WorldWideScience

Sample records for antioxidant antibacterial tyrosinase

  1. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract

    Science.gov (United States)

    2012-01-01

    Background This study evaluated, using in vitro assays, the antibacterial, antioxidant, and tyrosinase-inhibition activities of methanolic extracts from peels of seven commercially grown pomegranate cultivars. Methods Antibacterial activity was tested on Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia) using a microdilution method. Several potential antioxidant activities, including radical-scavenging ability (RSA), ferrous ion chelating (FIC) and ferric ion reducing antioxidant power (FRAP), were evaluated. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin and kojic acid as positive controls. Furthermore, phenolic contents including total flavonoid content (TFC), gallotannin content (GTC) and total anthocyanin content (TAC) were determined using colourimetric methods. HPLC-ESI/MSn analysis of phenolic composition of methanolic extracts was also performed. Results Methanolic peel extracts showed strong broad-spectrum activity against Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentrations (MIC) ranging from 0.2 to 0.78 mg/ml. At the highest concentration tested (1000 μg/ml), radical scavenging activities were significantly higher in Arakta (83.54%), Ganesh (83.56%), and Ruby (83.34%) cultivars (P50%) against monophenolase and diphenolase activities at the highest screening concentration. The most active peel extract was the Bhagwa cultivar against monophenolase and the Arakta cultivar against diphenolase with IC50 values of 3.66 μg/ml and 15.88 μg/ml, respectively. High amounts of phenolic compounds were found in peel extracts with the highest and lowest total phenolic contents of 295.5 (Ganesh) and 179.3 mg/g dry extract (Molla de Elche), respectively. Catechin, epicatechin, ellagic acid and gallic acid were found in all cultivars, of which ellagic acid was the most abundant comprising

  2. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts.

    Science.gov (United States)

    Di Petrillo, Amalia; González-Paramás, Ana Maria; Era, Benedetta; Medda, Rosaria; Pintus, Francesca; Santos-Buelga, Celestino; Fais, Antonella

    2016-11-09

    Asphodelus microcarpus belongs to the family Liliaceae that include several medicinal plants. In the traditional medicine plants of the genus Asphodelus are used to treat skin disorders such as ectodermal parasites, psoriasis, microbial infection and for lightening freckles. In order to find novel skin depigmenting agents, the present work was carry out to evaluate antioxidant activity and tyrosinase inhibitory potential of leaves, flowers and tubers extracts of A. microcarpus. The phytochemical composition of the active extract was also evaluated. Three different extracts (water, methanol and ethanol) from leaves, flowers and tubers of A. microcarpus were evaluated for their inhibitory effect on tyrosinase activity using L-3,4-dihydroxyphenylalanine (L-DOPA) as substrate. Inhibition of cellular tyrosinase activity and melanin production was also investigated in melanoma B16F10 cells. Antioxidant activity, total phenolic and flavonoids contents were determined using standard in vitro methods. HPLC-DAD-MS was used to identify phenolic profile of the active extract. The results showed that all extracts have a direct inhibitory anti-tyrosinase activity, with ethanolic extract from flowers (FEE) exhibiting the stronger effect. Kinetic analysis revealed that FEE acts as an uncompetitive inhibitor with a Ki value of 0.19 mg/mL. The same effect was observed in murine melanoma B16F10 cells. Cellular tyrosinase activity as well as melanin content were reduced in FEE-treated cells. The results were comparable to that of the standard tyrosinase inhibitor (kojic acid). Furthermore, the same extract showed the highest antioxidant activity and an elevated levels of total phenolics and flavonoid content. Eleven phenolic components were identified as chlorogenic acid, luteolin derivates, naringenin and apigenin. Our findings showed that FEE from A. microcarpus inhibits tyrosinase and exerted antimelanogenesis effect in B16F10 cells. This extract also showed the highest scavenging

  3. Antioxidant Activity of Some Plant Extracts Towards Xanthine Oxidase, Lipoxygenase and Tyrosinase

    Directory of Open Access Journals (Sweden)

    Pi-Yu Chen

    2009-08-01

    Full Text Available Natural products have the potential to be developed into new drugs for the treatment of various diseases. The aim of the present study was to screen the antioxidant activities of some common edible fruits, garden plants and medicinal plants indigenous to Taiwan. This was performed by assessing the activities of lipoxygenase, xanthine oxidase and tyrosinase following incubation with extracts from these plants. A further aim was to use HPLC-DAD and tyrosinase to chromatographically identify the antioxidative constituents obtained from an extract exhibiting strong antioxidative properties. The acetone extracts of 27 cultivated plant species from Taiwan were tested for antioxidant activities towards xanthine oxidase, tyrosinase and lipoxygenase using spectrophotometric assays. Koelreuteria henryi, Prunus campanulata, and Rhodiola rosea showed the highest xanthine oxidase inhibitory activities. Camellia sinensis, Rhodiola rosea, and Koelreuteria henryi exhibited good tyrosinase inhibitory activities and potent anti-lipoxygenase activities. As Koelreuteria henryi had notable significant inhibitory activities towards xanthine oxidase, tyrosinase, and lipoxygenase, it was further tested with tyrosinase and HPLC-DAD. The results from this part of the study revealed that the more powerful the antioxidant capability of the extracted component, the greater the decrease in peak height obtained after reacting with tyrosinase. Additional studies are warranted to further characterize the compounds responsible for the antioxidant properties of the examined extracts.

  4. Tyrosinase inhibitory effects and antioxidative activities of saponins from Xanthoceras Sorbifolia nutshell.

    Directory of Open Access Journals (Sweden)

    Hongmei Zhang

    Full Text Available Certain saponins are bioactive compounds with anticancer, antivirus and antioxidant activities. This paper discussed inhibitory effects of saponins from Xanthoceras Sorbifolia on tyrosinase, through the research of the rate of tyrosinase catalyzed L-DOPA oxidation. The inhibition rate of tyrosinase activity presented non-linear changes with the saponins concentration. The rate reached 52.0% when the saponins concentration was 0.96 mg/ml. Antioxidant activities of saponins from Xanthoceras Sorbifolia were evaluated by using hydroxyl and superoxide radical scavenging assays. The hydroxyl radical scavenging effects of the saponins were 15.5-68.7%, respectively at the concentration of 0.18-2.52 mg/ml. The superoxide radical scavenging activity reduced from 96.6% to 7.05% with the time increasing at the concentration of 1.44 mg/ml. All the above antioxidant evaluation indicated that saponins from Xanthoceras Sorbifolia exhibited good antioxidant activity in a concentration- dependent manner.

  5. Chemometric profile, antioxidant and tyrosinase inhibitory activity of Camel's foot creeper leaves (Bauhinia vahlii).

    Science.gov (United States)

    Panda, Pritipadma; Dash, Priyanka; Ghosh, Goutam

    2018-03-01

    The present study is the first effort to a comprehensive evaluation of antityrosinase activity and chemometric analysis of Bauhinia vahlii. The experimental results revealed that the methanol extract of Bauhinia vahlii (BVM) possesses higher polyphenolic compounds and total antioxidant activity than those reported elsewhere for other more conventionally and geographically different varieties. The BVM contain saturated fatty acids such as hexadecanoic acid (10.15%), octadecanoic acid (1.97%), oleic acid (0.61%) and cis-vaccenic acid (2.43%) along with vitamin E (12.71%), α-amyrin (9.84%), methyl salicylate (2.39%) and β-sitosterol (17.35%), which were mainly responsible for antioxidant as well as tyrosinase inhibitory activity. Tyrosinase inhibitory activity of this extract was comparable to that of Kojic acid. These findings suggested that the B. vahlii leaves could be exploited as potential source of natural antioxidant and tyrosinase inhibitory agent, as well.

  6. Antioxidant, Iron Chelating and Tyrosinase Inhibitory Activities of Extracts from Talinum triangulare Leach Stem

    Directory of Open Access Journals (Sweden)

    Ana Paula Oliveira Amorim

    2013-07-01

    Full Text Available The aim of this work is to evaluate the antioxidant activity against the radical species DPPH, the reducing capacity against Fe II ions, and the inhibitory activity on the tyrosinase enzyme of the T. triangulare. Hydromethanolic crude extract provided two fractions after the liquid/liquid partition with chloroform. The Folin-Ciocalteu method determined the total phenolic content of the crude extract (CE and the hydromethanolic fraction (Fraction 1, resulting in a concentration of 0.5853 g/100 g for Fraction 1, and 0.1400 g/100 g for the CE. Taking into account the results of the DPPH, the free radical scavenging capacity was confirmed. The formation of complexes with Fe II ions was evaluated by UV/visible spectrometry; results showed that CE has complexing power similar to the positive control (Gingko biloba extract.The inhibitory capacity of samples against the tyrosinase enzyme was determined by the oxidation of L-DOPA, providing IC50 values of 13.3 μg·mL−1 (CE and 6.6 μg·mL−1 (Fraction 1. The values indicate that Fraction 1 was more active and showed a higher inhibitory power on the tyrosinase enzyme than the ascorbic acid, used as positive control. The hydromethanolic extract of T. triangulare proved to have powerful antioxidant activity and to inhibit the tyrosinase enzyme; its potential is increased after the partition with chloroform.

  7. Antioxidant activity, acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum extracts

    Directory of Open Access Journals (Sweden)

    Elena Neagu

    2018-03-01

    Full Text Available In this study several investigations and tests were performed to determine the antioxidant activity and the acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum aqueous extracts (10% mass and ethanolic extracts (10% mass and 70% ethanol, respectively. Moreover, for each type of the prepared extracts of P. officinalis and of C. umbellatum the content in the biologically active compounds – polyphenols, flavones and proanthocyanidins was determined. The antioxidant activity was assessed using two methods, namely the 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and reducing power assay. The analyzed plant extracts showed a high acetylcholinesterase and tyrosinase inhibitory activity in the range of 72.24–94.24% (at the highest used dose – 3 mg/mL, 66.96% and 94.03% (at 3 mg/mL, respectively correlated with a high DPPH radical inhibition – 70.29–84.9% (at 3 mg/mL. These medicinal plants could provide a potential natural source of bioactive compounds and could be beneficial to the human health, especially in the neurodegenerative disorders and as sources of natural antioxidants in food industry. Keywords: Acetylcholinesterase inhibitory activity, Tyrosinase inhibitory activity, Antioxidant activity, Pulmonaria officinalis and Centarium umbellatum

  8. Tyrosinase Inhibitory and Antioxidant Activities of Silk Cocoons and Mulberry Leaves

    International Nuclear Information System (INIS)

    Thongphasuk, Jarunee; Thongphasuk, Piyanuch

    2005-10-01

    Silk cocoons and mulberry leaves have been used in the field of medicines, cosmetics, and foods. The objective of this study is to determine the antioxidant activities of silk cocoons and mulberry leaves using 1,1-diphenyl-2-picryl-hydrazyl radical and thin-layer chromatography (TLC), and to determine tyrosinase inhibitory activities using dihydroxyphenylalanine. The water and ethanol extracts from silk cocoons (Nang Noi, U B1, and Lao) and mulberry leaves showed antioxidants and tyrosinase inhibitory activities. However, the extracts from all samples at 1,000 μg/reaction mixture inhibited tyrosinase in the range of 12.28-45.98%, which was much lower than the standard whitening agent kojic acid (IC50 0.45 μg/reaction mixture). The results from TLC showed that the ethanol extracts from the 3 species of cocoons contained flavonoids, but only the extract from Nang Noi contained carotenoid. In addition, the separation destroyed the fraction with high antioxidant activity. Therefore, the disadvantage of the extract separation is increased cost and decreased antioxidant activities

  9. Tyrosinase Inhibitory and Antioxidant Activities of Silk Cocoons and Mulberry Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Thongphasuk, Jarunee [Office of Atoms for Peace, Bangkok (Thailand); Thongphasuk, Piyanuch [Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rangsit University, Pathumthani (Thailand)

    2005-10-15

    Silk cocoons and mulberry leaves have been used in the field of medicines, cosmetics, and foods. The objective of this study is to determine the antioxidant activities of silk cocoons and mulberry leaves using 1,1-diphenyl-2-picryl-hydrazyl radical and thin-layer chromatography (TLC), and to determine tyrosinase inhibitory activities using dihydroxyphenylalanine. The water and ethanol extracts from silk cocoons (Nang Noi, U B1, and Lao) and mulberry leaves showed antioxidants and tyrosinase inhibitory activities. However, the extracts from all samples at 1,000 {mu}g/reaction mixture inhibited tyrosinase in the range of 12.28-45.98%, which was much lower than the standard whitening agent kojic acid (IC50 0.45 {mu}g/reaction mixture). The results from TLC showed that the ethanol extracts from the 3 species of cocoons contained flavonoids, but only the extract from Nang Noi contained carotenoid. In addition, the separation destroyed the fraction with high antioxidant activity. Therefore, the disadvantage of the extract separation is increased cost and decreased antioxidant activities.

  10. Evaluation of Cinnamomum osmophloeum Kanehira Extracts on Tyrosinase Suppressor, Wound Repair Promoter, and Antioxidant

    Directory of Open Access Journals (Sweden)

    Man-Gang Lee

    2015-01-01

    Full Text Available Cinnamomum osmophloeum Kanehira belongs to the Lauraceae family of Taiwan’s endemic plants. In this study, C. osmophloeum Kanehira extract has shown inhibition of tyrosinase activity on B16-F10 cellular system first. Whether extracts inhibited mushroom tyrosinase activity was tested, and a considerable inhibition of mushroom tyrosinase activity by in vitro assays was presented. Animal experiments of C. osmophloeum Kanehira were carried out by observing animal wound repair, and the extracts had greater wound healing power than the vehicle control group (petroleum jelly with 8% DMSO, w/v. In addition, the antioxidant capacity of C. osmophloeum Kanehira extracts in vitro was evaluated. We measured C. osmophloeum Kanehira extract’s free radical scavenging capability, metal chelating, and reduction power, such as biochemical activity analysis. The results showed that a high concentration of C. osmophloeum Kanehira extract had a significant scavenging capability of free radical, a minor effect of chelating ability, and moderate reducing power. Further exploration of the possible physiological mechanisms and the ingredient components of skincare product for skin-whitening, wound repair, or antioxidative agents are to be done.

  11. Anthocyanin contents in the seed coat of black soya bean and their anti-human tyrosinase activity and antioxidative activity.

    Science.gov (United States)

    Jhan, J-K; Chung, Y-C; Chen, G-H; Chang, C-H; Lu, Y-C; Hsu, C-K

    2016-06-01

    The seed coat of black soya bean (SCBS) contains high amount of anthocyanins and shows antioxidant and anti-mushroom tyrosinase activities. The objectives of this study were to analyse the anthocyanins in SCBS with different solvents and to find the relationship between anthocyanin profile with anti-human and anti-mushroom tyrosinase activities. SCBS was extracted with hot water, 50 and 80% ethanol, 50 and 80% acetone and 50 and 80% acidified acetone. Total phenol and total flavonoid contents in the extracts were determined. Anthocyanins in the extracts were analysed using HPLC and LC/MS/MS. A genetically engineered human tyrosinase was used to evaluate the anti-tyrosinase potential of the extracts from SCBS. 80% acetone extract from SCBS obtained the highest total phenol, total flavonoid and cyanidin-3-O-glucoside (C3G) contents among all the extracts, whereas the hot water extract showed the lowest antioxidant contents. Three anthocyanin compounds were found in all the extracts from SCBS, and the analysis of HPLC and LC/MS/MS indicated that they were C3G, delphinidin-3-O-glucoside (D3G) and peonidin-3-O-glucoside (P3G). The ratios of C3G (2.84 mg g(-1) ), D3G (0.34 mg g(-1) ) and P3G (0.35 mg g(-1) ) in 80% acidified acetone extract were 76.6, 9.1 and 9.3%, respectively. All the extracts from SCBS possessed anti-human tyrosinase activity. Moreover, a good correlation was found between the anti-human tyrosinase activities and C3G contents in the extracts. Antioxidants in SCBS also possess anti-human and anti-mushroom tyrosinase activities. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract.

    Science.gov (United States)

    Karim, Azila Abdul; Azlan, Azrina; Ismail, Amin; Hashim, Puziah; Abd Gani, Siti Salwa; Zainudin, Badrul Hisyam; Abdullah, Nur Azilah

    2014-10-07

    Cocoa pod is an outer part of cocoa fruits being discarded during cocoa bean processing. Authors found out that data on its usage in literature as cosmetic materials was not recorded in vast. In this study, cocoa pod extract was investigated for its potential as a cosmetic ingredient. Cocoa pod extract (CPE) composition was accomplished using UHPLC. The antioxidant capacity were measured using scavenging assay of 1,2-diphenyl-2-picrylhydrazyl (DPPH), β-carotene bleaching assay (BCB) and ferric reducing antioxidant power (FRAP). Inhibiting effect on skin degradation enzymes was carried out using elastase and collagenase assays. The skin whitening effect of CPE was determined based on mushroom tyrosinase assay and sun screening effect (UV-absorbance at 200-400 nm wavelength). LC-MS/MS data showed the presence of carboxylic acid, phenolic acid, fatty acid, flavonoids (flavonol and flavones), stilbenoids and terpenoids in CPE. Results for antioxidant activity exhibited that CPE possessed good antioxidant activity, based on the mechanism of the assays compared with ascorbic acid (AA) and standardized pine bark extract (PBE); DPPH: AA > CPE > PBE; FRAP: PBE > CPE > AA; and BCB: BHT > CPE > PBE. Cocoa pod extract showed better action against elastase and collagenase enzymes in comparison with PBE and AA. Higher inhibition towards tyrosinase enzyme was exhibited by CPE than kojic acid and AA, although lower than PBE. CPE induced proliferation when tested on human fibroblast cell at low concentration. CPE also exhibited a potential as UVB sunscreen despite its low performance as a UVA sunscreen agent. Therefore, the CPE has high potential as a cosmetic ingredient due to its anti-wrinkle, skin whitening, and sunscreen effects.

  13. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities

    Energy Technology Data Exchange (ETDEWEB)

    Basavegowda, Nagaraj; Idhayadhulla, Akber; Lee, Yong Rok, E-mail: yrlee@yu.ac.kr

    2014-10-01

    This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV–vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30–50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications. - Highlights: • Au and Ag nanoparticles were synthesized using Artemisia annua leaf aqueous extract. • Nanoparticles were characterized by UV–vis spectroscopy, FT-IR, TEM, EDX, XRD, and TGA. • Au and Ag nanoparticles were of size 25 and 30 nm respectively, in spherical forms. • Nanoparticles showed significant tyrosinase inhibitory and antibacterial activities.

  14. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities

    International Nuclear Information System (INIS)

    Basavegowda, Nagaraj; Idhayadhulla, Akber; Lee, Yong Rok

    2014-01-01

    This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV–vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30–50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications. - Highlights: • Au and Ag nanoparticles were synthesized using Artemisia annua leaf aqueous extract. • Nanoparticles were characterized by UV–vis spectroscopy, FT-IR, TEM, EDX, XRD, and TGA. • Au and Ag nanoparticles were of size 25 and 30 nm respectively, in spherical forms. • Nanoparticles showed significant tyrosinase inhibitory and antibacterial activities

  15. Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria

    Directory of Open Access Journals (Sweden)

    Shu-Yuan Chiou

    2015-12-01

    Full Text Available Camellia tenuifloria is an indigenous Camellia species used for the production of camellia oil in Taiwan. This study investigated for the first time the potential antioxidant, anti-tyrosinase and anti-inflammatory activities of oil production byproducts, specifically those of the fruit shell, seed shell, and seed pomace from C. tenuifloria. It was found that the crude ethanol extract of the seed shell had the strongest DPPH scavenging and mushroom tyrosinase inhibitory activities, followed by the fruit shell, while seed pomace was the weakest. The IC50 values of crude extracts and fractions on monophenolase were smaller than diphenolase. The phenolic-rich methanol fraction of seed shell (SM reduced nitric oxide (NO production, and inducible nitric oxide synthase (iNOS expression in lipopolysaccharide (LPS-stimulated RAW 264.7 cells. It also repressed the expression of IL-1β, and secretion of prostaglandin E2 (PGE2 and IL-6 in response to LPS. SM strongly stimulated heme oxygenase 1 (HO-1 expression and addition of zinc protoporphyrin (ZnPP, a HO-1 competitive inhibitor, reversed the inhibition of NO production, indicating the involvement of HO-1 in its anti-inflammatory activity. The effects observed in this study provide evidence for the reuse of residues from C. tenuifloria in the food additive, medicine and cosmetic industries.

  16. Evaluation of antioxidant, antihemolytic and antibacterial potential of six

    Directory of Open Access Journals (Sweden)

    Eimad dine Tariq Bouhlali

    2016-04-01

    These results suggested that date fruit extract, especially Jihl and Bousrdon extract, is not only an important source of antioxidants, which possess a high protective effect of membrane against free radical, but also a potential source of antibacterial components.

  17. Antioxidant and antibacterial activities of ethanolic extracts of ...

    African Journals Online (AJOL)

    Antioxidant and antibacterial activities of ethanolic extracts of Asparagus officinalis cv. Mary Washington: Comparison of in vivo and in vitro grown plant bioactivities. Arash Khorasani, Wirakarnain Sani, Koshy Philip, Rosna Mat Taha, Arash Rafat ...

  18. The phytochemical, antibacterial and antioxidant activity of five ...

    African Journals Online (AJOL)

    The phytochemical, antibacterial and antioxidant activity of five medicinal plants against the wound infecting bacteria. ... Phytochemical analyses of the extracts were performed using thin layer chromatography (TLC). ... Antibacterial activity of the plants was evaluated using micro-dilution and bioautography methods.

  19. Influence of Laccase and Tyrosinase on the Antioxidant Capacity of Selected Phenolic Compounds on Human Cell Lines

    Directory of Open Access Journals (Sweden)

    Matthias Riebel

    2015-09-01

    Full Text Available Polyphenolic compounds affect the color, odor and taste of numerous food products of plant origin. In addition to the visual and gustatory properties, they serve as radical scavengers and have antioxidant effects. Polyphenols, especially resveratrol in red wine, have gained increasing scientific and public interest due to their presumptive beneficial impact on human health. Enzymatic oxidation of phenolic compounds takes place under the influence of polyphenol oxidases (PPO, including tyrosinase and laccase. Several studies have demonstrated the radical scavenger effect of plants, food products and individual polyphenols in vitro, but, apart from resveratrol, such impact has not been proved in physiological test systems. Furthermore, only a few data exist on the antioxidant capacities of the enzymatic oxidation products of phenolic compounds generated by PPO. We report here first results about the antioxidant effects of phenolic substances, before and after oxidation by fungal model tyrosinase and laccase. In general, the common chemical 2,2-diphenyl-1-picrylhydrazyl assay and the biological tests using two different types of cell cultures (monocytes and endothelial cells delivered similar results. The phenols tested showed significant differences with respect to their antioxidant activity in all test systems. Their antioxidant capacities after enzymatic conversion decreased or increased depending on the individual PPO used.

  20. Antibacterial and antioxidant activities of the essential oils and ...

    African Journals Online (AJOL)

    The present study deals with the evaluation of the in vitro antioxidant and antibacterial activity of phenolic extracts and essential oils of two medicinal and aromatic plants Zygophyllum album and Myrtus communis by using the 2,2- diphenyl-2-picrylhydrazyl radical, total antioxidant power and agar diffusion methods and ...

  1. Determination of Antioxidant, Anticholinesterase, Tyrosinase Inhibitory Activities and Fatty Acid Profiles of 10 Anatolian Klasea Cass. Species

    Directory of Open Access Journals (Sweden)

    Gülsen Tel

    2016-01-01

    Full Text Available In search of new natural fatty acid sources, extract of 10 different Turkish Klasea species were studies. Fatty acids of Klasea species were studied by GC and GC-MSD. Oleic acid (4.8-45.8%, palmitic acid (15.6-51.8%, linoleic acid (0.3-45.5%, palmitoleic acid (0.8-28.4% and linolenic acid (15.6-34.6% were the main fatty acids elucidated. All extracts were also subjected to acetylcholinesterase, butyrylcholinesterase, tyrosinase, β-carotene-linoleic acid, DPPH • scavenging, CUPRAC and ferrous ion-chelating ability activities. Total flavonoid and phenolic contents were determined as quercetin and pyrocatechol equivalents. All extracts showed significant antioxidant activity in all tests, except hexane extracts of K. serratuloides and K. cerinthifolia that showed weak inhibition against BChE and AChE. The hexane extract of K. coriaceae and methanol extract of K. serratuloides exhibited notable tyrosinase inhibitory activity.

  2. Camellia sinensis L. Extract and Its Potential Beneficial Effects in Antioxidant, Anti-Inflammatory, Anti-Hepatotoxic, and Anti-Tyrosinase Activities

    Directory of Open Access Journals (Sweden)

    Surached Thitimuta

    2017-03-01

    Full Text Available The aims of this study were to investigate the potential benefits of antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities of a methanolic extract of fresh tea leaves (FTE (Camellia sinensis L.. The antioxidant capacity was investigated using three different methods at different temperatures. The anti-inflammatory activity was studied in vitro by the inhibition of 5-lipoxygenase assay. The anti-hepatotoxic effect was investigated in CCl4-induced liver injury in rats. The anti-tyrosinase activities of the FTE and its principal phenolic compounds were investigated in l-3,4-dihydroxyphenylalanine (l-DOPA oxidation by a mushroom tyrosinase. A molecular docking study was conducted to determine how the FTE’s principal catechins interact with the tyrosinase. The FTE exhibited the best shelf life at low temperatures and demonstrated concentration-dependent antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase effects compared to positive references. Treatment of rats with the FTE at 2000 mg/kg/day for 28 consecutive days reversed CCl4-induced oxidative damage in hepatic tissues by lowering the levels of alanine aminotransferase by 69% and malondialdehyde by 90%. Our findings suggest that the FTE has the capacity to scavenge free radicals and can protect against oxidative stress induced by CCl4 intoxication. The docking results were consistent with our in vitro data, indicating the anti-tyrosinase potency of the principal catechins.

  3. Camellia sinensis L. Extract and Its Potential Beneficial Effects in Antioxidant, Anti-Inflammatory, Anti-Hepatotoxic, and Anti-Tyrosinase Activities.

    Science.gov (United States)

    Thitimuta, Surached; Pithayanukul, Pimolpan; Nithitanakool, Saruth; Bavovada, Rapepol; Leanpolchareanchai, Jiraporn; Saparpakorn, Patchreenart

    2017-03-04

    The aims of this study were to investigate the potential benefits of antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities of a methanolic extract of fresh tea leaves (FTE) ( Camellia sinensis L.). The antioxidant capacity was investigated using three different methods at different temperatures. The anti-inflammatory activity was studied in vitro by the inhibition of 5-lipoxygenase assay. The anti-hepatotoxic effect was investigated in CCl₄-induced liver injury in rats. The anti-tyrosinase activities of the FTE and its principal phenolic compounds were investigated in l-3,4-dihydroxyphenylalanine (l-DOPA) oxidation by a mushroom tyrosinase. A molecular docking study was conducted to determine how the FTE's principal catechins interact with the tyrosinase. The FTE exhibited the best shelf life at low temperatures and demonstrated concentration-dependent antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase effects compared to positive references. Treatment of rats with the FTE at 2000 mg/kg/day for 28 consecutive days reversed CCl₄-induced oxidative damage in hepatic tissues by lowering the levels of alanine aminotransferase by 69% and malondialdehyde by 90%. Our findings suggest that the FTE has the capacity to scavenge free radicals and can protect against oxidative stress induced by CCl₄ intoxication. The docking results were consistent with our in vitro data, indicating the anti-tyrosinase potency of the principal catechins.

  4. The Potency of White Rice (Oryza sativa), Black Rice (Oryza sativa L. indica), and Red Rice (Oryza nivara) as Antioxidant and Tyrosinase Inhibitor

    Science.gov (United States)

    Batubara, I.; Maharni, M.; Sadiah, S.

    2017-04-01

    Rice is known to have many beneficial biological activities and is often used as “bedak dingin”, a face powder. The content of vitamins, minerals, fiber, and several types of antioxidants, such as ferulic acid, phytic acid, tocopherol, and oryzanols [1-2] are predicted to be potential as a tyrosinase inhibitor. The purpose of this study is to determine the potency of extracts from there types of rice, namely white, red, and black rice as an antioxidant and tyrosinase inhibitor. The rice was extracted with three different solvents, n-hexane, ethyl acetate, and methanol. The results showed that the highest antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl method was found in the methanol extract of black rice (IC50 290 μg/mL). Meanwhile, ethyl acetate extract of white rice has the highest antioxidant activity withphosphomolybdic acid method (41 mmol α-tocopherol equivalents/g sample). Thus, methanol extract of black rice and ethyl acetate extract of white rice are potential as an antioxidant. For tyrosinase inhibitor, n-hexane extract of red rice (IC50 3156 μg/mL) was the most active extract. The active component for radical scavenging is polar compound and for antioxidant by phosphomolybdate method is less polar compounds in black rice methanol extract based on TLC bioautogram. In conclusion, the black rice is the most potent in antioxidant while red rice is for tyrosinase inhibition.

  5. Antioxidant, antibacterial activity, and phytochemical characterization of Melaleuca cajuputi extract.

    Science.gov (United States)

    Al-Abd, Nazeh M; Mohamed Nor, Zurainee; Mansor, Marzida; Azhar, Fadzly; Hasan, M S; Kassim, Mustafa

    2015-10-24

    The threat posed by drug-resistant pathogens has resulted in the increasing momentum in research and development for effective alternative medications. The antioxidant and antibacterial properties of phytochemical extracts makes them attractive alternative complementary medicines. Therefore, this study evaluated the phytochemical constituents of Melaleuca cajuputi flower and leaf (GF and GL, respectively) extracts and their antioxidant and antibacterial activities. Radical scavenging capacity of the extracts was estimated using 2,2-diphenyl-2-picrylhydrazyl and Fe(2+)-chelating activity. Total antioxidant activity was determined using ferric reducing antioxidant power assay. Well diffusion, minimum inhibitory concentration, and minimum bactericidal concentration assays were used to determine antibacterial activity against eight pathogens, namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, Staphylococcus epidermidis, Salmonella typhimurium, Klebsiella pneumonia, Streptococcus pneumoniae, and Pasteurella multocida. We identified and quantified the phytochemical constituents in methanol extracts using liquid chromatography/mass spectrometry (LC/MS) and gas chromatography (GC)/MS. This study reports the antioxidant and radical scavenging activity of M. cajuputi methanolic extracts. The GF extract showed better efficacy than that of the GL extract. The total phenolic contents were higher in the flower extract than they were in the leaf extract (0.55 ± 0.05 and 0.37 ± 0.05 gallic acid equivalent per mg extract dry weight, respectively). As expected, the percentage radical inhibition by GF was higher than that by the GL extract (81 and 75 %, respectively). A similar trend was observed in Fe(2+)-chelating activity and β-carotene bleaching tests. The antibacterial assay of the extracts revealed no inhibition zones with the Gram-negative bacteria tested. However, the extracts demonstrated activity against B. cereus, S. aureus, and S. epidermidis. In

  6. Chilean berry Ugni molinae Turcz. fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties.

    Science.gov (United States)

    López de Dicastillo, Carol; Bustos, Fernanda; Valenzuela, Ximena; López-Carballo, Gracia; Vilariño, Jose M; Galotto, Maria Jose

    2017-12-01

    The knowledge of the biological properties of fruits and leaves of murta (Ugni molinae Turcz.) has been owned by native Chilean culture. The present study investigated the phenolic content, the antioxidant, antimicrobial and anti-tyrosinase activities of different murta fruit and leaves extracts to approach their uses on future food, pharmaceutical and cosmetic applications. Extractions of murta fruit and leaves were carried out under water, ethanol and ethanol 50%. Phenolic content of these extracts was measured through Folin Ciocalteu test and the antioxidant power by four different antioxidant systems (ORAC, FRAP, DPPH and TEAC assays) owing to elucidate the main mechanism of antioxidant. Some flavonoids, such as rutin, isoquercitrin and quercitrin hydrate were identified and quantified through HPLC analysis. Antimicrobial activity was determined measuring minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values against Escherichia coli and Listeria monocytogenes, and the effect of these extracts on L. monocytogenes was confirmed by flow cytometry. Highest contents of polyphenol compounds were obtained in hydroalcoholic extracts (28±1mggallicacid/g dry fruit, and 128±6mggallicacid/g dry leaves). The same trend was found for the values of biological properties: hydroalcoholic extracts showed the strongest activities. Leaves presented higher antioxidant, antimicrobial and anti-tyrosinase properties than murta fruit. Highest antioxidant activity values according to ORAC, FRAP, TEAC and DPPH were 80±8mgTrolox/g, 70±2mgTrolox/g, 87±8mgTrolox/g and 110±12mgTrolox/g, respectively, for murta fruit samples, and 280±10mgTrolox/g, 192±4mgTrolox/g, 286±13mgTrolox/g and 361±13mgTrolox/g, respectively, for murta leaves. These activities were confirmed by HPLC analysis that revealed highest presence of analyzed compounds on leaves hydroalcoholic extract. Regarding to antimicrobial analysis, hydroalcoholic leaves extract presented the

  7. Antioxidant and antibacterial activity of Rhoeo spathacea (Swartz) Stearn leaves

    OpenAIRE

    Tan, Joash Ban Lee; Lim, Yau Yan; Lee, Sui Mae

    2013-01-01

    The decoction and infusion of Rhoeo spathacea (Swartz) Stearn leaves have been recognized as a functional food particularly in South America, but has not yet gained international popularity as a beverage. The primary aim of this study was to establish the viability of R. spathacea aqueous leaf extracts as a beverage, in terms of its antioxidant activity and antibacterial activity. The antioxidant contents of aqueous and methanol leaf extracts were evaluated by the total phenolic content (TPC)...

  8. Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract

    OpenAIRE

    Pervin, Mehnaz; Hasnat, Md Abul; Lim, Beong Ou

    2013-01-01

    Objective: To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum) . Methods: Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenolic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx), metal chelating activity, reduction power, lipid peroxidation inhibition and t...

  9. Phytochemical study, antioxidant and antibacterial activities of Stemodia maritima

    Directory of Open Access Journals (Sweden)

    Francisca R. L. da Silva

    2014-01-01

    Full Text Available Stemodinol, a new natural compound, together with known compounds including jaceidin, stemodin, stemodinoside B, isocrenatoside, verbascoside, crenatoside, and isoverbascoside, were isolated from Stemodia maritima Linn. The antioxidant (DPPH method and antimicrobial activities of stemodin, stemodinoside B, and crenatoside were investigated. Among the components tested, only crenatoside isolated from the roots showed a high antioxidant power. Stemodin and stemodinoside B exhibited antibacterial activities.

  10. Antibacterial and antioxidant activities of Licania tomentosa (Benth. fritsch (crhysobalanaceae

    Directory of Open Access Journals (Sweden)

    Silva J.B.N.F.

    2012-01-01

    Full Text Available This work describes the chemical composition, and evaluates the antimicrobial and antioxidant activities of a hydroalcoholic extract from the leaves of the Licania tomentosa. Gram positive and negative bacterial strains were used in this work. Examination of the phytochemical composition of L. tomentosa revealed the presence of secondary metabolites such as tannins, flavonoids, saponins, alkaloids, steroids and triterpenoids. An antibacterial assay pointed out that the extract had a lower minimal inhibitory concentration (MIC - 32 μg/mL towards Staphylococcus aureus (ATCC12692. The extract also presented antibacterial activity against other assayed bacteria, with the MIC varying between 64 and 512 μg/ mL. Our findings reveal that the extract presented an antioxidative capacity lower than that of BHT at the same concentration, used as positive control. Our results suggest that the levels and combinations between the secondary metabolites of this plant should be investigated to explain the demonstrated antibacterial activity.

  11. Antioxidant, Antibacterial and Cell Toxicity Effects of Polyphenols

    African Journals Online (AJOL)

    Z. Ghouila, S. Laurent, S. Boutry, L. Vander Elst, F. Nateche, R. N. Muller, A. Baaliouamer

    2017-01-01

    Jan 1, 2017 ... At 100 μg/mL, GSE induced a moderate toxicity of the order of ... the many phytochemical compounds consumed in our diet, polyphenols are the most ... action of grape seed extract in many health related areas due to its antioxidant effect [11]. In ...... antibacterial activities of southern Serbian red wines.

  12. Phytochemicals, antioxidant and antibacterial properties of a lichen ...

    African Journals Online (AJOL)

    Antioxidant activity assessment was performed using the free radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and reducing power assay. Phytochemical screening was done using chemical tests. Antibacterial activities of Cladonia digitata were determined by a disk diffusion method at ...

  13. antibacterial and antioxidant activities of the essential oils

    African Journals Online (AJOL)

    Belmimoun A, Meddah B, Meddah A.T.T and Sonnet P

    2016-05-01

    May 1, 2016 ... been used historically in the pharmaceutical, food and perfume industries because of their antibacterial properties, culinary and fragrance, respectively. Antioxidants have been widely used as additives to avoid the degradation of foods. Also, are compounds that react with free radicals, neualizing them and ...

  14. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract

    Science.gov (United States)

    Govindappa, M.; Hemashekhar, B.; Arthikala, Manoj-Kumar; Ravishankar Rai, V.; Ramachandra, Y. L.

    2018-06-01

    The current research study is to develop an easy and eco-friendly method for the synthesis of AgNPs using aqueous leaf extract of Calophyllum tomentosum (CtAgNPs) and evaluated the extract to know the effects of anti-bacterial, antioxidant, anti-diabetic, anti-inflammatory and anti-tyrosinase activity. Using UV-vis spectrophotometer, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) characterized the Calophyllum tomentosum mediated silver nanoparticles. The leaf extract of C. tomentosum yielded flavonoids, saponins, tannins, alkaloids, glycosides, phenols, terpenoids and coumarins. AgNPs formation was confirmed by UV-vis spectra at 438 nm. Crystalline structure with a face centered cubic (fcc) of AgNPs was observed in XRD. FTIR had shown that the phytochemicals were responsible for the reduction and capping material of silver nanoparticles. The size and shape of the AgNPs were determined using SEM. From EDX study analysed the strong absorption property of AgNPs. The CtAgNPs have showed significant antibacterial activity on multi drug resistance bacteria. The CtAgNPs had shown strong antioxidant (DPPH, H2O2 scavenging, nitric oxide scavenging power, reducing power) activities. The CtAgNPs had strongly inhibited the α-glucosidase and DPPIV compared to α-amylase. The CtAgNPs exhibited strong anti-inflammatory activity (albumin denaturation, membrane stabilization, heat haemolytic, protein inhibitory, lipoxygenase, xanthine oxidase) and tyrosinase inhibitory activity. To our best knowledge, this is the first attempt on the synthesis of silver nanoparticles using Calophyllum tomentosum leaves extract. Hence, to validate our results the in vivo studies at molecular level are needed to develop an antioxidant, anti-diabetic and anti-inflammatory agent.

