographics, ego defense mechanisms, anxiety, and depression.  A total of 409 medical students participated, of whom 286 (70%) were females and 123 (30%) were males. Mean percentage score on the most recent exams was 75.6% in medical students. Bivariate correlation revealed a direct association between mature and neurotic ego defense mechanisms and academic performance, and an indirect association between immature mechanisms and academic performance. One-way ANOVA showed that moderate levels of anxiety (P academic performance.  There was a significant association between academic performance and ego defense mechanisms, anxiety, and depression levels in our

  12. Environmental exposure to lead induces oxidative stress and modulates the function of the antioxidant defense system and the immune system in the semen of males with normal semen profile

    Energy Technology Data Exchange (ETDEWEB)

    Kasperczyk, Aleksandra; Dobrakowski, Michał [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland); Czuba, Zenon P. [Dept. of Microbiology and Immunology, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland); Horak, Stanisław [I-st Chair and Clin. Dept. of Gynecology, Obstetrics and Gynecological Oncology, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Batorego 15, 41-902 Bytom (Poland); Kasperczyk, Sławomir, E-mail: kaslav@mp.pl [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland)

    2015-05-01

    We investigated the associations between environmental exposure to lead and a repertoire of cytokines in seminal plasma of males with normal semen profile according to the WHO criteria. Based on the median lead concentration in seminal plasma, 65 samples were divided into two groups: low (LE) and high exposure to lead (HE). Differences in semen volume and the pH, count, motility and morphology of sperm cells were not observed between the examined groups. The total oxidant status value and the level of protein sulfhydryl groups as well as the activities of manganese superoxide dismutase and catalase were significantly higher in the HE group, whereas the total antioxidant capacity value and the activities of glutathione reductase and glutathione-S-transferase were depressed. IL-7, IL-10, IL-12, and TNF-α levels were significantly higher in the HE group compared with the LE group. Environmental exposure to lead is sufficient to induce oxidative stress in seminal plasma and to modulate antioxidant defense system. - Highlights: • Lead induces oxidative stress in seminal plasma in human. • Lead modulates antioxidant defense system in seminal plasma in human. • Lead does not change a Th1/Th2 imbalance in seminal plasma in human.

  13. Studies on the Effect of E-Selen as Antioxidant in Ameliorating the Physiological Status of Gamma-Irradiated Mediterranean Fruit Fly,Ceratits capitata (Wied.)

    International Nuclear Information System (INIS)

    Zaghloul, Y.S.; Abbassy, S.A.; Elakhdar, E.A.H.

    2013-01-01

    Biologically based control methods, such as the Sterile Insect Technique (SIT), which relies on the sterilization by irradiation of large numbers of insects, is gaining an increasing role in the control of medfly in Mediterranean areas. However, the exposure of cells to ionizing radiation leads to the formation of reactive oxygen species (ROS) that are associated with radiation-induced cytotoxicity. Because of the serious damaging potential of ROS, cells depend on the elaboration of the antioxidant defense system (AODS), both enzymatic and non enzymatic oxidant defense mechanisms. Enzymes of antioxidative defense system – peroxidase, esterasase and alcohol dehydrogenase are known to play an important main role in endogenous cell protection from oxidative damage.The antioxidant Eselenis an exogenous antioxidant containing both selenium and vitamin E. It was added to the larval artificial diets of the Mediterranean fruit fly, C. capitata in various concentrations. The produced full grown pupae were exposed to gamma rays at dose rate of 90Gy (sterilizing dose) and are used during this experiment. The purpose of this study was to determine the effects of gamma-irradiation on C. capitata endogenous antioxidant activity (peroxidase, esterase and alcohol dehydrogenase and to examine whether the presence of eselen has the influence on activity of antioxidant and in reducing consequently the oxidative stress and tissue injury induced by gamma radiation in thefruit fly, C. capitata (Wied.). The results indicated that antioxidant pretreatments to the larval rearing dietand irradiation of the produced full grown pupae may have some beneficial effects against irradiation-induced injury to success the application of the sterile insect technique (SIT) for controlling the Med fly, C. capitata .

  14. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    International Nuclear Information System (INIS)

    Yamaoka, K.; Nomura, T.; Kojima, S.

    2000-01-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted α-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O 2 - to H 2 O 2 , the question as to whether the resultant H 2 O 2 is further detoxicated into H 2 O and O 2 or not must still be evaluated. Hence, we studied

  15. Disruption of the Circadian Clock Alters Antioxidative Defense via the SIRT1-BMAL1 Pathway in 6-OHDA-Induced Models of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Yali Wang

    2018-01-01

    Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disease and is known to involve circadian dysfunction and oxidative stress. Although antioxidative defense is regulated by the molecular circadian clock, few studies have examined their function in PD and their regulation by silent information regulator 1 (SIRT1. We hypothesize that reduced antioxidative activity in models of PD results from dysfunction of the molecular circadian clock via the SIRT1 pathway. We treated rats and SH-SY5Y cells with 6-hydroxydopamine (6-OHDA and measured the expression of core circadian clock and associated nuclear receptor genes using real-time quantitative PCR as well as levels of SIRT1, brain and muscle Arnt-like protein 1 (BMAL1, and acetylated BMAL1 using Western blotting. We found that 6-OHDA treatment altered the expression patterns of clock and antioxidative molecules in vivo and in vitro. We also detected an increased ratio of acetylated BMAL1:BMAL1 and a decreased level of SIRT1. Furthermore, resveratrol, an activator of SIRT1, decreased the acetylation of BMAL1 and inhibited its binding with CRY1, thereby reversing the impaired antioxidative activity induced by 6-OHDA. These results suggest that a dysfunctional circadian clock contributes to an abnormal antioxidative response in PD via a SIRT1-dependent BMAL1 pathway.

  16. Antioxidant mechanism of black garlic extract involving nuclear factor erythroid 2-like factor 2 pathway.

    Science.gov (United States)

    Ha, Ae Wha; Kim, Woo Kyoung

    2017-06-01

    Although studies have revealed that black garlic is a potent antioxidant, its antioxidant mechanism remains unclear. The objective of this study was to determine black garlic's antioxidant activities and possible antioxidant mechanisms related to nuclear factor erythroid 2-like factor 2 (Nrf2)-Keap1 complex. After four weeks of feeding rats with a normal fat diet (NF), a high-fat diet (HF), a high-fat diet with 0.5% black garlic extract (HF+BGE 0.5), a high-fat diet with 1.0% black garlic extract (HF+BGE 1.0), or a high-fat diet with 1.5% black garlic extract (HF+BGE 1.5), plasma concentrations of glucose, insulin,homeostatic model assessment of insulin resistance (HOMA-IR) were determined. As oxidative stress indices, plasma concentrations of thiobarbituric acid reactive substances (TBARS) and 8-isoprostaglandin F2α (8-iso-PGF) were determined. To measure antioxidant capacities, plasma total antioxidant capacity (TAC) and activities of antioxidant enzymes in plasma and liver were determined. The mRNA expression levels of antioxidant related proteins such as Nrf2, NAD(P)H: quinone-oxidoreductase-1 (NQO1), heme oxygenase-1 (HO-1), glutathione reductase (GR), and glutathione S-transferase alpha 2 (GSTA2) were examined. Plasma glucose level, plasma insulin level, and HOMA-IR in black garlic supplemented groups were significantly ( P concentration and TAC in the HF+BGE 1.5 group were significantly decreased compared to those of the HF group. The activities of catalase and glutathione peroxidase were significantly ( P antioxidant systems in rats fed with black garlic extract were related to mRNA expression levels of Nrf2 related genes.

  17. SUPEROxIDE DISMUTASE AS A COMPONENT OF ANTIOxIDANT THERAPY: CURRENT STATE OF THE ISSUE AND PROSPECTS. A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    T. A. Pushkina

    2016-01-01

    Full Text Available Oxidative stress, developing in many diseases, is an imbalance between pro-oxidants and antioxidant defense mechanisms of the body. Antioxidant enzymes such as superoxide dismutase (SOD play a key role in reduction of oxidative stress in vivo. Thus, a decrease in formation of reactive oxygen species (ROS, as well as activation of lipid peroxidation (LPO due to exogenous SOD intake could be an effective method of prevention and treatment of some diseases. In this paper, we provide an overview of the results of experimental and clinical studies on the use of intravenous drugs and dietary supplements, containing SOD, in the treatment of inflammatory, infectious, cardiovascular and neurodegenerative diseases. As a result of SOD administration, the majority of authors observed an increase in the content of endogenous antioxidant enzymes (SOD, catalase, glutathione peroxidase, i.e., stimulation of endogenous antioxidant defence and consequent reduction of oxidative stress, which may explain mechanisms of positive effects observed.

  18. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    Science.gov (United States)

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  19. Evaluation of the Antioxidant Activity of the Marine Pyrroloiminoquinone Makaluvamines

    Directory of Open Access Journals (Sweden)

    Eva Alonso

    2016-10-01

    Full Text Available Makaluvamines are pyrroloiminoquinones isolated from Zyzzya sponges. Until now, they have been described as topoisomerase II inhibitors with cytotoxic effects in diverse tumor cell lines. In the present work, seven makaluvamines were tested in several antioxidant assays in primary cortical neurons and neuroblastoma cells. Among the alkaloids studied, makaluvamine J was the most active in all the assays. This compound was able to reduce the mitochondrial damage elicited by the well-known stressor H2O2. The antioxidant properties of makaluvamine J are related to an improvement of the endogenous antioxidant defenses of glutathione and catalase. SHSY5Y assays proved that this compound acts as a Nrf2 activator leading to an improvement of antioxidant defenses. A low concentration of 10 nM is able to reduce the reactive oxygen species release and maintain a correct mitochondrial function. Based on these results, non-substituted nitrogen in the pyrrole plus the presence of a p-hydroxystyryl without a double bond seems to be the most active structure with a complete antioxidant effect in neuronal cells.

  20. Greater tactile sensitivity and less use of immature psychological defense mechanisms predict women's penile-vaginal intercourse orgasm.

    Science.gov (United States)

    Brody, Stuart; Houde, Stephanie; Hess, Ursula

    2010-09-01

    Previous research has suggested that diminished tactile sensitivity might be associated with reduced sexual activity and function. Research has also demonstrated significant physiological and psychological differences between sexual behaviors, including immature psychological defense mechanisms (associated with various psychopathologies) impairing specifically women's orgasm from penile-vaginal intercourse (PVI). To examine the extent to which orgasm triggered by PVI (distinguished from other sexual activities) is associated with both greater tactile sensitivity and lesser use of immature psychological defenses. Seventy French-Canadian female university students (aged 18-30) had their finger sensitivity measured with von Frey type microfilaments, completed the Defense Style Questionnaire and a short form of the Marlowe-Crowne social desirability scale, and provided details of the 1 month (and ever) frequencies of engaging in, and having an orgasm from, PVI, masturbation, anal intercourse, partner masturbation, and cunnilingus. Logistic and linear regression prediction of orgasm triggered by PVI from tactile sensitivity, age, social desirability responding, and immature psychological defenses. Having a PVI orgasm in the past month was associated with greater tactile sensitivity (odds ratio=4.0 for each filament point) and less use of immature defense mechanisms (odds ratio=5.1 for each scale point). Lifetime PVI orgasm was associated only with less use of immature defense mechanisms (and lower social desirability responding score). Orgasms triggered by other activities were not associated with either tactile sensitivity or immature defense mechanisms. Tactile sensitivity was also associated with greater past month PVI frequency (inclusion of PVI frequency in a logistic regression model displaced tactile sensitivity), and lesser use of immature defenses was associated with greater past month PVI and PVI orgasm frequencies. Both diminished physical sensitivity and the

  1. Strain-Related Differences on Response of Liver and Kidney Antioxidant Defense System in Two Rat Strains Following Diazinon Exposure

    Directory of Open Access Journals (Sweden)

    Maryam Salehi

    2016-02-01

    Full Text Available Background Diazinon (DZN is one of the most organophosphates that widely used in agriculture and ectoparasiticide formulations. Its extensive use as an effective pesticide was associated with the environmental deleterious effects on biological systems. Objectives The aim of this study was to investigate the potency of DZN to affect serum biochemical parameters and the antioxidant defense system in the liver and kidney of two rat strains. Materials and Methods In this experimental study, 30 female Wistar and 30 female Norway rats were randomly divided into control and DZN groups. DZN group was divided into four subgroups: 25, 50, 100 and 200 mg/kg of DZN administered groups by i.p. injection. The parameters were evaluated after 24 hours. Results At higher doses of DZN, superoxide dismutase, catalase, glutathione S-transferase and lactate dehydrogenase activities and glutathione (GSH and malondialdehyde levels in liver and kidney of Wistar rats were higher than Norway rats. At these concentrations, DZN increased some serum biochemical indices such as liver enzymes activities and levels of urea, uric acid and creatinine in Wistar rat. Conclusions DZN at higher doses alters the oxidant-antioxidant balance in liver and kidney of both rat strains and induces oxidative stress, which is associated with a depletion of GSH and increased lipid peroxidation. However, Wistar rats are found to be more sensitive to the toxicity of DZN compared to Norway rats. In addition, the effect of DZN on liver antioxidant system was more than kidney.

  2. Gastroprotective activity of polysaccharide from Hericium erinaceus against ethanol-induced gastric mucosal lesion and pylorus ligation-induced gastric ulcer, and its antioxidant activities.

    Science.gov (United States)

    Wang, Xiao-Yin; Yin, Jun-Yi; Zhao, Ming-Ming; Liu, Shi-Yu; Nie, Shao-Ping; Xie, Ming-Yong

    2018-04-15

    The gastroprotective activity of Hericium erinaceus polysaccharide was investigated in rats. The antioxidant activities were also evaluated. Pre-treatment of polysaccharide could reduce ethanol-induced gastric mucosal lesion and pylorus ligation-induced gastric ulcer. The polysaccharide exhibited scavenging activities of 1, 1-diphenyl-2-picryl-hydrozyl and hydroxyl radicals, and ferrous ion-chelating ability. In the pylorus ligation-induced model, gastric secretions (volume of gastric juice, gastric acid, pepsin and mucus) of ulcer rats administrated with polysaccharide were regulated. Levels of tumor necrosis factor-α and interleukins-1β in serum, and myeloperoxidase activity of gastric tissue were reduced, while antioxidant status of gastric tissue was improved. Defensive factors (nitric oxide, prostaglandin E2, epidermal growth factor) in gastric tissue were increased. These results indicate that Hericium erinaceus polysaccharide possess gastroprotective activity, and the possible mechanisms are related to its regulations of gastric secretions, improvements of anti-inflammatory and antioxidant status, as well as increments of defensive factors releases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Effect of hemodialysis on total antioxidant status of chronic renal ...

    African Journals Online (AJOL)

    Background: Renal failure is accompanied by oxidative stress, which is caused by enhanced production of reactive oxygen species and impaired antioxidant defense. Aim: To assess the effect of hemodialysis (by cellulose membrane dialyzer) on plasma total antioxidant status and lipid peroxidation of patients in chronic ...

  4. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala).

    Science.gov (United States)

    Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli

    2016-04-01

    A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of lead on tolerance, bioaccumulation, and antioxidative defense system of green algae, Cladophora.

    Science.gov (United States)

    Cao, De-ju; Shi, Xiao-dong; Li, Hao; Xie, Pan-pan; Zhang, Hui-min; Deng, Juan-wei; Liang, Yue-gan

    2015-02-01

    Effects of various concentrations (0.5, 1.0, 2.5, 5.0, 7.5, and 10.0 mg/L) of lead (Pb(2+)) on the growth, bioaccumulation, and antioxidative defense system of green algae, Cladophora, was investigated. Low concentrations of Pb(2+) accelerated Cladophora growth, but concentrations of 10.0 mg/L and above inhibited the growth because of the hinderance to photosynthesis. The total soluble sugar content of Cladophora was affected by Pb(2+) treatment, but the protein content showed no significant changes. The malondialdehyde (MDA) content and peroxidase(POD) activity of Cladophora gradually increased whereas superoxide dismutase(SOD) decreased with Pb(2+) concentrations. Catalase (CAT) activity exhibited no significant changes following Pb(2+) treatment. Pb(2+) accumulated in Cladophora and that the lead content in Cladophora was correlated with POD growth, MDA, and Metallothionein (MT). POD and MT play a role in the survival of Cladophora in Pb-contaminated environments. This study suggests that Cladophora can be a choice organism for the phytoremediation of Pb-polluted coastal areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Possible role of glutamine synthetase in the NO signaling response in root nodules by contributing to the antioxidant defenses

    Directory of Open Access Journals (Sweden)

    Liliana Santos Silva

    2013-09-01

    Full Text Available Nitric oxide (NO is emerging as an important regulatory player in the Rhizobium-legume symbiosis. The occurrence of NO during several steps of the symbiotic interaction suggests an important, but yet unknown, signaling role of this molecule for root nodule formation and functioning. The identification of the molecular targets of NO is key for the assembly of the signal transduction cascade that will ultimately help to unravel NO function. We have recently shown that the key nitrogen assimilatory enzyme Glutamine Synthetase (GS is a molecular target of NO in root nodules of Medicago truncatula, being post-translationally regulated by tyrosine nitration in relation to nitrogen fixation. In functional nodules of M. truncatula NO formation has been located in the bacteroid containing cells of the fixation zone, where the ammonium generated by bacterial nitrogenase is released to the plant cytosol and assimilated into the organic pools by plant GS. We propose that the NO-mediated GS post-translational inactivation is connected to nitrogenase inhibition induced by NO and is related to metabolite channeling to boost the nodule antioxidant defenses. Glutamate, a substrate for GS activity is also the precursor for the synthesis of glutathione (GSH, which is highly abundant in root nodules of several plant species and known to play a major role in the antioxidant defense participating in the ascorbate/GSH cycle. Existing evidence suggests that upon NO-mediated GS inhibition, glutamate could be channeled for the synthesis of GSH. According to this hypothesis, GS would be involved in the NO-signaling responses in root nodules and the NO-signaling events would meet the nodule metabolic pathways to provide an adaptive response to the inhibition of symbiotic nitrogen fixation by reactive nitrogen species (RNS.

  7. A direct comparison of the defense mechanisms of nondepressed people and depressed psychiatric inpatients.

    Science.gov (United States)

    Margo, G M; Greenberg, R P; Fisher, S; Dewan, M

    1993-01-01

    This report presents a direct comparison of defensive styles (as measured by the Defense Mechanisms Inventory [DMI]) in a sample of depressed psychiatric inpatients and samples of nondepressed male and female normative groups. Consistent with the "depressive realism" literature, nondepressed men and women were more likely than their depressed counterparts to bias their perceptions in an overly cheerful, optimistic direction. Counternormative sex differences were also found. Depressed men were more likely to use internalizing defenses and depressed women were more likely to use externalizing defenses than their respective nondepressed comparison groups. Overall, as has been speculated, there was a relationship within depressed subjects between depression severity and the amount of negatively biased self-perception.

  8. Role of the reacting free radicals on the antioxidant mechanism of curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Galano, Annia, E-mail: agalano@prodigy.net.mx [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Area de Quimica Analitica, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Mexico D.F. (Mexico); Alvarez-Diduk, Ruslan; Ramirez-Silva, Maria Teresa; Alarcon-Angeles, Georgina; Rojas-Hernandez, Alberto [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Area de Quimica Analitica, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Mexico D.F. (Mexico)

    2009-09-18

    Density functional theory is used to study the antioxidant mechanism of curcumin. Five different mechanisms are considered: single electron transfer (SET), radical adduct formation (RAF), H atom transfer from neutral curcumin (HAT), H atom transfer from deprotonated curcumin (HAT-D), and sequential proton loss electron transfer (SPLET). The influence of the environment is investigated for polar and non-polar surroundings. The apparent contradictions among previous experimental results are explained by the role of the nature of the reacting free radical on the relative importance of the above mentioned mechanism. It is proposed that the curcumin + DPPH reaction actually takes place mainly through the SPLET mechanism, while the reaction with {sup {center_dot}}OCH{sub 3}, and likely with other alkoxyl radicals, is governed by the HAT mechanism. Branching ratios for the {sup {center_dot}}OCH{sub 3} + curcumin reaction are reported for the first time. The calculated overall rate constants for this reaction are 1.16 x 10{sup 10} (benzene) and 5.52 x 10{sup 9} (water) L mol{sup -1} s{sup -1}. The role of phenolic groups on the antioxidant activity of curcumin has been experimentally confirmed.

  9. Waterborne gemfibrozil challenges the hepatic antioxidant defense system and down-regulates peroxisome proliferator-activated receptor beta (PPARβ) mRNA levels in male goldfish (Carassius auratus)

    International Nuclear Information System (INIS)

    Mimeault, C.; Trudeau, V.L.; Moon, T.W.

    2006-01-01

    The lipid regulator gemfibrozil (GEM) is one of many human pharmaceuticals found in the aquatic environment. We previously demonstrated that GEM bioconcentrates in blood and reduces plasma testosterone levels in goldfish (Carassius auratus). In this study, we address the potential of an environmentally relevant waterborne concentration of GEM (1.5 μg/l) to induce oxidative stress in goldfish liver and whether this may be linked to GEM acting as a peroxisome proliferator (PP). We also investigate the autoregulation of the peroxisome proliferator-activated receptors (PPARs) as a potential index of exposure. The three PPAR subtypes (α, β, and γ) were amplified from goldfish liver cDNA. Goldfish exposed to a concentration higher (1500 μg/l) than environmentally relevant for 14 and 28 days significantly reduce hepatic PPARβ mRNA levels (p < 0.001). Levels of CYP1A1 mRNA were unchanged. GEM exposure significantly induced the antioxidant defense enzymes catalase (p < 0.001), glutathione peroxidase (p < 0.001) and glutathione-S-transferase (p = 0.006) but not acyl-CoA oxidase or glutathione reductase. As GEM exposure failed to increase levels of thiobarbituric reactive substances (TBARS), we conclude that a sub-chronic exposure to GEM upregulates the antioxidant defense status of the goldfish as an adaptive response to this human pharmaceutical

  10. Antioxidative system in the liver of rates subjected to combined irradiation injury

    International Nuclear Information System (INIS)

    Simovic, M.; Stanimirovic, D.; Ivanovic, L.; Markovic, M.; Letic-Gavrilovic, A.; Jovic, P.; Savic, J.; Spasic, M.; Saicic, Z.S.

    1991-01-01

    Until the Chernobyl nuclear plant catastrophe, exposure to radiation combined with other forms of injuries was usually considered as a hazard of nuclear war. The effect of combined irradiation injuries are often defined as the simultaneous effect of irradiation and another noxious stimulus. In the authors' opinion (1) one may talk about combined irradiation injuries (CII) only in the case when the general response of an organism to traumatization is the combination of biological reactions to at least two different etiologic noxious stimuli of which one is irradiation. One of the basic problems of combined injuries in general and CII in particular, is the syndrome of mutual aggravation (SMA) expressed through a very high (potentiated) lethality. The real mechanism(s) of this syndrome is still unknown. In our model of combined irradiation injury, potentiation of irradiation effect was smaller if animals were irradiated in the hypometabolic (open-quotes ebbclose quotes) compared to the hypermetabolic (open-quotes flowclose quotes) phase after thermal injury. Since the oxygen uptake is greater in the hypermetabolic phase the free radical production is also greater. On the other hand, the transition of hypometabolic to hypermetabolic phase could be analogous to a hypoxia/reoxygenation state. According to Granger et al. this state induces an increase in free radical production. When irradiation injury follows scalding it induces a new flux of free radicals. As a result the antioxidative defense of an organism could be overwhelmed and a disturbance of oxidative-antioxidative processes might occur. Thus, the authors suppose that overwhelmed antioxidative defense could be the reason for potentiated lethality in combined irradiation injury. 12 refs., 2 tabs

  11. [Study of defense styles, defenses and coping strategies in alcohol-dependent population].

    Science.gov (United States)

    Ribadier, A; Varescon, I

    2017-05-01

    Defense mechanisms have been seen to greatly change over time and across different definitions made by different theoretical currents. Recently with the definition provided by the DSM IV, defense mechanisms have integrated the concept of coping as a defensive factor. These mechanisms are no longer considered just through a psychodynamic approach but also through a cognitive and behavioral one. In recent years, new theories have therefore integrated these two components of the defensive operation. According to Chabrol and Callahan (2013), defense mechanisms precede coping strategies. In individuals with psychopathological disorders, these authors indicate a relative stability of these mechanisms. Also, we asked about the presence of unique characteristics among people with alcohol dependence. Indeed, studies conducted with people with alcohol dependence highlight the presence of a neurotic defense style and some highly immature defenses (projection, acting out, splitting and somatization). In terms of coping strategies, persons with alcohol dependence preferentially use avoidant strategies and strategies focused on emotion. However, although several studies have been conducted to assess coping strategies and defense styles within a population of individuals with an alcohol problem, at the present time none of them has taken into account all these aspects of defense mechanisms. The aim of this study is therefore to study the defenses and defense styles and coping strategies in an alcohol-dependent population. This multicenter study (3 CHU, 1 center of supportive care and prevention in addiction and 1 clinic) received a favorable opinion of an Institutional Review Board (IRB Registration #: 00001072). Eighty alcohol-dependent individuals responded to a questionnaire assessing sociodemographic characteristics and elements related to the course of consumption. Coping strategies were assessed by means of a questionnaire validated in French: the Brief Cope. The Defense

  12. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen.

    Science.gov (United States)

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, Fv/Fm, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H2O2 production and greater increases in H2O2-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage.

    Science.gov (United States)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J; Rudich, Yinon

    2016-03-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Influence of the PDE5 inhibitor tadalafil on redox status and antioxidant defense system in C2C12 skeletal muscle cells.

    Science.gov (United States)

    Duranti, Guglielmo; Ceci, Roberta; Sgrò, Paolo; Sabatini, Stefania; Di Luigi, Luigi

    2017-05-01

    Phosphodiesterase type 5 inhibitors (PDE5Is), widely known for their beneficial effects onto male erectile dysfunction, seem to exert favorable effects onto metabolism as well. Tadalafil exposure increases oxidative metabolism of C2C12 skeletal muscle cells. A rise in fatty acid (FA) metabolism, requiring more oxygen, could induce a larger reactive oxygen species (ROS) release as a byproduct thus leading to a redox imbalance. The aim of this study was to determine how PDE5I tadalafil influences redox status in skeletal muscle cells to match the increasing oxidative metabolism. To this purpose, differentiated C2C12 skeletal muscle cells were treated with tadalafil and analyzed for total antioxidant capacity (TAC) and glutathione levels as marker of redox status; enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) engaged in antioxidant defense; and lipid peroxidation (TBARS) and protein carbonyls (PrCar) as markers of oxidative damage. Tadalafil increased total intracellular glutathione (tGSH), CAT, SOD, and GPx enzymatic activities while no changes were found in TAC. A perturbation of redox status, as showed by the decrease in the ratio between reduced/oxidized glutathione (GSH/GSSG), was observed. Nevertheless, it did not cause any change in TBARS and PrCar levels probably due to the enhancement in the antioxidant enzymatic network. Taken together, these data indicate that tadalafil, besides improving oxidative metabolism, may be beneficial to skeletal muscle cells by enhancing the enzymatic antioxidant system capacity.

  15. Uranium induced ROS and its antioxidant defense molecules, genotoxicity assessment in iridescent shark (Pangasius sutchi)

    International Nuclear Information System (INIS)

    Annamalai, Sathesh Kumar; Arunachalam, Kantha Deivi

    2014-01-01

    The potential adverse effects of uranium (U) contamination in the aquatic environment to living organisms have been debated during the recent years. In order to understand the effect and mode of action (MoA) of U in vivo, the iridescent shark (Pangasius sutchi) were exposed to ¼ and ½ LC 50 waterborne uranyl nitrate in a static system till 21 days. The accumulation of U concentrations in the muscle, brain, gill and liver were analyzed by ICP-MS.The results clearly showed higher accumulation of U in the gills, and the accumulation were in the order of magnitude as gills > liver> Brain> tissue. Dose dependent effects of uranium on hepatic antioxidant defenses like super oxide dismutase, catalase and lipid peroxidase were observed and the ideal concentration-response relationships were observed at the highest U concentration. The DNA fragmentation analysis by comet assay and cell viability by flow cytometric analysis was performed at different time intervals. The whole blood analysis revealed aneuploidy-like patterns in the DNA histograms some fish, as well as hyper diploid shoulders of the G0/G1 peak. A significant differences in DNA damage occurred in fishes exposed protractedly and acutely to uranium compared to control. The higher the U concentration greater the effect observed suggested a close relationship between accumulation and effect. A possible ROS mediated U cytotoxic mechanism has been proposed. Studies on the uranium toxicity regulating genes can possibly be used as a tool to evaluate U toxicity which will be more sensitive than the enzymatic activities. However a multiple biomarker approach can be recommended as the perturbed pathways and the mode of action of this pollutant are not completely understood. (author)

  16. Effect of cadmium hyperaccumulation on antioxidative defense and ...

    African Journals Online (AJOL)

    Changes in cadmium (Cd) accumulation, the activity of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and the concentrations of malondialdehyde (MDA), chlorophyll and free proline in Solanum nigrum, Cd-hyperaccumulator were examined and compared with a ...

  17. The Child's Demystification of Psychological Defense Mechanisms: A Structural and Developmental Analysis.

    Science.gov (United States)

    Chandler, Michael J.; And Others

    1978-01-01

    Explored the relationships between the cognitive developmental level of preoperational, concrete operational, and formal operational children (N=10) and their success in interpreting and explaining each of eight commonly described mechanisms of psychological defense. (JMB)

  18. Single and combined effects of microcystin- and saxitoxin-producing cyanobacteria on the fitness and antioxidant defenses of cladocerans.

    Science.gov (United States)

    da S Ferrão-Filho, Aloysio; de Abreu S Silva, Daniel; de Oliveira, Taissa A; de Magalhães, Valéria Freitas; Pflugmacher, Stephan; da Silva, Eduardo Mendes

    2017-10-01

    Cyanobacteria produce different toxic compounds that affect animal life, among them hepatotoxins and neurotoxins. Because cyanobacteria are able to produce a variety of toxic compounds at the same time, organisms may be, generally, subjected to their combined action. In the present study, we demonstrate the single and combined effects on cladocerans of cyanobacteria that produce microcystins (hepatotoxins) and saxitoxins (neurotoxins). Animals were exposed (either singly or combined) to 2 strains of cyanobacteria isolated from the same environment (Funil Reservoir, Rio de Janeiro, Brazil). The effects on clearance rate, mobility, survivorship, fecundity, population increase rate (r), and the antioxidant enzymes glutathione-S-transferase (GST) and catalase (CAT) were measured. Cladoceran species showed a variety of responses to cyanobacterial exposures, going from no effect to impairment of swimming movement, lower survivorship, fecundity, and general fitness (r). Animals ingested cyanobacteria in all treatments, although at lower rates than good food (green algae). Antioxidant defense responses were in accordance with fitness responses, suggesting that oxidative stress may be related to such effects. The present study emphasizes the need for testing combined actions of different classes of toxins, because this is often, and most likely, the scenario in a more eutrophic world with global climatic changes. Environ Toxicol Chem 2017;36:2689-2697. © 2017 SETAC. © 2017 SETAC.

  19. Reduced serum non-enzymatic antioxidant defense and increased lipid peroxidation in schizophrenic patients on a hypocaloric diet.

    Science.gov (United States)

    Zortea, Karine; Fernandes, Brisa Simões; Guimarães, Lísia Rejane; Francesconi, Lenise Petter; Lersch, Camila; Gama, Clarissa Severino; Schroeder, Rafael; Zanotto-Filho, Alfeu; Moreira, José Claudio; Lobato, Maria Inês Rodrigues; Belmonte-de-Abreu, Paulo Silva

    2012-03-14

    Growing evidence suggests that oxidative stress (OS) may be associated with the pathophysiology underlying schizophrenia (SZ). Some studies indicate that nutritional supplements offer protection from OS, but there is no data about the effect of a hypocaloric diet on OS in this population. Therefore, we aimed to study the effect of a hypocaloric dietary intervention on OS in subjects with SZ. A cross-sectional study of 96 participants in outpatient treatment for SZ comprised patients separated into two groups: one group of subjects followed a hypocaloric diet (HD) program (n=42), while the other group followed a regular diet (RD) with no nutritional restrictions (n=54). The serum total radical-trapping antioxidant parameter (TRAP), total antioxidant reactivity (TAR) and thiobarbituric acid reactive species (TBARS) levels were assessed. TRAP levels were lower and TBARS levels were higher in the HD group than in the RD group (p=0.022 and p=0.023, respectively). There were no differences in TAR levels between the groups. Additionally, there was a positive correlation between TRAP and TBARS levels after adjusting for BMI and clozapine dose (partial correlation=0.42, pdiet and the levels of TRAP, TBARS, and TAR. Subjects with SZ on a hypocaloric diet displayed different OS parameters than those not following a HD. Serum TRAP levels were lower and TBARS levels were higher among SZ subjects with HD compared to SZ subjects without HD. Lower TRAP levels may reflect decreased oxidative stress, whereas higher TBARS levels most likely reflect a biochemical reaction to the decreased TRAP levels. Additionally, TAR levels were similar between groups, suggesting a similar quality of antioxidant defenses, despite quantitative differences between the two dietary protocols in SZ patients under outpatient care. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Molecular identification and functional delineation of a glutathione reductase homolog from disk abalone (Haliotis discus discus): Insights as a potent player in host antioxidant defense.

    Science.gov (United States)

    Herath, H M L P B; Wickramasinghe, P D S U; Bathige, S D N K; Jayasooriya, R G P T; Kim, Gi-Young; Park, Myoung Ae; Kim, Chul; Lee, Jehee

    2017-01-01

    : Vibrio parahaemolyticus, Listeria monocytogenes, and lipopolysaccharide (LPS), thus indicating its possible involvement in host defense mechanisms during pathogenic infections. Taken together, the results of the current study suggest that AbGSR plays an important role in antioxidant-mediated host defense mechanisms and also provide insights into the immunological contribution of AbGSR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Dietary Glucosinolates Sulforaphane, Phenethyl Isothiocyanate, Indole-3-Carbinol/3,3'-Diindolylmethane: Anti-Oxidative Stress/Inflammation, Nrf2, Epigenetics/Epigenomics and In Vivo Cancer Chemopreventive Efficacy.

    Science.gov (United States)

    Fuentes, Francisco; Paredes-Gonzalez, Ximena; Kong, Ah-Ng Tony

    2015-05-01

    Glucosinolates are a group of sulfur-containing glycosides found in many plant species, including cruciferous vegetables such as broccoli, cabbage, brussels sprouts, and cauliflower. Accumulating evidence increasingly supports the beneficial effects of dietary glucosinolates on overall health, including as potential anti-cancer agents, because of their role in the prevention of the initiation of carcinogenesis via the induction of cellular defense detoxifying/antioxidant enzymes and their epigenetic mechanisms, including modification of the CpG methylation of cancer-related genes, histone modification regulation and changes in the expression of miRNAs. In this context, the defense mechanism mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against oxidative stress and reactive metabolites of carcinogens. In this review, we summarize the cancer chemopreventive role of naturally occurring glucosinolate derivatives as inhibitors of carcinogenesis, with particular emphasis on specific molecular targets and epigenetic alterations in in vitro and in vivo human cancer animal models.

  2. Investigating aggressive styles and defense mechanisms in bipolar patients and in their parents

    Directory of Open Access Journals (Sweden)

    Nicola Luigi Bragazzi

    2014-10-01

    Full Text Available Bipolar disorder (BD is a very common mental health disorder, whose etiology concerning aggressive styles and defense mechanisms is still poorly known despite the efforts dedicated to develop psychological and biological theories. After obtaining written signed informed consent, this study will recruit inpatients with a clinical diagnosis of BD, based on Structured Clinical Interview and the Diagnostic and Statistical Manual of Mental Disorders criteria, and their parents. The Bus-Perry Aggression Questionnaire, the Defense Style Questionnaire 40, the Symptom check list SCL-90-R, developed by DeRogatis will be administered to the participants, together with a semi-structured questionnaire concerning demographic data (age, gender, employment, education and only for the patients clinical information (onset year of the disorder, presence of co-morbidities, alcohol and drug use, suicide tendencies, kind of treatment. All the questionnaires are in the Italian validated version. The successful completion of this study will shed light on the relationship between aggressive styles and defensive mechanisms in bipolar inpatients and in their parents, helping the clinicians to develop ad hoc psychological interventions.

  3. Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2.

    Science.gov (United States)

    Tang, Wei; Xing, Zhuqing; Li, Chao; Wang, Jinju; Wang, Yanping

    2017-04-15

    Lactobacillus plantarum MA2 was isolated from Chinese traditional Tibetan kefir grains. The antioxidant activities in vitro of this strain were evaluated extensively. The results showed that L. plantarum MA2 can tolerate hydrogen peroxide up to 2.0mM, and its fermentate (fermented supernatant, intact cell and cell-free extract) had strong reducing capacities, lipid peroxidation inhibition capacities, Fe 2+ -chelating abilities, as well as various free radical scavenging capacities. Additionally, both the fermented supernatant and cell homogenate exhibited glutathione peroxidase activity and superoxide dismutase activity. In order to investigate the antioxidant mechanism of L. plantarum MA2 at the molecular level, eight antioxidant-related genes were identified, and further analyzed. Three groups of genes cat, gshR and npx, were found up-regulated under H 2 O 2 challenge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of Vitamin E and Selenium Supplement on Paraoxonase-1 Activity, Oxidized Low Density Lipoprotein and Antioxidant Defense in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza Rashidi

    2011-08-01

    Full Text Available Introduction: The aim of the present study was to assess the effects of vitamin E and selenium supplementation on serum paraoxonase (PON1 activity, lipid peroxidation and antioxidant defense in streptozotocin-induced diabetic rats. Methods: Thirty two female Sprague Dawley rats were divided into 3 groups: the control group (n=8 received a standard diet; streptozotocin (STZ-induced diabetic rats (n=12, received corn oil and physiological solution; and vitamin E and selenium supplemented diabetic rats (n=12 were treated with oral administration of vitamin E (300 mg/kg and sodium selenite (0.5 mg/kg once a day for 4 weeks. Results: Significantly lower total antioxidant status (TAS, PON1and erythrocyte SOD activities and a higher fasting plasma glucose level were observed in the diabetic rats compared to the control. A significant increase in SOD and GPX activities in vitamin E and selenium supplemented diabetic group was observed after 5 weeks of the experiment. Compared to the normal rats, malondialdehyde (MDA and oxidized LDL (Ox-LDL levels were higher in the diabetic animals; however, these values reduced significantly following vitamin E and selenium supplementation. Conclusion: Vitamin E and selenium supplementation in diabetic rats has hypolipidemic, hypoglycemic and antioxidative effects and may slow down the progression of diabetic complications through its protective effect on PON1 activity and lipoproteins oxidation.

  5. The Role of Big Five Personality Factors and Defense Mechanisms in Predicting Quality of Life in Sexually Dysfunctional Female Patients

    Directory of Open Access Journals (Sweden)

    S. salary

    2015-06-01

    Full Text Available Sexual dysfunction can lead to behavioral problems and reduction in a person's quality of life. In 50 % of patients with personality disorders, there is also sexual dysfunction. Psychoanalysis approach attributes the cause of sexual dysfunction to a kind of fundamental anxiety as well as the use of immature mechanisms in these patients. The purpose of this study was to investigate the role of big five personality traits and defensive mechanisms in predicting these patients' quality of life. Statistical sample of this research included 80 women attending sexual health and family clinics of Shahed University using accessible sampling during 2010 and 2011. These subjects were given the Neo Personality Inventory Traits, Defensive Mechanisms, and the World Health organization Quality of Life Questionnaires to answer. The findings showed that personality traits could predict the quality of life in woman with sexual dysfunction. Moreover, among those five personality traits, neuroticism (:./24 P=./04 and conscientiousness(:./31 P=./03 were able to predict the quality of life while predictability rate of both factors was 37% of variance on the whole (p=0/05. Based on regression analysis, there was a significant relationship between the quality of life and defensive mechanisms so that using more mature defensive mechanisms (:./37 P=./006 and immature defensive mechanisms (:-./31 P= ./02 could significantly predict quality of life (p=0/0001. Also, neurotic defensive mechanisms were not significant predictors of these women' quality of life. (;./04 P=./78.

  6. Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein.

    Science.gov (United States)

    Perera, N C N; Godahewa, G I; Lee, Jehee

    2016-10-01

    Copper-zinc-superoxide dismutase (CuZnSOD) from Hippocampus abdominalis (HaCuZnSOD) is a metalloenzyme which belongs to the ubiquitous family of SODs. Here, we determined the characteristic structural features of HaCuZnSOD, analyzed its evolutionary relationships, and identified its potential immune responses and biological functions in relation to antioxidant defense mechanisms in the seahorse. The gene had a 5' untranslated region (UTR) of 67 bp, a coding sequence of 465 bp and a 3' UTR of 313 bp. The putative peptide consists of 154 amino acids. HaCuZnSOD had a predicted molecular mass of 15.94 kDa and a theoretical pI value of 5.73, which is favorable for copper binding activity. In silico analysis revealed that HaCuZnSOD had a prominent Cu-Zn_superoxide_dismutase domain, two Cu/Zn signature sequences, a putative N-glycosylation site, and several active sites including Cu(2+) and Zn(2+) binding sites. The three dimensional structure indicated a β-sheet barrel with 8 β-sheets and two short α-helical regions. Multiple alignment analyses revealed many conserved regions and active sites among its orthologs. The highest amino acid identity to HaCuZnSOD was found in Siniperca chuatsi (87.4%), while Maylandia zebra shared a close relationship in the phylogenetic analysis. Functional assays were performed to assess the antioxidant, biophysical and biochemical properties of overexpressed recombinant (r) HaCuZnSOD. A xanthine/XOD assay gave optimum results at pH 9 and 25 °C indicating these may be the best conditions for its antioxidant action in the seahorse. An MTT assay and flow cytometry confirmed that rHaCuZnSOD showed peroxidase activity in the presence of HCO3(-). In all the functional assays, the level of antioxidant activity of rHaCuZnSOD was concentration dependent; metal ion supplementation also increased its activity. The highest mRNA expressional level of HaCuZnSOD was found in blood. Temporal assessment under pathological stress showed a delay

  7. Evaluation of Postprandial Total Antioxidant Activity in Normal and Overweight Individuals

    Directory of Open Access Journals (Sweden)

    Fatma Arslan

    2016-09-01

    Full Text Available Aim: Postprandial changes acutely alter some mechanisms in body. There are many studies showing blood oxidative status changes after food intake, and supplementation. The aim of the present study was to evaluate the effects of a standardized meal on serum total antioxidant activity (TAA in normal weight and overweight individuals. Material and Method: Fourteen normal weight and twelve overweight individuals were given a standardized meal in the morning after an overnight fast. Serum TAA, glucose, total cholesterol, HDL cholesterol, LDL cholesterol, and triglyceride concentrations were measured at baseline, 3rd hour, and 6th hour after the meal in both groups.Results: In both normal and overweight groups, the difference between baseline and 3rd hour was significant for TAA. The TAA of the overweight group was also significantly lower than the TAA of the normal weight group at 3rd hour. However, there was no significant correlation between lipid parameters and TAA levels. Discussion: The present study shows that postprandial oxidative damage occurs more prominently in overweight individuals than in normal weight individuals. Postprandial changes acutely induce oxidative stress and impair the natural antioxidant defense mechanism. It should be noted that consuming foods with antioxidants in order to avoid various diseases and complications is useful, particularly in obese subjects.

  8. The mechanisms of protection of antioxidants on Nostoc sphaeroides against UV-B radiation

    Science.gov (United States)

    Wang, G. H.

    UV radiation is one of space harmful factor for earth organisms in space exploration In the present work we studied on the role of antioxidant system in Nostoc sphaeroides K u tz Cyanobacteria and the effects of exogenous antioxidant molecules on its photosynthetic rate under UV-B radiation It was found that UV-B radiation decreased the photosynthetic activity of cyanobacterium but promoted the activity of antioxidant system to protect photosystem II PSII and exogenous antioxidant sodium nitroprusside SNP N-acetylcysteine NAC had an obvious protection on PSII activity under UV-B radiation The activity of SOD Superoxide Dismutase EC 1 15 1 1 CAT Catalase EC 1 11 1 6 POD Peroxidase EC 1 11 1 7 and content of MDA and ASC were improved by 0 5mM and 1mM SNP but 0 1mM SNP decreased the activity of antioxide system Exogenous NAC addition decreased the activity of SOD POD CAT and the content MDA and ASC but exogenous NAC addition increased the content of GSH The results suggested that exogenous SNP and NAC may protect algae by different mechanisms in which SNP maybe play double roles as sources of reactive free radicals or ROS scavengers in formation of algae s protection of PSII under UV-B radiation while NAC does function as antioxidant reagent or precursor of glutathione which could protect PSII directly from UV-B radiation Keyword antioxidant system exogenous or endogenous antioxidant Nostoc sphaeroides photosynthesis UV-B radiation

  9. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports.

    Science.gov (United States)

    Pingitore, Alessandro; Lima, Giuseppina Pace Pereira; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina

    2015-01-01

    Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need

  10. Mechanism of bystander-blaming: defensive attribution, counterfactual thinking, and gender.

    Science.gov (United States)

    Levy, Inna; Ben-David, Sarah

    2015-01-01

    Contemporary victimology recognizes that an understanding of the mechanism of blaming requires a comprehensive approach that includes the victim, the offender, and the bystander. However, most of the existing research on blaming focuses on the victim and the offender, ignoring the issue of bystander-blaming. This study highlights the bystander and investigates bystander-blaming by exploring some theoretical explanations, including counterfactual thinking, defensive attribution, and gender differences. The study included 363 young male and female participants, who read vignettes describing the behavior of the victim and the bystander in a rape scenario and answered questions regarding bystander-blaming. The results show that both counterfactual thinking and defensive attribution play a role in bystander-blaming. This article addresses the theoretical and practical implications of these findings. © The Author(s) 2013.

  11. Studies on the effects on growth and antioxidant responses of two marine microalgal species to uniconazole

    Science.gov (United States)

    Mei, Xueqiao; Zheng, Kang; Wang, Lingdong; Li, Yantuan

    2014-10-01

    Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase (SOD) and peroxidase (POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations (0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica ( P enzymes, superoxide dismutase (SOD) and catalase (CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.

  12. Morphological, mechanical and antioxidant properties of Portuguese almond cultivars

    DEFF Research Database (Denmark)

    Oliveira, Ivo; Meyer, Anne S.; Afonso, Silvia

    2018-01-01

    The aim of this study was to evaluate morphological (of fruit and kernel), mechanical (namely shell rupture force) and antioxidant properties (including phenolics and flavonoid content) of five Portuguese almond cultivars, comparing them with two commercial cultivars (Glorieta and Ferragnès). Of ...... high kernel weight, low percentages of double kernels or losses during shelling and considerable higher phenolics and flavonoids content may be considered by industry during selection of almond.......). Of the analyzed traits, nut and kernel dimensions varied substantially and were used to describe cultivars. However, some traditional cultivars recorded similar (Pegarinhos), or even higher (Amendoão, Casanova and Refêgo) nut and kernel weight than commercial cultivars. Furthermore, shelling percentage...... of traditional cultivar (Bonita) was higher than commercial cultivars. Rupture force necessary to break fruits of all traditional cultivars was higher than commercial ones, and was correlated to nut weight cultivars. The phenolics, flavonoids content and antioxidants were higher for Casanova. Parameters like...

  13. Lead toxicity in rice: effects, mechanisms, and mitigation strategies--a mini review.

    Science.gov (United States)

    Ashraf, Umair; Kanu, Adam Sheka; Mo, Zhaowen; Hussain, Saddam; Anjum, Shakeel Ahmad; Khan, Imran; Abbas, Rana Nadeem; Tang, Xiangru

    2015-12-01

    Lead (Pb) is a major environmental pollutant that affects plant morpho-physiological and biochemical attributes. Its higher levels in the environment are not only toxic to human beings but also harmful for plants and soil microbes. We have reviewed the uptake, translocation, and accumulation mechanisms of Pb and its toxic effects on germination, growth, yield, nutrient relation, photosynthesis, respiration, oxidative damage, and antioxidant defense system of rice. Lead toxicity hampers rice germination, root/shoot length, growth, and final yield. It reduces nutrient uptake through roots, disrupts chloroplastic ultrastructure and cell membrane permeability, induces alterations in leaves respiratory activities, produces reactive oxygen species (ROS), and triggers some enzyme and non-enzymatic antioxidants (as defense to oxidative damage). In the end, biochar amendments and phytoremediation technologies have been proposed as soil remediation approaches for Pb tainted soils.

  14. Effect of dietary antioxidants, training, and performance correlates on antioxidant status in competitive rowers.

    Science.gov (United States)

    Braakhuis, Andrea J; Hopkins, Will G; Lowe, Timothy E

    2013-09-01

    The beneficial effects of exercise and a healthy diet are well documented in the general population but poorly understood in elite athletes. Previous research in subelite athletes suggests that regular training and an antioxidant-rich diet enhance antioxidant defenses but not performance. To investigate whether habitual diet and/or exercise (training status or performance) affect antioxidant status in elite athletes. Antioxidant blood biomarkers were assessed before and after a 30-min ergometer time trial in 28 male and 34 female rowers. The antioxidant blood biomarkers included ascorbic acid, uric acid, total antioxidant capacity (TAC), erythrocyte- superoxide dismutase, glutathione peroxidase (GPx), and catalase. Rowers completed a 7-d food diary and an antioxidant-intake questionnaire. Effects of diet, training, and performance on resting biomarkers were assessed with Pearson correlations, and their effect on exercise-induced changes in blood biomarkers was assessed by a method of standardization. With the exception of GPx, there were small to moderate increases with exercise for all markers. Blood resting TAC had a small correlation with total antioxidant intake (correlation .29; 90% confidence limits, ±.27), and the exercise-induced change in TAC had a trivial to small association with dietary antioxidant intake from vitamin C (standardized effect .19; ±.22), vegetables (.20; ±.23), and vitamin A (.25; ±.27). Most other dietary intakes had trivial associations with antioxidant biomarkers. Years of training had a small inverse correlation with TAC (-.32; ±.19) and a small association with the exercise-induced change in TAC (.27; ±.24). Training status correlates more strongly with antioxidant status than diet does.

  15. Characterization of the Antioxidant Effects of γ-Oryzanol: Involvement of the Nrf2 Pathway

    Directory of Open Access Journals (Sweden)

    W. Rungratanawanich

    2018-01-01

    Full Text Available γ-Oryzanol (ORY is well known for its antioxidant potential. However, the mechanism by which ORY exerts its antioxidant effect is still unclear. In this paper, the antioxidant properties of ORY were investigated for its potential effects as a reactive oxygen and nitrogen species (ROS/RNS scavenger and in activating antioxidant-promoting intracellular pathways utilizing the human embryonic kidney cells (HEK-293. The 24 h ORY exposure significantly prevented hydrogen peroxide- (H2O2- induced ROS/RNS production at 3 h, and this effect was sustained for at least 24 h. ORY pretreatment also enhanced the activity of antioxidant enzymes: superoxide dismutase (SOD and glutathione peroxidase (GPX. Interestingly, ORY induced the nuclear factor (erythroid-derived 2-like 2 (Nrf2 nuclear translocation and upregulation of Nrf2-dependent defensive genes such as NAD(PH quinone reductase (NQO1, heme oxygenase-1 (HO-1, and glutathione synthetase (GSS at mRNA and protein levels in both basal condition and after H2O2 insult. Thus, this study suggested an intriguing effect of ORY in modulating the Nrf2 pathway, which is also involved in regulating longevity as well as age-related diseases.

  16. Characterization of the Antioxidant Effects of γ-Oryzanol: Involvement of the Nrf2 Pathway.

    Science.gov (United States)

    Rungratanawanich, W; Abate, G; Serafini, M M; Guarienti, M; Catanzaro, M; Marziano, M; Memo, M; Lanni, C; Uberti, D

    2018-01-01

    γ -Oryzanol (ORY) is well known for its antioxidant potential. However, the mechanism by which ORY exerts its antioxidant effect is still unclear. In this paper, the antioxidant properties of ORY were investigated for its potential effects as a reactive oxygen and nitrogen species (ROS/RNS) scavenger and in activating antioxidant-promoting intracellular pathways utilizing the human embryonic kidney cells (HEK-293). The 24 h ORY exposure significantly prevented hydrogen peroxide- (H 2 O 2 -) induced ROS/RNS production at 3 h, and this effect was sustained for at least 24 h. ORY pretreatment also enhanced the activity of antioxidant enzymes: superoxide dismutase (SOD) and glutathione peroxidase (GPX). Interestingly, ORY induced the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation and upregulation of Nrf2-dependent defensive genes such as NAD(P)H quinone reductase (NQO1), heme oxygenase-1 (HO-1), and glutathione synthetase (GSS) at mRNA and protein levels in both basal condition and after H 2 O 2 insult. Thus, this study suggested an intriguing effect of ORY in modulating the Nrf2 pathway, which is also involved in regulating longevity as well as age-related diseases.

  17. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Gopaljee Jha

    2009-01-01

    Full Text Available Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed.

  18. Oxidative and antioxidative status in the testes of rats with acute epididymitis.

    Science.gov (United States)

    Kaya, Mete; Boleken, Mehmet Emin; Zeyrek, Fadile; Ozardali, Ilyas; Kanmaz, Turan; Erel, Ozcan; Yücesan, Selçuk

    2006-01-01

    Epididymitis is an inflammation or infection of the epididymis, a convoluted duct that lies on the posterior surface of the testicle. Oxidative stress due to excessive production of reactive oxygen species in epididymitis, impaired antioxidant defense mechanisms, or both, precipitates a range of pathologies that are currently believed to negatively affect the male reproductive function. How oxidative stress affects the testes is still unknown. We aimed to investigate the oxidative and antioxidative status of testes of rats with unilateral acute Escherichia coli epididymitis. The study included 36 male Wistar albino rats which were divided into three groups. In the epididymitis group (n = 12), an E. coli suspension was injected into the right ductus deferens of rats, and the same amount of saline was injected in the saline groups (n = 12). No surgery was performed in the control group (n = 12) for baseline values. Rats were sacrificed after 24 h and the epididymis and testes removed. The infection was confirmed by histopathologic evaluation and microbiological tests. The oxidative status of testes was evaluated by measuring myeloperoxidase (MPO) activity, and antioxidative status was evaluated by measuring total antioxidant response (TAR) and total antioxidant capacity levels (TAC). MPO activity in both the ipsilateral and contralateral testes of the epididymitis group was significantly higher than those of the saline and control groups (p antioxidants. 2006 S. Karger AG, Basel.

  19. Chromosome-level genome map provides insights into diverse defense mechanisms in the medicinal fungus Ganoderma sinense

    Science.gov (United States)

    Zhu, Yingjie; Xu, Jiang; Sun, Chao; Zhou, Shiguo; Xu, Haibin; Nelson, David R.; Qian, Jun; Song, Jingyuan; Luo, Hongmei; Xiang, Li; Li, Ying; Xu, Zhichao; Ji, Aijia; Wang, Lizhi; Lu, Shanfa; Hayward, Alice; Sun, Wei; Li, Xiwen; Schwartz, David C.; Wang, Yitao; Chen, Shilin

    2015-01-01

    Fungi have evolved powerful genomic and chemical defense systems to protect themselves against genetic destabilization and other organisms. However, the precise molecular basis involved in fungal defense remain largely unknown in Basidiomycetes. Here the complete genome sequence, as well as DNA methylation patterns and small RNA transcriptomes, was analyzed to provide a holistic overview of secondary metabolism and defense processes in the model medicinal fungus, Ganoderma sinense. We reported the 48.96 Mb genome sequence of G. sinense, consisting of 12 chromosomes and encoding 15,688 genes. More than thirty gene clusters involved in the biosynthesis of secondary metabolites, as well as a large array of genes responsible for their transport and regulation were highlighted. In addition, components of genome defense mechanisms, namely repeat-induced point mutation (RIP), DNA methylation and small RNA-mediated gene silencing, were revealed in G. sinense. Systematic bioinformatic investigation of the genome and methylome suggested that RIP and DNA methylation combinatorially maintain G. sinense genome stability by inactivating invasive genetic material and transposable elements. The elucidation of the G. sinense genome and epigenome provides an unparalleled opportunity to advance our understanding of secondary metabolism and fungal defense mechanisms. PMID:26046933

  20. Cadmium accumulation and antioxidative defenses in leaves of ...

    African Journals Online (AJOL)

    Corn (Zea Mays L.) and wheat (Triticum aestivum L. ) seedlings were grown in four cadmium (Cd) concentration levels (0 - 1 mg/l) in a hydroponic system to analyze the antioxidant enzyme system, Cd concentration in the shoots and roots of plants, proline contents, growth responses and chlorophyll contents in the leaves of ...

  1. Changes in Antioxidant Defense System Using Different Lipid Emulsions in Parenteral Nutrition in Children after Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    María Auxiliadora Baena-Gómez

    2015-08-01

    Full Text Available Background: Traditionally, lipids used in parenteral nutrition (PN are based on ω-6 fatty acid-rich vegetable oils, such as soybean oil, with potential adverse effects involving oxidative stress. Methods: We evaluated the antioxidant defense system in children, after hematopoietic stem cell transplantation (HSCT, who were randomized to use a lipid emulsion with fish oil or soybean oil. Blood samples at baseline, at 10 days, and at the end of the PN were taken to analyze plasma retinol, α-tocopherol, β-carotene, coenzyme Q9 and coenzyme Q10 levels, and catalase (CAT, glutathione reductase (GR, glutathione peroxidase (GPOX, and superoxide dismutase (SOD levels in lysed erythrocytes. Results: An increase in plasma α-tocopherol levels in the group of patients receiving the fish oil-containing emulsion (FO compared with the group receiving the soybean emulsion was observed at day 10 of PN. Concurrently, plasma α-tocopherol increased in the FO group and β-carotene decreased in both groups at day 10 compared with baseline levels, being more significant in the group receiving the FO emulsion. Conclusion: FO-containing emulsions in PN could improve the antioxidant profile by increasing levels of α-tocopherol in children after HSCT who are at higher risk of suffering oxidative stress and metabolic disorders.

  2. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance

    International Nuclear Information System (INIS)

    Jin Xiaofen; Yang Xiaoe; Islam, Ejazul; Liu Dan; Mahmood, Qaisar

    2008-01-01

    Plant growth, ultrastructural and antioxidant adaptations and glutathione biosynthesis in Cd-hyperaccumulating ecotype Sedum alfredii Hance (HE) countering high Cd environment were investigated and compared with its non Cd-hyperaccumulating ecotype (NHE). Cadmium exposure resulted in significant ultrastructural changes in root meristem and leaf mesophyll cells of S. alfredii, but damage was more pronounced in NHE even when Cd concentrations were one-tenth of those applied to HE. Cadmium stress damaged chloroplasts causing imbalanced lamellae formation coupled with early leaf senescence. Histochemical results revealed that glutathione (GSH) biosynthesis inhibition led to overproduction of hydrogen peroxide (H 2 O 2 ) and superoxide radical (O 2 · - ) in HE but not in NHE. Differences were noted in both HE and NHE for catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR) activities under various Cd stress levels. No relationship was found between antioxidative defense capacity including activities of superoxide dismutase (SOD), CAT, GPX, APX and GR as well as ascorbic acid (AsA) contents and Cd tolerance in the two ecotypes of S. alfredii. The GSH biosynthesis induction in root and shoot exposed to elevated Cd conditions may be involved in Cd tolerance and hyperaccumulation in HE of S. alfredii H

  3. Confronting actual influence of radiation on human bodies and biological defense mechanism

    International Nuclear Information System (INIS)

    Matsubara, Junko

    2012-01-01

    After the accident at Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, social, economical, psychological pressures on local residents and fears of radiation among the general public have not been resolved. Based on the assumption that the negligence of specialists to clearly explain the influence of radiation on human bodies to the general public is the factor for above mentioned pressures and fears, the influence of radiation from a realistic view was discussed. The topics covered are: (1) understanding the meaning of radiation regulation, (2) radiation and threshold values, (3) actual influence of low-dose radiation, (4) chemical and biological defense in defense mechanism against radiation, (5) problems raised by Fukushima Daiichi nuclear accident. Furthermore, the article explains the principles and the applications of biological defense function activation, and suggested that self-help efforts to fight against stress are from now on. (S.K.)

  4. Why we should stop inferring simple correlations between antioxidants and plant stress resistance: towards the antioxidomic era.

    Science.gov (United States)

    Loiacono, F Vanessa; De Tullio, Mario C

    2012-04-01

    A large number of studies have investigated the relationship between different forms of abiotic stress and antioxidants. However, misconceptions and technical flaws often affect studies on this important topic. Reactive oxygen species (ROS) generated under stress conditions should not be considered just as potential threats, because they are essential components of the signaling mechanism inducing plant defenses. Similarly, the complexity of the antioxidant system should be considered, to avoid misleading oversimplifications. Recent literature is discussed, highlighting the importance of accurate experimental setups for obtaining reliable results in this delicate field of research. A tentative "troubleshooting guide" is provided to help researchers interested in improving the quality of their work on the role of antioxidants in plant stress resistance. Significant advancements in the field could be reached with the development of antioxidomics, defined here as a new branch of research at the crossroads of other disciplines including metabolomics and proteomics, studying the complex relationship among antioxidants and their functions.

  5. Secondary targets of nitrite-derived reactive nitrogen species: nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications.

    Science.gov (United States)

    d'Ischia, Marco; Napolitano, Alessandra; Manini, Paola; Panzella, Lucia

    2011-12-19

    Nitrite, the primary metabolite of nitric oxide (NO) and a widely diffused component of human diet, plays distinct and increasingly appreciated roles in human physiology. However, when exposed to acidic environments, typically in the stomach, or under oxidative stress conditions, it may be converted to a range of reactive nitrogen species (RNS) which in turn can target a variety of biomolecules. Typical consequences of toxicological relevance include protein modification, DNA base deamination and the formation of N-nitrosamines, among the most potent mutagenic and carcinogenic compounds for humans. Besides primary biomolecules, nitrite can cause structural modifications to a variety of endogenous and exogenous organic compounds, ranging from polyunsaturated fatty acids to estrogens, tocopherol, catecholamines, furans, retinoids, dietary phenols, and a range of xenobiotics. The study of the interactions between nitrite and key food components, including phenolic antioxidants, has therefore emerged as an area of great promise for delineating innovative strategies in cancer chemoprevention. Depending on substrates and conditions, diverse reaction pathways may compete to determine product features and distribution patterns. These include nitrosation and nitration but also oxidation, via electron transfer to nitrosonium ion or nitrogen dioxide. This contribution aims to provide an overview of the main classes of compounds that can be targeted by nitrite and to discuss at chemical levels the possible reaction mechanisms under conditions that model those occurring in the stomach. The toxicological implications of the nitrite-modified molecules are finally addressed, and a rational chemical approach to the design of potent antinitrosing agents is illustrated. © 2011 American Chemical Society

  6. Effects of the herbicide isoproturon on metallothioneins, growth, and antioxidative defenses in the aquatic worm Tubifex tubifex (Oligochaeta, Tubificidae).

    Science.gov (United States)

    Mosleh, Yahia Y; Paris-Palacios, Séverine; Couderchet, Michel; Biagianti-Risbourg, Sylvie; Vernet, Guy

    2005-07-01

    Metallothioneins (MTs) are low molecular weight proteins, mainly implicated in metal ion detoxification. Increase in MT contents is considered to be a specific biomarker of metal exposure. Recently it has been demonstrated that MTs participate in several cellular functions such as regulation of growth, and antioxidative defenses. Therefore, the induction of MTs as biomarkers of exposure to the pesticide isoproturon has been investigated in the aquatic worms Tubifex tubifex. MT levels in exposed worms increased significantly (p isoproturon (maximum increase compared to unexposed controls: +148.56% for 10 mg l(-1) after 4 days of exposure). In response to isoproturon, the activity of glutathione-S-transferase (max. +52%), glutathione-reductase (max. +100%), and catalase (max. +117%) increased, demonstrating the occurrence of an oxidative stress response to the herbicide. Thus, the increase in MT contents caused by isoproturon was interpreted as a defense response towards increased oxidative stress generated by the herbicide. Residues of isoproturon and its metabolites, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl) urea, and 4-isopropylanilin were detected in the worm growth medium. Half-life of the herbicide was shorter at a low (0.1 mg l(-1)) initial concentration. The herbicide accumulated in T. tubifex but no metabolite could be detected.

  7. Pathogenesis and prophylaxis of AMD: focus on oxidative stress and antioxidants

    Directory of Open Access Journals (Sweden)

    Anna Wiktorowska-Owczarek

    2010-07-01

    Full Text Available Age-related macular degeneration (AMD is the leading cause of severe visual loss and blindness in people over 55. Its pathogenesis – likely multifactorial, involving a complex interaction of metabolic, functional, genetic and environmental factors – remains poorly understood. Among molecular links in pathogenesis of AMD is the oxidative stress in the retina, a structure that is particularly susceptible to damage by reactive oxygen species (ROS since photoreceptor outer segment (POS membranes are rich in polyunsaturated fatty acids which can be readily oxidized and can initiate a cytotoxic chain reaction. Occurring in the neighborhood of photoreceptors, the retinal pigment epithelial cells (RPE actively contribute to both the retinoid cycle and catabolism of constantly shed and phagocytized parts of photoreceptor outer segments. Enzymatic degradation of photoreceptor fragments occurring in RPE phagolysosomes is not complete and undigested material in the form of insoluble aggregates, called lipofuscin, is deposited in lysosomes of RPE cells. Lipofuscin contains a mixture of diverse molecular components including retinoid-derived compounds, some of which displaying potent photoinducible properties, contributing to an enhancement and propagation of the oxidative stress. The retina possesses defense mechanisms against the oxidative stress that effectively neutralize the consequences of reactive oxygen species actions under normal conditions. A key role in the antioxidant defense plays an array of substances, including: xanthophylls (lutein and zeaxanthin, vitamin C and E, and glutathione. This paper surveys the current concepts on the role of the oxidative stress in pathophysiology of AMD, and describes major components of the antioxidant defense system, including their use in AMD prophylaxis and therapy.

  8. Defense Mechanisms of Pregnant Mothers Predict Attachment Security, Social-Emotional Competence, and Behavior Problems in Their Toddlers.

    Science.gov (United States)

    Porcerelli, John H; Huth-Bocks, Alissa; Huprich, Steven K; Richardson, Laura

    2016-02-01

    For at-risk (single parent, low income, low support) mothers, healthy adaptation and the ability to manage stress have clear implications for parenting and the social-emotional well-being of their young offspring. The purpose of this longitudinal study was to examine associations between defense mechanisms in pregnant women and their toddlers' attachment security, social-emotional, and behavioral adjustment. Participants were 84 pregnant women during their last trimester of pregnancy, recruited from community agencies primarily serving low-income families. Women were followed prospectively from pregnancy through 2 years after birth and completed several multimethod assessments during that period. Observations of mother-child interactions were also coded after the postnatal visits. Multiple regression analyses revealed that mothers' defense mechanisms were significantly associated with several toddler outcomes. Mature, healthy defenses were significantly associated with greater toddler attachment security and social-emotional competence and fewer behavior problems, and less mature defenses (disavowal in particular) were associated with lower levels of attachment security and social-emotional competence. Associations remained significant, or were only slightly attenuated, after controlling for demographic variables and partner abuse during pregnancy. The study findings suggest that defensive functioning in parents preparing for and parenting toddlers influences the parent-child attachment relationship and social-emotional adjustment in the earliest years of life. Possible mechanisms for these associations may include parental attunement and mentalization, as well as specific caregiving behavior toward the child. Defensive functioning during times of increased stress (such as the prenatal to postnatal period) may be especially important for understanding parental influences on the child.

  9. Daily Nutritional Dose Supplementation with Antioxidant Nutrients and Phytochemicals Improves DNA and LDL Stability: A Double-Blind, Randomized, and Placebo-Controlled Trial

    Directory of Open Access Journals (Sweden)

    You Jin Kim

    2013-12-01

    Full Text Available Reactive oxygen species are important risk factors for age-related diseases, but they also act as signaling factors for endogenous antioxidative defense. The hypothesis that a multi-micronutrient supplement with nutritional doses of antioxidant nutrients and phytochemicals (MP may provide protection against oxidative damage and maintain the endogenous antioxidant defense capacity was assessed in subjects with a habitually low intake of fruits and vegetables. In a randomized, placebo-controlled, and parallel designed trial, 89 eligible subjects were assigned to either placebo or MP for eight weeks. Eighty subjects have completed the protocol and included for the analysis. MP treatment was superior at increasing serum folate (p < 0.0001 and resistance to DNA damage (p = 0.006, tail intensity; p = 0.030, tail moment by comet assay, and LDL oxidation (p = 0.009 compared with the placebo. Moreover, the endogenous oxidative defense capacity was not weakened after MP supplementation, as determined by the levels of glutathione peroxidase (p = 0.442, catalase (p = 0.686, and superoxide dismutase (p = 0.804. The serum folate level was negatively correlated with DNA damage (r = −0.376, p = 0.001 for tail density; r = −0.329, p = 0.003 for tail moment, but no correlation was found with LDL oxidation (r = −0.123, p = 0.275. These results suggest that MP use in healthy subjects with habitually low dietary fruit and vegetable intake may be beneficial in providing resistance to oxidative damage to DNA and LDL without suppressing the endogenous defense mechanisms.

  10. Induction of Nrf2-mediated cellular defenses and alteration of phase I activities as mechanisms of chemoprotective effects of coffee in the liver.

    Science.gov (United States)

    Cavin, C; Marin-Kuan, M; Langouët, S; Bezençon, C; Guignard, G; Verguet, C; Piguet, D; Holzhäuser, D; Cornaz, R; Schilter, B

    2008-04-01

    Coffee consumption has been associated with a significant decrease in the risk of developing chronic diseases such as Parkinson disease, diabetes type-2 and several types of cancers (e.g. colon, liver). In the present study, a coffee-dependent induction of enzymes involved in xenobiotic detoxification processes was observed in rat liver and primary hepatocytes. In addition, coffee was found to induce the mRNA and protein expression of enzymes involved in cellular antioxidant defenses. These inductions were correlated with the activation of the Nrf2 transcription factor as shown using an ARE-reporter luciferase assay. The induction of detoxifying enzymes GSTs and AKR is compatible with a protection against both genotoxicity and cytotoxicity of aflatoxin B1 (AFB1). This hypothesis was confirmed in in vitro and ex vivo test systems, where coffee reduced both AFB1-DNA and protein adducts. Interestingly, coffee was also found to inhibit cytochrome CYP1A1/2, indicating that other mechanisms different from a stimulation of detoxification may also play a significant role in the chemoprotective effects of coffee. Further investigations in either human liver cell line and primary hepatocytes indicated that the chemoprotective effects of coffee against AFB1 genotoxicity are likely to be of relevance for humans. These data strongly suggest that coffee may protect against the adverse effects of AFB1. In addition, the coffee-mediated stimulation of the Nrf2-ARE pathway resulting in increased endogenous defense mechanisms against electrophilic but also oxidative insults further support that coffee may be associated with a protection against various types of chemical stresses.

  11. The Effect of a 12-Week Moderate Intensity Interval Training Program on the Antioxidant Defense Capability and Lipid Profile in Men Smoking Cigarettes or Hookah: A Cohort Study

    Directory of Open Access Journals (Sweden)

    Abdessalem Koubaa

    2015-01-01

    Full Text Available Aim. To examine the impact of interval training program on the antioxidant defense capability and lipid profile in men smoking cigarettes or hookah unable or unwilling to quit smoking. Methods. Thirty-five participants performed an interval training (2 : 1 work : rest ratio 3 times a week for 12 weeks at an intensity of 70% of VO2max. All subjects were subjected to a biochemical test session before and after the training program. Results. The increase of total antioxidant status (TAS, glutathione peroxidase (GPx, and α-tocopherol, is significant only for cigarette smokers (CS and hookah smokers (HS groups. The decrease of malondialdehyde (MDA and the increase of glutathione reductase (GR are more pronounced in smokers groups compared to those of nonsmokers (NS. Superoxide dismutase (SOD increases in NS, CS, and HS groups by 10.1%, 19.5%, and 13.3%, respectively (P<0.001. Likewise, a significant improvement of high-density lipoprotein cholesterol (HDL-C and TC/HDL-C ratio was observed in CS and HS groups (P<0.05. Conclusion. Although the interval training program does not have a significant effect on blood lipid levels, it seems to be very beneficial in the defense and prevention programs of oxidative stress.

  12. Dietary Antioxidants as Modifiers of Physiologic Adaptations to Exercise

    Science.gov (United States)

    Mankowski, Robert T.; Anton, Stephen D.; Buford, Thomas W.; Leeuwenburgh, Christiaan

    2015-01-01

    Adaptive responses to exercise training (ET) are crucial in maintaining physiological homeostasis and health span. Exercise-induced aerobic bioenergetic reactions in mitochondria and cytosol increase production of reactive oxygen species (ROSs), where excess of ROS can be scavenged by enzymatic as well as non-enzymatic antioxidants to protect against deleterious oxidative stress. Free radicals, however, have recently been recognized as crucial signaling agents that promote adaptive mechanisms to ET, such as mitochondrial biogenesis, antioxidant (AO) enzyme activity defense system upregulation, insulin sensitivity, and glucose uptake in skeletal muscle. Commonly used non-enzymatic AO supplements, such as vitamins C and E, a-lipoic acid, and polyphenols, in combination with ET, have been proposed as ways to prevent exercise-induced oxidative stress and hence improve adaptation responses to endurance training. Preclinical and clinical studies to date have shown inconsistent results indicating either positive or negative effects of endurance training combined with different blends of AO supplements (mostly vitamins C and E and a-lipoic acid) on redox status, mitochondrial biogenesis pathways, and insulin sensitivity. Preclinical reports on ET combined with resveratrol, however, have shown consistent positive effects on exercise performance, mitochondrial biogenesis, and insulin sensitivity, with clinical trials reporting mixed effects. Relevant clinical studies have been few and have used inconsistent results and methodology (types of compounds, combinations, and supplementation time). The future studies would investigate the effects of specific antioxidants and other popular supplements, such as a-lipoic acid and resveratrol, on training effects in humans. Of particular importance are older adults who may be at higher risk of age-related increased oxidative stress, an impaired AO enzyme defense system, and comorbidities such as hypertension, insulin resistance, and

  13. Heterocyclic Schiff bases as non toxic antioxidants: Solvent effect, structure activity relationship and mechanism of action

    Science.gov (United States)

    Shanty, Angamaly Antony; Mohanan, Puzhavoorparambil Velayudhan

    2018-03-01

    Phenolic heterocyclic imine based Schiff bases from Thiophene-2-carboxaldehyde and Pyrrole-2-carboxaldehyde were synthesized and characterized as novel antioxidants. The solvent effects of these Schiff bases were determined and compared with standard antioxidants, BHA employing DPPH assay and ABTS assay. Fixed reaction time and Steady state measurement were used for study. IC50 and EC50 were calculated. Structure-activity relationship revealed that the electron donating group in the phenolic ring increases the activity where as the electron withdrawing moiety decreases the activity. The Schiff base derivatives showed antioxidant property by two different pathways namely SPLET and HAT mechanisms in DPPH assay. While in ABTS method, the reaction between ABTS radical and Schiff bases involves electron transfer followed by proton transfer (ET-PT) mechanism. The cytotoxicity of these compounds has been evaluated by MTT assay. The results showed that all these compounds are non toxic in nature.

  14. The protective effect of plasma antioxidants during ozone ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... In this study we investigated the possible protective effects of the plasma antioxidant defense system during O3-AHT. Venous blood from six ..... immune deficiency syndrome (AIDS), and a rationale for ozone therapy and other ...

  15. Quantum Chemical Study on the Antioxidation Mechanism of Piceatannol and Isorhapontigenin toward Hydroxyl and Hydroperoxyl Radicals.

    Directory of Open Access Journals (Sweden)

    Yang Lu

    Full Text Available A systematic study of the antioxidation mechanisms behind hydroxyl (•OH and hydroperoxyl (•OOH radical scavenging activity of piceatannol (PIC and isorhapontigenin (ISO was carried out using density functional theory (DFT method. Two reaction mechanisms, abstraction (ABS and radical adduct formation (RAF, were discussed. A total of 24 reaction pathways of scavenging •OH and •OOH with PIC and ISO were investigated in the gas phase and solution. The thermodynamic and kinetic properties of all pathways were calculated. Based on these results, we evaluated the antioxidant activity of every active site of PIC and ISO and compared the abilities of PIC and ISO to scavenge radicals. According to our results, PIC and ISO may act as effective •OH and •OOH scavengers in organism. A4-hydroxyl group is a very important active site for PIC and ISO to scavenge radicals. The introducing of -OH or -OCH3 group to the ortho-position of A4-hydroxyl group would increase its antioxidant activity. Meanwhile, the conformational effect was researched, the results suggest that the presence and pattern of intramolecular hydrogen bond (IHB are considerable in determining the antioxidant activity of PIC and ISO.

  16. Research on offense and defense technology for iOS kernel security mechanism

    Science.gov (United States)

    Chu, Sijun; Wu, Hao

    2018-04-01

    iOS is a strong and widely used mobile device system. It's annual profits make up about 90% of the total profits of all mobile phone brands. Though it is famous for its security, there have been many attacks on the iOS operating system, such as the Trident apt attack in 2016. So it is important to research the iOS security mechanism and understand its weaknesses and put forward targeted protection and security check framework. By studying these attacks and previous jailbreak tools, we can see that an attacker could only run a ROP code and gain kernel read and write permissions based on the ROP after exploiting kernel and user layer vulnerabilities. However, the iOS operating system is still protected by the code signing mechanism, the sandbox mechanism, and the not-writable mechanism of the system's disk area. This is far from the steady, long-lasting control that attackers expect. Before iOS 9, breaking these security mechanisms was usually done by modifying the kernel's important data structures and security mechanism code logic. However, after iOS 9, the kernel integrity protection mechanism was added to the 64-bit operating system and none of the previous methods were adapted to the new versions of iOS [1]. But this does not mean that attackers can not break through. Therefore, based on the analysis of the vulnerability of KPP security mechanism, this paper implements two possible breakthrough methods for kernel security mechanism for iOS9 and iOS10. Meanwhile, we propose a defense method based on kernel integrity detection and sensitive API call detection to defense breakthrough method mentioned above. And we make experiments to prove that this method can prevent and detect attack attempts or invaders effectively and timely.

  17. Ginsan activated the antioxidant defense systems in irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jie Young; Son, Soo Jung; Ahn, Ji Yeon; Shim, Ji Young; Han, Young Soo; Jung, In Sung; Yun, Yeon Sook [KIRMS Daegu (Korea, Republic of)

    2003-07-01

    Ginsan, a polysaccharide extracted from Panax ginseng, has hematopoietic activity and is also known as a good biological-response modifier. In this investigation, we studied the effects of ginsan on the {gamma}-radiation induced alterations of some antioxidant systems in spleen of Balb/c mice. There are many data that irradiation induces Reactive Oxygen Species (ROS), which plays an important causative role in radiation damage of cell. The level of ROS in cells is regulated by enzymatic and nonenzymatic antioxidant systems. The most powerful ones among them are superoxide dismutases (SODs) catalyzing the dismutation of superoxide anion radical o{sub 2} to H{sub 2}O{sub 2}, catalase deactivating h-2O{sub 2} and reduced glutathion (GSH) detoxifying H{sub 2}O{sub 2} and other ROS> At the 5{sub th} day after sublethal whole body irradiation, splenocytes of irradiated mice expressed only marginally increased levels of Mn-SOD, however, Cu/Zn-SOD, catalase, thioredoxine reductase (TR) and thioredoxine (TRX) mRNA (135% increase compared to control), however, the combination of irradiation with ginsan increased the SODs and GPX production more effectively. In addition to the above results, we obtained the similar data of protein expression. The enzyme activities of SOD, catalase, and GPX of ginsan-treated and irradiated mice were significantly enhanced by 140, 115, 126% respectively, compared with those of irradiated mice. Based on these results, we propose that the induction of antioxidant enzymes of ginsan is at least in part due to its capacity to protect against radiation.

  18. Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling

    Directory of Open Access Journals (Sweden)

    Zhou eLi

    2015-10-01

    Full Text Available Endogenous polyamine (PA may play a critical role in tolerance to water stress in plants acting as a signaling molecule activator. Water stress caused increases in endogenous PA content in leaves, including putrescine (Put, spermidine (Spd, and spermine (Spm. Exogenous application of Spd could induce the instantaneous H2O2 burst and accumulation of cytosolic free Ca2+, and activate NADPH oxidase and CDPK gene expression in cells. To a great extent, PA biosynthetic inhibitor reduced the water stress-induced H2O2 accumulation, free cytosolic Ca2+ release, antioxidant enzyme activities and genes expression leading to aggravate water stress-induced oxidative damage, while these suppressing effects were alleviated by the addition of exogenous Spd, indicating PA was involved in water stress-induced H2O2 and cytosolic free Ca2+ production as well as stress tolerance. Dehydrin genes (Y2SK, Y2K, and SK2 were showed to be highly responsive to exogenous Spd. PA-induced antioxidant defense and dehydrin genes expression could be blocked by the scavenger of H2O2 and the inhibitors of H2O2 generation or Ca2+ channels blockers, a calmodulin antagonist, as well as the inhibitor of CDPK. These findings suggested that PA regulated tolerance to water stress in white clover associated with antioxidant defenses and dehydrins via involvement in the calcium messenger system and H2O2 signaling pathways. PA-induced H2O2 production required Ca2+ release, while PA-induced Ca2+ release was also essential for H2O2 production, suggesting an interaction between PA-induced H2O2 and Ca2+ signaling.

  19. Flesh quality loss in response to dietary isoleucine deficiency and excess in fish: a link to impaired Nrf2-dependent antioxidant defense in muscle.

    Directory of Open Access Journals (Sweden)

    Lu Gan

    Full Text Available The present study explored the impact of dietary isoleucine (Ile on fish growth and flesh quality and revealed a possible role of muscle antioxidant defense in flesh quality in relation to dietary Ile. Grass carp (weighing 256.8±3.5 g were fed diets containing six graded levels of Ile (3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg for eight weeks. The results indicated that compared with Ile deficiency (3.8 g/kg diets and excess (18.5 g/kg diets groups, 9.3-15.2 g Ile/kg diet supplementations promoted fish growth and muscle fat deposition, whereas 6.6-15.2 g Ile/kg diets supplementation enhanced muscle nutrients (protein and total EAAs deposition. Furthermore, muscle shear force, pH value, and hydroxyproline concentration were improved by 9.3-12.5, 9.3 and 9.3 g Ile/kg diet supplementations, respectively. However, muscle cooking loss, lactate content, and activities of cathepsin B and L were decreased by 6.6-15.2, 9.3-12.5, 9.3-12.5 and 9.3-15.2 g Ile/kg diet supplementations, respectively. Additionally, 6.6-15.2 and 6.6-12.5 g Ile/kg diet supplementations attenuated malondialdehyde and protein carbonyl contents, respectively. The activities of copper/zinc superoxide dismutase (Cu/Zn-SOD and glutathione peroxidase (GPx, and glutathione content were enhanced by 6.6-9.3, 6.6-12.5 and 6.6-15.2 g Ile/kg diet supplementations, respectively. Moreover, the relative mRNA expressions of antioxidant enzymes, including Cu/Zn-SOD (6.6-12.5 g/kg diets and GPx (12.5 g/kg diets, as well as antioxidant-related signaling molecules, including NF-E2-related factor 2 (Nrf2 (6.6-12.5 g/kg diets, target of rapamycin (6.6-12.5 g/kg diets, ribosomal S6 protein kinase 1 (9.3-12.5 g/kg diets and casein kinase 2 (6.6-12.5 g/kg diets, were up-regulated when Ile diet supplementations were administered at these levels, respectively, whereas the relative mRNA expression of Kelch-like ECH-associated protein 1 was down-regulated with 9.3 g Ile/kg diet supplementations. Collectively

  20. Hydrogen Sulfide Alleviates Postharvest Senescence of Grape by Modulating the Antioxidant Defenses

    Directory of Open Access Journals (Sweden)

    Zhi-Jing Ni

    2016-01-01

    Full Text Available Hydrogen sulfide (H2S has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA, hydrogen peroxide (H2O2, and superoxide anion (O2∙- in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX and catalase (CAT and decreased those of lipoxygenase (LOX in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation.

  1. Boron alleviates the aluminum toxicity in trifoliate orange by regulating antioxidant defense system and reducing root cell injury.

    Science.gov (United States)

    Riaz, Muhammad; Yan, Lei; Wu, Xiuwen; Hussain, Saddam; Aziz, Omar; Wang, Yuhan; Imran, Muhammad; Jiang, Cuncang

    2018-02-15

    Aluminium (Al) toxicity is the most important soil constraint for plant growth and development in acid soils (pH Boron (B) is an essential micronutrient for the growth and development of higher plants. The results of previous studies propose that B might ameliorate Al toxicity; however, none of the studies have been conducted on trifoliate orange to study this effect. Thus, a study was carried out in hydroponics comprising of two different Al concentrations, 0 and 400 μM. For every concentration, two B treatments (0 and 10 μM as H 3 BO 3 ) were applied to investigate the B-induced alleviation of Al toxicity and exploring the underneath mechanisms. The results revealed that Al toxicity under B deficiency severely hampered the root growth and physiology of plant, caused oxidative stress and membrane damage, leading to severe root injury and damage. However, application of B under Al toxicity improved the root elongation and photosynthesis, while reduced Al uptake and mobilization into plant parts. Moreover, B supply regulated the activities of antioxidant enzymes, proline, secondary metabolites (phenylalanine ammonia lyase and polyphenol oxidase) contents, and stabilized integrity of proteins. Our study results imply that B supply promoted root growth as well as defense system by reducing reactive oxygen species (ROS) and Al concentrations in plant parts thus B induced alleviation of Al toxicity; a fact that might be significant for higher productivity of agricultural plants grown in acidic conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Diabetic beta-cells can achieve self-protection against oxidative stress through an adaptive up-regulation of their antioxidant defenses.

    Directory of Open Access Journals (Sweden)

    Grégory Lacraz

    Full Text Available BACKGROUND: Oxidative stress (OS, through excessive and/or chronic reactive oxygen species (ROS, is a mediator of diabetes-related damages in various tissues including pancreatic beta-cells. Here, we have evaluated islet OS status and beta-cell response to ROS using the GK/Par rat as a model of type 2 diabetes. METHODOLOGY/PRINCIPAL FINDINGS: Localization of OS markers was performed on whole pancreases. Using islets isolated from 7-day-old or 2.5-month-old male GK/Par and Wistar control rats, 1 gene expression was analyzed by qRT-PCR; 2 insulin secretion rate was measured; 3 ROS accumulation and mitochondrial polarization were assessed by fluorescence methods; 4 antioxidant contents were quantified by HPLC. After diabetes onset, OS markers targeted mostly peri-islet vascular and inflammatory areas, and not islet cells. GK/Par islets revealed in fact protected against OS, because they maintained basal ROS accumulation similar or even lower than Wistar islets. Remarkably, GK/Par insulin secretion also exhibited strong resistance to the toxic effect of exogenous H(2O(2 or endogenous ROS exposure. Such adaptation was associated to both high glutathione content and overexpression (mRNA and/or protein levels of a large set of genes encoding antioxidant proteins as well as UCP2. Finally, we showed that such a phenotype was not innate but spontaneously acquired after diabetes onset, as the result of an adaptive response to the diabetic environment. CONCLUSIONS: The GK/Par model illustrates the effectiveness of adaptive response to OS by beta-cells to achieve self-tolerance. It remains to be determined to what extend such islet antioxidant defenses upregulation might contribute to GK/Par beta-cell secretory dysfunction.

  3. Green tea polyphenol (−)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the Nrf2 rescue pathway

    International Nuclear Information System (INIS)

    Wang, Dongxu; Wang, Yijun; Wan, Xiaochun; Yang, Chung S.; Zhang, Jinsong

    2015-01-01

    (−)-Epigallocatechin-3-gallate (EGCG), a constituent of green tea, has been suggested to have numerous health-promoting effects. On the other hand, high-dose EGCG is able to evoke hepatotoxicity. In the present study, we elucidated the responses of hepatic major antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) rescue pathway to high-dose levels of EGCG in Kunming mice. At a non-lethal toxic dose (75 mg/kg, i.p.), repeated EGCG treatments markedly decreased the levels of superoxide dismutase, catalase, and glutathione peroxidase. As a rescue response, the nuclear distribution of Nrf2 was significantly increased; a battery of Nrf2-target genes, including heme oxygenase 1 (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and those involved in glutathione and thioredoxin systems, were all up-regulated. At the maximum tolerated dose (45 mg/kg, i.p.), repeated EGCG treatments did not disturb the major antioxidant defense. Among the above-mentioned genes, only HO1, NQO1, and GST genes were significantly but modestly up-regulated, suggesting a comprehensive and extensive activation of Nrf2-target genes principally occurs at toxic levels of EGCG. At a lethal dose (200 mg/kg, i.p.), a single EGCG treatment dramatically decreased not only the major antioxidant defense but also the Nrf2-target genes, demonstrating that toxic levels of EGCG are able to cause a biphasic response of Nrf2. Overall, the mechanism of EGCG-triggered hepatotoxicity involves suppression of major antioxidant enzymes, and the Nrf2 rescue pathway plays a vital role for counteracting EGCG toxicity. - Highlights: • EGCG at maximum tolerated dose does not disturb hepatic major antioxidant defense. • EGCG at maximum tolerated dose modestly upregulates hepatic Nrf2 target genes. • EGCG at toxic dose suppresses hepatic major antioxidant enzymes. • EGCG at non-lethal toxic dose pronouncedly activates hepatic Nrf2 rescue response. • EGCG at

  4. Green tea polyphenol (−)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the Nrf2 rescue pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongxu; Wang, Yijun; Wan, Xiaochun [Key Laboratory of Tea Biochemistry & Biotechnology, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036 (China); Yang, Chung S. [Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Zhang, Jinsong, E-mail: zjs@ahau.edu.cn [Key Laboratory of Tea Biochemistry & Biotechnology, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036 (China)

    2015-02-15

    (−)-Epigallocatechin-3-gallate (EGCG), a constituent of green tea, has been suggested to have numerous health-promoting effects. On the other hand, high-dose EGCG is able to evoke hepatotoxicity. In the present study, we elucidated the responses of hepatic major antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) rescue pathway to high-dose levels of EGCG in Kunming mice. At a non-lethal toxic dose (75 mg/kg, i.p.), repeated EGCG treatments markedly decreased the levels of superoxide dismutase, catalase, and glutathione peroxidase. As a rescue response, the nuclear distribution of Nrf2 was significantly increased; a battery of Nrf2-target genes, including heme oxygenase 1 (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and those involved in glutathione and thioredoxin systems, were all up-regulated. At the maximum tolerated dose (45 mg/kg, i.p.), repeated EGCG treatments did not disturb the major antioxidant defense. Among the above-mentioned genes, only HO1, NQO1, and GST genes were significantly but modestly up-regulated, suggesting a comprehensive and extensive activation of Nrf2-target genes principally occurs at toxic levels of EGCG. At a lethal dose (200 mg/kg, i.p.), a single EGCG treatment dramatically decreased not only the major antioxidant defense but also the Nrf2-target genes, demonstrating that toxic levels of EGCG are able to cause a biphasic response of Nrf2. Overall, the mechanism of EGCG-triggered hepatotoxicity involves suppression of major antioxidant enzymes, and the Nrf2 rescue pathway plays a vital role for counteracting EGCG toxicity. - Highlights: • EGCG at maximum tolerated dose does not disturb hepatic major antioxidant defense. • EGCG at maximum tolerated dose modestly upregulates hepatic Nrf2 target genes. • EGCG at toxic dose suppresses hepatic major antioxidant enzymes. • EGCG at non-lethal toxic dose pronouncedly activates hepatic Nrf2 rescue response. • EGCG at

  5. Cysteine-stabilised peptide extract of Morinda lucida (Benth) leaf exhibits antimalarial activity and augments antioxidant defense system in P. berghei-infected mice.

    Science.gov (United States)

    Adebayo, Joseph O; Adewole, Kayode E; Krettli, Antoniana U

    2017-07-31

    Cysteine-stabilised peptides (CSP) are majorly explored for their bioactivities with applications in medicine and agriculture. Morinda lucida leaf is used indigenously for the treatment of malaria; it also contains CSP but the role of CSP in the antimalarial activity of the leaf has not been evaluated. This study was therefore performed to evaluate the antimalarial activity of partially purified cysteine-stabilised peptide extract (PPCPE) of Morinda lucida leaf and its possible augmentation of the antioxidant systems of liver and erythrocytes in murine malaria. PPCPE was prepared from Morinda lucida leaf. The activity of PPCPE was evaluated in vitro against Plasmodium falciparum W2 and its cytotoxicity against a BGM kidney cell line. PPCPE was also evaluated for its antimalarial activity and its effects on selected liver and erythrocyte antioxidant parameters in P. berghei NK65-infected mice. PPCPE was not active against P. falciparum W2 (IC 50 : >50µg/ml) neither was it cytotoxic (MLD 50 : >1000µg/ml). However, PPCPE was active against P. berghei NK65 in vivo, causing 51.52% reduction in parasitaemia at 31.25mg/Kg body weight on day 4 post-inoculation. PPCPE significantly reduced (P activities of glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase in a dose-dependent manner, which was significant (P antimalarial effect and that PPCPE may augment the antioxidant defense system to alleviate the reactive oxygen species-mediated complications of malaria. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta.

    Science.gov (United States)

    Moenne, Alejandra; González, Alberto; Sáez, Claudio A

    2016-07-01

    Green and red macroalgae are closely related organisms, and with terrestrial plants, and constitute the base of marine food webs in coastal ecosystems. Green and red seaweeds, as all living organisms, require essential metals, such as copper, iron, zinc, which can act as co-factors for several proteins and enzymes; however, these metals in excess can induce stress and impair cell viability. Most important negative effects of metal excess are related to the induction of an oxidative stress condition, characterized by the over-accumulation of Reactive Oxygen Species (ROS). In this respect, copper, abundant in wastewaters disposed to coastal environments from domestic and industrial activities, has been one of the most studied metals. Different investigations have provided evidence that green and red macroalgae display several defenses against copper excess to prevent, or at least reduce, stress and damage, among which are cellular exclusion mechanisms, synthesis of metal-chelating compounds, and the activation of the antioxidant system. Most important defense mechanisms identified in green and red seaweed involve: metal-binding to cell wall and epibionts; syntheses of metallothioneins and phytochelatins that accumulate in the cytoplasm; and the increase in the activity of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione peroxidase and catalase, and greater production of antioxidant metabolites as glutathione and ascorbate in organelles and the cytoplasm. In this review, we go through historical records, latest advances, and pending tasks aiming to expand our current knowledge on defense mechanisms to copper excess in green and red macroalgae, with emphasis on biochemical and molecular aspects. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Viewing loved faces inhibits defense reactions: a health-promotion mechanism?

    Directory of Open Access Journals (Sweden)

    Pedro Guerra

    Full Text Available We have known for decades that social support is associated with positive health outcomes. And yet, the neurophysiological mechanisms underlying this association remain poorly understood. The link between social support and positive health outcomes is likely to depend on the neurophysiological regulatory mechanisms underlying reward and defensive reactions. The present study examines the hypothesis that emotional social support (love provides safety cues that activate the appetitive reward system and simultaneously inhibit defense reactions. Using the startle probe paradigm, 54 undergraduate students (24 men viewed black and white photographs of loved (romantic partner, father, mother, and best friend, neutral (unknown, and unpleasant (mutilated faces. Eye-blink startle, zygomatic major activity, heart rate, and skin conductance responses to the faces, together with subjective ratings of valence, arousal, and dominance, were obtained. Viewing loved faces induced a marked inhibition of the eye-blink startle response accompanied by a pattern of zygomatic, heart rate, skin conductance, and subjective changes indicative of an intense positive emotional response. Effects were similar for men and women, but the startle inhibition and the zygomatic response were larger in female participants. A comparison between the faces of the romantic partner and the parent who shares the partner's gender further suggests that this effect is not attributable to familiarity or arousal. We conclude that this inhibitory capacity may contribute to the health benefits associated with social support.

  8. Viewing loved faces inhibits defense reactions: a health-promotion mechanism?

    Science.gov (United States)

    Guerra, Pedro; Sánchez-Adam, Alicia; Anllo-Vento, Lourdes; Ramírez, Isabel; Vila, Jaime

    2012-01-01

    We have known for decades that social support is associated with positive health outcomes. And yet, the neurophysiological mechanisms underlying this association remain poorly understood. The link between social support and positive health outcomes is likely to depend on the neurophysiological regulatory mechanisms underlying reward and defensive reactions. The present study examines the hypothesis that emotional social support (love) provides safety cues that activate the appetitive reward system and simultaneously inhibit defense reactions. Using the startle probe paradigm, 54 undergraduate students (24 men) viewed black and white photographs of loved (romantic partner, father, mother, and best friend), neutral (unknown), and unpleasant (mutilated) faces. Eye-blink startle, zygomatic major activity, heart rate, and skin conductance responses to the faces, together with subjective ratings of valence, arousal, and dominance, were obtained. Viewing loved faces induced a marked inhibition of the eye-blink startle response accompanied by a pattern of zygomatic, heart rate, skin conductance, and subjective changes indicative of an intense positive emotional response. Effects were similar for men and women, but the startle inhibition and the zygomatic response were larger in female participants. A comparison between the faces of the romantic partner and the parent who shares the partner's gender further suggests that this effect is not attributable to familiarity or arousal. We conclude that this inhibitory capacity may contribute to the health benefits associated with social support.

  9. Gene Expression Analysis Reveals the Concurrent Activation of Proapoptotic and Antioxidant-Defensive Mechanisms in Flavokawain B-Treated Cervical Cancer HeLa Cells.

    Science.gov (United States)

    Yeap, Swee Keong; Abu, Nadiah; Akthar, Nadeem; Ho, Wan Yong; Ky, Huynh; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Kamarul, Tunku

    2017-09-01

    Flavokawain B (FKB) is known to possess promising anticancer abilities. This is demonstrated in various cancer cell lines including HeLa cells. Cervical cancer is among the most widely diagnosed cancer among women today. Though FKB has been shown to be effective in treating cancer cells, the exact molecular mechanism is still unknown. This study is aimed at understanding the effects of FKB on HeLa cells using a microarray-based mRNA expression profiling and proteome profiling of stress-related proteins. The results of this study suggest that FKB induced cell death through p21-mediated cell cycle arrest and activation of p38. However, concurrent activation of antioxidant-related pathways and iron sequestration pathway followed by activation of ER-resident stress proteins clearly indicate that FKB failed to induce apoptosis in HeLa cells via oxidative stress. This effect implies that the protection of HeLa cells by FKB from H 2 O 2 -induced cell death is via neutralization of reactive oxygen species.

  10. Effects of Sex, Social Desirability, and Birth Order on the Defense Mechanisms Inventory.

    Science.gov (United States)

    Dudley, Gary E.

    1978-01-01

    Investigated effects of sex difference, social desirability instructions, and birth order of respondents on defense mechanisms inventory (DMI). Sex difference was found in projection only. Social desirability effects were found in turning-against-others, projection, principalization, and reversal. Thus, an interpretive caution is in order…

  11. [Vitamins and minerals with antioxidant properties and cardiometabolic risk: controversies and perspectives].

    Science.gov (United States)

    Catania, Antonela Siqueira; Barros, Camila Risso de; Ferreira, Sandra Roberta G

    2009-07-01

    Oxygen reactive species (ROS) are generated during cellular processes. In excess, they may cause damages to the cell. Oxidative stress is an imbalance in the redox state that favors oxidation. Endogenous enzymes and some vitamins and minerals participate in the plasma antioxidant defense. Vitamin E is found in the plasma and in the LDL particle, avoiding lipid peroxidation. Observational studies reported an inverse association between vitamin E consumption and cardiometabolic (CM) risk. However, clinical trials were not able to prove the efficacy of its supplementation on CM endpoints. Vitamin C participates in the vitamin E regeneration system, keeping the plasma's antioxidant potential. Data about beneficial effects of its supplementation in CM risk reduction are inconclusive. The antioxidant activity of carotenoids is partially responsible for its protective role against cardiovascular diseases and cancer. Supplementation of this nutrient did not provide consistent findings in terms of CM risk reduction. Recently, zinc and selenium's participation in the antioxidant defense has been studied, yet its supplementation in individuals with normal levels and adequate ingestion of these nutrients does not seem necessary. In summary, the role of these micronutrients for CM risk is still very controversial. Epidemiological studies suggest that diets rich in antioxidants, or simply in fruit and vegetables intake, can reduce CM risk. Further studies are needed before recommending antioxidant supplements for this purpose.

  12. Effect of Iranian Propolis on Salivary Total Antioxidant Capacity in Gamma-irradiated Rats

    Directory of Open Access Journals (Sweden)

    Sara Aghel

    2014-12-01

    Full Text Available Background and aims. The antioxidant and anti-inflammatory properties of propolis were studied. Since saliva contains antioxidants and radiotherapy of the head and neck mainly affects the saliva, salivary antioxidant defensive mechanism is compromised with oxidative stress produced by radiation therapy. Therefore, the aim of the present study was to investigate the effect of propolis on salivary total antioxidant capacity in irradiated rats. Materials and methods. The study was conducted on 28 rats, 7‒11 weeks of age (160±20 g, divided into four groups: saline with no radiation (S, saline and radiation (SR, propolis with no radiation (P [400 mg/kg IP], propolis and radiation (PR [400 mg/kg IP]. SP and PR were exposed to 15 Gy of gamma irradiation for 7 minutes and 39 seconds. The rats received intraperitoneal injections each day for 10 days, and their tongues and lips were daily examined for mucositis; saliva sample were also taken three times on days 0, 6, and 10. Results. Mucositis incidence appeared to be delayed in the PR compared to the SR, and the severity was significantly higher in the SR compared to the PR. No significant alterations were observed in salivary antioxidant levels during the experiment, except the SR group in which a significant reduction was found. Conclusion. Propolis might reduce and delay radiation-induced mucositis in animal models; it might be able to prevent the reduction in salivary antioxidant levels in irradiated rats as well.

  13. Effects of ambient ozone on reactive oxygen species and antioxidant metabolites in leaves of pea (pisum sativum l.) plants

    International Nuclear Information System (INIS)

    Hassan, I.A.; Almeelbi, T.; Basahi, J.M.

    2017-01-01

    The differential response of two pea plants (Pisum sativum L. cultivars Little Marvel and Victory) to ambient O3 grown under open top chambers (OTCs) was analyzed and compared. Reactive oxygen species (ROS) generation, antioxidant metabolites such as ascorbate/glutathione as well as a series of enzymes for scavenging ROS were analyzed, all aiming to reveal the differential behavior of two closely related plants when exposed to ambient O3.Antioxidant levels and activities of related enzymes in response to ambient were noticeably different among Little Marvel and Victory plants. However, the response was cultivar-specific. There was higher accumulation of ROS and relatively lower induction of antioxidants and more inhibition in photosynthetic rates in Victory than Little Marvel. There was a good correlation between tolerance to O3 and high endogenous levels of antioxidant metabolites such as ascorbate (As), glutathione reductase (GR), superoxide dismutase (SOD), reduced (GSH) and oxidized glutathione (GSSG) in pea plants. These portrays a higher sensitivity of Victory to ambient O3.To the best of our knowledge, this is one of the very few studies attempted to describe the changes in contents of antioxidants and activities of related enzymes in leaves of two closely related cultivars to further ourunderstanding on the defense mechanism and strategies under ambient O3. The results highlighted the possible roles of antioxidants in O3 detoxification through activation an adaptive survival mechanism allowing the plant to complete its life cycle even under oxidative stressful conditions. (author)

  14. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Jae-Sung [Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Bo-Mi; Kim, Ryeo-Ok [Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Seo, Jung Soo [Pathology Team, National Fisheries Research and Development Institute, Busan 619-902 (Korea, Republic of); Kim, Il-Chan [Division of Life Sciences, Korea Polar Research Institute, Korea Institute of Ocean Science and Technology, Incheon 406-840 (Korea, Republic of); Lee, Young-Mi, E-mail: ymlee70@smu.ac.kr [Department of Green Life Science, College of Convergence, Sangmyung University, Seoul 110-743 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@hanyang.ac.kr [Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-09-15

    Highlights: •Novel identification of DNA repair-related genes in fish. •Investigation of whole expression profiling of DNA repair genes upon gamma radiation. •Analysis of effects of gamma radiation on antioxidant system and cell stress proteins. •Usefulness of verification of pathway-based profiling for mechanistic understanding. -- Abstract: To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4 Gy of radiation, and biochemical and molecular damage became substantial from 8 Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6 Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae.

  15. Modulation of pulmonary defense mechanisms by acute exposures to nitrogen dioxide

    International Nuclear Information System (INIS)

    Jakab, G.J.

    1987-01-01

    The effect of acute exposures to NO 2 on the antibacterial defenses of the murine lung was assessed following inhalation challenges with Staphylococcus aureus, Proteus mirabilis, and Pasteurella pneumotropica. With S. aureus pulmonary antibacterial defenses were suppressed at NO 2 levels of 4.0 ppm and greater. Exposure to 10.0 ppm enhanced the intrapulmonary killing of P. mirabilis which correlated with an increase in the phagocytic cell populations lavaged from the lungs; at 20.0 ppm bactericidal activity against P. mirabilis was impaired. Pulmonary antibacterial defenses against P. pneumotropica were impaired at 10.0 ppm which correlated with a decrease in the retrieved phagocytic lung cell population. Reversing the order of treatment (ie., NO 2 exposure prior to bacterial challenge) raised the threshold concentration for NO 2 -induced impairment of intrapulmonary bacterial killing. With S. aureus the effect was not observed at 5.0 ppm but at 10.0 ppm and with P. mirabilis not at 20.0 ppm but at 30.0 ppm intrapulmonary killing was enhanced. Exposures up to 20.0 ppm of NO 2 did not effect the physical translocation mechanisms of the lung as quantitated by declines in pulmonary radiotracer activity following aerogenic challenge with 32 P-labeled staphylococci

  16. [THE POSSIBILITY OF APPLICATION OF COLORIMETRY TECHNIQUE OF DETECTION OF LEVELS OF OXIDATIVE STRESS AND ANTIOXIDANT CAPACITY OF SERUM].