  15. Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract

    Directory of Open Access Journals (Sweden)

    Mehnaz Pervin

    2013-12-01

    Full Text Available Objective: To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum . Methods: Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenolic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx, metal chelating activity, reduction power, lipid peroxidation inhibition and the prevention of oxidative DNA damage. Antibacterial activity was determined by using disc diffusion method against seven strains of bacteria. Results: Results found that V. corymbosum leaf extract had significant antibacterial activity. The tested extract displayed the highest activity (about 23.18 mm inhibition zone against Salmonella typhymurium and the lowest antibacterial activity was observed against Enterococcus faecalis (about 14.08 mm inhibition zone at 10 mg/ disc. The IC 50 values for DPPH, ABTS and radical scavenging activity were 0.120, 0.049 and 1.160 mg/mL, respectively. V. corymbosum leaf extract also showed dose dependent reduction power, lipid peroxidation, DNA damage prevention and significant antioxidant enzymatic activity. Conclusions: These findings demonstrate that leaf extract of V. corymbosum could be used as an alternative therapy for antibiotic-resistant bacteria and help prevent various free radical related diseases.

  16. Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract

    Science.gov (United States)

    Pervin, Mehnaz; Hasnat, Md Abul; Lim, Beong Ou

    2013-01-01

    Objective To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum). Methods Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenoic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx), metal chelating activity, reduction power, lipid peroxidation inhibition and the prevention of oxidative DNA damage. Antibacterial activity was determined by using disc diffusion for seven strains of bacteria. Results Results found that V. corymbosum leaf extract had significant antibacterial activity. The tested extract displayed the highest activity (about 23.18 mm inhibition zone) against Salmonella typhymurium and the lowest antibacterial activity was observed against Enterococcus faecalis (about 14.08 mm inhibition zone) at 10 mg/ disc. The IC50 values for DPPH, ABTS and radical scavenging activity were 0.120, 0.049 and 1.160 mg/mL, respectively. V. corymbosum leaf extract also showed dose dependent reduction power, lipid peroxidation, DNA damage prevention and significant antioxidant enzymatic activity. Conclusions These findings demonstrate that leaf extract of V. corymbosum could be used as an alternative therapy for antibiotic-resistant bacteria and help prevent various free radical related diseases.

  17. New insights into highly potent tyrosinase inhibitors based on 3-heteroarylcoumarins: Anti-melanogenesis and antioxidant activities, and computational molecular modeling studies.

    Science.gov (United States)

    Pintus, Francesca; Matos, Maria J; Vilar, Santiago; Hripcsak, George; Varela, Carla; Uriarte, Eugenio; Santana, Lourdes; Borges, Fernanda; Medda, Rosaria; Di Petrillo, Amalia; Era, Benedetta; Fais, Antonella

    2017-03-01

    Melanogenesis is a physiological pathway for the formation of melanin. Tyrosinase catalyzes the first step of this process and down-regulation of its activity is responsible for the inhibition of melanogenesis. The search for molecules capable of controlling hyperpigmentation is a trend topic in health and cosmetics. A series of heteroarylcoumarins have been synthesized and evaluated. Compounds 4 and 8 exhibited higher tyrosinase inhibitory activities (IC 50 =0.15 and 0.38μM, respectively), than the reference compound, kojic acid (IC 50 =17.9μM). Compound 4 acts as competitive, while compound 8 as uncompetitive inhibitor of mushroom tyrosinase. Furthermore, compounds 2 and 8 inhibited tyrosinase activity and melanin production in B16F10 cells. In addition, compounds 2-4 and 8 proved to have an interesting antioxidant profile in both ABTS and DPPH radicals scavenging assays. Docking experiments were carried out in order to study the interactions between these heteroarylcoumarins and mushroom tyrosinase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of the antioxidant, antibacterial, and antiproliferative ...

    African Journals Online (AJOL)

    anisaldehyde reagents. The total phenolic content of the extract was determined by Folin-Ciocalteu method and expressed as TAE/g dry weight. The extract was assayed for the in vitro anticancer activity using Jurkat T cells, antioxidant activity using ...

  19. Antioxidant and antibacterial properties of the Melissa officinalis essential oil

    Directory of Open Access Journals (Sweden)

    R. Mahmodi

    2016-06-01

    Full Text Available Background: Increasing drug resistance in microorganisms and concerns for side effects of chemical preservatives, especially in the food industry, have led to extensive studies on novel potential agents with natural origin. Objective: The aim of this study was to determine the antioxidant and antibacterial properties of the Melissa officinalis essential oil. Methods: This experimental study was carried out at Islamic Azad University, Saveh Branch in 2012-2013. The essential oil was extracted from different parts of the plant (leaves, stem and flower by hydrodistillation. The essential oil was phytochemically characterized by gas chromatography-mass spectrometry (GC-MS analysis. Antibacterial properties were examined by disc diffusion and microtiter plates. Antioxidant activity was examined by diphenyl-picryl-hydrazyl (DPPH assay. Findings: E-Citral in leaves, 2-Cyclohexen-1-one, 2-methyl-5-(1-methylethenyl in stem, and Trans-Carveol in flower were the major components identified in the Melissa officinalis. Among different parts essential oil, the highest and the lowest antibacterial activity were related to leaves and stem, respectively. The largest diameter of the inhibition growth zone for Staphylococcus aureus and Pseudomonas aeruginosa was related to the leaves essential oil. The highest antioxidant activity was related to the leaves essential oil in DPPH assay. Conclusion: With regards to the results, the Melissa officinalis essential oil can be used as a natural preservative for increasing the shelf life of foods.

  20. Antioxidant and antibacterial activity of Rhoeo spathacea (Swartz) Stearn leaves.

    Science.gov (United States)

    Tan, Joash Ban Lee; Lim, Yau Yan; Lee, Sui Mae

    2015-04-01

    The decoction and infusion of Rhoeo spathacea (Swartz) Stearn leaves have been recognized as a functional food particularly in South America, but has not yet gained international popularity as a beverage. The primary aim of this study was to establish the viability of R. spathacea aqueous leaf extracts as a beverage, in terms of its antioxidant activity and antibacterial activity. The antioxidant contents of aqueous and methanol leaf extracts were evaluated by the total phenolic content (TPC) and total flavonoid content (TFC) assays. The antioxidant activities measured were DPPH radical scavenging activity (FRS), ferric reducing power (FRP) and ferrous ion chelating (FIC) activity. The aqueous leaf extracts in the forms of decoction and infusion, were found to have comparable TPC and antioxidant activity with other herbal teas previously reported by our research group. Both decoction and infusion also exhibited antibacterial activity against six species of Gram positive and four species of Gram negative bacteria, notably methicillin-resistant Staphylococcus aureus and Neisseria gonorrhoeae. A total of four different known phenolic compounds were identified by HPLC and MS, three of which have not been previously reported to be found in this plant. Both the decoction and infusion of the leaves R. spathacea have potential to be popularized into a common beverage.

  1. Antibacterial, antioxidant and cell proliferative properties of Coccinia grandis fruits

    Directory of Open Access Journals (Sweden)

    Prashant Sakharkar

    2017-06-01

    Full Text Available Objective: Little knowledge is available on the antimicrobial and antioxidant properties of Coccina grandis fruits and no study has reported on its cell proliferative property. The aim of this study was to examine the antimicrobial, antioxidant and cell proliferative property of fruits of C. grandis. Material and Methods: Fruits of C. grandis were extracted using water; ethanol and acetone by cold and hot Soxhlet extraction. The antibacterial activities of the extracts were tested against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa using the modified Kirby-Bauer diffusion method and compared against erythromycin. The antioxidant property was determined using Cayman's antioxidant assay; whereas cell proliferation/cytotoxic properties were evaluated using the Cell Titer 96 Aqueous One Solution Cell MTS assay with MDA-MB 321 breast cancer cells. Data were analyzed for correlation and differences using unpaired student's t-test and one-way ANOVA. A p value of Results: Both cold and hot ethanol and acetone extracts of C. grandis fruits showed some degree of bacterial growth inhibition. Acetone extracts exhibited higher antibacterial activity. Both ethanol extracts showed antioxidant property when compared with standard Trolox. In contrary to cytotoxicity, all four extracts showed cell proliferation compared to controls at different concentrations. However, acetone extracts exhibited greater cell proliferation compared to ethanol extracts and cold extracts performed better than the hot extracts. Conclusion: C. grandis fruits exhibited some degree of antimicrobial, antioxidant and cell proliferative properties. Further investigation is warranted to isolate, confirm and characterize phytochemicals that are responsible for the medicinal properties observed.

  2. Antioxidant activity and inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from ribose-histidine Maillard reaction products on aldose reductase and tyrosinase.

    Science.gov (United States)

    Hwang, Seung Hwan; Wang, Zhiqiang; Suh, Hong-Won; Lim, Soon Sung

    2018-03-01

    This study aimed to better understand the functional properties of ribose and 20 amino acid Maillard reaction products (MRPs). The ABTS + radical scavenging ability of the ribose-20 amino acid MRPs was evaluated. Among the MRPs, ribose-histidine MRPs (RH-MRPs) showed the highest inhibitory activities on the ABTS + radical scavenging ability, aldose reductase (AR), and tyrosinase compared to other MRPs. Functional compounds with antioxidant and AR inhibitory activities have been recognized as an important strategy in the prevention and treatment of diabetic complications, and the search for tyrosinase inhibitors is important for the treatment of hyperpigmentation, development of skin-whitening agents, and use as preservatives in the food industry. On this basis, we sought to isolate and identify compounds with inhibitory activities against AR and tyrosinase. RH-MRPs were heated at 120 °C for 2 h and fractionated using four solvents: methylene chloride (MC), ethyl acetate, n-butanol, and water. The highest inhibitions were found in the MC fraction. The two compounds from this fraction were purified by silica gel column and preparative thin layer chromatography, and identified as 2-hydroxy-3-methylcyclopent-2-enone and furan-3-carboxylic acid. AR inhibition, tyrosinase inhibition, and ABTS + scavenging (IC 50 ) of 2-hydroxy-3-methylcyclopent-2-enone were 4.47, 721.91 and 9.81 μg mL -1 , respectively. In this study, inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from RH-MRP were demonstrated on AR, tyrosinase, and its antioxidant activity for the first time. RH-MRP and its constituents can be developed as beneficial functional food sources and cosmetic materials and should be investigated further as potential functional food sources.

  3. Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Abdullah Ijaz Hussain

    2010-12-01

    Full Text Available The aim of this work was to investigate and compare the antiproliferative, antioxidant and antibacterial activities of Rosmarinus officinalis essential oil, native to Pakistan. The essential oil content from the leaves of R. officinalis was 0.93 g 100g-1. The GC and GC-MS analysis revealed that the major components determined in R. officinalis essential oil were 1,8-cineol (38.5%, camphor (17.1%, α-pinene (12.3%, limonene (6.23%, camphene (6.00% and linalool (5.70%. The antiproliferative activity was tested against two cancer (MCF-7 and LNCaP and one fibroblast cell line (NIH-3T3 using the MTT assay, while, the antioxidant activity was evaluated by the reduction of 2, 2-diphenyl-1-picryl hydrazyl (DPPH and measuring percent inhibition of peroxidation in linoleic acid system. The disc diffusion and modified resazurin microtitre-plate assays were used to evaluate the inhibition zones (IZ and minimum inhibitory concentration (MIC of R. officinalis essential oil, respectively. It is concluded from the results that Rosmarinus officinalis essential oil exhibited antiproliferative, antioxidant and antibacterial activities.

  4. Flavonoids of Helichrysum compactum and their antioxidant and antibacterial activity.

    Science.gov (United States)

    Süzgeç, Sevda; Meriçli, Ali H; Houghton, Peter J; Cubukçu, Bayhan

    2005-03-01

    From the capitula of Helichrysum compactum, the flavonoids apigenin, kaempferol, luteolin, naringenin, 3,5-dihydroxy-6,7,8-trimethoxyflavone, kaempferol-3-O-glucoside, luteolin-7-O-glucoside and luteolin-4',7-di-O-glucoside and from the leafy stems apigenin, kaempferol, luteolin, quercetin, apigenin-7-O-glucoside, luteolin-7-O-glucoside, and quercetin-3-O-glucoside were isolated. Extracts of the capitula of H. compactum show antioxidant activity by inhibition of lipid peroxidation and also show antibacterial activity.

  5. Antioxidant and antibacterial activity of Thai medicinal plant (Capparis micracantha)

    Science.gov (United States)

    Laoprom, Nonglak; Sangprom, Araya; Chaisri, Patcharaporn

    2018-04-01

    This work aims to study the antioxidants capacity, Total phenolic content and antibacterial activity of Thai medicinal plant for the treatment of dermatitis-related inflammations, Capparis micracantha. Crude extract from stem of Thai medicinal plant was extracted with hexane, ethyl acetate, methanol and water. The antioxidant activities (IC50) was evaluated with 1,1-diphenyl-1-princylhydrazyl (DPPH) radical scavenging assay. Total phenolic content (TPC) was determined by using Folin-Ciocalteu method. Bacterial activities was tested with four human pathogenic bacteria; Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Stapylococcus epidermidis by using agar diffusion assay. Minimum Inhibition Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were also determined by broth dilution method. For antioxidant activity, the methanol fraction from stem extract showed the highest activity with an IC50 of 2.4 mg/ml. Water extraction was the high TPC with 10,136.9 mg GAE/g dry weight. Methanol and water extraction showed the remarkable inhibition of bacterial growth was shown against L. monocytogenes and S. aureus. In addition, ethyl acetate, methanol and water fraction from stem extract against S. epidermidis. The present finding suggests that the extract of C. micracantha could be used to discover bioactive natural products that may serve as pharmaceutical products.

  6. Antioxidant and antibacterial activities of acetonitrile and hexane extracts of Lentinus tigrinus and Pleurotus djamour

    Science.gov (United States)

    This paper highlighted the antioxidant and antibacterial activities of Lentinus tigrinus and Pleurotus djamour. Extracts of mushroom fruiting bodies were obtained using hexane and acetonitrile solvents. Acetonitrile extracts of both mushrooms exhibited higher biological activities than hexane extrac...

  7. Antibacterial activities, antioxidant contents and antioxidant properties of three traditional Chinese medicinal extracts

    Directory of Open Access Journals (Sweden)

    Wenbin Li

    2015-03-01

    Full Text Available The present study was carried out to identify antibacterial and antioxidant characteristics of traditional aqueous extracts derived from three traditional Chinese medicinal plants (Scutellaria baicalensis, Coptis chinensis and Sonchus oleraceus. It was indicated that the S. oleraceus showed the highest antibacterial efficacy, especially against Staphylococcus aureus. The minimum inhibitory concentration (MIC of the S. oleraceus was 5.0 mg/mL what was in correlation with the high total phenolic and flavonoid contents and CUPRAC value, and MIC of both S. baicalensis and C. chinensis was 7.5 mg/mL. The rational pH of the working S. oleraceus was acidic, while the other two preferred to neutral or alkaline environment. The reasonable preservation temperature of S. baicalensis should not beyond 60°C, while the other two below 90°C. Meanwhile, S. baicalensis had significant antioxidant activity with the highest CUPRAC and ·OH scavenging activity. These results had provided useful information on further drug discovery.

  8. Synthesis, antioxidant and antibacterial activities of 3-nitrophenyl ferrocene

    Science.gov (United States)

    Benabdesselam, S.; Izza, H.; Lanez, T.; Guechi, E. K.

    2018-03-01

    The current work aims in its first part to synthesize 3-nitrophenylferrocene after diazotizing nitroaniline in the meta position by the sodium nitrite and the formation of the corresponding diazonium salt: 3-nitrobenzendiazonium sulfate, then the salt in solution was added to the ferrocene for the purpose of introducing the nitrophenyl moiety thereon (arylation) and the formation of 3-nitrophenylferrocene. The second part is devoted to the study of the antioxidant activity of 3-NPF by applying the trapping test of superoxide radical using cyclic voltammetry, the free radical DPPH trapping test by spectrophotometry. The results showed that 3-nitrophenylferrocene has a scavenging effect of DPPH radical with IC50 = 1.44mg/ml, superoxide radical with IC50=5.38mg/ml. The third part is devoted to the study of antibacterial activity of the synthesized compound tested on four strains of bacteria: Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis and Klebsiella pneumoniae. The obtained results clearly showed that 3-nitrophenylferrocene has low activities on the four bacterial strains with diameters of inhibition zones do not exceeding 17 mm at concentrations of 25mg/ml.

  9. Antibacterial and antioxidative compounds from Cassia alata Linn.

    Directory of Open Access Journals (Sweden)

    Trinop Promgool

    2014-08-01

    Full Text Available Phytochemical investigation of Cassia alata Linn. led to the isolation of six known anthraquinones: aloe-emodin (1, emodin (2, ω-hydroxyemodin (3, lunatin (4, physcion (5, and ziganein (6, six flavonoids: apigenin (7, 7,4'-dihydroxy-5- methoxyflavone (8, diosmetin (9, kaempferol (10, luteolin (11, and trans-dihydrokaempferol (12 as well as one stilbene, trans-resveratrol (13. Their structures were elucidated on the basis of spectroscopic methods, including UV, IR, NMR and MS. Nine compounds (3-9 and 12-13 were reported for the first time as metabolites of C. alata. Compound 2 exhibited strong antibacterial activity against methicillin resistant S. aureus (MRSA-SK1 and B. cereus TISTR 687 with MIC values of 4 and 8 µg/mL, respectively. Compound 10 was found to exhibit antioxidative activity with IC50 value of 9.67 µM that was three times stronger than that of ascorbic acid (IC50 25.41 µM.

  10. Antibacterial and Antioxidant Activities of Liquidambar Orientalis Mill. Various Extracts Against Bacterial Pathogens Causing Mastitis

    Directory of Open Access Journals (Sweden)

    Gülten Ökmen

    2017-08-01

    Full Text Available Antibiotic resistance is being constantly developed worldwide. Coagulase Negative Staphylococci (CNS and Staphylococcus aureus are common causes of bovine subclinical mastitis. Bioactive compound of medicinal plants shows anti-microbial, anti-mutagenic and anti-oxidant effects. The anti-bacterial and anti-oxidant activities of Liquidambar orientalis (L. orientalis extracts on subclinical mastitis causing bacteria in cows have not been reported to date. The aim of the present study was to examine anti-bacterial and anti-oxidant effects of L. orientalis leaf extracts on S. aureus and CNS isolated from cows with subclinical mastitis symptoms. In this study, 3.2 mg/mL minimum inhibitory concentration (MIC of ethanol extracts of L. orientalis has shown to be a most potent anti-bacterial and anti-oxidant for all isolated bacterial species from mastitis cows. In this study, it was investigated anti-bacterial and anti-oxidant potentials of acetone, methanol and ethanol extracts of the L. orientalis. The acetone extract showed maximum inhibition zone against S. aureus numbered 17 (12 mm. In addition to anti-bacterial properties, anti-oxidant activity of L. orientalis extract was examined by ABTS [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid] free radical assay. Trolox was used as a positive control anti-oxidant. Ethanol extract exhibited a strong anti-oxidant activity like Trolox anti-oxidant which was effective at 2.58 mM concentration. Bioactive compounds of sweet gum may be useful to screening mastitis causing bacteria for clinical applications.

  11. Antioxidant and antibacterial activities of various extracts of Inula cuspidata C.B. Clarke stem

    Directory of Open Access Journals (Sweden)

    Sarvesh Kumar Paliwal

    2017-06-01

    All the extracts showed significant antibacterial activities against Gram positive bacterial strains with minimum inhibitory concentration (MIC values ranging from 187.5 to 750 µg/mL and moderate to weak inhibition against Gram negative bacteria with MIC values ranging from 750 to 3000 µg/mL. The present study proves the in vitro anti-oxidant and antibacterial activities of different extracts of I. cuspidata stem.

  12. Antibacterial, antioxidant and antitumor properties of Moroccan medicinal plants: A review

    Directory of Open Access Journals (Sweden)

    Abdelhakim Bouyahya

    2017-01-01

    Full Text Available Aromatic and medicinal plants have been traditionally used since antiquity to fight against illnesses. Recently, several researches have focused on the pharmacological properties and various bioactivities of natural products are extracted from medicinal plants, including the properties of antibacterial, antitumor and antioxidant activities. The products of medicinal plants are the secondary metabolites belonging to different compound classes such as essential oils, polyphenols, flavonoids and other phytochemical classes. In Morocco, medicinal plants are the major source of bioactive compounds and the majority of them are used in phytotherapy. The biological potential of various Moroccan medicinal plants attracts a lot of interest in the literature. They include antibacterial, antioxidant and antitumor investigations. In this context, this work aims at discussing antibacterial, antitumor and antioxidant properties of Moroccan medicinal plants.

  13. Effect of ionizing radiation on antioxidants and antibacterial activities of Inula Viscasa

    International Nuclear Information System (INIS)

    Rhimi, W.; Issam, B; Saidi, M; Abdennacer, B; Maroua, J

    2015-01-01

    In the present study, the irradiation processing of Tunisian Inula Viscosa samples was carried out at dose of 5 kGy. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging activity, the azinobis ethylbenzothiazoline 6-sulphonic acid (ABTS) Ferric reducing antioxidant power (FRAP) assay and the antibacterial activities of both control and irradiated samples extracted in methanol and ethanol were evaluated. The results showed that the irr Tunisian Inula Viscosa extracts had strong antioxidant ability. The scavenger DPPH, ABTS and FRAP values of all extracts decreased significantly after irradiation. In addition, all extracts were effective against all the gram positive and gram negative pathogens. Gamma irradiation preserved the antibacterial activities of extracts and enhanced significantly (p≺0.05) the activity of extracts against E.coli. These data indicated the potential use of gamma-irradiation as a safe technique for preservation of Inula Viscosa as a medicinal plant with effective antioxidant and antibacterial activities

  14. Comparison of the Nutritive Value, Antioxidant and Antibacterial Activities of Sonchus asper and Sonchus oleraceus

    Directory of Open Access Journals (Sweden)

    Florence O. Jimoh

    2011-01-01

    Full Text Available Many local vegetable materials are under-exploited because of inadequate scientific knowledge of their nutritional potentials. For this reason, the nutritional, phytochemical, antioxidant and antibacterial activities of the acetone, methanol and water extracts of the leaves of Sonchus asper and Sonchus oleraceus were investigated. The proximate analysis showed that the plants contained appreciable percentage of moisture content, ash content, crude protein, crude lipid, crude fibre and carbohydrate. The plants are also rich in minerals, flavonoids, flavonols, proanthocyanidins, total phenols and low levels of saponins, phytate and alkaloids. The extracts of the 2 plants also showed strong antioxidant antibacterial properties.

  15. Antioxidant and antibacterial properties of Ziziphus mucronata and ...

    African Journals Online (AJOL)

    sulphuric acid reagent, Fehling's solution, concentrated sulphuric acid, ferric chloride, Drangendorff's reagent, acetic anhydride, 2, 2-diphenyl-1-picrylhydrazyl (DPPH), p-iodonitrotetrazolium violet, Methods: Antibacterial activity was evaluated using ...

  16. Phytochemicals, antioxidant and antibacterial properties of a lichen ...

    African Journals Online (AJOL)

    MARSHYMARGGIE

    2012-04-17

    Apr 17, 2012 ... done using chemical tests. Antibacterial activities of Cladonia digitata were determined by a disk ... of antimicrobial therapeutics or lead compounds to synthesis of new .... ingredients used in cosmetics. J. Am. Acad. Dermatol ...

  17. Phytochemical analysis of Andrographis paniculata and Orthosiphon stamineus leaf extracts for their antibacterial and antioxidant potential.

    Science.gov (United States)

    Malahubban, M; Alimon, A R; Sazili, A Q; Fakurazi, S; Zakry, F A

    2013-09-01

    Leaves of Andrographis paniculata and Orthosiphon stamineus were extracted with water, ethanol, methanol and chloroform to assess their potential as antibacterial and antioxidant agents. High performance liquid chromatography analysis showed that the methanolic extracts of A. paniculata and O. stamineus leaves gave the highest amounts of andrographolide and rosmarinic acid, respectively. These leaf extracts exhibited antimicrobial and antioxidant activities and, at the highest concentration tested (200 mg/mL), showed greater inhibitory effects against the Gram positive bacteria Bacillus cereus and Staphylococcus aureus than 10% acetic acid. Andrographis paniculata and O. stamineus methanolic and ethanolic leaf extracts also showed the strongest antioxidant activity as compared with the other extracts tested. The bioactive compounds present in these leaf extracts have the potential to be developed into natural antibacterial and antioxidant agents that may have applications in animal and human health.

  18. Phenolic content, antioxidant and antibacterial activity of selected natural sweeteners available on the Polish market.

    Science.gov (United States)

    Grabek-Lejko, Dorota; Tomczyk-Ulanowska, Kinga

    2013-01-01

    Seventeen natural sweeteners available on the Polish market were screened for total phenolic content, by the Folin-Ciocalteu method, and for antioxidant activity, using the ferric reducing antioxidant power (FRAP) assay and the 2,2'-Azinobis (3-ethylbenzthiazoline-6-sulphonic acid) radical cation decolorization assay (ABTS(·+)). In addition, we analyzed antibacterial activities against Staphylococcus aureus strains: both those susceptible and those resistant to methicillin (MRSA). The results of the study showed that total phenolic content, antioxidant activity and antibacterial activity differ widely among different samples of sweeteners. Phenolic content, expressed as a gallic acid equivalent, ranged from 0 mg kg(-1) in white, refined sugar, xylitol and wheat malt syrup to 11.4 g kg(-1) in sugarcane molasses. Antioxidant activity was lowest in refined white sugar, xylitol, brown beet sugar, liquid fructose, and rape honey; it was average in spelt syrup and corn syrup, and highest in sugar cane, beet molasses, date and barley syrups. Despite the great variety of sweeteners, a strong correlation was noted between the concentration of phenolics and antioxidant properties, as determined by the ABTS(·+) method (r = 0.97) and the FRAP assay (r = 0.77). The strongest antibacterial activity was observed in sugarcane molasses, which was lethal to S. aureus strains at 2 and 4% concentrations in medium for susceptible and MRSA strains respectively. Other sweeteners kill bacteria in 6-15% solutions, whereas some did not show any antibacterial activities against S. aureus strains, even at 20% concentrations. Due to their high antioxidant and antibacterial activities, some of the tested sweeteners have potential therapeutic value as supporting agents in antibiotic therapy.

  19. Antioxidant and antibacterial effects of laurus nobilis aqueous extract again Staphylococcus aureus and Escherichia coli

    Directory of Open Access Journals (Sweden)

    B. Azimzadeh

    2017-05-01

    Full Text Available Some medical plants which are rich in phenolic compounds (flavnoieds, tannis and anthocyanin have drawn increasing attention as the most important naturanal antioxidant source by many developed countries. Laurus nobilis is one of the medical plants that grows in various regions of Iran. This plants is known to have many benefits and medical properties such as diuretics and mosaics. Also, this plant is used in treatment of gastrointestinal problems, especialy and it is effectieve in elimination of stomach gas. In this experiment, we studied antioxidant and antibacterial effects of Laurus nobilis plant. To this purpose, the efficiency of aqueous solvent extract, phenolic compounds, DPPH radical scavenging and ferric-reducing power and ABTS free radical scavenging were examined. Antibacterial characteristics of aqueous extract was evaluated on Staphylococcus aureus and Escherichiacoli. The result shows that the aqueous extract of Lauros nobilis has 14/8% extraction efficiency with high rate of phenolic (99/9±9/95 and the lowest IC50 in DPPH test (2/813 and the high rate of ferric reducing power (22/15±2/10 and ABTS free radical scavenging (22/87±2/03. The result of antibacterial test also indicates that aqueous extract has high antibacterial effect on Staphylococcus aureus (18±0 and E. Coli (18±0 mm.These facts show high antioxidant and antibacterial activity of laurel’s extract.

  20. In vitro antioxidant, antibacterial and anti-tumor activities of total ...

    African Journals Online (AJOL)

    Purpose: To investigate the in vitro antioxidant, antibacterial and anti-tumor activities of total flavonoids from Elsholtzia densa Benth of Sichuan Province, China. Methods: The total flavonoids of Elsholtzia densa Bent were extracted utilizing the ultrasonic extraction method, and purified by D101 macroporous adsorption resin ...

  1. Investigating wound healing, tyrosinase inhibitory and antioxidant activities of the ethanol extracts of Salvia cryptantha and Salvia cyanescens using in vivo and in vitro experimental models.

    Science.gov (United States)

    Süntar, Ipek; Akkol, Esra Küpeli; Senol, Fatma Sezer; Keles, Hikmet; Orhan, Ilkay Erdogan

    2011-04-26

    Salvia L. species are widely used against wounds and skin infections in Turkish folk medicine. The aim of the present study is to evaluate wound healing activity of the ethanol (EtOH) extracts of Salvia cryptantha and Salvia cyanescens. For the assessment of wound healing activity linear incision and circular excision wound models were employed on rats and mice. The wound healing effect was comparatively evaluated with the standard skin ointment Madecassol(®). Inhibition of tyrosinase, a key enzyme in skin aging, was achieved using ELISA microplate reader. Antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenger effect, ferrous ion-chelating ability, and ferric-reducing antioxidant power (FRAP) tests. The EtOH extract of Salvia cryptantha treated groups of animals showed 56.5% contraction, whereas the reference drug Madecassol(®) showed 100% contraction. On the other hand, the same extract on linear incision wound model demonstrated a significant increase (33.2%) in wound tensile strength as compared to other groups. The results of histopathological examination maintained the upshot of linear incision and circular excision wound models as well. These findings specify that Salvia cryptantha for wound healing activity can be appealed further phytochemical estimation for spotting its active components. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Antioxidant and antibacterial activities of turkish endemic Sideritis extracts

    Directory of Open Access Journals (Sweden)

    Ünver, Ahmet

    2005-03-01

    Full Text Available Sideritis species are traditionally used as teas, flavoring agents and for medicinal purposes in Turkey . In this study, the antioxidant and antimicrobial activities of Sideritis condensata Boiss. & Heldr. (SC and Sideritis eryhrantha v ar. erythrantha Boiss. & Heldr. (SE endemic species' extracts of Lamiaceae were determined. These extracts were investigated for antibacterial activity by using the agar diffusion method against 15 species of bacteria: Aeromonas hydrophila, Bacillus cereus, Enterobacter aerogenes, Enterococcus feacalis, Escherichia coli, Escherichia coli O157:H7, Klebsiella pneumoniae, Mycobacterium smegmatis, Proteus vulgaris, Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella enteritidis, Salmonella typhimurium, Staphylococcus aureus and Yersinia enterocolitica. Statistical differences within bacteria were significant at pLas especies de Sideritis de usan tradicionalmente para la elaboración del té, como flavorizantes y con fines médicos en Turquía. En este estudio, se han determinado las actividades antimicrobiana y antioxidante de extractos de especies endémicas de la Familia Lamiaceae , como son Sideritis condensata Boiss. & Heldr. (SC y Sideritis erythrantha v ar. erythrantha Boiss. & Heldr. (SE. La actividad antibacteriana fue determinada mediante el método de difusión en agar con 15 especies de bacterias: Aeromonas hydrophila, Bacillus cereus , Enterobacter aerogenes, Enterococcus feacalis, Escherichia coli , Escherichia coli O157:H7, Klebsiella pneumoniae, Mycobacterium smegmatis, Proteus vulgaris, Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella enteritidis, Salmonella typhimurium, Staphylococcus aureus y Yersinia enterocolitica. Se consideraron diferencias estadísticamente significativas cuando p<0,05. El extracto de SC tuvo mayor actividad antimicrobiana que el extracto de SE. La bacteria más sensible fue P. aeruginosa , mientras que las más resistentes fueron E. feacalis para el extracto

  3. Antibacterial and Antioxidant Activities of Acid and Bile Resistant Strains of Lactobacillus fermentum Isolated from Miang

    Directory of Open Access Journals (Sweden)

    Srikanjana Klayraung

    2009-12-01

    Full Text Available Miang is a kind of traditional fermented tea leaves, widely consumed in northern Thailand as a snack. It contains several kinds of Lactobacilli spp. The aim of this study was to isolate strains of Lactobacillus fermentum from miang and to investigate their antibacterial and antioxidant activities. The agar spot and well assays were used for determination of antibacterial power. The antibacterial mechanism was investigated by cell morphologic change under scanning electron microscope (SEM. Antioxidant activity was studied by means of free radical scavenging and ferric reducing power assays. The acid and bile screening tests indicated that L. fermentum FTL2311 and L. fermentum FTL10BR presented antibacterial activity against several pathogenic bacteria: Listeria monocytogenes DMST 17303, Salmonella Typhi DMST 5784, Shigella sonnei DMST 561 (ATCC 11060and Staphylococcus aureus subsp. aureus DMST 6512 (ATCC 6538Ptm. The results from SEM suggested that the antibacterial action was due to the destruction of cell membrane which consequently caused the pathogenic cell shrinking or cracking. The antioxidant study suggested that both L. fermentum FTL2311 and L. fermentum FTL10BR strains could liberate certain substances that possessed antioxidant activity expressed as trolox equivalent antioxidant capacity (TEAC and equivalent concentration (EC values for free radical scavenging and reducing mechanisms, respectively. The supernatant of L. fermentum FTL2311 broth revealed TEAC and EC values of 22.54±0.12 and 20.63±0.17 µM.mg-1 respectively, whereas that of L. fermentum FTL10BR yielded TEAC and EC values of 24.09±0.12 and 21.26±0.17 µM.mg-1 respectively. These two strains isolated from miang present high potential as promising health-promoting probiotics.

  4. Tannins and extracts of fruit byproducts: antibacterial activity against foodborne bacteria and antioxidant capacity.

    Science.gov (United States)

    Widsten, Petri; Cruz, Cristina D; Fletcher, Graham C; Pajak, Marta A; McGhie, Tony K

    2014-11-19

    The shelf life of fresh fish and meat transported over long distances could be extended by using plant-based extracts to control spoilage bacteria. The goals of the present study were to identify plant-based extracts that effectively suppress the main spoilage bacteria of chilled fish and lamb and to assess their antioxidant capacity. The phenolic compounds in wood-based tannins and extracts isolated from byproducts of the fruit processing industry were identified and/or quantified. The total phenol content, but not the flavonoid to total phenol ratio, was strongly associated with higher antibacterial activity against several fish and lamb spoilage bacteria in zone of inhibition and minimum inhibitory concentration assays as well as greater antioxidant capacity in the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical assay. The most promising compounds in both cases, and thus good candidates for antibacterial packaging or antioxidant dietary supplements, were mango seed extract and tannic acid containing mostly polygalloyl glucose type phenols.

  5. Antioxidant and antibacterial activities of Cladophora glomerata (L ...

    African Journals Online (AJOL)

    Cladophora is one of the largest filamentous green-algal genus and has a widespread distribution in Caspian Sea Coast. This study aimed at assaying the antimicrobial and antioxidant activities of Cladophora glomerata in South of Caspian sea. The antioxidant activity of the extract was investigated, including the total ...

  6. Antibacterial, antioxidant and cytotoxic activities of extracts from the ...

    African Journals Online (AJOL)

    Unicellular green algal strains, identified as Cosmarium (Chlorophyta), were isolated from Ain-Echeffa hot spring in north Tunisia. Different extracts (methanol, hexane, acetone, acetone: methanol and water) obtained from both biomass and extracellular polysaccharides (EPS) were evaluated for their antibacterial, ...

  7. TOTAL PHENOLIC CONTENT, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES OF THE EXTRACT OF EPHEDRA PROCERA FISCH. ET MEY.

    Science.gov (United States)

    Dehkordi, Naser Vahed; Kachouie, Mehrdad Ataie; Pirbalouti, Abdollah Ghasemi; Malekpoor, Fatemeh; Rabei, Mohammad

    2015-01-01

    Ephedra prcera belonging to the family Ephedraceae is a poison and medicinal plant. The main aim of present study was to determine total phenolic content and antioxidant and antibacterial activities of ethanolic extract from the aerial parts of E. procera collected from a natural habitat in Chaharmahal va Bakhtiari province, Southwestern Iran. The total phenolic content of the extract by Folin-Ciocalteu method and the antioxidant activity using DPPH assay were determined. The antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of the extract were evaluated against five bacteria, including Proteus vulgaris, Pseudomonas aeruginosa, Enteobacter aeogenes, Bacillus ceirus and Staphylococcus aureus. Total phenolic content in the extract of E. procera was 0.718 mg tannic acid/g dry weight extract. The results indicated that the ethanolic extract of E. piocera exhibited radical scavenging activity. In addition, the results of this study confirmed that the ethanolic extract of E. procera exhibited antibacterial activity. In conclusion, the extract of E. piocera could be an important source of phenolic components with antioxidant capacity and antibacterial activity.