    Science.gov (United States)

    Sapojnikova, M A; Strakhova, L A; Blinova, T V; Makarov, I A; Rakhmanov, R S; Umniagina, I A

    2015-11-01

    The analysis was implemented concerning indicators of oxidative status and antioxidant capacity of serum. The indicators were received by colorimetry technique based on detection of peroxides in blood serum in examined patients of different categories: healthy persons aged from 17 to 20 years and from 30 to 60 years and patients with bronchopulmonary pathology. The low level of oxidative stress and high antioxidant capacity of serum were established in individuals ofyounger age. With increasing of age, degree of expression of oxidative stress augmented and level of antioxidant defense lowered. Almost all patients with bronchopulmonary pathology had high level of oxidative stress and low level of antioxidant defense. The analysis of quantitative data of examined indicators their conformity with health condition was established

  17. Studies on the hepatic antioxidant defense system in λ cyhalothrin ...

    African Journals Online (AJOL)

    user

    induced oxidative stress in fresh water tilapia ... Key words: Antioxidant status, λ cyhalothrin, lipid peroxidation, Oreochromis mossambicus, oxidative stress, synthetic pyrethroid. ..... and Stress: A case history for red–sore disease in largemouth bass.

  18. Oxidative stress and antioxidants in athletes undertaking regular exercise training.

    Science.gov (United States)

    Watson, Trent A; MacDonald-Wicks, Lesley K; Garg, Manohar L

    2005-04-01

    Exercise has been shown to increase the production of reactive oxygen species to a point that can exceed antioxidant defenses to cause oxidative stress. Dietary intake of antioxidants, physical activity levels, various antioxidants and oxidative stress markers were examined in 20 exercise-trained "athletes" and 20 age- and sex-matched sedentary "controls." Plasma F2-isoprostanes, antioxidant enzyme activities, and uric acid levels were similar in athletes and sedentary controls. Plasma alpha-tocopherol and beta-carotene were higher in athletes compared with sedentary controls. Total antioxidant capacity tended to be lower in athletes, with a significant difference between male athletes and male controls. Dietary intakes of antioxidants were also similar between groups and well above recommended dietary intakes for Australians. These findings suggest that athletes who consume a diet rich in antioxidants have elevated plasma alpha-tocopherol and beta-carotene that were likely to be brought about by adaptive processes resulting from regular exercise.

  19. Biomarkers of oxidative stress and of antioxidative defense: Relationship to intervention with antioxidant-rich foods

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Young, Jette Feveile; Loft, Steffen

    2001-01-01

    polyphenol intake was observed. There was an increased oxidative stress response toward plasma proteins from food items rich in polyphenols and vitamin C and a decreased response when fruits and vegetables were omitted using a controlled diet. There also was a similar trend toward increased antioxidant...

  20. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    Science.gov (United States)

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  1. Antioxidant deficit in gills of Pacific oyster (Crassostrea gigas) exposed to chlorodinitrobenzene increases menadione toxicity

    International Nuclear Information System (INIS)

    Trevisan, Rafael; Arl, Miriam; Sacchet, Cássia Lopes; Engel, Cristiano Severino; Danielli, Naissa Maria; Mello, Danielle Ferraz; Brocardo, Caroline; Maris, Angelica Francesca; Dafre, Alcir Luiz

    2012-01-01

    Disturbances in antioxidant defenses decrease cellular protection against oxidative stress and jeopardize cellular homeostasis. To knock down the antioxidant defenses of Pacific oyster Crassostrea gigas, animals were pre-treated with 1-chloro-2,4-dinitrobenzene (CDNB) and further challenged with pro-oxidant menadione (MEN). CDNB pre-treatment (10 μM for 18 h) was able to consume cellular thiols in gills, decreasing GSH (53%) and decrease protein thiols (25%). CDNB pre-treatment also disrupted glutathione reductase and thioredoxin reductase activity in the gills, but likewise strongly induced glutathione S-transferase activity (270% increase). Surprisingly, hemocyte viability was greatly affected 24 h after CDNB removal, indicating a possible vulnerability of the oyster immune system to electrophilic attack. New in vivo approaches were established, allowing the identification of higher rates of GSH–CDNB conjugate export to the seawater and enabling the measurement of the organic peroxide consumption rate. CDNB-induced impairment in antioxidant defenses decreased the peroxide removal rate from seawater. After showing that CDNB decreased gill antioxidant defenses and increased DNA damage in hemocytes, oysters were further challenged with 1 mM MEN over 24 h. MEN treatment did not affect thiol homeostasis in gills, while CDNB pre-treated animals recovered GSH and PSH to the control level after 24 h of depuration. Interestingly, MEN intensified GSH and PSH loss and mortality in CDNB-pre-treated animals, showing a clear synergistic effect. The superoxide-generating one-electron reduction of MEN was predominant in gills and may have contributed to MEN toxicity. These results support the idea that antioxidant-depleted animals are more susceptible to oxidative attack, which can compromise survival. Data also corroborate the idea that gills are an important detoxifying organ, able to dispose of organic peroxides, induce phase II enzymes, and efficiently export GSH

  2. Antioxidant deficit in gills of Pacific oyster (Crassostrea gigas) exposed to chlorodinitrobenzene increases menadione toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, Rafael; Arl, Miriam [Departamento de Bioquimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Sacchet, Cassia Lopes [Universidade do Oeste do Estado de Santa Catarina, 89600-000 Joacaba, SC (Brazil); Engel, Cristiano Severino; Danielli, Naissa Maria; Mello, Danielle Ferraz [Departamento de Bioquimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Brocardo, Caroline [Universidade do Oeste do Estado de Santa Catarina, 89600-000 Joacaba, SC (Brazil); Maris, Angelica Francesca [Departamento de Biologia Celular, Embriologia e Genetica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Dafre, Alcir Luiz, E-mail: alcir@ccb.ufsc.br [Departamento de Bioquimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil)

    2012-02-15

    Disturbances in antioxidant defenses decrease cellular protection against oxidative stress and jeopardize cellular homeostasis. To knock down the antioxidant defenses of Pacific oyster Crassostrea gigas, animals were pre-treated with 1-chloro-2,4-dinitrobenzene (CDNB) and further challenged with pro-oxidant menadione (MEN). CDNB pre-treatment (10 {mu}M for 18 h) was able to consume cellular thiols in gills, decreasing GSH (53%) and decrease protein thiols (25%). CDNB pre-treatment also disrupted glutathione reductase and thioredoxin reductase activity in the gills, but likewise strongly induced glutathione S-transferase activity (270% increase). Surprisingly, hemocyte viability was greatly affected 24 h after CDNB removal, indicating a possible vulnerability of the oyster immune system to electrophilic attack. New in vivo approaches were established, allowing the identification of higher rates of GSH-CDNB conjugate export to the seawater and enabling the measurement of the organic peroxide consumption rate. CDNB-induced impairment in antioxidant defenses decreased the peroxide removal rate from seawater. After showing that CDNB decreased gill antioxidant defenses and increased DNA damage in hemocytes, oysters were further challenged with 1 mM MEN over 24 h. MEN treatment did not affect thiol homeostasis in gills, while CDNB pre-treated animals recovered GSH and PSH to the control level after 24 h of depuration. Interestingly, MEN intensified GSH and PSH loss and mortality in CDNB-pre-treated animals, showing a clear synergistic effect. The superoxide-generating one-electron reduction of MEN was predominant in gills and may have contributed to MEN toxicity. These results support the idea that antioxidant-depleted animals are more susceptible to oxidative attack, which can compromise survival. Data also corroborate the idea that gills are an important detoxifying organ, able to dispose of organic peroxides, induce phase II enzymes, and efficiently export GSH

  3. MicroRNA-Mediated Gene Silencing in Plant Defense and Viral Counter-Defense

    Directory of Open Access Journals (Sweden)

    Sheng-Rui Liu

    2017-09-01

    Full Text Available MicroRNAs (miRNAs are non-coding RNAs of approximately 20–24 nucleotides in length that serve as central regulators of eukaryotic gene expression by targeting mRNAs for cleavage or translational repression. In plants, miRNAs are associated with numerous regulatory pathways in growth and development processes, and defensive responses in plant–pathogen interactions. Recently, significant progress has been made in understanding miRNA-mediated gene silencing and how viruses counter this defense mechanism. Here, we summarize the current knowledge and recent advances in understanding the roles of miRNAs involved in the plant defense against viruses and viral counter-defense. We also document the application of miRNAs in plant antiviral defense. This review discusses the current understanding of the mechanisms of miRNA-mediated gene silencing and provides insights on the never-ending arms race between plants and viruses.

  4. Psychoticism, Immature Defense Mechanisms and a Fearful Attachment Style are Associated with a Higher Homophobic Attitude.

    Science.gov (United States)

    Ciocca, Giacomo; Tuziak, Bogdan; Limoncin, Erika; Mollaioli, Daniele; Capuano, Nicolina; Martini, Alessia; Carosa, Eleonora; Fisher, Alessandra D; Maggi, Mario; Niolu, Cinzia; Siracusano, Alberto; Lenzi, Andrea; Jannini, Emmanuele A

    2015-09-01

    Homophobic behavior and a negative attitude toward homosexuals are prevalent among the population. Despite this, few researches have investigated the psychologic aspects associated with homophobia, as psychopathologic symptoms, the defensive system, and attachment styles. The aim of this study was to investigate the psychologic factors mentioned earlier and their correlation with homophobia. Five hundred fifty-one university students recruited, aged 18-30, were asked to complete several psychometric evaluation. In particular, Homophobia Scale (HS) was used to assess homophobia levels, the Symptoms Check List Revised (SCL-90-R) for the identification of psychopathologic symptoms, the Defence Style Questionnaire (DSQ-40) for the evaluation of defense mechanisms and the Relationship Questionnaire (RQ) for attachment styles. After a regression analysis, we found a significant predictive value of psychoticism (β = 0.142; P = 0.04) and of immature defense mechanisms (β = 0.257; P homophobia, while neurotic defense mechanisms (β = -0.123; P = 0.02) and depressive symptoms (β = -0.152; P = 0.04) have an opposite role. Moreover, categorical constructs of the RQ revealed a significant difference between secure and fearful attachments styles in levels of homophobia (secure = 22.09 ± 17.22 vs. fearful = 31.07 ± 25.09; P homophobia compared with the subjects demonstrating a fearful style of attachment. Hence, in the assessment of homophobia and in the relevant programs of prevention, it is necessary to consider the psychologic aspects described earlier. © 2015 International Society for Sexual Medicine.

  5. Modulation of antioxidant defences in digestive gland of Perna viridis (L.), on mercury exposures

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Jena, K.B.; Chainy, G.B.N.

    by defense sys- tems. Antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione S-transferase (GST) and non enzymatic antioxidant molecules such as reduced glutathione (GSH...- sures include lipid peroxidation (LPX), protein carbonyl (PC), hydrogen peroxide (H 2 O 2 ), GSH, ascorbic acid (ASA) and antioxidant enzymes such as SOD, CAT, GPX, GR and GST. In addition DNA strand breaks, as an index of genotoxic stress and MT...

  6. Ultraviolet Radiation: Cellular Antioxidant Response and the Role of Ocular Aldehyde Dehydrogenase Enzymes

    Science.gov (United States)

    Marchitti, Satori A.; Chen, Ying; Thompson, David C.; Vasiliou, Vasilis

    2011-01-01

    Solar ultraviolet radiation (UVR) exposes the human eye to near constant oxidative stress. Evidence suggests that UVR is the most important environmental insult leading to the development of a variety of ophthalmoheliosis disorders. UVR-induced reactive oxygen species are highly reactive with DNA, proteins and cellular membranes, resulting in cellular and tissue damage. Antioxidant defense systems present in ocular tissues function to combat reactive oxygen species and protect the eye from oxidative damage. Important enzymatic antioxidants are the superoxide dismutases, catalase, glutathione peroxidases, glutathione reductase and members of the aldehyde dehydrogenase (ALDH) superfamily. Glutathione, ascorbic and uric acids, α-tocopherol, NADPH and ferritin serve as small molecule, nonenzymatic antioxidants. Ocular tissues have high levels of these antioxidants which are essential for the maintenance of redox homeostasis in the eye and protection against oxidative damage. ALDH1A1 and ALDH3A1, present abundantly in the cornea and lens, have been shown to have unique roles in the defense against UVR and the downstream effects of oxidative stress. This review presents the properties and functions of ocular antioxidants that play critical roles in the cellular response to UVR exposure, including a focused discussion of the unique roles that the ALDH1A1 and ALDH3A1 enzymes have as multi-functional ocular antioxidants. PMID:21670692

  7. Antioxidative Defense Enzymes in Placenta Protect Placenta and Fetus in Inherited Thrombophilia from Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Jelena Bogdanovic Pristov

    2009-01-01

    Full Text Available Our aim was to investigate the activities of antioxidative defense enzymes in the placenta, fetal blood and amnion fluid in inherited thrombophilia. Thrombophilia was associated with nearly threefold increase of activity (p < 0.001 of the placental catalase (81.1 ± 20.6 U/mg of proteins in controls and 270.0 ± 69.9 U/mg in thrombophilic subjects, glutathione (GSH peroxidase (C: 20.2 ± 10.1 U/mg; T: 60.0 ± 15.5 U/mg, and GSH reductase (C: 28.9 ± 5.6 U/mg; T: 72.7 ± 23.0 U/mg. The placental activities of superoxide dismutating enzymes—MnSOD and CuZnSOD, did not differ in controls and thrombophilia. Likewise, the activities of catalase and SOD in the fetal blood, and the level of ascorbyl radical which represents a marker of oxidative status of amniotic fluid, were similar in controls and thrombophilic subjects. From this we concluded that in thrombophilia, placental tissue is exposed to H2O2-mediated oxidative stress, which could be initiated by pro-thrombic conditions in maternal blood. Increased activity of placental H2O2-removing enzymes protects fetus and mother during pregnancy, but may increase the risk of postpartum thrombosis.

  8. Gallic Acid Content and an Antioxidant Mechanism Are Responsible for the Antiproliferative Activity of ‘Ataulfo’ Mango Peel on LS180 Cells

    Directory of Open Access Journals (Sweden)

    Gustavo. R. Velderrain-Rodríguez

    2018-03-01

    Full Text Available Mango “Ataulfo” peel is a rich source of polyphenols (PP, with antioxidant and anti-cancer properties; however, it is unknown whether such antiproliferative activity is related to PP’s antioxidant activity. The content (HPLC-DAD, antioxidant (DPPH, FRAP, ORAC, and antiproliferative activities (MTT of free (FP and chemically-released PP from mango ‘Ataulfo’ peel after alkaline (AKP and acid (AP hydrolysis, were evaluated. AKP fraction was higher (µg/g DW in gallic acid (GA; 23,816 ± 284 than AP (5610 ± 8 of FR (not detected fractions. AKP fraction and GA showed the highest antioxidant activity (DPPH/FRAP/ORAC and GA’s antioxidant activity follows a single electron transfer (SET mechanism. AKP and GA also showed the best antiproliferative activity against human colon adenocarcinoma cells (LS180; IC50 (µg/mL 138.2 ± 2.5 and 45.7 ± 5.2 and mouse connective cells (L929; 93.5 ± 7.7 and 65.3 ± 1.2; Cheminformatics confirmed the hydrophilic nature (LogP, 0.6 and a good absorption capacity (75% for GA. Data suggests that GA’s antiproliferative activity appears to be related to its antioxidant mechanism, although other mechanisms after its absorption could also be involved.

  9. In vivo Pharmacological Evaluations of Pilocarpine-Loaded Antioxidant-Functionalized Biodegradable Thermogels in Glaucomatous Rabbits

    Science.gov (United States)

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang

    2017-02-01

    To alleviate oxidative stress-induced ocular hypertension, grafting of antioxidant molecules to drug carriers enables a dual-function mechanism to effectively treat glaucomatous intraocular pressure (IOP) dysregulation. Providing potential application for intracameral administration of antiglaucoma medications, this study, for the first time, aims to examine in vivo pharmacological efficacy of pilocarpine-loaded antioxidant-functionalized biodegradable thermogels in glaucomatous rabbits. A series of gallic acid (GA)-grafted gelatin-g-poly(N-isopropylacrylamide) (GN) polymers were synthesized via redox reactions at 20-50 °C. Our results showed that raising redox radical initiation reaction temperature maximizes GA grafting level, antioxidant activity, and water content at 40 °C. Meanwhile, increase in overall hydrophilicity of GNGA carriers leads to fast polymer degradation and early pilocarpine depletion in vivo, which is disadvantageous to offer necessary pharmacological performance at prolonged time. By contrast, sustained therapeutic drug concentrations in aqueous humor can be achieved for long-term (i.e., 28 days) protection against corneal aberration and retinal injury after pilocarpine delivery using dual-function optimized carriers synthesized at 30 °C. The GA-functionalized injectable hydrogels are also found to contribute significantly to enhancement of retinal antioxidant defense system and preservation of histological structure and electrophysiological function, thereby supporting the benefits of drug-containing antioxidant biodegradable thermogels to prevent glaucoma development.

  10. Gene Expression Analysis Reveals the Concurrent Activation of Proapoptotic and Antioxidant-Defensive Mechanisms in Flavokawain B–Treated Cervical Cancer HeLa Cells

    Science.gov (United States)

    Yeap, Swee Keong; Abu, Nadiah; Akthar, Nadeem; Ho, Wan Yong; Ky, Huynh; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Kamarul, Tunku

    2016-01-01

    Flavokawain B (FKB) is known to possess promising anticancer abilities. This is demonstrated in various cancer cell lines including HeLa cells. Cervical cancer is among the most widely diagnosed cancer among women today. Though FKB has been shown to be effective in treating cancer cells, the exact molecular mechanism is still unknown. This study is aimed at understanding the effects of FKB on HeLa cells using a microarray-based mRNA expression profiling and proteome profiling of stress-related proteins. The results of this study suggest that FKB induced cell death through p21-mediated cell cycle arrest and activation of p38. However, concurrent activation of antioxidant-related pathways and iron sequestration pathway followed by activation of ER-resident stress proteins clearly indicate that FKB failed to induce apoptosis in HeLa cells via oxidative stress. This effect implies that the protection of HeLa cells by FKB from H2O2–induced cell death is via neutralization of reactive oxygen species. PMID:27458249

  11. Comparative evaluation and correlation of salivary total antioxidant capacity and salivary pH in caries-free and severe early childhood caries children.

    Science.gov (United States)

    Muchandi, Sneha; Walimbe, Hrishikesh; Bijle, Mohammed Nadeem Ahmed; Nankar, Meenakshi; Chaturvedi, Srishti; Karekar, Priyanka

    2015-03-01

    Dental caries is a major problem in preschool children. The contribution of saliva in providing defense during caries process is of primary importance. pH buffer capacity through bicarbonate, phosphate and protein buffer systems have universal acceptance as a caries defense mechanism. Antioxidant capacity of saliva can constitute a first line of defense against chronic degenerative diseases including dental caries. Till date, no study is presented with salivary antioxidant capacity of younger children affected with severe early childhood caries with its salivary pH correlation. Hence, this study was carried out to compare, evaluate and correlate the salivary total antioxidant capacity (TAC) and salivary pH of children with caries-free and severe early childhood caries. Fifty children from ages 3 to 5 years divided into two study groups had undergone screening. Group I (n = 25) with severe early childhood caries (S-ECC) and group II (n = 25) who were caries free. Unstimulated whole saliva of subjects were in the collection during the study by draining method. Salivary pH determination of saliva samples was done using pH indicator paper strips. The TAC was done using an antioxidant assay with the help of a spectrophotometer at wavelength 532 nm. The means of salivary pH and TAC were subjected to analysis using unpaired student 't' test and correlation was determined using Pearsons correlation coefficient analysis. Mean salivary pH was higher in group II (7.46 ± 0.37). Mean TAC was greater in group I (1.82 ± 0.19). A statistically significant negative correlation as seen between TAC and salivary pH in S-ECC patients. The study concludes that salivary TAC increases in patients with S-ECC are by that showing a high indirect relationship with salivary pH.

  12. DFT Study on Molecular Structures and ROS Scavenging Mechanisms of Novel Antioxidants from Lespedeza Virgata

    Science.gov (United States)

    Li, Min-jie; Zhang, Liang-miao; Liu, Wei-xia; Lu, Wen-cong

    2011-04-01

    The molecular structure and radical scavenging activity of three novel antioxidants from Lespedeza Virgata, lespedezavirgatol, lespedezavirgatal, and lespedezacoumestan, have been studied using density functional theory with the B3LYP and BhandHLYP methods. The optimized geometries of neutral, radical cation, radical and anion forms were obtained at the B3LYP/6-31G(d) level, in which it was found that all the most stable conformations contain intramolecular hydrogen bonds. The same results were obtained from the MP2 method. The homolytic O—H bond dissociation enthalpy and the adiabatic ionization potential of neutral and anion forms for the three new antioxidants and adiabatic electron affinity and H-atom affinity for hydroxyl radical, superoxide anion radical, and hydrogen peroxide radical were determined both in gas phase and in aqueous solution using IEF-PCM and CPCM model with UAHF or Bondi cavity. The antioxidant activities and reactive oxygen species scavenging mechanisms were then discussed, and the results obtained from different methods are consistent. Furthermore, the antioxidant activities are consistent with the experimental findings of the compounds under investigation.

  13. Responses of Phospholipase D and Antioxidant System to Mechanical Wounding in Postharvest Banana Fruits

    Directory of Open Access Journals (Sweden)

    Li Li

    2017-01-01

    Full Text Available Banana fruits are susceptible to mechanical damage. The present study was to investigate the responses of phospholipase D (PLD and antioxidant system to mechanical wounding in postharvest banana fruits. During 16 d storage at 25°C and 90% relative humidity, PLD activity in wounded fruits was significantly higher than that in control (without artificial wounding fruits. The higher value of PLD mRNA was found in wounded fruits than in control. PLD mRNA expression reached the highest peak on day 4 in both groups, but it was 2.67 times in wounded fruits compared to control at that time, indicating that PLD gene expression was activated in response to wounding stress. In response to wounding stress, the higher lipoxygenase (LOX activity was observed and malondialdehyde (MDA production was accelerated. The activities of antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT, peroxidase (POD, and ascorbate peroxidase (APX in wounded fruits were significantly higher than those in control. The concentrations of reactive oxygen species (ROS such as superoxide anion (O2•- and hydrogen peroxide (H2O2 in fruits increased under mechanical wounding. The above results provided a basis for further investigating the mechanism of postharvest banana fruits adapting to environmental stress.

  14. Activation of antioxidant defenses in whole saliva by psychosocial stress is more manifested in young women than in young men.

    Directory of Open Access Journals (Sweden)

    Viktoriia Tsuber

    Full Text Available Psychosocial stress has been long known to have deleterious effects on health. Nevertheless, an exposure to moderate stressors enhances resilience and promotes health benefits. Male and female organisms differ in many aspects of health and disease. The aim of this study was to investigate antioxidant activity and oxidative damage in saliva in a psychosocial stress paradigm in men and women. Here, we show that an acute stressor of moderate strength augments antioxidant activity and decreases oxidative damage in whole saliva of young people. An examination stress caused a significant increase of catalase activity, accompanied by a decrease of levels of oxidized proteins. Levels of thiobarbituric acid-reacting substances did not increase at stress, indicating that lipid peroxidation was not activated. The stress-induced alterations were more manifested in young women compared to young men. Thus, antioxidant protective mechanisms are more activated by a moderate stressor in young women than in young men.

  15. Activation of antioxidant defenses in whole saliva by psychosocial stress is more manifested in young women than in young men.

    Science.gov (United States)

    Tsuber, Viktoriia; Kadamov, Yunus; Tarasenko, Lydia

    2014-01-01

    Psychosocial stress has been long known to have deleterious effects on health. Nevertheless, an exposure to moderate stressors enhances resilience and promotes health benefits. Male and female organisms differ in many aspects of health and disease. The aim of this study was to investigate antioxidant activity and oxidative damage in saliva in a psychosocial stress paradigm in men and women. Here, we show that an acute stressor of moderate strength augments antioxidant activity and decreases oxidative damage in whole saliva of young people. An examination stress caused a significant increase of catalase activity, accompanied by a decrease of levels of oxidized proteins. Levels of thiobarbituric acid-reacting substances did not increase at stress, indicating that lipid peroxidation was not activated. The stress-induced alterations were more manifested in young women compared to young men. Thus, antioxidant protective mechanisms are more activated by a moderate stressor in young women than in young men.

  16. Epiphytes modulate Posidonia oceanica photosynthetic production, energetic balance, antioxidant mechanisms and oxidative damage

    Directory of Open Access Journals (Sweden)

    Monya Mendes Costa

    2015-12-01

    Full Text Available Epiphytes impose physical barriers to light penetration into seagrass leaves causing shading, which may decrease the production of oxygen reactive species (ROS, but also constitute a physical aggression that may trigger the production of ROS, leading to oxidative damage. Here we investigate the effects of epiphytes on Posidonia oceanica under both interactive perspectives, light attenuation and oxidative stress. Specifically the role of epiphytes in net photosynthesis, chlorophyll a and b, photoprotection (Violaxanthin+Anteraxanthin+Zeaxanthin cycle, soluble sugar and starch contents, enzymatic (ascorbate peroxidase (APX and dehydroascorbate reductase (DHAR and global (trolox equivalent antioxidant capacity (TEAC and oxygen radical antioxidant capacity (ORAC antioxidant responses, phenolics and oxidative damage (malondialdehyde are tested. Leaves with epiphytes showed higher chlorophyll b and lower content in VAZ cycle carotenoids. Epiphyte shading was the probable reason for the lower VAZ de-epoxidation-ratio of leaves with epiphytes. In spite of being shaded, leaves with epiphytes showed higher antioxidant levels, indicating that epiphytes trigger the production of ROS. Both ORAC and TEAC and also APX and DHAR activities were higher in leaves with epiphytes, indicating that this response was related with its presence. Malondialdehyde concentrations also suggest oxidative damage caused by epiphytes. We conclude that the epiphyte load causes oxidative stress in P. oceanica and the mechanisms to scavenge ROS were not completely effective to avoid cell damage.

  17. Screening and Purification of Metal Chelating Peptides in Hydrolysates for their Antioxidant Properties.

    OpenAIRE

    Canabady-Rochelle , Laetitia; Paris , Cédric; Selmeczi , Katalin; Gaucher , Caroline; Clarot , Igor; Leroy , Pierre; Alem , Halima; Schneider , Raphaël; Chaimbault , Patrick; Muhr , Laurence; Boschi-Muller , Sandrine

    2016-01-01

    International audience; Reactive Oxygen Species (ROS) induced oxidation Ageing and various pathologies in human related to oxidative stress, in particular inflammatory bowel diseases with iron anemia complication Degradation of consumption products (food, cosmetic matrix) Living organisms developped their own antioxidant defenses against these ROS Imbalance Oxidative stress Importance to discover natural antioxidants and evaluation of their bioactivity An interdisciplinary approach Some resul...

  18. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential

    Science.gov (United States)

    2014-01-01

    Background Natural antioxidant products are increasingly being used to treat various pathological liver conditions considering the role of oxidative stress in their pathogenesis. Rosemary essential oil has already being used as a preservative in food industry due to its antioxidant and antimicrobial activities, but it was shown to possess additional health benefits. The aim of our study was to evaluate the protective effect of rosemary essential oil on carbon tetrachloride - induced liver injury in rats and to explore whether its mechanism of action is associated with modulation of hepatic oxidative status. Methods Chemical composition of isolated rosemary essential oil was determined by gas chromatography and mass spectrometry. Antioxidant activity was determined in vitro using DPPH assay. Activities of enzyme markers of hepatocellular damage in serum and antioxidant enzymes in the liver homogenates were measured using the kinetic spectrophotometric methods. Results In this research, we identified 29 chemical compounds of the studied rosemary essential oil, and the main constituents were 1,8-cineole (43.77%), camphor (12.53%), and α-pinene (11.51%). Investigated essential oil was found to exert hepatoprotective effects in the doses of 5 mg/kg and 10 mg/kg by diminishing AST and ALT activities up to 2-fold in serum of rats with carbon tetrachloride - induced acute liver damage. Rosemary essential oil prevented carbon tetrachloride - induced increase of lipid peroxidation in liver homogenates. Furthermore, pre-treatment with studied essential oil during 7 days significantly reversed the activities of antioxidant enzymes catalase, peroxidase, glutathione peroxidase and glutathione reductase in liver homogenates, especially in the dose of 10 mg/kg. Conclusions Our results demonstrate that rosemary essential oil, beside exhibiting free radical scavenging activity determined by DPPH assay, mediates its hepatoprotective effects also through activation of

  19. Effects of salicylic acid on monoterpene production and antioxidant ...

    African Journals Online (AJOL)

    Salicylic acid (SA) plays important roles in plant defense responses. However, little is available about its effects on monoterpene responses. Therefore, monoterpene contents and antioxidant systems were measured three days after foliar application of SA with different concentrations in Houttuynia cordata. SA at low ...

  20. IMPACT OF GLYCEMIC CONTROL ON OXIDATIVE STRESS AND ANTIOXIDANT STATUS IN DIABETIC NEUROPATHY

    Directory of Open Access Journals (Sweden)

    Shilpashree

    2015-01-01

    Full Text Available INTRODUCTION: Oxidative stress due to enhanced free - radical generation and/or a decrease in antioxidant defense mechanisms has been implicated in the pathogenesis of diabetic neuropathy. This study was conducted to study the impact of glycemic control on oxidative stress and antioxidant balance in diab etic neuropathy. METHOD S : fifty patients with diabetic neuropathy and fifty age matched healthy controls were included in the study. Glycosylated hemoglobin (HbA1c was estimated to assess the severity of diabetes and the glycemic control. Serum malondiaal dehyde (MDA levels were assessed as a marker of lipid peroxidation and hence oxidative stress. Superoxide Dismutase (SOD levels were assessed for antioxidant status. RESULTS: Significant positive correlation was found between serum MDA levels and hba1c ( r = 0.276, p < 0.0001 in patients with diabetic neuropathy. There was statistically significant reduction in the Glutathione peroxidase levels. Further, SOD levels were inversely correlated with HbA1c (r= - 0.603, p<0.0001 levels. CONCLUSION AND SUMMARY: oxidative stress is greatly increased in patients suffering from diabetic neuropathy and is inversely related to glycemic control. This may be due to depressed antioxidant enzyme levels and may also be responsible for further depletion of antioxidant enzym e GPx. This worsens the oxidative stress and creates a vicious cycle of imbalance of free radical generation and deficit of antioxidant status in these patients which may lead to nervous system damage causing diabetic neuropathy. A good glycemic control is essential for prevention of diabetic neuropathy.

  1. Immunosuppression, hepatotoxicity and depression of antioxidant status by arecoline in albino mice

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Romi [Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019 (India); Saha, Indraneel [Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019 (India); Pal, Suman [Microbiology Laboratory, Bose Institute, Kankurgachi, Calcutta 700 054 (India); Bhattacharyya, Arindam [Microbiology Laboratory, Bose Institute, Kankurgachi, Calcutta 700 054 (India); Sa, Gaurisankar [Microbiology Laboratory, Bose Institute, Kankurgachi, Calcutta 700 054 (India); Nag, Tapas C [Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110 020 (India); Das, Tania [Microbiology Laboratory, Bose Institute, Kankurgachi, Calcutta 700 054 (India); Maiti, B R [Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019 (India)

    2006-10-03

    Background: There are about 600 million betel quid chewers in the world. Betal quid chewing is one of the major risk factors of hepatocarcinoma, oropharyngeal and esophagus cancers. Arecoline, the main Areca alkaloid of the betel nut is reported to have cytotoxic, genotoxic and mutagenic effects in various cells. It shows strong correlation to the incidence of oral submucosal fibrosis, leukoplakia and oral cancer, and has also been found to impose toxic manifestations in immune, hepatic and other defense systems of the recipient. Aim: The precise molecular mechanisms underlying the toxic effects of arecoline deserve investigation. To clarify the action of arecoline on defense systems, immune, hepatic and detoxification system were studied in mice. Method: Cell count and cell cycle of the splenocytes were studied for evaluating cell immunity. Liver function test (LFT) was followed by assaying different enzyme systems from serum (SGPT, SGOT and ALP) and liver (GST for detoxication enzyme, SOD and catalase for antioxidant enzymes and GSH for non-enzymatic antioxidant) and by ultrastructural studies of hepatocytes. Results: Here we report that arecoline arrested splenic lymphocyte cell cycle at lower concentration with induced apoptosis at higher concentration thereby causing immunosuppression in arecoline recipients. Besides, it resulted in hepatotoxicity in arecoline recipient mice by disrupting the hepatocyte ultrastructure, as judged by liver ultrastructural studies that showed decreased nuclear size, RER with profusely inflated cysternae and abundance of lipid droplets, and by up regulating hepatotoxic marker enzymes (SGOT and SGPT) in serum. Arecoline also caused depression of antioxidants, i.e., superoxide dismutase (SOD), catalase, reduced glutathione (GSH) and glutathione-S-transferase (GST) that are known to neutralize reactive oxygen species. Conclusion: All these above-mentioned results led us to conclude that arecoline attacks multiple targets to finally

  2. Immunosuppression, hepatotoxicity and depression of antioxidant status by arecoline in albino mice

    International Nuclear Information System (INIS)

    Dasgupta, Romi; Saha, Indraneel; Pal, Suman; Bhattacharyya, Arindam; Sa, Gaurisankar; Nag, Tapas C.; Das, Tania; Maiti, B.R.

    2006-01-01

    Background: There are about 600 million betel quid chewers in the world. Betal quid chewing is one of the major risk factors of hepatocarcinoma, oropharyngeal and esophagus cancers. Arecoline, the main Areca alkaloid of the betel nut is reported to have cytotoxic, genotoxic and mutagenic effects in various cells. It shows strong correlation to the incidence of oral submucosal fibrosis, leukoplakia and oral cancer, and has also been found to impose toxic manifestations in immune, hepatic and other defense systems of the recipient. Aim: The precise molecular mechanisms underlying the toxic effects of arecoline deserve investigation. To clarify the action of arecoline on defense systems, immune, hepatic and detoxification system were studied in mice. Method: Cell count and cell cycle of the splenocytes were studied for evaluating cell immunity. Liver function test (LFT) was followed by assaying different enzyme systems from serum (SGPT, SGOT and ALP) and liver (GST for detoxication enzyme, SOD and catalase for antioxidant enzymes and GSH for non-enzymatic antioxidant) and by ultrastructural studies of hepatocytes. Results: Here we report that arecoline arrested splenic lymphocyte cell cycle at lower concentration with induced apoptosis at higher concentration thereby causing immunosuppression in arecoline recipients. Besides, it resulted in hepatotoxicity in arecoline recipient mice by disrupting the hepatocyte ultrastructure, as judged by liver ultrastructural studies that showed decreased nuclear size, RER with profusely inflated cysternae and abundance of lipid droplets, and by up regulating hepatotoxic marker enzymes (SGOT and SGPT) in serum. Arecoline also caused depression of antioxidants, i.e., superoxide dismutase (SOD), catalase, reduced glutathione (GSH) and glutathione-S-transferase (GST) that are known to neutralize reactive oxygen species. Conclusion: All these above-mentioned results led us to conclude that arecoline attacks multiple targets to finally

  3. Manganese-induced cadmium stress tolerance in rice seedlings: Coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis.

    Science.gov (United States)

    Rahman, Anisur; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    The accumulation of cadmium (Cd) alters different physiological and biochemical attributes that affect plant growth and yield. In our study, we investigated the regulatory role of supplemental manganese (Mn) on hydroponically grown rice (Oryza sativa L. cv. BRRI dhan29) seedlings under Cd-stress conditions. Exposure of 14-d-old seedlings to 0.3mM CdCl 2 for three days caused growth inhibition, chlorosis, nutrient imbalance, and higher Cd accumulation. Higher Cd uptake caused oxidative stress through lipid peroxidation, loss of plasma membrane integrity, and overproduction of reactive oxygen species (ROS) and methylglyoxal (MG). The exogenous application of 0.3mM MnSO 4 to Cd-treated seedlings partly recovered Cd-induced water loss, chlorosis, growth inhibition, and nutrient imbalance by reducing Cd uptake and its further translocation to the upper part of the plant. Supplemental Mn also reduced Cd-induced oxidative damage and lipid peroxidation by improved antioxidant defense and glyoxalase systems through enhancing ROS and MG detoxification, respectively. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  4. Antioxidant Properties of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-05-01

    Full Text Available Oxidative stress defines a condition in which the prooxidant–antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells’ viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  5. Antioxidant Properties of Probiotic Bacteria.

    Science.gov (United States)

    Wang, Yang; Wu, Yanping; Wang, Yuanyuan; Xu, Han; Mei, Xiaoqiang; Yu, Dongyou; Wang, Yibing; Li, Weifen

    2017-05-19

    Oxidative stress defines a condition in which the prooxidant-antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  6. Synthetic Isoliquiritigenin Inhibits Human Tongue Squamous Carcinoma Cells through Its Antioxidant Mechanism

    OpenAIRE

    Hou, Cuilan; Li, Wenguang; Li, Zengyou; Gao, Jing; Chen, Zhenjie; Zhao, Xiqiong; Yang, Yaya; Zhang, Xiaoyu; Song, Yong

    2017-01-01

    Isoliquiritigenin (ISL), a natural antioxidant, has antitumor activity in different types of cancer cells. However the antitumor effect of ISL on human tongue squamous carcinoma cells (TSCC) is not clear. Here we aimed to investigate the effects of synthetic isoliquiritigenin (S-ISL) on TSCC and elucidate the underlying mechanisms. S-ISL was synthesized and elucidated from its nuclear magnetic resonance spectrum and examined using high performance liquid chromatography. The effects of S-ISL o...

  7. Defense styles of pedophilic offenders.

    Science.gov (United States)

    Drapeau, Martin; Beretta, Véronique; de Roten, Yves; Koerner, Annett; Despland, Jean-Nicolas

    2008-04-01

    This pilot study investigated the defense styles of pedophile sexual offenders. Interviews with 20 pedophiles and 20 controls were scored using the Defense Mechanisms Rating Scales. Results showed that pedophiles had a significantly lower overall defensive functioning score than the controls. Pedophiles used significantly fewer obsessional-level defenses but more major image-distorting and action-level defenses. Results also suggested differences in the prevalence of individual defenses where pedophiles used more dissociation, displacement, denial, autistic fantasy, splitting of object, projective identification, acting out, and passive aggressive behavior but less intellectualization and rationalization.

  8. Priming by Rhizobacterium Protects Tomato Plants from Biotrophic and Necrotrophic Pathogen Infections through Multiple Defense Mechanisms

    Science.gov (United States)

    Ahn, Il-Pyung; Lee, Sang-Woo; Kim, Min Gab; Park, Sang-Ryeol; Hwang, Duk-Ju; Bae, Shin-Chul

    2011-01-01

    A selected strain of rhizobacterium, Pseudomonas putida strain LSW17S (LSW17S), protects tomato plants (Lycopersicon esculentum L. cv. Seokwang) from bacterial speck by biotrophic Pseudomonas syringae pv. tomato strain DC3000 (DC3000) and bacterial wilt by necrotrophic Ralstonia solanacearum KACC 10703 (Rs10703). To investigate defense mechanisms induced by LSW17S in tomato plants, transcription patterns of pathogenesis-related (PR) genes and H2O2 production were analyzed in plants treated with LSW17S and subsequent pathogen inoculation. LSW17S alone did not induce transcriptions of employed PR genes in leaves and roots. DC3000 challenge following LSW17S triggered rapid transcriptions of PR genes and H2O2 production in leaves and roots. Catalase infiltration with DC3000 attenuated defense-related responses and resistance against DC3000 infection. Despite depriving H2O2 production and PR1b transcription by the same treatment, resistance against Rs10703 infection was not deterred significantly. H2O2 is indispensable for defense signaling and/or mechanisms primed by LSW17S and inhibition of bacterial speck, however, it is not involved in resistance against bacterial wilt. PMID:21710203

  9. Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering

    Directory of Open Access Journals (Sweden)

    Karina Stucken

    2013-01-01

    Full Text Available Cyanobacteria display a large diversity of cellular forms ranging from unicellular to complex multicellular filaments or aggregates. Species in the group present a wide range of metabolic characteristics including the fixation of atmospheric nitrogen, resistance to extreme environments, production of hydrogen, secondary metabolites and exopolysaccharides. These characteristics led to the growing interest in cyanobacteria across the fields of ecology, evolution, cell biology and biotechnology. The number of available cyanobacterial genome sequences has increased considerably in recent years, with more than 140 fully sequenced genomes to date. Genetic engineering of cyanobacteria is widely applied to the model unicellular strains Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. However the establishment of transformation protocols in many other cyanobacterial strains is challenging. One obstacle to the development of these novel model organisms is that many species have doubling times of 48 h or more, much longer than the bacterial models E. coli or B. subtilis. Furthermore, cyanobacterial defense mechanisms against foreign DNA pose a physical and biochemical barrier to DNA insertion in most strains. Here we review the various barriers to DNA uptake in the context of lateral gene transfer among microbes and the various mechanisms for DNA acquisition within the prokaryotic domain. Understanding the cyanobacterial defense mechanisms is expected to assist in the development and establishment of novel transformation protocols that are specifically suitable for this group.

  10. Ultraviolet Radiations: Skin Defense-Damage Mechanism.

    Science.gov (United States)

    Mohania, Dheeraj; Chandel, Shikha; Kumar, Parveen; Verma, Vivek; Digvijay, Kumar; Tripathi, Deepika; Choudhury, Khushboo; Mitten, Sandeep Kumar; Shah, Dilip

    2017-01-01

    UV-radiations are the invisible part of light spectra having a wavelength between visible rays and X-rays. Based on wavelength, UV rays are subdivided into UV-A (320-400 nm), UV-B (280-320 nm) and UV-C (200-280 nm). Ultraviolet rays can have both harmful and beneficial effects. UV-C has the property of ionization thus acting as a strong mutagen, which can cause immune-mediated disease and cancer in adverse cases. Numbers of genetic factors have been identified in human involved in inducing skin cancer from UV-radiations. Certain heredity diseases have been found susceptible to UV-induced skin cancer. UV radiations activate the cutaneous immune system, which led to an inflammatory response by different mechanisms. The first line of defense mechanism against UV radiation is melanin (an epidermal pigment), and UV absorbing pigment of skin, which dissipate UV radiation as heat. Cell surface death receptor (e.g. Fas) of keratinocytes responds to UV-induced injury and elicits apoptosis to avoid malignant transformation. In addition to the formation of photo-dimers in the genome, UV also can induce mutation by generating ROS and nucleotides are highly susceptible to these free radical injuries. Melanocortin 1 receptor (MC1R) has been known to be implicated in different UV-induced damages such as pigmentation, adaptive tanning, and skin cancer. UV-B induces the formation of pre-vitamin D3 in the epidermal layer of skin. UV-induced tans act as a photoprotection by providing a sun protection factor (SPF) of 3-4 and epidermal hyperplasia. There is a need to prevent the harmful effects and harness the useful effects of UV radiations.

  11. Protective effects of phosphodiesterase 2 inhibitor on depression- and anxiety-like behaviors: involvement of antioxidant and anti-apoptotic mechanisms.

    Science.gov (United States)

    Ding, Lianshu; Zhang, Chong; Masood, Anbrin; Li, Jianxin; Sun, Jiao; Nadeem, Ahmed; Zhang, Han-Ting; O' Donnell, James M; Xu, Ying

    2014-07-15

    Stress occurs in everyday life, but the relationship between stress and the onset or development of depression/anxiety remains unknown. Increasing evidence suggests that the impairment of antioxidant defense and the neuronal cell death are important in the process of emotional disorders. Chronic stress impairs the homeostasis of antioxidants/oxidation, which results in the aberrant stimulation of the cell cycle proteins where cGMP-PKG signaling is thought to have an inhibitory role. Phosphodiesterase 2 (PDE2) is linked to cGMP-PKG signaling and highly expressed in the limbic brain regions including hippocampus and amygdala, which may play important roles in the treatment of depression and anxiety. To address the possible effects of PDE2 inhibitors on depression-/anxiety-like behaviors and the underlying mechanisms, Bay 60-7550 (0.75, 1.5 and 3 mg/kg, i.p.) was administered 30 min before chronic stress. The results suggested that Bay 60-7550 not only restored the behavioral changes but also regulated Cu/Zn superoxide dismutase (SOD) levels differentially in hippocampus and amygdala, which were increased in the hippocampus while decreased in the amygdala. It was also significant that Bay 60-7550 regulated the abnormalities of pro- and anti-apoptotic components, such as Bax, Caspase 3 and Bcl-2, and the indicator of PKG signaling characterized by pVASP(ser239), in these two brain regions. The results suggested that Bay 60-7550 is able to alleviate oxidative stress and mediate part of the apoptotic machinery in neuronal cells possibly through SOD-cGMP/PKG-anti-apoptosis signaling and that inhibition of PDE2 may represent a novel therapeutic target for psychiatric disorders, such as depression and anxiety. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    VERA A D POIATTI

    2009-01-01

    Full Text Available The natural resistance of plants to disease is based not only on preformed mechanisms, but also on induced mechanisms. The defense mechanisms present in resistant plants may also be found in susceptible ones. This study attempted to analyze the metabolic alterations in plants of the potato Solanum tuberosum L. cv. Agata that were inoculated with the incompatible plant-pathogenic bacteria X. axonopodis and R. solanacearum, and the compatible bacterium E. carotovora. Levels of total phenolic compounds, including the flavonoid group, and the activities of polyphenol oxidase (PPO and peroxidase (POX were evaluated. Bacteria compatibility was evaluated by means of infiltration of tubers. The defense response was evaluated in the leaves of the potato plants. Leaves were inoculated depending on their number and location on the stem. Multiple-leaf inoculation was carried out on basal, intermediate, and apical leaves, and single inoculations on intermediate leaves. Leaves inoculated with X. axonopodis and with R. solanacearum showed hypersensitive responses within 24 hours post-inoculation, whereas leaves inoculated with E. carotovora showed disease symptoms. Therefore, the R. solanacearum isolate used in the experiments did not exhibit virulence to this potato cultivar. Regardless of the bacterial treatments, the basal leaves showed higher PPO and POX activities and lower levels of total phenolic compounds and flavonoids, compared to the apical leaves. However, basal and intermediate leaves inoculated with R. solanacearum and X. axonopodis showed increases in total phenolic compounds and flavonoid levels. In general, multiple-leaf inoculation showed the highest levels of total phenolics and flavonoids, whereas the single inoculations resulted in the highest increase in PPO activity. The POX activity showed no significant difference between single- and multiple-leaf inoculations. Plants inoculated with E. carotovora showed no significant increase in

  13. Dietary antioxidants and exercise.

    Science.gov (United States)

    Powers, Scott K; DeRuisseau, Keith C; Quindry, John; Hamilton, Karyn L

    2004-01-01

    Muscular exercise promotes the production of radicals and other reactive oxygen species in the working muscle. Growing evidence indicates that reactive oxygen species are responsible for exercise-induced protein oxidation and contribute to muscle fatigue. To protect against exercise-induced oxidative injury, muscle cells contain complex endogenous cellular defence mechanisms (enzymatic and non-enzymatic antioxidants) to eliminate reactive oxygen species. Furthermore, exogenous dietary antioxidants interact with endogenous antioxidants to form a cooperative network of cellular antioxidants. Knowledge that exercise-induced oxidant formation can contribute to muscle fatigue has resulted in numerous investigations examining the effects of antioxidant supplementation on human exercise performance. To date, there is limited evidence that dietary supplementation with antioxidants will improve human performance. Furthermore, it is currently unclear whether regular vigorous exercise increases the need for dietary intake of antioxidants. Clearly, additional research that analyses the antioxidant requirements of individual athletes is needed.

  14. A PROMISING MECHANISM FOR FINANCING THE NATIONAL ECONOMY, SECURITY AND DEFENSE OF UKRAINE

    OpenAIRE

    Dmitry Klinovoi, Peter Rogov

    2017-01-01

    The principles of the permanent financing of necessities of state development, national safety and defensive due to forming of legal institute of civil property on natural resources and mechanisms of the sovereign financing by receivabless from natural rent are grounded here. The description of sovereign fund and fund of civil dividends as institutes of accumulation of state facilities and management of assets is given here.

  15. The analysis of the defense mechanism against indigenous bacterial translocation in X-irradiated mice

    International Nuclear Information System (INIS)

    Kobayashi, Toshiya; Ohmori, Toshihiro; Yanai, Minoru; Kawanishi, Gosei; Mitsuyama, Masao; Nomoto, Kikuo.

    1991-01-01

    The defense mechanism against indigenous bacterial translocation was studied using a model of endogenous infection in X-irradiated mice. All mice irradiated with 9 Gy died from day 8 to day 15 after irradiation. The death of mice was observed in parallel with the appearance of bacteria from day 7 in various organs, and the causative agent was identified to be Escherichia coli, an indigenous bacterium translocating from the intestine. Decrease in the number of blood leukocytes, peritoneal cells and lymphocytes in Peyer's patches or mesenteric lymph nodes was observed as early as 1 day after irradiation with 6 or 9 Gy. The mitogenic response of lymphocytes from various lymphoid tissues was severely affected as well. The impairment of these parameters for host defense reached the peak 3 days after irradiation and there was no recovery. However, in vivo bacterial activity of Kupffer cells in mice irradiated with 9 Gy was maintained in a normal level for a longer period. It was suggested that Kupffer cells play an important role in the defense against indigenous bacteria translocating from the intenstine in mice. (author)

  16. Molecular Dynamics Simulation and Statistics Analysis Reveals the Defense Response Mechanism in Plants

    Science.gov (United States)

    Liu, Zhichao; Zhao, Yunjie; Zeng, Chen; Computational Biophysics Lab Team

    As the main protein of the bacterial flagella, flagellin plays an important role in perception and defense response. The newly discovered locus, FLS2, is ubiquitously expressed. FLS2 encodes a putative receptor kinase and shares many homologies with some plant resistance genes and even with some components of immune system of mammals and insects. In Arabidopsis, FLS2 perception is achieved by the recognition of epitope flg22, which induces FLS2 heteromerization with BAK1 and finally the plant immunity. Here we use both analytical methods such as Direct Coupling Analysis (DCA) and Molecular Dynamics (MD) Simulations to get a better understanding of the defense mechanism of FLS2. This may facilitate a redesign of flg22 or de-novo design for desired specificity and potency to extend the immune properties of FLS2 to other important crops and vegetables.

  17. Activation of endothelial nitric oxide synthase by dietary isoflavones: role of NO in Nrf2-mediated antioxidant gene expression.

    Science.gov (United States)

    Mann, Giovanni E; Rowlands, David J; Li, Francois Y L; de Winter, Patricia; Siow, Richard C M

    2007-07-15

    The endothelium plays a key role in the maintenance of vascular homeostasis, and increased oxidative stress in vascular disease leads to reduced nitric oxide bioavailability and impaired endothelium-dependent relaxation of resistance vessels. Although epidemiological evidence suggests that diets containing high amounts of natural antioxidants afford protection against coronary heart disease (CHD), antioxidant supplementation trials have largely reported only marginal health benefits. There is controversy concerning the cardiovascular benefits of prolonged estrogen/progestin or soy isoflavone therapy for postmenopausal women and patients with an increased risk of CHD. Research on the potential health benefits of soy isoflavones and other polyphenols contained in red wine, green and black tea and dark chocolate developed rapidly during the 1990's, and recent clinical trials and studies in animal models and cultured endothelial cells provide important and novel insights into the mechanisms by which dietary polyphenols afford protection against oxidative stress. In this review, we highlight that NO and reactive oxygen radicals may mediate dietary polyphenol induced activation of Nrf2, which in turn triggers antioxidant response element (ARE) driven transcription of phase II detoxifying and antioxidant defense enzymes in vascular cells.

  18. X-box binding protein 1 is essential for the anti-oxidant defense and cell survival in the retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Yimin Zhong

    Full Text Available Damage to the retinal pigment epithelium (RPE is an early event in the pathogenesis of age-related macular degeneration (AMD. X-box binding protein 1 (XBP1 is a key transcription factor that regulates endoplasmic reticulum (ER homeostasis and cell survival. This study aimed to delineate the role of endogenous XBP1 in the RPE. Our results show that in a rat model of light-induced retinal degeneration, XBP1 activation was suppressed in the RPE/choroid complex, accompanied by decreased anti-oxidant genes and increased oxidative stress. Knockdown of XBP1 by siRNA resulted in reduced expression of SOD1, SOD2, catalase, and glutathione synthase and sensitized RPE cells to oxidative damage. Using Cre/LoxP system, we generated a mouse line that lacks XBP1 only in RPE cells. Compared to wildtype littermates, RPE-XBP1 KO mice expressed less SOD1, SOD2, and catalase in the RPE, and had increased oxidative stress. At age 3 months and older, these mice exhibited apoptosis of RPE cells, decreased number of cone photoreceptors, shortened photoreceptor outer segment, reduced ONL thickness, and deficit in retinal function. Electron microscopy showed abnormal ultrastructure, Bruch's membrane thickening, and disrupted basal membrane infolding in XBP1-deficient RPE. These results indicate that XBP1 is an important gene involved in regulation of the anti-oxidant defense in the RPE, and that impaired activation of XBP1 may contribute to RPE dysfunction and cell death during retinal degeneration and AMD.