  8. Screening for Antibacterial and Antioxidant Activities and Phytochemical Analysis of Oroxylum indicum Fruit Extracts.

    Science.gov (United States)

    Sithisarn, Patchima; Nantateerapong, Petcharat; Rojsanga, Piyanuch; Sithisarn, Pongtip

    2016-04-07

    Oroxylum indicum, which is called Pheka in Thai, is a traditional Thai plant in the Bignoniaceae family with various ethnomedical uses such as as an astringent, an anti-inflammatory agent, an anti-bronchitic agent, an anti-helminthic agent and an anti-microbial agent. The young fruits of this plant have also been consumed as vegetables. However, there has been no report concerning its antibacterial activities, especially activities related to clinically isolated pathogenic bacteria and the in vitro antioxidant effects of this plant. Therefore, the extracts from O. indicum fruits and seeds collected from different provinces in Thailand were prepared by decoction and maceration with ethanol and determined for their in vitro antibacterial effects on two clinically isolated bacteria, Streptococcus suis and Staphylococcus intermedius, using disc diffusion assay. Ethanol extracts from O. indicum fruits collected from Nakorn Pathom province at the concentration of 1000 mg/mL exhibited intermediate antibacterial activity against S. intermedius with an inhibition zone of 15.11 mm. Moreover, it promoted moderate inhibitory effects on S. suis with an inhibition zone of 14.39 mm. The extracts prepared by maceration with ethanol promoted higher antibacterial activities than those prepared with water. The ethanol extract from the seeds of this plant, purchased in Bangkok, showed stronger in vitro antioxidant activities than the other extracts, with an EC50 value of 26.33 µg/mL. Phytochemical analysis suggested that the seed ethanol extract contained the highest total phenolic and flavonoid contents (10.66 g% gallic acid equivalent and 7.16 g% quercetin equivalent, respectively) by a significant amount. Thin layer chromatographic analysis of the extracts showed the chromatographic band that could correspond to a flavonoid baicalein. From the results, extracts from O. indicum fruits have an in vitro antioxidant effect, with antibacterial potential, on clinically pathologic

  9. The phytochemical, antibacterial and antioxidant activity of five ...

    African Journals Online (AJOL)

    bassie

    2012-08-23

    Aug 23, 2012 ... suppression and allergic reactions (Ahmad et al., 1998). There is an increased .... presence of antioxidant compounds was detected by yellow spots against a purple ... and animals (McGaw and Eloff, 2008). A literature survey.

  10. Evaluation of Antibacterial and Antioxidant Activity of Leaves, Fruit and Bark of Kigelia Africana

    International Nuclear Information System (INIS)

    Fatima, I.; Shabir, S.; Bano, S.

    2016-01-01

    In vitro antibacterial activity of extracts was tested against six bacterial strains viz. Staphylococcus aureus, Proteus vulgaris, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Citrobacter amalonaticus by agar-disc diffusion method. Ethanol and n-hexane were used as negative control and oxytetracycline was used as a positive control. Ethanolic and aqueous extracts of bark and leaves of Kigelia africana showed remarkable activity against various bacterial strains as compared to n-hexane. S. aureus and E. coli were proved as highly sensitive strains while K. pneumonia was the resistant strain as the extracts formed no inhibition zone against it. The percentage of antioxidant activity of different parts of Kigelia was assessed by DPPH (1, 1-diphenyl-2-picrylhydrazyl) free radical assay. Quercetin was used as a standard antioxidant which showed 93.6 percent inhibition. Kigelia bark extract showed good antioxidant activity i.e., 67.33 percent inhibition, fruit extract possess moderate antioxidant activity i.e., 62.66 percent inhibition while leaves showed the poor antioxidant activity i.e., 59.66 percent DPPH inhibition respectively. Overall, the comparative analysis revealed that bark extract exhibited the most remarkable antibacterial as well as antioxidant activity as compared to leaves and fruit extracts. (author)

  11. ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES OF BIXIN PIGMENT FROM ANNATTO (Bixa orellana L. SEEDS

    Directory of Open Access Journals (Sweden)

    Pipin T. Kurniawati

    2010-06-01

    Full Text Available Research on Bixa orellana L. have been done to isolate, identify and determine bixin percentage, the antioxidant and antibacterial activities of bixin from B. orellana seed.  Isolation and identification of bixin was done by thin layer chromatography (TLC, column chromatography, chemical test of bixin and UV-Vis double beam spectroscopy. Percentage of bixin was calculated by JECFA method, the antioxidant activity was determined by DPPH (1-1 diphynilpicrylhidrazil method while antibacterial activity was analyzed by the use of agar diffusion method. Thin layer chromatography (TLC for the crude extract contained 5 spot, where spot 5th was bixin. Bixa orellana has 75±3% of bixin. Antioxidant activity of bixin had IC50 548.5±20.0 ppm. Whereas the antibacterial activity of bixin against the Escherichia coli and Staphylococus aureus could be classified as weak inhibition category at 500-750 μg and medium inhibition category at 1500 μg.   Keywords: Bixa orellana L., bixin, antioxidant, antibacteria

  12. Antioxidant and antibacterial activities of selected varieties of thai mango seed extract.

    Science.gov (United States)

    Khammuang, Saranyu; Sarnthima, Rakrudee

    2011-01-01

    This study reports the antioxidant and antibacterial activities of four fresh mango seed extracts from Thai varieties. Total phenol contents determined by the Folin-ciocalteu method revealed the highest values to be in MKE, Chok-a-nan variety (399.8 mgGAE/g extract) and MSE of Nam-dok-mai variety (377.2 mgGAE/g extract). Both extracts showed potent ABTS˙+ radical and DPPH˙ radical scavenging activities with the lower half inhibition concentration (IC50) values than those of the reference compounds; vitamin C, trolox and BHA, respectively. Their antioxidant property of MSE and MKE is strongly correlated with the total phenol contents (r=0.98 and 0.98, respectively). When combined the MSE and MKE of the Fah-lun variety showed the strongest antioxidant activity. All mango seed extracts showed interesting antibacterial activity against both gram positive and gram negative bacteria as determined by disc diffusion method. The most sensitive pathogenic strain inhibited by all extracts (especially Kaew variety) was Pseudomonas aeruginosa ATCC 27853. This work suggests potential applications for practical uses of mango seed extracts from Thai varieties, as sources of antioxidant and antibacterial agents.

  13. GC-MS analysis, Antibacterial, Antioxidant and Anticancer activity of essential oil of Pinus roxburghii from Kashmir, India

    OpenAIRE

    Wajaht A. Shah; Mahpara Qadir; Javid A. Banday

    2014-01-01

    This work was carried out to evaluate chemical composition, antibacterial, antioxidant and anticancer activity of Pinus roxburghii essential oil. The oil was extracted by hydro-distillation which was analysed through GC-MS. The antibacterial activity was evaluated by agar well diffusion method and antioxidant activity was evaluated through DPPH assay while as anticancer activity was evaluated through MTT method. Alpha-pinene and beta-pinene were the major constituents present in the oil. This...

  14. Indonesian honey protein isolation Apis dorsata dorsata and Tetragonula sp. as antibacterial and antioxidant agent

    Science.gov (United States)

    Sahlan, Muhamad; Damayanti, Vina; Azizah, Nurul; Hakamada, Kazuaki; Yohda, Masafumi; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin

    2018-02-01

    Honey is a natural product that has many properties and been widely used for many theurapeutic purposes. Research on honey has been very rapid but not yet for Indonesia. Like local Indonesian honey Apis dorsata dorsata and Tetragonula sp. which has been widely consumed by the public but not yet known for certain efficacy of each content. The function of honey as antibacterial and antioxidant has not been specifically explained by the components contained in honey. Protein is one of the content of honey that turned out to have activity as an antibacterial and antioxidant in certain types of honey because of it antimicrobial peptide. Testing of honey activity as antibacterial and antioxidant through several stages including isolation, SDS-PAGE analysis, Bradford test, antibacterial activity test with well diffusion method and antioxidant activity test by DPPH method. Bacteria used were gram-positive bacteria Staphylococcus aureus and gram negative Escherichia coli. After some experiment finally got protein isolation method that is in the form of further concentration using Millipore membrane for honey Tetragonula sp. and membrane filtration dot blot for honey Apis dorsata dorsata. The Bradford assay showed that Apis dorsata dorsata honey contains protein <5 µg / ml, while honey Tetragonula sp. has a protein content of 97 µg / ml. The characteristic profile of molecular weight of the protein showed honey Tetragonula sp. has 3 protein bands composed of 52, 96 - 61,9 kDa, 63,35 - 65,92 kDa and 86,16 - 91,4 kDa, whereas Apis dorsata dorsata honey has 5 protein bands consisting of 45,2 - 46,6 kDa, 50,2 - 50,9 kDa, 62,5 - 62,9 kDa, 73,1 - 73,9 kDa, 83,9 - 86,9 kDa. Isolate honey protein Apis dorsata dorsata has no antioxidant and antibacterial activity (Staphylococcus aureus and Escherichia coli), whereas honey protein isolates Tetragonula sp. has antibacterial activity against Escherichia coli.

  15. Antibacterial and antioxidant properties of macrocyclic Schiff bases ...

    African Journals Online (AJOL)

    The synthesized compounds were screened for their in vitro growth inhibiting activity against different strains of bacteria viz., Staphylococcus aureus, Bacillus licheniformis, Escherichia coli and Micrococcus luteus (ATCC) and were compared with the standard antibiotic oflaxocin. Also in-vitro antioxidant activity of all ...

  16. Antioxidant, antibacterial and cell toxicity effects of polyphenols ...

    African Journals Online (AJOL)

    In this work and for the first time, significant concentrations of total polyphenols and flavonoids from Vitis vinifera L. grape seed extracts were obtained (256.15 ± 17.40 mg GAE/gdm and 14.08 ± 0.64 mg CE/gdm, respectively).The LC/MS analysis revealed richness in procyanidins. For antioxidant, antimicrobial and ...

  17. Antibacterial and antioxidant activities and acute toxicity of Bumelia sartorum Mart., Sapotaceae, a Brazilian medicinal plant

    Directory of Open Access Journals (Sweden)

    Halliny S. Ruela

    2011-03-01

    Full Text Available In order to validate the Bumelia sartorum Mart., Sapotaceae, traditional use for infection diseases, this study evaluates the antibacterial activity of the stem bark fractions against methicillin-sensitive (MSSA and methicillin-resistant (MRSA Staphylococcus aureus strains by using the agar dilution method and reported as MIC (minimal inhibitory concentration. In addition, the DPPH scavenging activity of these fractions was measured and the chemical composition and acute toxicity of the active fraction were also determined. The ethyl acetate (EtOAc extract was chemically analyzed by LC/MS, direct ionization APCI/MS, ¹H NMR and 13C-NMR. All fractions, except butanol extract, presented high antioxidant activity, especially the methanol and the EtOAc extracts, which showed EC50 values (5.67 and 5.30 µg/mL, respectively considerably lower than the Gingko-standard EGb 761® (38.58 µg/mL. The antibacterial activity against S. aureus strains was observed in EtOAc (MIC 256-512 µg/mL, which showed a very low toxicity. The chemical study of this fraction revealed the abundant presence of polyphenolic compounds. The antibacterial and antioxidant activities reported in this paper for EtOAc extract from B. sartorum and the low toxicity of this fraction opens the possibility that it could be helpful for the developing of new antibacterial agents for treating S. aureus infections.

  18. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities.

    Science.gov (United States)

    Mishra, Amita; Sharma, Amit Kumar; Kumar, Shashank; Saxena, Ajit K; Pandey, Abhay K

    2013-01-01

    The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11-222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC) values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL) was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10-40 μg/mL). Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90-99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts.

  19. Bauhinia variegata Leaf Extracts Exhibit Considerable Antibacterial, Antioxidant, and Anticancer Activities

    Directory of Open Access Journals (Sweden)

    Amita Mishra

    2013-01-01

    Full Text Available The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11–222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10–40 μg/mL. Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90–99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts.

  20. Phenolic composition, antioxidant capacity and antibacterial activity of selected Irish Brassica vegetables.

    Science.gov (United States)

    Jaiswal, Amit Kumar; Rajauria, Gaurav; Abu-Ghannam, Nissreen; Gupta, Shilpi

    2011-09-01

    Vegetables belonging to the Brassicaceae family are rich in polyphenols, flavonoids and glucosinolates, and their hydrolysis products, which may have antibacterial, antioxidant and anticancer properties. In the present study, phenolic composition, antibacterial activity and antioxidant capacity of selected Brassica vegetables, including York cabbage, Brussels sprouts, broccoli and white cabbage were evaluated after extraction with aqueous methanol. Results obtained showed that York cabbage extract had the highest total phenolic content, which was 33.5, followed by 23.6, 20.4 and 18.4 mg GAE/g of dried weight (dw) of the extracts for broccoli, Brussels sprouts and white cabbage, respectively. All the vegetable extracts had high flavonoid contents in the order of 21.7, 17.5, 15.4 and 8.75 mg QE/g of extract (dw) for York cabbage, broccoli, Brussels sprouts and white cabbage, respectively. HPLC-DAD analysis showed that different vegetables contain a mixture of distinct groups of phenolic compounds. All the extracts studied showed a rapid and concentration dependent antioxidant capacity in diverse antioxidant systems. The antibacterial activity was determined against Gram-positive and Gram-negative bacteria. York cabbage extract exhibited significantly higher antibacterial activity against Listeria monocytogenes (100%) and Salmonella abony (94.3%), being the most susceptible at a concentration of 2.8%, whereas broccoli, Brussels sprouts and white cabbage had moderate to weak activity against all the test organisms. Good correlation (r2 0.97) was found between total phenolic content obtained by spectrophotometric analysis and the sum of the individual polyphenols monitored by HPLC-DAD.

  1. Comparison of the Nutritive Value, Antioxidant and Antibacterial Activities of Sonchus asper and Sonchus oleraceus

    OpenAIRE

    Florence O. Jimoh; Adeolu A. Adedapo; Anthony J. Afolayan

    2011-01-01

    Many local vegetable materials are under-exploited because of inadequate scientific knowledge of their nutritional potentials. For this reason, the nutritional, phytochemical, antioxidant and antibacterial activities of the acetone, methanol and water extracts of the leaves of Sonchus asper and Sonchus oleraceus were investigated. The proximate analysis showed that the plants contained appreciable percentage of moisture content, ash content, crude protein, crude lipid, crude fibre and carbohy...

  2. Evaluation of Synergistic Antibacterial and Antioxidant Efficacy of Essential Oils of Spices and Herbs in Combination

    Science.gov (United States)

    Bag, Anwesa; Chattopadhyay, Rabi Ranjan

    2015-01-01

    The present study was carried out to evaluate the possible synergistic interactions on antibacterial and antioxidant efficacy of essential oils of some selected spices and herbs [bay leaf, black pepper, coriander (seed and leaf), cumin, garlic, ginger, mustard, onion and turmeric] in combination. Antibacterial combination effect was evaluated against six important food-borne bacteria (Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium) using microbroth dilution, checkerboard titration and time-kill methods. Antioxidant combination effect was assessed by DPPH free radical scavenging method. Total phenolic content was measured by Folin-Ciocalteu method. Bioactivity –guided fractionation of active essential oils for isolation of bioactive compounds was done using TLC-bioautography assay and chemical characterization (qualitative and quantitative) of bioactive compounds was performed using DART-MS and HPLC analyses. Cytotoxic potential was evaluated by brine shrimp lethality assay as well as MTT assay using human normal colon cell line. Results showed that among the possible combinations tested only coriander/cumin seed oil combination showed synergistic interactions both in antibacterial (FICI : 0.25-0.50) and antioxidant (CI : 0.79) activities. A high positive correlation between total phenolic content and antibacterial activity against most of the studied bacteria (R2 = 0.688 – 0.917) as well as antioxidant capacity (R2 = 0.828) was also observed. TLC-bioautography-guided screening and subsequent combination studies revealed that two compounds corresponding to Rf values 0.35 from coriander seed oil and 0.53 from cumin seed oil exhibited both synergistic antibacterial and antioxidant activities. The bioactive compound corresponding to Rf 0.35 from coriander seed oil was identified as linalool (68.69%) and the bioactive compound corresponding to Rf 0.53 from cumin seed oil was identified

  3. Evaluation of Synergistic Antibacterial and Antioxidant Efficacy of Essential Oils of Spices and Herbs in Combination.

    Directory of Open Access Journals (Sweden)

    Anwesa Bag

    Full Text Available The present study was carried out to evaluate the possible synergistic interactions on antibacterial and antioxidant efficacy of essential oils of some selected spices and herbs [bay leaf, black pepper, coriander (seed and leaf, cumin, garlic, ginger, mustard, onion and turmeric] in combination. Antibacterial combination effect was evaluated against six important food-borne bacteria (Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium using microbroth dilution, checkerboard titration and time-kill methods. Antioxidant combination effect was assessed by DPPH free radical scavenging method. Total phenolic content was measured by Folin-Ciocalteu method. Bioactivity -guided fractionation of active essential oils for isolation of bioactive compounds was done using TLC-bioautography assay and chemical characterization (qualitative and quantitative of bioactive compounds was performed using DART-MS and HPLC analyses. Cytotoxic potential was evaluated by brine shrimp lethality assay as well as MTT assay using human normal colon cell line. Results showed that among the possible combinations tested only coriander/cumin seed oil combination showed synergistic interactions both in antibacterial (FICI : 0.25-0.50 and antioxidant (CI : 0.79 activities. A high positive correlation between total phenolic content and antibacterial activity against most of the studied bacteria (R2 = 0.688 - 0.917 as well as antioxidant capacity (R2 = 0.828 was also observed. TLC-bioautography-guided screening and subsequent combination studies revealed that two compounds corresponding to Rf values 0.35 from coriander seed oil and 0.53 from cumin seed oil exhibited both synergistic antibacterial and antioxidant activities. The bioactive compound corresponding to Rf 0.35 from coriander seed oil was identified as linalool (68.69% and the bioactive compound corresponding to Rf 0.53 from cumin seed oil was

  4. Phytochemical standardization, antioxidant, and antibacterial evaluations of Leea macrophylla: A wild edible plant.

    Science.gov (United States)

    Joshi, Apurva; Prasad, Satyendra K; Joshi, Vinod Kumar; Hemalatha, Siva

    2016-04-01

    In Ayurveda, Leea macrophylla Roxb. ex Hornem. (Leeaceae) is indicated in worm infestation, dermatopathies, wounds, inflammation, and in symptoms of diabetes. The present study aims to determine the antioxidant and antibacterial potential of ethanolic extract and its different fractions of Leea macrophylla root tubers using phytochemical profiling which is still unexplored. Quantitative estimations of different phytoconstituents along with characterization of ethanol extract using high performance liquid chromatography (HPLC) were performed using chlorogenic acid as a marker compound for the first time. The extract and its successive fractions were also evaluated for in vitro antioxidant activity using different models. The extract was further tested against a few Gram-positive and Gram-negative bacteria for its antibacterial activity. Phytochemical screening and quantitative estimations revealed the extract to be rich in alkaloid, flavonoid, phenols, and tannins, whereas chlorogenic acid quantified by HPLC in ethanol extract was 9.01% w/w. The results also indicated potential antioxidant and antibacterial activity, which was more prominent in the extract followed by its butanol fraction. Copyright © 2016. Published by Elsevier B.V.

  5. Chemical constituents of the essential oil, antioxidant and antibacterial activities from Elettariopsis curtisii Baker.

    Directory of Open Access Journals (Sweden)

    Vanida Chairgulprasert

    2008-08-01

    Full Text Available Elettariopsis curtisii Baker, the culinary and medicinal herb, was investigated to elucidate its chemical constituents and determine antioxidant and antibacterial activities. The essential oil of E. curtisii was obtained by steam distillation of fresh rhizomes in a maximum yield of 0.63%. GC-MS data indicated the presence of six compounds, of which trans-2-decenal (78.03% was the principal constituent. The essential oils and also the hexane, dichloromethane and methanol extracts from the rhizomes and leaves were assessed for antioxidant and antibacterial activities. In an evaluation of antioxidant activity, the crude dichloromethane extract of the leaves exhibited the highest scavenging effect on the DPPH radicalwith an EC50 of 0.28+0.01 mg/mL. The leaf dichloromethane extract also had the highest total phenol concentration, (73.4+2.80 mg GA/g of extract whereas the crude methanol extract from the rhizomes had the highest reducing power with an EC50 of 2.07+0.06 mg/mL. In terms of antibacterial activity, the essential oil (distilled from either the leaves or the rhizomesdisplayed the highest inhibitory activity, with the same MID value of 1 mg/disc against 5 strains of bacteria, Bacillus subtilis,Escherichia coli, Staphylococcus aureus, Sarcina sp. and Pseudomonas aeruginosa.

  6. Antioxidant and Antibacterial Activities of Crude Extracts and Essential Oils of Syzygium cumini Leaves

    Science.gov (United States)

    Mohamed, Amal A.; Ali, Sami I.; El-Baz, Farouk K.

    2013-01-01

    This research highlights the chemical composition, antioxidant and antibacterial activities of essential oils and various crude extracts (using methanol and methylene chloride) from Syzygium cumini leaves. Essential oils were analyzed by gas chromatography-mass spectrometry (GC-MS).The abundant constituents of the oils were: α-pinene (32.32%), β-pinene (12.44%), trans-caryophyllene (11.19%), 1, 3, 6-octatriene (8.41%), delta-3-carene (5.55%), α-caryophyllene (4.36%), and α-limonene (3.42%).The antioxidant activities of all extracts were examined using two complementary methods, namely diphenylpicrylhydrazyl (DPPH) and ferric reducing power (FRAP). In both methods, the methanol extract exhibited a higher activity than methylene chloride and essential oil extracts. A higher content of both total phenolics and flavonoids were found in the methanolic extract compared with other extracts. Furthermore, the methanol extract had higher antibacterial activity compared to methylene chloride and the essential oil extracts. Due to their antioxidant and antibacterial properties, the leaf extracts from S. cumini may be used as natural preservative ingredients in food and/or pharmaceutical industries. PMID:23593183

  7. Evaluation of the antioxidant and antibacterial properties of various solvents extracts of Annona squamosa L. leaves

    Directory of Open Access Journals (Sweden)

    Ghadir A. El-Chaghaby

    2014-04-01

    Full Text Available The present work was conducted aiming to evaluate the effect of different solvent extracts on the antioxidant and antibacterial activities of Annona squamosa L. leaves. Four solvents were chosen for the study namely; methanol 80%, acetone 50%, ethanol 50% and boiling water. Acetone and boiling water gave the highest extraction yields as compared to methanol and ethanol. Total phenolic contents of the four extracts were significantly different with acetone being the most efficient solvent and water being the least efficient one. Correlation coefficient between the total antioxidant and total phenolic content was found to be R2 = 0.89 suggesting the contribution of phenolic compounds of the extract by 89% to its total antioxidant activity. The extracts were capable of scavenging H2O2 in a range of 43–54%. Reducing power of the extracts increased by increasing their concentration. The extracts were found to exert low to moderate antibacterial activity compared to a standard antibacterial agent. The bacterial inhibition of the extracts was found to positively correlate with their phenolic contents.

  8. Phytochemical composition, antioxidant and anti-bacterial activity of Syzygium calophyllifolium Walp. fruit.

    Science.gov (United States)

    Sathyanarayanan, Saikumar; Chandran, Rahul; Thankarajan, Sajeesh; Abrahamse, Heidi; Thangaraj, Parimelazhagan

    2018-01-01

    Syzygium calophyllifolium fruits are among the important wild edibles used by the tribes of Western Ghats. However, this underutilized fruit remained unnoticed for its medicinal properties. Hence, the present study was undertaken to evaluate the antioxidant activity by DPPH · , ABTS ·+ , FRAP assays and antibacterial efficacy by well diffusion method. GC-MS and HPLC profiles of crude extract and column chromatographic fractions were also determined. The methanolic extract of fruit (MFE) showed high total phenolics, tannins and flavonoids. The faction H (FH) displayed significant antioxidant property in DPPH · (IC 50 2.1 µg/ml), ABTS ·+ (19483.29 μM Trolox equivalents/g extract) and FRAP (65.5 mM Fe(II)/mg extract) assays over MFE. Moreover, FH also exhibited good antibacterial activity against Escherichia coli (32.0 mm), Salmonella typhi (27.0 mm), Staphylococcus aureus (27.3 mm) at 100 mg/ml concentration. GC-MS revealed 12 major compounds in MFE, HPLC analysis of MFE and FH depicted the presence of rutin and ellagic acid. This study suggested that FH could have high concentration of bioactive compounds like rutin and ellagic acid or its analogues compared to MFE which may be responsible for its strong antioxidant and antibacterial activity.

  9. GC-MS analysis, Antibacterial, Antioxidant and Anticancer activity of essential oil of Pinus roxburghii from Kashmir, India

    Directory of Open Access Journals (Sweden)

    Wajaht A. Shah

    2014-05-01

    Full Text Available This work was carried out to evaluate chemical composition, antibacterial, antioxidant and anticancer activity of Pinus roxburghii essential oil. The oil was extracted by hydro-distillation which was analysed through GC-MS. The antibacterial activity was evaluated by agar well diffusion method and antioxidant activity was evaluated through DPPH assay while as anticancer activity was evaluated through MTT method. Alpha-pinene and beta-pinene were the major constituents present in the oil. This oil showed significant antibacterial and anticancer activity. 

  10. Olive oils from Algeria: Phenolic compounds, antioxidant and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Laincer, F.

    2014-03-01

    Full Text Available The phenolic compositions, antioxidant and antimicrobial activities against six bacteria of phenolic extracts of olive oil varieties from eleven Algerian varieties were investigated. The antioxidant activity was assessed by determining the scavenging effect on the DPPH and ABTS.+ radicals. The antimicrobial activity was measured as a zone of inhibition and minimum inhibitory concentration (MIC on human harmful and foodborne pathogens. The results show that total phenols was significantly (p .+ radicals (r = 0.76. Among the bacteria tested, S. aureus and to a lesser extent B. subtilis showed the highest sensitivity; the MIC varied from 0.6 to 1.6 mg·mL-1 and 1.2 to 1.8 mg·mL-1, respectively. The results reveal that Algerian olive oils may constitute a good source of antioxidant and antimicrobial agents.Se ha estudiado la composición fenólica y las actividades antioxidante y antimicrobiana, contra seis bacterias, de extractos de aceites de oliva de once variedades argelinas. La actividad antioxidante se evaluó mediante la determinación del efecto captador de radicales de DPPH y ABTS.+. La actividad antimicrobiana se midió como zona de inhibición y como concentración inhibitoria mínima (MIC sobre bacterias perjudiciales humanas y agentes patógenos transmitidos por los alimentos. Los resultados mostraron que los fenoles totales está significativamente (p .+ (r= 0,76. Entre las bacterias ensayadas, S. aureus y, en menor grado B. subtilis mostraron la mayor sensibilidad; el MIC varió de 0,6 a 1,6 mg·mL-1 y 1,2 a 1,8 mg·mL-1 respectivamente. Los resultados muestran que los aceites de oliva argelinos pueden constituir una buena fuente de antioxidantes y agentes antimicrobianos.

  11. Study on improving antioxidant and antibacterial activities of silk fibroin by irradiation treatment

    International Nuclear Information System (INIS)

    Tran Bang Diep; Nguyen Van Binh; Hoang Phuong Thao; Hoang Dang Sang; Nguyen Thuy Huong Trang

    2014-01-01

    The silk fibroin solutions were prepared in solvent system of CaCl 2 . CH 3 CH 2 OH. H 2 O (mole ratio = 1:2:8) followed dialysis against deionized water. The 3% silk fibroin solutions were irradiated under gamma Co-60 source with dose ranging from 0 to 50 kGy at Hanoi Irradiation Centre and bioactivities of the irradiated silk fibroin solutions were investigated with different radiation doses. The results indicated that the antioxidant and antibacterial activities of fibroin were much improved by gamma irradiation. Maximum value of DPPH radical scavenging activity was 70.4% for the solution of silk fibroin irradiated at 10 kGy. Silk fibroin solutions irradiated at doses higher than 10 kGy also exhibited rather high antibacterial activity against E. coli and S. aureus. In order to estimate the applicability of our irradiated fibroin, the silk fibroin solutions were lyophilized to obtain a pure fibroin powder, then their bio-activities were compared with those of commercial silk fibroin (Proteines De Soie/ Zijdeproteine, Bioflore, Canada). Our fibroin powder revealed higher antioxidant and antibacterial activities. The amino acid compositions of our irradiated fibroin were also higher than that of the commercial product. Thus, the irradiated silk fibroin can be used for further application in cosmetic and other related fields. (author)

  12. Antioxidant and antibacterial activities on foodborne pathogens of Artocarpus heterophyllus Lam. (Moraceae) leaves extracts.

    Science.gov (United States)

    Loizzo, M R; Tundis, R; Chandrika, U G; Abeysekera, A M; Menichini, F; Frega, N G

    2010-06-01

    Total water extract, ethyl acetate, and aqueous fractions from the leaves of Artocarpus heterophyllus were evaluated for phenolic content, antioxidant, and antibacterial activities against some foodborne pathogens such as E. coli, Listeria monocytogenes, Salmonella typhimurium, Salmonella enterica, Bacillus cereus, Enterococcus faecalis, and Staphylococcus aureus. The minimum inhibitory concentration (MICs) of extract and fractions determined by the agar dilution method were ranged from 221.9 microg/mL for ethyl acetate fraction to 488.1 microg/mL for total extract. In the agar diffusion method the diameters of inhibition were 12.2 for the total extract, 10.7 and 11.5 for ethyl acetate and aqueous fractions, respectively. A. heterophyllus showed significant antioxidant activity tested in different in vitro systems (DPPH, ABTS, FRAP, and Fe(2+) chelating activity assay). In particular, in DPPH assay A. heterophyllus total extract exhibited a strong antiradical activity with an IC(50) value of 73.5 microg/mL while aqueous fraction exerted the highest activity in FRAP assay (IC(50) value of 72.0 microg/mL). The total phenols content by Folin-Ciocalteau method was determined with the purpose of testing its relationship with the antioxidant and antibacterial activities.

  13. Melipona mondury produces a geopropolis with antioxidant, antibacterial and antiproliferative activities

    Directory of Open Access Journals (Sweden)

    TÁSSIA L.A. DOS SANTOS

    Full Text Available ABSTRACT Geopropolis is a special type of propolis produced by stingless bees. Several pharmacological properties have been described for different types of geopropolis, but there have been no previous studies of the geopropolis from Melipona mondury. In this study, we investigated the antioxidant, antibacterial, and antiproliferative activities of M. mondury geopropolis, and determined its chemical profile. The antioxidant activity was determined using in vitro ABTS·+, ·DPPH, and β-carotene/linoleic acid co-oxidation methods. The antibacterial activity was determined using a microdilution method with Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant S. aureus. The antiproliferative effect was determined in tumor cell lines using the Alamar Blue assay. The chemical profile was obtained using UHPLC-MS and UHPLC-MS/MS. The butanolic fraction had the highest concentration of phenolic compounds and more potent antioxidant properties in all assays. This fraction also had bacteriostatic and bactericidal effects against all bacterial strains at low concentrations, especially S. aureus. The hexane fraction had the highest antiproliferative potential, with IC50 values ranging from 24.2 to 46.6 µg/mL in HL-60 (human promyelocytic leukemia cell and K562 (human chronic myelocytic leukemia cell, respectively. Preliminary chemical analysis indicates the presence of terpenes and gallic acid in the geopropolis. Our results indicate the therapeutic potential of geopropolis from M. mondury against inflammatory, oxidative, infectious, and neoplastic diseases.

  14. Ramalina capitata (Ach.) Nyl. acetone extract: HPLC analysis, genotoxicity, cholinesterase, antioxidant and antibacterial activity.

    Science.gov (United States)

    Zrnzevic, Ivana; Stankovic, Miroslava; Stankov Jovanovic, Vesna; Mitic, Violeta; Dordevic, Aleksandra; Zlatanovic, Ivana; Stojanovic, Gordana

    2017-01-01

    In the present investigation, effects of Ramalina capitata acetone extract on micronucleus distribution on human lymphocytes, on cholinesterase activity and antioxidant activity (by the CUPRAC method) were examined, for the first time as well as its HPLC profile. Additionally, total phenolic compounds (TPC), antioxidant properties (estimated via DPPH, ABTS and TRP assays) and antibacterial activity were determined. The predominant phenolic compounds in this extract were evernic, everninic and obtusatic acids. Acetone extract of R. capitata at concentration of 2 μg mL -1 decreased a frequency of micronuclei (MN) for 14.8 %. The extract reduces the concentration of DPPH and ABTS radicals for 21.2 and 36.1 % (respectively). Values for total reducing power (TRP) and cupric reducing capacity (CUPRAC) were 0.4624 ± 0.1064 μg ascorbic acid equivalents (AAE) per mg of dry extract, and 6.1176 ± 0.2964 μg Trolox equivalents (TE) per mg of dry extract, respectively. The total phenol content was 670.6376 ± 66.554 μg galic acid equivalents (GAE) per mg of dry extract. Tested extract at concentration of 2 mg mL -1 exhibited inhibition effect (5.2 %) on pooled human serum cholinesterase. The antimicrobial assay showed that acetone extract had inhibition effect towards Gram-positive strains. The results of manifested antioxidant activity, reducing the number of micronuclei in human lymphocytes, and antibacterial activity recommends R. capitata extract for further in vivo studies.

  15. Melipona mondury produces a geopropolis with antioxidant, antibacterial and antiproliferative activities.

    Science.gov (United States)

    Santos, Tássia L A Dos; Queiroz, Raphael F; Sawaya, Alexandra C H F; Lopez, Begoña Gimenez-Cassina; Soares, Milena B P; Bezerra, Daniel P; Rodrigues, Ana Carolina B C; Paula, Vanderlúcia F DE; Waldschmidt, Ana Maria

    2017-01-01

    Geopropolis is a special type of propolis produced by stingless bees. Several pharmacological properties have been described for different types of geopropolis, but there have been no previous studies of the geopropolis from Melipona mondury. In this study, we investigated the antioxidant, antibacterial, and antiproliferative activities of M. mondury geopropolis, and determined its chemical profile. The antioxidant activity was determined using in vitro ABTS·+, ·DPPH, and β-carotene/linoleic acid co-oxidation methods. The antibacterial activity was determined using a microdilution method with Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant S. aureus. The antiproliferative effect was determined in tumor cell lines using the Alamar Blue assay. The chemical profile was obtained using UHPLC-MS and UHPLC-MS/MS. The butanolic fraction had the highest concentration of phenolic compounds and more potent antioxidant properties in all assays. This fraction also had bacteriostatic and bactericidal effects against all bacterial strains at low concentrations, especially S. aureus. The hexane fraction had the highest antiproliferative potential, with IC50 values ranging from 24.2 to 46.6 µg/mL in HL-60 (human promyelocytic leukemia cell) and K562 (human chronic myelocytic leukemia cell), respectively. Preliminary chemical analysis indicates the presence of terpenes and gallic acid in the geopropolis. Our results indicate the therapeutic potential of geopropolis from M. mondury against inflammatory, oxidative, infectious, and neoplastic diseases.

  16. Phytochemical screening, antibacterial and anti-oxidant activities of Asparagus laricinus leaf and stem extracts

    Directory of Open Access Journals (Sweden)

    Polo-Ma-Abiele Hildah Ntsoelinyane

    2014-03-01

    Full Text Available The aim of this study was to investigate antioxidant activities, antibacterial activities and a phytochemical constituent of Asparagus laricinus stem and leaf extracts. Determination of antibacterial activity of extracts was assessed by agar dilution method and antioxidant properties by 2,2-diphenyl-1-picryl-hydrazyl (DPPH assay. The minimum inhibitory concentration (MIC of the leaf was at a concentration of 0.125 mg/mL against S. saprophyticus and E. cloacae, and at a concentration of 1 mg/mL against S. aureus and B. subtilis. There was no MIC of the stem extract at any concentration. The leaf extract showed effective free radical scavenging activity (72.1%, while stem extract had low activity. Qualitative phytochemical analysis of these plant extracts revealed the presence of tannins, saponins, flavonoids and phlobatannins. The leaf extract further confirmed the presence of glycosides, steroids, ternoids and carbohydrates. Our results indicate that, A. laricinus leaf extracts have potential antimicrobial and antioxidant activities.

  17. Antibacterial and Antioxidant Activity of Green Algae Halimeda gracilis from Seribu Island District

    Directory of Open Access Journals (Sweden)

    Abdul Basir

    2017-08-01

    Full Text Available Seaweeds have ecological functions as primary producers in marine waters. It also has an important economic value as a producer of hydrocolloids (alginate, agar and carrageenan that is used in various industries of food and pharmaceuticals. This study aimed to determine the antibacterial and antioxidant activity of green algae Halimeda gracilis. The study was conducted in several stages, sample collection and preparation, extraction of bioactive compound, fractionation, antibacterial and antioxidant test, and phytochemical. Extraction was done by maceration method using methanol and concentrated by rotary evaporator. The methanol extracts of H. gracilis were tested against Staphylococcus aureus and Escherichia coli. Methanol extract of H. gracilis formed inhibition zone against the test bacteria with diameter of inhibition zone was 10 mm and 6 mm, respectively. After liquid-liquid partition (water: ethyl acetate, inhibition zone was only seen in the ethyl acetate fraction of H. gracilis with diameter of inhibition zone was 6 mm and 7.50±1.71 mm, respectively. Antioxidant test methanol extracts and ethyl acetate fractions of H. gracilis each show IC50 value of 290.49 ppm and 375.50 ppm. Phytochemical test showed methanol extract of H. gracilis contains phenols and steroids.

  18. Phytochemicals, antibacterial and antioxidative investigations of alhagi maurorum medik

    International Nuclear Information System (INIS)

    Ahmad, N.; Shinwari, Z.K.; Hussain, J.; Perveen, R.

    2015-01-01

    Ethnomedicinally the plant Alhagi maurorum is used for diverse topical infections in the different culture of Khyber Pakhtunkhwa Pakistan. The aim of the present study is to look into the possible natural therapy in the form of bioactive fractions which can be further subjected to the isolation of natural products leading towards drug discovery. The methanolic extract and its derived fractions (n-hexane, chloroform, ethyl acetate, n-butanol and residual aqueous fraction) of leaves, roots and flowers of Alhagi maurorum are subjected to microbicidy against Salmonella typhe, Staphylococcus aureus, Vibrio cholerae, Shigella dysenteriae, E. coli and Bacillus anthrax, antioxidant profile by DPPH method and preliminary phytochemical investigations. It is observed that the leaves of the plant showed outstanding response to most bacterial pathogens followed by roots while the fractions from flowers were almost inactive. The antibactrial profile of the plant leaves exhibited that the crude extract, chloroform and ethyl acetate fractions showed outsatandinding activities giving above 80% inhibition against B. anthracis. The crude extract showed 80% inhibition against S. dysenteriae. The ethyl acetate and crude extarct was also good against S. typhe with 78.35% and 76.50% inhibition respectively. Extracts/fractions from leaves of the plant showed strong radicle scaving activity, it may be due to the presences of phenolic compounds in plant. Phytochemical screening of crude extracts and its subsequent fractions demonstrated the presence of fats, alkaloids, flavonoids, anthraquinones, cardiac glycosides, coumarins, saponins, phlobatannins, tannins and terpenoids in leaves and roots while the flowers were found to be devoid of any such phytochemical. (author)

  19. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat.

    Science.gov (United States)

    Dholakiya, Riddhi N; Kumar, Raghawendra; Mishra, Avinash; Mody, Kalpana H; Jha, Bhavanath

    2017-01-01

    Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655) similarity with Streptomyces variabilis (EU841661) and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development), heat-map and PCA (principal component analysis). The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15-C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria ( Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM), and Gram-positive bacteria ( Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96). Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H 2 O 2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II), an enzyme complex that produces polyketides, the encoding gene(s) detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s). In conclusion, a novel bacterial strain of Actinobacteria , isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat), India showed promising

  20. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat

    Directory of Open Access Journals (Sweden)

    Riddhi N. Dholakiya

    2017-12-01

    Full Text Available Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655 similarity with Streptomyces variabilis (EU841661 and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development, heat-map and PCA (principal component analysis. The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15–C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria (Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM, and Gram-positive bacteria (Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96. Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H2O2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II, an enzyme complex that produces polyketides, the encoding gene(s detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s. In conclusion, a novel bacterial strain of Actinobacteria, isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat, India showed promising

  1. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat

    Science.gov (United States)

    Dholakiya, Riddhi N.; Kumar, Raghawendra; Mishra, Avinash; Mody, Kalpana H.; Jha, Bhavanath

    2017-01-01

    Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655) similarity with Streptomyces variabilis (EU841661) and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development), heat-map and PCA (principal component analysis). The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15–C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria (Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM), and Gram-positive bacteria (Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96). Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H2O2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II), an enzyme complex that produces polyketides, the encoding gene(s) detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s). In conclusion, a novel bacterial strain of Actinobacteria, isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat), India showed promising

  2. Functionalized ZnO Nanoparticles with Gallic Acid for Antioxidant and Antibacterial Activity against Methicillin-Resistant S. aureus

    Directory of Open Access Journals (Sweden)

    Joomin Lee

    2017-11-01

    Full Text Available In this study, we report a new multifunctional nanoparticle with antioxidative and antibacterial activities in vitro. ZnO@GA nanoparticles were fabricated by coordinated covalent bonding of the antioxidant gallic acid (GA on the surface of ZnO nanoparticles. This addition imparts both antioxidant activity and high affinity for the bacterial cell membrane. Antioxidative activities at various concentrations were evaluated using a 2,2′-azino-bis(ethylbenzthiazoline-6-sulfonic acid (ABTS radical scavenging method. Antibacterial activities were evaluated against Gram-positive bacteria (Staphylococcus aureus: S. aureus, including several strains of methicillin-resistant S. aureus (MRSA, and Gram-negative bacteria (Escherichia coli. The functionalized ZnO@GA nanoparticles showed good antioxidative activity (69.71%, and the bactericidal activity of these nanoparticles was also increased compared to that of non-functionalized ZnO nanoparticles, with particularly effective inhibition and high selectivity for MRSA strains. The results indicate that multifunctional ZnO nanoparticles conjugated to GA molecules via a simple surface modification process displaying both antioxidant and antibacterial activity, suggesting a possibility to use it as an antibacterial agent for removing MRSA.

  3. Experimental Study on the comparison of antibacterial and antioxidant effects between the Bee Venom and Sweet Bee Venom

    OpenAIRE

    Joong chul An; Ki Rok Kwon; Eun Hee Lee; Bae Chun Cha

    2006-01-01

    Objectives : This study was conducted to compare antibacterial activities and free radical scavenging activity between the Bee Venom and Sweet Bee Venom in which the allergy-causing enzyme is removed. Methods : To evaluate antibacterial activities of the test samples, gram negative E. coli and gram positive St. aureus were compared using the paper disc method. For comparison of the antioxidant effects, DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging assay and Thiobarbituric Ac...

  4. Evaluation of extracts and essential oil from Callistemon viminalis leaves: antibacterial and antioxidant activities, total phenolic and flavonoid contents.

    Science.gov (United States)

    Salem, Mohamed Z M; Ali, Hayssam M; El-Shanhorey, Nader A; Abdel-Megeed, Ahmed

    2013-10-01

    To investigate antioxidant and antibacterial activities of Callistemon viminalis (C. viminalis) leaves. The essential oil of C. viminalis leaves obtained by hydro-distillation was analyzed by GC/MS. Different extracts were tested for total phenolic and flavonoid contents and in vitro antioxidant (DPPH assay) and antibacterial (agar disc diffusion and 96-well micro-plates methods) actives. Fourteen components were identified in the essential oil, representing 98.94% of the total oil. The major components were 1,8-cineole (64.53%) and α-pinene (9.69%). Leaf essential oil exhibited the highest antioxidant activity of (88.60±1.51)% comparable to gallic acid, a standard compound [(80.00±2.12)%]. Additionally, the biggest zone of inhibitions against the studied bacterial strains was observed by the essential oil when compared to the standard antibiotic (tetracycline). The crude methanol extract and ethyl acetate fraction had a significant antibacterial activity against the tested bacterial strains. It can be suggested that C. viminalis is a great potential source of antibacterial and antioxidant compounds useful for new antimicrobial drugs from the natural basis. The present study revealed that the essential oil as well as the methanol extracts and ethyl acetate fraction of C. viminalis leaves exhibited highly significant antibacterial activity against the tested bacterial strains. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Antioxidant, Antibacterial activity and Brine shrimp toxicity test of some Mountainous Lichens from Nepal

    Directory of Open Access Journals (Sweden)

    Babita Paudel

    2012-01-01

    Full Text Available A total of twenty four lichen species belonging to six families were collected from mountainous region of Nepal. The methanol extracts of each species were tested for antimicrobial and antioxidant activitiesin vitro. It was found that extracts of twenty one lichen species were active againstB. subtilis and seven species were active againstS. aureus. Similarly, in DPPH assay, three speciesPeltigera sp.,Cladonia sp., andCanoparmelia sp. showed comparable activity with commercial standard, BHA. In ABTS+ assay, extracts ofParmoterma sp.,Ramalina sp.,Peltigera sp. andCladonia sp. showed stronger activity than ascorbic acid. The observed data after comparison with previously published reports indicated that the high altitude lichens contain stronger antioxidant and antibacterial constituents. Similarly, the methanol extracts ofHeterodermia sp. andRamalina sp. showed comparable toxicity effect with commercial standard berberine chloride indicating a potent source of anticancer drugs.

  6. HONEYDEW HONEY: CORRELATIONS BETWEEN CHEMICAL COMPOSITION, ANTIOXIDANT CAPACITY AND ANTIBACTERIAL EFFECT

    Directory of Open Access Journals (Sweden)

    OTILIA BOBIS

    2008-10-01

    Full Text Available Selected physico-chemical parameters, total polyphenols, flavonoids, antioxidant and antibacterial activity of honeydew honey samples from Romanian were determined. Regarding the chemical composition, analysed honey samples framed in this type of honey, phenolic content, determined as gallic acid equivalents, presented a mean value of 116.45mg GAE/100 g honey. Total flavonoid content expressed as quercetin equivalents, was 1.53 mg in honeydew honey. Antioxidant activity expressed as % inhibition of a solution of DPPH, ranged between 47.84 and 62.99%. The concentration of honey that inhibit with 50% the DPPH solution was established to be 16.16%. 10 strains of Staphylococcus aureus presented different inhibition percentages when were treatred with a solution of honey. In conclusion, Honeydew honey could be recommended to complement other polyphenol source in human diet and also used in medical treatment.

  7. Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma juglandis fructus.

    Science.gov (United States)

    Meng, Qingran; Li, Yinghao; Xiao, Tiancun; Zhang, Lianfu; Xu, Dan

    2017-12-01

    A water-soluble polysaccharide fraction (DJP-2) isolated from Diaphragma juglandis was successfully purified by ion-exchange chromatography (DEAE-cellulose) and gel-permeation chromatography (Sephadex G-100). The weight-average molecular weight (Mw) and number-average molecular weight (Mn) of DJP-2 were 4.95 and 3.99kDa, respectively. Monosaccharide component analysis indicated that DJP-2 comprised arabinose, galactose, glucose, xylose, and mannose in a molar ratio of 0.27:0.55:1:0.14:0.08. The evaluation of the antioxidant and antibacterial activities of polysaccharides from Diaphragma juglandis fructus indicated that they could be explored as promising natural antioxidant and bacteriostatic agents in the food and pharmaceutical industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications.

    Science.gov (United States)

    Sharifi-Rad, Mehdi; Mnayer, Dima; Morais-Braga, Maria Flaviana Bezerra; Carneiro, Joara Nályda Pereira; Bezerra, Camila Fonseca; Coutinho, Henrique Douglas Melo; Salehi, Bahare; Martorell, Miquel; Del Mar Contreras, María; Soltani-Nejad, Azam; Uribe, Yoshie Adriana Hata; Yousaf, Zubaida; Iriti, Marcello; Sharifi-Rad, Javad

    2018-05-10

    The genus Echinacea consists of 11 taxa of herbaceous and perennial flowering plants. In particular, Echinacea purpurea (L.) Moench is widely cultivated all over the United States, Canada, and in Europe, exclusively in Germany, for its beauty and reported medicinal properties. Echinacea extracts have been used traditionally as wound healing to improve the immune system and to treat respiratory symptoms caused by bacterial infections. Echinacea extracts have demonstrated antioxidant and antimicrobial activities, and to be safe. This survey aims at reviewing the medicinal properties of Echinacea species, their cultivation, chemical composition, and the potential uses of these plants as antioxidant and antibacterial agents in foods and in a clinical context. Moreover, the factors affecting the chemical composition of Echinacea spp. are also covered. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Evaluation of antibacterial, antioxidant and GC-MS analysis of ethanolic seed extract of Myristica dactyloides

    Science.gov (United States)

    Bhavani, R.; Vijayalakshmi, R.; Venkat Kumar, S.; Rajeshkumar, S.

    2017-11-01

    In this present investigation we analysed the antimicrobial and antioxidant activities of ethanol extract of Myristica dactyloides. The antimicrobial activity of the ethanol extract was evaluated by the agar well diffusion method against of E. coli, Klebsiella pneumonia, Streptococcus sp, and Staphylococcus aureus at different concentrations. The antibacterial activity showed the result in a dose-dependent manner. The free radical scavenging was evaluated against DPPH, hydroxyl, and nitric oxide radicals. In DPPH, hydroxyl and nitric oxide scavenging assay showed the IC 50 value of the extract was found to be 20 μg/ml, 48.25 and 30 μg/ml, respectively. The plant can be considered as promising antioxidant properties with high potential value for drug development for various diseases.

  10. Antibacterial, antifungal and antioxidant activity of Olea africana against pathogenic yeast and nosocomial pathogens.

    Science.gov (United States)

    Masoko, Peter; Makgapeetja, David M

    2015-11-17

    Olea africana leaves are used by Bapedi people to treat different ailments. The use of these leaves is not validated, therefore the aim of this study is to validate antimicrobial properties of this plant. The ground leaves were extracted using solvents of varying polarity (hexane, chloroform, dichloromethane (DCM), ethyl acetate, acetone, ethanol, methanol, butanol and water). Thin layer chromatography (TLC) was used to analyse the chemical constituents of the extracts. The TLC plates were developed in three different solvent systems, namely, benzene/ethanol/ammonium solution (BEA), chloroform/ethyl acetate/formic acid (CEF) and ethyl acetate/methanol/water (EMW). The micro-dilution assay and bioautography method were used to evaluate the antibacterial activity of the extracts against Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis and Staphylococcus aureus and the antifungal activity against Candida albicans and Cryptococcus neoformans. Methanol was the best extractant, yielding a larger amount of plant material whereas hexane yielded the least amount. In phytochemical analyses, more compounds were observed in BEA, followed by EMW and CEF. Qualitative 2, 2- diphenylpacryl-1-hydrazyl (DPPH) assay displayed that all the extracts had antioxidant activity. Antioxidant compounds could not be separated using BEA solvent system while with CEF and EMW enabled antioxidant compounds separation. The minimum inhibitory concentrations (MIC) values against test bacteria ranged between 0.16 and 2.50 mg/mL whereas against fungi, MIC ranged from 0.16 to 0.63 mg/mL. Bioautography results demonstrated that more than one compound was responsible for antimicrobial activity in the microdilution assay as the compounds were located at different Rf values. The results indicate that leaf extracts of Olea africana contain compounds with antioxidant, antibacterial and antifungal activities. Therefore, further studies are required to isolate the active compounds and perform

  11. Antibacterial, antioxidant and anti-proliferative properties and zinc content of five south Portugal herbs.

    Science.gov (United States)

    Nunes, Ricardo; Pasko, Pawel; Tyszka-Czochara, Malgorzata; Szewczyk, Agnieszka; Szlosarczyk, Marek; Carvalho, Isabel S

    2017-12-01

    Crataegus monogyna L. (Rosaceae) (CM), Equisetum telmateia L. (Equisataceae) (ET), Geranium purpureum Vil. (Geraniaceae) (GP), Mentha suaveolens Ehrh. (Lamiaceae) (MS), and Lavandula stoechas L. spp. luisieri (Lamiaceae) (LS) are all medicinal. To evaluate the antioxidant, antiproliferative and antimicrobial activities of plant extracts and quantify individual phenolics and zinc. Aerial part extracts were prepared with water (W), ethanol (E) and an 80% mixture (80EW). Antioxidant activity was measured with TAA, FRAP and RP methods. Phenolics were quantified with a HPLC. Zinc was quantified using voltammetry. Antibacterial activity (after 48 h) was tested using Enterococcus faecalis, Bacillus cereus, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Listeria monocytogenes. Antiproliferative activity (after 24 h) was tested using HEP G2 cells and fibroblasts. Solvents influenced results; the best were E and 80EW. GP had the highest antioxidant activity (TAA and FRAP of 536.90 mg AAE/g dw and 783.48 mg TE/g dw, respectively). CM had the highest zinc concentration (37.21 mg/kg) and phenolic variety, with neochlorogenic acid as the most abundant (92.91 mg/100 g dw). LS was rich in rosmarinic acid (301.71 mg/100 g dw). GP and LS inhibited the most microorganisms: B. cereus, E. coli and S. aureus. GP also inhibited E. faecalis. CM had the lowest MIC: 5830 μg/mL. The antibacterial activity is explained by the phenolics present. LS and CM showed the most significant anti-proliferative activity, which is explained by their zinc content. The most promising plants for further studies are CM, LS and GP.

  12. Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity

    Science.gov (United States)

    Munteanu, Bogdanel Silvestru; Aytac, Zeynep; Pricope, Gina M.; Uyar, Tamer; Vasile, Cornelia

    2014-10-01

    The antibacterial property of silver nanoparticles (Ag-NPs) and the antioxidant activity of Vitamin E have been combined by incorporation of these two active components within polylactic acid (PLA) nanofibers via electrospinning (PLA/Ag-NP/VitaminE nanofibers). The morphological and structural characterizations of PLA/Ag-NP/VitaminE nanofibers were performed by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy and X-ray diffraction. The average fiber diameter was 140 ± 60 nm, and the size of the Ag-NP was 2.7 ± 1.5 nm. PLA/Ag-NP/VitaminE nanofibers inhibited growth of Escherichia coli, Listeria monocytogenes and Salmonella typhymurium up to 100 %. The amount of released Ag ions from the nanofibers immersed in aqueous solution was determined by Inductively Coupled Plasma Mass Spectrometry, and it has been observed that the release of Ag ions was kept approximately constant after 10 days of immersion. The antioxidant activity of PLA/Ag-NP/VitaminE nanofibers was evaluated according to DPPH (2,2-diphenyl-1-picrylhydrazyl) method and determined as 94 %. The results of the tests on fresh apple and apple juice indicated that the PLA/Ag/VitaminE nanofiber membrane actively reduced the polyphenol oxidase activity. The multifunctional electrospun PLA nanofibers incorporating Ag-NP and Vitamin E may be quite applicable in food packaging due to the extremely large surface area of nanofibers along with antibacterial and antioxidant activities. These materials could find application in food industry as a potential preservative packaging for fruits and juices.

  13. Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis Utilizing Apple Extract

    Directory of Open Access Journals (Sweden)

    Upendra Nagaich

    2016-01-01

    Full Text Available The advancement of the biological production of nanoparticles using herbal extracts performs a significant role in nanotechnology discipline as it is green and does not engage harsh chemicals. The objective of the present investigation was to extract flavonoids in the mode of apple extract and synthesize its silver nanoparticles and ultimately nanoparticles loading into hydrogels. The presence of flavonoids in apple extract was characterized by preliminary testing like dil. ammonia test and confirmatory test by magnesium ribbon test. The synthesized silver nanoparticles were characterized using UV spectroscopy, particle size and surface morphology, and zeta potential. Silver nanoparticles loaded hydrogels were evaluated for physical appearance, pH, viscosity, spreadability, porosity, in vitro release, ex vivo permeation, and antibacterial (E. coli and S. aureus and antioxidant studies (DPPH radical scavenging assay. Well dispersed silver nanoparticles below were observed in scanning electron microscope image. Hydrogels displayed in vitro release of 98.01%  ±  0.37% up to 24 h and ex vivo permeation of 98.81  ±  0.24% up to 24 h. Hydrogel effectively inhibited the growth of both microorganism indicating good antibacterial properties. The value of percent radical inhibition was 75.16%  ±  0.04 revealing its high antioxidant properties. As an outcome, it can be concluded that antioxidant and antiageing traits of flavonoids in apple extract plus biocidal feature of silver nanoparticles can be synergistically and successfully utilized in the form of hydrogel.

  14. Experimental Study on the comparison of antibacterial and antioxidant effects between the Bee Venom and Sweet Bee Venom

    Directory of Open Access Journals (Sweden)

    Joong chul An

    2006-12-01

    Full Text Available Objectives : This study was conducted to compare antibacterial activities and free radical scavenging activity between the Bee Venom and Sweet Bee Venom in which the allergy-causing enzyme is removed. Methods : To evaluate antibacterial activities of the test samples, gram negative E. coli and gram positive St. aureus were compared using the paper disc method. For comparison of the antioxidant effects, DPPH (1,1-diphenyl-2-picrylhydrazyl free radical scavenging assay and Thiobarbituric Acid Reactive Substances (TBARS assay were conducted. Results : 1. Antibacterial activity against gram negative E. coli was greater in the Sweet Bee Venom group than the Bee Venom group. 2. Antibacterial activity against gram positive St. aureus was similar between the Bee Venom and Sweet Bee Venom groups. 3. DPPH free radical scavenging activity of the Bee Venom group showed 2.8 times stronger than that of the Sweet Bee Venom group. 4. Inhibition of lipid peroxidation of the Bee Venom group showed 782 times greater than that of the Sweet Bee Venom group. Conclusions : The Bee Venom group showed outstanding antibacterial activity against gram positive St. aureus, and allergen-removed Sweet Bee Venom group showed outstanding antibacterial activity against both gram negative E. coli and gram positive St. aureus. For antioxidant effects, the Bee Venom was superior over the Sweet Bee Venom and the superiority was far more apparent for lipid peroxidation.

  15. Antibacterial and antioxidant activity of Portuguese Lavandula luisieri (Rozeira) Rivas-Martinez and its relation with their chemical composition.

    Science.gov (United States)

    Pombal, Sofia; Rodrigues, Cleide F; Araújo, João P; Rocha, Pedro M; Rodilla, Jesus M; Diez, David; Granja, Ángela P; Gomes, Arlindo C; Silva, Lúcia A

    2016-01-01

    Lavandula luisieri (Rozeira) Rivas-Martinez is an endemic aromatic Labiatae the Iberian Peninsula, common in semi-arid regions of southern Portugal and southwestern Spain, that produces an active antibacterial essential oil from the leaves and flowers. This work presents the study of the chemical variation in various stages of growth of leaves and flowers of L. luisieri. It has been found that the essential oils are mainly constituted by 1,8-cineol, camphor, linalool and trans-α-necrodil acetate. It was also studied the total phenol content and the antioxidant activity on leaves and flowers. The ethanol extraction from de leaves contents the highest total phenol, important factor for the antioxidant activity of the plant, extract. It has been studied too, the antibacterial activity against Escherichia coli, Salmonella spp . and Staphylococcus aureus . In accordance with the obtained results, the antibacterial activities stand out against Staphylococcus , of the oil of L. luisieri (leaves and flowers).

  16. Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil.

    Science.gov (United States)

    Jaradat, Nidal; Adwan, Lina; K'aibni, Shadi; Shraim, Naser; Zaid, Abdel Naser

    2016-10-26

    It has been recently recognized that oxidative stress, helminth and microbial infections are the cause of much illness found in the underdeveloped, developing and developed countries. The present study was undertaken to identify the chemical composition, and to assess anthelmintic, antimicrobial and antioxidant effects of Thymus bovei essential oil. The chemical composition of the essential oil was analyzed using gas chromatography mass spectrometry (GC-MS). Antimicrobial activity was tested against the selected strains from American Type Culture Collection (ATCC) and clinical isolates such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Methicillin Resistant Staphylococcus aureus, Candida albicans using MIC assay. The anthelmintic assay was carried out on adult earthworm (Pheretima posthuma), while antioxidant activity was analyzed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method. Trans-geraniol (35.38 %), α-citral (20.37 %) and β-citral (14.76 %) were the major compounds comprising 70.51 % of the essential oil. Our results showed that T. bovei essential oil exhibited strong anthelmintic activity, even higher than piperazine citrate, the used reference standard, with potential antioxidant activity almost equal to the Trolox standard. Furthermore, T. bovei essential oil had powerful antibacterial and antifungal activities against the studied pathogens. Essential oil of T. bovei exerted excellent antioxidant, antimicrobial, and anthelmintic activities. Moreover, this study found that T. bovei volatile oil contains active substances that could potentially be used as natural preservatives in food and pharmaceutical industries, these substances could also be employed for developing new anthelmintic, antimicrobial and antioxidant agents.

  17. Synthesis and Evaluation of Curcuminoid Analogues as Antioxidant and Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Dalia R. Emam

    2017-06-01

    Full Text Available Diazocoupling reaction of curcumin with different diazonium salts of p-toluidine, 2-aminopyridine, and 4-aminoantipyrine in pyridine yielded the arylhydrazones 2a–c. Arylhydrazone of p-toluidine reacted with urea, thiourea, and guanidine nitrate to produce 5,6-dihydropyrimidines. Further reaction of 2a with 2,3-diaminopyrdine in sodium ethoxide solution yielded 1H-pyrido[2,3-b][1,4]diazepine derivative. Bis(2,5-dihydroisoxazole is obtained from the reaction of 2a with hydroxylamine hydrochloride, while its reactions with hydrazines afforded the respective 4,5-dihydro-1H-pyrazoles. The target compounds were evaluated as antioxidant and antibacterial agents. The tested compounds showed good to moderate activities compared to ascorbic acid and chloramphenicol, respectively.

  18. Antioxidant and antibacterial activity of six edible wild plants (Sonchus spp.) in China.

    Science.gov (United States)

    Xia, Dao-Zong; Yu, Xin-Fen; Zhu, Zhuo-Ying; Zou, Zhuang-Dan

    2011-12-01

    The total phenolic and flavonoid, antioxidant and antibacterial activities of six Sonchus wild vegetables (Sonchus oleraceus L., Sonchus arvensis L., Sonchus asper (L.) Hill., Sonchus uliginosus M.B., Sonchus brachyotus DC. and Sonchus lingianus Shih) in China were investigated. The results revealed that S. arvensis extract and S. oleraceus extract contained the highest amount of phenolic and flavonoid, respectively. Among the methanol extracts of six Sonchus species, S. arvensis extract exhibited the highest radical (DPPH and ABTS+ scavenging power and lipid peroxidation inhibitory power. It also exhibited the highest reducing power at 500 µg mL⁻¹ by A (700) = 0.80. The results of antibacterial test indicated that the S. oleraceus extract showed higher activity than the other five Sonchus wild vegetables extracts, both in Gram-negative bacteria (Escherichia coli, Salmonella enterica and Vibrio parahaemolyticus) and in a Gram-positive bacterium (Staphylococcus aureus). These results indicate that Sonchus wild food plants might be applicable in natural medicine and healthy food.

  19. Synthesis, electronic properties, antioxidant and antibacterial activity of some new benzimidazoles.

    Science.gov (United States)

    Mavrova, Anelia Ts; Yancheva, Denitsa; Anastassova, Neda; Anichina, Kamelya; Zvezdanovic, Jelena; Djordjevic, Aleksandra; Markovic, Dejan; Smelcerovic, Andrija

    2015-10-01

    Two groups of benzimidazole derivatives were synthesized using as precursors 5(6)-substituted 2-mercapto-benzimidazol-thiols and their antioxidant activity was investigated using TBA-MDA test. In the group of 1,3-disubstituted-benzimidazol-2-imines the highest lipid peroxidation inhibition effect 74.04% (IC₅₀=141.89 μg/mL) revealed ethyl [3-(2-ethoxy-2-oxoethyl)-2-imino-5-benzoyl-2,3-dihydro-1H-benzimdazol-1-yl]acetate 12 while in the group of 2-substituted-1,3-thiazolo[3,2-a]benzimidazolones the highest inhibition effect showed 2-(4-fluorobenzylidene)-7-(phenylcarbonyl)[1,3]thiazolo[3,2-a]benzimidazol-3(2H)-one 17 90.76% (IC₅₀=53.70 μg/mL). In order to estimate the capability of the studied benzimidazoles to act as radical scavengers the structure of the most active derivative within the both subseries was optimized at B3LYP/6-311++G(∗∗) level and the respective bond dissociation enthalpies were calculated. The appropriate models for the HAT and SET-mechanism of the antioxidant activity were proposed. The antibacterial activity of the compounds was evaluated against two Gram-positive bacteria (Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538) and three Gram-negative bacteria (Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027 and Salmonella abony NCTC 6017). 1,3-Diphenylpropyl-5-methyl-1,3-dihydro-2H-benzimidazol-2-imine 14 exhibited significant activity against B. subtilis, S. aureus, S. abony and E. coli (with MIC values of 0.125, 0.016, 0.50 and 0.50mg/mL, respectively). The group of thiazolobenzimidazolones did not reveal antibacterial activity against the tested strains. Copyright © 2015. Published by Elsevier Ltd.

  20. Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection.

    Science.gov (United States)

    Karuppiah, Ponmurugan; Mustaffa, Muhammed

    2013-09-01

    To investigate different Musa sp. leave extracts of hexane, ethyl acetate and methanol were evaluated for antibacterial activity against multi-drug resistant pathogens causing nosocomial infection by agar well diffusion method and also antioxidant activities. The four different Musa species leaves were extracted with hexane, ethyl acetate and methanol. Antibacterial susceptibility test, minimum inhibitory concentration and minimum inhibitory bacterial concentration were determined by agar well diffusion method. Total phenolic content and in vitro antioxidant activity was determined. All the Musa sp. extracts showed moderate antibacterial activities expect Musa paradisiaca with the inhibition zone ranging from 8.0 to 18.6 mm. Among four species ethyl acetate extracts of Musa paradisiaca showed highest activity against tested pathogens particularly E. coli, P. aeruginosa and Citrobacter sp. The minimum inhibitory concentrations were within the value of 15.63- 250 µg/mL and minimum bactericidal concentrations were ranging from 31.25- 250 µg/mL. Antioxidant activity of Musa acuminate exhibited maximum activity among other three Musa species. The present study concluded that among the different Musa species, Musa paradisiaca displayed efficient antibacterial activity followed by Musa acuminata against multi-drug resistant nosocomial infection causing pathogens. Further, an extensive study is needed to identify the bioactive compounds, mode of action and toxic effect in vivo of Musa sp.

  1. Chemical composition, antibacterial and antioxidant profile of essential oil from Murraya koenigii (L. leaves

    Directory of Open Access Journals (Sweden)

    Mini Priya Rajendran

    2014-05-01

    Full Text Available Objective: This study is designed to extract and examine chemical composition, antimicrobial and antioxidant activity of the hydro-distillated essential oil of Murraya koenigii leaves from the south region of Tamilnadu, India. Matherials and Methods: Gas Chromatography (GC and Gas Chromatography-Mass Spectrometry (GC-MS analysis of the essential oil result was indicates the 33 different compounds representing 97.56 % of the total oil. Results: Major compounds detected in the oil were Linalool (32.83%, Elemol (7.44%, Geranyl acetate (6.18%, Myrcene (6.12%, Allo-Ocimene (5.02, α-Terpinene (4.9%, and (E-β-Ocimene (3.68% and Neryl acetate (3.45%. From the identified compounds, they were classified into four groups that are oxygenated monoterpenes (72.15%, monoterpene hydrocarbons (11.81%, oxygenated sesquiterpenes (10.48% and sesquiterpenes hydrocarbons (03.12%. The antibacterial activity of essential oil has pronounced by Disc Diffusion Method against various pathogenic microbes. Conclusion: The oil has a maximum zone of inhibition ability against Corynebacterium tuberculosis, Pseudomonas aeruginosa, Streptococcus pyogenes, Klebsiella pneumonia and Enterobacter aerogenes. The antioxidant profile of the sample was determined by different test systems. In all the systems, essential oil showed a strongest activity profile within the concentration range.

  2. ANTIBACTERIAL, PHYTOCHEMICAL AND ANTIOXIDANT PROPERTIES OF CNESTIS FERRUGINEA DC (CONNARACEAE EXTRACTS

    Directory of Open Access Journals (Sweden)

    Fred Coolborn Akharaiyi

    2012-10-01

    Full Text Available To evaluate the health relevance of decoctions, infusions and concoction of medicinal plants in traditional medicine, antibacterial efficacy of crude aqueous, ethanol and petroleum ether extracts of Cnestis ferruginea leaf, stem bark and roots were assayed against nine clinical bacterial isolates namely Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Bacillus cereus, Shigalla dysenteriae, Campylobacter jejunum, a -hemolytic group A streptococcus, and Salmonella enterica ser.Typhi by agar well diffusion method. The leaf extracts had higher inhibitory effects at various degrees than the stem bark and root extracts. Chemical methods were used to determine the quality and quantity of phytochemical components where alkaloids, flavonoids, saponin, tannins, phenol and cardinolides were found present. The antioxidant activities of the extracts of the plant tested were determined by a spectrophotometric method using the stable free radical DPPH (2, 2-diphenyl-1-picrylhydrazyl. Considerable antioxidant activities were found in the plant extracts. C. ferruginea contains bioactive principles necessary for bacteria inhibition and therefore, the powder could be used as preservative, beverage and source of novel drug(s.

  3. A Natural Antibacterial-Antioxidant Film from Soy Protein Isolate Incorporated with Cortex Phellodendron Extract

    Directory of Open Access Journals (Sweden)

    Shumin Liang

    2018-01-01

    Full Text Available An active film was prepared by incorporating cortex Phellodendron extract (CPE, an active agent into a soybean protein isolate (SPI. Different concentrations of CPE (0%, 10%, 12.5%, 15%, 17.5%, 20%, or 22.5%, w/w, based on SPI were mixed into the films characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetry, tensile tests, and barrier properties. The rheological properties of the solutions were also tested. The effects of the CPE content on the antibacterial and antioxidant activities of the films were examined. The results indicated that new hydrogen bonds formed between molecules in the films, and the crystallinity of the films decreased. The incorporation of CPE had no significant influence on the thermal stability of the films. Films containing 15% CPE had the maximum tensile strength of 6.00 MPa. The barrier properties against water vapor, oxygen, and light enhanced with the incorporation of CPE. The antioxidant activity of the SPI film was also improved. The films were effective against Staphylococcus aureus (S. aureus, Gram-positive bacteria. These results suggest that the SPI/CPE film can potentially extend the shelf lives of foods.

  4. Evaluation of antibacterial, antioxidant and nootropic activities of Tiliacora racemosa Colebr. leaves: In vitro and in vivo approach.

    Science.gov (United States)

    T, Vivek Kumar; M, Vishalakshi; M, Gangaraju; Das, Parijat; Roy, Pratiti; Banerjee, Anindita; Dutta Gupta, Sayan

    2017-02-01

    The antibacterial and antioxidant potential of Tiliacora racemosa leaf extracts in various solvents (methanolic, hexane, chloroform and ethyl acetate) was determined. Additionally, the presence of bisbenzylisoquinoline alkaloids in the plant prompted us to evaluate the nootropic activity of the methanolic extract in mice. Further, we seek to verify the nootropic effect by examining the anticholinesterase inhibition potential of the methanolic extract. The leaf extracts in various solvents were evaluated for their antibacterial and antioxidant activity by agar diffusion technique and α, α-diphenyl-β-picrylhydrazyl (DPPH) free radical scavenging method, respectively. The ex vivo acetylcholine esterase inhibitory activity of the methanolic extract was carried out by Ellman's method in male Wistar rats. The nootropic capacity of the methanolic extract was examined in Swiss albino mice by utilizing the diazepam induced acute amnesic model. The chloroform/n-hexane and ethyl acetate fraction showed promising antioxidant and antibacterial (Gram positive and Gram negative bacteria) property, respectively. The methanolic extract was able to diminish the amnesic effect induced by diazepam (1mg/kg i.p.) in mice. The extract also showed significant acetyl cholinesterase inhibition in rats. The findings prove that the memory enhancing capability is due to increased acetyl choline level at the nerve endings. The strong antioxidant nature and potential nootropic activity shown by the extract suggests its future usage in the treatment of neurodegenerative disorders such as dementia and Alzheimer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Screening of Phytoconstituents, Investigation of Antioxidant and Antibacterial Activity of Methanolic and Aqueous Extracts of Cucumis sativus

    International Nuclear Information System (INIS)

    Sahar, A.; Naqvi, S.A.; Khan, Z.A.; Ahmad, M.; Hussain, Z.; Sahar, T.; Nosheen, S.

    2013-01-01

    The phytoconstituents, antioxidant potential and antibacterial activity of Cucumis sativus (C. sativus) cultivated in Pakistan were studied. In addition, the effect of extraction techniques (mercerization and refluxing) on the total phenolics, antioxidant activity and antibacterial potential of C. sativus fruit pulp were also studied. Methanol extract was screened for its phytoconstituents. The antioxidant activity was assessed by determination of total phenolic contents (TPC), total flavonoid contents (TFC) and performing different in vitro antioxidant models such as 2,2-Diphenyl-1-picryl hydrazyl (DPPH) free radical scavenging, reducing power, percent inhibition of peroxidation in linoleic acid and nitric oxide free radical scavenging assays. Phytochemicals screening results revealed the presence of flavonoids, glycosides, tannic acid and saponins while absence of alkaloids, steroids and anthraquinones. The TPC was found in appreciable concentration (41.03 mg gallic acid equivalent (GAE)/g) in extract obtained by 4h methanolic mercerization. Long refluxing technique (4h refluxing) was found unfavorable to some extent as it resulted only 33.69 mg GAE/g TPC in methanolic extract. Anyhow the extraction with water using mercerization and refluxing techniques found least effective e.g. 4h mercerization and refluxing showed 14.14 and 18.16 mg GAE/g respectively. Antibacterial assay showed extract obtained by 4h and 2h methanolic mercerization have good potential to inhibit the growth (09.6+-0.7 to 18.5+-0.8 mm) of infection causing bacteria. The results of antioxidants and antibacterial in vitro assays advocated that 4h methanolic mercerization is an effective extraction technique. Therefore, it could be concluded that methanolic mercerization is a technique of maximum extraction of phenolics and bioactive constituents. (author)

  6. Chemical composition, antioxidant and antibacterial activities of essential oils from Ferulago angulata.

    Science.gov (United States)

    Ghasemi Pirbalouti, Abdollah; Izadi, Arezo; Malek Poor, Fatemeh; Hamedi, Behzad

    2016-11-01

    Ferulago angulata Boiss. (Apiaceae), a perennial aromatic herb, grows wild in Iran. The aerial parts of F. angulata are used as a flavouring in foods, especially dairy foods by indigenous people in western and southwestern Iran. This study investigates variation in chemical compositions, antioxidant and antibacterial activities of the essential oils from F. angulata collected from natural habitats in the alpine regions of southwestern Iran. The antimicrobial activity, minimum inhibitory concentration (MIC) and minimum bactericidal (MBC) of the essential oils were evaluated against four bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus and Salmonella typhimurium). Antioxidant activity of the oils was determined by DPPH assay. The essential oils were analyzed by GC-FID and GC/MS, which 49 volatile components were identified. There were significant differences between the various populations for oil yield and some main compounds. The major constituents of the essential oils from F. angulata were α-pinene, and cis-β-ocimene. The MICs of the essential oils were within concentration ranges from 62 to 250 μg/mL and the respective MBCs were 125 to > 500 μg/mL. Generally, the oils from F. angulata indicated weak to moderate inhibitory activities against bacteria, especially against Listeria monocytogenes. The highest antioxidant activity was obtained from the oil of the Kallar population (IC 50 value   =   488 μg/mL) and BHT as positive control (IC 50  value =   321 μg/mL). The essential oil of F. angulata could be serving as a potential source of α-pinene and cis-β-ocimene for use in the food, cosmetic and pharmaceutical industries.

  7. Effect of different ripening stages on walnut kernel quality: antioxidant activities, lipid characterization and antibacterial properties.

    Science.gov (United States)

    Amin, Furheen; Masoodi, F A; Baba, Waqas N; Khan, Asma Ashraf; Ganie, Bashir Ahmad

    2017-11-01

    Packing tissue between and around the kernel halves just turning brown (PTB) is a phenological indicator of kernel ripening at harvest in walnuts. The effect of three ripening stages (Pre-PTB, PTB and Post-PTB) on kernel quality characteristics, mineral composition, lipid characterization, sensory analysis, antioxidant and antibacterial activity were investigated in fresh kernels of indigenous numbered walnut selection of Kashmir valley "SKAU-02". Proximate composition, physical properties and sensory analysis of walnut kernels showed better results for Pre-PTB and PTB while higher mineral content was seen for kernels at Post-PTB stage in comparison to other stages of ripening. Kernels showed significantly higher levels of Omega-3 PUFA (C18:3 n3 ) and low n6/n3 ratio when harvested at Pre-PTB and PTB stages. The highest phenolic content and antioxidant activity was observed at the first stage of ripening and a steady decrease was observed at later stages. TBARS values increased as ripening advanced but did not show any significant difference in malonaldehyde formation during early ripening stages whereas it showed marked increase in walnut kernels at post-PTB stage. Walnut extracts inhibited growth of Gram-positive bacteria ( B. cereus, B. subtilis, and S. aureus ) with respective MICs of 1, 1 and 5 mg/mL and gram negative bacteria ( E. coli, P. and K. pneumonia ) with MIC of 100 mg/mL. Zone of inhibition obtained against all the bacterial strains from walnut kernel extracts increased with increase in the stage of ripening. It is concluded that Pre-PTB harvest stage with higher antioxidant activities, better fatty acid profile and consumer acceptability could be preferred harvesting stage for obtaining functionally superior walnut kernels.