  19. Priming of antiherbivore defensive responses in plants

    Institute of Scientific and Technical Information of China (English)

    Jinwon Kim; Gary W.Felton

    2013-01-01

    Defense priming is defined as increased readiness of defense induction.A growing body of literature indicates that plants (or intact parts of a plant) are primed in anticipation of impending environmental stresses,both biotic and abiotic,and upon the following stimulus,induce defenses more quickly and strongly.For instance,some plants previously exposed to herbivore-inducible plant volatiles (HIPVs) from neighboring plants under herbivore attack show faster or stronger defense activation and enhanced insect resistance when challenged with secondary insect feeding.Research on priming of antiherbivore defense has been limited to the HIPV-mediated mechanism until recently,but significant advances were made in the past three years,including non-HIPV-mediated defense priming,epigenetic modifications as the molecular mechanism of priming,and others.It is timely to consider the advances in research on defense priming in the plantinsect interactions.

  20. Cumulative antioxidant defense against oxidative challenge in galactose-induced cataractogenesis in Wistar rats.

    Science.gov (United States)

    Raju, T N; Kumar, C Sanat; Kanth, V Rajani; Ramana, B Venkata; Reddy, P Uma Maheswara; Suryanarayana, P; Reddy, G Bhanuprakash

    2006-09-01

    Natural dietary ingredients are known for their antioxidant activity. Of such, curcumin, the active principle of turmeric, at 0.01% in the diet proved as pro-oxidative in galactose-induced cataract in vivo. The purpose of this study was to investigate the effect of vitamin E (VE), a well-known antioxidant, in combination with curcumin on the onset and maturation of galactose induced cataract. Periodic slit-lamp microscope examination indicated that in combination with vitamin-E, 0.01% curcumin (G-IV) delayed the onset and maturation of galactose-induced cataract. Biochemical analyses revealed that combined treatment of 0.01% curcumin and vitamin-E diet exhibited an efficient antioxidant effect, as it inhibited lipid peroxidation and contributed to a distinct rise in reduced glutathione content. The results indicate that natural dietary ingredients are effective in combination rather than the individual administration as they are complementing each other in reducing the risk of galactose induced cataract.

  1. A study of Some Hormones and Antioxidant ‎Systems Disturbances in Older Men

    Directory of Open Access Journals (Sweden)

    Reem Abdul-Raheem Al-Saadi

    2018-02-01

    Full Text Available      Ageing is a physiological phenomenon that manifested itself with disturbances of many homeostatic regulating mechanisms of the body . The present study was conducted and employed to investigate two major systems( hormones and antioxidant systems that can be implicated in progress of aging .The total number of subjects included in the present study was fifty (50 healthy men and classified according to their ages into two groups, the first group included 25 younger men (control group and their ages ranged between 21 to 30 years old whereas the second group included 25 older men and their ages were between 61 to 70 years old.  Data obtained from this study indicated a significant decrease(p0.05 occurring among hormones( testosterone  , T3 and glutathione peroxidase and of malondehyde .   From these results ,one can be concluded that with ageing there are many disturbances and fluctuations of hypothalamic-adrenal and thyroid axis that accompanied with drop of essential antioxidant components that may be lead to suppress of defense against free radicals and the present study concluded that the changes occurring in studied hormones have not relations and effects on the antioxidant systems.

  2. The State of the Antioxidant System in Chronic Hepatitis C

    Directory of Open Access Journals (Sweden)

    Gulnozakhon Z. Aripkhodjaeva

    2014-06-01

    Full Text Available Chronic hepatitis of viral etiology ranks very high in human pathology with respect to its socio-economic and medical significance. In viral hepatitis, membrane destruction occurs via the processes of lipoperoxidation, a valid factor that triggers the mechanism of hepatocyte necrosis. The glutathione system is also involved in the first line of cell defense actions against the effect of the free radicals. In this study, 128 patients with Chronic Hepatitis C (CHC were examined. The degree of antioxidant defense was determined by the indicators of the activity of the glutathione and glutathione-dependent enzymes. The total, reduced and oxidized glutathione levels were determined by V. G. Chernishov. The activity of the glutathione-dependent enzymes, viz., glutathione peroxidase (GP, glutathione reductase (GR and glutathione transferase (GT was measured by the method prescribed by S. N. Vlasova and co-authors (1990. The results of the investigations performed revealed that in CHC patients, deep-seated disorders were observed in the glutathione system manifested by a decrease in the total glutathione levels, its oxidized and reduced forms, changes in the glutathione enzymes and the interrelationships between the intensity of the changes and the degree of the intoxication syndrome.

  3. Significance of antioxidant potential of plants and its relevance to therapeutic applications.

    Science.gov (United States)

    Kasote, Deepak M; Katyare, Surendra S; Hegde, Mahabaleshwar V; Bae, Hanhong

    2015-01-01

    Oxidative stress has been identified as the root cause of the development and progression of several diseases. Supplementation of exogenous antioxidants or boosting endogenous antioxidant defenses of the body is a promising way of combating the undesirable effects of reactive oxygen species (ROS) induced oxidative damage. Plants have an innate ability to biosynthesize a wide range of non-enzymatic antioxidants capable of attenuating ROS- induced oxidative damage. Several in vitro methods have been used to screen plants for their antioxidant potential, and in most of these assays they revealed potent antioxidant activity. However, prior to confirming their in vivo therapeutic efficacy, plant antioxidants have to pass through several physiopharmacological processes. Consequently, the findings of in vitro and in vivo antioxidant potential assessment studies are not always the same. Nevertheless, the results of in vitro assays have been irrelevantly extrapolated to the therapeutic application of plant antioxidants without undertaking sufficient in vivo studies. Therefore, we have briefly reviewed the physiology and redox biology of both plants and humans to improve our understanding of plant antioxidants as therapeutic entities. The applications and limitations of antioxidant activity measurement assays were also highlighted to identify the precise path to be followed for future research in the area of plant antioxidants.

  4. Antioxidant and anti-inflammatory nutrient status, supplementation, and mechanisms in patients with schizophrenia.

    Science.gov (United States)

    Mitra, Sumedha; Natarajan, Radhika; Ziedonis, Douglas; Fan, Xiaoduo

    2017-08-01

    Over 50 million people around the world suffer from schizophrenia, a severe mental illness characterized by misinterpretation of reality. Although the exact causes of schizophrenia are still unknown, studies have indicated that inflammation and oxidative stress may play an important role in the etiology of the disease. Pro-inflammatory cytokines are crucial for normal central nervous development and proper functioning of neural networks and neurotransmitters. Patients with schizophrenia tend to have abnormal immune activation resulting in elevated pro-inflammatory cytokine levels, ultimately leading to functional brain impairments. Patients with schizophrenia have also been found to suffer from oxidative stress, a result of an imbalance between the production of free radicals and the ability to detoxify their harmful effects. Furthermore, inflammation and oxidative stress are implicated to be related to the severity of psychotic symptoms. Several nutrients are known to have anti-inflammatory and antioxidant functions through various mechanisms in our body. The present review evaluates studies and literature that address the status and supplementation of omega-3 polyunsaturated fatty acids, vitamin D, B vitamins (B6, folate, B12), vitamin E, and carotenoids in different stages of schizophrenia. The possible anti-inflammatory and antioxidant mechanisms of action of each nutrient are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Total oxidant/antioxidant status in jaundiced newborns before and after phototherapy.

    Science.gov (United States)

    Aycicek, Ali; Erel, Ozcan

    2007-01-01

    To assess the effect of phototherapy on serum oxidant and antioxidant status in hyperbilirubinemic full-term newborns. Thirty-four full-term infants from 3 to 10 days of age exposed to phototherapy were studied. The serum antioxidant status was assessed by measuring the total antioxidant capacity (TAC) and individual antioxidant components: vitamin C, uric acid, albumin, thiol contents and total bilirubin. The oxidant status was assessed by determining the total oxidant status (TOS), oxidative stress index (OSI) and individual oxidant components: malondialdehyde (MDA), and lipid hydroperoxide levels. Vitamin C, uric acid, total bilirubin and MDA concentration were significantly lower, whereas serum TOS, lipid hydroperoxide and OSI levels were significantly higher after phototherapy (p total bilirubin and MDA (r = 0.434, p = 0.001). Although the MDA level was reduced after phototherapy, phototherapy has a negative impact on numerous parts of the oxidant/antioxidant defense system in jaundiced full-term newborns, exposing them to potential oxidative stress.

  6. Total antioxidant status in women with breast cancer

    International Nuclear Information System (INIS)

    Mahmood, I.H.; Abdullah, K.S.; Abdullah, M.S.

    2009-01-01

    Objective: To measure the concentration of total antioxidant status (TAS) in women with breast cancer. Methodology: This is a case control study conducted in Al-Salam Hospital and Department of Pharmacology in Mosul Medical College. Twenty women having histologically confirmed breast cancer and twenty age-matched healthy volunteer women participated in the study. Serum total antioxidant status (TAS) was measured in both groups. Results: Mean TAS of the patient group (0.91 +- 0.32 mmol/l) was significantly lower (P<0.001) than that of the control group (1.82 +- 0.14 mmol/l). Conclusion: The present study demonstrated that women with breast cancer have a low level of TAS as compared to those of healthy women. It further emphasizes the growing concern that oxidative damage may occur in those patients that exhaust the antioxidant defense of the body leading to a low levels of TAS. Administration of antioxidant supplements such as a combination of vitamins A, C and E are necessary in women at high risk of developing breast cancer or after surgery or with anticancer drugs. (author)

  7. Bioactivity of essential oil from lemongrass (Cymbopogon citratus Stapf) as antioxidant agent

    Science.gov (United States)

    Anggraeni, Nenden Indrayati; Hidayat, Ika Wiani; Rachman, Saadah Diana; Ersanda

    2018-02-01

    Free radical induced oxidative stress that influences the occurrence of various degenerative diseases such as cancer, coronary heart disease and premature aging. In the case that body's antioxidant defense system does not have excessive antioxidants, additional natural antioxidant via food or other nutrients intake is needed. Stems of lemongrass Cymbopogon citratus Stapf are known to contain phenolic compounds that are known to have antioxidant activity. Lemongrass (Cymbopogon citratus Stapf) plant is well known herb in Asia, espesially in Indonesia and used for cooking and has many health benefits. A study has been carried out to determine antioxidant potential of stems of lemongrass. In this the primary study is to examine essential oil Cymbopogon citratus Stapf from Cileles Jatinangor as an antioxidant agent. Essential oil of Cymbopogon citratus Stapf was isolated from 1272 g of dried stem by using Karlsruhe steam distillation methods with 0.24% in yield. The product of essential oil was also tested against antioxidant activity DPPH and resulted low activity compare to ascorbic acid and lemongrass oil standard as reference material.

  8. Response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings exposed to UV-B.

    Science.gov (United States)

    Chen, Yi-Ping

    2009-07-01

    To determine the response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings, Isatis indigotica seedlings were subjected to UV-B radiation (10.08 kJ m(-2)) for 8 h day(-1) for 8 days (PAR, 220 micromol m(-2) s(-1)) and then exposed to He-Ne laser radiation (633 nm; 5.23 mW mm(-2); beam diameter: 1.5 mm) for 5 min each day without ambient light radiation. Changes in free radical elimination systems were measured, the results indicate that: (1) UV-B radiation enhanced the concentration of Malondialdahyde (MDA) and decreased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in seedlings compared with the control. The concentration of MDA was decreased and the activities of SOD, CAT and POD were increased when seedlings were subjected to elevated UV-B damage followed by laser; (2) the concentration of UV absorbing compounds and proline were increased progressively with UV-B irradiation, laser irradiation and He-Ne laser irradiation plus UV-B irradiation compared with the control. These results suggest that laser radiation has an active function in repairing UV-B-induced lesions in seedlings.

  9. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients.

    Science.gov (United States)

    L Gupta, Krishan; Sahni, Nancy

    2012-10-01

    Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients.

  10. Oxidative Stress and Antioxidant System in Periodontitis

    Science.gov (United States)

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  11. HERBAL REMEDIES AS ANTIOXIDANTS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Manoj S. Charde

    2012-01-01

    Full Text Available The primary cause of degenerative disease is not due to damaging free radicals, but rather it is due to the requirement of highly ordered cell biochemistry becoming disordered due to insufficient cellular energy to maintain the normal state of order. There is a complex defense system in the body, in which vitamins, minerals, amino acids and certain enzymes play a central role called the antioxidant system. Antioxidants are weapons for combating free radicals and mop up damaging chemicals in the body and guard against many chronic diseases. Heart disease, arthritis, cancer and many other common chronic diseases derive from the same source: fortuitous mutations caused largely by free radicals. Under optimum conditions, cells are protected against free radicals and lipid per oxidation. Antioxidants are substances, which react chemically with free radicals and render them harmless and at the same time break the vicious circle, which involves the decomposition of fatty acids & proteins, the creation of new free radicals and eventual cell death. Because free radical damage accumulates with age, people should start supplementing with antioxidants early to achieve long-term benefits. The scientific community has begun to unveil some of  the  mysteries surrounding this topic, and the media has begun whetting our thirst for knowledge.

  12. Enhanced interfacial interaction and antioxidative behavior of novel halloysite nanotubes/silica hybrid supported antioxidant in styrene-butadiene rubber

    Science.gov (United States)

    Lin, Jing; Luo, Yuanfang; Zhong, Bangchao; Hu, Dechao; Jia, Zhixin; Jia, Demin

    2018-05-01

    A novel antioxidant (HS-s-RT) to improve the mechanical properties and anti-aging performance of styrene-butadiene (SBR) composites was prepared by antioxidant intermediate p-aminodiphenylamine (RT) grafting on the surface of halloysite nanotubes/silica hybrid (HS) via the linkage of silane coupling agent. The analysis of SEM and rubber processing analyzer (RPA) demonstrated HS-s-RT was uniformly dispersed in SBR, and stronger interfacial interaction between HS-s-RT and SBR was formed. Consequently, SBR/HS-s-RT composites have improving mechanical properties. Furthermore, the test of the retention of mechanical properties, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), and oxidation induction time (OIT) showed HS-s-RT can effectively improve the anti-aging effect of SBR composites than corresponding low molecular-weight antioxidant N-isopropyl-N‧-phenyl-4-phenylenediamin (4010NA). Then, the mechanism of thermo-oxidative aging of SBR/HS composites was also investigated, and the superior antioxidative efficiency is attributed to the uniform dispersion and excellent migration resistance of HS-s-RT. Hence, this novel antioxidant might open up new opportunities for the fabrication of high-performance rubber composites due to its superior anti-aging effect and reinforcement.

  13. Anti-oxidative stress regulator NF-E2-related factor 2 mediates the adaptive induction of antioxidant and detoxifying enzymes by lipid peroxidation metabolite 4-hydroxynonenal

    Directory of Open Access Journals (Sweden)

    Huang Ying

    2012-11-01

    Full Text Available Abstract Background NF-E2-related factor 2 (NRF2 regulates a battery of antioxidative and phase II drug metabolizing/detoxifying genes through binding to the antioxidant response elements (ARE. NRF2-ARE signaling plays a central role in protecting cells from a wide spectrum of reactive toxic species including reactive oxygen/nitrogen species (RONS. 4-hydroxylnonenal (4-HNE is a major end product from lipid peroxidation of omega-6 polyunsaturated fatty acids (PUFA induced by oxidative stress, and it is highly reactive to nucleophilic sites in DNA and proteins, causing cytotoxicity and genotoxicity. In this study, we examined the role of NRF2 in regulating the 4-HNE induced gene expression of antioxidant and detoxifying enzymes. Results When HeLa cells were treated with 4-HNE, NRF2 rapidly transloated into the nucleus, as determined by the distribution of NRF2 tagged with the enhanced green fluorescent protein (EGFP and increased NRF2 protein in the nuclear fraction. Transcriptional activity of ARE-luciferase was significantly induced by 0.01-10 μM of 4-HNE in a dose-dependent manner, and the induction could be blocked by pretreatment with glutathione (GSH. 4-HNE induced transcriptional expression of glutathione S-transferase (GST A4, aldoketone reductase (AKR 1C1 and heme oxygenase-1 (HO-1, and the induction was attenuated by knocking down NRF2 using small interfering RNA. Conclusions NRF2 is critical in mediating 4-HNE induced expression of antioxidant and detoxifying genes. This may account for one of the major cellular defense mechanisms against reactive metabolites of lipids peroxidation induced by oxidative stress and protect cells from cytotoxicity.

  14. Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation.

    Directory of Open Access Journals (Sweden)

    Juan José Lázaro

    2013-11-01

    Full Text Available Mitochondrial respiration provides the energy needed to drive metabolic and transport processes in cells. Mitochondria are a significant site of reactive oxygen species (ROS production in plant cells, and redox-system components obey fine regulation mechanisms that are essential in protecting the mitochondrial integrity. In addition to ROS, there are compelling indications that nitric oxide (NO. can be generated in this organelle by both reductive and oxidative pathways. ROS and reactive nitrogen species (RNS play a key role in signaling but they can also be deleterious via oxidation of macromolecules. The high production of ROS obligates mitochondria to be provided with a set of ROS scavenging mechanisms. The first line of mitochondrial antioxidants is composed of superoxide dismutase and the enzymes of the ascorbate-glutathione cycle, which are not only able to scavenge ROS but also to repair cell damage and possibly serve as redox sensors. The dithiol-disulfide exchanges form independent signaling nodes and act as antioxidant defense mechanisms as well as sensor proteins modulating redox signaling during development and stress adaptation. The presence of thioredoxin (Trx, peroxiredoxin (Prx and sulfiredoxin (Srx in the mitochondria has been recently reported. Cumulative results obtained from studies in salt stress models have demonstrated that these redox proteins play a significant role in the establishment of salt tolerance. The Trx/Prx/Srx system may be subjected to a fine regulated mechanism involving post-translational modifications, among which S-glutathionylation and S-nitrosylation seem to exhibit a critical role that is just beginning to be understood. This review summarizes our current knowledge in antioxidative systems in plant mitochondria, their interrelationships, mechanisms of compensation and some unresolved questions, with special focus on their response to abiotic stress.

  15. Antioxidant and Vasodilator Activity of Ugni molinae Turcz. (Murtilla and Its Modulatory Mechanism in Hypotensive Response

    Directory of Open Access Journals (Sweden)

    Ignacio Jofré

    2016-01-01

    Full Text Available Hypertension is a systemic condition with high morbidity and mortality rates worldwide, which poses an increased risk for cardiovascular diseases. In this study, we demonstrated the antioxidant and vasodilator activity of Ugni molinae Turcz. (Murtilla fruit, a berry native to Chile and proposed models to explain its modulatory mechanism in hypotensive response. Murtilla fruits were cultivated in a germplasm bank and submitted to chemical and biological analyses. The phenolic compounds gallic acid, Catechin, Quercetin-3-β-D-glucoside, Myricetin, Quercetin, and Kaempferol were identified. Murtilla extract did not generate toxic effects on human endothelial cells and had significant antioxidant activity against ROS production, lipid peroxidation, and superoxide anion production. Furthermore, it showed dose-dependent vasodilator activity in aortic rings in the presence of endothelium, whose hypotensive mechanism is partially mediated by nitric oxide synthase/guanylate cyclase and large-conductance calcium-dependent potassium channels. Murtilla fruits might potentially have beneficial effects on the management of cardiovascular diseases.

  16. Rosmarinic acid and antioxidant enzyme activities in Lavandula vera MM cell suspension culture: a comparative study.

    Science.gov (United States)

    Georgiev, Milen; Abrashev, Radoslav; Krumova, Ekaterina; Demirevska, Klimentina; Ilieva, Mladenka; Angelova, Maria

    2009-11-01

    The growth and intracellular protein content of lavender (Lavandula vera MM) cell suspension culture was followed along with some antioxidant defense system members-non-enzymatic (rosmarinic acid) and enzymatic [superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6)]. It was found that the media content and the cultivation mode strongly influenced the production of plant defense compounds as well as the ratio between non-enzymatic and enzymatic ones. The bioreactor culture contains about two times more rosmarinic acid, superoxide dismutase, and catalase compared to the shake-flask cultivation. These findings are discussed with respect to the relative stress levels and plant antioxidant orchestra system. It was concluded that investigated defense system components (enzymatic and non-enzymatic) were closely associated in a complex balance. The three isoenzyme forms of SOD (Cu/ZnSOD, FeSOD, and MnSOD) in the cells of Lavandula vera were revealed by polyacrylamide gel electrophoresis analysis, and the FeSOD isoform exhibited highest activity.

  17. The role of ZmWRKY4 in regulating maize antioxidant defense under cadmium stress

    International Nuclear Information System (INIS)

    Hong, Changyong; Cheng, Dan; Zhang, Guoqiang; Zhu, Dandan; Chen, Yahua; Tan, Mingpu

    2017-01-01

    WRKY transcription factors act as positive regulators in abiotic stress responses by activation of the cellular antioxidant systems. However, there are few reports on the response of WRKY genes to cadmium (Cd) stress. In this study, the role of maize ZmWRKY4 in regulating antioxidant enzymes in Cd stress was investigated. The results indicated that Cd induced up-regulation of the expression and the activities of ZmWRKY4 and superoxide dismutase (SOD) and ascorbate peroxidase (APX). Transient expression and RNA interference (RNAi) silencing of ZmWRKY4 in maize mesophyll protoplasts further revealed that ZmWRKY4 was required for the abscisic acid (ABA)-induced increase in expression and activity of SOD and APX. Overexpression of ZmWRKY4 in protoplasts upregulated the expression and the activities of antioxidant enzymes, whereas ABA induced increases in the expression and the activities of antioxidant enzymes were blocked by the RNAi silencing of ZmWRKY4. Bioinformatic analysis indicated that ZmSOD4 and ZmcAPX both harbored two W-boxes, binding motif for WRKY transcription factors, in their promoter region. Intriguingly, ZmWRKY4 belongs to group I WRKYs with two WRKY domains. Moreover, the synchronized expression patterns indicate that ZmWRKY4 might play a critical role in either regulating the ZmSOD4 and ZmcAPX expression or cooperating with them in response to stress and phytohormone. - Highlights: • Cd induced the expression of ZmWRKY4, ZmSOD4 and ZmcAPX. • Maize transcription factor ZmWRKY4 was localized in nucleus. • Overexpression of ZmWRKY4 upregulated the expression of ZmSOD4 and ZmcAPX and the activities of antioxidant enzymes.

  18. Main approaches for delivering antioxidant vitamins through the skin to prevent skin ageing.

    Science.gov (United States)

    Gašperlin, Mirjana; Gosenca, Mirjam

    2011-07-01

    One of the major contributions to skin photoageing and diseases is oxidative stress, caused by UV radiation inducing reactive oxygen and nitrogen species. Successful prophylaxis and therapy would necessitate control of the oxidant/antioxidant balance at the affected site, which can be achieved through the external supply of endogenous antioxidants. This review discusses possible strategies for dermal delivery of the antioxidant vitamins E and C, as oral supplementation has proved insufficient. These antioxidants have low skin bioavailability, owing to their poor solubility, inefficient skin permeability, or instability during storage. These drawbacks can be overcome by various approaches, such as chemical modification of the vitamins and the use of new colloidal drug delivery systems. New knowledge is included about the importance of: enhancing the endogenous skin antioxidant defense through external supply; the balance between various skin antioxidants; factors that can improve the skin bioavailability of antioxidants; and new delivery systems, such as microemulsions, used to deliver vitamins C and E into the skin simultaneously. A promising strategy for enhancing skin protection from oxidative stress is to support the endogenous antioxidant system, with antioxidants containing products that are normally present in the skin.

  19. Oxidative stress and antioxidant status response of handball athletes: implications for sport training monitoring.

    Science.gov (United States)

    Marin, Douglas Popp; Bolin, Anaysa Paola; Campoio, Thais Regina; Guerra, Beatriz Alves; Otton, Rosemari

    2013-10-01

    The chronic exposure to regular exercise training seems to improve antioxidant defense systems. However, the intense physical training imposed on elite athletes may lead to overtraining associated with oxidative stress. The purpose of the present study was to investigate the effect of different training loads and competition on oxidative stress, biochemical parameters and antioxidant enzymatic defense in handball athletes during 6-months of monitoring. Ten male elite handball athletes were recruited to the study. Blood samples were collected four times every six weeks throughout the season. During most intense periods of training and competitions there were significant changes in plasma indices of oxidative stress (increased TBARS and decreased thiols). Conversely, chronic adaptations to exercise training demonstrated a significant protective effect against oxidative stress in erythrocyte (decrease in TBARs and carbonyl group levels). Erythrocyte antioxidant enzyme activities were significantly increased, suggesting a training-induced antioxidant adaptation. Biomarkers of skeletal muscle damage were significantly increased during high-intensity training period (creatine kinase, lactate dehydrogenase and aspartate aminotransferase). No significant changes were observed in plasma IL-6, TNF-α and uric acid, whereas a significant reduction was found in the IL-1β concentration and gamma-glutamyl transferase activity. Oxidative stress and antioxidant biomarkers can change throughout the season in competitive athletes, reflecting the physical stress and muscle damage that occurs as the result of competitive handball training. In addition, these biochemical measurements can be applied in the physiological follow-up of athletes. © 2013.

  20. Synthesis and chain-breaking antioxidant activity of 6-amino-3-pyridinols and photochemistry of CdSe nanocrystals covered with functionalized cinnamates

    NARCIS (Netherlands)

    Wijtmans, Maikel

    2004-01-01

    Antioxidants are Nature's primary defense against lipid peroxidation, a process believed to be involved in a range of diseases such as atherosclerosis, cancer, Parkinson's and Alzheimer disease, and others. The best antioxidant Nature has is Vitamin E and it serves to trap free radicals, which are

  1. In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats.

    Science.gov (United States)

    Jiménez-Escrig, Antonio; Dragsted, Lars Ove; Daneshvar, Bahram; Pulido, Raquel; Saura-Calixto, Fulgencio

    2003-08-27

    Artichoke (Cynara scolymus L.), an edible vegetable from the Mediterranean area, is a good source of natural antioxidants such as vitamin C, hydroxycinnamic acids, and flavones. The antioxidant activity of aqueous-organic extracts of artichoke were determined using three methods: (a) free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH(*)) scavenging, (b) ferric-reducing antioxidant power (FRAP), and (c) inhibition of copper(II)-catalyzed in vitro human low-density lipoprotein (LDL) oxidation. In addition, the present study was performed to investigate the ability of the edible portion of artichoke to alter in vivo antioxidative defense in male rats using selected biomarkers of antioxidant status. One gram (dry matter) had a DPPH(*) activity and a FRAP value in vitro equivalent to those of 29.2 and 62.6 mg of vitamin C and to those of 77.9 and 159 mg of vitamin E, respectively. Artichoke extracts showed good efficiency in the inhibition in vitro of LDL oxidation. Neither ferric-reducing ability nor 2,2'-azinobis(3-ethylbenzothiazolin-6-sulfonate) radical scavenging activity was modified in the plasma of the artichoke group with respect to the control group. Among different antioxidant enzymes measured (superoxide dismutase, gluthatione peroxidase, gluthatione reductase, and catalase) in erythrocytes, only gluthatione peroxidase activity was elevated in the artichoke group compared to the control group. 2-Aminoadipic semialdehyde, a protein oxidation biomarker, was decreased in plasma proteins and hemoglobin in the artichoke-fed group versus the control group. In conclusion, the in vitro protective activity of artichoke was confirmed in a rat model.

  2. Seasonal variations of anti-/apoptotic and antioxidant proteins in the heart and gastrocnemius muscle of the water frog Pelophylax ridibundus.

    Science.gov (United States)

    Feidantsis, Konstantinos; Anestis, Andreas; Michaelidis, Basile

    2013-10-01

    In the present work we investigated the seasonal variations of apoptotic and antioxidant proteins in the heart and gastrocnemius muscle of the amphibian Pelophylax ridibundus. Particularly processes studied included the evaluation of hypoxia through the levels of transcriptional factor Hif-1α, of apoptosis through the determination of Bcl-2 and Bax, ubiquitin conjugates levels and the antioxidant defense through the determination of the activity of enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Due to a general metabolic depression during overwintering, levels of the above mentioned proteins and enzymes are generally retained at low levels of expression and activity in the examined tissues of P. ridibundus. On the other hand recovery from overwintering induces oxidative stress, followed by increased levels of the specific proteins and enzymes. A milder up-regulation of antioxidant enzymes during overwintering probably prepares P. ridibundus for oxidative stress during arousal. The seasonal activation of these mechanisms seems to protect this species from these unfavourable conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses

    Science.gov (United States)

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2015-01-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8 J/cm2) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101

  4. Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants.

    Science.gov (United States)

    Gratão, Priscila Lupino; Monteiro, Carolina Cristina; Tezotto, Tiago; Carvalho, Rogério Falleiros; Alves, Letícia Rodrigues; Peters, Leila Priscila; Azevedo, Ricardo Antunes

    2015-10-01

    Many aspects related to ROS modulation of signaling networks and biological processes that control stress responses still remain unanswered. For this purpose, the grafting technique may be a powerful tool to investigate stress signaling and specific responses between plant organs during stress. In order to gain new insights on the modulation of antioxidant stress responses mechanisms, gas-exchange measurements, lipid peroxidation, H2O2 content, proline, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX) and guaiacol peroxidase (GPOX) were analyzed in Micro-Tom grafted plants submitted to cadmium (Cd). The results observed revealed that higher amounts of Cd accumulated mainly in the roots and rootstocks when compared to leaves and scions. Macronutrients uptake (Ca, S, P and Mg) decreased in non-grafted plants, but differed among plant parts in all grafted plants. The results showed that the accumulation of proline observed in scions of grafted plants could be associated to the lower MDA contents in the scions of grafted plants. In the presence of Cd, non-grafted plants displayed increased CAT, GR, GPOX and APX activities for both tissues, whilst grafted plants revealed distinct trends that clearly indicate signaling responses from the rootstocks, allowing sufficient time to activate defense mechanisms in shoot. The information available concerning plants subjected to grafting can provide a better understanding of the mechanisms of Cd detoxification involving root-to-shoot signaling, opening new possibilities on strategies which can be used to manipulate heavy metal tolerance, since antioxidant systems are directly involved in such mechanism.

  5. A High Antioxidant Spice Blend Attenuates Postprandial Insulin and Triglyceride Responses and Increases Some Plasma Measures of Antioxidant Activity in Healthy, Overweight Men123

    Science.gov (United States)

    Skulas-Ray, Ann C.; Kris-Etherton, Penny M.; Teeter, Danette L.; Chen, C-Y. Oliver; Vanden Heuvel, John P.; West, Sheila G.

    2011-01-01

    There is much interest in the potential of dietary antioxidants to attenuate in vivo oxidative stress, but little characterization of the time course of plasma effects exists. Culinary spices have demonstrated potent in vitro antioxidant properties. The objective of this study was to examine whether adding 14 g of a high antioxidant spice blend to a 5060-kJ (1200 kcal) meal exerted significant postprandial effects on markers of plasma antioxidant status and metabolism. Healthy overweight men (n = 6) consumed a control and spiced meal in a randomized crossover design with 1 wk between testing sessions. Blood was sampled prior to the meal and at 30-min intervals for 3.5 h (total of 8 samples). Mixed linear models demonstrated a treatment × time interaction (P spiced meal, respectively. Adding spices to the meal significantly increased the ferric reducing antioxidant power, such that postprandial increases following the spiced meal were 2-fold greater than after the control meal (P = 0.009). The hydrophilic oxygen radical absorbance capacity (ORAC) of plasma also was increased by spices (P = 0.02). There were no treatment differences in glucose, total thiols, lipophilic ORAC, or total ORAC. The incorporation of spices into the diet may help normalize postprandial insulin and TG and enhance antioxidant defenses. PMID:21697300

  6. Analysis of the effects of iron and vitamin C co-supplementation on oxidative damage, antioxidant response and inflammation in THP-1 macrophages.

    Science.gov (United States)

    Marcil, V; Lavoie, J C; Emonnot, L; Seidman, E; Levy, E

    2011-07-01

    The aims of the study were to test the susceptibility of THP-1 macrophages to develop oxidative stress and to deploy antioxidant defense mechanisms that insure the balance between the pro- and antioxidant molecules. Differentiated THP-1 were incubated in the presence or absence of iron-ascorbate (Fe/As) (100/1000μM) and the antioxidants Trolox, BHT, α-Tocopherol and NAC. Fe/As promoted the production of lipid peroxidation as reflected by the formation of malondialdehyde and H(2)O(2) along with reduced PUFA levels and elevated glutathione disulfide/total glutathione ratio, a reliable index of cellular redox status. THP-1 macrophages developed an increase in cytoplasmic SOD activity due in part to high cytoplasmic SOD1. On the other hand, a decline was noted in mRNA and protein of extra-cellular SOD3, as well as the activity of GSH-peroxidase, GSH-transferase and ATOX-1 expression. Macrophages activated under conditions of oxidative stress do not adequately deploy a powerful endogenous antioxidant response, a situation that can lead to an enhanced inflammatory response. Copyright © 2011 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. The Substitution Effect on Reaction Enthalpies of Antioxidant Mechanisms of Juglone and Its Derivatives in Gas and Solution Phase: DFT Study

    Directory of Open Access Journals (Sweden)

    Aymard Didier Tamafo Fouegue

    2018-01-01

    Full Text Available We examined the structure-reaction enthalpies-antioxidant activity relationship of the molecule library built around juglone and its derivatives at B3LYP/6-31+G(d,p level. Three major antioxidant mechanisms (hydrogen atom transfer (HAT, single electron transfer-proton transfer (SET-PT, and sequential proton loss electron transfer (SPLET have been investigated in five solvents and in the gas phase. The delocalization of the unpaired electrons in the radicals or cation radicals has been explored by the natural bond orbital analysis and the interpretation of spin density maps. The results obtained have proven that the HAT mechanism is the thermodynamically preferred mechanism in the gas phase. But, in the solution phase, the SPLET mechanism has been shown to be more predominant than HAT. The reactivity order of compounds towards selected reactive oxygen species has also been studied.

  8. Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells

    Directory of Open Access Journals (Sweden)

    Müller Sylke

    2009-05-01

    Full Text Available Abstract Background Plasmodium falciparum-parasitized red blood cells (RBCs are equipped with protective antioxidant enzymes and heat shock proteins (HSPs. The latter are only considered to protect against thermal stress. Important issues are poorly explored: first, it is insufficiently known how both systems are expressed in relation to the parasite developmental stage; secondly, it is unknown whether P. falciparum HSPs are redox-responsive, in view of redox sensitivity of HSP in eukaryotic cells; thirdly, it is poorly known how the antioxidant defense machinery would respond to increased oxidative stress or inhibited antioxidant defense. Those issues are interesting as several antimalarials increase the oxidative stress or block antioxidant defense in the parasitized RBC. In addition, numerous inhibitors of HSPs are currently developed for cancer therapy and might be tested as anti-malarials. Thus, the joint disruption of the parasite antioxidant enzymes/HSP system would interfere with parasite growth and open new perspectives for anti-malaria therapy. Methods Stage-dependent mRNA expression of ten representative P. falciparum antioxidant enzymes and hsp60/70–2/70–3/75/90 was studied by quantitative real-time RT-PCR in parasites growing in normal RBCs, in RBCs oxidatively-stressed by moderate H2O2 generation and in G6PD-deficient RBCs. Protein expression of antioxidant enzymes was assayed by Western blotting. The pentosephosphate-pathway flux was measured in isolated parasites after Sendai-virus lysis of RBC membrane. Results In parasites growing in normal RBCs, mRNA expression of antioxidant enzymes and HSPs displayed co-ordinated stage-dependent modulation, being low at ring, highest at early trophozoite and again very low at schizont stage. Additional exogenous oxidative stress or growth in antioxidant blunted G6PD-deficient RBCs indicated remarkable flexibility of both systems, manifested by enhanced, co-ordinated mRNA expression of

  9. Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells.

    Science.gov (United States)

    Akide-Ndunge, Oscar Bate; Tambini, Elisa; Giribaldi, Giuliana; McMillan, Paul J; Müller, Sylke; Arese, Paolo; Turrini, Francesco

    2009-05-29

    Plasmodium falciparum-parasitized red blood cells (RBCs) are equipped with protective antioxidant enzymes and heat shock proteins (HSPs). The latter are only considered to protect against thermal stress. Important issues are poorly explored: first, it is insufficiently known how both systems are expressed in relation to the parasite developmental stage; secondly, it is unknown whether P. falciparum HSPs are redox-responsive, in view of redox sensitivity of HSP in eukaryotic cells; thirdly, it is poorly known how the antioxidant defense machinery would respond to increased oxidative stress or inhibited antioxidant defense. Those issues are interesting as several antimalarials increase the oxidative stress or block antioxidant defense in the parasitized RBC. In addition, numerous inhibitors of HSPs are currently developed for cancer therapy and might be tested as anti-malarials. Thus, the joint disruption of the parasite antioxidant enzymes/HSP system would interfere with parasite growth and open new perspectives for anti-malaria therapy. Stage-dependent mRNA expression of ten representative P. falciparum antioxidant enzymes and hsp60/70-2/70-3/75/90 was studied by quantitative real-time RT-PCR in parasites growing in normal RBCs, in RBCs oxidatively-stressed by moderate H2O2 generation and in G6PD-deficient RBCs. Protein expression of antioxidant enzymes was assayed by Western blotting. The pentosephosphate-pathway flux was measured in isolated parasites after Sendai-virus lysis of RBC membrane. In parasites growing in normal RBCs, mRNA expression of antioxidant enzymes and HSPs displayed co-ordinated stage-dependent modulation, being low at ring, highest at early trophozoite and again very low at schizont stage. Additional exogenous oxidative stress or growth in antioxidant blunted G6PD-deficient RBCs indicated remarkable flexibility of both systems, manifested by enhanced, co-ordinated mRNA expression of antioxidant enzymes and HSPs. Protein expression of

  10. Adverse effects of methylmercury (MeHg) on life parameters, antioxidant systems, and MAPK signaling pathways in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Lee, Young Hwan; Kang, Hye-Min; Kim, Duck-Hyun; Wang, Minghua; Jeong, Chang-Bum; Lee, Jae-Seong

    2017-03-01

    Methylmercury (MeHg) is a concerning environmental pollutant that bioaccumulates and biomagnifies in the aquatic food web. However, the effects of MeHg on marine zooplankton are poorly understood even though zooplankton are considered key mediators of the bioaccumulation and biomagnification of MeHg in high-trophic marine organisms. Here, the toxicity of MeHg in the benthic copepod Tigriopus japonicus was assessed, and its adverse effects on growth rate and reproduction were demonstrated. Antioxidant enzymatic activities were increased in the presence of MeHg, indicating that these enzymes play an important role in the defense response to MeHg, which is regulated by a complex mechanism. Subsequent activation of different patterns of mitogen-activated protein kinase (MAPK) pathways was demonstrated, providing a mechanistic approach to understand the signaling pathways involved in the effects of MeHg. Our results provide valuable information for understanding the toxicity of MeHg and the underlying defense mechanism in response to MeHg exposure in marine zooplankton. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Using the Defensive Style Questionnaire to evaluate the impact of sex reassignment surgery on defensive mechanisms in transsexual patients Aplicação do Defensive Style Questionnaire para avaliar o impacto da cirurgia de redesignação sexual nos mecanismos de defesa de pacientes transexuais

    Directory of Open Access Journals (Sweden)

    Maria Inês Lobato

    2009-12-01

    Full Text Available Objective: To evaluate the impact of sex reassignment surgery on the defense mechanisms of 32 transsexual patients at two different points in time using the Defensive Style Questionnaire. Method: The Defensive Style Questionnaire was applied to 32 patients upon their admission to the Gender Identity Disorder Program, and 12 months after they had undergone sex reassignment surgery. Results: There were changes in two defense mechanisms: anticipation and idealization. However, no significant differences were observed in terms of the mature, neurotic and immature categories. Discussion: One possible explanation for this result is the fact that the procedure does not resolve gender dysphoria, which is a core symptom in such patients. Another aspect is related to the early onset of the gender identity disorder, which determines a more regressive defensive structure in these patients. Conclusion: Sex reassignment surgery did not improve the defensive profile as measured by the Defensive Style Questionnaire.Objetivo: Avaliar o efeito da cirurgia de redesignação sexual nos mecanismos de defesa de 32 pacientes transexuais em dois momentos do estudo usando o Defensive Style Questionnaire. Método: O Defensive Style Questionnaire foi aplicado a 32 pacientes quando ingressaram no Programa de Transtorno de Identidade de Gênero e 12 meses após a cirurgia de redesignação sexual. Resultados: Houve modificações em dois mecanismos de defesa: antecipação e idealização; porém, sem mudanças significativas nos fatores maduro, neurótico e imaturo. Discussão: Uma possibilidade para esse resultado é o fato de a intervenção cirúrgica não resolver a disforia de gênero (principal sintoma desses pacientes. Outro aspecto está relacionado com o fato de o transtorno de identidade de gênero ser instalado precocemente, o que determina uma estrutura defensiva mais regressiva para esses pacientes. Conclusão: A cirurgia de redesignação sexual não foi

  12. Assessing competence of broccoli consumption on inflammatory and antioxidant pathways in restraint-induced models: estimation in rat hippocampus and prefrontal cortex.

    Science.gov (United States)

    Khalaj, Leila; Nejad, Sara Chavoshi; Mohammadi, Marzieh; Sarraf Zadeh, Sadaf; Pour, Marieh Hossein; Ashabi, Ghorbangol; Khodagholi, Fariba; Ahmadiani, Abolhassan

    2013-01-01

    A growing body of evidence advocated the protective and therapeutic potential of natural compounds and phytochemicals used in diets against pathological conditions. Herein, the outcome of dietary whole broccoli consumption prior to restraint stress has been investigated in the hippocampus and prefrontal cortex of male rats, two important regions involved in the processing of responses to stressful events. Interestingly, a region-specific effect was detected regarding some of antioxidant defense system factors: nuclear factor erythroid-derived 2-related factor 2 (Nrf-2) antioxidant pathway, mitochondrial prosurvival proteins involved in mitochondrial biogenesis, and apoptotic cell death proteins. Dietary broccoli supplementation modulated the restraint-induced changes towards a consistent overall protection in the hippocampus. In the prefrontal cortex, however, despite activation of most of the protective factors, presumably as an attempt to save the system against the stress insult, some detrimental outcomes such as induced malate dehydrogenase (MDA) level and cleaved form of caspase-3 were detectable. Such diversity may be attributed in one hand to the different basic levels and/or availability of defensive mechanisms within the two studied cerebral regions, and on the other hand to the probable dose-dependent and hormetic effects of whole broccoli. More experiments are essential to demonstrate these assumptions.

  13. Assessing Competence of Broccoli Consumption on Inflammatory and Antioxidant Pathways in Restraint-Induced Models: Estimation in Rat Hippocampus and Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Leila Khalaj

    2013-01-01

    Full Text Available A growing body of evidence advocated the protective and therapeutic potential of natural compounds and phytochemicals used in diets against pathological conditions. Herein, the outcome of dietary whole broccoli consumption prior to restraint stress has been investigated in the hippocampus and prefrontal cortex of male rats, two important regions involved in the processing of responses to stressful events. Interestingly, a region-specific effect was detected regarding some of antioxidant defense system factors: nuclear factor erythroid-derived 2-related factor 2 (Nrf-2 antioxidant pathway, mitochondrial prosurvival proteins involved in mitochondrial biogenesis, and apoptotic cell death proteins. Dietary broccoli supplementation modulated the restraint-induced changes towards a consistent overall protection in the hippocampus. In the prefrontal cortex, however, despite activation of most of the protective factors, presumably as an attempt to save the system against the stress insult, some detrimental outcomes such as induced malate dehydrogenase (MDA level and cleaved form of caspase-3 were detectable. Such diversity may be attributed in one hand to the different basic levels and/or availability of defensive mechanisms within the two studied cerebral regions, and on the other hand to the probable dose-dependent and hormetic effects of whole broccoli. More experiments are essential to demonstrate these assumptions.

  14. Theoretical simulations on the antioxidant mechanism of naturally occurring flavonoid: A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Praveena, R. [Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu (India); Sadasivam, K. [Department of Physics, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu (India)

    2016-05-06

    Synthetic antioxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are found to be toxic, hence non-carcinogenic naturally occurring radical scavengers especially flavonoids have gained considerable importance in the past two decades. In the present investigation, the radical scavenging activity of C-glycosyl flavonoids is evaluated using theoretical approach which could broaden its scope in therapeutic applications. Gas and solvent phase studies of structural and molecular characteristics of C-glycosyl flavonoid, isovitexin is investigated through hydrogen atom transfer mechanism (HAT), Electron transfer-proton transfer (ET–PT) and Sequential proton loss electron transfer (SPLET) by Density functional theory (DFT) using hybrid parameters. The computed values of the adiabatic ionization potential, electron affinity, hardness, softness, electronegativity and electrophilic index indicate that isovitexin possess good radical scavenging activity. The behavior of different –OH groups in polyphenolic compounds is assessed by considering electronic effects of the neighbouring groups and the overall geometry of molecule which in turn helps in analyzing the antioxidant capacity of the polyphenolic molecule. The studies indicate that the H–atom abstraction from 4’–OH site is preferred during the radical scavenging process. From Mulliken spin density analysis and FMOs, B–ring is found to be more delocalized center and capable of electron donation. Comparison of antioxidant activity of vitexin and isovitexin leads to the conclusion that isovitexin acts as a better radical scavenger. This is an evidence for the importance of position of glucose unit in the flavonoid.

  15. Theoretical simulations on the antioxidant mechanism of naturally occurring flavonoid: A DFT approach

    International Nuclear Information System (INIS)

    Praveena, R.; Sadasivam, K.

    2016-01-01

    Synthetic antioxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are found to be toxic, hence non-carcinogenic naturally occurring radical scavengers especially flavonoids have gained considerable importance in the past two decades. In the present investigation, the radical scavenging activity of C-glycosyl flavonoids is evaluated using theoretical approach which could broaden its scope in therapeutic applications. Gas and solvent phase studies of structural and molecular characteristics of C-glycosyl flavonoid, isovitexin is investigated through hydrogen atom transfer mechanism (HAT), Electron transfer-proton transfer (ET–PT) and Sequential proton loss electron transfer (SPLET) by Density functional theory (DFT) using hybrid parameters. The computed values of the adiabatic ionization potential, electron affinity, hardness, softness, electronegativity and electrophilic index indicate that isovitexin possess good radical scavenging activity. The behavior of different –OH groups in polyphenolic compounds is assessed by considering electronic effects of the neighbouring groups and the overall geometry of molecule which in turn helps in analyzing the antioxidant capacity of the polyphenolic molecule. The studies indicate that the H–atom abstraction from 4’–OH site is preferred during the radical scavenging process. From Mulliken spin density analysis and FMOs, B–ring is found to be more delocalized center and capable of electron donation. Comparison of antioxidant activity of vitexin and isovitexin leads to the conclusion that isovitexin acts as a better radical scavenger. This is an evidence for the importance of position of glucose unit in the flavonoid.

  16. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems.

    Science.gov (United States)

    Makarova, Kira S; Wolf, Yuri I; Snir, Sagi; Koonin, Eugene V

    2011-11-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic "sinks" that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands.

  17. Perturbations in the antioxidant metabolism during Newcastle disease virus (NDV) infection in chicken. Protective role of vitamin E

    Science.gov (United States)

    Subbaiah, Kadiam C. Venkata; Raniprameela, D.; Visweswari, Gopalareddygari; Rajendra, Wudayagiri; Lokanatha, Valluru

    2011-12-01

    The aim of the present study was to investigate the effect of vitamin E on pro/anti-oxidant status in the liver, brain and heart of Newcastle disease virus (NDV) infected chickens. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione- S-transferase (GST) and the levels of reduced glutathione and malonaldehyde were estimated in selected tissues of uninfected, NDV-infected and NDV + vit. E-treated chickens. A significant increase in MDA levels in brain and liver ( p neuronal necrosis and degeneration of Purkinje cells were observed in brain and moderate infiltration of inflammatory cells was observed in heart. However such histological alterations were not observed in NDV + vit. E-treated animals. The results of the present study, thus demonstrated that antioxidant defense mechanism is impaired after the induction of NDV, suggesting its critical role in cellular injury in brain and liver. Further, the results also suggest that vitamin E treatment will ameliorate the antioxidant status in the infected animals. The findings could be beneficial to understand the role of oxidative stress in the pathogenesis of NDV and therapeutic interventions of antioxidants.

  18. Skin and antioxidants.

    Science.gov (United States)

    Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar

    2013-04-01

    It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.

  19. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Directory of Open Access Journals (Sweden)

    Denis N Silachev

    Full Text Available BACKGROUND: Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. METHODOLOGY/PRINCIPAL FINDINGS: We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated

  20. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Science.gov (United States)

    Silachev, Denis N; Isaev, Nikolay K; Pevzner, Irina B; Zorova, Ljubava D; Stelmashook, Elena V; Novikova, Svetlana V; Plotnikov, Egor Y; Skulachev, Vladimir P; Zorov, Dmitry B

    2012-01-01

    Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced

  1. In Vitro Protective Effect and Antioxidant Mechanism of Resveratrol Induced by Dapsone Hydroxylamine in Human Cells.

    Directory of Open Access Journals (Sweden)

    Rosyana V Albuquerque

    Full Text Available Dapsone (DDS hydroxylamine metabolites cause oxidative stress- linked adverse effects in patients, such as methemoglobin formation and DNA damage. This study evaluated the ameliorating effect of the antioxidant resveratrol (RSV on DDS hydroxylamine (DDS-NHOH mediated toxicity in vitro using human erythrocytes and lymphocytes. The antioxidant mechanism was also studied using in-silico methods. In addition, RSV provided intracellular protection by inhibiting DNA damage in human lymphocytes induced by DDS-NHOH. However, whilst pretreatment with RSV (10-1000 μM significantly attenuated DDS-NHOH-induced methemoglobinemia, but it was not only significantly less effective than methylene blue (MET, but also post-treatment with RSV did not reverse methemoglobin formation, contrarily to that observed with MET. DDS-NHOH inhibited catalase (CAT activity and reactive oxygen species (ROS generation, but did not alter superoxide dismutase (SOD activity in erythrocytes. Pretreatment with RSV did not alter these antioxidant enzymes activities in erythrocytes treated with DDS-NHOH. Theoretical calculations using density functional theory methods showed that DDS-NHOH has a pro-oxidant effect, whereas RSV and MET have antioxidant effect on ROS. The effect on methemoglobinemia reversion for MET was significantly higher than that of RSV. These data suggest that the pretreatment with resveratrol may decrease heme-iron oxidation and DNA damage through reduction of ROS generated in cells during DDS therapy.

  2. Peroxiredoxins and sports: new insights on the antioxidative defense.

    Science.gov (United States)

    Brinkmann, Christian; Brixius, Klara

    2013-01-01

    Peroxiredoxins (PRDXs) are multifunctional proteins that have recently received much attention. They are part of the endogenous antioxidative capacity and function as efficient scavengers, especially for hydrogen peroxides. Studies show that physical training can induce an upregulation of PRDX isoform contents in the long term. This might help counteract chronic diseases that are causally linked to a high amount of free radicals, e.g., diabetes mellitus. Furthermore, it has been demonstrated that PRDX can overoxidize under pathological conditions during acute exercise. Overoxidized PRDXs could be useful because they act as protective chaperones. Taken together, it can be speculated that physical activity has a positive effect on the PRDX system and thereby prevents cells from free radical-induced damage.

  3. Bio-Prospecting of a Few Brown Seaweeds for Their Cytotoxic and Antioxidant Activities

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayak, R.C.; Sabu, A.S.; Chatterji, A.

    ), catalases (CAT), glutathione peroxidases (GPX)) and small molecule antioxidants (such as ascorbic acid, tocopherol, uric acid and glutathione), forming the first line of defense. The second line of defense against free radical damage is the presence... of various compounds. The method 6 Evidence-Based Complementary and Alternative Medicine OONO − Oxidative burst 2O 2 − Endogenous factors Exogenous factors H 2 O GPX SOD H 2 O 2 H 2 O+O 2 CAT Iron chelation by seaweed dietary fibers and flavanoids Protein...

  4. Pomegranate-mediated chemoprevention of experimental hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms

    Science.gov (United States)

    Bishayee, Anupam; Bhatia, Deepak; Thoppil, Roslin J.; Darvesh, Altaf S.; Nevo, Eviatar; Lansky, Ephraim P.