  8. Antibacterial and antioxidant activities of an ethno botanically important plant sauromatum venosum (ait.) schott. of district Kotli, Azad Jammu and Kashmir

    International Nuclear Information System (INIS)

    Ajaib, M.; Khan, Z.U.D.; Abbadi, M.A.; Khan, N.; Wahab, M.

    2011-01-01

    In order to verify the ethnopharmacological effects of local plant, Sauromatum venosum (Ait.) Schott., on scientific lines the antibacterial activity including MIC and antioxidant activity of the crude extracts of its fruits were tested against Gram-positive and Gram-negative bacteria using well diffusion method and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity test. The results indicated a reasonable antibacterial potential and significant total antioxidant activity, thus supporting its traditional medicinal practices. (author)

  9. In-vitro antioxidant and antibacterial activities of Xanthium strumarium L. extracts on methicillin-susceptible and methicillin-resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Javad Sharifi Rad

    2013-01-01

    Results and Conclusions: The IC 50 values of the extract were 0.02 mg/mL and 0.09 mg/mL for the antioxidant and DPPH-scavenging capacity, respectively. X. strumarium extract affected both methicillin-sensitive Staphylococcus aureus and MRSA, though antibacterial activity was more effective on methicillin-susceptible S. aureus spp. The antibacterial and antioxidant activities exhibited by the methanol extract may justify the traditional use of this plant as a folk remedy worldwide.

  10. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves

    Directory of Open Access Journals (Sweden)

    Patil Shriniwas P.

    2017-07-01

    Full Text Available Several attempts have been made for green synthesis of silver nanoparticles (AgNPs using different plant extracts. Present study revealed that, antioxidant, antibacterial and cytotoxic AgNPs were synthesized using terpenes-rich extract (TRE of environmentally notorious Lantana camara L. leaves. AgNPs were characterized by advanced techniques like UV–Visible and Infra red spectroscopy; XRD, SEM techniques as terpenes coated sphere shaped NPs with average diameter 425 nm. Further, on evaluation, AgNPs were found to exhibit dose – dependent antioxidant potential, good to moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa; and toxicity on Brine shrimp (A. salinanauplii with LD50 value 514.50 µg/ml.

  11. Chemical Composition, Antioxidant, DNA Damage Protective, Cytotoxic and Antibacterial Activities of Cyperus rotundus Rhizomes Essential Oil against Foodborne Pathogens

    Science.gov (United States)

    Hu, Qing-Ping; Cao, Xin-Ming; Hao, Dong-Lin; Zhang, Liang-Liang

    2017-01-01

    Cyperus rotundus L. (Cyperaceae) is a medicinal herb traditionally used to treat various clinical conditions at home. In this study, chemical composition of Cyperus rotundus rhizomes essential oil, and in vitro antioxidant, DNA damage protective and cytotoxic activities as well as antibacterial activity against foodborne pathogens were investigated. Results showed that α-cyperone (38.46%), cyperene (12.84%) and α-selinene (11.66%) were the major components of the essential oil. The essential oil had an excellent antioxidant activity, the protective effect against DNA damage, and cytotoxic effects on the human neuroblastoma SH-SY5Y cell, as well as antibacterial activity against several foodborne pathogens. These biological activities were dose-dependent, increasing with higher dosage in a certain concentration range. The antibacterial effects of essential oil were greater against Gram-positive bacteria as compared to Gram-negative bacteria, and the antibacterial effects were significantly influenced by incubation time and concentration. These results may provide biological evidence for the practical application of the C. rotundus rhizomes essential oil in food and pharmaceutical industries. PMID:28338066

  12. Antioxidant, ACE-Inhibitory and antibacterial activities of Kluyveromyces marxianus protein hydrolysates and their peptide fractions

    Directory of Open Access Journals (Sweden)

    Mahta Mirzaeia

    2016-07-01

    Full Text Available Background: There has been evidence that proteins are potentially excellent source of antioxidants, antihypertensive and antimicrobial peptides, and that enzymatic hydrolysis is an effective method to release these peptides from protein molecules. The functional properties of protein hydrolysates depends on the protein substrate, the specificity of the enzymes, the conditions used during proteolysis, degree of hydrolysis, and the nature of peptides released including molecular weight, amino acid composition, and hydrophobicity. Context and purpose of this study: The biomass of Kluyveromyces marxianus was considered as a source of ACE inhibitory, antioxidant and antimicrobial peptides. Results: Autolysis and enzymatic hydrolysis were completed respectively, after 96 h and 5 h. Overall, trypsin (18.52% DH and chymotrypsin (21.59% DH treatments were successful in releasing antioxidant and ACE inhibitory peptides. Autolysate sample (39.51% DH demonstrated poor antioxidant and ACE inhibitory activity compared to trypsin and chymotrypsin hydrolysates. The chymotrypsin 3-5 kDa (301.6±22.81 μM TE/mg protein and trypsin < 3 kDa (280.16±39.16 μM TE/mg protein permeate peptide fractions showed the highest DPPH radical scavenging activity. The trypsin <3 kDa permeate peptide fraction showed the highest ABTS radical scavenging (1691.1±48.68 μM TE/mg protein and ACE inhibitory (IC50=0.03±0.001 mg/mL activities. The fraction (MW=5-10 kD obtained after autolysis treatment showed antibacterial activity against St. aureus and Lis. monocytogenes in well diffusion screening. The minimum inhibitory concentration (MIC value was 13.3 mg/mLagainst St. aureus and Lis. monocytogenes calculated by turbidimetric assay and it showed bactericidal activity against St. aureus at 21.3 mg/mL protein concentration. Conclusions: Altogether, the results of this study reveal that K. marxianus proteins contain specific peptides in their sequences which can be released by

  13. Antibacterial and antioxidant activity of Juniperus thurifera L. leaf extracts growing in East of Algeria

    Directory of Open Access Journals (Sweden)

    Merradi Manel

    2018-03-01

    Full Text Available Aim: This work aimed to evaluate the biological activity of the leaf extracts of Juniperus thurifera L., which is an Algerian endemic tree that belongs to the family of Cupressaceae. Materials and Methods: The plant leaves were extracted in solvents of increasing polarity to obtain different extracts such as methanol, petroleum ether, chloroform, ethyl acetate, and aqueous extracts (MeE, PEE, ChlE, EtAE, and AqE. The antioxidant activity of four extracts (MeE, ChlE, EtAE, and AqE was assessed by trapping test of 1,1-diphenyl-2- picrylhydrazyl (DPPH radical. The evaluation of antibacterial activity of MeE, ChlE, EtAE, and PEE was done using the disk diffusion method on solid agar. Results: The three extracts of EtAE, AqE, and MeE showed high antiradical activity toward the DPPH radical (IC50=29.348 μg/mL, 37.538 μg/mL, and 52.573 μg/mL, respectively, while the lowest radical scavenging activity was expressed by the ChlE (IC50=70.096 μg/mL. These extracts were active only toward the Gram-positive bacteria (Staphylococcus aureus ATCC and methicillin-resistant S. aureus at different concentrations, and the highest activity was obtained with the ChlE with an inhibition diameter of 14 mm at the concentration of 1 g/mL. No inhibition was detected for all of these extracts against the Gram-negative tested strains (Escherichia coli ATCC, Pseudomonas aeruginosa ATCC, and Enterobacter cloacae (extended spectrum β-lactamase. Conclusion: From this study, on the one hand, it was concluded that J. thurifera L. leaves extracts exhibited a very intense antioxidant potential toward the DPPH radical, and on the other hand, the antibacterial activity showed an action spectrum exclusively toward the Gram-positive bacteria.

  14. ANTIBACTERIAL AND ANTIOXIDANT ACTIVITIES OF THE ESSENTIAL OILS AND PHENOLIC EXTRACTS OF MYRTUS COMMUNIS AND ZYGOPHYLUM ALBUM FROM ALGERIA.

    Directory of Open Access Journals (Sweden)

    A. Belmimoun

    2016-05-01

    Full Text Available The present study deals with the evaluation of the in vitro antioxidant and antibacterial activity of phenolic extracts and essential oils of two medicinal and aromatic plants Zygophyllum album and Myrtus communis by using the 2,2- diphenyl-2-picrylhydrazyl radical ,total antioxidant power and agar diffusion methods and minimum inhibitory concentration (MIC determination.Moreover,the extracts were investigated for their polyphenolic,flavonoids,tannins and anthocyans content by using the Folin-Ciocalteu assay,the aluminium trichlorid method,reaction with vanillin and colometer method based on differentiation of absorbance,respectively.The results showed that the highest antioxidant capacity was exhibited by the aqueous extract of Myrtus communis with IC50= 29,080mg/ml.All extracts  possessed more or less antibacterial activity against the  tested Gram- positive and Gram –negative bacteria Bacillus subtilis and E.coli were the more susceptible microorganisms to all extracts and essential oils. Pronounced antibacterial activity was observed by the methanolic extract of Zygophylum album (MIC value=25 µg/ml.Morever,the results showed that the phenolic compounds and flavonoids were abundant in Myrtle aqueous extracts.

  15. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles: Catalytic, Antibacterial, Cytotoxicity, and Antioxidant Activities

    Science.gov (United States)

    Din, Muhammad Imran; Arshad, Farhan; Hussain, Zaib; Mukhtar, Maria

    2017-12-01

    Copper nanoparticles (CuNPs) are of great interest due to their extraordinary properties such as high surface-to-volume ratio, high yield strength, ductility, hardness, flexibility, and rigidity. CuNPs show catalytic, antibacterial, antioxidant, and antifungal activities along with cytotoxicity and anticancer properties in many different applications. Many physical and chemical methods have been used to synthesize nanoparticles including laser ablation, microwave-assisted process, sol-gel, co-precipitation, pulsed wire discharge, vacuum vapor deposition, high-energy irradiation, lithography, mechanical milling, photochemical reduction, electrochemistry, electrospray synthesis, hydrothermal reaction, microemulsion, and chemical reduction. Phytosynthesis of nanoparticles has been suggested as a valuable alternative to physical and chemical methods due to low cytotoxicity, economic prospects, environment-friendly, enhanced biocompatibility, and high antioxidant and antimicrobial activities. The review explains characterization techniques, their main role, limitations, and sensitivity used in the preparation of CuNPs. An overview of techniques used in the synthesis of CuNPs, synthesis procedure, reaction parameters which affect the properties of synthesized CuNPs, and a screening analysis which is used to identify phytochemicals in different plants is presented from the recent published literature which has been reviewed and summarized. Hypothetical mechanisms of reduction of the copper ion by quercetin, stabilization of copper nanoparticles by santin, antimicrobial activity, and reduction of 4-nitrophenol with diagrammatic illustrations are given. The main purpose of this review was to summarize the data of plants used for the synthesis of CuNPs and open a new pathway for researchers to investigate those plants which have not been used in the past.

  16. Antioxidant, antibacterial and antiproliferative activities of pumpkin (cucurbit) peel and puree extracts - an in vitro study.

    Science.gov (United States)

    Asif, Muhammad; Naqvi, Syed Ali Raza; Sherazi, Tauqir A; Ahmad, Matloob; Zahoor, Ameer Fawad; Shahzad, Sohail Anjum; Hussain, Zaib; Mahmood, Hassan; Mahmood, Nasir

    2017-07-01

    Natural resources right from the beginning of the human civilization has paved the way to human being to combat different challenges. The big challenge was to safe the human being from diseases and shortage of food. Plants helped the man in both areas very efficiently. No doubt when plants are used as food actually we are also taking lot of compounds of medicinal values in an excellent combination which naturally reduce the risk of diseases. Extraction and purification of several medicinally important compounds also gave the way to develop pharmaceutical industry in addition to its own therapeutic effects against different lethal diseases. Pumpkin is one of the several medicinal important vegetables used in different way on the behalf of its admirable power to combat different diseases. Antioxidant and biological studies showed very important results. A good coherence was found among extraction yield (10.52 to 18.45%), total phenolics (1.13 to 6.78 mg GAE/100g), total flavonoids (0.23 to 0.72mg CE/100g) and antioxidant potential (≻70%). Antibacterial assays of peel and puree extracts advocated good potential to stop the growth and division of pathogenic bacteria. Further biological activity study was carried out using MDBK cancer cell line. The growth inhibitory effect on cancer cell line using MTT assay showed methanol extracts of peel and puree both remained efficient to inhibit growth (≻35%) and cell division of cancer cells. Our results showed that extracts of pumpkin puree and its waste, peel, may be utilize to prepare functional food against pathogenic born diseases and most active compounds may also be extracted, concentrated and converted into tablets or suspension form for therapeutic purposes.

  17. Assessment of the antioxidant and antibacterial activities of different olive processing wastewaters.

    Directory of Open Access Journals (Sweden)

    Majdouline Belaqziz

    Full Text Available Olive processing wastewaters (OPW, namely olive mill wastewater (OMW and table-olive wastewaters (TOW were evaluated for their antibacterial activity against five Gram-positive and two Gram-negative bacteria using the standard disc diffusion and thin layer chromatography (TLC-bioautography assays. Disc diffusion screening and bioautography of OMW were compared to the phenolic extracts of table-olive brines. Positive activity against S. aureus was demonstrated. The optimization of chromatographic separation revealed that hexane/acetone in the ratio of 4:6 was the most effective for phenolic compounds separation. A HPLC-MS analysis was performed showing that only two compounds, hydroxytyrosol and tyrosol, were the predominant phenolic compounds in all OPW. The phenolic extract of OMW generated by a semi-modern process showed the highest free radical-scavenging activity (DPPH assay compared to the other phenolic extracts. It is apparent from the present study that OPW are a rich source of antioxidants suitable for use in food, cosmetic or pharmaceutical applications.

  18. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Chiara eLauritano

    2016-05-01

    Full Text Available Marine microalgae are considered a potentially new and valuable source of biologically active molecules for applications in the food industry as well as in the pharmaceutical, nutraceutical and cosmetic sectors. They can be easily cultured, have short generation times and enable an environmentally-friendly approach to drug discovery by overcoming problems associated with the over-utilization of marine resources and the use of destructive collection practices. In this study, 21 diatoms, 7 dinoflagellates and 4 flagellate species were grown in three different culturing conditions and the corresponding extracts were tested for possible antioxidant, anti-inflammatory, anticancer, anti-diabetes, antibacterial and anti-biofilm activities. In addition, for two diatoms we also tested two different clones to disclose diversity in clone bioactivity. Six diatom species displayed specific anti-inflammatory, anticancer (blocking human melanoma cell proliferation and anti-biofilm (against the bacteria Staphylococcus epidermidis activities whereas, none of the other microalgae were bioactive against the conditions tested for. Furthermore, none of the 6 diatom species tested were toxic on normal human cells. Culturing conditions (i.e. nutrient starvation conditions greatly influenced bioactivity of the majority of the clones/species tested. This study denotes the potential of diatoms as sources of promising bioactives for the treatment of human pathologies.

  19. The Antibacterial and Antioxidant Effect of Grape Seed and Green Tea Extracts on Durability of Tilapia

    Directory of Open Access Journals (Sweden)

    Rozita Golvardzadeh

    2016-10-01

    Full Text Available Background: The current study tried to investigate the antioxidant and anti-bacterial effects of green tea and grape seed extract (with a volume of 2% on durability of Tilapia packed inpolyethylene bags, which were kept in cool temperature of 4 ± 1 °C. Methods: Prepared fish were divided into 3 batches: 2 batches were treated by dipping for 30 min in ethanolic of green tea extract (2% v/v and grape seed (2% v/v, respectively, while the third batch was dipped in distilled water as a control sample. The control and treated fish samples were analyzed for microbiological such as total volatile count and psychrotrophic count, and chemical such as thiobarbituric acid (TBA, and free fatty acid (FFA values. The sensory characteristic was over a period of 20 days. Results: The results indicated that the two extracts' treatments delayed significantly (P < 0.05. Lipid oxidation and process of spoilage in comparison with the psychrotrophic bacteria and total viable count control also remained lower than the proposed acceptable limit (7 log CFU/g. According to sensory, chemical, and microbiological analyses results, the treatment of grape seed extract had high quality and enhanced the beneficial effects on sensory characteristics in comparison with other treatments. Conclusions: the present study showed that the grape seed extract and green tea were very effective in extending the shelf life of Tilapia during refrigerated storage.

  20. Antioxidant, Antibacterial, Cytotoxic, and Anti-Inflammatory Potential of the Leaves of Solanum lycocarpum A. St. Hil. (Solanaceae

    Directory of Open Access Journals (Sweden)

    Guilherme Augusto Ferreira da Costa

    2015-01-01

    Full Text Available Ethanol extract and fractions obtained from leaves of Solanum lycocarpum were examined in order to determine their phenolic composition, antioxidant, antibacterial, anti-inflammatory, and cytotoxic potential. High performance liquid chromatography coupled with DAD analysis indicated that the flavonoids apigenin and kaempferol were the main phenolic compounds present in dichloromethane and ethyl acetate fractions, respectively. The antioxidant activity was significantly more pronounced for dichloromethane, ethyl acetate, and hydroethanol fractions than that of the commercial antioxidant 2,6-di-tert-butyl-4-methylphenol. The hexane and dichloromethane fractions were more active against the tested bacteria. The hydroethanol fraction exhibited significant anti-inflammatory activity at the dose of 75 and 150 mg/kg in the later phase of inflammation. However, the antiedematogenic effect of the higher dose of the ethyl acetate fraction (150 mg/kg was more pronounced. The ethyl acetate fraction also presented a less cytotoxic effect than the ethanol extract and other fractions. These activities found in S. lycocarpum leaves can be attributed, at least in part, to the presence of phenolic constituents such as flavonoids. This work provided the knowledge of phenolic composition in the extract and fractions and the antioxidant, antibacterial, anti-inflammatory, and cytotoxic activities of leaves of S. lycocarpum.

  1. Chemical composition, antioxidant and antibacterial activities of essential oils from leaves and flowers of Eugenia klotzschiana Berg (Myrtaceae).

    Science.gov (United States)

    Carneiro, Nárgella S; Alves, Cassia C F; Alves, José M; Egea, Mariana B; Martins, Carlos H G; Silva, Thayná S; Bretanha, Lizandra C; Balleste, Maira P; Micke, Gustavo A; Silveira, Eduardo V; Miranda, Mayker L D

    2017-01-01

    Many essential oils (EOs) of different plant species possess interesting antimicrobial effects on buccal bacteria and antioxidant properties. Eugenia klotzschiana Berg (pêra-do-cerrado, in Portuguese) is a species of Myrtaceae with restricted distribution in the Cerrado. The essential oils were extracted through the hydrodistillation technique using a modified Clevenger apparatus (2 hours) and chemically characterized by GC-MS. The major compounds were α-copaene (10.6 %) found in oil from leaves in natura, β-bisabolene (17.4 %) in the essential oil from dry leaves and α-(E)-bergamotene (29.9 %) in oil from flowers. The antioxidant activity of essential oils showed similarities in both methods under analysis (DPPH and ABTS˙+) and the results suggested moderate to high antioxidant activity. The antibacterial activity was evaluated by determining minimum inhibitory concentrations (MICs), using the microdilution method. MIC values below 400 µg/mL were obtained against Streptococcus salivarius (200 µg/mL), S. mutans (50 µg/mL), S. mitis (200 µg/mL) and Prevotella nigrescens (50 µg/mL). This is the first report of the chemical composition and antibacterial and antioxidant activities of the essential oils of E. klotzschiana. These results suggest that E. klotzschiana, a Brazilian plant, provide initial evidence of a new and alternative source of substances with medicinal interest.

  2. Phytochemical Screening, Alpha-Glucosidase Inhibition, Antibacterial and Antioxidant Potential of Ajuga bracteosa Extracts.

    Science.gov (United States)

    Hafeez, Kokab; Andleeb, Saiqa; Ghousa, Tahseen; Mustafa, Rozina G; Naseer, Anum; Shafique, Irsa; Akhter, Kalsoom

    2017-01-01

    Ajuga bracteosa, a medicinal herb, is used by local community to cure a number of diseases such as inflammation, jaundice bronchial asthma, cancer and diabetes. The aim of present work was to evaluate the antioxidant potential, in vitro antidiabetic and antimicrobial effects of A. bracteosa. n-hexane, ethyl acetate, chloroform, acetone, methanol and aqueous extracts of Ajuga bracteosa roots, were prepared via maceration. Antibacterial activity was carried out by agar well diffusion method. Quantitative and qualitative phytochemical screening was done. The antioxidant activity was determined by iron (II) chelating activity, iron reducing power, DPPH, and ABTS free radical scavenging methods, Antidiabetic activity was evaluated through inhibition of α-glucosidase assay. Phytochemical analysis showed the presence of phenols, flavonoids, tannins, saponins, quinines, terpenoids, xanthoproteins, glycosides, carbohydrates, steroids, phytosterols and amino acids. DPPH and ABTS potential values were recorded as 61.92% to 88.84% and 0.11% to 38.82%, respectively. Total phenolic and total flavonoid contents were expressed as gallic acid and rutin equivalents. Total iron content was expressed as FeSO4 equivalents. Chloroform and n-hexane extracts showed significant enzyme inhibition potential with IC50 values of 29.92 μg/ml and 131.7 μg/ml respectively. Aqueous extract showed maximum inhibition of E. coli, S. typhimurium, E. amnigenus, S. pyogenes, and S. aureus, (18.0±1.0 mm, 12.5±0.7 mm, 17.0±0.0 mm, 11.0±0.0 mm and 15.3±2.0 mm mm), respectively. Similarly, n-hexane extract showed maximum inhibition of E. coli, E. amnigenus, S. aureus (11.6±1.5 mm; 11.3±1.5 mm; 13.3±0.5 mm). This study also shows that n-hexane, chloroform, ethyl acetate and aqueous extracts of A. bracteosa root possess α-glucosidase inhibitory activities and therefore it may be used as hypoglycemic agents in the management of postprandial hyperglycemia. Ajuga bracteosa root extracts may provide a

  3. Chemical content, antibacterial and antioxidant properties of essential oil extract from Tunisian Origanum majorana L. cultivated under saline condition.

    Science.gov (United States)

    Olfa, Baâtour; Mariem, Aouadi; Salah, Abbassi Mohamed; Mouhiba, BenNasri Ayachi

    2016-11-01

    Essential oils of marjoram were extracted from plants, growing under non-saline and saline condition (75mM NaCl). Their antioxidant and antibaterial activity against six bacteria (Enterococcus faecalis, Escherichia coli, Salmonella enteritidis, Listeria ivanovii, Listeria inocula, and Listeria monocytogenes) were assessed. Result showed that, (i) independently of salt treatment, marjoram essential oils inhibited the growth of most of the bacteria but in degrees. The least susceptible one was Enterococcus faecalis. (ii) Gram negative bacteria seemed more sensitive to treated essential oils than Gram positive ones. (iii) Compared to synthetic antibiotics, marjoram essential oils were more effective against E. coli, L. innocua and S. enteridis. This activity was due to their high antioxidant activity. Thus, essential oils of marjoram may be an alternative source of natural antibacterial and antioxidant agents.

  4. Investigation on Antibacterial and Antioxidant Activities, Phenolic and Flavonoid Contents of Some Thai Edible Plants as an Alternative for Antibiotics

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2014-10-01

    Full Text Available This study was aimed to examine the antibacterial and antioxidative properties of seven edible plants from Thailand to develop alternative antibiotics as feed additives. The plants include Citrus aurantifolia Swingle (Lime fruits and its leaves, Sesbania grandiflora L. (Agati sesbania leaves, Piper sarmentosum Roxb (Wild betal leaves, Curcuma domestica Valeton (Turmeric roots, Morinda citrifolia L. (Beach mulberry leaves, Cassia siamea britt (Siamea cassia leaves, and Cocos nucifera L. (Coconut peels. The plants were extracted by methanol, n-hexane, chloroform, ethyl acetate, butanol and water. Antibacterial activities with minimum inhibitory concentration (MIC were determined by agar diffusion assay against Escherichia coli, Burkholderia sp., Haemopilus somnus, Haemopilus parasuis, and Clostridium perfringens that were considered pathogenic strains in livestock infection. Methanol extracts of C. aurantifolia Swingle fruits and leaves showed the broadest spectrum of antibacterial activities except for C. perfringens. Butanol extract of S. grandiflora L. leaves showed the strongest activity against Burkholderia sp. with MIC, 135 μg/mL. P. sarmentosum Roxb leaves showed antibacterial activities against E. coli, Burkholderia sp. and H. parasuis. Ethyl acetate and water extracts from C. domesitca Valeton roots showed MIC of 306 μg/mL and 183 μg/mL, respectively against only C. perfringens. Antioxidative activity was determined by 2-diphenyl-2-picryl hydrazyl photometric assay. The methanol extracts of C. aurantifolia Swingle fruits and P. sarmentosum Roxb leaves showed the highest antioxidant activity among all the extracts with 3.46 mg/mL and 2.70 mg/mL effective concentration 50% (EC50 values, respectively. Total contents of phenolics and flavonoids were measured from the plant extracts. Methanol extracts of S. grandiflora L. and chloroform extracts of C. domestica Valeton were found to have the highest amount of total phenolics, 41.7 and 47

  5. Antioxidant, Antibacterial and Color Analysis of Garlic Fermented in Kombucha and Red Grape Vinegar

    Directory of Open Access Journals (Sweden)

    Ali Ebrahimi Pure

    2016-10-01

    Full Text Available Background and Objective: Garlic, in different types, is a very common food ingredient all over the world. Traditionally, garlic is fermented in grape vinegar to produce garlic pickles; in this study, to produce a novel fermented food, garlic was fermented in kombucha beverage; then, antibacterial and chemical properties and color changes of garlics fermented in kombucha and vinegar were compared with each other and those of fresh garlic.Material and Methods: Folin-Ciocalteu assay was performed to evaluate total phenolic contents; free radical scavenging activity was evaluated using 2,2- diphenyl-1-picrylhydrazyl. Disk diffusion method was performed to measure inhibitory activity against testing bacteria. A digital method was designed for color analysis. All data were statistically analyzed by ANOVA test at significant level of (p≤0.05.Results and Conclusion: Fresh garlic extract had the highest inhibitory effect (mean 27.7 mm against tested bacteria; kombucha fermented garlic showed bigger inhibition zone (mean 21.7 mm than vinegar fermented garlic (mean 17.9 mm. Anti-staphylococcus aureus activity of fresh garlic was stronger than gentamycin and amoxicillin; inhibitory effect of garlic extracts against tested bacteria was significant in comparison with standard antibiotics. Fresh-garlic extract contained highest amount of phenolic contents; fermentation of garlic in kombucha decreased phenolic content of garlic bulbs by 1.92% and IC50 factor for antioxidant activity was 10.25% higher than fresh garlic; fermentation in vinegar reduced 21% of phenolic contents and IC50 obtained 47.4% higher than fresh garlic. Fermentation of garlic reduces the density of colors and luminosity, but the reduction in garlics fermented in vinegar is more than in kombucha. Appearance of vinegar fermented garlic changed to yellowish and kombucha inclined the color to reddish. Fermentation of garlic in kombucha provides better preservation of biological properties of

  6. Phytochemical Screening: Antioxidant and Antibacterial Properties of Potamogeton Species in Order to Obtain Valuable Feed Additives.

    Science.gov (United States)

    Lupoae, Paul; Cristea, Victor; Borda, Daniela; Lupoae, Mariana; Gurau, Gabriela; Dinica, Rodica Mihaela

    2015-01-01

    The alcoholic extracts from three submerged perennial plants Potamogeton crispus L., P. pusillus L. and P. pectinatus L. were analyzed by gas chromatography-mass spectrometry coupled with solid phase microextraction (SPME-GC/MS) and by High Performance Liquid Chromatography (HPLC) and their volatile fingerprint and polyphenols composition was mutually compared. Twenty-nine chemical compounds were detected and identified in ethanolic and methanolic extracts; the highest abundance (over 5%) in descending order, was detected for 9,9-dimethyl-8,10- dioxapentacyclo (5,3,0(2,5) 0(3,5,)0 (3,6) decane (21.65%), phenol 2,6 bis (1,1 dimethyletyl) 4-1-methylpropil (20.8%), pentadecanoic acid (14.3%), 2-(5-chloro-2-Methoxyphenyl) pyrrole (8.66%), propanedioic (malonic) acid 2-(4-methylphenyl) sulfonyl ethylidene (5.77%), 2 hydroxy-3 tert butyl-5-isopropyl-6 methyl phenyl ketone (5.76%). The highest total polyphenols and flavonoids content was found in the methanolic extract of P. crispus (112.5±0.5 mg tannic acid/g dry extract; 64.2±1.2 mg quercitin/g dry extract). Antioxidant activities (2,2-difenil-1-picrilhidrazil, hydrogen peroxide and reducing power assays) of obtained extracts are comparable with the standard compounds, butylated hydroxytoluene, rutin and ascorbic acid. Antibacterial efficiency of methanolic extracts was notably demonstrated against Gram negative (Escherichia coli, Enterobacter hormaechei) and Gram positive bacteria (Enterococcus casseliflavus). The data reported for the first time for Romanian Potamogeton species, provides extensive support for the chemical investigations of these plants of the aquatic anthropogene ecosystems in order to obtain valuable bioadditives for animal feed and/or pharmaceutical/food industry.

  7. Evaluation of Antioxidant and Antibacterial Potentials of Nigella sativa L. Suspension Cultures under Elicitation

    Directory of Open Access Journals (Sweden)

    Hera Chaudhry

    2015-01-01

    Full Text Available Nigella sativa L. (family Ranunculaceae is an annual herb of immense medicinal properties because of its major active components (i.e., thymoquinone (TQ, thymohydroquinone (THQ, and thymol (THY. Plant tissue culture techniques like elicitation, Agrobacterium mediated transformation, hairy root culture, and so on, are applied for substantial metabolite production. This study enumerates the antibacterial and antioxidant potentials of N. sativa epicotyl suspension cultures under biotic and abiotic elicitation along with concentration optimization of the elicitors for enhanced TQ and THY production. Cultures under different concentrations of pectin and manganese chloride (MnCl2 elicitation (i.e., 5 mg/L, 10 mg/L, and 15 mg/L showed that the control, MnCl2 10 mg/L, and pectin 15 mg/L suspension extracts greatly inhibited the growth of E. coli, S. typhimurium, and S. aureus (MIC against E. coli, i.e., 2.35±0.8, 2.4±0.2, and 2.46±0.5, resp.. Elicitation decreased SOD enzyme activity whereas CAT enzyme activity increased remarkably under MnCl2 elicitation. MnCl2 10 mg/L and pectin 15 mg/L elicitation enhanced the DPPH radical inhibition ability, but ferric scavenging activity was comparable to the control. TQ and THY were quantified by LC-MS/MS in the cultures with high bioactive properties revealing maximum content under MnCl2 10 mg/L elicitation. Therefore, MnCl2 elicitation can be undertaken on large scale for sustainable metabolite production.

  8. Evaluation of Antioxidant and Antibacterial Potentials of Nigella sativa L. Suspension Cultures under Elicitation.

    Science.gov (United States)

    Chaudhry, Hera; Fatima, Nida; Ahmad, Iffat Zareen

    2015-01-01

    Nigella sativa L. (family Ranunculaceae) is an annual herb of immense medicinal properties because of its major active components (i.e., thymoquinone (TQ), thymohydroquinone (THQ), and thymol (THY)). Plant tissue culture techniques like elicitation, Agrobacterium mediated transformation, hairy root culture, and so on, are applied for substantial metabolite production. This study enumerates the antibacterial and antioxidant potentials of N. sativa epicotyl suspension cultures under biotic and abiotic elicitation along with concentration optimization of the elicitors for enhanced TQ and THY production. Cultures under different concentrations of pectin and manganese chloride (MnCl2) elicitation (i.e., 5 mg/L, 10 mg/L, and 15 mg/L) showed that the control, MnCl2 10 mg/L, and pectin 15 mg/L suspension extracts greatly inhibited the growth of E. coli, S. typhimurium, and S. aureus (MIC against E. coli, i.e., 2.35 ± 0.8, 2.4 ± 0.2, and 2.46 ± 0.5, resp.). Elicitation decreased SOD enzyme activity whereas CAT enzyme activity increased remarkably under MnCl2 elicitation. MnCl2 10 mg/L and pectin 15 mg/L elicitation enhanced the DPPH radical inhibition ability, but ferric scavenging activity was comparable to the control. TQ and THY were quantified by LC-MS/MS in the cultures with high bioactive properties revealing maximum content under MnCl2 10 mg/L elicitation. Therefore, MnCl2 elicitation can be undertaken on large scale for sustainable metabolite production.

  9. Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal.

    Science.gov (United States)

    Ramos, C; Teixeira, B; Batista, I; Matos, O; Serrano, C; Neng, N R; Nogueira, J M F; Nunes, M L; Marques, A

    2012-01-01

    Laurus nobilis L. is an aromatic plant frequently used as a spice in Mediterranean cookery and as a traditional medicine for the treatment of several infectious diseases. The aim of this study was to characterise the antibacterial and antioxidant activities of bay laurel essential oil (EO), ethanolic extract (EE) and hot/cold aqueous extract (AE). The major components detected in bay laurel EO were eucalyptol (27.2%), α-terpinenyl acetate (10.2%), linalool (8.4%), methyleugenol (5.4%), sabinene (4.0%) and carvacrol (3.2%). The EO exhibited strong antibacterial activity against all tested foodborne spoilage and pathogenic bacteria, whereas this activity was less pronounced or even nonexistent in the EE and AE. In contrast, EO exhibited low antioxidant activity compared to extracts (EX), and among the EX, the hot AE revealed the highest antioxidant ability. The results show that bay laurel EO and its EX have potential as natural alternatives to synthetic food preservatives, in order to enhance food safety and increase food shelf life.

  10. Chemotyping of diverse Eucalyptus species grown in Egypt and antioxidant and antibacterial activities of its respective essential oils.

    Science.gov (United States)

    Salem, Mohamed Z M; Ashmawy, Nader A; Elansary, Hosam O; El-Settawy, Ahmed A

    2015-01-01

    The chemical composition of the essential oil from the leaves of Eucalyptus camaldulensis, Eucalyptus camaldulensis var. obtusa and Eucalyptus gomphocephala grown in northern Egypt was analysed by using GC-FID and GC-MS techniques. The antibacterial (agar disc diffusion and minimum inhibitory concentration methods) and antioxidant activities (2,2'-diphenypicrylhydrazyl) were examined. The main oils constituents were 1,8-cineole (21.75%), β-pinene (20.51%) and methyleugenol (6.10%) in E. camaldulensis; spathulenol (37.46%), p-cymene (17.20%) and crypton (8.88%) in E. gomphocephala; spathulenol (18.37%), p-cymene (19.38%) and crypton (16.91%) in E. camaldulensis var. obtusa. The essential oils from the leaves of Eucalyptus spp. exhibited considerable antibacterial activity against Gram-positive and Gram-negative bacteria. The values of total antioxidant activity were 70 ± 3.13%, 50 ± 3.34% and 84 ± 4.64% for E. camaldulensis, E. camaldulensis var. obtusa and E. gomphocephala, respectively. The highest antioxidant activity value of 84 ± 4.64% could be attributed to the high amount of spathulenol (37.46%).

  11. Thin layer chromatography fingerprint, antioxidant, and antibacterial activities of rhizomes, stems, and leaves of Curcuma aeruginosa Roxb.

    Science.gov (United States)

    Safitri, A.; Batubara, I.; Khumaida, N.

    2017-05-01

    Fingerprints of 5 temu hitam (Curcuma aeruginosa Roxb.) accessions (Malang, Cirebon, Kuningan 1, Bogor, and Liwa) were determined by thin-layer chromatography (TLC) and compared to fingerprints of turmeric (Curcuma longa L), temu putih (Curcuma zedoaria (Christm.) Roscoe), and temu lawak (Curcuma zanthorriza Roxb.). Maceration method with ethanol as the solvent was used for extraction. The eluent used for fingerprint by TLC was chloroform:dichloromethane (9:1v/v). Five accessions of temu hitam show similar fingerprint patterns, but different in band thickness. Temu hitam rhizomes have bands of curcuminoid (Rf 0.22, 0.10, 0.03), and characteristic bands of Rf 0.42, 0.27, and 0.77, which can be distinguished from turmeric and temu lawak and Rf 0.13, which is different from temu putih. Leaves and stems of temu hitam can be distinguished from temu putih, turmeric, and temu lawak at Rf 0.60. Rhizomes of all plants reveal strong antibacterial activity against Staphylococcus aureus and antioxidant activity on DPPH radicals than its corresponding stems and leaves. Antibacterial and antioxidant activities were determined by microdilution and TLC-bioautography. Antibacterial activity of rhizomes of Cirebon and Kuningan 1 accessions are higher than that of other accessions (MIC = 250 μg/mL MBC = 500 μg/mL, but lower as compared to that of temu lawak (MIC = 62.5 μg/mL, MBC = 250 μg/mL) and tetracycline (MIC = MBC = 15.63 μg/mL). Rhizome of Liwa accession exhibits the highest antioxidant activity (IC50 = 124.88 μg/mL) amongst all accessions, but lower than that of temu lawak (IC50 = 18.45 μg/mL), turmeric (IC50 = 18.82 μg/mL), and temu putih (IC50 = 94.35 μg/mL).