    2011-01-01

    Hepatocellular carcinoma (HCC), one of the most prevalent and lethal cancers, has shown an alarming rise in the USA. Without effective therapy for HCC, novel chemopreventive strategies may effectively circumvent the current morbidity and mortality. Oxidative stress predisposes to hepatocarcinogenesis and is the major driving force of HCC. Pomegranate, an ancient fruit, is gaining tremendous attention due to its powerful antioxidant properties. Here, we examined mechanism-based chemopreventive potential of a pomegranate emulsion (PE) against dietary carcinogen diethylnitrosamine (DENA)-induced rat hepatocarcinogenesis that mimics human HCC. PE treatment (1 or 10 g/kg), started 4 weeks prior to the DENA challenge and continued for 18 weeks thereafter, showed striking chemopreventive activity demonstrated by reduced incidence, number, multiplicity, size and volume of hepatic nodules, precursors of HCC. Both doses of PE significantly attenuated the number and area of γ-glutamyl transpeptidase-positive hepatic foci compared with the DENA control. PE also attenuated DENA-induced hepatic lipid peroxidation and protein oxidation. Mechanistic studies revealed that PE elevated gene expression of an array of hepatic antioxidant and carcinogen detoxifying enzymes in DENA-exposed animals. PE elevated protein and messenger RNA expression of the hepatic nuclear factor E2-related factor 2 (Nrf2). Our results provide substantial evidence, for the first time, that pomegranate constituents afford chemoprevention of hepatocarcinogenesis possibly through potent antioxidant activity achieved by upregulation of several housekeeping genes under the control of Nrf2 without toxicity. The outcome of this study strongly supports the development of pomegranate-derived products in the prevention and treatment of human HCC, which remains a devastating disease. PMID:21389260

  5. Anti-amnesic effects of Ganoderma species: A possible cholinergic and antioxidant mechanism.

    Science.gov (United States)

    Kaur, Ravneet; Singh, Varinder; Shri, Richa

    2017-08-01

    Mushrooms are valued for their nutritional as well as medicinal properties. Ganoderma species are used traditionally to treat neurological disorders but scientific evidence for this is insufficient. The present study was designed to systematically evaluate the anti-amnesic effect of selected Ganoderma species i.e. G. mediosinense and G. ramosissimum. Extracts of selected mushroom species were evaluated for their antioxidant activity and acetylcholinesterase (AChE) inhibition using in-vitro assays (DPPH and Ellman tests respectively). The anti-amnesic potential of the most active extract (i.e. 70% methanol extract of G. mediosinense) was confirmed using mouse model of scopolamine-induced amnesia. Mice were treated with bioactive extract and donepezil once orally before the induction of amnesia. Cognitive functions were evaluated using passive shock avoidance (PSA) and novel object recognition (NOR) tests. The effect on brain AChE activity, brain oxidative stress (TBARS level) and neuronal damage (H & E staining) were also assessed. In-vitro results showed strong antioxidant and AChE inhibitory activities by G. mediosinense extract (GME). Therefore, it was selected for in-vivo studies. GME pre-treatment (800mg/kg, p.o.) reversed the effect of scopolamine in mice, evident by significant decrease (p <0.05) in the transfer latency time and increase in object recognition index in PSA and NOR, respectively. GME significantly reduced the brain AChE activity and oxidative stress. Histopathological examination of brain tissues showed decrease in vacuolated cytoplasm and increase in pyramidal cells in brain hippocampal and cortical regions. GME exerts anti-amnesic effect through AChE inhibition and antioxidant mechanisms. Copyright © 2017. Published by Elsevier Masson SAS.

  6. Antioxidant capacity of broccoli sprouts subjected to gastrointestinal digestion.

    Science.gov (United States)

    Rychlik, Joanna; Olejnik, Anna; Olkowicz, Mariola; Kowalska, Katarzyna; Juzwa, Wojciech; Myszka, Kamila; Dembczyński, Radosław; Moyer, Mary Pat; Grajek, Włodzimierz

    2015-07-01

    Broccoli is a common vegetable recognized as a rich source of antioxidants. To date, research on the antioxidant properties of broccoli, predominantly conducted on extracts, has not considered the lesions of composition and this activity after gastrointestinal digestion. Here the stability of antioxidants during gastrointestinal digestion was evaluated in conjunction with the protective effects of broccoli sprouts (BS) against oxidative stress in human colon cells. The obtained data suggest that, among the biocompounds identified in BS, glucosinolates were mainly degraded under gastrointestinal digestion, while phenolics, particularly hydroxycinnamic acid derivatives, were the most resistant constituents. The antioxidant capacity of BS extract subjected to gastrointestinal digestion was similar to or higher than that determined for non-digested BS. Gastrointestinal digested BS extract exhibited reactive oxygen species (ROS)-inhibitory capacity in NCM460 human colon cells, with 1 mg mL(-1) showing an ROS clearance of 76.59%. A 57.33% reduction in oxidative DNA damage in NCM460 cells due to treatment with digested BS extract was observed. The results lend support to the possible application of BS as a rich source of antioxidants to improve the defensive system against oxidative stress in the human colon mucosa. © 2014 Society of Chemical Industry.

  7. Antioxidant role of plasma carotenoids in bronchopulmonary dysplasia in preterm infants.

    Science.gov (United States)

    Vogelsang, Annelies; van Lingen, Richard A; Slootstra, Janine; Dikkeschei, Bert D; Kollen, Boudewijn J; Schaafsma, Anne; van Zoeren-Grobben, Diny

    2009-09-01

    Oxidative stress is implicated in the pathogenesis of bronchopulmonary dysplasia (BPD) and consequently, it might be theorized that sufficient antioxidant defenses are needed to prevent BPD. We hypothesized that, except for vitamins E and A, carotenoids may be important in this defense. Carotenoids are present in human milk; however, they are not added to parenteral nutrition, the main food source of preterm infants in the first week of life. To evaluate prospectively the role of carotenoids in BPD in a cohort of preterm infants. The plasma concentrations of F(2alpha)-isoprostane, alpha- and beta-carotene, lycopene, lutein, vitamin A, and the vitamin E/cholesterol ratio were studied at days 1, 3, and 7 in a cohort of 109 preterm infants, of whom 19 had BPD. When comparing the BPD and control group, infants in the BPD group were younger (plutein, alpha-carotene, vitamin E, and F(2alpha)-isoprostane concentrations did not differ between groups. Plasma beta-carotene and vitamin A concentrations are lower in BPD infants which may result in a reduction of their antioxidant protection.

  8. Genistein attenuates ischemia/reperfusion injury in rat kidneys via ...

    African Journals Online (AJOL)

    kidneys via enhancement of antioxidant defense mechanisms: Activation ... Renal function, total oxidant capacity and total antioxidant status in serum were evaluated in the rats. ..... Erel O. Novel automated method to measure total antioxidant ...

  9. Gene expression analysis of molecular mechanisms of defense induced in Medicago truncatula parasitized by Orobanche crenata.

    Science.gov (United States)

    Die, José Vicente; González Verdejo, Clara I; Dita, Miguel A; Nadal, Salvador; Román, Belén

    2009-07-01

    The infection of Medicago truncatula Gaertn. roots with the obligate parasite Orobanche crenata Forsk. is a useful model for studying the molecular events involved in the legumes-parasite interaction. In order to gain insight into the identification of gene-regulatory elements involved in the resistance mechanism, the temporal expression pattern of ten defense-related genes was carried out using real-time quantitative reverse-transcription polymerase chain reaction assays. The induction of all of the analyzed transcripts significantly increased over a range from 2- to 321-fold higher than the control depending on the gene and time point. The transcriptional changes observed in response to O. crenata infection suggest that resistance could rely on both, the induction of general defense-related genes and more specific responses.

  10. Psychological defense mechanisms in patients with syphilis at different stages of the disease

    Directory of Open Access Journals (Sweden)

    Filonova A.V.

    2015-09-01

    Full Text Available Purpose: the study of psychological defense mechanisms in patients with syphilis at different stages of the disease. Material and methods. We used questionnaire Plutchik-Kellerman-Comte "life style Index". The study involved 257 people (118 women (46% and 139 men (54% aged 18 to 67 years (mean age — 23,5±8,9years. Results. In patients with primary syphilis primary mecha-protection scheme is "denying"; secondary syphilis of skin and mucus-purity membranes— "replacement"; syphilis latent early — "projection"; in patients with late syphilis — intellectualization. Thus, in patients with late forms of syphilis is dominated by more Mature mechanisms of protection (projection, rationalization. Patients with early forms use more primitive mechanisms (denial, substitution. Conclusion. The obtained data may be useful in the choice of methods of psychotherapy, the formation of patients more realistic (ADAP-tive installations for the treatment, restoration of family and other social relations, the prevention of distress and improving the quality of life of patients.

  11. Resistance to the Beneficial Metabolic Effects and Hepatic Antioxidant Defense Actions of Fibroblast Growth Factor 21 Treatment in Growth Hormone-Overexpressing Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Ravneet K. Boparai

    2015-01-01

    Full Text Available Fibroblast growth factor 21 (FGF21 modulates a diverse range of biological functions, including glucose and lipid metabolism, adaptive starvation response, and energy homeostasis, but with limited mechanistic insight. FGF21 treatment has been shown to inhibit hepatic growth hormone (GH intracellular signaling. To evaluate GH axis involvement in FGF21 actions, transgenic mice overexpressing bovine GH were used. Expectedly, in response to FGF21 treatment control littermates showed metabolic improvements whereas GH transgenic mice resisted most of the beneficial effects of FGF21, except an attenuation of the innate hyperinsulinemia. Since FGF21 is believed to exert its effects mostly at the transcriptional level, we analyzed and observed significant upregulation in expression of various genes involved in carbohydrate and lipid metabolism, energy homeostasis, and antioxidant defense in FGF21-treated controls, but not in GH transgenics. The resistance of GH transgenic mice to FGF21-induced changes underlines the necessity of normal GH signaling for the beneficial effects of FGF21.

  12. Antioxidant content and ultraviolet absorption characteristics of human tears.

    Science.gov (United States)

    Choy, Camus Kar Man; Cho, Pauline; Benzie, Iris F F

    2011-04-01

    Dry eye syndrome is a common age-related disorder, and decreased antioxidant/ultraviolet (UV) radiation protection in tears may be part of the cause. This study aimed to compare the tear antioxidant content and flow rate in young and older adults. The total antioxidant content and UV absorbing properties of various commercially available ophthalmic solutions used to alleviate dry eye symptoms were also examined. Minimally stimulated tears were collected from 120 healthy Chinese adults with no ocular pathology. Two age groups were studied: 19 to 29 years (n = 58) and 50 to 75 years (n = 62). Tear samples from each subject and 13 ophthalmic solutions were analyzed for total antioxidant content (as the Ferric Reducing/Antioxidant Power value). Tear flow rates were estimated from time taken to collect a fixed volume of tear fluid. UV absorbance spectra of pooled fresh reflex tear fluid and the ophthalmic solutions were determined. Results showed that the antioxidant content of minimally stimulated tears from older subjects (398 ± 160 μmol/l) was not significantly lower than that of younger subjects (348 ± 159 μmol/l; p = 0.0915). However, there was a significant difference in the tear flow rates between the two groups (p tears. The effect of low flow rate on the dynamic antioxidant supply to the corneal surface indicates that older subjects have poorer overall defense against photooxidative and other oxidative processes. This could predispose older persons to corneal stress and development of dry eye syndrome. The commercially available artificial tears tested lack both the antioxidant content and UV absorbing characteristics of natural tears. Artificial tears formulations that help restore natural antioxidant and UV absorbing properties to the tear film of the aging eye may help prevent or improve dry eye symptoms and promote ocular health.

  13. Pre-exposure to nitric oxide modulates the effect of ozone on oxidative defenses and volatile emissions in lima bean

    International Nuclear Information System (INIS)

    Souza, Silvia R.; Blande, James D.; Holopainen, Jarmo K.

    2013-01-01

    The roles that ozone and nitric oxide (NO), the chief O 3 precursor, play in the antioxidative balance and inducible volatile emissions of lima bean were assessed. Exposure to O 3 inhibited APX, CAT, and GR, decreased GSH content and induced emissions of (E)-β-ocimene, limonene, 1,8-cineole, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (E)-DMNT, 2-butanone and nonanal. O 3 did not induce emissions of (E)-β-caryophyllene and appeared to reduce the antioxidative capacity of plants to a greater extent than NO and NO followed by O 3 (NO/O 3 ) treatments. There were significant differences in emissions of (E)-β-ocimene and linalool between NO/O 3 treated plants and controls, but no differences in antioxidant concentrations. A model to explain the relationships between the ascorbate–glutathione cycle and O 3 and NO inducible volatiles was proposed. Our findings suggest that prior exposure to NO modulates the oxidative effect of ozone by the process of cross-tolerance, which might regulate the antioxidative system and induction of volatile organic compounds. -- Highlights: •NO and O 3 disturb antioxidant defenses and cause lipid peroxidation in lima bean plants. •Exposure to NO before exposure to O 3 does not alter the antioxidant defenses and malondialdehyde levels. •The total sum of induced volatiles is reduced in plants that are exposed to NO and then O 3 . •The antioxidant system and induced VOC emission were balanced by pre-exposure to NO before O 3 . -- Capsule: Nitric oxide modulates the ozone-induced oxidative stress in lima bean by cross-tolerance effect

  14. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets.

    Science.gov (United States)

    Koc, Suheda; Isgor, Belgin S; Isgor, Yasemin G; Shomali Moghaddam, Naznoosh; Yildirim, Ozlem

    2015-05-01

    Plants and most of the plant-derived compounds have long been known for their potential pharmaceutical effects. They are well known to play an important role in the treatment of several diseases from diabetes to various types of cancers. Today most of the clinically effective pharmaceuticals are developed from plant-derived ancestors in the history of medicine. The aim of this study was to evaluate the free radical scavenging activity and total phenolic and flavonoid contents of methanol, ethanol, and acetone extracts from flowers and leaves of Onopordum acanthium L., Carduus acanthoides L., Cirsium arvense (L.) Scop., and Centaurea solstitialis L., all from the Asteraceae family, for investigating their potential medicinal values of biological targets that are participating in the antioxidant defense system such as catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx). In this study, free radical scavenging activity and total phenolic and flavonoid contents of the plant samples were assayed by DPPH, Folin-Ciocalteu, and aluminum chloride colorimetric methods. Also, the effects of extracts on CAT, GST, and GPx enzyme activities were investigated. The highest phenolic and flavonoid contents were detected in the acetone extract of C. acanthoides flowers, with 90.305 mg GAE/L and 185.43 mg Q/L values, respectively. The highest DPPH radical scavenging was observed with the methanol leaf extracts of C. arvense with an IC50 value of 366 ng/mL. The maximum GPx and GST enzyme inhibition activities were observed with acetone extracts from the flower of C. solstitialis with IC50 values of 79 and 232 ng/mL, respectively.

  15. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells.

    Science.gov (United States)

    Lenzen, Sigurd

    2017-08-01

    Diabetes mellitus is a serious metabolic disease. Dysfunction and subsequent loss of the β-cells in the islets of Langerhans through apoptosis ultimately cause a life-threatening insulin deficiency. The underlying reason for the particular vulnerability of the β-cells is an extraordinary sensitivity to the toxicity of reactive oxygen and nitrogen species (ROS and RNS) due to its low antioxidative defense status. This review considers the different aspects of the chemistry and biology of the biologically most important reactive species and their chemico-biological interactions in the β-cell toxicity of proinflammatory cytokines in type 1 diabetes and of lipotoxicity in type 2 diabetes development. The weak antioxidative defense equipment in the different subcellular organelles makes the β-cells particularly vulnerable and prone to mitochondrial, peroxisomal and ER stress. Looking upon the enzyme deficiencies which are responsible for the low antioxidative defense status of the pancreatic β-cells it is the lack of enzymatic capacity for H 2 O 2 inactivation at all major subcellular sites. Diabetes is the most prevalent metabolic disorder with a steadily increasing incidence of both type 1 and type 2 diabetes worldwide. The weak protection of the pancreatic β-cells against oxidative stress is a major reason for their particular vulnerability. Thus, careful protection of the β-cells is required for prevention of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Ego mechanisms of defense are associated with patients’ preference of treatment modality independent of psychological distress in end-stage renal disease

    Directory of Open Access Journals (Sweden)

    Thomas Hyphantis

    2010-02-01

    Full Text Available Thomas Hyphantis1, Spiros Katsoudas2, Sonia Voudiclari31Associate Professor of Psychiatry, Department of Psychiatry, Medical School, University of Ioannina, Ioannina, Greece; 2Nephrologist, Renal Clinic, Hippocration General Hospital, Athens, Greece; 3Department of Nephrology, University of Athens, GreeceAbstract: Several parameters mediate the selection of treatment modality in end-stage renal disease (ESRD. The nephrology community suggests that patient preference should be the prime determinant of modality choice. We aimed to test whether ego mechanisms of defense are associated with patients’ treatment modality preferences, independent of psychological distress. In 58 eligible ESRD patients who had themselves chosen their treatment modality, we administered the Symptom Distress Checklist-90-R and the Defense Style Questionnaire. Thirtyseven patients (53.4% had chosen hemodialysis and 21 (46.6% peritoneal dialysis. Patients who preferred peritoneal dialysis were younger (odds ratio [OR], 0.89; 95% confidence interval [CI]: 0.804–0.988, had received more education (OR, 8.84; 95% CI: 1.301–60.161, and were twice as likely to adopt an adaptive defense style as compared to patients who preferred hemodialysis (57.1% vs 27.0%, respectively; P < 0.033. On the contrary, the latter were more likely to adopt an image-distorting defense style (35.1% vs 14.3%; P = 0.038 and passive–aggressive defenses (OR, 0.73: 95% CI: 0.504–1.006. These results were independent of psychological distress. Our findings indicate that the patient’s personality should be taken into account, if we are to better define which modalities are best suited to which patients. Also, physicians should bear in mind passive–aggressive behaviors that warrant attention and intervention in patients who preferred hemodialysis.Keywords: end-stage renal disease, hemodialysis, peritoneal dialysis, ego mechanisms of defense, DSQ, psychopathology

  17. Plasma antioxidants from chocolate

    OpenAIRE

    Serafini, M.; Bugianesi, R.; Maiani, G.; Valtuena, S.; De Santis, S.; Crozier, A.

    2003-01-01

    There is some speculation that dietary flavonoids from chocolate, in particular (-)epicatechin, may promote cardiovascular health as a result of direct antioxidant effects or through antithrombotic mechanisms. Here we show that consumption of plain, dark chocolate results in an increase in both the total antioxidant capacity and the (-)epicatechin content of blood plasma, but that these effects are markedly reduced when the chocolate is consumed with milk or if milk is incorporated as milk ch...

  18. Hepatoprotective Effects of Chinese Medicinal Herbs: A Focus on Anti-Inflammatory and Anti-Oxidative Activities

    Directory of Open Access Journals (Sweden)

    Puiyan Lam

    2016-03-01

    Full Text Available The liver is intimately connected to inflammation, which is the innate defense system of the body for removing harmful stimuli and participates in the hepatic wound-healing response. Sustained inflammation and the corresponding regenerative wound-healing response can induce the development of fibrosis, cirrhosis and eventually hepatocellular carcinoma. Oxidative stress is associated with the activation of inflammatory pathways, while chronic inflammation is found associated with some human cancers. Inflammation and cancer may be connected by the effect of the inflammation-fibrosis-cancer (IFC axis. Chinese medicinal herbs display abilities in protecting the liver compared to conventional therapies, as many herbal medicines have been shown as effective anti-inflammatory and anti-oxidative agents. We review the relationship between oxidative stress and inflammation, the development of hepatic diseases, and the hepatoprotective effects of Chinese medicinal herbs via anti-inflammatory and anti-oxidative mechanisms. Moreover, several Chinese medicinal herbs and composite formulae, which have been commonly used for preventing and treating hepatic diseases, including Andrographis Herba, Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Lycii Fructus, Coptidis Rhizoma, curcumin, xiao-cha-hu-tang and shi-quan-da-bu-tang, were selected for reviewing their hepatoprotective effects with focus on their anti-oxidative and ant-inflammatory activities. This review aims to provide new insight into how Chinese medicinal herbs work in therapeutic strategies for liver diseases.

  19. Assessment of the effect of silicon on antioxidant enzymes in cotton plants by multivariate analysis.

    Science.gov (United States)

    Alberto Moldes, Carlos; Fontão de Lima Filho, Oscar; Manuel Camiña, José; Gabriela Kiriachek, Soraya; Lia Molas, María; Mui Tsai, Siu

    2013-11-27

    Silicon has been extensively researched in relation to the response of plants to biotic and abiotic stress, as an element triggering defense mechanisms which activate the antioxidant system. Furthermore, in some species, adding silicon to unstressed plants modifies the activity of certain antioxidant enzymes participating in detoxifying processes. Thus, in this study, we analyzed the activity of antioxidant enzymes in leaves and roots of unstressed cotton plants fertilized with silicon (Si). Cotton plants were grown in hydroponic culture and added with increasing doses of potassium silicate; then, the enzymatic activity of catalase (CAT), guaiacol peroxidase (GPOX), ascorbate peroxidase (APX), and lipid peroxidation were determined. Using multivariate analysis, we found that silicon altered the activity of GPOX, APX, and CAT in roots and leaves of unstressed cotton plants, whereas lipid peroxidation was not affected. The analysis of these four variables in concert showed a clear differentiation among Si treatments. We observed that enzymatic activities in leaves and roots changed as silicon concentration increased, to stabilize at 100 and 200 mg Si L(-1) treatments in leaves and roots, respectively. Those alterations would allow a new biochemical status that could be partially responsible for the beneficial effects of silicon. This study might contribute to adjust the silicon application doses for optimal fertilization, preventing potential toxic effects and unnecessary cost.

  20. Effect of water deficiency on the cellular status and antioxidant defences in anthyllis sericea. A saharian plant

    International Nuclear Information System (INIS)

    Triki, T.; Selmi, A.

    2017-01-01

    Drought is known as an important restricting factor of plant productivity in arid and semi arid areas of the world. The intended increase of temperature in many areas will intensify this problem. In this study the effect of drought stress was studied in a Saharan plant, Anthyllissericea, by Poly-ethylene glycol (PEG-6000) in three different treatments (-0.2 MPa (control), -1.2 MPa (moderate stress) and -2.1 MPa (severe stress)) after 14 days. Nitric oxide (NO) content, Hydrogen peroxide (H/sub 2/O/sub 2/), RWC, lipid peroxidation and enzymatic antioxidant levels from the leaves were analyzed. Initially, plant growth, RWC and the water potentiel (/psi/ w) were decreased with increase of osmotic stress. Drought induces the increase of NO and hydrogen peroxide levels reaching maximum in severe stress period. MDA, proline content and soluble sugars were found to be higher under moderate and severe stress conditions. Plant employs enzymatic antioxidant system to avoid the subproduction of (ROS) resulting by drought. The analysis of CAT, APX and POD activities showed a significant increase during drought stress. Under moderate and severe stress treatments, the higher activities of H/sub 2/O/sub 2/, NO, CAT and POD showed a stronger system of antioxidant defences in the metabolic regulation during the applied stress. These results propose that A. sericea has the capacity to activate important adaptative mechanisms under dry conditions involving activation of enzymatic antioxidative defense system and higher osmoprotectants accumulation. (author)

  1. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate

    Directory of Open Access Journals (Sweden)

    Hae-Suk Kim

    2014-01-01

    Full Text Available Green tea is rich in polyphenol flavonoids including catechins. Epigallocatechin 3-gallate (EGCG is the most abundant and potent green tea catechin. EGCG has been extensively studied for its beneficial health effects as a nutriceutical agent. Based upon its chemical structure, EGCG is often classified as an antioxidant. However, treatment of cells with EGCG results in production of hydrogen peroxide and hydroxyl radicals in the presence of Fe (III. Thus, EGCG functions as a pro-oxidant in some cellular contexts. Recent investigations have revealed many other direct actions of EGCG that are independent from anti-oxidative mechanisms. In this review, we discuss these novel molecular mechanisms of action for EGCG. In particular, EGCG directly interacts with proteins and phospholipids in the plasma membrane and regulates signal transduction pathways, transcription factors, DNA methylation, mitochondrial function, and autophagy to exert many of its beneficial biological actions.

  2. Deception used for Cyber Defense of Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wayne F. Boyer; Miles A. McQueen

    2009-05-01

    Control system cyber security defense mechanisms may employ deception to make it more difficult for attackers to plan and execute successful attacks. These deceptive defense mechanisms are organized and initially explored according to a specific deception taxonomy and the seven abstract dimensions of security previously proposed as a framework for the cyber security of control systems.

  3. Differences in associations between markers of antioxidative defense and asthma are sex specific

    DEFF Research Database (Denmark)

    Malling, Tine Halsen; Sigsgaard, Torben; Andersen, Helle R

    2010-01-01

    on a screening questionnaire, random sampling, or both. Serum selenium concentrations and antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase [GPX], glutathione reductase [GR], and glucose-6-phosphate dehydrogenase [G6PD]) in erythrocytes were measured. Asthma was defined as either...

  4. Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation

    Directory of Open Access Journals (Sweden)

    Abd-Ellatef GF

    2017-02-01

    cytokines tumor necrosis factor-α and nitric oxide were significantly ameliorated in DMBA-administered rats treated with ulvan polysaccharides as compared to DMBA-administered control. Conclusion: In conclusion, ulvan polysaccharides at the level of initiation and promotion might have potential chemopreventive effects against breast carcinogenesis. These preventive effects may be mediated through the augmentation of apoptosis, suppression of oxidative stress and inflammation, and enhancement of antioxidant defense system. Keywords: breast carcinogenesis, cancer initiation, cancer promotion, Ulva lactuca polysaccharides, DMBA, oxidative stress, apoptosis

  5. Cocoa-enriched diet enhances antioxidant enzyme activity and modulates lymphocyte composition in thymus from young rats.

    Science.gov (United States)

    Ramiro-Puig, Emma; Urpí-Sardà, Mireia; Pérez-Cano, Francisco J; Franch, Angels; Castellote, Cristina; Andrés-Lacueva, Cristina; Izquierdo-Pulido, Maria; Castell, Margarida

    2007-08-08

    Cocoa is a rich source of flavonoids, mainly (-)-epicatechin, (+)-catechin, and procyanidins. This article reports the effect of continuous cocoa intake on antioxidant capacity in plasma and tissues, including lymphoid organs and liver, from young rats. Weaned Wistar rats received natural cocoa (4% or 10% food intake) for three weeks, corresponding to their infancy. Flavonoid absorption was confirmed through the quantification of epicatechin metabolites in urine. Total antioxidant capacity (TAC) and the activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase, were examined. Cocoa intake enhanced TAC in all tissues especially in thymus. Moreover, thymus SOD and catalase activities were also dose-dependently increased by cocoa. It was also analyzed whether the enhanced antioxidant system in thymus could influence its cellular composition. An increase in the percentage of thymocytes in advanced development stage was found. In summary, cocoa diet enhances thymus antioxidant defenses and influences thymocyte differentiation.

  6. Effects of Tai Chi Training on Antioxidant Capacity in Pre- and Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Attakorn Palasuwan

    2011-01-01

    Full Text Available The risk of oxidative stress-related metabolic diseases increases with menopause and physical inactivity. We hypothesized that an 8-week Tai Chi (TC training program (2 sessions in class; 2 sessions at home; 1-1:15/session would improve antioxidant capacity and reduce cardiovascular risks in both pre- (n=8 and postmenopausal (n=7 sedentary women. Selected measures of physical fitness and blood parameters were analyzed before and after the program. Besides the well-known effects of TC on balance, flexibility, and maximum leg extensor strength, TC (1 increased erythrocyte glutathione peroxidase activity—an aerobic training-responsive antioxidant enzyme—and plasma total antioxidant status and (2 decreased plasma total homocysteine, a cardiovascular risk marker. In addition to being a low-velocity, low-impact, and relatively safe, TC is a suitable physical activity design for pre- and postmenopausal women to increase antioxidant defenses. Investigating breathing effects during TC movements would be an interesting area for further research in diseases prevention.

  7. Effects of tai chi training on antioxidant capacity in pre- and postmenopausal women.

    Science.gov (United States)

    Palasuwan, Attakorn; Suksom, Daroonwan; Margaritis, Irène; Soogarun, Suphan; Rousseau, Anne-Sophie

    2011-04-11

    The risk of oxidative stress-related metabolic diseases increases with menopause and physical inactivity. We hypothesized that an 8-week Tai Chi (TC) training program (2 sessions in class; 2 sessions at home; 1-1:15/session) would improve antioxidant capacity and reduce cardiovascular risks in both pre- (n = 8) and postmenopausal (n = 7) sedentary women. Selected measures of physical fitness and blood parameters were analyzed before and after the program. Besides the well-known effects of TC on balance, flexibility, and maximum leg extensor strength, TC (1) increased erythrocyte glutathione peroxidase activity-an aerobic training-responsive antioxidant enzyme-and plasma total antioxidant status and (2) decreased plasma total homocysteine, a cardiovascular risk marker. In addition to being a low-velocity, low-impact, and relatively safe, TC is a suitable physical activity design for pre- and postmenopausal women to increase antioxidant defenses. Investigating breathing effects during TC movements would be an interesting area for further research in diseases prevention.

  8. Reconvene and reconnect the antioxidant hypothesis in human health and disease.

    Science.gov (United States)

    Singh, P P; Chandra, Anu; Mahdi, Farzana; Roy, Ajanta; Sharma, Praveen

    2010-07-01

    human tissues ever experience the torrent of reactive species and that in chronic conditions with mildly enhanced generation of reactive species, the body can meet them squarely if antioxidants defense system in tissues is biochemically optimized. We are not yet certain about optimal levels of antioxidants in tissues. Two ways have been used to assess them: first by dietary intake and second by measuring plasma levels. Lately determination of plasma/serum level of antioxidants is considered better index for diagnostic and prognostic purposes. The recommended levels for vitamin A, E and C and beta carotene are 2.2-2.8 μmol/l; 27.5-30 μmol/l; 40-50 μmol/l and 0.4-0.5 μmol/l, respectively. The requirement and recommended blood levels of other dietary antioxidants are not established. The resolved issues are (1) essential to scavenge excess of radical species (2) participants in redox homeostasis (3) selective antioxidants activity against radical species (4) there is no universal antioxidant and 5) therapeutic value in case of deficiency. The overarching issues are (1) therapeutic value as adjuvant therapy in management of diseases (2) supplemental value in developing population (3) selective interactivity of antioxidant in different tissues and on different substrates (4) quantitative contribution in redox balance (5) mechanisms of adverse action on excess supplementation (6) advantages and disadvantages of prooxidant behavior of antioxidants (7) behavior in cohorts with polymorphic differences (8) interaction and intervention in radiotherapy, diabetes and diabetic complications and cardiovascular diseases (9) preventive behavior in neurological disorders (10) benefits of non-nutrient dietary antioxidants (11) markers to assess optimized antioxidants status (12) assessment of benefits of supplementation in alcoholics and heavy smokers. The unresolved and intriguing issues are (1) many compounds such as vitamin A and many others possessing both antioxidant and non-antioxidant

  9. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers.

    Science.gov (United States)

    Apak, Reşat; Güçlü, Kubilay; Ozyürek, Mustafa; Bektaşoğlu, Burcu; Bener, Mustafa

    2010-01-01

    Tests measuring the combined antioxidant effect of the nonenzymatic defenses in biological fluids may be useful in providing an index of the organism's capability to counteract reactive species known as pro-oxidants, resist oxidative damage, and combat oxidative stress-related diseases. The selected chromogenic redox reagent for the assay of human serum should be easily accessible, stable, selective, and respond to all types of biologically important antioxidants such as ascorbic acid, alpha-tocopherol, beta-carotene, reduced glutathione (GSH), uric acid, and bilirubin, regardless of chemical type or hydrophilicity. Our recently developed cupric reducing antioxidant capacity (CUPRAC) spectrophotometric method for a number of polyphenols and flavonoids using the copper(II)-neocuproine reagent in ammonium acetate buffer is now applied to a complete series of plasma antioxidants for the assay of total antioxidant capacity of serum, and the resulting absorbance at 450 nm is recorded either directly (e.g., for ascorbic acid, alpha-tocopherol, and glutathione) or after incubation at 50 degrees C for 20 min (e.g., for uric acid, bilirubin, and albumin), quantitation being made by means of a calibration curve. The lipophilic antioxidants, alpha-tocopherol and beta-carotene, are assayed in dichloromethane. Lipophilic antioxidants of serum are extracted with n-hexane from an ethanolic solution of serum subjected to centrifugation. Hydrophilic antioxidants of serum are assayed in the centrifugate after perchloric acid precipitation of proteins. The CUPRAC molar absorptivities, linear ranges, and TEAC (trolox equivalent antioxidant capacity) coefficients of the serum antioxidants are established, and the results are evaluated in comparison with the findings of the ABTS/TEAC reference method. The intra- and inter-assay coefficients of variation (CVs) are 0.7 and 1.5%, respectively, for serum. The CUPRAC assay proved to be efficient for glutathione and thiol-type antioxidants

  10. Changes in defensive functioning in a case of avoidant personality disorder.

    Science.gov (United States)

    Presniak, Michelle D; Olson, Trevor R; Porcerelli, John H; Dauphin, V Barry

    2010-03-01

    This case study is based upon data from a male patient with Avoidant Personality Disorder who was in psychoanalytic treatment for 5 years. Defense mechanism use was assessed by 3 coders using the Defense Mechanisms Rating Scales. Session transcripts from intake, each year of therapy, and 1-year follow-up were used for the ratings. Over the course of psychoanalysis and follow-up, the patient's Overall Defensive Functioning and High-Adaptive defense level use increased and his use of the Disavowal defense level and Fantasy decreased. The pattern of change throughout treatment was also assessed. The patient's Overall Defensive Functioning decreased initially, followed by an increase through year 4. Overall Defensive Functioning decreased again prior to termination before increasing to its highest level at follow-up. The results demonstrated changes consistent with hypotheses and theory, including overall improvement in defensive functioning, an initial regression of defensive functioning, decline in functioning immediately prior to termination, and continued improvement posttermination. This pattern of defense change highlights the importance of assessing defenses in treatment research. PsycINFO Database Record (c) 2010 APA, all rights reserved

  11. Effects of Chitosan–PVA and Cu Nanoparticles on the Growth and Antioxidant Capacity of Tomato under Saline Stress

    Directory of Open Access Journals (Sweden)

    Hipólito Hernández-Hernández

    2018-01-01

    Full Text Available Chitosan is a natural polymer, which has been used in agriculture to stimulate crop growth. Furthermore, it has been used for the encapsulation of nanoparticles in order to obtain controlled release. In this work, the effect of chitosan–PVA and Cu nanoparticles (Cu NPs absorbed on chitosan–PVA on growth, antioxidant capacity, mineral content, and saline stress in tomato plants was evaluated. The results show that treatments with chitosan–PVA increased tomato growth. Furthermore, chitosan–PVA increased the content of chlorophylls a and b, total chlorophylls, carotenoids, and superoxide dismutase. When chitosan–PVA was mixed with Cu NPs, the mechanism of enzymatic defense of tomato plants was activated. The chitosan–PVA and chitosan–PVA + Cu NPs increased the content of vitamin C and lycopene, respectively. The application of chitosan–PVA and Cu NPs might induce mechanisms of tolerance to salinity.

  12. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application.

    Directory of Open Access Journals (Sweden)

    Anna Wyrwicka

    Full Text Available The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot, while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx, catalase (CAT and guaiacol peroxidase (POx, were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST. Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.

  13. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application.

    Science.gov (United States)

    Wyrwicka, Anna; Urbaniak, Magdalena

    2016-01-01

    The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.

  14. A systems biology perspective on Nrf2-mediated antioxidant response

    International Nuclear Information System (INIS)

    Zhang Qiang; Pi Jingbo; Woods, Courtney G.; Andersen, Melvin E.

    2010-01-01

    Cells in vivo are constantly exposed to reactive oxygen species (ROS) generated endogenously and exogenously. To defend against the deleterious consequences of ROS, cells contain multiple antioxidant enzymes expressed in various cellular compartments to scavenge these toxic species. Under oxidative stresses, these antioxidant enzymes are upregulated to restore redox homeostasis. Such an adaptive response results from the activation of a redox-sensitive gene regulatory network mediated by nuclear factor E2-related factor 2. To more completely understand how the redox control system is designed by nature to meet homeostatic goals, we have examined the network from a systems perspective using engineering approaches. As with man-made control devices, the redox control system can be decomposed into distinct functional modules, including transducer, controller, actuator, and plant. Cells achieve specific performance objectives by utilizing nested feedback loops, feedforward control, and ultrasensitive signaling motifs, etc. Given that endogenously generated ROS are also used as signaling molecules, our analysis suggests a novel mode of action to explain oxidative stress-induced pathological conditions and diseases. Specifically, by adaptively upregulating antioxidant enzymes, oxidative stress may inadvertently attenuate ROS signals that mediate physiological processes, resulting in aberrations of cellular functions and adverse consequences. Lastly, by simultaneously considering the two competing cellular tasks-adaptive antioxidant defense and ROS signaling-we re-examine the premise that dietary antioxidant supplements is generally beneficial to human health. Our analysis highlights some possible adverse effects of these widely consumed antioxidants.

  15. Macrophage antioxidant protection within atherosclerotic plaques.

    Science.gov (United States)

    Gieseg, Steven P; Leake, David S; Flavall, Elizabeth M; Amit, Zunika; Reid, Linzi; Yang, Ya-Ting

    2009-01-01

    Macrophage cells within inflammatory lesions are exposed to a wide range of degrading and cytotoxic molecules including reactive oxygen species. Unlike neutrophils, macrophages do not normally die in this environment but continue to generate oxidants, phagocytose cellular remains, and release a range of cyto-active agents which modulate the immune response. It is this potential of the macrophage cell to survive in an oxidative environment that allows the growth and complexity of advanced atherosclerotic plaques. This review will examine the oxidants encountered by macrophages within an atherosclerotic plaque and describe some of the potential antioxidant mechanisms which enable macrophages to function within inflammatory lesions. Ascorbate, a-tocopherol, and glutathione appear to be central to the protection of macrophages yet additional antioxidant mechanisms appear to be involved. Gamma-Interferon causes macrophages to generate 7,8-dihydroneopterin, neopterin and 3-hydroxyanthranilic acid both of which have antioxidant properties. Manganese superoxide dismutase is also upregulated in macrophages. The evidence that these antioxidants provide further protection, so allowing the macrophage cells to survive within sites of chronic inflammation such as atherosclerotic plaques, will be described.

  16. Defense Islands in Bacterial and Archaeal Genomes and Prediction of Novel Defense Systems ▿†‡

    Science.gov (United States)

    Makarova, Kira S.; Wolf, Yuri I.; Snir, Sagi; Koonin, Eugene V.

    2011-01-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic “sinks” that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands. PMID:21908672

  17. Skin protection against UV light by dietary antioxidants.

    Science.gov (United States)

    Fernández-García, Elisabet

    2014-09-01

    There is considerable interest in the concept of additional endogenous photoprotection by dietary antioxidants. A number of efficient micronutrients are capable of contributing to the prevention of UV damage in humans. These compounds protect molecular targets by scavenging reactive oxygen species, including excited singlet oxygen and triplet state molecules, and also modulate stress-dependent signaling and/or suppress cellular and tissue responses like inflammation. Micronutrients present in the diet such as carotenoids, vitamins E and C, and polyphenols contribute to antioxidant defense and may also contribute to endogenous photoprotection. This review summarizes the literature concerning the use of dietary antioxidants as systemic photoprotective agents towards skin damage induced by UVA and UVB. Intervention studies in humans with carotenoid-rich diets have shown photoprotection. Interestingly, rather long treatment periods (a minimum of 10 weeks) were required to achieve this effect. Likewise, dietary carotenoids exert their protective antioxidant function in several in vitro and in vivo studies when present at sufficiently high concentration. A combination of vitamins E and C protects the skin against UV damage. It is suggested that daily consumption of dietary polyphenols may provide efficient protection against the harmful effects of solar UV radiation in humans. Furthermore, the use of these micronutrients in combination may provide an effective strategy for protecting human skin from damage by UV exposure.

  18. Molecular and cellular mechanisms of cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Waisberg, Michael; Joseph, Pius; Hale, Beverley; Beyersmann, Detmar

    2003-01-01

    Cadmium is a heavy metal, which is widely used in industry, affecting human health through occupational and environmental exposure. In mammals, it exerts multiple toxic effects and has been classified as a human carcinogen by the International Agency for Research on Cancer. Cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Cd 2+ does not catalyze Fenton-type reactions because it does not accept or donate electrons under physiological conditions, and it is only weakly genotoxic. Hence, indirect mechanisms are implicated in the carcinogenicity of cadmium. In this review multiple mechanisms are discussed, such as modulation of gene expression and signal transduction, interference with enzymes of the cellular antioxidant system and generation of reactive oxygen species (ROS), inhibition of DNA repair and DNA methylation, role in apoptosis and disruption of E-cadherin-mediated cell-cell adhesion. Cadmium affects both gene transcription and translation. The major mechanisms of gene induction by cadmium known so far are modulation of cellular signal transduction pathways by enhancement of protein phosphorylation and activation of transcription and translation factors. Cadmium interferes with antioxidant defense mechanisms and stimulates the production of reactive oxygen species, which may act as signaling molecules in the induction of gene expression and apoptosis. The inhibition of DNA repair processes by cadmium represents a mechanism by which cadmium enhances the genotoxicity of other agents and may contribute to the tumor initiation by this metal. The disruption of E-cadherin-mediated cell-cell adhesion by cadmium probably further stimulates the development of tumors. It becomes clear that there exist multiple mechanisms which contribute to the carcinogenicity of cadmium, although the relative weights of these contributions are difficult to estimate

  19. Eucalyptus tolerance mechanisms to lanthanum and cerium: subcellular distribution, antioxidant system and thiol pools.

    Science.gov (United States)

    Shen, Yichang; Zhang, Shirong; Li, Sen; Xu, Xiaoxun; Jia, Yongxia; Gong, Guoshu

    2014-12-01

    Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    International Nuclear Information System (INIS)

    Chen, Yanyan; Xue, Peng; Hou, Yongyong; Zhang, Hao; Zheng, Hongzhi; Zhou, Tong; Qu, Weidong; Teng, Weiping; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-01-01

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis

  1. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xu [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Wang, Dapeng [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Yamanaka, Kenzo [Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba (Japan); An, Yan, E-mail: dranyan@126.com [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China)

    2015-12-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  2. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Yang, Xu; Wang, Dapeng; Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian; Yamanaka, Kenzo; An, Yan

    2015-01-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  3. Antioxidant activity of rice plants sprayed with herbicides

    Directory of Open Access Journals (Sweden)

    Marcos André Nohatto

    2016-03-01

    Full Text Available Understanding the physiological defense behavior of plants subjected to herbicide application may help to identify products with higher or lower capacity to cause oxidative stress in crops. This study aimed at evaluating the effect of herbicides in the antioxidant activity of rice plants. The experimental design was completely randomized, with six replications. Treatments consisted of the herbicides bentazon (photosystem II inhibitor; 960 g ha-1, penoxsulam (acetolactate synthase inhibitor; 60 g ha-1, cyhalofop-butyl (acetyl coenzyme-A carboxylase inhibitor; 315 g ha-1 and a control. After the herbicides application, samples of rice shoots were collected at 12, 24, 48 and 96 hours after application (HAA. The components evaluated were hydrogen peroxide (H2O2, lipid peroxidation and activity of the antioxidant enzymes superoxide dismutase (SOD and catalase (CAT. Bentazon (up to 24 HAA and penoxsulam (48 and 96 HAA reduced the CAT activity. Moreover, these herbicides increased the levels of H2O2, lipid peroxidation and SOD activity, indicating a condition of oxidative stress in rice plants. The cyhalofop-butyl herbicide did not alter the antioxidant activity, showing that it causes less stress to the crop.

  4. Marijuana usage in relation to harmfulness ratings, perceived likelihood of negative consequences, and defense mechanisms in high school students.

    Science.gov (United States)

    Como-Lesko, N; Primavera, L H; Szeszko, P R

    1994-08-01

    This study investigated high school students' marijuana usage patterns in relation to their harmfulness ratings of 15 licit and illicit drugs, perceived negative consequences from using marijuana, and types of defense mechanisms employed. Subjects were classified into one of five pattern-of-use groups based on marijuana usage: principled nonusers, nonusers, light users, moderate users, and heavy users. Principled nonusers (individuals who have never used marijuana and would not do so if it was legalized) rated marijuana, hashish, cocaine, and alcohol as significantly more harmful than heavy users. A cluster analysis of the drugs' harmfulness ratings best fit a three cluster solution and were named medicinal drugs, recreational drugs, and hard drugs. In general, principled nonusers rated negative consequences from using marijuana as significantly more likely to occur than other groups. Principled nonusers and heavy users utilized reversal from the Defense Mechanism Inventory, which includes repression and denial, significantly more than nonusers, indicating some trait common to the two extreme pattern-of-use groups.

  5. Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime.

    Science.gov (United States)

    Kaya, Cengiz; Ashraf, Muhammad; Akram, Nudrat Aisha

    2018-02-21

    In the present experiment, we aimed to test the impact of hydrogen sulfide (H 2 S) on growth, key oxidant such as hydrogen peroxide, mineral elements, and antioxidative defense in Capia-type red sweet pepper (Capsicum annuum L.) plants subjected to high concentration of zinc (Zn). A factorial experiment was designed with two Zn levels (0.05 and 0.5 mM) and 0.2 mM sodium hydrosulfide (NaHS) as a donor of H 2 S supplied in combination plus nutrient solution through the root zone. High level of Zn led to reduce dry mass, chlorophyll pigments, fruit yield, leaf maximum fluorescence, and relative water content, but enhanced endogenous hydrogen peroxide (H 2 O 2 ), free proline, malondialdehyde (MDA), electrolyte leakage (EL), H 2 S, as well as the activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes. Exogenously applied NaHS significantly enhanced plant growth, fruit yield, water status, the levels of H 2 S and proline as well as the activities of different antioxidant enzymes, while it significantly suppressed EL, MDA, and H 2 O 2 contents in the pepper plants receiving low level Zn. NaHS application to the control plants did not significantly change all these parameters tested except the dry matter which increased significantly. High Zn regime led to increase intrinsic Zn levels in the leaves and roots, but it lowered leaf nitrogen (N), phosphorus (P), and iron (Fe) concentrations. However, NaHS reduces the Zn conc. and enhances Fe and N in leaf and root organs. It can be concluded that NaHS can mitigate the harmful effects of Zn on plant growth particularly by lowering the concentrations of H 2 O 2 , Zn, EL, and MDA, and enhancing the activities of enzymatic antioxidants and levels of essential nutrients in pepper plants.

  6. Mechanical Stress and Antioxidant Protection in the Retina of Hindlimb Suspended Rats

    Science.gov (United States)

    Glass, Aziza; Theriot, Corey A.; Alway, Stephen E.; Zanello, Susana B.

    2012-01-01

    It has been postulated that hindlimb suspension (HS) causes a cephalad fluid shift in quadrupeds similar to that occurring to humans in microgravity. Therefore, HS may provide a suitable animal model in which to recapitulate the ocular changes observed in the human Visual Impairment and Intracranial Pressure (VIIP) syndrome. This work reports preliminary results from a tissue sharing project using 34 week-old Brown Norway rats. Two different experiments compared normal posture controls and HS rats for 2 weeks and rats exposed to HS for 2 weeks but allowed to recover in normal posture for 2 additional weeks. The effects of two nutritional countermeasures, green tea extract (GT) and plant polyphenol resveratrol (Rv), were also evaluated. Green tea contains the antioxidant epigallocatechin gallate (EGCG). qPCR gene expression analysis of selected targets was performed on RNA from isolated retinas, and histologic analysis was done on one fixed eye per rat. The transcription factor early growth response protein 1 (Egr1) was upregulated almost 2-fold in HS retinas relative to controls (P = 0.059), and its expression returned to control levels after 2 weeks of recovery in normal posture (P = 0.023). HS-induced upregulation of Egr1 was attenuated (but not significantly) in retinas from rats fed an antioxidant rich (GT extract) diet. In rats fed the GT-enriched diet, antioxidant enzymes were induced, evidenced by the upregulation of the gene heme oxygenase 1 (Hmox1) (P = 0.042) and the gene superoxide dismutase 2 (Sod2) (P = 0.0001). Egr1 is a stretch-activated transcription factor, and the Egr1 mechanosensitive response to HS may have been caused by a change in the translaminal pressure and/or mechanical deformation of the eye globe. The observed histologic measurements of the various retinal layers in the HS rats were lower in value than those of the control animal (n = 1), however insufficient data were available for statistical analysis. Aquaporin 4, a water

  7. Implications of mycosporine-like amino acid and antioxidant defenses in UV-B radiation tolerance for the algae species Ptercladiella capillacea and Gelidium amansii.

    Science.gov (United States)

    Lee, Tse-Min; Shiu, Chia-Tai

    2009-02-01

    Ultraviolet-B (UV-B) radiation (0.5, 1.0, 1.5, and 3.0Wm(-2)) induced higher H(2)O(2) production and lipid peroxidation in alga Gelidium amansii inhabiting in lower subtidal regions than upper subtidal alga Ptercladiella capillacea. Compared to G. amansii, mycosporine-like amino acid (MAA) concentration in P. capillacea was higher and can be increased by 0.5-1.0Wm(-2) UV-B, while carotenoid concentration was lower but also increased by 1.5-3.0Wm(-2) UV-B. UV-B increased ascorbate concentration, but to a higher degree in P. capillacea. UV-B decreased glutathione concentration, but to a higher degree in G. amansii. UV-B increased ascorbate peroxidase (APX) and glutathione reductase (GR) activities in P.capillacea but decreased them in G. amansii. UV-B increased superoxide dismutase and catalase activities, but to a higher degree in G. amansii. So, G. amansii suffered greater oxidative stress from UV-B radiation. P. capillacea can effectively reduce UV-B sensitivity by increasing sunscreen ability and antioxidant defense capacity.

  8. Evidences of Reduced Antioxidant Activity in Patients With Chronic Migraine and Medication-Overuse Headache.

    Science.gov (United States)

    Lucchesi, Cinzia; Baldacci, Filippo; Cafalli, Martina; Chico, Lucia; Lo Gerfo, Annalisa; Bonuccelli, Ubaldo; Siciliano, Gabriele; Gori, Sara

    2015-01-01

    Migraine is a complex multifactorial, neurobiological disorder, whose pathogenesis is not fully understood, nor are the mechanisms associated with migraine transformation from episodic to chronic pattern. A possible role of impaired oxidative mitochondrial metabolism in migraine pathogenesis has been hypothesized, and increased levels of peripheral markers of oxidative stress have been reported in migraine patients, although the literature data are limited and heterogeneous. The aim of this cross-sectional study was to determine plasmatic levels of advanced oxidation protein products, ferric-reducing antioxidant power and total plasmatic thiol groups, all plasmatic markers related to oxidative stress, in a sample of chronic migraine patients and medication-overuse headache, compared to a control group of healthy subjects. Thirty-three patients with a diagnosis of both chronic migraine and medication-overuse headache (International Classification of Headache Disorders,3rd edition, beta version) and 33 healthy, headache-free subjects were enrolled. Patients with comorbid/coexisting conditions were excluded, as well as patients in treatment with migraine preventive drugs. Plasmatic levels of advanced oxidation protein products, ferric-reducing antioxidant power, and total thiol groups were determined in migraine patients and controls; moreover, oxidative stress biomarkers were compared in migraine patients with triptan compared to non-steroidal anti-inflammatory drug overuse. The statistical analysis showed significantly lower levels of ferric-reducing antioxidant power and total plasmatic thiol groups, both expression of antioxidant power, in patients with chronic migraine and medication-overuse headache compared to controls (respectively, ferric antioxidant power median [interquartile range] 0.53 [0.22] vs 0.82 [0.11] mmol/L, P stress biomarkers were detected between patients with triptan and nonsteroidal anti-inflammatory drug overuse. The data from the present

  9. The antioxidant paradox: what are antioxidants and how should they be used in a therapeutic context for cancer.

    Science.gov (United States)

    Bonner, Michael Y; Arbiser, Jack L

    2014-01-01

    So-called antioxidants have yet to make a clinical impact on the treatment of human cancer. The reasons for this failure are several. First, many agents that are called antioxidants are truly antioxidants at a given dose, but this dose may not have been given in clinical trials. Second, many agents are not antioxidants at all. Third, not all tumors use reactive oxygen as a signaling mechanism. Finally, reactive oxygen inhibition is often insufficient to kill or regress a tumor cell by itself, but requires sequential introduction of a therapeutic agent for maximal effect. We hope to provide a framework for the logical use of these agents in cancer.

  10. Chemical and mechanical defenses vary among maternal lines and leaf ages in Verbascum thapsus L. (Scrophulariaceae and reduce palatability to a generalist insect.

    Directory of Open Access Journals (Sweden)

    Christina Alba

    Full Text Available Intra-specific variation in host-plant quality affects herbivore foraging decisions and, in turn, herbivore foraging decisions mediate plant fitness. In particular, variation in defenses against herbivores, both among and within plants, shapes herbivore behavior. If variation in defenses is genetically based, it can respond to natural selection by herbivores. We quantified intra-specific variation in iridoid glycosides, trichome length, and leaf strength in common mullein (Verbascum thapsus L, Scrophulariaceae among maternal lines within a population and among leaves within plants, and related this variation to feeding preferences of a generalist herbivore, Trichopulsia ni Hübner. We found significant variation in all three defenses among maternal lines, with T. ni preferring plants with lower investment in chemical, but not mechanical, defense. Within plants, old leaves had lower levels of all defenses than young leaves, and were strongly preferred by T. ni. Caterpillars also preferred leaves with trichomes removed to leaves with trichomes intact. Differences among maternal lines indicate that phenotypic variation in defenses likely has a genetic basis. Furthermore, these results reveal that the feeding behaviors of T. ni map onto variation in plant defense in a predictable way. This work highlights the importance of variation in host-plant quality in driving interactions between plants and their herbivores.

  11. Chemical and mechanical defenses vary among maternal lines and leaf ages in Verbascum thapsus L. (Scrophulariaceae) and reduce palatability to a generalist insect.