  12. Evaluation of chemical composition, antioxidant, antibacterial, cytotoxic and apoptotic effects of Aloysia citrodora extract on colon cancer cell line

    Directory of Open Access Journals (Sweden)

    Amir Mirzaie

    2016-06-01

    Full Text Available Background: Aloysia citrodora belongs to the Verbenaceae family of plants, a well-known herbal medicine in Iran. The aim of the present study was to investigate the chemical composition, antioxidant, antibacterial, cytotoxic and apoptotic effect of A. citrodora extract against human colon cancer (HT29 cells by using real-time polymerase chain reaction and flow-cytometry methods. Methods: This experimental study was carried out in Islamic Azad University, East Tehran Branch, from March to September of 2014. At first, the A. citrodora chemical constituents were analyzed by gas chromatography-mass spectrometry (GC-MS technique. In addition, antioxidant assay, antibacterial and anti-cancer effect was performed using 1,1-diphenyl-2-picrylhydrazyl (DPPH, disk diffusion and 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT methods, respectively. The half maximal inhibitory concentration (IC50 value was calculated. We extracted total RNA molecules by using RNX solution, after which cDNA was synthesized. Finally, the pro-apoptotic (Bax and anti-apoptotic (Bcl2 gene expression was performed by real-time polymerase chain reaction and apoptotic effects were analyzed using Flow-cytometry method. Results: GC-MS analysis of Aloysia citrodora extract was shown 37 major components and the most frequent component was belonged to Spathulenol (17.57% and Caryophyllene oxide (15.15% The antioxidant activity of the extract was IC50= 0.6±0.03 mg/ml. The maximum and minimum antibacterial effects of extract were belonged to gram-negative and gram-positive bacteria, respectively. Cytotoxic results revealed that the A.citrodora extract have IC50= 20.1±0.78 mg/ml against colon cancer (HT29 cell line and real-time polymerase chain reaction results showed the expression level of Bax and Bcl2 was increased and decreased respectively in colon cancer cell line (3.470±0.72 (P< 0.05, 0.43±0.35 (P< 0.05. In addition, the flow-cytometry results indicated the 38

  13. Antibacterial, antioxidant and optical properties of edible starch-chitosan composite film containing Thymus kotschyanus essential oil

    Directory of Open Access Journals (Sweden)

    Tooraj Mehdizadeh

    2012-09-01

    Full Text Available Thyme Essential oils (EO with antimicrobial and antioxidant properties are widely used in pharmaceutical, cosmetic, and perfume industry. It is also used for flavoring and preservation of several foods. Nowadays, packaging research is receiving a considerable attention due to the development of eco-friendly materials made from natural polymers such as starch and chitosan. In this study Thymus kotschyanus EO concentrations ranging from 0 to 2.0%, incorporated in starch-chitosan composite (S-CH film were used. Antimicrobial and antioxidant properties significantly increased with the incorporation of EO (p < 0.05. Incorporating EO, increased total color differences (DE, yellowness index (YI and whiteness index (WI which were significantly higher than control and its transparency was reduced. Our results pointed out that the incorporation of Thymus kotschyanus EO as a natural antibacterial agent has potential for using the developed film as an active packaging.

  14. Evaluation of the lemongrass plant (Cymbopogon citratus extracted in different solvents for antioxidant and antibacterial activity against human pathogens

    Directory of Open Access Journals (Sweden)

    Balachandar Balakrishnan

    2014-02-01

    Full Text Available Objective: To test antibacterial and antioxidant activity of the lemongrass plant Cymbopogon citratus (C. citratus leaves extracted serially by the solvents (chloroform, methanol and water. Methods: The plant leaves extracts were used for antibacterial activity on Bacillus subtilis, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus, Nocardia sp., Serratia sp., and Enterobacter aeruginosa microorganisms by the Kirby Bauer agar disc diffusion method. This study was carried out on lemongrass plant leaf extracts in different concentration of all solvents. The leaf extracts from different solvents were tested for their scavenging activity against the stable free radical DPPH in quantization using a spectrophotometric assay. Oxidative damage was induced in vitro by treating blood DNA and analyzing the effects of the leaf extracts. Results: The results showed that C. citratus extracts exhibited maximum zones of inhibition in chloroform, methanol and water extracts. It was Observed that the C. citratus extracts exhibited maximum zone of inhibition against Bacillus subtilis, Pseudomonas aeruginosa and Proteus vulgaris. Analyzed data in the present work suggested that antibacterial activity of C. citratus plant leaf extracts showed good results for Gram-positive and Gram-negative organisms. DPPH scavenging activity was highly elicited by the extract of C. citratus. Chloroform, methanol and water extracts of C. citratus leaves effectively decreased the extent of DNA damage. Conclusions: The present study suggested that the lemongrass plant extracts could offer various health benefits.

  15. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential

    Directory of Open Access Journals (Sweden)

    Patra JK

    2015-12-01

    Full Text Available Jayanta Kumar Patra, Kwang-Hyun Baek School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea Abstract: Biological synthesis of nanoparticles using nontoxic, eco-friendly approaches is gaining importance owing to their fascinating biocompatibility and environmentally benign nature. This study describes the green synthesis approach for synthesis of gold nanoparticles (ANPs using aqueous extract of the rind of watermelon as a fruit waste and evaluate its biopotential in terms of proteasome inhibitory activity, antibacterial, and antioxidant potential. The synthesized ANPs were characterized using UV–vis spectroscopy, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra of ANPs were obtained at 560 nm. Scanning electron microscopy image revealed that particles had a spherical shape and have a size distribution of 20–140 nm, followed by the elemental analysis by energy-dispersive X-ray spectroscopy. X-ray diffraction analysis confirmed the crystallite nature of the ANPs and Fourier-transform infrared spectroscopy revealed the involvement of bioactive compounds from watermelon rind in the synthesis, capping, and stabilization of ANPs. ANPs exhibited potential antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between 9.23 and 11.58 mm. They also displayed strong synergistic antibacterial activity together with kanamycin (11.93–21.08 mm inhibition zones and rifampicin (10.32–24.84 mm inhibition zones. ANPs displayed strong antioxidant activity in terms of DPPH radical scavenging (24.69%, nitric oxide scavenging (25.62%, ABTS scavenging (29.42%, and reducing power. Significantly high proteasome inhibitory potential of the ANPs (28.16% could be highly useful for cancer treatment and targeted cancer drug delivery. Overall, results highlight a

  16. Preliminary Screening of Antioxidant and Antibacterial Activities and Establishment of an Efficient Callus Induction in Curculigo latifolia Dryand (Lemba

    Directory of Open Access Journals (Sweden)

    Reza Farzinebrahimi

    2016-01-01

    Full Text Available Leaf, seed, and tuber explants of C. latifolia were inoculated on MS medium supplemented with various concentrations of BAP and IBA, alone or in combinations, to achieve in vitro plant regeneration. Subsequently, antioxidant and antibacterial activities were determined from in vitro and in vivo plant developed. No response was observed from seed culture on MS media with various concentrations of PGRs. The highest percentage of callus was observed on tuber explants (94% and leaf explants (89% when cultured on MS media supplemented with IBA in combination with BAP. A maximum of 88% shoots per tuber explant, with a mean number of shoots (8.8±1.0, were obtained on MS medium supplemented with combinations of BAP and IBA (2.5 mg L−1. The best root induction (92% and mean number (7.6±0.5 from tuber explants were recorded on 2.5 mg L−1 IBA alone supplemented to MS medium. The higher antioxidant content (80% was observed from in vivo tuber. However, tuber part from the intact plant showed higher inhibition zone in antibacterial activity compared to other in vitro and in vivo tested parts.

  17. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry.

    Science.gov (United States)

    Genskowsky, Estefania; Puente, Luis A; Pérez-Álvarez, José A; Fernández-López, Juana; Muñoz, Loreto A; Viuda-Martos, Manuel

    2016-09-01

    The aim of the present study was to determine (1) the polyphenolic profile (phenolic acids, flavonoids and anthocyanins), (2) the antioxidant using four different methodologies (DPPH, ABTS, FRAP and FIC) and (3) the antibacterial properties of maqui berry [Aristotelia chilensis (Molina) Stuntz] (MB) grown in Chile. The HPLC analysis of MB showed a total of 19 polyphenolic compounds identified as anthocyanins (eight compounds), flavonols (10 compounds) and ellagic acid. Delphinidin derivatives were the predominant anthocyanins while quercetin derivatives were the predominant flavonols. MB showed an antioxidant activity measured with DPPH, ABTS, FRAP and FIC methods of 28.18, 18.66, 25.22 g Trolox equivalent kg(-1) and 0.12 g ethylenediaminetetraacetic acid equivalent kg(-1) , respectively. With regard to the antibacterial activity, all strains tested were affected by MB. Aeromonas hydrophila and Listeria innocua showed the highest sensitivity to maqui berry extracts with MIC values of 40 and a 50 mg mL(-1) , respectively. The results suggest that maqui berry has a great potential to be employed in the food industry as potential food ingredient to functional food development or as bio-preservative. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Facile and eco-friendly fabrication of AgNPs coated silk for antibacterial and antioxidant textiles using honeysuckle extract.

    Science.gov (United States)

    Zhou, Yuyang; Tang, Ren-Cheng

    2018-01-01

    Recently, there is a growing trend towards the functionalization of silk through nanotechnology for the prevention of fiber damage from microbial attack and the enhancement of hygienic aspects. Considering sustainable development and environmental protection, the eco-friendly fabrication of silver nanoparticles (AgNPs)-modified silk using natural extracts has currently become a hot research area. This study presents a facile strategy for the fabrication of colorful and multifunctional silk fabric using biogenic AgNPs prepared by honeysuckle extract as natural reductant and stabilizing agents. The influences of pH and reactant concentrations on the AgNPs synthesis were investigated. The color characteristics and functionalities of AgNPs treated silk were evaluated. The results revealed that the particle size of AgNPs decreased with increasing pH. The diameter of AgNPs decreased with increasing amount of honeysuckle extract and reducing amount of silver nitrate. The transmission electron microscopy image showed that the AgNPs were spherical in shape with a narrow size distribution. The treated silk showed excellent antibacterial activities against E. coli and S. aureus, and certain antioxidant activity. Both of the antibacterial and antioxidant activities were well maintained even after 30 washing cycles. This work provides a sustainable and eco-friendly approach to the fabrication of AgNPs coated silk for colorful and long-term multifunctional textiles using honeysuckle extract. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Antibacterial, Antioxidant Activity of Ethanolic Plant Extracts of Some Convolvulus Species and Their DART-ToF-MS Profiling

    Directory of Open Access Journals (Sweden)

    Asma’a Al-Rifai

    2017-01-01

    Full Text Available Convolvulus austroaegyptiacus Abdallah & Sa’ad (CA and Convolvulus pilosellifolius Desr. (CP are commonly used in the Saudi Arabia folk medicine. They are potent in treating the ulcers and skin diseases. The lack of information about their biological activities led us to investigate the possible biological activities by determination of antibacterial and antioxidant activities of total ethanolic extracts and various fractions. Total flavonoid contents of the plants were determined by colorimetric method while total phenols were determined by using Folin-Ciocalteu method. In vitro antibacterial activity was studied against E. coli, P. aeruginosa, and B. subtilis, and the total antioxidant capacity was evaluated by radical scavenging method. IC50 were found to be 21.81, 17.62, and 3.31 μg/mL for CA, CP, and vitamin C, respectively, while the lowest MIC value of 0.25 mg/mL was recorded with CP extract against B. subtilis. Around 21 compounds are tentatively elucidated from both plants using rapid, simple, and high-resolution analytical technique for chemical profiling of natural compounds by direct analysis in real-time of flight-mass spectrometry, of which 17 were not isolated or reported previously.

  20. Antioxidative, Antibacterial, and Food Functional Properties of the Half-Fin Anchovy Hydrolysates-Glucose Conjugates Formed via Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ru Song

    2016-06-01

    Full Text Available The antioxidative, antibacterial, and food functional properties of the half-fin anchovy hydrolysates (HAHp-glucose conjugates formed by Maillard reaction (MR were investigated, respectively. Results of sugar and amino acid contents loss rates, browning index, and molecular weight distribution indicated that the initial pH of HAHp played an important role in the process of MR between HAHp and glucose. HAHp-glucose Maillard reaction products (HAHp-G MRPs demonstrated enhanced antioxidative activities of reducing power and scavenging DPPH radicals compared to control groups. HAHp-G MRPs produced from the condition of pH 9.6 displayed the strongest reducing power. The excellent scavenging activity on DPPH radicals was found for HAHp(5.6-G MRPs which was produced at pH 5.6. Additionally, HAHp(5.6-G MRPs showed variable antibacterial activities against Escherichia coli, Pseudomonas fluorescens, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Bacillus megaterium, and Sarcina lutea, with the MIC values ranging from 8.3 to 16.7 μg/mL. Result of scanning electron microscopy (SEM on E. coli suggested that HAHp(5.6-G MRPs exhibited antibacterial activity by destroying the cell integrity through membrane permeabilization. Moreover, HAHp(5.6-G MRPs had excellent foaming ability and stability at alkaline conditions of pH 8.0, and showed emulsion properties at acidic pH 4.0. These results suggested that specific HAHp-G MRPs should be promising functional ingredients used in foods.

  1. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential

    Science.gov (United States)

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2015-01-01

    Biological synthesis of nanoparticles using nontoxic, eco-friendly approaches is gaining importance owing to their fascinating biocompatibility and environmentally benign nature. This study describes the green synthesis approach for synthesis of gold nanoparticles (ANPs) using aqueous extract of the rind of watermelon as a fruit waste and evaluate its biopotential in terms of proteasome inhibitory activity, antibacterial, and antioxidant potential. The synthesized ANPs were characterized using UV–vis spectroscopy, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra of ANPs were obtained at 560 nm. Scanning electron microscopy image revealed that particles had a spherical shape and have a size distribution of 20–140 nm, followed by the elemental analysis by energy-dispersive X-ray spectroscopy. X-ray diffraction analysis confirmed the crystallite nature of the ANPs and Fourier-transform infrared spectroscopy revealed the involvement of bioactive compounds from watermelon rind in the synthesis, capping, and stabilization of ANPs. ANPs exhibited potential antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between 9.23 and 11.58 mm. They also displayed strong synergistic antibacterial activity together with kanamycin (11.93–21.08 mm inhibition zones) and rifampicin (10.32–24.84 mm inhibition zones). ANPs displayed strong antioxidant activity in terms of DPPH radical scavenging (24.69%), nitric oxide scavenging (25.62%), ABTS scavenging (29.42%), and reducing power. Significantly high proteasome inhibitory potential of the ANPs (28.16%) could be highly useful for cancer treatment and targeted cancer drug delivery. Overall, results highlight a potential low-cost green method of synthesizing ANPs from food waste materials. Significant biopotentials of synthesized ANPs could make it a potential

  2. Antioxidative, Antibacterial, and Food Functional Properties of the Half-Fin Anchovy Hydrolysates-Glucose Conjugates Formed via Maillard Reaction.

    Science.gov (United States)

    Song, Ru; Yang, Peiyu; Wei, Rongbian; Ruan, Guanqiang

    2016-06-20

    The antioxidative, antibacterial, and food functional properties of the half-fin anchovy hydrolysates (HAHp)-glucose conjugates formed by Maillard reaction (MR) were investigated, respectively. Results of sugar and amino acid contents loss rates, browning index, and molecular weight distribution indicated that the initial pH of HAHp played an important role in the process of MR between HAHp and glucose. HAHp-glucose Maillard reaction products (HAHp-G MRPs) demonstrated enhanced antioxidative activities of reducing power and scavenging DPPH radicals compared to control groups. HAHp-G MRPs produced from the condition of pH 9.6 displayed the strongest reducing power. The excellent scavenging activity on DPPH radicals was found for HAHp(5.6)-G MRPs which was produced at pH 5.6. Additionally, HAHp(5.6)-G MRPs showed variable antibacterial activities against Escherichia coli, Pseudomonas fluorescens, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Bacillus megaterium, and Sarcina lutea, with the MIC values ranging from 8.3 to 16.7 μg/mL. Result of scanning electron microscopy (SEM) on E. coli suggested that HAHp(5.6)-G MRPs exhibited antibacterial activity by destroying the cell integrity through membrane permeabilization. Moreover, HAHp(5.6)-G MRPs had excellent foaming ability and stability at alkaline conditions of pH 8.0, and showed emulsion properties at acidic pH 4.0. These results suggested that specific HAHp-G MRPs should be promising functional ingredients used in foods.

  3. Attribution of antibacterial and antioxidant activity of Cassia tora extract toward its growth promoting effect in broiler birds.

    Science.gov (United States)

    Sahu, Jyoti; Koley, K M; Sahu, B D

    2017-02-01

    The study was conducted to evaluate the attribution of antibacterial and antioxidant activity of methanolic extract of Cassia tora toward its growth promoting effect in broiler birds. A limit test was conducted for C. tora extract in Wistar albino rats. Phytochemical screening of methanolic extract of leaves of C. tora was carried out. In-vitro antibacterial activity was measured by disc diffusion method. 1-day-old Ven Cobb broiler birds (n=90) were randomly allocated into three groups consisting of three replicates with 10 birds in each group. The birds of group T1 (Control) received basal diet, whereas birds of group T2 (Standard) received an antibiotic (Lincomycin at 0.05% in feed). The birds of group T3 (Test) received Cassia tora extract (CSE) at 0.4 g/L in drinking water in addition to basal diet. The treatment was given to birds of all the groups for 6 weeks. Antioxidant activity of C. tora was determined in blood of broiler birds. Cumulative body weight gain, feed intake, feed conversion ratio (FCR), dressing percent, and organ weight factor were evaluated to determine growth performance in broiler birds. Phytochemicals in C. tora were screened. Sensitivity to Escherichia coli and resistant to Staphylococcus aureus and Pseudomonas aeruginosa was observed in in-vitro antibacterial activity test. At the end of 6 th week, antioxidant activity reflected significantly (p≤0.05) lower level of erythrocyte malondialdehyde and higher levels of reduced glutathione (GSH) and GSH peroxidase in broiler birds of group T2 and T3 as compared to broiler of group T1. Mean cumulative body weight gain of birds of T2 and T3 were significantly (p≤0.05) higher as compared to T1. Mean FCR of birds of group T3 decreased significantly than group T1. Supplementation of C. tora leaves extract at 0.4 g/L in drinking water improved growth performance in broiler birds due to its antimicrobial and antioxidant activity. Therefore, it could be used as an alternative to antibiotic growth

  4. Attribution of antibacterial and antioxidant activity of Cassia tora extract toward its growth promoting effect in broiler birds

    Directory of Open Access Journals (Sweden)

    Jyoti Sahu

    2017-02-01

    Full Text Available Aim: The study was conducted to evaluate the attribution of antibacterial and antioxidant activity of methanolic extract of Cassia tora toward its growth promoting effect in broiler birds. Materials and Methods: A limit test was conducted for C. tora extract in Wistar albino rats. Phytochemical screening of methanolic extract of leaves of C. tora was carried out. In-vitro antibacterial activity was measured by disc diffusion method. 1-day-old Ven Cobb broiler birds (n=90 were randomly allocated into three groups consisting of three replicates with 10 birds in each group. The birds of group T1 (Control received basal diet, whereas birds of group T2 (Standard received an antibiotic (Lincomycin at 0.05% in feed. The birds of group T3 (Test received Cassia tora extract (CSE at 0.4 g/L in drinking water in addition to basal diet. The treatment was given to birds of all the groups for 6 weeks. Antioxidant activity of C. tora was determined in blood of broiler birds. Cumulative body weight gain, feed intake, feed conversion ratio (FCR, dressing percent, and organ weight factor were evaluated to determine growth performance in broiler birds. Results: Phytochemicals in C. tora were screened. Sensitivity to Escherichia coli and resistant to Staphylococcus aureus and Pseudomonas aeruginosa was observed in in-vitro antibacterial activity test. At the end of 6th week, antioxidant activity reflected significantly (p≤0.05 lower level of erythrocyte malondialdehyde and higher levels of reduced glutathione (GSH and GSH peroxidase in broiler birds of group T2 and T3 as compared to broiler of group T1. Mean cumulative body weight gain of birds of T2 and T3 were significantly (p≤0.05 higher as compared to T1. Mean FCR of birds of group T3 decreased significantly than group T1. Conclusion: Supplementation of C. tora leaves extract at 0.4 g/L in drinking water improved growth performance in broiler birds due to its antimicrobial and antioxidant activity

  5. Antioxidant and Antibacterial Activity of Kombucha Beverages Prepared using Banana Peel, Common Nettles and Black Tea Infusions

    Directory of Open Access Journals (Sweden)

    Ali Ebrahimi Pure

    2016-03-01

    Full Text Available Backgrounds and Objective: Kombucha is a several thousand years old traditional fermented beverage originated from East. While black tea infusion is the common substrate for preparing kombucha, other herbal infusions can be applied for this reason too. Common medicinal herbs or even waste herbal materials, like banana peel, could be suitable substrates for preparing kombucha analogues. In this study, kombuchas were fermented using nettles leaf and banana peel infusions. Materials and Methods: Herbal infusions were fermented by kombucha fungi. Folin-Ciocalteu assay was performed to evaluate total phenolic contents; Free radical scavenging activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl. Disk diffusion method was performed to measure inhibitory activity against testing bacteria. All data were statistically analyzed by ANOVA test at significant level of p≤0.05. Results and Conclusion: Black tea contained highest amount of phenolics (530.5 ppm gallic acid equivalent and fermentation decomposed approximately 50% of phenolic contents to 265.5 ppm while phenolic content of nettles infusion and fermented beverage were 173 gAE and 188 gAE respectively and for banana peel, 136.5 gAE and 155 gAE; it indicated increase of phenolic contents due to fermentation that may be cause of protein contents of nettles and banana peel gone under fermentation by lactic acid bacteria. Fermented beverage of three herbs had higher antioxidant potent than infusions. Kombucha from banana peel showed the highest antioxidant activity by inhibiting 94.62% of DPPH. While antioxidant activity of fermented beverages of black tea and nettles leaf were more related to their acetic acid content, it was found that a considerable part of antioxidant activity of banana peel kombucha was due to other acids and phenolics. No antibacterial activity was observed from either of samples. Banana peel, as a waste herbal material, and nettles leaf are good ingredients for being

  6. Chemical Composition and Antioxidant and Antibacterial Activities of an Essential Oil Extracted from an Edible Seaweed, Laminaria japonica L.

    Science.gov (United States)

    Patra, Jayanta Kumar; Das, Gitishree; Baek, Kwang-Hyun

    2015-07-02

    Laminaria japonica L. is among the most commonly consumed seaweeds in northeast Asia. In the present study, L. japonica essential oil (LJEO) was extracted by microwave-hydrodistillation and analyzed by gas chromatography and mass spectroscopy. LJEO contained 21 volatile compounds, comprising 99.76% of the total volume of the essential oil, primarily tetradeconoic acid (51.75%), hexadecanoic acid (16.57%), (9Z,12Z)-9,12-Octadecadienoic acid (12.09%), and (9Z)-hexadec-9-enoic acid (9.25%). Evaluation of the antibacterial potential against three foodborne pathogens, Bacillus cereus ATCC 10876, Escherichia coli O157:H7 ATCC 43890, and Staphylococcus aureus ATCC 49444, revealed that LJEO at a concentration of 25 mg/paper disc exerted high antibacterial activity against S. aureus (11.5 ± 0.58 mm inhibition zone) and B. cereus (10.5 ± 0.57 mm inhibition zone), but no inhibition of E. coli O157:H7. LJEO also displayed DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging activity (80.45%), superoxide anion scavenging activity (54.03%), and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical and hydroxyl radical scavenging at 500 µg/mL. Finally, LJEO showed high inhibition of lipid peroxidation with strong reducing power. In conclusion, LJEO from edible seaweed is an inexpensive but favorable resource with strong antibacterial capacity as well as free radical scavenging and antioxidant activity; therefore, it has the potential for use in the food, cosmetics, and pharmaceutical industries.

  7. Chemical Composition and Antioxidant and Antibacterial Activities of an Essential Oil Extracted from an Edible Seaweed, Laminaria japonica L.

    Directory of Open Access Journals (Sweden)

    Jayanta Kumar Patra

    2015-07-01

    Full Text Available Laminaria japonica L. is among the most commonly consumed seaweeds in northeast Asia. In the present study, L. japonica essential oil (LJEO was extracted by microwave-hydrodistillation and analyzed by gas chromatography and mass spectroscopy. LJEO contained 21 volatile compounds, comprising 99.76% of the total volume of the essential oil, primarily tetradeconoic acid (51.75%, hexadecanoic acid (16.57%, (9Z,12Z-9,12-Octadecadienoic acid (12.09%, and (9Z-hexadec-9-enoic acid (9.25%. Evaluation of the antibacterial potential against three foodborne pathogens, Bacillus cereus ATCC 10876, Escherichia coli O157:H7 ATCC 43890, and Staphylococcus aureus ATCC 49444, revealed that LJEO at a concentration of 25 mg/paper disc exerted high antibacterial activity against S. aureus (11.5 ± 0.58 mm inhibition zone and B. cereus (10.5 ± 0.57 mm inhibition zone, but no inhibition of E. coli O157:H7. LJEO also displayed DPPH (1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity (80.45%, superoxide anion scavenging activity (54.03%, and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid radical and hydroxyl radical scavenging at 500 µg/mL. Finally, LJEO showed high inhibition of lipid peroxidation with strong reducing power. In conclusion, LJEO from edible seaweed is an inexpensive but favorable resource with strong antibacterial capacity as well as free radical scavenging and antioxidant activity; therefore, it has the potential for use in the food, cosmetics, and pharmaceutical industries.

  8. Anti-Oxidative and Antibacterial Self-Healing Edible Polyelectrolyte Multilayer Film in Fresh-Cut Fruits.

    Science.gov (United States)

    Liu, Xuefan; Han, Wei; Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Zhang, Jianhao; Ge, Liqin

    2018-04-01

    The consumption of fresh-cut fruits is limited because of the oxidation browning and pathogenic bacteria's growth on the fruit surface. Besides, crack of the fresh-keeping film may shorten the preservation time of fruit. In this work, polyelectrolyte multilayer (PEM) film was fabricated by layer-by-layer (LBL) electrostatic deposition method. The film was made by carboxy methylcellulose sodium (CMC) and chitosan (CS). The as-prepared PEM film had good anti-oxidative and antibacterial capability. It inhibited the growth of Gram-negative bacteria and the antibacterial rate was more than 95%. The stratified structure and linear increase of the absorbance in the film verified a linear increase of film thickness. The slight scratched film could self-heal rapidly after the stimulation of water whatever the layer number was. Moreover, the film could heal cracks whose width was far bigger than the thickness. The application of PEM film on fresh-cut apples showed that PEM film had good browning, weight loss and metabolic activity inhibition ability. These results showed that the PEM film is a good candidate as edible film in fresh-cut fruits applications.

  9. Crude extract and fractions from Eugenia uniflora Linn leaves showed anti-inflammatory, antioxidant, and antibacterial activities.

    Science.gov (United States)

    Falcão, Tamires Rocha; de Araújo, Aurigena Antunes; Soares, Luiz Alberto Lira; de Moraes Ramos, Rhayanne Thaís; Bezerra, Isabelle Cristinne Ferraz; Ferreira, Magda Rhayanny Assunção; de Souza Neto, Manoel André; Melo, Maria Celeste Nunes; de Araújo, Raimundo Fernandes; de Aguiar Guerra, Andreza Conceição Véras; de Medeiros, Juliana Silva; Guerra, Gerlane Coelho Bernardo

    2018-03-09

    This study showed phytochemical composition and evaluates the anti-inflammatory, and analgesic activities of crude extract (CE) and fractions from E. uniflora Linn leaves. Polyphenols present in crude extract (CE), in aqueous fraction (AqF), and ethyl acetate (EAF) treated fractions from E. uniflora Linn leaves were shown by chromatographic analysis in order to conduct a phytochemical characterization. Antibacterial activity was evaluated based on minimum inhibitory concentrations (MICs) determined using the agar dilution method. Doses of 50, 100, and 200 mg/kg of the CE and fractions were applied for conducting in vivo models (male Swiss mice, 8-10 weeks old). The peritonitis experimental model was induced by carrageenan following of Myeloperoxidase activity (MPO), Total glutathione and malondialdehyde (MDA), IL-1β and TNF-α levels by spectroscopic UV/VIS analysis. Antinociceptive activity was evaluated based on an abdominal writhing model and hot plate test. The results were statistically evaluated using one-way analysis of variance (ANOVA), followed by Bonferroni's post-hoc test. The level of statistical significance was p fractions obtained from E. uniflora Linn leaves (0.05-0.87%w/w, 0.20-0.32%w/w, and 1.71-6.56%w/w, respectively). In general, the CE had lower MIC values than the fractions, including the lowest MIC against the MRSA strain. The CE and AqF also significantly reduced leukocyte migration and MPO activity (p fractions exhibited an antioxidant effect (p fractions from the studied E. uniflora Linn leaves exhibited antibacterial, anti-inflammatory, antioxidant, and analgesic activity in the performed assays.

  10. Inhibitory Effects of 5,6,7-Trihydroxyflavones on Tyrosinase

    Directory of Open Access Journals (Sweden)

    Jun Kawabata

    2007-01-01

    Full Text Available Baicalein (1, 6-hydroxyapigenin (6, 6-hydroxygalangin (13 and 6-hydroxy-kaempferol (14, which are naturally occurring flavonoids from a set of 14 hydroxy-flavones tested, exhibited high inhibitory effects on tyrosinase with respect to L-DOPA,while each of the 5,6,7-trihydroxyflavones 1, 6, 13 or 14 acted as a cofactor tomonophenolase. Moreover, 6-hydroxykaempferol (14 showed the highest activity andwas a competitive inhibitor of tyrosinase compared to L-DOPA. 5,6,7-Trihydroxyflavones 1, 6, 13 or 14 showed also high antioxidant activities. Hence, weconclude that the 5,6,7-trihydroxy-flavones are useful as good depigmentation agentswith inhibitory effects in addition to their antioxidant properties.

  11. Assessment of Antioxidant and Antibacterial Properties on Meat Homogenates of Essential Oils Obtained from Four Thymus Species Achieved from Organic Growth.

    Science.gov (United States)

    Ballester-Costa, Carmen; Sendra, Esther; Fernández-López, Juana; Pérez-Álvarez, Jose A; Viuda-Martos, Manuel

    2017-07-28

    In the organic food industry, no chemical additives can be used to prevent microbial spoilage. As a consequence, the essential oils (EOs) obtained from organic aromatic herbs and spices are gaining interest for their potential as preservatives. The organic Thymus zygis , Thymus mastichina , Thymus capitatus and Thymus vulgaris EOs, which are common in Spain and widely used in the meat industry, could be used as antibacterial agents in food preservation. The aims of this study were to determine (i) the antibacterial activity using, as culture medium, extracts from meat homogenates (minced beef, cooked ham or dry-cured sausage); and (ii) the antioxidant properties of organic EOs obtained from T. zygis , T. mastichina , T. capitatus and T. vulgaris . The antioxidant activity was determined using different methodologies, such as Ferrous ion-chelating ability assay, Ferric reducing antioxidant power, ABTS radical cation (ABTS • +) scavenging activity assay and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method; while the antibacterial activity was determined against 10 bacteria using the agar diffusion method in different meat model media. All EOs analyzed, at all concentrations, showed antioxidant activity. T. capitatus and T. zygis EOs were the most active. The IC 50 values, for DPPH, ABTS and FIC assays were 0.60, 1.41 and 4.44 mg/mL, respectively, for T. capitatus whilst for T. zygis were 0.90, 2.07 and 4.95 mg/mL, respectively. Regarding antibacterial activity, T. zygis and T. capitatus EOs, in all culture media, had the highest inhibition halos against all tested bacteria. In general terms, the antibacterial activity of all EOs assayed was higher in the medium made with minced beef than with the medium elaborated with cooked ham or dry-cured sausage.

  12. Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso

    NARCIS (Netherlands)

    Karou, D.; Dicko, M.H.; Simpore, J.; Traore, A.S.

    2005-01-01

    Polyphenols from four medicinal plants of Burkina Faso, Combretum micranthum, Khaya senegalensis, Pterocarpus erinaceus and Sida acuta, were screened for their antioxidant and antimicrobial activities against pathogenic bacteria. The medicinal plants displayed different polyphenols contents and

  13. New Benzophenones and Xanthones from Cratoxylum sumatranum ssp. neriifolium and Their Antibacterial and Antioxidant Activities.

    Science.gov (United States)

    Tantapakul, Cholpisut; Maneerat, Wisanu; Sripisut, Tawanun; Ritthiwigrom, Thunwadee; Andersen, Raymond J; Cheng, Ping; Cheenpracha, Sarot; Raksat, Achara; Laphookhieo, Surat

    2016-11-23

    Two new benzophenones (1 and 2) and four new xanthones (4-6 and 17) together with 24 known compounds (3, 7-16, and 18-30) were isolated from the roots and twigs of Cratoxylum sumatranum ssp. neriifolium. Their structures were elucidated by spectroscopic methods. Compounds 5 and 26 showed antibacterial activity against Micrococcus luteus, Bacillus cereus, and Staphylococcus epidermis with minimum inhibitory concentrations ranging from 4 to 8 μg/mL, whereas compounds 7, 20, and 26 displayed selective antibacterial activities against Staphylococcus aureus (8 μg/mL), Salmonella typhimurium (4 μg/mL), and Pseudomonas aeruginosa (4 μg/mL), respectively. The radical scavenging effects of some isolated compounds were investigated. Compounds 11 and 21 exhibited potent activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) with IC 50 values of 7.0 ± 1.0 and 6.0 ± 0.2 μM, respectively.

  14. Photo-mediated optimized synthesis of silver nanoparticles for the selective detection of Iron(III), antibacterial and antioxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijuevs@gmail.com [Nano Material Research Laboratory, Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, U.P. (India); Mohan, Sweta; Singh, Devendra K. [Nano Material Research Laboratory, Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, U.P. (India); Verma, Devendra K. [School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, U.P. (India); Singh, Vikas Kumar [Nano Material Research Laboratory, Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, U.P. (India); Hasan, Syed Hadi, E-mail: shhasan.apc@itbhu.ac.in [Nano Material Research Laboratory, Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, U.P. (India)

    2017-02-01

    The AgNPs synthesized by green method have shown great potential in several applications such as biosensing, biomedical, catalysis, electronic etc. The present study deals with the selective colorimetric detection of Fe{sup 3+} using photoinduced green synthesized AgNPs. For the synthesis purpose, an aqueous extract of Croton bonplandianum (AEC) was used as a reducing and stabilizing agent. The biosynthesis was confirmed by UV–visible spectroscopy where an SPR band at λ{sub max} 436 nm after 40 s and 428 nm after 30 min corresponded to the existence of AgNPs. The optimum conditions for biosynthesis of AgNPs were 30 min sunlight exposure time, 5.0% (v/v) AEC inoculum dose and 4 mM AgNO{sub 3} concentration. The stability of synthesized AgNPs was monitored up to 9 months. The size and shape of AgNPs with average size 19.4 nm were determined by Field Emission Scanning Electron Microscope (FE-SEM) and High-Resolution Transmission Electron Microscope (HR-TEM). The crystallinity was determined by High-Resolution X-ray Diffractometer (HR-XRD) and Selected Area Electron Diffraction (SAED) pattern. The chemical and elemental compositions were determined by Fourier Transformed Infrared Spectroscopy (FTIR) and Energy Dispersive X-ray Spectroscopy (EDX) respectively. The Atomic Force Microscopy (AFM) images represented the lateral and 3D topological characteristics of AgNPs. The XPS analysis confirmed the presence of two individual peaks which attributed to the Ag 3d3/2 and Ag 3d5/2 binding energies corresponding to the presence of metallic silver. The biosynthesized AgNPs showed potent antibacterial activity against both gram-positive and gram-negative bacterial strains as well as antioxidant activity. On the basis of results and facts, a probable mechanism was also proposed to explore the possible route of AgNPs synthesis, colorimetric detection of Fe{sup 3+}, antibacterial and antioxidant activity. - Highlights: • Process was photo catalytic and able to synthesize Ag

  15. Antibacterial and Antioxidant Activities of Derriobtusone A Isolated from Lonchocarpus obtusus

    Directory of Open Access Journals (Sweden)

    Mayron Alves Vasconcelos

    2014-01-01

    Full Text Available This study evaluated the effect of derriobtusone A, a flavonoid isolated from Lonchocarpus obtusus, on two important pathogenic bacteria, Staphylococcus aureus and Escherichia coli, as well as its antioxidant activity and toxicity. Planktonic growth assays were performed, and the inhibition of biofilm formation was evaluated. In addition, antioxidant activity was assessed by DPPH radical scavenging assay, ferrous ion chelating assay, ferric-reducing antioxidant power assay, and β-carotene bleaching assay. Toxicity was evaluated by the brine shrimp lethality test. Results showed that derriobtusone A completely inhibited the planktonic growth of S. aureus at 250 and 500 μg/mL; however, it did not have the same activity on E. coli. Derriobtusone A reduced the biomass and colony-forming unit (cfu of S. aureus biofilm at concentrations of 250 and 500 μg/mL. In various concentrations, it reduced the biofilm biomass of E. coli, and, in all concentrations, it weakly reduced the cfu. Derriobtusone A showed highly efficient antioxidant ability in scavenging DPPH radical and inhibiting β-carotene oxidation. The compound showed no lethality to Artemia sp. nauplii. In conclusion, derriobtusone A may be an effective molecule against S. aureus and its biofilm, as well as a potential antioxidant compound with no toxicity.

  16. Effect of inhibition on tyrosinase and melanogenesis of Agastache rugosa Kuntze by lactic acid bacteria fermentation.

    Science.gov (United States)

    Kim, Nam Young; Kwon, Hee Souk; Lee, Hyeon Yong

    2017-09-01

    This work presents the first report that A. rugosa could have tyrosinase and melanogenesis inhibition and that its activities also be improved by fermentation with Lactobacillus rhamnosus and Lactobacillus paracasei. It was found that the tyrosinase and melanogenesis inhibition was correlated with antioxidant activity of acacetin, the major biologically active substances in A. rugosa. we pursued an improvement in tyrosinase and melanogenesis inhibition of A. rugosa extract by fermentation process. A. rugosa was extracted by lactic acid fermentation process; we measured antioxidant activities and tyrosinase and melanogenesis inhibition of A. rugosa extracts. In particular, reducing power of the extract from fermentation process (FE) was measured as 0.562 (O.D.), whereas reducing power of the extracts from 70% ethanol extraction (EE) was lower than the FE as 0.496 (O.D.). Polyphenols and flavonoids in the FE were higher than the EE: 69.3 mg/g vs. 60.5 mg/g, and 187 mg/g vs. 138 mg/g. The FE was estimated as 51.04% tyrosinase inhibition and 41.88% for the EE. Similarly, melanin inhibition in melanocyte B16F10 was observed as 66.60% vs. 42.23% for the FE and EE. The increase in tyrosinase and melanogenesis inhibition activity was confirmed by high elution of acacetin through fermentation process such as 289.97 mg/100 g vs. 198.04 mg/100 g in the FE and EE. These results indicate that tyrosinase and melanogenesis inhibition activities of the extracts should be associated with antioxidant activity because acacetin is known to have strong antioxidant activity, which can also positively affect whitening activities. © 2016 Wiley Periodicals, Inc.