    Science.gov (United States)

    Alba, Christina; Bowers, M Deane; Blumenthal, Dana; Hufbauer, Ruth A

    2014-01-01

    Intra-specific variation in host-plant quality affects herbivore foraging decisions and, in turn, herbivore foraging decisions mediate plant fitness. In particular, variation in defenses against herbivores, both among and within plants, shapes herbivore behavior. If variation in defenses is genetically based, it can respond to natural selection by herbivores. We quantified intra-specific variation in iridoid glycosides, trichome length, and leaf strength in common mullein (Verbascum thapsus L, Scrophulariaceae) among maternal lines within a population and among leaves within plants, and related this variation to feeding preferences of a generalist herbivore, Trichopulsia ni Hübner. We found significant variation in all three defenses among maternal lines, with T. ni preferring plants with lower investment in chemical, but not mechanical, defense. Within plants, old leaves had lower levels of all defenses than young leaves, and were strongly preferred by T. ni. Caterpillars also preferred leaves with trichomes removed to leaves with trichomes intact. Differences among maternal lines indicate that phenotypic variation in defenses likely has a genetic basis. Furthermore, these results reveal that the feeding behaviors of T. ni map onto variation in plant defense in a predictable way. This work highlights the importance of variation in host-plant quality in driving interactions between plants and their herbivores.

  12. Family matters: effect of host plant variation in chemical and mechanical defenses on a sequestering specialist herbivore.

    Science.gov (United States)

    Dimarco, Romina D; Nice, Chris C; Fordyce, James A

    2012-11-01

    Insect herbivores contend with various plant traits that are presumed to function as feeding deterrents. Paradoxically, some specialist insect herbivores might benefit from some of these plant traits, for example by sequestering plant chemical defenses that herbivores then use as their own defense against natural enemies. Larvae of the butterfly species Battus philenor (L.) (Papilionidae) sequester toxic alkaloids (aristolochic acids) from their Aristolochia host plants, rendering larvae and adults unpalatable to a broad range of predators. We studied the importance of two putative defensive traits in Aristolochia erecta: leaf toughness and aristolochic acid content, and we examined the effect of intra- and interplant chemical variation on the chemical phenotype of B. philenor larvae. It has been proposed that genetic variation for sequestration ability is "invisible to natural selection" because intra- and interindividual variation in host-plant chemistry will largely eliminate a role for herbivore genetic variation in determining an herbivore's chemical phenotype. We found substantial intra- and interplant variation in leaf toughness and in the aristolochic acid chemistry in A. erecta. Based on field observations and laboratory experiments, we showed that first-instar larvae preferentially fed on less tough, younger leaves and avoided tougher, older leaves, and we found no evidence that aristolochic acid content influenced first-instar larval foraging. We found that the majority of variation in the amount of aristolochic acid sequestered by larvae was explained by larval family, not by host-plant aristolochic acid content. Heritable variation for sequestration is the predominant determinant of larval, and likely adult, chemical phenotype. This study shows that for these highly specialized herbivores that sequester chemical defenses, traits that offer mechanical resistance, such as leaf toughness, might be more important determinants of early-instar larval

  13. Influence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage.

    Science.gov (United States)

    Chen, Yang-Er; Cui, Jun-Mei; Su, Yan-Qiu; Yuan, Shu; Yuan, Ming; Zhang, Huai-Yu

    2015-01-01

    Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst), is one of the most serious diseases of wheat (Triticum aestivum L.) worldwide. To gain a better understanding of the protective mechanism against stripe rust at the adult plant stage, the differences in photosystem II and antioxidant enzymatic systems between susceptible and resistant wheat in response to stripe rust disease (P. striiformis) were investigated. We found that chlorophyll fluorescence and the activities of the antioxidant enzymes were higher in resistant wheat than in susceptible wheat after stripe rust infection. Compared with the susceptible wheat, the resistant wheat accumulated a higher level of D1 protein and a lower level of reactive oxygen species after infection. Furthermore, our results demonstrate that D1 and light-harvesting complex II (LHCII) phosphorylation are involved in the resistance to stripe rust in wheat. The CP29 protein was phosphorylated under stripe rust infection, like its phosphorylation in other monocots under environmental stresses. More extensive damages occur on the thylakoid membranes in the susceptible wheat compared with the resistant wheat. The findings provide evidence that thylakoid protein phosphorylation and antioxidant enzyme systems play important roles in plant responses and defense to biotic stress.

  14. Strengthening of antioxidant defense by Azadirachta indica in alloxan-diabetic rat tissues

    Directory of Open Access Journals (Sweden)

    Sweta Shailey

    2012-01-01

    Full Text Available Background: Azadirachta indica has been reported to correct altered glycaemia in diabetes. Objective: The aqueous extract of A. indica leaf and bark has been evaluated for its effect on antioxidant status of alloxan diabetic rats and compared with insulin treatment. Materials and Methods: The oral effective dose of A. indica leaf (500 mg/kg body weight and A. indica bark (100 mg/kg body weight were given once daily for 21 days to separate groups of diabetic rats. At the end of the experimental period blood glucose level and activity of superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione reductase (GR, glucose-6-phosphate dehydrogenase (G-6-PD, and membrane lipid peroxidation were determined in different fractions of liver and kidney tissues. Results: Diabetic rats showed high blood glucose (P<0.01, increased level of malondialdehyde (P<0.05 and a significant decrease in the activity of antioxidant enzymes. Treatment with insulin, A. indica leaf extract (AILE, and A. indica bark extract (AIBE restored the above altered parameters close to the control ones. Conclusions: Both AILE and AIBE were found significantly effective in reducing hyperglycemia-induced oxidative stress. The findings suggest further investigations for the possible use of A. indica as alternative medicine to prevent long-term complications of diabetes.

  15. Antioxidant responses and cellular adjustments to oxidative stress.

    Science.gov (United States)

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-12-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. Copyright © 2015. Published by Elsevier B.V.

  16. Antioxidant effects of polysaccharides from traditional Chinese medicines.

    Science.gov (United States)

    Liu, Yang; Huang, Gangliang

    2017-12-07

    Polysaccharides are a kind of biological macromolecules with immune regulation, anti-tumor, anti-radiation, anti-inflammation, anti-fatigue and anti-aging effects. These effects are related to their antioxidant properties. The action mechanisms of antioxidation and scavenging free radicals for polysaccharides were reviewed. The polysaccharides contain plant polysaccharides, animal polysaccharides and microbial polysaccharides. The recent research progresses and our work on antioxidant properties of polysaccharides and their derivatives were summarized. At last, the existing problems of antioxidant polysaccharides were analyzed, and the development prospects were also presented. It is important to study the antioxidant activities of polysaccharides and their derivatives for the development of natural antioxidants. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Concomitant ingestion of lactic acid bacteria and black tea synergistically enhances flavonoid bioavailability and attenuates d-galactose-induced oxidative stress in mice via modulating glutathione antioxidant system.

    Science.gov (United States)

    Zhao, Danyue; Shah, Nagendra P

    2016-12-01

    Black tea (BT) has been positively linked to improved redox status, while its efficacy is limited due to the low bioavailability of BT flavonoids. In addition to the direct antioxidant activity, flavonoids regulate redox balance via inducing endogenous antioxidants, particularly glutathione (GSH) and GSH-dependent antioxidant enzymes. This work first examined the effect of lactic acid bacteria (LAB) and BT alone or in combination on flavonoid bioavailability and metabolism; next, the effect of LAB-fermented BT diet in attenuating oxidative stress in mice and the underlying mechanisms were studied. Phenolic profiles of plasma, urine and feces from healthy mice consuming plain yogurt, BT milk (BTM) or BT yogurt (BTY) were acquired using LC-MS/MS. Plasma antioxidant capacity, lipid peroxidation level, content of nonprotein thiols and expression of GSH-related antioxidant enzymes and Nrf2 were examined in d-galactose-treated mice. Total flavonoid content in plasma following a single dose of BTY attained 0.657 μmol/l, increased by 50% compared with the BTM group. Increased excretion of phenolic metabolite and hippuric acid in urine and feces indicated enhanced metabolism of flavonoids in BTY-fed mice. In the second study, 8-week concomitant LAB-BT treatment of oxidatively stressed mice effectively restored plasma antioxidant capacity and GSH levels, and mitigated lipid peroxidation, which were associated with significant induction of GSH-dependent antioxidant enzymes and nuclear accumulation of Nrf2. Our results demonstrated the effect of LAB fermentation in enhancing BT flavonoid bioavailability in vivo. The synergistic antioxidant efficacy of LAB-BT diet implied its therapeutic potential in enhancing antioxidant defenses and protecting organisms from oxidative damage. Copyright © 2016. Published by Elsevier Inc.

  18. Atmospheric oxidation and antioxidants

    CERN Document Server

    Meurant, Gerard

    1993-01-01

    Volume I reviews current understanding of autoxidation, largely on the basis of the reactions of oxygen with characterised chemicals. From this flows the modern mechanism of antioxidant actions and their application in stabilisation technology.

  19. Host Defense Mechanisms against Bark Beetle Attack Differ between Ponderosa and Lodgepole Pines

    Directory of Open Access Journals (Sweden)

    Daniel R. West

    2016-10-01

    Full Text Available Conifer defenses against bark beetle attack include, but are not limited to, quantitative and qualitative defenses produced prior to attack. Our objective was to assess host defenses of lodgepole pine and ponderosa pine from ecotone stands. These stands provide a transition of host species for mountain pine beetle (Dendroctonus ponderosae; MPB. We asked two questions: (1 do the preformed quantitative host defenses (amount of resin and (2 the preformed qualitative host defenses (monoterpene constituents differ between lodgepole and ponderosa pines. We collected oleoresins at three locations in the Southern Rocky Mountains from 56 pairs of the pine species of similar size and growing conditions. The amount of preformed-ponderosa pine oleoresins exuded in 24 h (mg was almost four times that of lodgepole pine. Total qualitative preformed monoterpenes did not differ between the two hosts, though we found differences in all but three monoterpenes. No differences were detected in α-pinene, γ-terpinene, and bornyl acetate. We found greater concentrations of limonene, β-phellandrene, and cymene in lodgepole pines, whereas β-pinene, 3-carene, myrcene, and terpinolene were greater in ponderosa pine. Although we found differences both in quantitative and qualitative preformed oleoresin defenses, the ecological relevance of these differences to bark beetle susceptibility have not been fully tested.

  20. Cardioprotective and nonprotective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems

    Czech Academy of Sciences Publication Activity Database

    Kašparová, D.; Neckář, Jan; Dabrowská, L.; Novotný, J.; Mráz, J.; Kolář, František; Žurmanová, J.

    2015-01-01

    Roč. 47, č. 12 (2015), s. 612-620 ISSN 1094-8341 R&D Projects: GA ČR(CZ) GAP303/12/1162; GA ČR(CZ) GA13-10267S Institutional support: RVO:67985823 Keywords : adaptation to hypoxia * cardioprotection * ischemia-reperfusion injury * oxidative stress * antioxidant defense Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.615, year: 2015

  1. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms

    Science.gov (United States)

    Radulovic, Marko; Godovac-Zimmermann, Jasminka

    2014-01-01

    The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms. PMID:21329431

  2. Use of sodium butyrate as an alternative to dietary fiber: effects on the embryonic development and anti-oxidative capacity of rats.

    Science.gov (United States)

    Lin, Yan; Fang, Zheng-feng; Che, Lian-qiang; Xu, Sheng-yu; Wu, De; Wu, Cai-mei; Wu, Xiu-qun

    2014-01-01

    In this study, we evaluated the effect of replacing dietary fiber with sodium butyrate on reproductive performance and antioxidant defense in a high fat diet during pregnancy by using a rat model. Eighty virgin female Sprague Dawley rats were fed one of four diets--(1) control diet (C group), (2) high fat + high fiber diet (HF group), (3) high-fat +5% sodium butyrate diet (SB group), and (4) HF diet + α-cyano-4-hydroxy cinnamic acid (CHC group)--intraperitoneally on days 8, 10, 12, 14, and 16 of gestation. SB and dietary fiber had similar effects on improving fetal number and reducing the abortion rate; however, the anti-oxidant capacity of maternal serum, placenta, and fetus was superior in the HF group than in the SB group. In comparison, CHC injection decreased reproductive performance and antioxidant defense. Both dietary fiber (DF) and SB supplementation had a major but different effect on the expression of anti-oxidant related genes and nutrient transporters genes. In summary, our data indicate that SB and DF showed similar effect on reproductive performance, but SB cannot completely replace the DF towards with respect to redox regulation in high-fat diet; and SB might influence offspring metabolism and health differently to DF.

  3. Use of sodium butyrate as an alternative to dietary fiber: effects on the embryonic development and anti-oxidative capacity of rats.

    Directory of Open Access Journals (Sweden)

    Yan Lin

    Full Text Available In this study, we evaluated the effect of replacing dietary fiber with sodium butyrate on reproductive performance and antioxidant defense in a high fat diet during pregnancy by using a rat model. Eighty virgin female Sprague Dawley rats were fed one of four diets--(1 control diet (C group, (2 high fat + high fiber diet (HF group, (3 high-fat +5% sodium butyrate diet (SB group, and (4 HF diet + α-cyano-4-hydroxy cinnamic acid (CHC group--intraperitoneally on days 8, 10, 12, 14, and 16 of gestation. SB and dietary fiber had similar effects on improving fetal number and reducing the abortion rate; however, the anti-oxidant capacity of maternal serum, placenta, and fetus was superior in the HF group than in the SB group. In comparison, CHC injection decreased reproductive performance and antioxidant defense. Both dietary fiber (DF and SB supplementation had a major but different effect on the expression of anti-oxidant related genes and nutrient transporters genes. In summary, our data indicate that SB and DF showed similar effect on reproductive performance, but SB cannot completely replace the DF towards with respect to redox regulation in high-fat diet; and SB might influence offspring metabolism and health differently to DF.

  4. Variation in plant defense suppresses herbivore performance

    Science.gov (United States)

    Pearse, Ian; Paul, Ryan; Ode, Paul J.

    2018-01-01

    Defensive variability of crops and natural systems can alter herbivore communities and reduce herbivory. However, it is still unknown how defense variability translates into herbivore suppression. Nonlinear averaging and constraints in physiological tracking (also more generally called time-dependent effects) are the two mechanisms by which defense variability might impact herbivores. We conducted a set of experiments manipulating the mean and variability of a plant defense, showing that defense variability does suppress herbivore performance and that it does so through physiological tracking effects that cannot be explained by nonlinear averaging. While nonlinear averaging predicted higher or the same herbivore performance on a variable defense than on an invariable defense, we show that variability actually decreased herbivore performance and population growth rate. Defense variability reduces herbivore performance in a way that is more than the average of its parts. This is consistent with constraints in physiological matching of detoxification systems for herbivores experiencing variable toxin levels in their diet and represents a more generalizable way of understanding the impacts of variability on herbivory. Increasing defense variability in croplands at a scale encountered by individual herbivores can suppress herbivory, even if that is not anticipated by nonlinear averaging.

  5. HPTLC-profiling of eleutherosides, mechanism of antioxidative action of eleutheroside E1, the PAMPA test with LC/MS detection and the structure–activity relationship

    Directory of Open Access Journals (Sweden)

    Daniel Załuski

    2018-03-01

    Full Text Available Human body is constantly generating free radicals, which causes oxidative stress. Despite naturally occurring antioxidant systems in human body, free radicals cause lipid, proteins and DNA oxidation. New antioxidants are still urgent as well as their mechanisms of action should be explained. In this study, we investigated the mechanism by which eleutherosides B, E and E1 may act as antioxidants, identified eleutherosides in Eleutherococcus lasiogyne and Eleutherococcus giraldii, and explained in vitro the absorption of eleutheroside E1 based on passive transport. The DPPH∗ and DB-HPTLC tests were used to assess the antioxidant activity. Of the three eleutherosides, only eleutheroside E1 exhibited a strong anti-DPPH∗ activity (EC50 37.03 μg/mL; 63 mMol compared to the raw extracts (EC50 170 and 180 μg/mL for E. lasiogyne and E. giraldii. This activity was also confirmed by the DB-HPTLC autography technique. According to Załuski’s hypothesis, the antioxidant mechanism of eleutheroside E1 is based on the complexation of DPPH∗ molecule with its aryl radical. During this reaction, the aryl radical of eleutheroside E1 (E1∗ and DPPHH are created. Next, the aryl radical (E1∗ is complexed with another DPPH∗ molecule. Additionally, the aryl radical can be stabilized by the presence of the methoxy groups in the aromatic ring, which increases its antioxidative action. The HPTLC-identification of extracts showed the presence of eleutherosides B, E and E1 in both species. The PAMPA test coupled with LC/MS detection showed a low permeability of eleutheroside E1 across artificial membrane. Because eleutherosides belong to the polyphenols, the TPC and TFC were quantified. The TPC and TFC varied from 51.4 to 49.3 mg/g dry extract for TPC, and from 5.73 to 4.91 mg/g dry extract for TFC, for E. giraldii and E. lasiogyne, respectively. In conclusion, eleutheroside E1 in its pure form could be a chemopreventive ingredient of new pharmacological

  6. Effector-triggered immunity: from pathogen perception to robust defense.

    Science.gov (United States)

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.

  7. Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins

    International Nuclear Information System (INIS)

    Nakaso, Kazuhiro; Nakamura, Chiharu; Sato, Hiromi; Imamura, Keiko; Takeshima, Takao; Nakashima, Kenji

    2006-01-01

    Neuroprotection has received considerable attention as a strategy for the treatment of Parkinson's disease (PD). Deprenyl (Selegiline) is a promising candidate for neuroprotection; however, its cytoprotective mechanism has not been fully clarified. Here, we report a novel cytoprotective mechanism of deprenyl involving PI3K and Nrf2-mediated induction of oxidative stress-related proteins. Deprenyl increased the expression of HO-1, PrxI, TrxI, TrxRxI, γGCS, and p62/A170 in SH-SY5Y cells. Deprenyl also induced the nuclear accumulation of Nrf2 and increased the binding activity of Nrf2 to the enhancer region of human genomic HO-1. The Nrf2-mediated induction of antioxidative molecules was controlled by PI3K. Indeed, furthermore, neurotrophin receptor TrkB was identified as an upstream signal for PI3K-Nrf2 activation by deprenyl. These results suggest that the cytoprotective effect of deprenyl is, in part, dependent on Nrf2-mediated induction of antioxidative proteins, suggesting that activation of the PI3K-Nrf2 system may be a useful therapeutic strategy for PD

  8. Effect of fraxetin on antioxidant defense and stress proteins in human neuroblastoma cell model of rotenone neurotoxicity. Comparative study with myricetin and N-acetylcysteine

    International Nuclear Information System (INIS)

    Molina-Jimenez, Maria Francisca; Sanchez-Reus, Maria Isabel; Cascales, Maria; Andres, David; Benedi, Juana

    2005-01-01

    Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Recently, it has been shown that fraxetin (coumarin) and myricetin (flavonoid) have significant neuroprotective effects against apoptosis induced by rotenone, increase the total glutathione levels in vitro, and inhibit lipid peroxidation. Thus, these considerations prompted us to investigate the way in which fraxetin and myricetin affect the endogenous antioxidant defense system, such as Mn and CuZn superoxide dismutase (MnSOD, CuZnSOD), catalase, glutathione reductase (GR), and glutathione peroxidase (GPx) on rotenone neurotoxicity in neuroblastoma cells. N-acetylcysteine (NAC), a potent antioxidant, was employed as a comparative agent. Also, the expression and protein levels of HSP70 by Northern and Western blot analysis were assayed in SH-SY5Y cells. After incubation for 16 h, rotenone significantly increased the expression and activity of MnSOD, GPx, and catalase. When cells were preincubated with fraxetin, there was a decrease in the protein levels and activity of both MnSOD and catalase, in comparison with the rotenone treatment. The myricetin effect was less pronounced. Activity and expression of GPx were increased by rotenone and pre-treatment with fraxetin did not modify significantly these levels. The significant enhancement in HSP70 expression at mRNA and protein levels induced by fraxetin was observed by pre-treatment of cells 0.5 h before rotenone insult. These data suggest that major features of rotenone-induced neurotoxicity are partially mediated by free radical formation and oxidative stress, and that fraxetin partially protects against rotenone toxicity affecting the main protection system of the cells against oxidative injury

  9. DDTs-induced antioxidant responses in plants and their influence on phytoremediation process.

    Science.gov (United States)

    Mitton, Francesca M; Gonzalez, Mariana; Monserrat, José M; Miglioranza, Karina S B

    2018-01-01

    Phytoremediation is a low cost technology based on the use of plants to remove a wide range of pollutants from the environment, including the insecticide DDT. However, some pollutants are known to enhance generation of reactive oxygen species (ROS), which can generate toxic effects on plants affecting the phytoremediation efficiency. This study aims to analyze the potential use of antioxidant responses as a measure of tolerance to select plants for phytoremediation purposes. Tomato and zucchini plants were grown for 15 days in soils contaminated with DDTs (DDT + DDE + DDD). Protein content, glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and catalase (CAT) activities were measured in plant tissues. Exposure to DDTs did not affect protein content or CAT activity in any of the species. GST, GR and GPx activity showed different responses in exposed and control tomato plants. After DDTs exposure, tomato showed increased GR and GPX activity in stems and leaves, respectively, and a decrease in the GST activity in roots. As no effects were observed in zucchini, results suggest different susceptibility and/or defense mechanisms involved after pesticide exposure. Finally, both species differed also in terms of DDTs uptake and translocation. The knowledge about antioxidant responses induced by pesticides exposure could be helpful for planning phytoremediation strategies and for the selection of tolerant species according to particular scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effect of antioxidant extract from cherries on diabetes.

    Science.gov (United States)

    Lachin, Tahsini

    2014-01-01

    Diabetes is a chronic metabolic disorder in humans constituting a major health concern today whose prevalence has continuously increased worldwide over the past few decades. Production of reactive oxygen species (ROS) and disturbed capacity of antioxidant defense in diabetic subjects have been reported. It has been suggested that enhanced production of free radicals and oxidative stress is the central event for the development of diabetic complications. Antioxidants can play an important role in the improvement of diabetes. There are many reports on the effects of antioxidants in the management of diabetes. This study aimed at evaluating the effect of antioxidant extract and purified sweet and sour Cherries on hyperglycemia, microalbumin and creatinine level in alloxan-induced diabetic rats. Thirty six adult Male Wistar rats were divided equally into six groups. Diabetes was induced in the rats by an intraperitoneal injection with 120 mg/kg body weight of alloxan. Oral administration of cherry extract at a concentration of 200 mg/kg body weight for 30 days significantly reduced the levels of blood glucose, and urinary microalbumin. Also an increase in the creatinine secretion level in urine was observed in the diabetic rats treated with the cherry extract as compared to untreated diabetic rats. In this paper, the most recent patent on the identification and treatment of diabetes is used. In conclusion, cherry antioxidant extract proved to have a beneficial effect on the diabetic rats in this study. In light of these advantageous results, it is advisable to broaden the scale of use of sweet and sour cherries extract in a trial to alleviate the adverse effects of diabetes.

  11. Modulation of pulmonary defense mechanisms by acute exposures to nitrogen dioxide. [Staphylococcus aureus; Proteus mirabilis; Pasteurella pneumotropica

    Energy Technology Data Exchange (ETDEWEB)

    Jakab, G.J.

    1987-02-01

    The effect of acute exposures to NO/sub 2/ on the antibacterial defenses of the murine lung was assessed following inhalation challenges with Staphylococcus aureus, Proteus mirabilis, and Pasteurella pneumotropica. With S. aureus pulmonary antibacterial defenses were suppressed at NO/sub 2/ levels of 4.0 ppm and greater. Exposure to 10.0 ppm enhanced the intrapulmonary killing of P. mirabilis which correlated with an increase in the phagocytic cell populations lavaged from the lungs; at 20.0 ppm bactericidal activity against P. mirabilis was impaired. Pulmonary antibacterial defenses against P. pneumotropica were impaired at 10.0 ppm which correlated with a decrease in the retrieved phagocytic lung cell population. Reversing the order of treatment (ie., NO/sub 2/ exposure prior to bacterial challenge) raised the threshold concentration for NO/sub 2/-induced impairment of intrapulmonary bacterial killing. With S. aureus the effect was not observed at 5.0 ppm but at 10.0 ppm and with P. mirabilis not at 20.0 ppm but at 30.0 ppm intrapulmonary killing was enhanced. Exposures up to 20.0 ppm of NO/sub 2/ did not effect the physical translocation mechanisms of the lung as quantitated by declines in pulmonary radiotracer activity following aerogenic challenge with /sup 32/P-labeled staphylococci.

  12. Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress.

    Science.gov (United States)

    Sgobba, Alessandra; Paradiso, Annalisa; Dipierro, Silvio; De Gara, Laura; de Pinto, Maria Concetta

    2015-01-01

    Heat stress can have deleterious effects on plant growth by impairing several physiological processes. Plants have several defense mechanisms that enable them to cope with high temperatures. The synthesis and accumulation of heat shock proteins (HSPs), as well as the maintenance of an opportune redox balance play key roles in conferring thermotolerance to plants. In this study changes in redox parameters, the activity and/or expression of reactive oxygen species (ROS) scavenging enzymes and the expression of two HSPs were studied in tobacco Bright Yellow-2 (TBY-2) cells subjected to moderate short-term heat stress (SHS) and long-term heat stress (LHS). The results indicate that TBY-2 cells subjected to SHS suddenly and transiently enhance antioxidant systems, thus maintaining redox homeostasis and avoiding oxidative damage. The simultaneous increase in HSPs overcomes the SHS and maintains the metabolic functionality of cells. In contrast the exposure of cells to LHS significantly reduces cell growth and increases cell death. In the first phase of LHS, cells enhance antioxidant systems to prevent the formation of an oxidizing environment. Under prolonged heat stress, the antioxidant systems, and particularly the enzymatic ones, are inactivated. As a consequence, an increase in H2 O2 , lipid peroxidation and protein oxidation occurs. This establishment of oxidative stress could be responsible for the increased cell death. The rescue of cell growth and cell viability, observed when TBY-2 cells were pretreated with galactone-γ-lactone, the last precursor of ascorbate, and glutathione before exposure to LHS, highlights the crucial role of antioxidants in the acquisition of basal thermotolerance. © 2014 Scandinavian Plant Physiology Society.

  13. Antioxidant status of dog aqueous humor after extracapsular lens extraction

    Directory of Open Access Journals (Sweden)

    Barros P.S.M.

    2003-01-01

    Full Text Available We determined the antioxidant status of the aqueous humor after extracapsular lens extraction in 14 mongrel dogs weighing about 10 kg. The animals were examined by slit lamp biomicroscopy, applanation tonometry and indirect ophthalmoscopy. One eye was submitted to conventional extracapsular lens extraction and the other was used as control. Samples of aqueous humor were obtained by anterior chamber paracentesis before and at days 1, 2, 3, 7 and 15 after surgery. Total antioxidant status was determined as the capacity of aqueous humor to inhibit free radical generation by 2,2-azobis(2-amidopropane chlorine. Ascorbic acid concentration was measured by HPLC with UV detection. Protein content was determined with the biuret reagent. Statistical analysis was performed by ANOVA followed by the Tukey-Kramer test. Protein concentration increased from 0.61 to 22 mg/ml 24 h after surgery. These levels were maintained and returned to normal at day 7. Total antioxidant capacity was reduced from 50 to about 30 min until day 3 and at day 7 it was equal to control. Ascorbic acid levels were reduced from 252 to about 110 µM and then returned to control values at day 15. Considering the importance of ascorbic acid concentration in aqueous humor for the maintenance of the antioxidant status of the anterior segment of the eye, the decrease of antioxidant defenses suggests that the surgical procedures promote an oxidative stress condition in the eye.

  14. Antioxidants and Dementia Risk: Consideration through a Cerebrovascular Perspective

    Directory of Open Access Journals (Sweden)

    Virginie Lam

    2016-12-01

    Full Text Available A number of natural and chemical compounds that exert anti-oxidative properties are demonstrated to be beneficial for brain and cognitive function, and some are reported to reduce the risk of dementia. However, the detailed mechanisms by which those anti-oxidative compounds show positive effects on cognition and dementia are still unclear. An emerging body of evidence suggests that the integrity of the cerebrovascular blood-brain barrier (BBB is centrally involved in the onset and progression of cognitive impairment and dementia. While recent studies revealed that some anti-oxidative agents appear to be protective against the disruption of BBB integrity and structure, few studies considered the neuroprotective effects of antioxidants in the context of cerebrovascular integrity. Therefore, in this review, we examine the mechanistic insights of antioxidants as a pleiotropic agent for cognitive impairment and dementia through a cerebrovascular axis by primarily focusing on the current available data from physiological studies. Conclusively, there is a compelling body of evidence that suggest antioxidants may prevent cognitive decline and dementia by protecting the integrity and function of BBB and, indeed, further studies are needed to directly examine these effects in addition to underlying molecular mechanisms.

  15. [Study on psychiatric disorders and defensive process assessed by the "defense style questionnaire" in sterile males SAMPLE consulting in andrology].

    Science.gov (United States)

    Bellone, M; Cottencin, O; Rigot, J M; Goudemand, M

    2005-01-01

    collect some general information about infertility and a self questionnaire about the sexual, conjugal and social effects of infertility. The DSQ and the interviews took place in the andrology department with the same investigator trained for this job. We found in our sample 26.2% of psychiatric disorders according to the DSM IV with a significant over-representation of generalized anxious disorder and somatization disorder. The comparison between azoospermic males and oligoazoospermic males patients showed the absence of significative difference as far as psychiatric morbidity rate and the use of defense styles are concerned. Our sample defended himself in accordance with modalities similar to the general population and used defense mechanisms preferentially belonging to the mature defense style, such as humor, repression and anticipation. The psychiatric pathology was significantly correlated to the preferential use of withdrawal, consumption, reaction formation and lack of humor use. We also confirm in our study the fact that the subjects using especially neurotic defense styles are more likely to develop a psychiatric disorder than the others. Our male sample is a waiting population and threatened by failure. The situation of wait creates anxiety. We also know that infertility is one of the most stressful situations a couple might face. However, our study did not enable us to know the precise relations between generalized anxious disorder and infertility, especially whether the generalized anxious disorder preceded this pathology or not. The over-representation of a somatization disorder only allows us to acknowledge its existence. We can also deduce from that a possible link between infertility and psychic disorder, even if no research permitted to affirm to date the existence of interrelations linking infertility and psychic life. On the whole, this population was suffering despite 73.8% of the patients had no confirmed psychiatric disorder. It is the reason why a

  16. Plants as natural antioxidants for meat products

    Science.gov (United States)

    Tomović, V.; Jokanović, M.; Šojić, B.; Škaljac, S.; Ivić, M.

    2017-09-01

    The meat industry is demanding antioxidants from natural sources to replace synthetic antioxidants because of the negative health consequences or beliefs regarding some synthetic ones. Plants materials provide good alternatives. Spices and herbs, generally used for their flavouring characteristics, can be added to meat products in various forms: whole, ground, or as isolates from their extracts. These natural antioxidants contain some active compounds, which exert antioxidative potential in meat products. This antioxidant activity is most often due to phenolic acids, phenolic diterpenes, flavonoids and volatile oils. Each of these compounds often has strong H-donating activity, thus making them extremely effective antioxidants; some compounds can chelate metals and donate H to oxygen radicals, thus slowing oxidation via two mechanisms. Numerous studies have demonstrated the efficacy of natural antioxidants when used in meat products. Based on this literature review, it can be concluded that natural antioxidants are added to fresh and processed meat and meat products to delay, retard, or prevent lipid oxidation, retard development of off-flavours (rancidity), improve colour stability, improve microbiological quality and extend shelf-life, without any damage to the sensory or nutritional properties.

  17. Antioxidative and proline potentials as a protective mechanism in ...

    African Journals Online (AJOL)

    Jane

    2011-07-04

    Jul 4, 2011 ... Antioxidant responses are tested in Soybean (Glycine max. L.) cv.,. “A3935” grown under 0, 50, 100 and 150 ..... dismutase activities by triadimefon in NaCl stressed Raphanus sativus L. Biol. Plantarum 43: 317-320. Nemoto Y ...

  18. Role of garlic oil and selenium as stimulators to some antioxidant defense system in irradiated male rats

    International Nuclear Information System (INIS)

    El-Gawish, M.A.; Abdel-Azeem, M.G.

    2002-01-01

    The increased level of lipid peroxide product; malondialdehyde (MDA) in various tissues of irradiated animals, may play a crucial role in damaging effects of exposure to ionizing radiation mediated by reactive free radicals generation. The protective efficiency of oral administration of garlic oil (500 mg/kg b.wt) three times weekly together with a single intraperitoneal injection of selenium (0.5 mg/kg b.wt) weekly for two weeks was examined on some antioxidant defense system as well as ultrastructural study in rats subjected to fractionated doses of gamma radiation up to a dose level of 6 Gy (1.5 Gy day after day). Exposure to gamma radiation induced a significant elevation in the level of malondialdehyde in plasma and liver and non-significant change was observed in superoxide dismutase activity (SOD). Also a significant increase was occurred in hepatic glutathione (GSH) content and glutathione peroxidase (GSHPx) activity. The pretreatment of irradiated rats with garlic oil and selenium caused a significant decrease in elevated level of MDA and a significant increase in the activity of SOD, GSHPx and GSH contents in both blood and liver. Concerning the ultrastructure studies, liver of irradiated rats showed abnormal shape of nucleus and nucleus membrane, swollen mitochondria with ruptured cristae, rupture of endoplasmic reticulum and vaculated cytoplasm, while intestine of irradiated rats exhibited deformed, shortened and abnormal structure of microvilli, accumulation of nuclear chromatin and dilatation of terminal web layer. In group of rats treated with garlic oil and selenium before exposure to gamma radiation, noticeable amelioration in ultrastructure changes of liver and intestine induced by irradiation was observed indicating a beneficial radioprotective role of both garlic oil and selenium

  19. Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants.

    Science.gov (United States)

    Mohamed, Heba Ibrahim; Akladious, Samia Ageeb

    2017-10-01

    The use of fungicides for an effective control of plant diseases has become crucial in the last decades in the agriculture system. Seeds of cotton plants were treated with systemic and contact fungicides to study the efficiency of seed dressing fungicides in controlling damping off caused by Rhizoctonia solani under greenhouse conditions and its effect on plant growth and metabolism. The results showed that Mon-cut showed the highest efficiency (67.99%) while each of Tondro and Hemixet showed the lowest efficiency (31.99%) in controlling damping off. Rhizolex T, Mon-cut and Tondro fungicides caused significant decrease in plant height, dry weight of plant, phytohormones, photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids but caused significant increases in total phenols, flavonoids, antioxidant enzymes, ascorbic acid, reduced glutathione, MDA and hydrogen peroxide as compared with untreated plants. On the other hand, the other fungicides (Maxim, Hemixet and Flosan) increased all the above recorded parameters as compared with untreated plants. Our results indicated that the fungicides application could be a potential tool to increase plant growth, the antioxidative defense mechanisms and decreased infection with plant diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Tactile defensiveness and stereotyped behaviors.

    Science.gov (United States)

    Baranek, G T; Foster, L G; Berkson, G

    1997-02-01

    This study explores the constructs of stereotyped behaviors (e.g., repetitive motor patterns, object manipulations, behavioral rigidities) and tactile defensiveness as relevant to occupational therapy theory and practice and attempts to test their purported relationships in children with developmental disabilities. Twenty-eight children with developmental disabilities and autism were assessed on eight factors of stereotyped behavior via a questionnaire and by four measures of tactile defensiveness. The subjects' scores from the questionnaire were correlated with their scores on the tactile defensiveness measures to see what, if any, relationship among these behaviors exists. Significant relationships emerged from the data, indicating that subjects with higher levels of tactile defensiveness were also more likely to evidence rigid or inflexible behaviors, repetitive verbalizations, visual stereotypes, and abnormal focused affections that are often associated with autism. No significant association was found between motor and object stereotypes and tactile defensiveness. These relationships could not be explained solely by maturational factors. The results suggest that clinicians should include observations of stereotyped behaviors, particularly behavioral rigidities, in conjunction with assessments of sensory defensiveness because these are related phenomena that may pose unique challenges for children with developmental disabilities and autism. Further study is needed to determine the causal mechanisms responsible for these relationships.

  1. Blood antioxidant profile and lipid peroxides in dairy cows with clinical mastitis

    Directory of Open Access Journals (Sweden)

    Rajesh Rathore

    2013-10-01

    Full Text Available Aim: To evaluate blood antioxidant profile and lipid peroxides in dairy cows with clinical mastitis. Materials and Methods: Twelve cases of clinical mastitis in cross-bred cows were selected based on physical examination of udder and milk, California Mastitis Test (CMT, Somatic Cell Count (SCC and confirmation by bacteriological examination of milk and requisite biochemical tests. Twelve lactating cows showing negative CMT reaction and SCC <2x105 cells/ml were considered as healthy control. Antioxidant parameters measured in blood were superoxide dismutase (SOD, catalase activities and reduced glutathione (GSH concentration. Erythrocytic lipid peroxidation (LPO was measured in terms of malondialdehyde (MDA production. Results: Significant (P<0.05 decrease in blood SOD and catalase activities, GSH concentration and an increase in erythrocytic lipid peroxides was observed in cows with clinical mastitis. Conclusion: It is concluded that there is a compromise in antioxidant defense of the body in dairy cows with clinical mastitis resulting in oxidative damage, therefore, necessitate the use of antioxidants and other protective compounds along with conventional therapy for mastitis control. [Vet World 2013; 6(5.000: 271-273

  2. Antioxidants and the Comet assay.

    Science.gov (United States)

    Cemeli, Eduardo; Baumgartner, Adolf; Anderson, Diana

    2009-01-01

    It is widely accepted that antioxidants, either endogenous or from the diet, play a key role in preserving health. They are able to quench radical species generated in situations of oxidative stress, either triggered by pathologies or xenobiotics, and they protect the integrity of DNA from genotoxicants. Nevertheless, there are still many compounds with unclear or unidentified prooxidant/antioxidant activities. This is of concern since there is an increase in the number of compounds synthesized or extracted from vegetables to which humans might be exposed. Despite the well-established protective effects of fruit and vegetables, the antioxidant(s) responsible have not all been clearly identified. There might also be alternative mechanisms contributing to the protective effects for which a comprehensive description is lacking. In the last two decades, the Comet assay has been extensively used for the investigation of the effects of antioxidants and many reports can be found in the literature. The Comet assay, a relatively fast, simple, and sensitive technique for the analysis of DNA damage in all cell types, has been applied for the screening of chemicals, biomonitoring and intervention studies. In the present review, several of the most well-known antioxidants are considered. These include: catalase, superoxide dismutase, glutathione peroxidase, selenium, iron chelators, melatonin, melanin, vitamins (A, B, C and E), carotenes, flavonoids, isoflavones, tea polyphenols, wine polyphenols and synthetic antioxidants. Investigations showing beneficial as well as non-beneficial properties of the antioxidants selected, either at the in vitro, ex vivo or in vivo level are discussed.

  3. Proactive Self Defense in Cyberspace

    National Research Council Canada - National Science Library

    Caulkins, Bruce D

    2009-01-01

    ... and standards to properly secure and defend the Global Information Grid (GIG) from cyber attacks. This paper will discuss the strategic requirements for enacting a proactive self-defense mechanism in cyberspace...

  4. STRUCTURING DEFENSE POLICIES FOR THE DEFENSE AND CONTROL OF STRATEGIC NATURAL RESOURCES

    Directory of Open Access Journals (Sweden)

    GABRIEL DE PAULA

    2018-02-01

    Full Text Available During the last decade, there has been a reconfiguration of a new geopolitical scenario. This new scenario focus on the assessment about strategic natural resources (oil, gas and water, and less important, biodiversity, food and fertile land and its spatial condition (the resources are in a territory which is politically defined by boundaries or zone of influence. The scenario in South America is not far from that international dynamic, which affects in different levels the strategic lines of national defense policies in Brazil, Venezuela and (in less degree Argentina. In that way, competence and confluence scenarios are defined, which may have variability in the conflict level, such as a military confrontation or cooperation mechanisms (as the South America Defense Council. These scenarios are geographically located in: oil and gas basins, Amazonas, water resources, Antarctica, Atlantic Ocean and fertile land. The defense strategies set parameters for the design of the armed forces, as far as the hypothesis of conflicts above-mentioned applied. Thus, the defense administration reconfigured the capabilities of the Armed Forces (logistic, personnel, doctrine, resources, surveillance, in order to achieve the mission of control the regions where availability of natural resources exists.

  5. The Role of Defense Mechanisms, Personality and Demographical Factors on Complicated Grief following Death of a loved one by Cancer

    Directory of Open Access Journals (Sweden)

    Isaac Rahimian-Boogar

    2015-10-01

    Full Text Available Objective: Identification of the risk factors and psychological correlates of prolonged grief disorder is vital for health promotions in relatives of persons who died of cancer. The aim of this research was to investigate the role of defense mechanisms, character dimension of personality and demographic factors on complicated grief following a loss of a family member to cancer .Method: A number of 226 persons who had lost a family member to cancer in a cancer institute at Tehran University of Medical Science were selected through compliance sampling and completed the Inventory of complicated Grief-Revised (ICG-R, the Defense Styles Questionnaire (DSQ, the Character dimension of Temperament and Character Inventory (TCI, and the Demographical questionnaire. Data were analyzed by stepwise multiple regression analysis, using the PASW version 18 .Results: Findings revealed that neurotic defense style had a significant positive predictive role in the complicated grief; and cooperativeness, age of the deceased person, self-transcendence and mature defense style had a significant negative predictive role in complicated grief (p<0.001. R2 was 0.73 for the final model (p<.001.Conclusion: The results revealed that two character dimensions (low cooperativeness and self-transcendence, high neurotic defense style and young age of the deceased person were involved in the psychopathological course of the complicated and prolonged grief. It was concluded that personality characteristics of the grieving persons and demographics of the deceased person should be addressed in designing tailored interventions for complicated grief.

  6. The association of oxidant-antioxidant status in patients with chronic renal failure.

    Science.gov (United States)

    Aziz, Manal A; Majeed, Ghanim H; Diab, Kareem S; Al-Tamimi, Raid J

    2016-01-01

    Oxidative stress has been linked to disease progression, including chronic renal failure (CRF). The aim of the present study was to determine malondialdehyde (MDA) as a sign of lipid peroxidation, and to investigate the association between antioxidant activities and three trace elements, in 49 patients with CRF. The erythrocyte and plasma trace elements [selenium (Se), zinc (Zn), and copper (Cu)] and antioxidant defense levels were determined: glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), vitamins E and C. The obtained values were compared with 42 age- and sex-matched healthy controls. There were significantly lower mean values of plasma Se, GPx, vitamins E and C, erythrocyte Se, SOD and CAT levels in the patient group compared to the control group (p renal function.

  7. Phenylpropanoid Glycoside Analogues: Enzymatic Synthesis, Antioxidant Activity and Theoretical Study of Their Free Radical Scavenger Mechanism

    Science.gov (United States)

    López-Munguía, Agustín; Hernández-Romero, Yanet; Pedraza-Chaverri, José; Miranda-Molina, Alfonso; Regla, Ignacio; Martínez, Ana; Castillo, Edmundo

    2011-01-01

    Phenylpropanoid glycosides (PPGs) are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w), several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%–35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B) as a biocatalyst with 40%–60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT) calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET). The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols. PMID:21674039

  8. Synchrotron radiation induced X-ray emission studies of the antioxidant mechanism of the organoselenium drug ebselen.

    Science.gov (United States)

    Aitken, Jade B; Lay, Peter A; Duong, T T Hong; Aran, Roshanak; Witting, Paul K; Harris, Hugh H; Lai, Barry; Vogt, Stefan; Giles, Gregory I

    2012-04-01

    Synchrotron radiation induced X-ray emission (SRIXE) spectroscopy was used to map the cellular uptake of the organoselenium-based antioxidant drug ebselen using differentiated ND15 cells as a neuronal model. The cellular SRIXE spectra, acquired using a hard X-ray microprobe beam (12.8-keV), showed a large enhancement of fluorescence at the K(α) line for Se (11.2-keV) following treatment with ebselen (10 μM) at time periods from 60 to 240 min. Drug uptake was quantified and ebselen was shown to induce time-dependent changes in cellular elemental content that were characteristic of oxidative stress with the efflux of K, Cl, and Ca species. The SRIXE cellular Se distribution map revealed that ebselen was predominantly localized to a discreet region of the cell which, by comparison with the K and P elemental maps, is postulated to correspond to the endoplasmic reticulum. On the basis of these findings, it is hypothesized that a major outcome of ebselen redox catalysis is the induction of cellular stress. A mechanism of action of ebselen is proposed that involves the cell responding to drug-induced stress by increasing the expression of antioxidant genes. This hypothesis is supported by the observation that ebselen also regulated the homeostasis of the transition metals Mn, Cu, Fe, and Zn, with increases in transition metal uptake paralleling known induction times for the expression of antioxidant metalloenzymes. © SBIC 2012

  9. Coordination of frontline defense mechanisms under severe oxidative stress.

    Science.gov (United States)

    Kaur, Amardeep; Van, Phu T; Busch, Courtney R; Robinson, Courtney K; Pan, Min; Pang, Wyming Lee; Reiss, David J; DiRuggiero, Jocelyne; Baliga, Nitin S

    2010-07-01

    Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations--this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of gamma rays.

  10. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why.

    Science.gov (United States)

    Aldini, Giancarlo; Altomare, Alessandra; Baron, Giovanna; Vistoli, Giulio; Carini, Marina; Borsani, Luisa; Sergio, Francesco

    2018-05-09

    The main molecular mechanisms explaining the well-established antioxidant and reducing activity of N-acetylcysteine (NAC), the N-acetyl derivative of the natural amino acid l-cysteine, are summarised and critically reviewed. The antioxidant effect is due to the ability of NAC to act as a reduced glutathione (GSH) precursor; GSH is a well-known direct antioxidant and a substrate of several antioxidant enzymes. Moreover, in some conditions where a significant depletion of endogenous Cys and GSH occurs, NAC can act as a direct antioxidant for some oxidant species such as NO 2 and HOX. The antioxidant activity of NAC could also be due to its effect in breaking thiolated proteins, thus releasing free thiols as well as reduced proteins, which in some cases, such as for mercaptoalbumin, have important direct antioxidant activity. As well as being involved in the antioxidant mechanism, the disulphide breaking activity of NAC also explains its mucolytic activity which is due to its effect in reducing heavily cross-linked mucus glycoproteins. Chemical features explaining the efficient disulphide breaking activity of NAC are also explained.

  11. The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats.

    Science.gov (United States)

    Ince, Sinan; Kucukkurt, Ismail; Cigerci, Ibrahim Hakki; Fatih Fidan, A; Eryavuz, Abdullah

    2010-07-01

    The aims of this study were to clarify the effects of high dietary supplementation with boric acid and borax, called boron (B) compounds, on lipid peroxidation (LPO), antioxidant activity, some vitamin levels, and DNA damage in rats. Thirty Sprague Dawley male rats were divided into three equal groups: the animals in the first group (control) were fed with a standard rodent diet containing 6.4 mg B/kg, and the animals in the experimental group were fed with a standard rodent diet added with a supra-nutritional amount of boric acid and borax (100 mg B/kg) throughout the experimental period of 28 days. The B compounds decreased malondialdehyde (MDA), DNA damage, the protein carbonyl content (PCO) level in blood, and glutathione (GSH) concentration in the liver, Cu-Zn superoxide dismutase (SOD), and catalase (CAT) activity in the kidney. The B compounds increased GSH concentration in blood and the vitamin C level in plasma. Consequently, our results demonstrate that B supplementation (100 mg/kg) in diet decreases LPO, and enhances the antioxidant defense mechanism and vitamin status. There are no differences in oxidant/antioxidant balance and biochemical parameters except for serum vitamin A and liver GSH concentration, between the boron compounds used in this study. Crown Copyright 2010. Published by Elsevier GmbH. All rights reserved.

  12. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Qu, Ruijuan; Wang, Xinghao; Wang, Zunyao; Wei, Zhongbo; Wang, Liansheng

    2014-01-01

    Highlights: • Cd and OH-MWCNTs have a synergistic effect on Carassius auratus. • OH-MWCNTs significantly increased Cd accumulation in liver after 12 d exposure. • Co-exposure to Cd and OH-MWCNTs evoked severe hepatic oxidative stress. - Abstract: The effects of cadmium, hydroxylated multi-walled carbon nanotubes, and their mixture on metal accumulation and antioxidant defenses were studied using the goldfish Carassius auratus as the test organism. The fish were exposed to 0.1 mg/L Cd, 0.5 mg/L OH-MWCNTs, or 0.1 mg/L Cd + 0.5 mg/L OH-MWCNTs for 3 and 12 days. Then, the Cd concentration was determined in the gill, liver and muscle. Moreover, hepatic antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase), glutathione level and malondialdehyde content were also measured. A continuous accumulation of Cd was observed throughout the experimental period. Cd accumulation in tissues occurred in the following order: gill > liver > muscle at 3 days and liver > gill > muscle at 12 days. The concentrations of Cd in the livers of fish exposed to the combination of Cd + OH-MWCNTs were significantly higher than those in fish exposed to either single chemical after 12 d of exposure. Meanwhile, the mixture evoked severe oxidative stress in the exposed fish, as indicated by significant inhibition of SOD, CAT and GPx activity, a remarkable decrease in GSH level, and simultaneous elevation of MDA content. These results suggested that the effect of the combined factors on metal accumulation and oxidative stress biomarkers was more obvious than that of single factors at longer exposure durations

  13. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ruijuan; Wang, Xinghao; Wang, Zunyao, E-mail: wangzun315cn@163.com; Wei, Zhongbo; Wang, Liansheng

    2014-06-30

    Highlights: • Cd and OH-MWCNTs have a synergistic effect on Carassius auratus. • OH-MWCNTs significantly increased Cd accumulation in liver after 12 d exposure. • Co-exposure to Cd and OH-MWCNTs evoked severe hepatic oxidative stress. - Abstract: The effects of cadmium, hydroxylated multi-walled carbon nanotubes, and their mixture on metal accumulation and antioxidant defenses were studied using the goldfish Carassius auratus as the test organism. The fish were exposed to 0.1 mg/L Cd, 0.5 mg/L OH-MWCNTs, or 0.1 mg/L Cd + 0.5 mg/L OH-MWCNTs for 3 and 12 days. Then, the Cd concentration was determined in the gill, liver and muscle. Moreover, hepatic antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase), glutathione level and malondialdehyde content were also measured. A continuous accumulation of Cd was observed throughout the experimental period. Cd accumulation in tissues occurred in the following order: gill > liver > muscle at 3 days and liver > gill > muscle at 12 days. The concentrations of Cd in the livers of fish exposed to the combination of Cd + OH-MWCNTs were significantly higher than those in fish exposed to either single chemical after 12 d of exposure. Meanwhile, the mixture evoked severe oxidative stress in the exposed fish, as indicated by significant inhibition of SOD, CAT and GPx activity, a remarkable decrease in GSH level, and simultaneous elevation of MDA content. These results suggested that the effect of the combined factors on metal accumulation and oxidative stress biomarkers was more obvious than that of single factors at longer exposure durations.

  14. A study of the face validity of the 40 item version of the Defense Style Questionnaire (DSQ-40).

    Science.gov (United States)

    Chabrol, Henri; Rousseau, Amélie; Rodgers, Rachel; Callahan, Stacey; Pirlot, Gérard; Sztulman, Henri

    2005-11-01

    There are few studies examining the face validity of the 40-item version of the Defense Style Questionnaire (DSQ-40). Moreover, the existing studies have provided conflicting results. The present study provides an in-depth examination of the face validity of the DSQ-40. Eight clinicians independently attributed each item of the DSQ-40 to a defense mechanism. The defense mechanisms listed in the DSM-IV Defensive Functioning Scale and their definitions were provided as a guide, along with the definition of those defense mechanisms investigated by the DSQ that are not included. It was further specified that the raters could attribute the items to defense mechanisms other than those listed or coping mechanisms. Twelve items out of 40 (30%) were attributed to the defense mechanisms they were supposed to investigate by fewer than four out of the eight raters. This result suggests that a substantial part of the DSQ-40 is lacking in face validity.