  17. Phytochemical Analysis, Antioxidant and Antibacterial Activities of Four Lamiaceae Species Cultivated in Barnyard Manure

    OpenAIRE

    YALDIZ, Gülsüm; KAŞKO ARICI, Yeliz; YILMAZ, Gülşah

    2017-01-01

    The present study was conducted to determine essential oil yields, essential oil compositions, total phenolics, antioxidantand antibacterial activities of organic manure-treated medicinal plants of Salvia officinalis L. (sage), Lavandulaangustifolia L. (lavender), Melissa officinalis L. (lemon balm) and Origanum vulgare ssp. hirtum (origano). Essentialoil yields of investigated medicinal plants varied between 0.06±0.01%-3.43±0.06%. The 1,8-cineol (15.285±0.003%),viridiflorol (12.095±0.003%) a...

  18. Laurus nobilis, Zingiber officinale and Anethum graveolens Essential Oils: Composition, Antioxidant and Antibacterial Activities against Bacteria Isolated from Fish and Shellfish.

    Science.gov (United States)

    Snuossi, Mejdi; Trabelsi, Najla; Ben Taleb, Sabrine; Dehmeni, Ameni; Flamini, Guido; De Feo, Vincenzo

    2016-10-22

    Several bacterial strains were isolated from wild and reared fish and shellfish. The identification of these strains showed the dominance of the Aeromonas hydrophila species in all seafood samples, followed by Staphylococcus spp., Vibrio alginolyticus , Enterobacter cloacae , Klebsiella ornithinolytica , Klebsiella oxytoca and Serratia odorifera . The isolates were studied for their ability to produce exoenzymes and biofilms. The chemical composition of the essential oils from Laurus nobilis leaves, Zingiber officinale rhizomes and Anethum graveolens aerial parts was studied by GC and GC/MS. The essential oils' antioxidant and antibacterial activities against the isolated microorganisms were studied. Low concentrations of the three essential oils were needed to inhibit the growth of the selected bacteria and the lowest MBCs values were obtained for the laurel essential oil. The selected essential oils can be used as a good natural preservative in fish food due to their antioxidant and antibacterial activities.

  19. Laurus nobilis, Zingiber officinale and Anethum graveolens Essential Oils: Composition, Antioxidant and Antibacterial Activities against Bacteria Isolated from Fish and Shellfish

    Directory of Open Access Journals (Sweden)

    Mejdi Snuossi

    2016-10-01

    Full Text Available Several bacterial strains were isolated from wild and reared fish and shellfish. The identification of these strains showed the dominance of the Aeromonas hydrophila species in all seafood samples, followed by Staphylococcus spp., Vibrio alginolyticus, Enterobacter cloacae, Klebsiella ornithinolytica, Klebsiella oxytoca and Serratia odorifera. The isolates were studied for their ability to produce exoenzymes and biofilms. The chemical composition of the essential oils from Laurus nobilis leaves, Zingiber officinale rhizomes and Anethum graveolens aerial parts was studied by GC and GC/MS. The essential oils’ antioxidant and antibacterial activities against the isolated microorganisms were studied. Low concentrations of the three essential oils were needed to inhibit the growth of the selected bacteria and the lowest MBCs values were obtained for the laurel essential oil. The selected essential oils can be used as a good natural preservative in fish food due to their antioxidant and antibacterial activities.

  20. Antibacterial and antioxidant activities in extracts of fully grown cladodes of 8 cultivars of cactus pear.

    Science.gov (United States)

    Sánchez, E; Dávila-Aviña, J; Castillo, S L; Heredia, N; Vázquez-Alvarado, R; García, S

    2014-04-01

    The antimicrobial and antioxidant activities of some cultivars of the nopal cactus have not been determined. In this study, 8 cultivars of nopal cacti from Mexico were assayed for phenolic content, antioxidant activities, and antimicrobial activities against Campylobacter Jejuni, Vibrio cholera, and Clostridium Perfringens. Plant material was washed, dried, and macerated in methanol. Minimum bactericidal concentrations (MBCs) were determined using the broth microdilution method. Antioxidant activities were quantitatively determined using spectrophotometric methods. The MCBs of the nopal cacti ranged from 1.1 to 12.5 mg/mL for c. jejuni, 4.4 to 30 mg/mL for V. cholera, and 0.8 to 16 mg/mL for C. perfringens in the cultivars Cardon Blanco, Real de Catorce, and Jalpa, respectively. High quantities of total phenols and total flavonoids were found in the Jalpa cacti (3.80 mg of gallic acid equivalent GAE/g dry weight [DW] and 36.64 mg of quercetin equivalents [QE]/g DW, respectively). 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities (RSA) were correlated to bioactive compound contents. The Villanueva cacti had the highest %RSA at 42.31%, and the lowest activity was recorded in Copena V1 at 19.98%. In conclusion, we found that some of the 8 cactus pear cultivars studied may be used for their antioxidant compounds or antimicrobials to control or prevent the contamination of foods. © 2014 Institute of Food Technologists®

  1. Inhibitory effect of burdock leaves on elastase and tyrosinase activity

    Science.gov (United States)

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-01-01

    Burdock (Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30–50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the

  2. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities.

    Science.gov (United States)

    Bouyahya, Abdelhakim; Et-Touys, Abdeslam; Bakri, Youssef; Talbaui, Ahmed; Fellah, Hajiba; Abrini, Jamal; Dakka, Nadia

    2017-10-01

    The aim of the study was the determination of the chemical composition of Mentha pulegium L. and Rosmarinus officinalis L. essential oils and the evaluation of their antileishmanial, antibacterial and antioxidant activities. Essential oils (EOs) were isolated using steam distillation and the chemical composition was determined using GC-MS analysis. The antibacterial activity was tested against ten pathogenic strains using the diffusion method, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) by microtitration assay. The antioxidant activity was estimated by DPPH free radical scavenging ability and ferric-reducing power. The antileishmanial activity was tested against Leishmania major, Leishmania tropica and Leishmania infantum using MTT (3-(4.5-dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide) assay. The yield of essential oils (v/w %) M. puleguim and R. officinalis based on dry weight were 5.4 and 2.7% respectively. GC/MS analysis of R. officinalis essential oil (ROEO) revealed the presence of 29 components, mainly represented by oxygenated monoterpenes (63.743%) and hydrocarbons monoterpenes (21.231%). Mentha pulegium essential oil (MPEO) revealed 21 components, mainly represented by oxygenated monoterpenes (83.865%). The major components of ROEO were α-pinene (14.076), 1,8-Cineole (23.673) and camphor (18.743), while menthone (21.164) and pulegone (40.98) were the main major components of MPEO. M. pulegium and R. officinalis EOs showed a significant antioxidant activity compared with ascorbic acid and Trolox to the IC 50 values of 58.27 ± 2.72 and 85.74 ± 7.57 μg/mL respectively revealed by reducing power assay. As for the antibacterial effect, the highest zone diameters were shown by the MPEO against Bacillus subtilis (30 ± 1.43 mm) and Proteus mirabilis (28 ± 1.32 mm). These values are significantly important compared with those of the commercialized antibiotic (Erythromycin and

  3. Phytochemical screening, antioxidant and antibacterial activities of extracts prepared from different tissues of Schinus terebinthifolius Raddi that occurs in the coast of Bahia, Brazil

    OpenAIRE

    D?Sousa? Costa, Cinara Oliveira; Ribeiro, Paulo Roberto; Loureiro, Marta Bruno; Sim?es, Rafael Concei??o; de Castro, Renato Delmondez; Fernandez, Luzimar Gonzaga

    2015-01-01

    Background: Schinus terebinthifolius is widely used in traditional medicine by Brazilian quilombola and indigenous communities for treatment of several diseases. Extracts from different tissues are being used to produce creams to treat cervicitis and cervicovaginitis. However, most studies are limited to the assessment of the essential oils and extracts obtained from the leaves. Objective: The aim was to evaluate antioxidant and antibacterial activities, to assess the phytochemical profile an...

  4. Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb. Miers and evaluate its antibacterial, antioxidant potential

    Directory of Open Access Journals (Sweden)

    Kandasamy Selvam

    2017-01-01

    Full Text Available The present study reports an eco-friendly, rapid and easy method for synthesis of silver nanoparticles (AgNPs using Tinospora cordifolia as a reducing and capping agent. The different factor such as silver nitrate (AgNO3 concentration, fresh weight of T. cordifolia leaf, incubation time, and pH affecting silver reduction was investigated using Response surface methodology based Box–Behnken design (BBD. The optimum conditions were AgNO3 (1.25 mM, incubation time (15 h, Temperature (45 °C and pH (4.5. T. cordifolia leaf extract can reduces silver ions into AgNPs within 30 min after heating the reaction mixture (60 °C as indicated by the developed reddish brown color. The UV-Vis spectrum of AgNPs revealed a characteristic surface plasmon resonance (SPR peak at 430 nm. AgNPs were characterized X-ray diffraction (XRD revealed their crystalline nature and their average size of nanoparticles was 30 nm as determined by using Scherrer's equation. Fourier transform infrared (FTIR spectroscopy affirmed the role of T. cordifolia leaf extract as a reducing and capping agent of silver ions. Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS showed spherical shaped and confirming presence of elemental silver. The synthesized AgNPs was found higher antioxidant activity than plant extract by dot plot assay. In addition, antibacterial activity against Staphylococcus sp. (NCBI-Accession: KC688883.1 and Klebsiella sp. (NCBI-Accession: KF649832.1, showed maximum zone of inhibition of 13 mm and 12.3 mm, respectively, at 10 μg/mL of AgNPs. From the results it is suggested that the synthesized AgNPs showed higher antioxidant and antibacterial activity than the plant extract, thus signification of the present study is the production of biomedical products.

  5. ANTIOXIDANT AND ANTIBACTERIAL CAPACITY OF LOLOH SEMBUNG (Blumea balsamifera BASED ON EXTRACTION METHOD

    Directory of Open Access Journals (Sweden)

    IGA. Wita Kusumawati

    2016-12-01

    Full Text Available Loloh sembung (Blumea balsamifera is a traditional herbal drink which of the extraction methods can be done by boiling and brewing. Loloh sembung was prepared from fresh and dried leaves. Loloh sembung extracted by different methods producing phenolic content, tannin content, antioxidant capacity, are different. Dried leaves were extracted by brewing have high content of total phenolic was at 13.15±0.11 mg GAE/g sample, while dried leaves were extracted by boiling have high content of tannin and antioxidant capacity were at 1.65±0.01 mg TAE/g sample and 5.55±0.01 mg GAE/g sample respectiveliy. Both of fresh and dried leaves were extracted by boiling and brewing were not show inhibition against Escherichia coli and Staphylococcus aureus bacteria.

  6. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N. Jayachandra; Nagoor Vali, D.; Rani, M.; Rani, S. Sudha, E-mail: sadrassudha@gmail.com

    2014-01-01

    Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV–visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46 nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67 μg/ml/24 h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well. - Highlights: • 46 nm spherical shaped P. longum fruit silver nanoparticles was prepared. • Capping and reducing bioactive plant compounds with in nanoparticles were condensed tannins. • Particles are potent antioxidant and anti microbial in biological systems. • They are cytotoxic against MCF-7 cell lines.

  7. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit

    International Nuclear Information System (INIS)

    Reddy, N. Jayachandra; Nagoor Vali, D.; Rani, M.; Rani, S. Sudha

    2014-01-01

    Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV–visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46 nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67 μg/ml/24 h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well. - Highlights: • 46 nm spherical shaped P. longum fruit silver nanoparticles was prepared. • Capping and reducing bioactive plant compounds with in nanoparticles were condensed tannins. • Particles are potent antioxidant and anti microbial in biological systems. • They are cytotoxic against MCF-7 cell lines

  8. Antibacterial, Antioxidant, and Anticholinesterase Activities of Plant Seed Extracts from Brazilian Semiarid Region

    OpenAIRE

    Davi Felipe Farias; Terezinha Maria Souza; Martônio Ponte Viana; Bruno Marques Soares; Arcelina Pacheco Cunha; Ilka Maria Vasconcelos; Nágila Maria Pontes Silva Ricardo; Paulo Michel Pinheiro Ferreira; Vânia Maria Maciel Melo; Ana Fontenele Urano Carvalho

    2013-01-01

    The antimicrobial, antioxidant, and anticholinesterase activities of ethanolic seed extracts of twenty-one plant species from Brazilian semiarid region were investigated. The extracts were tested for antimicrobial activity against six bacteria strains and three yeasts. Six extracts presented activity against the Gram (−) organism Salmonella choleraesuis and the Gram (+) organisms Staphylococcus aureus and Bacillus subtilis. The MIC values ranged from 4.96 to 37.32 mg/mL. The Triplaris gardner...

  9. Functional antioxidant and tyrosinase inhibitory properties of ...

    African Journals Online (AJOL)

    Jane

    2011-07-27

    Jul 27, 2011 ... (Miyu) had the highest phenolic content (9.99 mg of gallic acid equivalent/g). C. grandis ... and this compound too possesses good radical-scavenging activity. The ferrous-ion ..... leaves and rhizomes of ginger species.

  10. Antioxidant and tyrosinase inhibitor from Leucaena leucocephala

    African Journals Online (AJOL)

    gabriel

    2012-09-25

    Sep 25, 2012 ... and Chung-Yi Chen ... both synthetic (Lee et al., 2009; Liu et al., 2009) and ... Leucaena leucocephala is a leguminous plant which is ... et al., 2000). ..... Li et al. 14185. Nakatani Y, Ourisson G, Beck JP (1981). Chemistry and ...

  11. Antibacterial, Antioxidant, and Anticholinesterase Activities of Plant Seed Extracts from Brazilian Semiarid Region

    Directory of Open Access Journals (Sweden)

    Davi Felipe Farias

    2013-01-01

    Full Text Available The antimicrobial, antioxidant, and anticholinesterase activities of ethanolic seed extracts of twenty-one plant species from Brazilian semiarid region were investigated. The extracts were tested for antimicrobial activity against six bacteria strains and three yeasts. Six extracts presented activity against the Gram (− organism Salmonella choleraesuis and the Gram (+ organisms Staphylococcus aureus and Bacillus subtilis. The MIC values ranged from 4.96 to 37.32 mg/mL. The Triplaris gardneriana extract presented activity against the three species, with MIC values 18.8, 13.76, and 11.15 mg/mL, respectively. Five extracts presented antioxidant activity, with EC50 values ranging from 69.73 μg/mL (T. gardneriana to 487.51 μg/mL (Licania rigida. For the anticholinesterase activity, eleven extracts were capable of inhibiting the enzyme activity. From those, T. gardneriana, Parkia platycephala and Connarus detersus presented the best activities, with inhibition values of 76.7, 71.5, and 91.9%, respectively. The extracts that presented antimicrobial activity were tested for hemolytic assay against human A, B, and O blood types and rabbit blood. From those, only the Myracrodruon urundeuva extract presented activity (about 20% of hemolysis at the lowest tested concentration, 1.9 µg/mL. Infrared spectroscopy of six representative extracts attested the presence of tannins, polyphenols, and flavonoids, which was confirmed by a qualitative phytochemical assay.

  12. Antibacterial, antioxidant, and anticholinesterase activities of plant seed extracts from Brazilian semiarid region.

    Science.gov (United States)

    Farias, Davi Felipe; Souza, Terezinha Maria; Viana, Martônio Ponte; Soares, Bruno Marques; Cunha, Arcelina Pacheco; Vasconcelos, Ilka Maria; Ricardo, Nágila Maria Pontes Silva; Ferreira, Paulo Michel Pinheiro; Melo, Vânia Maria Maciel; Carvalho, Ana Fontenele Urano

    2013-01-01

    The antimicrobial, antioxidant, and anticholinesterase activities of ethanolic seed extracts of twenty-one plant species from Brazilian semiarid region were investigated. The extracts were tested for antimicrobial activity against six bacteria strains and three yeasts. Six extracts presented activity against the Gram (-) organism Salmonella choleraesuis and the Gram (+) organisms Staphylococcus aureus and Bacillus subtilis. The MIC values ranged from 4.96 to 37.32 mg/mL. The Triplaris gardneriana extract presented activity against the three species, with MIC values 18.8, 13.76, and 11.15 mg/mL, respectively. Five extracts presented antioxidant activity, with EC50 values ranging from 69.73 μ g/mL (T. gardneriana) to 487.51 μ g/mL (Licania rigida). For the anticholinesterase activity, eleven extracts were capable of inhibiting the enzyme activity. From those, T. gardneriana, Parkia platycephala and Connarus detersus presented the best activities, with inhibition values of 76.7, 71.5, and 91.9%, respectively. The extracts that presented antimicrobial activity were tested for hemolytic assay against human A, B, and O blood types and rabbit blood. From those, only the Myracrodruon urundeuva extract presented activity (about 20% of hemolysis at the lowest tested concentration, 1.9 µg/mL). Infrared spectroscopy of six representative extracts attested the presence of tannins, polyphenols, and flavonoids, which was confirmed by a qualitative phytochemical assay.

  13. Chemical composition, antioxidant and antibacterial activities of Tamarix balansae J. Gay aerial parts.

    Science.gov (United States)

    Benmerache, Abbes; Benteldjoune, Mounira; Alabdul Magid, Abdulmagid; Abedini, Amin; Berrehal, Djemaa; Kabouche, Ahmed; Gangloff, Sophie C; Voutquenne-Nazabadioko, Laurence; Kabouche, Zahia

    2017-12-01

    A previously undescribed phenolic sulphate ester, potassium 34-dihydroxy-3-methoxybenzoic acid methyl ester-5-sulphate (1), along with nine known flavonoids, kaempferol-3-O-potassium sulphate-4',7-dimethyl ether (2), kaempferol-4',7-dimethyl ether (3), rhamnocitrin-3-O-potassium sulphate (4), rhamnocitrin (5), kaempferol (6), quercetin (7), afzelin (8), quercetin-3-O-α-l-rhamnopyranoside (9) and luteolin-3'-O-potassium sulphate (10) were isolated from the aerial parts of Tamarix balansae. Structures elucidation was performed by comprehensive 1D and 2D NMR analyses, mass spectrometry and by comparison with literature data. The antibacterial assay against Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa bacteria showed a good activity for 2, 3, 7 and 9, with MICs ranging from 62.5 to 250 μg/mL. The abilities of these compounds to scavenge the DPPH were evaluated. Compounds 1, 7, 9 and 10 exhibited a good antiradical activity potential with IC 50 values ranging from 3.0 to 115.5 μg/mL, compared with ascorbic acid (IC 50 7.4 μg/mL) which was used as positive control.

  14. Chemical composition, and cytotoxic, antioxidant and antibacterial activities of the essential oil from ginseng leaves.

    Science.gov (United States)

    Jiang, Rui; Sun, Liwei; Wang, Yanbing; Liu, Jianzeng; Liu, Xiaodan; Feng, Hao; Zhao, Daqing

    2014-06-01

    Panax ginseng C.A.Meyer is one of the most valuable traditional Chinese medicines. In this study, the essential oil of ginseng leaves (EOGL), collected using hydrodistillation and analyzed by GC/MS, contained a complex mixture of aliphatic (69.0%), terpenoid (21.5%) and aromatic compounds (2.4%). Among 54 components identified, the major ones were palmitic acid (36.1%), beta-farnesene (15.4%), linoleic acid (9.8%) and phytol (5.6%). In the cytotoxicity study, EOGL exhibited obvious cytotoxic activities against different cancer cell lines, including Hela, A549, ZR-75-1, HT-29, SGC7901 and B16 cells. Furthermore, Annexin V-FITC/PI staining assay indicated that EOGL can induce late apoptosis of ZR-75-1 cells, and the percentage of apoptotic cells increased in a concentration-dependent manner (0.9% to 5.6% and 67.4%). In addition to this, we also found that EOGL exhibited weak DPPH radical scavenging (12.0 +/- 0.4 mg/mL) and ABTS radical scavenging activities (1.6 +/- 0.1 mg/mL), and showed antibacterial activity against the Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, and the Gram-negative bacterium, Escherichia coli. The data suggest that EOGL, which possesses important biological activities, especially significant anticancer activity, could be a potential medicinal resource.

  15. Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm (Melissa offi cinalis L. Tea with Symbiotic Consortium of Bacteria and Yeasts

    Directory of Open Access Journals (Sweden)

    Dragoljub D. Cvetković

    2014-01-01

    Full Text Available Kombucha is a fermented tea beverage which is traditionally prepared by fermenting sweetened black or green tea (Camellia sinensis L. with symbiotic consortium of bacteria and yeasts (SCOBY. In this study, lemon balm (Melissa offi cinalis L. was used as the only nitrogen source for kombucha fermentation. During the seven-day fermentation process, pH value, titratable acidity (TA, total phenolic content, phenolic compounds, and antioxidant activity against hydroxyl (˙OH and 1,1-diphenyl-2-picrylhydrazil (DPPH radicals were measured to detect the connection between the fermentation time and antioxidant and antibacterial activities of lemon balm kombucha. Antibacterial activity of fi nished beverages with optimum acidity (TA=4–4.5 g/L, the value which is confi rmed by long-time kombucha consumers, and enhanced acidity (TA=8.12 g/L was tested against eleven wild bacterial strains. The results showed that lemon balm could be successfully used as an alternative to C. sinensis L. for kombucha fermentation. Total phenolic content and antioxidant activity against DPPH radicals of lemon balm fermentation broth were higher than those of traditional kombucha. Rosmarinic acid is the main phenolic compound of the lemon balm-based kombucha that probably provides biological activity of the beverage. Judging from the EC50 values, kombucha beverages exhibited higher antioxidant activities compared with C. sinensis L. and M. offi cinalis L. infusions, which can probably be ascribed to SCOBY metabolites. Lemon balm kombucha with both optimum and enhanced acidity showed antibacterial activity, which can be primarily ascribed to acetic acid, but also to some other tea components and SCOBY metabolites.

  16. Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm
(Melissa officinalis L.) Tea with Symbiotic Consortium 
of Bacteria and Yeasts.

    Science.gov (United States)

    Velićanski, Aleksandra S; Cvetković, Dragoljub D; Markov, Siniša L; Šaponjac, Vesna T Tumbas; Vulić, Jelena J

    2014-12-01

    Kombucha is a fermented tea beverage which is traditionally prepared by fermenting sweetened black or green tea ( Camellia sinensis L.) with symbiotic consortium of bacteria and yeasts (SCOBY). In this study, lemon balm ( Melissa officinalis L.) was used as the only nitrogen source for kombucha fermentation. During the seven-day fermentation process, pH value, titratable acidity (TA), total phenolic content, phenolic compounds, and antioxidant activity against hydroxyl ( ˙ OH) and 1,1-diphenyl-2-picrylhydrazil (DPPH) radicals were measured to detect the connection between the fermentation time and antioxidant and antibacterial activities of lemon balm kombucha. Antibacterial activity of finished beverages with optimum acidity (TA=4-4.5 g/L), the value which is confirmed by long-time kombucha consumers, and enhanced acidity (TA=8.12 g/L) was tested against eleven wild bacterial strains. The results showed that lemon balm could be successfully used as an alternative to C. sinensis L. for kombucha fermentation. Total phenolic content and antioxidant activity against DPPH radicals of lemon balm fermentation broth were higher than those of traditional kombucha. Rosmarinic acid is the main phenolic compound of the lemon balm-based kombucha that probably provides biological activity of the beverage. Judging from the EC 50 values, kombucha beverages exhibited higher antioxidant activities compared with C. sinensis L. and M. officinalis L. infusions, which can probably be ascribed to SCOBY metabolites. Lemon balm kombucha with both optimum and enhanced acidity showed antibacterial activity, which can be primarily ascribed to acetic acid, but also to some other tea components and SCOBY metabolites.

  17. Phytochemical screening, antioxidant and antibacterial activities of extracts prepared from different tissues of Schinus terebinthifolius Raddi that occurs in the coast of Bahia, Brazil.

    Science.gov (United States)

    D'Sousa' Costa, Cinara Oliveira; Ribeiro, Paulo Roberto; Loureiro, Marta Bruno; Simões, Rafael Conceição; de Castro, Renato Delmondez; Fernandez, Luzimar Gonzaga

    2015-01-01

    Schinus terebinthifolius is widely used in traditional medicine by Brazilian quilombola and indigenous communities for treatment of several diseases. Extracts from different tissues are being used to produce creams to treat cervicitis and cervicovaginitis. However, most studies are limited to the assessment of the essential oils and extracts obtained from the leaves. The aim was to evaluate antioxidant and antibacterial activities, to assess the phytochemical profile and to quantify total phenolic compounds of various extracts prepared from S. terebinthifolius grown in the coast of Bahia, Brazil. Extracts were obtained by hot continuous extraction (soxhlet) and by maceration. Quantification of phenolic compounds was performed using the Folin-Ciocalteu method and antioxidant properties were assessed by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. Phytochemical screening was performed as described by in the literature and antibacterial activity against Enterococcus faecalis (ATCC 29212) was determined by the microdilution broth assay. Extraction method greatly affected the metabolite profile of the extracts. Antioxidant activity varied between 21.92% and 85.76%, while total phenols ranged between 5.44 and 309.03 mg EAG/g of extract. Leaf extract obtained with soxhlet showed minimum inhibitory concentration (MIC) of 15.62 μg/mL, while stem extract obtained by maceration was able to inhibit the growth of E. faecalis at 62.5 μg/mL. Stem bark extracts showed a MIC of 500 μg/mL for both extraction methods, while no inhibition was observed for fruit extracts. In general, total phenolic content, antioxidant and antibacterial activities were higher in samples obtained by soxhlet. Our results provide important clues in order to identify alternative sources of bioactive compounds that can be used to develop new drugs.

  18. Phytochemical screening, antioxidant and antibacterial activities of extracts prepared from different tissues of Schinus terebinthifolius Raddi that occurs in the coast of Bahia, Brazil

    Science.gov (United States)

    D’Sousa’ Costa, Cinara Oliveira; Ribeiro, Paulo Roberto; Loureiro, Marta Bruno; Simões, Rafael Conceição; de Castro, Renato Delmondez; Fernandez, Luzimar Gonzaga

    2015-01-01

    Background: Schinus terebinthifolius is widely used in traditional medicine by Brazilian quilombola and indigenous communities for treatment of several diseases. Extracts from different tissues are being used to produce creams to treat cervicitis and cervicovaginitis. However, most studies are limited to the assessment of the essential oils and extracts obtained from the leaves. Objective: The aim was to evaluate antioxidant and antibacterial activities, to assess the phytochemical profile and to quantify total phenolic compounds of various extracts prepared from S. terebinthifolius grown in the coast of Bahia, Brazil. Materials and Methods: Extracts were obtained by hot continuous extraction (soxhlet) and by maceration. Quantification of phenolic compounds was performed using the Folin-Ciocalteu method and antioxidant properties were assessed by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. Phytochemical screening was performed as described by in the literature and antibacterial activity against Enterococcus faecalis (ATCC 29212) was determined by the microdilution broth assay. Results: Extraction method greatly affected the metabolite profile of the extracts. Antioxidant activity varied between 21.92% and 85.76%, while total phenols ranged between 5.44 and 309.03 mg EAG/g of extract. Leaf extract obtained with soxhlet showed minimum inhibitory concentration (MIC) of 15.62 μg/mL, while stem extract obtained by maceration was able to inhibit the growth of E. faecalis at 62.5 μg/mL. Stem bark extracts showed a MIC of 500 μg/mL for both extraction methods, while no inhibition was observed for fruit extracts. Conclusion: In general, total phenolic content, antioxidant and antibacterial activities were higher in samples obtained by soxhlet. Our results provide important clues in order to identify alternative sources of bioactive compounds that can be used to develop new drugs. PMID:26246739

  19. Novel Kombucha Beverage from Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum, with Antibacterial and Antioxidant Effects.

    Science.gov (United States)

    Sknepnek, Aleksandra; Pantić, Milena; Matijašević, Danka; Miletić, Dunja; Lević, Steva; Nedović, Viktor; Niksic, Miomir

    2018-01-01

    Kombucha is a nonalcoholic beverage traditionally made by fermenting black tea using a combination of yeast and acetic acid bacteria (AAB) cultures. Ganoderma lucidum hot water extract (HWE) was used-to our knowledge for the first time-to prepare a novel, health-promoting kombucha product. During the 11-day fermentation, pH, total acidity, and the numbers of yeasts and AAB were monitored. It was found that sweetened G. lucidum HWE was a good medium for yeast and AAB growth. The desired acidity for the beverage was reached on the second day (3 g/L) of the fermentation process; the maximum established acidity was 22.8 ± 0.42 g/L. Fourier transform infrared analysis revealed that the vacuum-dried beverage is a mixture of various compounds such as polysaccharides, phenols, proteins, and lipids. Total phenolic content of the liquid sample was 4.91 ± 0.2338 mg gallic acid equivalents/g, whereas the vacuum-dried sample had a smaller amount of phenolics (2.107 ± 0.228 mg gallic acid equivalents/g). Established half-maximal effective concentrations for DPPH scavenging activity and reducing power were 22.8 ± 0.17 and 10.61 ± 0.34 mg/mL, respectively. The antibacterial testing revealed that activity does not originate solely from synthesized acetic acid. The liquid G. lucidum beverage was the most effective against the tested bacteria, with the lowest minimum inhibitory concentration (0.04 mg/mL) against Staphylococcus epidermidis and Rhodococcus equi, and a minimum bactericidal concentration (0.16 mg/mL) against Bacillus spizizenii, B. cereus, and R. equi. The vacuum-dried sample was less effective, with the lowest minimum bactericidal concentration against the Gram-positive bacteria R. equi (1.875 mg/mL) and against the Gram-negative bacteria Proteus hauseri (30 mg/mL).

  20. Evaluation of anti-bacterial and anti-oxidant potential of andrographolide and echiodinin isolated from callus culture of Andrographis paniculata Nees

    Science.gov (United States)

    Arifullah, Mohmmed; Namsa, Nima Dandu; Mandal, Manabendra; Chiruvella, Kishore Kumar; Vikrama, Paritala; Gopal, Ghanta Rama

    2013-01-01

    Objective To evaluate the anti-bacterial and anti-oxidant activity of andrographolide (AND) and echiodinin (ECH) of Andrographis paniculata. Methods In this study, an attempt has been made to demonstrate the anti-microbial and anti-oxidant activity of isolated AND and ECH by broth micro-dilution method and 2,2-diphenyl-2-picryl-hydrazyl (DPPH) assay, respectively. Structure elucidation was determined by electro-spray ionization-MSD, NMR (1H and 13C) and IR spectra. Results AND was effective against most of the strains tested including Mycobacterium smegmatis, showing broad spectrum of growth inhibition activity with Minimum inhibitory concentration values against Staphylococcus aureus (100 µg/mL), Streptococcus thermophilus (350 µg/mL) Bacillus subtilis (100 µg/mL), Escherichia coli (50 µg/mL), Mycobacterium smegmatis (200 µg/mL), Klebsiella pneumonia (100 µg/mL), and Pseudomonas aeruginosa (200 µg/mL). ECH showed specific anti-bacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa at a concentration higher than 225 µg/mL. Both AND and ECH were not effective against the two yeast strains, Candida albicans and Saccharomyces cerevisiae tested in this study. Conclusion This preliminary study showed promising anti-bacterial activity and moderate free radical scavenging activity of AND and ECH, and it may provide the scientific rationale for its popular folklore medicines. PMID:23905016

  1. EVALUATION OF ANTIBACTERIAL, ANTITUMOR, ANTIOXIDANT ACTIVITIES AND PHENOLIC CONSTITUENTS OF FIELD-GROWN AND IN VITRO-GROWN LYSIMACHIA VULGARIS L.

    Science.gov (United States)

    Yildirim, Arzu Birinci; Guner, Birgul; Karakas, Fatma Pehlivan; Turker, Arzu Ucar

    2017-01-01

    Lysimachia vulgaris L. (Yellow loosestrife) is a medicinal plant in the family Myrsinaceae. It has been used in the treatment of fever, ulcer, diarrhea and wounds in folk medicine. It has also analgesic, expectorant, astringent and anti-inflammatory activities. Two different sources of the plant (field-grown and in vitro -grown) were used to evaluate the biological activities (antibacterial, antitumor and antioxidant) of L. vulgaris. In vitro-grown plant materials were collected from L. vulgaris plants that were previously regenerated in our laboratory. Plant materials were extracted with water, ethanol and acetone. For antibacterial test, disc diffusion method and 10 different pathogenic bacteria were used. Antioxidant activity was indicated by using DPPH method. The total phenol amount by using Folin-Ciocaltaeu method and the total flavonoid amount by using aluminum chloride (AlCl 3 ) colorimetric method were determined. Generally, yellow loosestrife extracts demonstrated antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, S. epidermidis and Streptococcus pyogenes) . Strong antitumor activity of yellow loosestrife was observed via potato disc diffusion bioassay. Nine different phenolics were also determined and compared by using High-Performance Liquid Chromatography (HPLC). Future investigations should be focused on fractionation of the extracts to identify active components for biological activity.

  2. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens

    Science.gov (United States)

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide; Ajayi, Emmanuel Olusegun; Odeyemi, Samuel Wale

    2017-01-01

    Background: Herbal drug delivery is limited by poor solubility and bioavailability which can be overcome with suitable nanomaterials that will enhance their pharmacokinetics and performance. Objective: This study aimed to analyze the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from three spices. Materials and Methods: AgNPs were prepared using 0.1 M silver nitrate and aqueous extracts of Allium sativum L. (garlic), Zingiber officinale Rosc. (ginger), and Capsicum frutescens L. (cayenne pepper). The AgNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Results: The AgNPs were formed within an hour of the reaction and showed maximum UV-Vis absorption in the 375–480 nm range. SEM and TEM revealed well-dispersed spherical particles with little agglomeration, average sizes of 3–6 nm, 3–22 nm, and 3–18 nm for garlic, ginger, and cayenne pepper, respectively. FTIR showed that amine, protein, phenolic, aromatic, and alkynes groups contributed to AgNP synthesis and XRD confirmed their crystalline and face-centered cubic nature. Antibacterial action of the AgNPs was in the following order: ginger (minimum inhibitory concentration [MIC] garlic> cayenne pepper (MIC 125 μg/mL). Antioxidant action showed cayenne pepper > ginger > garlic (inhibitory concentration 50% [IC50]: 40, 240, and 250 μg/mL, respectively) against 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and garlic > cayenne pepper > ginger (IC50: <31.25, 40, and 120 μg/mL, respectively) against 1,1-diphenyl-2-picrylhydrazyl. Conclusion: Optimization of this green synthesis would support the production of AgNPs with great therapeutic potentials. SUMMARY The synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from garlic, ginger

  3. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens.

    Science.gov (United States)

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide; Ajayi, Emmanuel Olusegun; Odeyemi, Samuel Wale

    2017-07-01

    Herbal drug delivery is limited by poor solubility and bioavailability which can be overcome with suitable nanomaterials that will enhance their pharmacokinetics and performance. This study aimed to analyze the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from three spices. AgNPs were prepared using 0.1 M silver nitrate and aqueous extracts of Allium sativum L. (garlic), Zingiber officinale Rosc. (ginger), and Capsicum frutescens L. (cayenne pepper). The AgNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The AgNPs were formed within an hour of the reaction and showed maximum UV-Vis absorption in the 375-480 nm range. SEM and TEM revealed well-dispersed spherical particles with little agglomeration, average sizes of 3-6 nm, 3-22 nm, and 3-18 nm for garlic, ginger, and cayenne pepper, respectively. FTIR showed that amine, protein, phenolic, aromatic, and alkynes groups contributed to AgNP synthesis and XRD confirmed their crystalline and face-centered cubic nature. Antibacterial action of the AgNPs was in the following order: ginger (minimum inhibitory concentration [MIC] garlic> cayenne pepper (MIC 125 μg/mL). Antioxidant action showed cayenne pepper > ginger > garlic (inhibitory concentration 50% [IC50]: 40, 240, and 250 μg/mL, respectively) against 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and garlic > cayenne pepper > ginger (IC50: <31.25, 40, and 120 μg/mL, respectively) against 1,1-diphenyl-2-picrylhydrazyl. Optimization of this green synthesis would support the production of AgNPs with great therapeutic potentials. The synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from garlic, ginger and cayenne pepper were evaluatedThe AgNPs formed were characterized using UV

  4. Antibacterial, anticandidal and antioxidant properties of Tanacetum argenteum (Lam.) Willd. subsp. flabellifolium (Boiss. & Heldr.) Grierson.

    Science.gov (United States)

    Kose, Yavuz Bulent; Iscan, Gokalp; Goger, Fatih; Demirci, Betul; Elmacı, Ceren

    2017-11-01

    In the present study hydrodistilled essential oil and total methanol extracts of Tanacetum argenteum subsp. flabellifolium have been evaluated for their antimicrobial and antioxidant effects. The chemical composition of the oil and the crude extract were determined by GC/FID, GC/MS and LC/DAD/ESI-MS systems respectively. β-thujone (47.1%), α-pinene (19.1%) and α-thujone (10.5%) were the main compounds of the essential oil while the 5-Ocaffeoylquinic acid, 1,5-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid were identified as flavonoid content of the crude extract. The oil and the methanol extract were demonstrated moderate antimicrobial effects (MIC range; 0,062-2,0 mg/mL) against 21 different pathogenic micro organism. Total phenolic content was determined as 63 mg GAE in g extract and the DPPH radical scavenging effect was determined as 0.16 mg/mL (IC 50 ) and TEAC was determined as 0.21mMol.

  5. Probiotic-mediated blueberry (Vaccinium corymbosum L.) fruit fermentation to yield functionalized products for augmented antibacterial and antioxidant activity.