  15. Influence of repetitive UVA stimulation on skin protection capacity and antioxidant efficacy.

    Science.gov (United States)

    Rohr, Mathias; Rieger, Ingrid; Jain, Anil; Schrader, Andreas

    2011-01-01

    Topically applied antioxidants (AOs) are widely used in cosmetic products - especially in day and sun care - to help reduce oxidative stress caused by exogenous influences such as ultraviolet (UV) radiation. Despite several advances in recent years, little is known about the duration of protective effects by application of topical AOs, AO protection capacity (APC) or the activation of an endogenous protection capacity (EPC). By measuring oxidative-stress-induced photon emission of human skin in vivo with the ICL-S method (induced chemiluminescence of human skin), the protective effect of daily AO treatment for 2 weeks was examined on 4 consecutive days after treatment. UVA-dose-independent effects were investigated by decay curve intersection point analysis. In addition, chemiluminescence signal integration was used to investigate the influence of different UVA doses for stimulation on the determined APC as well as the modulation of the EPC by repetitive UVA stimulation both forming the skin protection capacity (SPC). The SPC showed a strong dependency on the UVA dose used for stimulation. AO pretreatment was more effective against lower UVA doses. Over the course of 4 days, the AO-induced SPC did not change significantly for a given UVA dose. Analyzing the decay curve intersection point for 2 different UVA doses, however, revealed a decrease in SPC with time. In addition, we found that a repetitive UVA irradiation of 1 J/cm(2) caused a statistically significant protective effect against UVA irradiation by stimulation of endogenous mechanisms. Topically supplemented AOs provide a protective effect against oxidative stress for at least 3 days, supporting their widespread use in cosmetic products. Especially their interaction with cutaneous protective mechanisms should be investigated in more detail for maximal protection, as endogenous defense mechanisms are already triggered by 2 low-dose UVA irradiations within 24 h. In summary, the in vivo measurement of UVA

  16. Comparison of effects on the oxidant/antioxidant system of sevoflurane, desflurane and propofol infusion during general anesthesia

    Directory of Open Access Journals (Sweden)

    Mesut Erbas

    2015-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: Desflurane and sevoflurane are frequently used for maintenance of anesthesia and studies have shown that these anesthetics cause a variety of changes to the oxidative stress and antioxidative defense mechanisms. This study aims to compare the effects of sevoflurane, desflurane and propofol infusion anesthesia on the oxidant and antioxidant systems of patients undergoing laparoscopic cholecystectomy. METHODS: 45 patients between 18 and 50 years with planned laparoscopic cholecystectomy under general anesthetic were included in the study. Patients were divided into three groups on the way to surgery: propofol (group P n: 15, sevoflurane (group S n: 15 and desflurane (group D n: 15. All groups were given hypnotic 2 mg/kg propofol IV, 1 mcg/kg fentanyl IV and 0.1 mg/kg vecuronium IV for induction. For maintenance of anesthesia group S were ventilated with 2% sevoflurane, group D cases were given 6% desflurane and group P were given propofol infusions of 12 mg/kg/h for the first 10 min, 9 mg/kg/h for the second 10 min and 6 mg/kg/h after that. Before induction and after the operation venous blood samples were taken to evaluate the levels of glutation peroxidase, total oxidants and antioxidants. RESULTS AND CONCLUSIONS: The 45 patients included in the study were 22 male and 23 female patients. The demographic characteristics of the groups were similar. In the postoperative period we observed that while sevoflurane and propofol increased antioxidants by a statistically significant level, desflurane increased the total oxidants level by a significant amount compared to levels before the operation.

  17. Antiradical and antioxidant activities of new bio-antioxidants.

    Science.gov (United States)

    Kancheva, V D; Saso, L; Angelova, S E; Foti, M C; Slavova-Kasakova, A; Daquino, C; Enchev, V; Firuzi, O; Nechev, J

    2012-02-01

    mechanism is proposed. Higher oxidation stability of the lipid substrate was found in the presence of equimolar binary mixtures 2 + TOH, 3 + TOH and 4 + TOH. However, an actual synergism was only obtained for the binary mixtures with compounds 3 and 4. The geometries of compounds and all possible phenoxyl radicals were optimized using density functional theory. For description of the scavenging activity bond dissociation enthalpies (BDE), HOMO energies and spin densities were employed. The best correlation between theoretical and experimental data was obtained for compound 2, with the highest activity, and for compound 4 with the lowest activity. The BDE is the most important theoretical descriptor, which correlates with the experimentally obtained antioxidant activity of the studied benzo[kl]xanthene lignans and dihydrobenzofuran neolignans. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. MDM2 controls NRF2 antioxidant activity in prevention of diabetic kidney disease.

    Science.gov (United States)

    Guo, Weiying; Tian, Dan; Jia, Ye; Huang, Wenlin; Jiang, Mengnan; Wang, Junnan; Sun, Weixia; Wu, Hao

    2018-04-26

    Oxidative stress and P53 contribute to the pathogenesis of diabetic kidney disease (DKD). Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular antioxidant defense system, is negatively regulated by P53 and prevents DKD. Recent findings revealed an important role of mouse double minute 2 (MDM2) in protection against DKD. However, the mechanism remained unclear. We hypothesized that MDM2 enhances NRF2 antioxidant signaling in DKD given that MDM2 is a key negative regulator of P53. The MDM2 inhibitor nutlin3a elevated renal P53, inhibited NRF2 signaling and induced oxidative stress, inflammation, fibrosis, DKD-like renal pathology and albuminuria in the wild-type (WT) non-diabetic mice. These effects exhibited more prominently in nutlin3a-treated WT diabetic mice. Interestingly, nutlin3a failed to induce greater renal injuries in the Nrf2 knockout (KO) mice under both the diabetic and non-diabetic conditions, indicating that NRF2 predominantly mediates MDM2's action. On the contrary, P53 inhibition by pifithrin-α activated renal NRF2 signaling and the expression of Mdm2, and attenuated DKD in the WT diabetic mice, but not in the Nrf2 KO diabetic mice. In high glucose-treated mouse mesangial cells, P53 gene silencing completely abolished nutlin3a's inhibitory effect on NRF2 signaling. The present study demonstrates for the first time that MDM2 controls renal NRF2 antioxidant activity in DKD via inhibition of P53, providing MDM2 activation and P53 inhibition as novel strategies in the management of DKD. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Mechanisms of transformation of the antioxidant kaempferol into depsides. Gamma-radiolysis study in methanol and ethanol.

    Science.gov (United States)

    Marfak, A; Trouillas, P; Allais, D P; Calliste, C A; Cook-Moreau, J; Duroux, J L

    2003-09-01

    In this study, we irradiated the antioxidant kaempferol in ethanol and methanol solutions with gamma rays at doses ranging from 0.2-20 kGy. NMR and ES-MS spectroscopy were used to identify radiolysis products. Two depsides, [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) methyl acetate and [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) ethyl acetate, were the major compounds of kaempferol degradation in methanol and in ethanol, respectively. Other products formed in low concentrations were identified as [4-hydroxyphenyl](oxo) methyl acetate, [4-hydroxyphenyl](oxo) ethyl acetate, and depside [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) acetic acid. The formation of the latter was observed in both solvents. We propose degradation mechanisms that suggest that (.)CH(2)OH and CH(3)(.)CHOH, produced by solvent radiolysis, react with the 3-OH kaempferol group because of its high H-donor capacity. pi-Electron delocalization in the flavonoxy formed after the first H-transfer leads to C-ring opening and consequently to the formation of depsides. G calculation of the degradation products and of (.)CH(2)OH and CH(3)(.)CHOH radicals confirmed the proposed mechanism of kaempferol radiolysis. The rate constants for the reaction between kaempferol and these free radicals were also calculated. Formation of depside has also been observed in many studies of the oxidation of flavonoids; those studying human metabolism have suggested similar redox transformation of flavonols. The antioxidant activities of radiolysis products were evaluated and compared to those of kaempferol.

  20. Bioactive Peptides from Angelica sinensis Protein Hydrolyzate Delay Senescence in Caenorhabditis elegans through Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Qiangqiang Wang

    2016-01-01

    Full Text Available Since excessive reactive oxygen species (ROS is known to be associated with aging and age-related diseases, strategies modulating ROS level and antioxidant defense systems may contribute to the delay of senescence. Here we show that the protein hydrolyzate from Angelica sinensis was capable of increasing oxidative survival of the model animal Caenorhabditis elegans intoxicated by paraquat. The hydrolyzate was then fractionated by ultrafiltration, and the antioxidant fraction (<3 kDa was purified by gel filtration to obtain the antioxidant A. sinensis peptides (AsiPeps, which were mostly composed of peptides with <20 amino acid residues. Further studies demonstrate that AsiPeps were able to reduce the endogenous ROS level, increase the activities of the antioxidant enzymes superoxide dismutase and catalase, and decrease the content of the lipid peroxidation product malondialdehyde in nematodes treated with paraquat or undergoing senescence. AsiPeps were also shown to reduce age pigments accumulation and extend lifespan but did not affect the food-intake behavior of the nematodes. Taken together, our results demonstrate that A. sinensis peptides (AsiPeps are able to delay aging process in C. elegans through antioxidant activities independent of dietary restriction.

  1. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity

    Energy Technology Data Exchange (ETDEWEB)

    Song Alin [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li Zhaojun [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Zhang Jie [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Xue Gaofeng; Fan Fenliang [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Liang Yongchao, E-mail: ycliang@caas.ac.cn [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003 (China)

    2009-12-15

    A series of hydroponics experiments were performed to investigate roles of silicon (Si) in enhancing cadmium (Cd) tolerance in two pakchoi (Brassica chinensis L.) cultivars: i.e. cv. Shanghaiqing, a Cd-sensitive cultivar, and cv. Hangyoudong, a Cd-tolerant cultivar. Plants were grown under 0.5 and 5 mg Cd L{sup -1} Cd stress without or with 1.5 mM Si. Plant growth of the Cd-tolerant cultivar was stimulated at the lower Cd level, but was decreased at the higher Cd level when plants were treated with Cd for one week. However, Plant growth was severely inhibited at both Cd levels as stress duration lasted for up to three weeks. Plant growth of the Cd-sensitive cultivar was severely inhibited at both Cd levels irrespective of Cd stress duration. Addition of Si increased shoot and root biomass of both cultivars at both Cd levels and decreased Cd uptake and root-to-shoot transport. Superoxide dismutase, catalase and ascorbate peroxidase activities decreased, but malondialdehyde and H{sub 2}O{sub 2} concentrations increased at the higher Cd level, which were counteracted by Si added. Ascorbic acid, glutathione and non-protein thiols concentrations increased at the higher Cd level, which were further intensified by addition of Si. The effects of Si and Cd on the antioxidant enzyme activity were further verified by isoenzyme analysis. Silicon was more effective in enhancing Cd tolerance in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. It can be concluded that Si-enhanced Cd tolerance in B. chinensis is attributed mainly to Si-suppressed Cd uptake and root-to-shoot Cd transport and Si-enhanced antioxidant defense activity.

  2. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity

    International Nuclear Information System (INIS)

    Song Alin; Li Zhaojun; Zhang Jie; Xue Gaofeng; Fan Fenliang; Liang Yongchao

    2009-01-01

    A series of hydroponics experiments were performed to investigate roles of silicon (Si) in enhancing cadmium (Cd) tolerance in two pakchoi (Brassica chinensis L.) cultivars: i.e. cv. Shanghaiqing, a Cd-sensitive cultivar, and cv. Hangyoudong, a Cd-tolerant cultivar. Plants were grown under 0.5 and 5 mg Cd L -1 Cd stress without or with 1.5 mM Si. Plant growth of the Cd-tolerant cultivar was stimulated at the lower Cd level, but was decreased at the higher Cd level when plants were treated with Cd for one week. However, Plant growth was severely inhibited at both Cd levels as stress duration lasted for up to three weeks. Plant growth of the Cd-sensitive cultivar was severely inhibited at both Cd levels irrespective of Cd stress duration. Addition of Si increased shoot and root biomass of both cultivars at both Cd levels and decreased Cd uptake and root-to-shoot transport. Superoxide dismutase, catalase and ascorbate peroxidase activities decreased, but malondialdehyde and H 2 O 2 concentrations increased at the higher Cd level, which were counteracted by Si added. Ascorbic acid, glutathione and non-protein thiols concentrations increased at the higher Cd level, which were further intensified by addition of Si. The effects of Si and Cd on the antioxidant enzyme activity were further verified by isoenzyme analysis. Silicon was more effective in enhancing Cd tolerance in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. It can be concluded that Si-enhanced Cd tolerance in B. chinensis is attributed mainly to Si-suppressed Cd uptake and root-to-shoot Cd transport and Si-enhanced antioxidant defense activity.

  3. Defense mechanisms against radiation induced teratogenic damage in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Nomoto, S.; Norimura, T.

    2002-01-01

    Experimental studies with mice have established that fetuses at midgestational stage are highly susceptible to malformation at high, but not low, doses of radiation. When DNA damage is produced by a small amount of radiation, it is efficiently eliminated by DNA repair. However, DNA repair is not perfect. There must be defense mechanisms other than DNA repair. In order to elucidate the essential role of p53 gene in apoptotic tissue repair, we compared the incidence of radiation-induced malformations and deaths (deaths after day 10) in wild-type p53 (+/+) mice and null p53 (-/-) mice. For p53 (+/+) mice, an X-ray dose of 2 Gy given at a high dose-rate (450 mGy/min) to fetuses at 9.5 days of gestation was highly lethal and considerably teratogenic whereas it was only slightly lethal but highly teratogenic for p53 (-/-) fetuses. This reciprocal relationship of radiosensitivity to malformations and deaths supports the notion that fetal tissues have a p53 -dependent idguardianln of the tissue that aborts cells bearing radiation-induced teratogenic DNA damage. When an equal dose of 2 Gy given at a 400-fold lower dose-rate (1.2 mGy/min), this dose became not teratogenic for p53 (+/+) fetuses exhibiting p53 -dependent apoptosis, whereas this dose remained teratogenic for p53 (-/-) fetuses unable to carry out apoptosis. Furthermore, when the dose was divided into two equal dose fractions (1+1 Gy) at high dose rate, separated by 24 hours, the incidences of malformations were equal with control level for p53 (+/+), but higher for p53 (-/-) mice. Hence, complete elimination of teratogenic damage from irradiated tissues requires a concerted cooperation of two mechanisms; proficient DNA repair and p53-dependent apoptotic tissue repair

  4. Polyphenols isolated from virgin coconut oil attenuate cadmium-induced dyslipidemia and oxidative stress due to their antioxidant properties and potential benefits on cardiovascular risk ratios in rats.

    Science.gov (United States)

    Famurewa, Ademola Clement; Ejezie, Fidelis Ebele

    2018-01-01

    Literature has confirmed the pathogenic role of cadmium (Cd) and its exposure in the induction of dyslipidemia implicated in the development and increasing incidence of cardiovascular diseases. The current study explored whether polyphenolics isolated from virgin coconut oil (VCO) prevent Cd-induced dyslipidemia and investigate the underlying mechanism of action, in rats. Rats were pretreated with VCO polyphenols (10, 20 and 50 mg/kg body weight; orally) 2 weeks prior to concurrent Cd administration (5 mg/kg) for 5 weeks. Subsequently, serum concentrations of lipid and lipoprotein cholesterol and cardiovascular risk ratios were determined. Hepatic activities of superoxide dismutase (SOD) and catalase (CAT) as well as reduced glutathione (GSH) and malondialdehyde (MDA) contents were analyzed. Sub-chronic Cd administration significantly increased the serum levels of total cholesterol, triglycerides, low density lipoprotein cholesterol and very low density lipoprotein cholesterol while markedly reduced high density lipoprotein cholesterol. Hepatic activities of SOD and CAT as well as GSH content were suppressed by Cd, whereas MDA level was obviously increased. The co-administration of VCO polyphenol with Cd remarkably restored lipid profile and cardiovascular risk ratios and stabilized antioxidant defense systems comparable to control group. This is the first study presenting that polyphenols isolated from VCO prevent Cd-induced lipid abnormalities and cardiovascular risk ratios by improving antioxidant defense systems.

  5. Polyphenols isolated from virgin coconut oil attenuate cadmium-induced dyslipidemia and oxidative stress due to their antioxidant properties and potential benefits on cardiovascular risk ratios in rats

    Directory of Open Access Journals (Sweden)

    Ademola Clement Famurewa

    2017-12-01

    Full Text Available Objective: Literature has confirmed the pathogenic role of cadmium (Cd and its exposure in the induction of dyslipidemia implicated in the development and increasing incidence of cardiovascular diseases. The current study explored whether polyphenolics isolated from virgin coconut oil (VCO prevent Cd-induced dyslipidemia and investigate the underlying mechanism of action, in rats. Materials and Methods: Rats were pretreated with VCO polyphenols (10, 20 and 50 mg/kg body weight; orally 2 weeks prior to concurrent Cd administration (5 mg/kg for 5 weeks. Subsequently, serum concentrations of lipid and lipoprotein cholesterol and cardiovascular risk ratios were determined. Hepatic activities of superoxide dismutase (SOD and catalase (CAT as well as reduced glutathione (GSH and malondialdehyde (MDA contents were analyzed. Results: Sub-chronic Cd administration significantly increased the serum levels of total cholesterol, triglycerides, low density lipoprotein cholesterol and very low density lipoprotein cholesterol while markedly reduced high density lipoprotein cholesterol. Hepatic activities of SOD and CAT as well as GSH content were suppressed by Cd, whereas MDA level was obviously increased. The co-administration of VCO polyphenol with Cd remarkably restored lipid profile and cardiovascular risk ratios and stabilized antioxidant defense systems comparable to control group. Conclusion: This is the first study presenting that polyphenols isolated from VCO prevent Cd-induced lipid abnormalities and cardiovascular risk ratios by improving antioxidant defense systems.

  6. Effect of long term intake of aspartame on antioxidant defense status in liver.

    Science.gov (United States)

    Abhilash, M; Paul, M V Sauganth; Varghese, Mathews V; Nair, R Harikumaran

    2011-06-01

    The present study evaluates the effect of long term intake of aspartame, the artificial sweetener, on liver antioxidant system and hepatocellular injury in animal model. Eighteen adult male Wistar rats, weighing 150-175 g, were randomly divided into three groups as follows: first group was given aspartame dissolved in water in a dose of 500 mg/kg b.wt.; the second group was given a dose of 1000 mg/kg b.wt.; and controls were given water freely. Rats that had received aspartame (1000 mg/kg b.wt.) in the drinking water for 180 days showed a significant increase in activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and γ-glutamyl transferase (GGT). The concentration of reduced glutathione (GSH) and the activity of glutathione peroxidase (GPx), and glutathione reductase (GR) were significantly reduced in the liver of rats that had received aspartame (1000 mg/kg b.wt.). Glutathione was significantly decreased in both the experimental groups. Histopathological examination revealed leukocyte infiltration in aspartame-treated rats (1000 mg/kg b.wt.). It can be concluded from these observations that long term consumption of aspartame leads to hepatocellular injury and alterations in liver antioxidant status mainly through glutathione dependent system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Antioxidant Effects of the Quercetin in the Jejunal Myenteric Innervation of Diabetic Rats

    OpenAIRE

    de Souza, Sara R. Garcia; de Miranda Neto, Marc?lio Hubner; Martins Perles, Juliana Vanessa Colombo; Vieira Frez, Fl?via Cristina; Zignani, Isabela; Ramalho, Francielle Veiga; Hermes-Uliana, Catchia; Bossolani, Gleison Daion Piovezana; Zanoni, Jacqueline Nelisis

    2017-01-01

    Purpose Enteric glial cells (EGCs) exert a critical role in the structural integrity, defense, and metabolic function of enteric neurons. Diabetes mellitus is a chronic disease characterized by metabolic disorders and chronic autonomic neuropathy. Quercetin supplementation, which is a potent antioxidant, has been used in order to reduce the effects of diabetes-induced oxidative stress. The purpose of this research was to investigate the effects of quercetin supplementation in the drinking ...

  8. Defense styles explain psychiatric symptoms: an empirical study.

    Science.gov (United States)

    Holi, M M; Sammallahti, P R; Aalberg, V A

    1999-11-01

    To examine the relation between psychiatric symptoms and defense mechanisms, we administered two questionnaires, the Symptom Check-list 90 (SCL-90) and the Defense Style Questionnaire (DSQ) to 122 psychiatric out-patients and to a community sample of 337 subjects. Using regression analysis, we found that 51.8% of the variation in subject's Global Severity Index value could be explained by his defense style. Of the three defense styles, the immature style explained most of the variation in the symptoms. We found little overall evidence for specific connections between particular defenses and symptoms. Projection and dissociation were central in most of the symptom dimensions. We compared patients and controls with the same level of general symptom severity and found that patients used significantly more devaluation and splitting, and controls used significantly more altruism and idealization. Whether defenses predispose to certain symptomatology or are one of its aspects is discussed.

  9. Structure-Based Design, Synthesis, Biological Evaluation, and Molecular Docking of Novel PDE10 Inhibitors with Antioxidant Activities

    Science.gov (United States)

    Li, Jinxuan; Chen, Jing-Yi; Deng, Ya-Lin; Zhou, Qian; Wu, Yinuo; Wu, Deyan; Luo, Hai-Bin

    2018-05-01

    Phosphodiesterase 10 is a promising target for the treatment of a series of central nervous system (CNS) diseases. Imbalance between oxidative stress and antioxidant defense systems as a universal condition in neurodegenerative disorders is widely studied as a potential therapy for CNS diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). To discover multifunctional pharmaceuticals as a treatment for neurodegenerative diseases, a series of quinazoline-based derivatives with PDE10 inhibitory activities and antioxidant activities were designed and synthesized. Nine out of thirteen designed compounds showed good PDE10 inhibition at the concentration of 1.0 μM. Among these compounds, eight exhibited moderate to excellent antioxidant activity with ORAC (oxygen radical absorbance capacity) value above 1.0. Molecular docking was performed for better understanding of the binding patterns of these compounds with PDE10. Compound 11e, which showed remarkable inhibitory activity against PDE10 and antioxidant activity may serve as a lead for the further modification.

  10. Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn's mucosa through modulation of antioxidant defense machinery.

    Directory of Open Access Journals (Sweden)

    Ilaria Russo

    Full Text Available Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD, including Crohn's disease (CrD. High levels of Reactive Oxygen Species (ROS induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-κB, which in turn triggers the inflammatory mediators. Butyrate decreases pro-inflammatory cytokine expression by the lamina propria mononuclear cells in CrD patients via inhibition of NF-κB activation, but how it reduces inflammation is still unclear. We suggest that butyrate controls ROS mediated NF-κB activation and thus mucosal inflammation in intestinal epithelial cells and in CrD colonic mucosa by triggering intracellular antioxidant defense systems. Intestinal epithelial Caco-2 cells and colonic mucosa from 14 patients with CrD and 12 controls were challenged with or without lipopolysaccaride from Escherichia coli (EC-LPS in presence or absence of butyrate for 4 and 24 h. The effects of butyrate on oxidative stress, p42/44 MAP kinase phosphorylation, p65-NF-κB activation and mucosal inflammation were investigated by real time PCR, western blot and confocal microscopy. Our results suggest that EC-LPS challenge induces a decrease in Gluthation-S-Transferase-alpha (GSTA1/A2 mRNA levels, protein expression and catalytic activity; enhanced levels of ROS induced by EC-LPS challenge mediates p65-NF-κB activation and inflammatory response in Caco-2 cells and in CrD colonic mucosa. Furthermore butyrate treatment was seen to restore GSTA1/A2 mRNA levels, protein expression and catalytic activity and to control NF-κB activation, COX-2, ICAM-1 and the release of pro-inflammatory cytokine. In conclusion, butyrate rescues the redox machinery and controls the intracellular ROS balance thus switching off EC-LPS induced inflammatory response in intestinal epithelial cells and in CrD colonic mucosa.

  11. The role of antioxidant-protein interactions in biological membrane

    International Nuclear Information System (INIS)

    McGillivray, Duncan J; Singh, Rachna; Melton, Laurence D.; Worcester, David L.; Gilbert, Elliot P.

    2009-01-01

    Full text: Oxidative damage of cellular membranes has been linked to a variety of disease pathologies, including cardiac disease, Alzheimer's and complications due to diabetes. The oxidation of unsaturated and polyunsaturated fatty acid chains found in cellular membranes leads to significant alteration in membrane physical properties, including lipid orientation and membrane permeability, which ultimately affect biological function. Polyphenols are naturally occurring phytochemicals present in a number of fruit and vegetables that are of interest for their anti-oxidative powers. These polyphenols inhibit lipid oxidation in cellular membrane surfaces, although the mechanism of this inhibition is not entirely clear. Moreover, the polyphenols have significant binding affinity for proteins, which can lead to the formation of soluble and insoluble protein-polyphenol complexes Significantly, in the presence of casein proteins the oxidation inhibition the polyphenols in the membrane is significantly enhanced (as assessed by Lipid Peroxidation Inhibition Capacity assays). Thus the antioxidant pathway appears to involve these protein/polyphenol complexes, as well as direct antioxidant action by the polyphenol. Here we discuss neutron and x-ray scattering results from phospholipid membranes, looking at the positioning of two examples of polyphenolic antioxidants in phospholipid membranes, quercetin and phloretin, the antioxidants' impact on the membrane organisation, and the interaction between antioxidant and extra-membranous protein. This information sheds light on the mechanism of antioxidant protection in these systems, which may be used to understand biological responses to oxidative stress.

  12. Sophie's Defense Mechanism in Her Struggle to Break the Curse in Diana Wynne Jones' Howl's Moving Castle

    OpenAIRE

    Perwita, Ratnanggana Ausiyyah Mustika

    2015-01-01

    The experience that young people get has an effect to their personality and their problem solving. This is why older people tend to be more mature than the young people. In Diana Wynne Jones' Howl's Moving Castle, the main character has a development in her personality through experiences. Her experiences lead her to how she solves her problems while she unconsciously uses defense mechanism. In this case, in this study will be analyzed the characteristic of the main character, Sophie, when sh...

  13. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    International Nuclear Information System (INIS)

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan; Bu, Qian; Yan, Guangyan; Deng, Pengchi; Lv, Lei; Wu, Dan; Deng, Yi; Zhao, Jinxuan; Zhu, Ruiming; Li, Yan; Li, Hongyu; Xu, Youzhi; Yang, Hanshuo; Zhao, Yinglan; Cen, Xiaobo

    2012-01-01

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using 1 H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.

  14. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan; Bu, Qian; Yan, Guangyan [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Deng, Pengchi [Analytical and Testing Center, Sichuan University, Chengdu 610041 (China); Lv, Lei [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Wu, Dan [College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041 (China); Deng, Yi; Zhao, Jinxuan; Zhu, Ruiming; Li, Yan; Li, Hongyu; Xu, Youzhi; Yang, Hanshuo; Zhao, Yinglan [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Cen, Xiaobo, E-mail: xbcenalan@vip.sina.com [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China)

    2012-05-01

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using {sup 1}H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.

  15. Radioprotective effect of antioxidants on human blood lymphocytes

    International Nuclear Information System (INIS)

    Wang Mingsuo; Gu Xuandi; Zhu Genbo; Feng Jixing; Su Liaoyuan

    1991-09-01

    By using an improved fluorometric method with 2-thiobarbituric acid (TBA) as fluorometric agent, the antiradiation effects of four kinds of antioxidants on 60 Co γ-ray irradiation inducing final products of lipid peroxides (LPO), i.e. malodialdehyde (MDA) content changes in human blood lymphocytes, were investigated with LPO value as an indicator. The results of the experiment were as following: (1)The radioprotective effect of exogenous antioxidants added to human blood lymphocytes on radiation-induced LPO damage of cellular membrane were remarkable; (2)The radioprotective beneficial sequences of four kinds of antioxidants were arranged like this: SOD > VE >VC, Se 4+ ; (3)Radioprotective effects of antioxidants on radiation-induced damage varied especially with the property of antioxidants, drug concentration, and pretreatment and monitoring time, etc., as well as irradiated dosage and various kinds of incubated cells. In addition, the mechanism of these antioxidants as radioprotectants on human blood lymphocytes is discussed in connection with LPO damage and radioprotection

  16. Effects of Melatonin and Epiphyseal Proteins on Fluoride-Induced Adverse Changes in Antioxidant Status of Heart, Liver, and Kidney of Rats

    Directory of Open Access Journals (Sweden)

    Vijay K. Bharti

    2014-01-01

    Full Text Available Several experimental and clinical reports indicated the oxidative stress-mediated adverse changes in vital organs of human and animal in fluoride (F toxicity. Therefore, the present study was undertaken to evaluate the therapeutic effect of buffalo (Bubalus bubalis epiphyseal (pineal proteins (BEP and melatonin (MEL against F-induced oxidative stress in heart, liver, and kidney of experimental adult female rats. To accomplish this experimental objective, twenty-four adult female Wistar rats (123–143 g body weights were divided into four groups, namely, control, F, F + BEP, and F + MEL and were administered sodium fluoride (NaF, 150 ppm elemental F in drinking water, MEL (10 mg/kg BW, i.p., and BEP (100 µg/kg BW, i.p. for 28 days. There were significantly P<0.05 high levels of lipid peroxidation and catalase and low levels of reduced glutathione, superoxide dismutase, glutathione reductase, and glutathione peroxidase in cardiac, hepatic, and renal tissues of F-treated rats. Administration of BEP and MEL in F-treated rats, however, significantly P<0.05 attenuated these adverse changes in all the target components of antioxidant defense system of cardiac, hepatic, and renal tissues. The present data suggest that F can induce oxidative stress in liver, heart, and kidney of female rats which may be a mechanism in F toxicity and these adverse effects can be ameliorated by buffalo (Bubalus bubalis epiphyseal proteins and melatonin by upregulation of antioxidant defense system of heart, liver, and kidney of rats.

  17. Comparison of the antioxidant potential of antiparkinsonian drugs in different in vitro models

    Directory of Open Access Journals (Sweden)

    Carine Coneglian de Farias

    2014-12-01

    Full Text Available Parkinson's disease (PD is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. Furthermore, oxidative stress plays a role in PD, causing or contributing to the neurodegenerative process. Currently PD has only symptomatic treatment and still nothing can be done to stop the degenerative process of the disease. This study aimed to comparatively evaluate the antioxidant capacity of pramipexole, selegeline and amantadine in different in vitrostudies and to offer possible explanations on the molecular antioxidant mechanisms of these drugs. In vitro, the antioxidant capacity of the drugs was assessed by the ability of antiparkinsonian drugs to decrease or scavenge ROS in the neutrophil respiratory burst, ability of antiparkinsonian drugs to donate hydrogen and stabilize the free radical 2,2-diphenyl-1-picryl-hydrazyl (DPPH•, to scavenge 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid (ABTS+ and evaluation of the ferric reducing antioxidant power (FRAP. This study demonstrated that both pramipexole and selegiline, but not amantadine, have antioxidant effects in vitro by scavenging superoxide anion on the respiratory burst, donating electron in the ABTS+ assay and presenting ferric reduction antioxidant power. This chemical structure-related antioxidant capacity suggests a possible neuroprotective mechanism of these drugs beyond their already recognized mechanism of action.

  18. A quantum chemical explanation of the antioxidant activity af flavonoids.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; de Groot, M.J.; van den Berg, D.J.; Tromp, M.N.J.L.; Donné-Op den Kelder, G.M.; van der Vijgh, W.J.F.; Bast, A.

    1996-01-01

    Flavonoids are a group of naturally occurring antioxidants, which over the past years have gained tremendous interest because of their possible therapeutic applicability. The mechanism of their antioxidant activity has been extensively studied over several decades. However, there is still much

  19. Comparing antioxidant capacity of purine alkaloids: a new, efficient trio for screening and discovering potential antioxidants in vitro and in vivo.

    Science.gov (United States)

    Tsoi, Bun; Yi, Ruo-Nan; Cao, Ling-Fang; Li, Shan-Bing; Tan, Rui-Rong; Chen, Min; Li, Xiao-Xiao; Wang, Chen; Li, Yi-Fang; Kurihara, Hiroshi; He, Rong-Rong

    2015-06-01

    The most commonly applied strategies for the evaluation of antioxidant capacity are the chemical- or cell-based approaches. However, the results obtained from these methods might not reflect the antioxidant ability of test samples within organisms. In this study, we propose a combination of experiments, including oxygen radical absorbance capacity (ORAC), cellular antioxidant activity assay (CAA), and the chick embryo model, as an efficient trio to evaluate antioxidant capacity of food components. Taking purine alkaloids as example, results demonstrate that chemical and cellular method might misinterpret their true ability on antioxidation. In chick embryo model, caffeine and theacrine can significantly improve vessel density on chorioallantoic membrane and myocardial apoptosis. The mechanism can be involving multiple targets within the organism. We believe that the trio proposed can be widely utilized in screening massive number of antioxidant in a cost-effective way. It will also help discovering new antioxidants that are easily being omitted due to their relatively poor in vitro activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Analysis and utilization of plant antioxidative mechanism by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haeng-Soon; Kwon, Seock-Yoon; Shin, Seung-Yung [Korea Research Institute of Bioscience and Biotechnology, Taejeon (Korea)

    2001-04-01

    In an attempt to analysis the POD isoenzymes (swpa1, swpa2, swpa3, and swpn1) expression in response to gamma-irradiation in sweet potato. In suspension cells POD isoenzymes was highly expressed at 6 h postirradiation, and the transcript levels increased at 0 and 6 h at 50 Gy in plants. POD isoenzymes expression in response to irradiation appears not to be regulated in a different manner in cultured cells and plants. The gamma radiation-induced changes of proteins in tobacco suspension cells were investigated by SDS-PAGE. In tobacco cultured cells gamma irradiation did not significantly change the protein patterns. This indicates that the gamma irradiation-induced protein was not highly expressed or might be overlap with others. In the tobacco transgenic plants simultaneously expressing SOD and/or APX in chloroplast, the specific activities of SOD and APX of gamma-irradiated plants increased according to the dose of gamma-irradiation. These results indicate that antioxidative genes depends on antioxidative isoenzymes differently respond to gamma irradiation in transgenic tobacco plant lines. 35 refs., 9 figs. (Author)

  1. Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals.

    Science.gov (United States)

    Lyubenova, Lyudmila; Nehnevajova, Erika; Herzig, Rolf; Schröder, Peter

    2009-07-01

    Tobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field. The improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers. Plants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N(2). Studies were concentrated on the antioxidative enzymes of the Halliwell-Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed. We tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited. Heavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the

  2. Dynamic Shaping of the Defensive Peripersonal Space through Predictive Motor Mechanisms: When the "Near" Becomes "Far".

    Science.gov (United States)

    Bisio, Ambra; Garbarini, Francesca; Biggio, Monica; Fossataro, Carlotta; Ruggeri, Piero; Bove, Marco

    2017-03-01

    The hand blink reflex is a subcortical defensive response, known to dramatically increase when the stimulated hand is statically positioned inside the defensive peripersonal space (DPPS) of the face. Here, we tested in a group of healthy human subjects the hand blink reflex in dynamic conditions, investigating whether the direction of the hand movements (up-to/down-from the face) could modulate it. We found that, on equal hand position, the response enhancement was present only when the hand approached to (and not receded from) the DPPS of the face. This means that, when the hand is close to the face but the subject is planning to move the hand down, the predictive motor system can anticipate the consequence of the movement: the "near" becomes "far." We found similar results both in passive movement condition, when only afferent (visual and proprioceptive) information can be used to estimate the final state of the system, and in motor imagery task, when only efferent (intentional) information is available to predict the consequences of the movement. All these findings provide evidence that the DPPS is dynamically shaped by predictive mechanisms run by the motor system and based on the integration of feedforward and sensory feedback signals. SIGNIFICANCE STATEMENT The defensive peripersonal space (DPPS) has a crucial role for survival, and its modulation is fundamental when we interact with the environment, as when we move our arms. Here, we focused on a defensive response, the hand blink reflex, known to increase when a static hand is stimulated inside the DPPS of the face. We tested the hand blink reflex in dynamic conditions (voluntary, passive, and imagined movements) and we found that, on equal hand position, the response enhancement was present only when the hand approached to (and not receded from) the DPPS of the face. This suggests that, through the integration of efferent and afferent signals, the safety boundary around the body is continuously shaped by

  3. Antioxidation activities of pteridines in mammalian cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Shen, R. (Univ. of Texas, Galveston (United States))

    1991-03-11

    L-erythro-5,6,7,8-Tetrahydrobiopterin (BH{sub 4}), the cofactor for aromatic amino acid hydroxylases (AAA-H), is a predominant form of pteridines which occur ubiquitously in nature. When BH{sub 4} is oxidized to quinonoid dihydrobiopterin by AAA-H, it is regenerated by dihydropteridine reductase (DHPR) at the expense of NADH. The role of BH{sub 4} other than serving as the hydroxylase cofactor is not clear. The existence of BH{sub 4} and DHPR in tissues which are devoid of AAA-H suggests that BH{sub 4} may play an as yet undiscovered physiological function. This study demonstrates a BH{sub 4}-mediated antioxidation system, which consists of BH{sub 4}, DHPR, peroxidase and NADH in rat pheochromocytoma PC 12 cells and mouse macrophages J774A.1. This system was as effective as catalase and ascorbic acid in protecting cells against H{sub 2}O{sub 2} and xanthine/xanthine oxidase-induced toxicity and was more effective than catalase in defense against nitrofurantoin-induced toxicity. The antioxidation effect of this system was not due to peroxidase and was improved when synthetic pteridines were substituted for BH{sub 4}. Since BH{sub 4}, DHPR, peroxidases and NADH are widely distributed in major organs and blood cells, they may constitute an as yet little known antioxidation system in mammalian cells.

  4. Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes.

    Science.gov (United States)

    Park, Song-Young; Kwak, Yi-Sub

    2016-04-01

    Exercise mediates an excessive free radical production leading to oxidative stress (OS). The body has natural antioxidant systems that help decrease OS, and these systems may be enhanced with exercise training. However, only a few studies have investigated the differences in resting OS and antioxidant capacity (AOC) between aerobically trained athletes (ET), anaerobically trained athletes (RT), and untrained individuals (UT). Therefore, this study sought to investigate the resting and postexercise OS and AOC in ET, RT, and UT. Sixty healthy young males (26.6±0.8 yr) participated in this study. Subjects were divided into three groups, ET, RT, and UT by distinct training background. Resting plasma malondialdehyde (MDA) and protein carbonyls (PC) were not significantly different in ET, RT, and UT. However, MDA and PC were significantly increased following a graded exercise test (GXT) in UT but not in ET and RT. Resting total antioxidant capacity (TAC) levels and TAC were not different in ET, RT, and UT. Interestingly, TAC levels significantly decreased after the GXT in all groups. Additionally, UT showed lower post-exercise TAC levels compared to ET and RT. These results showed that ET, RT, and UT have similar OS and AOC at rest. However, both ET and RT have greater AOC against exercise mediated OS compared to UT. These findings may explain, at least in part, why both aerobic and anaerobic types of exercise training improve redox balance. However, it appears there is no specific exercise type effect in terms of redox balance.

  5. Analysis of psychological defense mechanism and personality character in patients with alcohol dependence%酒依赖患者心理防御机制及人格特征的分析

    Institute of Scientific and Technical Information of China (English)

    何伟健

    2013-01-01

    目的:探讨酒依赖患者心理防御机制和人格特征. 方法:64例酒依赖患者于人院治疗2周后完全戒断酒精及躯体不适消除后运用防御方式问卷(DSQ)及艾森克个性问卷(EPQ)分别评定其防御机制及人格类型,并与129名健康对照者比较. 结果:酒依赖患者心理防御机制为不成熟及中间型;EPQ精神质和神经质评分显著高于正常对照者(P<0.05或P<O.01);不成熟及中间型防御机制与EPQ精神质和神经质评分正相关. 结论:酒依赖患者可能存在不良人格,其与不成熟防御机制相互关联.%Objective:To explore the psychological defense mechanism and personality character in patients with alcohol dependence.Method:After 2 weeks treatment in hospital,the 64 patients with alcohol dependence were completely eliminated withdrawal after alcohol and body discomfort.Then,the psychological defense mechanism and personality type were assessed by defense style questionnaire (DSQ) and Eysenck personality questionnaire (EPQ).The results were compared with 129 normal controls.Results:The psychological defense mechanisms in the patients were immature type and middle type.The scores of psychoticism and neuroticism of EPQ were significantly higher than normal controls (P < 0.05 or P < 0.01).The styles of immature and middle psychological defense mechanisms were positively correlated to the scores of psychoticism and neuroticism in EPQ.Conclusion:The patients with alcohol dependence may have ill-personality; which correlated with immature defense mechanism.

  6. Curcumin Stimulates the Antioxidant Mechanisms in Mouse Skin Exposed to Fractionated γ-Irradiation

    Directory of Open Access Journals (Sweden)

    Ganesh Chandra Jagetia

    2015-01-01

    Full Text Available Fractionated irradiation is one of the important radiotherapy regimens to treat different types of neoplasia. Despite of the immense therapeutic gains accrued by delivering fractionated irradiation to tumors, the radiation burden on skin increases significantly. Low doses of irradiation to skin adversely affect its molecular and metabolic status. The use of antioxidant/s may help to alleviate the radiation-induced changes in the skin and allow delivering a higher dose of radiation to attain better therapeutic gains. Curcumin is an antioxidant and a free radical scavenging dietary supplement, commonly used as a flavoring agent in curries. Therefore, the effect of 100 mg/kg body weight curcumin was studied on the antioxidant status of mice skin exposed to a total dose of 10, 20 and 40 Gy γ-radiation below the rib cage delivered as a single fraction of 2 Gy per day for 5, 10 or 20 days. Skin biopsies from both the curcumin treated or untreated irradiated groups were collected for the biochemical estimations at various post-irradiation times. The irradiation of animals caused a dose dependent decline in the glutathione concentration, glutathione peroxidase, and superoxide dismutase activities and increased the lipid peroxidation in the irradiated skin. Curcumin treatment before irradiation resulted in a significant rise in the glutathione concentration and activities of both the glutathione peroxidase and superoxide dismutase enzymes in mouse skin, whereas lipid peroxidation declined significantly. The present study indicates that curcumin treatment increased the antioxidant status of mouse exposed to different doses of fractionated γ-radiation.

  7. Activity changes of antioxidant and detoxifying enzymes in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae infected by the entomopathogenic nematode Heterorhabditis beicherriana (Rhabditida: Heterorhabditidae).

    Science.gov (United States)

    Li, Xingyue; Liu, Qizhi; Lewis, Edwin E; Tarasco, Eustachio

    2016-12-01

    Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis are lethal parasites of many insect species. To investigate defensive mechanisms towards EPNs in relation to antioxidative and detoxifying enzymes, we chose Tenebrio molitor (Coleoptera: Tenebrionidae) as experimental insect. We studied the activity changes of superoxide dismutases (SODs), peroxidases (PODs), and catalases (CATs), as well as tyrosinase (TYR), acetylcholinesterase (AChE), carboxylesterase (CarE), and glutathione S-transferase (GSTs) for 40 h in T. molitor larvae infected with Heterorhabditis beicherriana infective juveniles (IJs) at 5 rates (0, 20, 40, 80, and 160 IJs/larva). We found that when T. molitor larvae infected with H. beicherriana at higher rates (80 and 160 IJs/larva), SOD activity quickly increased to more than 70 % higher than that control levels. The activities of POD and CAT increased after 24 h. TYR activity increased slowly at lower rates of infection for 16 h, followed by a slight decrease, and then increasing from 32 to 40 h. The other detoxifying enzymes (GST, CarE, and AChE) were enhanced at lower infection rates, but were inhibited at higher rates. Our results suggested that host antioxidative response and detoxification reactions played a central role in the defensive reaction to EPNs, and that this stress which was reflected by the higher level enzymes activity contributed to the death of hosts. Further study should explore the exact function of these enzymes using different species of EPNs and investigate the links between enzyme activity and host susceptibility to EPNs.

  8. Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco.

    Science.gov (United States)

    Alamillo, Josefa M; Saénz, Pilar; García, Juan Antonio

    2006-10-01

    Plum pox virus (PPV) is able to replicate in inoculated leaves of Nicotiana tabacum, but is defective in systemic movement in this host. However, PPV produces a systemic infection in transgenic tobacco expressing the silencing suppressor P1/HC-Pro from tobacco etch virus (TEV). In this work we show that PPV is able to move to upper non-inoculated leaves of tobacco plants expressing bacterial salicylate hydroxylase (NahG) that degrades salicylic acid (SA). Replication and accumulation of PPV is higher in the locally infected leaves of plants deficient in SA or expressing TEV P1/HC-Pro silencing suppressor. Accumulation of viral derived small RNAs was reduced in the NahG transgenic plants, suggesting that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco. Besides, expression of SA-mediated defense transcripts, such as those of pathogenesis-related (PR) proteins PR-1 and PR-2 or alternative oxidase-1, as well as that of the putative RNA-dependent RNA polymerase NtRDR1, is induced in response to PPV infection, and the expression patterns of these defense transcripts are altered in the TEV P1/HC-Pro transgenic plants. Long-distance movement of PPV is highly enhanced in NahG x P1/HC-Pro double-transgenic plants and systemic symptoms in these plants reveal that the expression of an RNA-silencing suppressor and the lack of SA produce additive but distinct effects. Our results suggest that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco, and that silencing suppressors, such as P1/HC-Pro, also alter the SA-mediated defense. Both an RNA-silencing and an SA-mediated defense mechanism could act together to limit PPV infection.

  9. Hypoxia tolerance and antioxidant defense system of juvenile jumbo squids in oxygen minimum zones

    Science.gov (United States)

    Trübenbach, Katja; Teixeira, Tatiana; Diniz, Mário; Rosa, Rui

    2013-10-01

    Jumbo squid (Dosidicus gigas) is a large oceanic squid endemic off the Eastern Tropical Pacific that undertakes diel vertical migrations into mesopelagic oxygen minimum zones. One of the expected physiological effects of such migration is the generation of reactive oxygen species (ROS) at the surface, promoted by the transition between hypoxia and reoxygenation states. The aim of this study was to investigate the energy expenditure rates and the antioxidant stress strategies of juvenile D. gigas under normoxia and hypoxia, namely by quantifying oxygen consumption rates, antioxidant enzyme activities [including superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)], heat shock protein expression (Hsp70/Hsc70), and lipid peroxidation [malondialdehyde (MDA) levels]. A high significant decrease (68%) in squid's metabolic rates was observed during hypoxia (p0.05), with the latter indicating no enhancement of lipid peroxidation (i.e. cellular damage) at the warmer and normoxic surface waters. The understanding of such physiological strategies that are linked to oxygen deprivation and reoxygenation phases may provide valuable information about how this species is quickly responding to the impacts of environmental stressors coupled with global climate change.

  10. Acute phase protein mRNA expressions and enhancement of antioxidant defense system in Black-meated Silkie Fowls supplemented with clove (Eugenia caryophyllus extracts under the influence of chronic heat stress

    Directory of Open Access Journals (Sweden)

    Alhassan Usman Bello

    2016-11-01

    negative effects of heat stress via improvement in growth performance, antioxidant defense mechanisms, immunity, and regulate the expression of acute phase genes in the liver and immunological organs.

  11. Molecular mechanism of mast cell–mediated innate defense against endothelin and snake venom sarafotoxin

    Science.gov (United States)

    Schneider, Lars A.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Wunderlin, Markus; Rodewald, Hans-Reimer

    2007-01-01

    Mast cells are protective against snake venom sarafotoxins that belong to the endothelin (ET) peptide family. The molecular mechanism underlying this recently recognized innate defense pathway is unknown, but secretory granule proteases have been invoked. To specifically disrupt a single protease function without affecting expression of other proteases, we have generated a mouse mutant selectively lacking mast cell carboxypeptidase A (Mc-cpa) activity. Using this mutant, we have now identified Mc-cpa as the essential protective mast cell enzyme. Mass spectrometry of peptide substrates after cleavage by normal or mutant mast cells showed that removal of a single amino acid, the C-terminal tryptophan, from ET and sarafotoxin by Mc-cpa is the principle molecular mechanism underlying this very rapid mast cell response. Mast cell proteases can also cleave ET and sarafotoxin internally, but such “nicking” is not protective because intramolecular disulfide bridges maintain peptide function. We conclude that mast cells attack ET and sarafotoxin exactly at the structure required for toxicity, and hence sarafotoxins could not “evade” Mc-cpa's substrate specificity without loss of toxicity. PMID:17923505

  12. [Officer in charge, that unknown being - an explorative, qualitative study of unconscious fears, wishes, and defense mechanisms].

    Science.gov (United States)

    Beck, Thomas; Kumnig, Martin; Breuss, Margit; Mitmansgruber, Horst; Schusser, Sandra; Andreatta, Pia; Mader, Maria; Schüßler, Gerhard

    2013-01-01

    The stress and coping strategies found among emergency relief personnel have been studied in detail but without considering their function in the team. However, specifically officers in charge have to be addressed and investigated separately. This study focuses on the unconscious desires, fears, and defense mechanisms present in order to improve our understanding of the stress experienced during operations. Four officers in charge were interviewed concerning their stressful experiences during operations. These interviews were then coded and analysed using the JAKOB Narrative Analysis ("Klinische Erzählanalyse JAKOB", Boothe et al. 2002). The recorded unconscious desires included solidarity, phallic integrity, generativity, unconscious fears destruction, loss of power/influence, and social hostility, and as defense strategies rationalism, repression/denial, and idealization. The analysis of the interviews shows a high reliability between the raters (0.74-0.79). The greatest burden for officers in charge is a loss of safety. Especially being confronted with strains in their own team leads to stress, which shows that the methods used for stress management following critical incidents is not sufficient.

  13. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Bryant C. Nelson

    2016-05-01

    Full Text Available Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1 To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS and to act as antioxidant enzyme-like mimetics in solution; (2 To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3 To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine.

  14. Defence biochemical mechanisms of the organisms against chemical pollution and ionizing radiations

    International Nuclear Information System (INIS)

    Olinescu, Radu

    2001-01-01

    Acute exposure to high concentrations / doses of chemical pollutants and ionizing radiation usually kills giving no chance for survival, if not immediately, than later followed by specific diseases. Fortunately, this acute exposure is accidental, but chronic, low level exposure is also damaging. The involvement of pollution, especially of chemically produced, one in the etiology of several diseases is still under intensive research. Compared to other kinds of pollution (radioactive, microbiological), the chemical one seldom kills suddenly; it acts slowly, silently, by accumulation into the tissues, eventually inducing a failure of certain organ. The body is continuously adapting to low level concentrations of chemicals from environment until a certain threshold. All organisms, including humans, have a limited capacity of resisting the effects of various types of pollutants. Extensive laboratory research, demonstrated that most of damaging organic pollutants cause the formation of free radicals when they penetrate into the body and are metabolized. Free radicals are very reactive and are known to damage tissues with potentially fatal results. Substantial experimental evidence in recent years has demonstrated that all organisms are endowed with versatile, efficient antioxidant systems, that provide protection against the formation or effects of free radicals. However, the antioxidant systems are limited and when their capacity of protection is exceeded, injury resulting in illness or death occurs. In most cases, the harmful effects of chemicals on organisms depend on the biotransformation step, where free radicals are produced as byproducts of the metabolic reactions. The damaging effects of chemical pollutants are mostly restricted to an important organ depending on the way of penetration, nature of the compound and concentration. The organisms possess specific and nonspecific defense systems, which act from the exposure step, with attempt to block the entry of

  15. Antioxidant effect of Morus nigra on Chagas disease progression.

    Science.gov (United States)

    Montenote, Michelly Cristina; Wajsman, Vithor Zuccaro; Konno, Yoichi Takaki; Ferreira, Paulo César; Silva, Regildo Márcio Gonçalves; Therezo, Altino Luiz Silva; Silva, Luciana Pereira; Martins, Luciamáre Perinetti Alves

    2017-11-06

    Considering the widespread popular use of Morus nigra and the amount of scientific information on its antioxidant and anti-inflammatory activity, the effectiveness of this phytotherapeutic compound in the parasitemia progression during the acute phase of Chagas disease and its role in the development of the inflammatory process as well as its effects on the oxidative damage in the chronic phase of infection were evaluated. Thus, 96 male Swiss mice were randomly divided into eight groups, four groups were uninfected controls, and four groups were intraperitoneally infected with 5.0 x 104 blood trypomastigotes forms of T. cruzi QM2 strain. Four batches composed of one uninfected and one infected group were respectively treated with 70% alcohol solution and 25 μL, 50 μL and 75 μL of the phytotherapeutic compound. Levels of antioxidant elements (TBARS, FRAP, GSH and Sulfhydryl groups) were measured in plasma samples. The phytotherapeutic compound's antioxidant activity was measured by polyphenol and total flavonoid quantification, DPPH, NO, and FRAP method. Our results showed that the vehicle influenced some of the results that may have physiological relevance in Chagas disease. However, an important action of M. nigra tincture was observed in the progression of Chagas disease, since our results demonstrated a reduction in parasitemia of treated groups when compared to controls, especially in the group receiving 25 µL. However, in the chronic phase, the 50-µL dosage presented a better activity on some antioxidant defenses and minimized the tissue inflammatory process. Results indicated an important action of M. nigra tincture on the Chagas disease progression.

  16. Antioxidants

    Science.gov (United States)

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  17. Plant antiherbivore defenses in Fabaceae species of the Chaco.

    Science.gov (United States)

    Lima, T E; Sartori, A L B; Rodrigues, M L M

    2017-01-01

    The establishment and maintenance of plant species in the Chaco, one of the widest continuous areas of forests in the South American with sharp climatic variations, are possibly related to biological features favoring plants with particular defenses. This study assesses the physical and chemical defenses mechanisms against herbivores of vegetative and reproductive organs. Its analyses of 12 species of Fabaceae (Leguminosae) collected in remnants of Brazilian Chaco shows that 75% present structural defense characters and 50% have chemical defense - defense proteins in their seeds, like protease inhibitors and lectins. Physical defenses occur mainly on branches (78% of the species), leaves (67%), and reproductive organs (56%). The most common physical characters are trichomes and thorns, whose color represents a cryptic character since it does not contrast with the other plant structures. Defense proteins occur in different concentrations and molecular weight classes in the seeds of most species. Protease inhibitors are reported for the first time in seeds of: Albizia niopoides, Anadenanthera colubrina, Mimosa glutinosa, Prosopis rubriflora, and Poincianella pluviosa. The occurrence of physical and chemical defenses in members of Fabaceae indicate no associations between defense characters in these plant species of the Chaco.

  18. Antioxidant activity of nine Fabaceae species growing in Serbia and Montenegro.

    Science.gov (United States)

    Godevac, Dejan; Zdunić, Gordana; Savikin, Katarina; Vajs, Vlatka; Menković, Nebojsa

    2008-04-01

    The aim of this study was to investigate antioxidant capacity of nine Fabaceae species collected on the mountains of Serbia and Montenegro. Antioxidant assays with various reaction mechanisms were used, including total phenolic content by Folin-Ciocalteu, DPPH radical scavenging capacity, Trolox equivalent antioxidant capacity (TEAC) values by ABTS radical cation and inhibition of liposome peroxidation. The investigated plants exhibited strong antioxidant capacity in all the tested methods, and among them, Lathyrus binatus, Trifolium pannonicum, and Anthyllis aurea were found to be the most active.

  19. On the importance of analyzing flood defense failures

    Directory of Open Access Journals (Sweden)

    Özer Işıl Ece

    2016-01-01

    Full Text Available Flood defense failures are rare events but when they do occur lead to significant amounts of damage. The defenses are usually designed for rather low-frequency hydraulic loading and as such typically at least high enough to prevent overflow. When they fail, flood defenses like levees built with modern design codes usually either fail due to wave overtopping or geotechnical failure mechanisms such as instability or internal erosion. Subsequently geotechnical failures could trigger an overflow leading for the breach to grow in size Not only the conditions relevant for these failure mechanisms are highly uncertain, also the model uncertainty in geomechanical, internal erosion models, or breach models are high compared to other structural models. Hence, there is a need for better validation and calibration of models or, in other words, better insight in model uncertainty. As scale effects typically play an important role and full-scale testing is challenging and costly, historic flood defense failures can be used to provide insights into the real failure processes and conditions. The recently initiated SAFElevee project at Delft University of Technology aims to exploit this source of information by performing back analysis of levee failures at different level of detail. Besides detailed process based analyses, the project aims to investigate spatial and temporal patterns in deformation as a function of the hydrodynamic loading using satellite radar interferometry (i.e. PS-InSAR in order to examine its relation with levee failure mechanisms. The project aims to combine probabilistic approaches with the mechanics of the various relevant failure mechanisms to reduce model uncertainty and propose improvements to assessment and design models. This paper describes the approach of the study to levee breach analysis and the use of satellites for breach initiation analysis, both adopted within the SAFElevee project.

  20. Antioxidant Vitamins and Trace Elements in Critical Illness.

    Science.gov (United States)

    Koekkoek, W A C Kristine; van Zanten, Arthur R H

    2016-08-01

    This comprehensive narrative review summarizes relevant antioxidant mechanisms, the antioxidant status, and effects of supplementation in critically ill patients for the most studied antioxidant vitamins A, C, and E and the enzyme cofactor trace elements selenium and zinc. Over the past 15 years, oxidative stress-mediated cell damage has been recognized to be fundamental to the pathophysiology of various critical illnesses such as acute respiratory distress syndrome, ischemia-reperfusion injury, and multiorgan dysfunction in sepsis. Related to these conditions, low plasma levels of antioxidant enzymes, vitamins, and trace elements have been frequently reported, and thus supplementation seems logical. However, low antioxidant plasma levels per se may not indicate low total body stores as critical illness may induce redistribution of antioxidants. Furthermore, low antioxidant levels may even be beneficial as pro-oxidants are essential in bacterial killing. The reviewed studies in critically ill patients show conflicting results. This may be due to different patient populations, study designs, timing, dosing regimens, and duration of the intervention and outcome measures evaluated. Therefore, at present, it remains unclear whether supplementation of antioxidant micronutrients has any clinical benefit in critically ill patients as some studies show clear benefits, whereas others demonstrate neutral outcomes and even harm. Combination therapy of antioxidants seems logical as they work in synergy and function as elements of the human antioxidant network. Further research should focus on defining the normal antioxidant status for critically ill patients and to study optimal supplement combinations either by nutrition enrichment or by enteral or parenteral pharmacological interventions. © 2016 American Society for Parenteral and Enteral Nutrition.

  1. The Transcriptome and Terpene Profile of Eucalyptus grandis Reveals Mechanisms of Defense Against the Insect Pest, Leptocybe invasa.

    Science.gov (United States)

    Oates, Caryn N; Külheim, Carsten; Myburg, Alexander A; Slippers, Bernard; Naidoo, Sanushka

    2015-07-01

    Plants have evolved complex defenses that allow them to protect themselves against pests and pathogens. However, there is relatively little information regarding the Eucalyptus defensome. Leptocybe invasa is one of the most damaging pests in global Eucalyptus forestry, and essentially nothing is known regarding the molecular mechanisms governing the interaction between the pest and host. The aim of the study was to investigate changes in the transcriptional landscape and terpene profile of a resistant and susceptible Eucalyptus genotype in an effort to improve our understanding of this interaction. We used RNA-seqencing to investigate transcriptional changes following L. invasa oviposition. Expression levels were validated using real-time quantitative PCR. Terpene profiles were investigated using gas chromatography coupled to mass spectometry on uninfested and oviposited leaves. We found 698 and 1,115 significantly differentially expressed genes from the resistant and susceptible interactions, respectively. Gene Ontology enrichment and Mapman analyses identified putative defense mechanisms including cell wall reinforcement, protease inhibitors, cell cycle suppression and regulatory hormone signaling pathways. There were significant differences in the mono- and sesquiterpene profiles between genotypes and between control and infested material. A model of the interaction between Eucalyptus and L. invasa was proposed from the transcriptomic and chemical data. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Antioxidant enzymes activities in obese Tunisian children

    Directory of Open Access Journals (Sweden)

    Sfar Sonia

    2013-01-01

    Full Text Available Abstract Background The oxidant stress, expected to increase in obese adults, has an important role in the pathogenesis of many diseases. It results when free radical formation is greatly increased or protective antioxidant mechanisms are compromised. The main objective of this study is to evaluate the antioxidant response to obesity-related stress in healthy children. Methods A hundred and six healthy children (54 obese and 52 controls, aged 6–12 years old, participated in this study. The collected data included anthropometric measures, blood pressure, fasting glucose, total cholesterol, triglycerides and enzymatic antioxidants (Superoxide dismutase: SOD, Catalase: CAT and Glutathione peroxidase: GPx. Results The first step antioxidant response, estimated by the SOD activity, was significantly higher in obese children compared with normal-weight controls (p  Conclusions The obesity-related increase of the oxidant stress can be observed even in the childhood period. In addition to the complications of an increased BMI, obesity itself can be considered as an independent risk factor of free radical production resulting in an increased antioxidant response.

  3. The Dual Antioxidant/Prooxidant Effect of Eugenol and Its Action in Cancer Development and Treatment

    Directory of Open Access Journals (Sweden)

    Daniel Pereira Bezerra

    2017-12-01

    Full Text Available The formation of reactive oxygen species (ROS during metabolism is a normal process usually compensated for by the antioxidant defense system of an organism. However, ROS can cause oxidative damage and have been proposed to be the main cause of age-related clinical complications and diseases such as cancer. In recent decades, the relationship between diet and cancer has been more studied, especially with foods containing antioxidant compounds. Eugenol is a natural compound widely found in many aromatic plant species, spices and foods and is used in cosmetics and pharmaceutical products. Eugenol has a dual effect on oxidative stress, which can action as an antioxidant or prooxidant agent. In addition, it has anti-carcinogenic, cytotoxic and antitumor properties. Considering the importance of eugenol in the area of food and human health, in this review, we discuss the role of eugenol on redox status and its potential use in the treatment and prevention of cancer.

  4. Defense Business Board

    Science.gov (United States)

    Skip to main content (Press Enter). Toggle navigation Defense Business Board Search Search Defense Business Board: Search Search Defense Business Board: Search Defense Business Board Business Excellence in Defense of the Nation Defense Business Board Home Charter Members Meetings Studies Contact Us The Defense

  5. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    Full Text Available BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(- and HCO(3(-, in mediating prostate HCO(3(- secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II, along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3(- content (>50 mM, rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3(- on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3(- secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3(- secretion may be up-regulated in prostatitis as a host defense mechanism.

  6. Should bioengineering graduates seek employment in the defense industry?

    Science.gov (United States)

    Johnson, Arthur T

    2014-01-01

    They say that the difference between a mechanical engineer and a civil engineer is that the mechanical engineer develops weapons whereas a civil engineer designs targets. The implication is that some engineers are involved with building peaceful infrastructure whereas others contribute to destruction. This brings to mind the question: what is the proper role for engineers in the creation of weapons and defenses against them? In particular, should engineers specializing in biology or medicine be involved in the defense industry? After all, bioengineers are supposed to be builders or healers rather than warriors or destroyers.

  7. Monoterpenoid indole alkaloids and phenols are required antioxidants in glutathione depleted Uncaria tomentosa root cultures

    Directory of Open Access Journals (Sweden)

    Ileana eVera-Reyes

    2015-04-01

    Full Text Available Plants cells sense their environment through oxidative signaling responses and make appropriate adjustments to gene expression, physiology and metabolic defense. Root cultures of Uncaria tomentosa, a native plant of the Amazon rainforest, were exposed to stressful conditions by combined addition of the glutathione inhibitor, buthionine sulfoximine (0.8 mM and 0.2 mM jasmonic acid. This procedure induced a synchronized two-fold increase of hydrogen peroxide and guaiacol peroxidases, while the glutathione content and glutathione reductase activity were reduced. Likewise in elicited cultures, production of the antioxidant secondary metabolites, monoterpenoid oxindole and glucoindole alkaloids, were 2.1 and 5.5-fold stimulated (704.0 ± 14.9 and 845.5 ± 13.0 µg/g DW, respectively after 12 h after, while phenols were three times increased. Upon elicitation, the activities and mRNA transcript levels of two enzymes involved in the alkaloid biosynthesis, strictosidine synthase and strictosidine β-glucosidase, were also enhanced. Differential proteome analysis performed by two-dimensional polyacrylamide gel electrophoresis of elicited and control root cultures showed that, after elicitation, several new protein spots appeared. Two of them were identified as thiol-related enzymes, namely cysteine synthase and methionine synthase. Proteins associated with antioxidant and stress responses, including two strictosidine synthase isoforms, were identified as well, together with others as caffeic acid O-methyltransferase. Our results propose that in U. tomentosa roots a signaling network involving hydrogen peroxide and jasmonate derivatives coordinately regulates the antioxidant response and secondary metabolic defense via transcriptional and protein activation.

  8. Inducible defenses against herbivory and fouling in seaweeds

    Science.gov (United States)

    Pereira, Renato Crespo; Costa, Erica da Silva; Sudatti, Daniela Bueno; da Gama, Bernardo Antonio Perez

    2017-04-01

    Secondary metabolites play an important ecological role as a defense mechanism in seaweeds. Chemical defenses are well known to change in response to herbivory, but other driving factors, either biotic or abiotic, are often neglected. Epibiosis may not only reduce seaweed fitness, but also increase attractiveness to consumers, and thus defense production should also be triggered by epibionts. In this study, three Southwestern Atlantic seaweeds, Gracilaria cearensis, Pterocladiella capillacea (Rhodophyceae) and Codium decorticatum (Chlorophyceae) were investigated in laboratory bioassays designed to test whether the action of herbivory or simulated epibiosis influences chemical defenses. Crossed induction experiments were also performed in order to assess whether herbivore induction influences antifouling chemical defense, as well as whether epibiont induction would affect defense against herbivores. The effect of laboratory conditions on seaweeds in the absence of field stimuli was also investigated by comparing consumption of artificial food with extracts from acclimatized and non-acclimatized seaweeds (i.e., natural defense levels). Only the green seaweed C. decorticatum exhibited inducible antifouling defenses triggered by simulated epibiosis, but not by herbivores. In the other seaweeds there was no induction either by herbivory or simulated epibiosis. Acclimatization did not affect C. decorticatum defenses. However, non-acclimatized G. cearensis artificial foods were preferred over acclimatized ones, while extracts from acclimatized P. capillacea increased herbivore consumption, highlighting the need to acclimatize seaweeds before the main induction experiments. This is the first report of inducible defenses due to simulated fouling in seaweeds.

  9. Cytokine and Antioxidant Regulation in the Intestine of the Gray Mouse Lemur (Microcebus murinus During Torpor

    Directory of Open Access Journals (Sweden)

    Shannon N. Tessier

    2015-04-01

    Full Text Available During food shortages, the gray mouse lemur (Microcebus murinus of Madagascar experiences daily torpor thereby reducing energy expenditures. The present study aimed to understand the impacts of torpor on the immune system and antioxidant response in the gut of these animals. This interaction may be of critical importance given the trade-off between the energetically costly immune response and the need to defend against pathogen entry during hypometabolism. The protein levels of cytokines and antioxidants were measured in the small intestine (duodenum, jejunum, and ileum and large intestine of aroused and torpid lemurs. While there was a significant decrease of some pro-inflammatory cytokines (IL-6 and TNF-α in the duodenum and jejunum during torpor as compared to aroused animals, there was no change in anti-inflammatory cytokines. We observed decreased levels of cytokines (IL-12p70 and M-CSF, and several chemokines (MCP-1 and MIP-2 but an increase in MIP-1α in the jejunum of the torpid animals. In addition, we evaluated antioxidant response by examining the protein levels of antioxidant enzymes and total antioxidant capacity provided by metabolites such as glutathione (and others. Our results indicated that levels of antioxidant enzymes did not change between torpor and aroused states, although antioxidant capacity was significantly higher in the ileum during torpor. These data suggest a suppression of the immune response, likely as an energy conservation measure, and a limited role of antioxidant defenses in supporting torpor in lemur intestine.

  10. Changes in Antioxidant Defense Capability and Lipid Profile after 12-Week Low- Intensity Continuous Training in Both Cigarette and Hookah Smokers: A Follow-Up Study

    Science.gov (United States)

    Koubaa, Abdessalem; Triki, Moez; Trabelsi, Hajer; Masmoudi, Liwa; Sahnoun, Zouhair; Hakim, Ahmed

    2015-01-01

    To examine the impact of low-intensity continuous training program on antioxidant defense capability and lipid profile in male cigarette or hookah smokers. Forty-three male adults participated in a 12-week continuous training program at an intensity of 40% of VO2max. All subjects were subjected to anthropometric, physical and biochemical tests before and after the training program. The increase of Glutathione reductase (GR) and Superoxide dismutase (SOD) is significant only for cigarette smokers (CS) and hookah smokers (HS) groups. The Malondialdehyde (MDA) decrease and α-tocopherol increase are significant only for HS group. GPx was increased in NS, CS and HS by 2.6% (p< 0.01), 2% (p< 0.05) and 1.7% (p< 0.05) respectively. Likewise, significant improvements of high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and TC / HDL-C ratio were observed in three groups. En contrast no significant changes were recorded in triglycerides (TG). Also, significant reduction of total cholesterol (TC) for CS group (p< 0.01) and HS groups (p< 0.05). This continuous training program appears to have an important role in lipid levels improving and oxidative stress attenuation. PMID:26121249

  11. Adverse effects of methylmercury (MeHg) on life parameters, antioxidant systems, and MAPK signaling pathways in the rotifer Brachionus koreanus and the copepod Paracyclopina nana.

    Science.gov (United States)

    Lee, Young Hwan; Kim, Duck-Hyun; Kang, Hye-Min; Wang, Minghua; Jeong, Chang-Bum; Lee, Jae-Seong

    2017-09-01

    To evaluate the adverse effects of MeHg on the rotifer Brachionus koreanus and the copepod Paracyclopina nana, we assessed the effects of MeHg toxicity on life parameters (e.g. growth retardation and fecundity), antioxidant systems, and mitogen-activated protein kinase (MAPK) signaling pathways at various concentrations (1ng/L, 10ng/L, 100ng/L, 500ng/L, and 1000ng/L). MeHg exposure resulted in the growth retardation with the increased ROS levels but decreased glutathione (GSH) levels in a dose-dependent manner in both B. koreanus and P. nana. Antioxidant enzymatic activities (e.g. glutathione S-transferase [GST], glutathione reductase [GR], and glutathione peroxidase [GPx]) in B. koreanus showed more positive responses compared the control but in P. nana, those antioxidant enzymatic activities showed subtle changes due to different no observed effect concentration (NOEC) values among the two species. Expression of antioxidant genes (e.g. superoxide dismutase [SOD], GSTs, glutathione peroxidase [GPx], and catalase [CAT]) also demonstrated similar effects as shown in antioxidant enzymatic activities. In B. koreanus, the level of p-ERK was decreased in the presence of 1000ng/L MeHg, while the levels of p-ERK and p-p38 in P. nana were reduced in the presence of 10ng/L MeHg. However, p-JNK levels were not altered by MeHg in B. koreanus and P. nana, compared to the corresponding controls. In summary, life parameters (e.g. reduced fecundity and survival rate) were closely associated with effects on the antioxidant system in response to MeHg. These observations provide a better understanding on the adverse effects of MeHg on in vivo life parameters and molecular defense mechanisms in B. koreanus and P. nana. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Emerging trade-offs - impact of photoprotectants (PsbS, xanthophylls, and vitamin E) on oxylipins as regulators of development and defense.

    Science.gov (United States)

    Demmig-Adams, Barbara; Cohu, Christopher M; Amiard, Véronique; Zadelhoff, Guusvan; Veldink, Gerrit A; Muller, Onno; Adams, William W

    2013-02-01

    This review summarizes evidence for a mechanistic link between plant photoprotection and the synthesis of oxylipin hormones as regulators of development and defense. Knockout mutants of Arabidopsis, deficient in various key components of the chloroplast photoprotection system, consistently produced greater concentrations of the hormone jasmonic acid or its precursor 12- oxo-phytodienoic acid (OPDA), both members of the oxylipin messenger family. Characterized plants include several mutants deficient in PsbS (an intrinsic chlorophyll-binding protein of photosystem II) or pigments (zeaxanthin and/or lutein) required for photoprotective thermal dissipation of excess excitation energy in the chloroplast and a mutant deficient in reactive oxygen detoxification via the antioxidant vitamin E (tocopherol). Evidence is also presented that certain plant defenses against herbivores or pathogens are elevated for these mutants. This evidence furthermore indicates that wild-type Arabidopsis plants possess less than maximal defenses against herbivores or pathogens, and suggest that plant lines with superior defenses against abiotic stress may have lower biotic defenses. The implications of this apparent trade-off between abiotic and biotic plant defenses for plant ecology as well as for plant breeding/engineering are explored, and the need for research further addressing this important issue is highlighted.

  13. Evaluation of the Antioxidant Activity of Extracts and Active Principles of Commonly Consumed Indian Spices.

    Science.gov (United States)

    Patra, Kartick; Jana, Samarjit; Mandal, Deba Prasad; Bhattacharjee, Shamee

    2016-01-01

    Accumulating evidence suggests that free radical reactions play a key part in the development of degenerative diseases and that an antioxidant-rich diet is a major defense against these free radical reactions. In this study, we explore comparative antioxidant capacities of extracts of some commonly used in Indian spices (anise, cardamom, Ceylon cinnamon, and clove) along with their purified components (anethole, eucalyptol, cinnamaldehyde, and eugenol, respectively). Eugenol shows the highest 1,1-diphenyl-2-picrylhydrazyl, hydroxyl, and superoxide scavenging and reducing power activity in terms of weight; however, this was not found when compared in terms of equivalence. Extracts of the other three spices were found to be more potent antioxidants than their corresponding active components. Interestingly, clove extract, despite possessing the highest phenol and flavonoid content, is not the most potent radical scavenger. At low concentrations, both the crude extracts and their purified components (except for anethole and eugenol) have low hemolytic activity, but at higher concentrations purified components are more toxic than their respective crude extract. This study suggests that spices as a whole are more potent antioxidants than their purified active components, perhaps reflecting the synergism among different phytochemicals present in spice extracts.

  14. Licochalcone A Upregulates Nrf2 Antioxidant Pathway and Thereby Alleviates Acetaminophen-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2018-03-01

    Full Text Available Acetaminophen (APAP overdose-induced fatal hepatotoxicity is majorly characterized by overwhelmingly increased oxidative stress while enhanced nuclear factor-erythroid 2-related factor 2 (Nrf2 is involved in prevention of hepatotoxicity. Although Licochalcone A (Lico A upregulates Nrf2 signaling pathway against oxidative stress-triggered cell injury, whether it could protect from APAP-induced hepatotoxicity by directly inducing Nrf2 activation is still poorly elucidated. This study aims to explore the protective effect of Lico A against APAP-induced hepatotoxicity and its underlying molecular mechanisms. Our findings indicated that Lico A effectively decreased tert-butyl hydroperoxide (t-BHP- and APAP-stimulated cell apoptosis, mitochondrial dysfunction and reactive oxygen species generation and increased various anti-oxidative enzymes expression, which is largely dependent on upregulating Nrf2 nuclear translocation, reducing the Keap1 protein expression, and strengthening the antioxidant response element promoter activity. Meanwhile, Lico A dramatically protected against APAP-induced acute liver failure by lessening the lethality; alleviating histopathological liver changes; decreasing the alanine transaminase and aspartate aminotransferase levels, malondialdehyde formation, myeloperoxidase level and superoxide dismutase depletion, and increasing the GSH-to-GSSG ratio. Furthermore, Lico A not only significantly modulated apoptosis-related protein by increasing Bcl-2 expression, and decreasing Bax and caspase-3 cleavage expression, but also efficiently alleviated mitochondrial dysfunction by reducing c-jun N-terminal kinase phosphorylation and translocation, inhibiting Bax mitochondrial translocation, apoptosis-inducing factor and cytochrome c release. However, Lico A-inhibited APAP-induced the lethality, histopathological changes, hepatic apoptosis, and mitochondrial dysfunction in WT mice were evidently abrogated in Nrf2-/- mice. These

  15. Molecular mechanisms of plant response to ionising radiation. Exploration of the glucosinolate role in the anti-oxidative response

    International Nuclear Information System (INIS)

    Gicquel, M.

    2012-01-01

    Terrestrial organisms are exposed to low doses of ionising radiation from natural or anthropogenic sources. The major effects of the radiations are due to DNA deterioration and water radiolysis which generates an oxidative stress by free radical production. Plants constitute good models to study the effects of ionising radiations and the search of antioxidant molecules because of their important secondary metabolism. Thus this thesis, funded by the Brittany region, characterized the physiological and molecular response of the model plant Arabidopsis thaliana to low (10 Gy) and moderate (40 Gy) doses of ionising radiation, and was therefore interested in glucosinolates, characteristic compounds of the Brassicaceae family. The global proteomic and transcriptomic studies carried out on this model revealed (1) a common response for both doses dealing with the activation of DNA repair mechanisms, cell cycle regulation and protection of cellular structures; (2) an adjustment of the energetic metabolism and an activation of secondary compounds biosynthesis (i.e. glucosinolates and flavonoids) after the 10 Gy dose; (3) an induction of enzymatic control of ROS, the regulation of cellular components recycling and of programmed cell death after the 40 Gy dose. The potential anti-oxidative role of glucosinolates was then explored. The in vitro anti-oxidative power of some glucosinolates and their derivative products were demonstrated. Their modulating effects against irradiation-induced damages were then tested in vivo by simple experimental approaches. The importance of the glucosinolate level to give a positive or negative effect was demonstrated. (author)

  16. Mitochondria-Targeted Antioxidant SS31 Prevents Amyloid Beta-Induced Mitochondrial Abnormalities and Synaptic Degeneration in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Marcus J. Calkins

    2012-10-01

    Full Text Available In neuronal systems, the health and activity of mitochondria and synapses are tightly coupled. For this reason, it has been postulated that mitochondrial abnormalities may, at least in part, drive neurodegeneration in conditions such as Alzheimer’s disease (AD. Mounting evidence from multiple Alzheimer’s disease cell and mouse models and postmortem brains suggest that loss of mitochondrial integrity may be a key factor that mediates synaptic loss. Therefore, the prevention or rescue of mitochondrial dysfunction may help delay or altogether prevent AD-associated neurodegeneration. Since mitochondrial health is heavily dependent on antioxidant defenses, researchers have begun to explore the use of mitochondria-targeted antioxidants as therapeutic tools to prevent neurodegenerative diseases. This review will highlight advances made using a model mitochondria-targeted antioxidant peptide, SS31, as a potential treatment for AD.

  17. Host defense, dendritic cells and the human lung

    NARCIS (Netherlands)

    J.M.W. van Haarst (Jan Maarten)

    1995-01-01

    textabstractHost defense mechanisms protect the body against microorganisms and other foreign structures. These mechanisms can be divided in nonspecific, or innate, and specific, or acquired, immunity. In both branches of immunity the several types of leukocytes (white blood cells) play a dominant

  18. Novel Trolox derivatives as antioxidant: A DFT investigation

    Directory of Open Access Journals (Sweden)

    Farmanzadeh Dvood

    2016-01-01

    Full Text Available In this paper the antioxidant activity of Trolox derivatives were investigated by density function theory and polarization continuum model as solvent model in order to propose the novel derivatives with higher antioxidant activity from a theoretical viewpoint. The effects of various ortho and meta substituents on the reaction enthalpies of antioxidant mechanisms of Trolox were investigated. Also the effect of reducing the number of atoms in the heterocyclic ring and effect of replacing the oxygen heteroatom of Trolox with other heteroatoms on the antioxidant activity of Trolox were evaluated. Results show that the NH2, OH and NHMe substituents in meta and ortho positions decrease the BDE and IP values and also increase the antioxidant activity of Trolox from the theoretical viewpoint. The derivatives e, c and d with NH, S and Se instead of O have higher antioxidant activity from the theoretical viewpoint. Obtained results show that reducing the number of atom in the heterocyclic ring (derivatives a and b decrease the BDE and IP values and also increase the antioxidant activity of Trolox from the theoretical viewpoint. The linear dependencies between BDE of OH bond and IP values of studied Trolox derivatives and corresponding EHOMO and R(O-H values can be useful to propose novel derivatives with higher antioxidant activity from the theoretical viewpoint.

  19. Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging.

    Science.gov (United States)

    Briganti, Stefania; Wlaschek, Meinhard; Hinrichs, Christina; Bellei, Barbara; Flori, Enrica; Treiber, Nicolai; Iben, Sebastian; Picardo, Mauro; Scharffetter-Kochanek, Karin

    2008-09-01

    Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.

  20. Preparing South Africa for cyber crime and cyber defense

    CSIR Research Space (South Africa)

    Grobler, M

    2013-01-01

    Full Text Available revolution on cybercrime and cyber defense in a developing country and will evaluate the relevant South African legislation. It will also look at the influence of cyber defense on the international position of the South African Government. South Africa... legislation and a lack of cyber defense mechanisms. As a starting point, cyber warfare for the purpose of this article is defined as the use of exploits in cyber space as a way to intentionally cause harm to people, assets or economies (Owen 2008). It can...

  1. An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes.

    Science.gov (United States)

    Li, Jinqing; Ichikawa, Tomonaga; Jin, Yu; Hofseth, Lorne J; Nagarkatti, Prakash; Nagarkatti, Mitzi; Windust, Anthony; Cui, Taixing

    2010-07-20

    Ginseng has been used as a folk medicine for thousands of years in Asia, and has become a popular herbal medicine world-wide. Recent studies have revealed that ginseng, including American ginseng, exerts antioxidant effects in the cardiovascular system; however, the underlying mechanisms are not fully understood. Thus, we investigated role of Nrf2, a master transcription factor of endogenous anti-oxidative defense systems, in the regulation of American ginseng-mediated anti-oxidative actions in cardiomyocytes. A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. H9C2 cells, a rat cardiomyocyte cell line, were exposed to angiotensin II (Ang II) or tumor necrosis factor alpha (TNFalpha) to induce oxidative stress that was examined by measuring formation of reactive oxygen and nitrogen species. Oxidative stress-induced cell death was induced by exogenous addition of hydrogen peroxide (H(2)O(2)). Proteins were measured by Western blot and mRNA expression was determined by quantitative real time PCR. Nrf2-driven transcriptional activity was assessed by antioxidant response element (ARE)-luciferase reporter assay. Direct Nrf2 binding to its target gene promoters was determined by chromatin immunoprecipitation assay. Adenoviral over-expression of Nrf2 shRNA was utilized to knock down Nrf2 in H9C2 cells. Immunochemical staining was applied for Nrf2 expression in the heart. American ginseng induced dramatic increases in Nrf2 protein expression, Nrf2 nuclear translocation, Nrf2 transcriptional activity, direct Nrf2 binding to its target gene promoters, and expression of a group of anti-oxidative genes driven by Nrf2 in H9C2 cells. In addition, American ginseng inhibited Ang II- or TNFalpha-induced free radical formation and H(2)O(2)-induced cell death in H9C2 cells over-expressed with control shRNA but not in the cells over-expressed with Nrf2 shRNA. Finally, oral

  2. Response of antioxidant system to drought stress and re-watering in Alfalfa during branching

    Science.gov (United States)

    Tina, R. R.; Shan, X. R.; Wang, Y.; Guo, S. Y.; Mao, B.; Wang, W.; Wu, H. Y.; Zhao, T. H.

    2017-11-01

    This paper aimed to reveal the response mechanism of active oxygen metabolism and antioxidant enzyme activities in Alfalfa under drought stress and re-watering, and the pot experiment was used, to explore the changes of H2O2, O2·-, electrolyte leakage conductivity and MDA, SOD, POD, CAT activity in Golden Empress (tolerant cultivar) and Sanditi (non-tolerant cultivar) under drought stress and re-watering during branching stage. Three water gradients were set up: CK (Maximum field capacity of 75%±5%), T1 (Maximum field capacity of 45%±5%), T2 (Maximum field capacity of 35%±5%) to compare, and the drought rehydration was also studied. Results: the results indicated that H2O2 content, O2·-production rate, relative conductivity and MDA content were higher than the control, and the increase extent of Golden Empress was higher than the Sanditi under drought stress and after re-watering the recovery capability of Golden Empress was also higher than the Sanditi. After 7 days of re-watering, all indexes were restored to the control level, indicating that the re-watering have compensation effect after drought. After drought stress, to weaken the damage of active oxygen Golden Empress was mainly by increasing the activity of POD and SOD, but Sanditi was mainly through the POD and CAT activity increased to effectively remove ROS. Under drought stress, active oxygen in leaves of Alfalfa increased, and thus the membrane system was damaged which lead to the increase of MDA content and relative electric conductivity. Plants play a defensive role by increasing the activity of antioxidant enzymes and scavenging reactive oxygen species. After re-watering, the stress effect was reduced, and the physiological indexes of plants were restored to the control level. In general, tolerant cultivar has stronger antioxidant properties under drought and re-watering.

  3. Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes

    International Nuclear Information System (INIS)

    Delijewski, Marcin; Beberok, Artur; Otręba, Michał; Wrześniok, Dorota; Rok, Jakub; Buszman, Ewa

    2014-01-01

    Nicotine is a natural ingredient of tobacco plants and is responsible for the addictive properties of tobacco. Nowadays nicotine is also commonly used as a form of smoking cessation therapy. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn affect biochemical processes in human cells producing melanin. The aim of this study was to examine the effect of nicotine on melanogenesis and antioxidant status in cultured normal human melanocytes HEMn-LP. Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC 50 was determined to be 7.43 mM. Nicotine inhibited a melanization process in human light pigmented melanocytes and caused alterations of antioxidant defense system. Significant changes in cellular antioxidant enzymes: superoxide dismutase and catalase activities and in hydrogen peroxide content were stated. The obtained results may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long term exposition to nicotine. - Graphical abstract: Nicotine inhibits melanogenesis and induces oxidative stress in HEMn-LP melanocytes. - Highlights: • Nicotine induces concentration-dependent loss in melanocytes viability. • Nicotine in non-cytotoxic concentrations inhibits melanogenesis. • Nicotine in higher concentrations induces oxidative stress

  4. Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes

    Energy Technology Data Exchange (ETDEWEB)

    Delijewski, Marcin; Beberok, Artur; Otręba, Michał; Wrześniok, Dorota; Rok, Jakub; Buszman, Ewa, E-mail: ebuszman@sum.edu.pl

    2014-10-15

    Nicotine is a natural ingredient of tobacco plants and is responsible for the addictive properties of tobacco. Nowadays nicotine is also commonly used as a form of smoking cessation therapy. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn affect biochemical processes in human cells producing melanin. The aim of this study was to examine the effect of nicotine on melanogenesis and antioxidant status in cultured normal human melanocytes HEMn-LP. Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC{sub 50} was determined to be 7.43 mM. Nicotine inhibited a melanization process in human light pigmented melanocytes and caused alterations of antioxidant defense system. Significant changes in cellular antioxidant enzymes: superoxide dismutase and catalase activities and in hydrogen peroxide content were stated. The obtained results may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long term exposition to nicotine. - Graphical abstract: Nicotine inhibits melanogenesis and induces oxidative stress in HEMn-LP melanocytes. - Highlights: • Nicotine induces concentration-dependent loss in melanocytes viability. • Nicotine in non-cytotoxic concentrations inhibits melanogenesis. • Nicotine in higher concentrations induces oxidative stress.

  5. Tricking the guard: exploiting plant defense for disease susceptibility.

    Science.gov (United States)

    Lorang, J; Kidarsa, T; Bradford, C S; Gilbert, B; Curtis, M; Tzeng, S-C; Maier, C S; Wolpert, T J

    2012-11-02

    Typically, pathogens deploy virulence effectors to disable defense. Plants defeat effectors with resistance proteins that guard effector targets. We found that a pathogen exploits a resistance protein by activating it to confer susceptibility in Arabidopsis. The guard mechanism of plant defense is recapitulated by interactions among victorin (an effector produced by the necrotrophic fungus Cochliobolus victoriae), TRX-h5 (a defense-associated thioredoxin), and LOV1 (an Arabidopsis susceptibility protein). In LOV1's absence, victorin inhibits TRX-h5, resulting in compromised defense but not disease by C. victoriae. In LOV1's presence, victorin binding to TRX-h5 activates LOV1 and elicits a resistance-like response that confers disease susceptibility. We propose that victorin is, or mimics, a conventional pathogen virulence effector that was defeated by LOV1 and confers virulence to C. victoriae solely because it incites defense.

  6. Antioxidative properties of milk protein preparations fermented by Polish strains of Lactobacillus helveticus.

    Science.gov (United States)

    Skrzypczak, Katarzyna W; Gustaw, Waldemar Z; Jabłońska-Ryś, Ewa D; Michalak-Majewska, Monika; Sławińska, Aneta; Radzki, Wojciech P; Gustaw, Klaudia M; Waśko, Adam D

    2017-01-01

    The increasing significance of food products containing substances with antioxidative activi- ties is currently being observed. This is mainly due to the fact that pathogenic changes underlying some diseases are related to the carcinogenic effects of free radicals. Antioxidative compounds play an important role in supporting and enhancing the body’s defense mechanisms, which is useful in preventing some civili- zation diseases. Unfortunately, it has been already proved that some synthetic antioxidants pose a potential risk in vivo. Therefore, antioxidant compounds derived from a natural source are extremely valuable. Milk is a source of biologically active precursors, which when enclosed in structural protein sequences are inactive. The hydrolysis process, involving bacterial proteolytic enzymes, might release biopeptides that act in various ways, including having antioxidant properties. The objective of this study was to determine the antioxidant properties of milk protein preparations fermented by Polish strains of L. helveticus. The research also focused on evaluating the dynamics of milk acidification by these strains and analyzing the textural properties of the skim milk fermented products obtained. The research studied Polish strains of L. helveticus: B734, 141, T80 and T105, which have not yet been used industrially. The antioxidant properties of 1% (w/v) solutions of milk protein preparations (skim milk powder, caseinoglycomacropeptide and α-lactoalbumin) fermented by these strains were determined by neutralizing the free radicals with 2,2-diphenyl-1-picrylhydrazyl (DPPH˙). Moreover, solutions of skim milk powder (SMP) fermented by the microorganisms being tested were analyzed on gel electrophoresis (SDS-PAGE). The dynamics of milk acidification by these microorganisms was also analyzed L. helveticus strains were used to prepare fermented regenerated skim milk products that were subjected to texture profile analysis (TPA) performed using a TA-XT2i

  7. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes.

    Science.gov (United States)

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-07

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway.

  8. Influence of phosphorous fertilization on copper phytoextraction and antioxidant defenses in castor bean (Ricinus communis L.).

    Science.gov (United States)

    Huang, Guoyong; Rizwan, Muhammad Shahid; Ren, Chao; Guo, Guangguang; Fu, Qingling; Zhu, Jun; Hu, Hongqing

    2018-01-01

    Application of fertilizers to supply appropriate nutrients has become an essential agricultural strategy for enhancing the efficiency of phytoremediation in heavy metal contaminated soils. The present study was conducted to investigate the beneficial effects of three types of phosphate fertilizers (i.e., oxalic acid-activated phosphate rock (APR), Ca(H 2 PO 4 ) 2 , and NaH 2 PO 4 ) in the range of 0-600 mg P kg -1 soil, on castor bean growth, antioxidants [antioxidative enzymes and glutathione (GSH)], and Cu uptake. Results showed that with the addition of phosphorus fertilizers, the dry weight of castor bean and the Cu concentration in roots increased significantly, resulting in increased Cu extraction. The phosphorus concentration in both shoots and roots was increased as compared with the control, and the Ca(H 2 PO 4 ) 2 treatment had the greatest effect. Application of APR, NaH 2 PO 4 , and Ca(H 2 PO 4 ) 2 reduced the malondialdehyde (MDA) content, and the activity of the two antioxidant enzymes superoxide dismustase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) in the leaves of castor bean. GSH concentration in leaves increased with the increasing levels of phosphorus applied to soil as well as the accumulation of phosphorus in shoots, compared to the control. These results demonstrated that the addition of phosphorus fertilizers can enhance the resistance of castor bean to Cu and increase the Cu extraction efficiency of the plant from contaminated soils.

  9. Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome

    Directory of Open Access Journals (Sweden)

    Mateusz Maciejczyk

    2017-04-01

    Full Text Available Rare pleiotropic genetic disorders, Ataxia-telangiectasia (A-T, Bloom syndrome (BS and Nijmegen breakage syndrome (NBS are characterised by immunodeficiency, extreme radiosensitivity, higher cancer susceptibility, premature aging, neurodegeneration and insulin resistance. Some of these functional abnormalities can be explained by aberrant DNA damage response and chromosomal instability. It has been suggested that one possible common denominator of these conditions could be chronic oxidative stress caused by endogenous ROS overproduction and impairment of mitochondrial homeostasis. Recent studies indicate new, alternative sources of oxidative stress in A-T, BS and NBS cells, including NADPH oxidase 4 (NOX4, oxidised low-density lipoprotein (ox-LDL or Poly (ADP-ribose polymerases (PARP. Mitochondrial abnormalities such as changes in the ultrastructure and function of mitochondria, excess mROS production as well as mitochondrial damage have also been reported in A-T, BS and NBS cells. A-T, BS and NBS cells are inextricably linked to high levels of reactive oxygen species (ROS, and thereby, chronic oxidative stress may be a major phenotypic hallmark in these diseases. Due to the presence of mitochondrial disturbances, A-T, BS and NBS may be considered mitochondrial diseases. Excess activity of antioxidant enzymes and an insufficient amount of low molecular weight antioxidants indicate new pharmacological strategies for patients suffering from the aforementioned diseases. However, at the current stage of research we are unable to ascertain if antioxidants and free radical scavengers can improve the condition or prolong the survival time of A-T, BS and NBS patients. Therefore, it is necessary to conduct experimental studies in a human model.

  10. Anti-oxidative effects of Rooibos tea (Aspalathus linearis on immobilization-induced oxidative stress in rat brain.

    Directory of Open Access Journals (Sweden)

    In-Sun Hong

    Full Text Available Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea's ability to (i reverse the increase in stress-related metabolites (5-HIAA and FFA, (ii prevent lipid peroxidation (LPO, (iii restore stress-induced protein degradation (PD, (iv regulate glutathione metabolism (GSH and GSH/GSSG ratio, and (v modulate changes in the activities of antioxidant enzymes (SOD and CAT.

  11. Monuments of memory: defensive mechanisms of the collective psyche and their manifestation in the memorialization process.

    Science.gov (United States)

    Kalinowska, Malgorzata

    2012-09-01

    The paper searches for insight in the area of collective memory as a part of collective consciousness, a phenomenon understood as a stabilizing factor for a society's self-image and identity. Collective memories are seen as originating from shared communications transmitting and creating the meaning of the past in the form of narrative, symbols and signs. As such, they contain the individual, embodied and lived side of our relations to the past. As well as the identity-building and meaning-making functions of collective memories, their defensive function is discussed with a focus on commemorative practices taking place in a transitional space between psychic and social life. Fears of a lack of collective identity and coherence have contributed to the way Polish commemorative practices have been shaped. This is considered in relation to the Smolensk catastrophe in 2010, viewed in the context of the Jungian concept of the collective psyche and the psychoanalytical understanding of defensive group mechanisms against trauma, especially those relating to loss and mourning. It leads to a consideration of how historical experiences and the experience of history can be accessed, as well as their meaning for individual and group development. © 2012, The Society of Analytical Psychology.

  12. Impaired synthesis and antioxidant defense of glutathione in the cerebellum of autistic subjects: alterations in the activities and protein expression of glutathione-related enzymes.

    Science.gov (United States)

    Gu, Feng; Chauhan, Ved; Chauhan, Abha

    2013-12-01

    Autism is a neurodevelopmental disorder associated with social deficits and behavioral abnormalities. Recent evidence in autism suggests a deficit in glutathione (GSH), a major endogenous antioxidant. It is not known whether the synthesis, consumption, and/or regeneration of GSH is affected in autism. In the cerebellum tissues from autism (n=10) and age-matched control subjects (n=10), the activities of GSH-related enzymes glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), and glutamate cysteine ligase (GCL) involved in antioxidant defense, detoxification, GSH regeneration, and synthesis, respectively, were analyzed. GCL is a rate-limiting enzyme for GSH synthesis, and the relationship between its activity and the protein expression of its catalytic subunit GCLC and its modulatory subunit GCLM was also compared between the autistic and the control groups. Results showed that the activities of GPx and GST were significantly decreased in autism compared to that of the control group (Pautistic subjects showed lower GR activity than 95% confidence interval (CI) of the control group. GCL activity was also significantly reduced by 38.7% in the autistic group compared to the control group (P=0.023), and 8 of 10 autistic subjects had values below 95% CI of the control group. The ratio of protein levels of GCLC to GCLM in the autism group was significantly higher than that of the control group (P=0.022), and GCLM protein levels were reduced by 37.3% in the autistic group compared to the control group. A positive strong correlation was observed between GCL activity and protein levels of GCLM (r=0.887) and GCLC (r=0.799) subunits in control subjects but not in autistic subjects, suggesting that regulation of GCL activity is affected in autism. These results suggest that enzymes involved in GSH homeostasis have impaired activities in the cerebellum in autism, and lower GCL activity in autism may be related to decreased protein expression

  13. "light-on" sensing of antioxidants using gold nanoclusters

    KAUST Repository

    Hu, Lianzhe

    2014-05-20

    Depletion of intracellular antioxidants is linked to major cytotoxic events and cellular disorders, such as oxidative stress and multiple sclerosis. In addition to medical diagnosis, determining the concentration of antioxidants in foodstuffs, food preservatives, and cosmetics has proved to be very vital. Gold nanoclusters (Au-NCs) have a core size below 2 nm and contain several metal atoms. They have interesting photophysical properties, are readily functionalized, and are safe to use in various biomedical applications. Herein, a simple and quantitative spectroscopic method based on Au-NCs is developed to detect and image antioxidants such as ascorbic acid. The sensing mechanism is based on the fact that antioxidants can protect the fluorescence of Au-NCs against quenching by highly reactive oxygen species. Our method shows great accuracy when employed to detect the total antioxidant capacity in commercial fruit juice. Moreover, confocal fluorescence microscopy images of HeLa cells show that this approach can be successfully used to image antioxidant levels in living cells. Finally, the potential application of this "light-on" detection method in multiple logic gate fabrication was discussed using the fluorescence intensity of Au-NCs as output. © 2014 American Chemical Society.

  14. Effect of nonylphenol on male reproduction: Analysis of rat epididymal biochemical markers and antioxidant defense enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Hamdy A.A., E-mail: hamdyaali@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah (Saudi Arabia); Domènech, Òscar [Department of Physical Chemistry, Faculty of Pharmacy, Barcelona University (Spain); Banjar, Zainy M. [Department of Medical Biology, School of Medicine, King Abdulaziz University, Jeddah (Saudi Arabia)

    2012-06-01

    The mechanism by which nonylphenol (NP) interferes with male reproduction is not fully elucidated. Therefore, the present study was conducted to evaluate the effect of NP on male reproductive organ's weight, sperm characteristics, and to elucidate the nature and mechanism of action of NP on the epididymis. Adult male Wistar rats were gavaged with NP, dissolved in corn oil, at 0, 100, 200 or 300 mg/kg/day for 30 consecutive days. Control rats were gavaged with vehicle (corn oil) alone. Body weight did not show any significant change while, absolute testes and epididymides weights were significantly decreased. Sperm count in cauda and caput/corpus epididymides, and sperm motility was significantly decreased. Daily sperm production was significantly decreased in a dose-related manner. Sperm transit time in cauda epididymis was significantly decreased by 300 mg/kg, while in the caput/corpus epididymis it was significantly decreased by 200 and 300 mg/kg of NP. Plasma LDH was significantly increased while; plasma testosterone was significantly decreased in a dose-related pattern. In the epididymal sperm, NP decreased acrosome integrity, Δψm and 5′-nucleotidase activity. Hydrogen peroxide (H{sub 2}O{sub 2}) production and LPO were significantly increased in a dose-related pattern. The activities of SOD, CAT and GPx were significantly decreased in the epididymal sperm. In conclusion, this study revealed that NP treatment impairs spermatogenesis and has a cytotoxic effect on epididymal sperm. It disrupts the prooxidant and antioxidant balance. This leads oxidative stress in epididymal sperms of rat. Moreover, the reduction in sperm transit time may affect sperm quality and fertility potential. -- Highlights: ► The nature and mechanism of action of NP on rat epididymis were elucidated. ► NP decreased sperm count, motility, daily sperm production and sperm transit time. ► NP decreased sperm acrosome integrity, Δψm and 5′-nucleotidase activity. ► Plasma

  15. Effect of nonylphenol on male reproduction: Analysis of rat epididymal biochemical markers and antioxidant defense enzymes

    International Nuclear Information System (INIS)

    Aly, Hamdy A.A.; Domènech, Òscar; Banjar, Zainy M.

    2012-01-01

    The mechanism by which nonylphenol (NP) interferes with male reproduction is not fully elucidated. Therefore, the present study was conducted to evaluate the effect of NP on male reproductive organ's weight, sperm characteristics, and to elucidate the nature and mechanism of action of NP on the epididymis. Adult male Wistar rats were gavaged with NP, dissolved in corn oil, at 0, 100, 200 or 300 mg/kg/day for 30 consecutive days. Control rats were gavaged with vehicle (corn oil) alone. Body weight did not show any significant change while, absolute testes and epididymides weights were significantly decreased. Sperm count in cauda and caput/corpus epididymides, and sperm motility was significantly decreased. Daily sperm production was significantly decreased in a dose-related manner. Sperm transit time in cauda epididymis was significantly decreased by 300 mg/kg, while in the caput/corpus epididymis it was significantly decreased by 200 and 300 mg/kg of NP. Plasma LDH was significantly increased while; plasma testosterone was significantly decreased in a dose-related pattern. In the epididymal sperm, NP decreased acrosome integrity, Δψm and 5′-nucleotidase activity. Hydrogen peroxide (H 2 O 2 ) production and LPO were significantly increased in a dose-related pattern. The activities of SOD, CAT and GPx were significantly decreased in the epididymal sperm. In conclusion, this study revealed that NP treatment impairs spermatogenesis and has a cytotoxic effect on epididymal sperm. It disrupts the prooxidant and antioxidant balance. This leads oxidative stress in epididymal sperms of rat. Moreover, the reduction in sperm transit time may affect sperm quality and fertility potential. -- Highlights: ► The nature and mechanism of action of NP on rat epididymis were elucidated. ► NP decreased sperm count, motility, daily sperm production and sperm transit time. ► NP decreased sperm acrosome integrity, Δψm and 5′-nucleotidase activity. ► Plasma LDH was

  16. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires

    Science.gov (United States)

    Vernekar, Amit A.; Sinha, Devanjan; Srivastava, Shubhi; Paramasivam, Prasath U.; D'Silva, Patrick; Mugesh, Govindasamy

    2014-11-01

    Nanomaterials with enzyme-like properties has attracted significant interest, although limited information is available on their biological activities in cells. Here we show that V2O5 nanowires (Vn) functionally mimic the antioxidant enzyme glutathione peroxidase by using cellular glutathione. Although bulk V2O5 is known to be toxic to the cells, the property is altered when converted into a nanomaterial form. The Vn nanozymes readily internalize into mammalian cells of multiple origin (kidney, neuronal, prostate, cervical) and exhibit robust enzyme-like activity by scavenging the reactive oxygen species when challenged against intrinsic and extrinsic oxidative stress. The Vn nanozymes fully restore the redox balance without perturbing the cellular antioxidant defense, thus providing an important cytoprotection for biomolecules against harmful oxidative damage. Based on our findings, we envision that biocompatible Vn nanowires can provide future therapeutic potential to prevent ageing, cardiac disorders and several neurological conditions, including Parkinson’s and Alzheimer’s disease.

  17. Limiting immunopathology: Interaction between carotenoids and enzymatic antioxidant defences.

    Science.gov (United States)

    Babin, A; Saciat, C; Teixeira, M; Troussard, J-P; Motreuil, S; Moreau, J; Moret, Y

    2015-04-01

    The release of reactive oxygen and nitrogen species (ROS and RNS) during the inflammatory response generates damages to host tissues, referred to as immunopathology, and is an important factor in ecological immunology. The integrated antioxidant system, comprising endogenous antioxidant enzymes (e.g. superoxide dismutase SOD, and catalase CAT) and dietary antioxidants (e.g. carotenoids), helps to cope with immune-mediated oxidative stress. Crustaceans store large amounts of dietary carotenoids for yet unclear reasons. While being immunostimulants and antioxidants, the interaction of these pigments with antioxidant enzymes remains unclear. Here, we tested the interaction between dietary supplementation with carotenoids and immune challenge on immune defences and the activity of the antioxidant enzymes SOD and CAT, in the amphipod crustacean Gammarus pulex. Dietary supplementation increased the concentrations of circulating carotenoids and haemocytes in the haemolymph, while the immune response induced the consumption of circulating carotenoids and a drop of haemocyte density. Interestingly, supplemented gammarids exhibited down-regulated SOD activity but high CAT activity compared to control ones. Our study reveals specific interactions of dietary carotenoids with endogenous antioxidant enzymes, and further underlines the potential importance of carotenoids in the evolution of immunity and/or of antioxidant mechanisms in crustaceans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Ego mechanisms of defense are associated with patients' preference of treatment modality independent of psychological distress in end-stage renal disease.

    Science.gov (United States)

    Hyphantis, Thomas; Katsoudas, Spiros; Voudiclari, Sonia

    2010-03-24

    Several parameters mediate the selection of treatment modality in end-stage renal disease (ESRD). The nephrology community suggests that patient preference should be the prime determinant of modality choice. We aimed to test whether ego mechanisms of defense are associated with patients' treatment modality preferences, independent of psychological distress. In 58 eligible ESRD patients who had themselves chosen their treatment modality, we administered the Symptom Distress Checklist-90-R and the Defense Style Questionnaire. Thirty-seven patients (53.4%) had chosen hemodialysis and 21 (46.6%) peritoneal dialysis. Patients who preferred peritoneal dialysis were younger (odds ratio [OR], 0.89; 95% confidence interval [CI]: 0.804-0.988), had received more education (OR, 8.84; 95% CI: 1.301-60.161), and were twice as likely to adopt an adaptive defense style as compared to patients who preferred hemodialysis (57.1% vs 27.0%, respectively; P psychological distress. Our findings indicate that the patient's personality should be taken into account, if we are to better define which modalities are best suited to which patients. Also, physicians should bear in mind passive-aggressive behaviors that warrant attention and intervention in patients who preferred hemodialysis.

  19. Cumulative abiotic stresses and their effect on the antioxidant defense system in two species of wheat, Triticum durum Desf and Triticum aestivum L.

    OpenAIRE

    Ibrahim M.M.; Alsahli A.A.; Al-Ghamdi A.A.

    2013-01-01

    The combined effects of heat and UV-B on the antioxidant system and photosynthetic pigments were investigated in the leaves of T. durum Desf. and Triticum aestivum L. The photosynthetic pigment content, in vitro evaluation of the antioxidant system activities including DPPH radical scavenging activity, and super oxide anion radical scavenging activity were determined. In addition, the antioxidant enzyme activities, such as superoxide dismutase (SOD) and gua...

  20. Radiolysis study of the radical-like action mechanisms of an antioxidant: Sulfarlem

    International Nuclear Information System (INIS)

    Ruimy-Ifrah, Pascale

    1989-01-01

    Sulfarlem or p-anisyldithiolthione (ADT) is a sulfured heterocyclic compound which exhibits antioxidant properties. This work presents the quantitative study of the mono-electronic exchange mechanisms involved in this action. This study has been performed by gamma radiolysis and pulse radiolysis. The gamma radiolysis of ADT aerated ethanolic solutions has shown that O 2 . and RO 2 . radicals are not reactive towards ADT. In return, ADT is an efficient scavenger of R . radicals; the rate constant of this reaction being k (ADT + R . ) = 6.7 x 10 4 mol -1 .l.s -1 . The pulse radiolysis experiments allowed the characterization of ADT reduction by the solvated electron (k (e solv - + ADT) = 2.3 x 10 10 mol -1 .l.s -1 ), the determination of the absorption spectrum of the reduced species A . (maximum wavelength = 580 nm) and the rate constant of its evolution (k (A . + A . ) = 5.7 x 10 8 mol -1 .l.s -1 ). An analogous study has been performed with ADO, an ADT oxidized derivative, which appeared to be a less efficient free radicals scavenger. (author) [fr