    Science.gov (United States)

    Oh, Byung-Taek; Jeong, Seong-Yeop; Velmurugan, Palanivel; Park, Jung-Hee; Jeong, Do-Youn

    2017-11-01

    The aim of this study was to investigate the fermentation of blueberry fruit with selected probiotic bacteria (Bacillus amyloliquefaciens and Lactobacillus brevis) and yeast (Starmerella bombicola) isolated from fermented starfish for the extraction of functionalized products for biomedical applications. All probiotic-based fermented extracts showed augmented antibacterial and antioxidant activity compared to the control. Biochemical parameters of viable cell count, titratable acidity, total phenol, total anthocyanin, total flavonoids, total sugar, and reducing sugar were analyzed during a 0-96 h fermentation period. In addition, Fourier transform infrared (FTIR) spectroscopy was performed to determine the functional groups in the control and fermented extracts and it signifies the presence of alcohol groups, phenol groups, carboxylic acids, and aliphatic amines, respectively. The well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays determined that the S. bombicola-mediated fermented extract has excellent activity, followed by B. amyloliquefaciens and L. brevis, at a high concentration of 1.0 g/mL fermented extract. The ABTS and DPPH showed significant scavenging activity with IC 50 values of (30.52 ± 0.08)/(155.10 ± 0.06) μg/mL, (24.82 ± 0.16)/(74.21 ± 1.26) μg/mL, and (21.81 ± 0.08)/(125.11 ± 0.04) μg/mL for B. amyloliquefaciens, L. brevis, and S. bombicola, respectively. Developing a value-added fermented blueberry product will help circumvent losses because of the highly perishable nature of the fruit. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. In-vitro antioxidant and antibacterial activities of Xanthium strumarium L. extracts on methicillin-susceptible and methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Rad, Javad Sharifi; Alfatemi, Seyedeh Mahsan Hoseini; Rad, Majid Sharifi; Iriti, Marcello

    2013-10-01

    The excessive and repeated use of antibiotics in medicine has led to the development of antibiotic-resistant microbial strains, including Staphylococcus aureus whose emergence of antibiotic-resistant strains has reduced the number of antibiotics available to treat clinical infections caused by this bacterium. In this study, antioxidant and antimicrobial activities of methanolic extract of Xanthium strumarium L. leaves were evaluated on methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MRSA) spp. Antiradical and antioxidant activities X. strumarium L. leaf extract were evaluated based on its ability to scavenge the synthetic 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical and by the paired diene method, respectively, whereas the antimicrobial activity was assayed by the disc diffusion method. Data were subjected to analysis of variance following an entirely random design to determine the least significant difference at P strumarium extract affected both methicillin-sensitive Staphylococcus aureus and MRSA, though antibacterial activity was more effective on methicillin-susceptible S. aureus spp. The antibacterial and antioxidant activities exhibited by the methanol extract may justify the traditional use of this plant as a folk remedy worldwide.

  7. Investigation of phytochemical contents, in vitro antioxidant and antibacterial behavior and in vivo anti-inflammatory potential of Ecballium elaterium methanol fruits extract

    Directory of Open Access Journals (Sweden)

    Samir FELHI

    Full Text Available Abstract Ecballium elaterium species are mostly used as therapeutic agents and food ingredient. The current work was designed to investigate phytochemical contents, antioxidant, antibacterial, and anti-inflammatory properties of methanol fruits extract of Ecballium elaterium. Good antioxidant activity was observed with IC50 values of 156 ± 4 and 377 ± 6 μg/mL for DPPH and ABTS, respectively, and EC50 of 126 ± 4 µg/mL for FRAP assays, which is related with their richness in total phenolic, flavonoid and condensed tannins contents. The results of antibacterial activity showed the effectiveness of methanol extract against Bacillus cereus with value of inhibition zone diameter of 15 ± 0 mm and a MIC and MBC values of 6 ± 0 and 12 ± 0 mg/mL, respectively. The in vivo anti-inflammatory effects have been also studied by carrageenan induced rat paw edema assay and the results revealed that a dose of 75 mg/kg induced a significant inhibition of 66.4% at 2 h. FT-IR spectral data justified the presence of biological functional groups such as ─OH, C─H, C─O, C─C and C=O. These results highlighted the potential using of Ecballium elaterium fruits extract as natural antimicrobial, antioxidant and anti-inflammatory agents for food applications and for the pharmaceutical industry.

  8. Extraction of unsaturated fatty acid-rich oil from common carp (Cyprinus carpio) roe and production of defatted roe hydrolysates with functional, antioxidant, and antibacterial properties.

    Science.gov (United States)

    Ghelichi, Sakhi; Shabanpour, Bahareh; Pourashouri, Parastoo; Hajfathalian, Mona; Jacobsen, Charlotte

    2018-03-01

    Common carp roe is a rich protein and oil source, which is usually discarded with no specific use. The aims of this study were to extract oil from the discarded roe and examine functional, antioxidant, and antibacterial properties of defatted roe hydrolysates (CDRHs) at various degrees of hydrolysis (DH). Gas chromatography of fatty acid methyl esters revealed that common carp roe oil contained high levels of unsaturated fatty acids. The results of high-performance liquid chromatography-mass spectrometry indicated that enzymatic hydrolysis of defatted roe yielded higher content of essential amino acids. CDRHs displayed higher solubility than untreated defatted roe, which increased with DH. Better emulsifying and foaming properties were observed at lower DH and non-isoelectric points. Furthermore, water and oil binding capacity decreased with DH. CDRHs exhibited antioxidant activity both in vitro and in 5% roe oil-in-water emulsions and inhibited the growth of certain bacterial strains. Common carp roe could be a promising source of unsaturated fatty acids and functional bioactive agents. Unsaturated fatty acid-rich oil extracted from common carp roe can be delivered into food systems by roe oil-in-water emulsions fortified by functional, antioxidant, and antibacterial hydrolysates from the defatted roe. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Synthesis of new bioactive aminophosphonates and study of their antioxidant, anti-inflammatory and antibacterial activities as well the assessment of their toxicological activity

    Science.gov (United States)

    Damiche, Rebiha; Chafaa, Salah

    2017-02-01

    Two new categories of α-aminophosphonates molecules were synthesized and characterized by UV-Vis, IR, and NMR. Their spectral properties show a perfect convergence. Their biological activities were evaluated. Molecules 1a, 2a, and 1d present a greater antioxidant potential than BHT and vitamin C. The best anti-inflammatory activity is shown by the 2b molecule and that of 1a, 2a, and 2c molecules are closely comparable to that of diclofenac. The antibacterial activity of the synthesized compounds is significantly higher than the antibiotic amoxicillin. The hemolysis rate HR of compounds 1b, 1c, 2b, and 2c was lower than 5%.

  10. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties

    Directory of Open Access Journals (Sweden)

    Salehi S

    2016-04-01

    Full Text Available Soheil Salehi,1 Seyed Ataollah Sadat Shandiz,2 Farinaz Ghanbar,3 Mohammad Raouf Darvish,4 Mehdi Shafiee Ardestani,5 Amir Mirzaie,2 Mohsen Jafari6 1Department of Phytochemistry and Essential Oils Technology, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran (IAUPS, 2Young Researchers and Elite Club, East Tehran Branch, Islamic Azad University, Tehran, 3Department of Biology, Tehran North Branch, 4Department of Chemistry, Shahre-Rey Branch, Islamic Azad University, Tehran, 5Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 6Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran Abstract: A rapid phytosynthesis of silver nanoparticles (AgNPs using an extract from the aerial parts of Artemisia marschalliana Sprengel was investigated in this study. The synthesized AgNPs using A. marschalliana extract was analyzed by UV–visible spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy and further characterized by transmission electron microscopy, scanning electron microscopy, zeta potential, and energy-dispersive spectroscopy. Characteristic absorption bands of AgNPs were found near 430 nm in the UV–vis spectrum. Energy-dispersive spectroscopy analysis of AgNPs in the energy range 2–4 keV confirmed the silver signal due to surface plasmon resonance. Scanning electron microscopy and transmission electron microscopy results revealed that the AgNPs were mostly spherical with an average size ranging from 5 nm to 50 nm. The zeta potential value of -31 mV confirmed the stability of the AgNPs. AgNPs produced using the aqueous A. marschalliana extract might serve as a potent in vitro antioxidant, as revealed by 2,2-diphenyl-1-picryl hydrazyl assay. The present study demonstrates the anticancer properties of phytosynthesized AgNPs against human gastric carcinoma AGS cells. AgNPs exerted a dose

  11. Antioxidants

    Science.gov (United States)

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  12. Secondary metabolites constituents and antioxidant, anticancer and antibacterial activities of Etlingera elatior (Jack) R.M.Sm grown in different locations of Malaysia.

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah; Ashkani, Sadegh

    2015-09-23

    Etlingera elatior is a well-known herb in Malaysia with various pharmaceutical properties. E. elatior flowers grown in three different locations of Malaysia (Kelantan, Pahang and Johor), were investigated for differences in their content of secondary metabolites (total phenolics [TPC], total flavonoids [TFC], and total tannin content [TTC]) as well as for their antioxidant, anticancer, and antibacterial properties. Phenolic acids and flavonoids were isolated and identified using ultra-high performance liquid chromatography (UHPLC). Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used to evaluate the antioxidant activities. The anticancer activity of extracts was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. When extracted with various solvents (aqueous and ethanolic), samples from the different locations yielded significantly different results for TPC, TFC, and TTC as well as antioxidant activity. Aqueous extracts of E. elatior flowers collected from Kelantan exhibited the highest values: TPC (618.9 mg/100 g DM), TFC (354.2 mg/100 g DM), TTC (129.5 mg/100 g DM), DPPH (76.4 %), and FRAP (6.88 mM of Fe (II)/g) activity with a half-maximal inhibitory concentration (IC50) of 34.5 μg/mL compared with extracts of flowers collected from the other two locations. The most important phenolic compounds isolated in this study, based on concentration, were: gallic acid > caffeic acid > tannic acid > chlorogenic acid; and the most important flavonoids were: quercetin > apigenin > kaempferol > luteolin > myricetin. Extracts of flowers from Kelantan exhibited potent anticancer activity with a IC50of 173.1 and 196.2 μg/mL against the tumor cell lines MCF-7 and MDA-MB-231 respectively, compared with extracts from Pahang (IC50 = 204.5 and 246.2 μg/mL) and Johor samples (IC50 = 277.1 and 296.7 μg/mL). Extracts of E. elatior flowers also showed

  13. Chemical Composition and Cytotoxic and Antioxidant Activities of Satureja montana L. Essential Oil and Its Antibacterial Potential against Salmonella Spp. Strains

    Directory of Open Access Journals (Sweden)

    Hanene Miladi

    2013-01-01

    Full Text Available The present study describes chemical composition as well as cytotoxic, antioxidant, and antimicrobial activities of winter savory Satureja montana L. essential oil (EO. The plant was collected from south France mountain, and its EO was extracted by hydrodistillation (HD and analysed by gas chromatography/mass spectrometry (GC/MS. Thirty-two compounds were identified accounting for 99.85% of the total oil, where oxygenated monoterpenes constituted the main chemical class (59.11%. The oil was dominated by carvacrol (53.35%, γ-terpinene (13.54%, and the monoterpenic hydrocarbons p-cymene (13.03%. Moreover, S. montana L. EO exhibited high antibacterial activities with strong effectiveness against several pathogenic food isolated Salmonella spp. including S. enteritidis with a diameter of inhibition zones growth ranging from 21 to 51 mm and MIC and MBC values ranging from 0.39–1.56 mg/mL to 0.39–3.12 mg/mL, respectively. Furthermore, the S. montana L. EO was investigated for its cytotoxic and antioxidant activities. The results revealed a significant cytotoxic effect of S. montana L. EO against A549 cell line and an important antioxidant activity. These findings suggest that S. montana L. EO may be considered as an interesting source of components used as potent agents in food preservation and for therapeutic or nutraceutical industries.

  14. Chemical Profile, Antibacterial and Antioxidant Activity of Algerian Citrus Essential Oils and Their Application in Sardina pilchardus

    Directory of Open Access Journals (Sweden)

    Djamel Djenane

    2015-06-01

    Full Text Available Stored fish are frequently contaminated by foodborne pathogens. Lipid oxidation and microbial growth during storage are also important factors in the shelf-life of fresh fish. In order to ensure the safety of fish items, there is a need for control measures which are effective through natural inhibitory antimicrobials. It is also necessary to determine the efficacy of these products for fish protection against oxidative damage, to avoid deleterious changes and loss of commercial and nutritional value. Some synthetic chemicals used as preservatives have been reported to cause harmful effects to the environment and the consumers. The present investigation reports on the extraction by hydrodistillation and the chemical composition of three citrus peel essential oils (EOs: orange (Citrus sinensis L., lemon (Citrus limonum L. and bergamot (Citrus aurantium L. from Algeria. Yields for EOs were between 0.50% and 0.70%. The chemical composition of these EOs was determined by gas chromatography coupled with mass spectrometry (GC/MS. The results showed that the studied oils are made up mainly of limonene (77.37% for orange essential oil (EO; linalyl acetate (37.28%, linalool (23.36%, for bergamot EO; and finally limonene (51.39%, β-pinene (17.04% and γ-terpinene (13.46% for lemon EO. The in vitro antimicrobial activity of the EOs was evaluated against Staphylococcus aureus (S. aureus using the agar diffusion technique. Results revealed that lemon EO had more antibacterial effects than that from other EOs. Minimal inhibitory concentrations (MICs showed a range of 0.25–0.40 μL/mL. Lemon and bergamot citrus peel EOs were added at 1 × MIC and 4 × MIC values to Sardina pilchardus (S. pilchardus experimentally inoculated with S. aureus at a level of 3.5 log10 CFU/g and stored at 8 ± 1 °C. The results obtained revealed that the 4 × MIC value of bergamot reduced completely the growth of S. aureus from day 2 until the end of storage. The presence of EOs

  15. New halogenated phenylcoumarins as tyrosinase inhibitors.

    Science.gov (United States)

    Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Delogu, Giovanna; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella

    2011-06-01

    With the aim to find out structural features for the tyrosinase inhibitory activity, in the present communication we report the synthesis and pharmacological evaluation of a new series of phenylcoumarin derivatives with different number of hydroxyl or ether groups and bromo substituent in the scaffold. The synthesized compounds 5-12 were evaluated as mushroom tyrosinase inhibitors showing, two of them, lower IC(50) than the umbelliferone. Compound 12 (IC(50)=215 μM) is the best tyrosinase inhibitor of this series. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. An Updated Review of Tyrosinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Te-Sheng Chang

    2009-05-01

    Full Text Available Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed.

  17. Yellow colored blooms of Argemone mexicana and Turnera ulmifolia mediated synthesis of silver nanoparticles and study of their antibacterial and antioxidant activity

    Science.gov (United States)

    Chandrasekhar, N.; Vinay, S. P.

    2017-11-01

    In the present work, AgNPs were prepared using a simple bio-reduction method. This is ecologically welcoming and cost-effective method. Yellow colored blooms concentrate of Argemone mexicana and Turnera ulmifolia are used as bio reducing agents in the study. The formation of silver nanoparticles was confirmed by UV-Vis spectrophotometer and characterization of the nanoparticles was done by FTIR, SEM, XRD and EDX. The Antibacterial action of silver nanoparticles was tested against Staphylococus aureus, Pseudomonas aeruginosa, Escherichia coli and Klebsiella aerogenes. The phytochemical analysis of the blooms concentrate has shown the existence of saponins, alkaloids, amino acids, phenols, tannins, terpenoids, flavonoids and cardiac glycosides. In vitro anti-oxidant action of both A. mexicana and T. ulmifolia AgNPs were studied by DPPH assay and reducing power assay.

  18. Extraction of unsaturated fatty acid-rich oil from common carp (Cyprinus carpio) roe and production of defatted roe hydrolysates with functional, antioxidant, and antibacterial properties

    DEFF Research Database (Denmark)

    Ghelichi, Sakhi; Shabanpour, Bahareh; Pourashouri, Parastoo

    2018-01-01

    content of essential amino acids. CDRHs displayed higher solubility than untreated defatted roe, which increased with DH. Better emulsifying and foaming properties were observed at lower DH and non-isoelectric points. Furthermore, water and oil binding capacity decreased with DH. CDRHs exhibited......Common carp roe is a rich protein and oil source, which is usually discarded with no specific use. The aims of this study were to extract oil from the discarded roe and examine functional, antioxidant, and antibacterial properties of defatted roe hydrolysates (CDRHs) at various degrees...... of hydrolysis (DH). Gas chromatography (GC) of fatty acid methyl esters (FAMEs) revealed that common carp roe oil contained high level of unsaturated fatty acids. The results of high-performance liquid chromatography-mass spectrometry (HPLC-MS) indicated that enzymatic hydrolysis of defatted roe yielded higher...

  19. Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract.

    Science.gov (United States)

    Alavi, Mehran; Karimi, Naser

    2017-12-12

    Recently, major problem related to pathogenic bacteria is augmentation of antibiotic resistance which has been changed treatment and recovery of millions of infectious patients. The present study reports an eco-friendly, rapid and easy method for synthesis of silver (Ag), copper (Cu) and titanium dioxide (TiO 2 ) nanoparticles (NPs) using Artemisia haussknechtii leaf aqueous extract with antibacterial activities against multi-drug resistance (MDR) bacteria species. Three different concentrations (0.001, 0.01 and 0.1 M) of AgNO 3 , CuSO 4 and TiO (OH) 2 were investigated for obtaining optimum NPs green synthesis. Total phenolic content, total flavonoid content of leaf extract and total antioxidant activity (DPPH) assay were determined as radical scavenging methods. UV-Visible spectroscopy, Fourier transform infrared spectroscopy analysis, X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscope and atomic force microscopy (AFM) were used due to NPs characterization. The size average of the Ag, Cu and TiO 2 NPs obtained were respectively 10.69 ± 5.55, 35.36 ± 44.4 and 92.58 ± 56.98 nm. In the case of antibacterial assay, disc diffusion assay, minimum inhibitory concentration, minimum bactericidal concentration, bacterial growth and morphology of four MDR species Staphylococcus aureus ATCC 43300, Staphylococcus epidermidis ATCC 12258, Serratia marcescens ATTC13880 and Escherichia coli ATCC 25922 were evaluated. Results of this study demonstrated that A. haussknechtii leaf extract with various groups of phytochemicals such as phenols and flavonoids had suitable ability in green synthesis of Ag, Cu and TiO 2 NPs. Also, Ag and Cu NPs had more antibacterial activities compared to TiO 2 NPs.

  20. Antibacterial and Antioxidant Activity of Essential Oil Terpenes against Pathogenic and Spoilage-Forming Bacteria and Cell Structure-Activity Relationships Evaluated by SEM Microscopy

    Directory of Open Access Journals (Sweden)

    Hatice Zengin

    2014-11-01

    Full Text Available The antibacterial activity and antioxidant effect of the compounds α-terpineol, linalool, eucalyptol and α-pinene obtained from essential oils (EOs, against pathogenic and spoilage forming bacteria were determined. The antibacterial activities of these compounds were observed in vitro on four Gram-negative and three Gram-positive strains. S. putrefaciens was the most resistant bacteria to all tested components, with MIC values of 2% or higher, whereas E. coli O157:H7 was the most sensitive strain among the tested bacteria. Eucalyptol extended the lag phase of S. Typhimurium, E. coli O157:H7 and S. aureus at the concentrations of 0.7%, 0.6% and 1%, respectively. In vitro cell growth experiments showed the tested compounds had toxic effects on all bacterial species with different level of potency. Synergistic and additive effects were observed at least one dose pair of combination against S. Typhimurium, E. coli O157:H7 and S. aureus, however antagonistic effects were not found in these combinations. The results of this first study are encouraging for further investigations on mechanisms of antimicrobial activity of these EO components.

  1. Determination of Phytochemical Compounds, and Tyrosinase ...

    African Journals Online (AJOL)

    Purpose: To determine the phytochemical content, and tyrosinase inhibitory and antimicrobial activities of the wood ... problems from current whitening cosmetics such as ochronosis ... antibiotics may lead to drug resistance of many bacterial ...

  2. Plumbagin Suppresses α-MSH-Induced Melanogenesis in B16F10 Mouse Melanoma Cells by Inhibiting Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Taek-In Oh

    2017-02-01

    Full Text Available Recent studies have shown that plumbagin has anti-inflammatory, anti-allergic, antibacterial, and anti-cancer activities; however, it has not yet been shown whether plumbagin suppresses alpha-melanocyte stimulating hormone (α-MSH-induced melanin synthesis to prevent hyperpigmentation. In this study, we demonstrated that plumbagin significantly suppresses α-MSH-stimulated melanin synthesis in B16F10 mouse melanoma cells. To understand the inhibitory mechanism of plumbagin on melanin synthesis, we performed cellular or cell-free tyrosinase activity assays and analyzed melanogenesis-related gene expression. We demonstrated that plumbagin directly suppresses tyrosinase activity independent of the transcriptional machinery associated with melanogenesis, which includes micropthalmia-associated transcription factor (MITF, tyrosinase (TYR, and tyrosinase-related protein 1 (TYRP1. We also investigated whether plumbagin was toxic to normal human keratinocytes (HaCaT and lens epithelial cells (B3 that may be injured by using skin-care cosmetics. Surprisingly, lower plumbagin concentrations (0.5–1 μM effectively inhibited melanin synthesis and tyrosinase activity but do not cause toxicity in keratinocytes, lens epithelial cells, and B16F10 mouse melanoma cells, suggesting that plumbagin is safe for dermal application. Taken together, these results suggest that the inhibitory effect of plumbagin to pigmentation may make it an acceptable and safe component for use in skin-care cosmetic formulations used for skin whitening.

  3. Structure and Function of Human Tyrosinase and Tyrosinase-Related Proteins

    NARCIS (Netherlands)

    Lai, Xuelei; Wichers, Harry J.; Soler-Lopez, Montserrat; Dijkstra, Bauke W.

    2018-01-01

    Melanin is the main pigment responsible for the color of human skin, hair and eye. Its biosynthesis requires three melanogenic enzymes, tyrosinase (TYR), and the tyrosinase-related proteins TYRP1 and TYRP2. The difficulty of isolating pure and homogeneous proteins from endogenous sources has

  4. Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2014-01-01

    Full Text Available Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial applications. In environmental technology it is used for the detoxification of phenol-containing wastewaters and contaminated soils, as biosensors for phenol monitoring, and for the production of L-DOPA in pharmaceutical industries, and is also used in cosmetic and food industries as important catalytic enzyme. Melanin pigment synthesized by tyrosinase has found applications for protection against radiation cation exchangers, drug carriers, antioxidants, antiviral agents, or immunogen. The recombinant V. spinosum tryosinase protein can be used to produce tailor-made melanin and other polyphenolic materials using various phenols and catechols as starting materials. This review compiles the recent data on biochemical and molecular properties of microbial tyrosinases, underlining their importance in the industrial use of these enzymes. After that, their most promising applications in pharmaceutical, food processing, and environmental fields are presented.

  5. Assays for mammalian tyrosinase: a comparative study

    International Nuclear Information System (INIS)

    Jara, J.R.; Solano, F.; Lozano, J.A.

    1988-01-01

    This work describes a comparative study of the tyrosinase activity determined using three methods which are the most extensively employed; two radiometric assays using L-tyrosine as substrate (tyrosine hydroxylase and melanin formation activities) and one spectrophotometric assay using L-dopa (dopa oxidase activity). The three methods were simultaneously employed to measure the activities of the soluble, melanosomal, and microsomal tyrosinase isozymes from Harding-Passey mouse melanoma through their purification processes. The aim of this study was to find any correlation among the tyrosinase activities measured by the three different assays and to determine whether that correlation varied with the isozyme and its degree of purification. The results show that mammalian tyrosinase has a greater turnover number for L-dopa than for L-tyrosine. Thus, enzyme activity, expressed as mumol of substrate transformed per min, is higher in assays using L-dopa as substrate than those using L-tyrosine. Moreover, the percentage of hydroxylated L-tyrosine that is converted into melanin is low and is affected by several factors, apparently decreasing the tyrosinase activity measured by the melanin formation assay. Bearing these considerations in mind, average interassay factors are proposed. Their values are 10 to transform melanin formation into tyrosine hydroxylase activity, 100 to transform tyrosine hydroxylase into dopa oxidase activity, and 1,000 to transform melanin formation into dopa oxidase activity. Variations in these values due to the presence in the tyrosinase preparations of either inhibitors or regulatory factors in melanogenesis independent of tyrosinase are also discussed

  6. Antioxidant, Color and Antibacterial Properties of Edible Chitosan Film Incorporated with Zataria Multiflora Boiss ٍEssential Oil against Listeria Monocytogenes

    Directory of Open Access Journals (Sweden)

    M Moradi

    2011-01-01

    Full Text Available Introduction & Objective: The film containing antimicrobial agents are a type of active packaging which is mainly designed to control microbial and chemical spoilage of food. The aim of this study was to evaluate the antimicrobial, antioxidant and color properties of chitosan film incorporated with essential oil of Zataria multiflora Boiss. (ZEO. Materials & Methods: In this experimental study which was conducted at Urmia University of Medical Sciences between 2009-2010, the chemical composition of ZEO was analyzed using GC-MS. Chitosan films containing 0, 0.5, 1 and 2% ZEO, were obtained by casting method and subsequently, total phenol (TP, antioxidant, color (accordance with hunter system (L* (luminosity, * (redness, and b* (yellowness and antimicrobial characteristics of films on Listeria monocytogenes were studied. The collected data was analyzed by the SPSS software. Results: The order of TP for all films in the experiment was 2% ZEO1% ZEO 0.5% ZEO unsupplemented chitosan film, respectively. It was also concluded that the antioxidant activity of chitosan films was increased by adding various concentrations of ZEO. These increases were significant for film containing 1% (33.98% and 2% (37.77% ZEO (p0.05. Regarding the color luminosity (L* of the chitosan film, results indicated no significant changes by incorporating ZEO, whereas the incorporation of ZEO into films had a significant effect on film yellowness, evidenced by lower b* values. Finally, it was shown that the presence of ZEO in chitosan films significantly modified the anti- listerial activity of chitosan, (p0.05. Conclusion: The results indicated that an active film from chitosan could be achieved by incorporating ZEO. Addition of ZEO improves functional and antibacterial characteristics of chitosan film.

  7. Microwave-assisted synthesis, structural characterization, DFT studies, antibacterial and antioxidant activity of 2-methyl-4-oxo-1,2,3,4-tetrahydroquinazoline-2-carboxylic acid

    Science.gov (United States)

    Obafemi, Craig A.; Fadare, Olatomide A.; Jasinski, Jerry P.; Millikan, Sean P.; Obuotor, Efere M.; Iwalewa, Ezekiel O.; Famuyiwa, Samson O.; Sanusi, Kayode; Yilmaz, Yusuf; Ceylan, Ümit

    2018-03-01

    In the present study a new tetrahydroquinazoline-2-carboxylic, C10H10N2O3, 1‧, was synthesized and its structure was characterized by elemental analysis, IR, 1H NMR, 13C NMR data and high-resolution mass spectrometry. The spectral results are in line with the proposed structure. Single crystal X-ray structural analysis of the compound showed that the crystal structure adopts a monoclinic space group P21/c, with the packing of the molecule stabilized by Cdbnd O … …Hsbnd O, Nsbnd H … ….Odbnd Csbnd Osbnd intermolecular hydrogen bonding. The theoretical geometrical parameters of the compound have been calculated using density functional (DFT) and time-dependent density functional (TD-DFT) theory methods and have been used to predict the thermodynamic one-electron redox potential and the electronic absorption property of the compound. The theoretical characterization matched the experimental measurements, showing a good correlation. The calculated HOMO-LUMO gap (4.79 eV) suggests that compound 1‧ could be a potential antioxidant. The synthesized compound was screened for its in vitro antimicrobial activity against selected bacterial strains and antioxidant activity using the TAC, FRAP, NO and ABTS models. In vitro antioxidant activity of 1' showed a moderate activity, but weaker scavenging activity than the standards of ascorbic acid and trolox. Results of the antibacterial activity of the tested compound showed that it possesses a higher activity against Bacillus anthracis, Bacillus cereus, Bacillus polymyxa, Bacillus subtilis and Staphylococcus aureus than the two standard drugs, streptomycin and tetracycline, and better activity than tetracycline against Escherichia coli.

  8. Tyrosinase Inhibition Type of Isolated Compounds Obtained from Pachyrhizus erosus

    Directory of Open Access Journals (Sweden)

    Endang Lukitaningsih

    2013-12-01

    Full Text Available In Indonesia, Bengkoang (Phacyrhizus erosus have been used as one of cosmetics especially as sun screening and skin whitening materials. Six active compounds in Bengkoang with antioxidant and skin whitening activities have been isolated, namely daidzein, daidzin, genistin, (8,9-furanyl-pterocarpan-3-ol, 4-(2-(furane-2-ylethyl-2-methyl-2,5-dihydro-furane-3-carbaldehyde and 2-butoxy-2,5-bis(hydroxymethyl-tetrahydrofurane-3,4-diol. According to literatures, the type of their tyrosinase inhibitory activity has not yet reported. The determination of whitening activity of each compound was evaluated by the evaluation of Lineweaver-Burk plot. The result showed that five compounds had competitive inhibitory activity and 8,9-furanyl-pterocarpan-3-ol showed a non-competitive inhibition.

  9. SEARCH OF NEW SYNTHETIC INHIBITORS OF TYROSINASE

    Directory of Open Access Journals (Sweden)

    Yu. Shesterenko

    2017-11-01

    Full Text Available Melanin pigmentation of skin plays the most important role in the protection of organism against UV-irradiation, but the excessive accumulation of melanin brings to toxic melanodermia, melasma, lentigo and other skin lesions. Tyrosinase is the key enzyme of skin melanin pigment biosynthesis. In spite of certain progress in investigation of natural and synthetic tyrosinase inhibitors, actuality of such studies is of a high level, because the existing inhibitors are in some cases unstable, expensive, toxic, requires complex methods of synthesis or isolation from natural sources. The aim of the work is screening of new tyrosinase inhibitors, using the enzyme, isolated from Agaricus bisporus. Tyrosinase was isolated from Agaricus bisporus mushrooms by a modified method. It was found, that the introduction of polyethylene glycol 4000 in the extraction process promotes 3-fold reduction of polyphenol content, which leads to increase purity of enzyme with an increase in its activity by 25%. A search for new tyrosinase inhibitors among a wide range of compounds, including derivatives of 3-chloro-1,4-naphthoquinone, isatin, 3-hydroxy-2-naphthoic acid, etc was conducted. The studied substances did not displayed inhibitory effect at concentration of 0,1-0,5 mmol/dm3.

  10. Synthesis, molecular docking and DNA binding studies of phthalimide-based copper(II) complex: In vitro antibacterial, hemolytic and antioxidant assessment

    Science.gov (United States)

    Arif, Rizwan; Nayab, Pattan Sirajuddin; Ansari, Istikhar A.; Shahid, M.; Irfan, Mohammad; Alam, Shadab; Abid, Mohammad; Rahisuddin

    2018-05-01

    In the present research work, we prepared N-substituted phthalimide, 2-(-(2-(2-(2-(1,3-dioxoisoindoline-2-yl-ethylamino)ethylamino)ethyl)isoindoline-1,3-dione (DEEI) and its copper(II) complex. The ligand (DEEI) and its Cu(II) complex were structurally identified using absorption, FTIR, NMR, electron spin resonance, X-ray diffraction spectral studies, thermogravimetric and elemental analyses. The electronic spectrum and magnetic moment value proposed that Cu(II) complex has square planar geometry. The DNA interaction ability of the ligand (DEEI) and Cu(II) complex was studied by means of absorption and fluorescence spectrophotometer, viscosity measurements, cyclic voltammetery, and circular dichroism methods. The extent of DNA binding (Kb) with Calf thymus (Ct-DNA) follows the order of Cu(II) complex (1.11 × 106 M-1) > DEEI (1.0 × 105 M-1), indicating that Cu(II) complex interact with Ct-DNA through groove binding mode and more sturdily than ligand (DEEI). Interestingly, in silico predictions were corroborated with in vitro DNA binding studies. The antibacterial evaluation of these compounds was screened against a panel of bacterial strains Pseudomonas aeruginosa (MTCC 2453), Salmonella enterica (MTCC 3224), Streptococcus pneumoniae (MTCC 655), Enterococcus faecalis (MTCC 439), Klebsiella pneumonia and Escherichia coli (ATCC 25922). The results showed that the copper(II) complex has significant antibacterial potential (IC50 = 0.0019 μg/mL) against Salmonella enteric comparable with ligand (DEEI) and standard drug ciprofloxacin. Growth curve study of Cu(II) complex against only three bacterial strains S. enterica, E. faecalis and S. pneumoniae showed its bactericidal nature. Cu(II) complex showed less than 2% hemolysis on human RBCs indicating its non toxic nature. The results of antioxidant assay demonstrated that scavenging activity of Cu(II) complex is higher as compared to ligand and ascorbic acid as standard.

  11. AKTIVITAS ANTIOKSIDAN DAN ANTIBAKTERI EKSTRAK POLAR DAN NON POLAR BIJI SELASIH (Ocimum sanctum Linn [Antioxidant and Antibacterial Activities from Polar and Non Polar Basil (Ocimum sanctum Linn Seed Extracts

    Directory of Open Access Journals (Sweden)

    Agustina D. R. Nurcahyanti1*

    2011-06-01

    Full Text Available The aims of this study were to determine total phenolic content, antioxidant activity and antibacterial activity of polar and nonpolar extracts of basil (O. sanctum L. seed. Seeds of basil (O. sanctum L. were extracted using a soxhlet extractor using four types organic solvent, i.e. chloroform, ethyl acetate, acetone, and methanol for eight hours each. The total phenolic content was determined using Folin Ciocalteu method, antioxidant activity was determined using reducing power and DPPH (1,1-diphenyl,2-picrylhydrazyl scavenging activity methods, while antibacterial activity was tested using agar diffusion method. The result showed that the highest total phenolic content and antioxidant activity was obtained in methanol extract with 3.63 ± 0.21 mgGAE/g phenolic total, 58.39 ± 3.81 ek/g using reducing power method and 85.73 ± 0.86% free radical scavenging activity. Furthermore the result of antibacterial activity testing showed that the highest diameter of inhibition zone was observed in ethyl acetate extract inhibition on E.coli, P.aeruginosa, B.subtilis, and S.aureus where its inhibition zone were 13.53 ± 0.63; 10.67 ± 1.05; 14.93 ± 0.80, and 13.46 ± 0.79 mm, respectively. This result suggests that both polar and nonpolar basil seed extracts possess specific biological activity. This data provide valuable and strong database for exploration of natural antibacterial agents and antioxidant for food and health industry application.

  12. Seed oil extraction from red prickly pear using hexane and supercritical CO2 : assessment of phenolic compound composition, antioxidant and antibacterial activities.

    Science.gov (United States)

    Koubaa, Mohamed; Mhemdi, Houcine; Barba, Francisco J; Angelotti, Armel; Bouaziz, Fatma; Chaabouni, Semia Ellouz; Vorobiev, Eugène

    2017-01-01

    Investigating Opuntia species for their seed oil content is of much importance owing to their potential use for food and in cosmetic applications. These oils have an important content in unsaturated fatty acids as well as antioxidant compounds (e.g. polyphenols, vitamin E), which have been associated with the prevention of some chronic diseases. Moreover, Opuntia stricta oils possess important antimicrobial activities. For instance, the main focus of this study was to compare the effectiveness of conventional (hexane extraction) and novel (supercritical (SC)-CO 2 ) extraction methods for the recovery of oil and phenolic compounds from O. stricta seeds. The oil yield of both extracts was then compared and the polyphenol content and composition of both extracts were determined by liquid chromatography-high-resolution mass spectrometry. Additionally, antioxidant (DPPH assay) and antimicrobial activities (disc diffusion method) of O. stricta seed oils were determined. The oil yield (based on Soxhlet's method) of O. stricta seeds was determined using SC-CO 2 (49.9 ± 2.2%), and hexane (49.0 ± 1.5%). Although obtaining similar oil extraction yields using the two methods, the extracted oil using SC-CO 2 was more enriched in polyphenols (172.2 ± 11.9 µg gallic acid equivalents (GAE) g -1 oil) than that extracted using hexane (76.0 ± 6.9 µg GAE g -1 of oil). Polyphenol profiles showed that the SC-CO 2 process led to the yield of more compounds (45) than that using hexane extraction (11). Moreover, the antioxidant and antimicrobial activities of SC-CO 2 extract showed a high percentage of inhibition. SC-CO 2 extraction of O. stricta seed oil led to extraction of oil with a similar yield to that with hexane extraction, but with higher polyphenol content. The extract containing polyphenols exhibited high antioxidant and antibacterial properties, demonstrating their great potential as feedstock for high-oil quality. © 2016 Society of Chemical Industry. © 2016 Society of

  13. Antibacterial and antioxidant activities of essential oils isolated from Thymbra capitata L. (Cav.) andOriganum vulgare L.

    Science.gov (United States)

    Faleiro, Leonor; Miguel, Graça; Gomes, Sónia; Costa, Ludmila; Venâncio, Florencia; Teixeira, Adriano; Figueiredo, A Cristina; Barroso, José G; Pedro, Luis G

    2005-10-19

    Antilisterial activities of Thymbra capitata and Origanum vulgare essential oils were tested against 41 strains of Listeria monocytogenes. The oil of T. capitata was mainly constituted by one component, carvacrol (79%), whereas for O. vulgare three components constituted 70% of the oil, namely, thymol (33%), gamma-terpinene (26%), and p-cymene (11%). T. capitata essential oil had a significantly higher antilisterial activity in comparison to O. vulgare oil and chloramphenicol. No significant differences in L. monocytogenes susceptibilities to the essential oils tested were registered. The minimum inhibitory concentration values of T. capitata essential oil and of carvacrol were quite similar, ranging between 0.05 and 0.2 microL/mL. Antioxidant activity was also tested, the essential oil of T. capitata showing significantly higher antioxidant activity than that of O. vulgare. Use of T. capitata and O. vulgare essential oils can constitute a powerful tool in the control of L. monocytogenes in food and other industries.

  14. Indole-3-acetic acid/diol based pH-sensitive biological macromolecule for antibacterial, antifungal and antioxidant applications.

    Science.gov (United States)

    G, Chitra; D S, Franklin; S, Sudarsan; M, Sakthivel; S, Guhanathan

    2017-02-01

    Indole-3-acetic acid (IAA)/diol based pH-sensitive biopolymeric hydrogels with tunable biological properties (cytotoxicity, anti-oxidant and anti-fungal) have been synthesized via condensation polymerization. The present study focused on the synthesis of heterocyclic hydrogel using citric acid (CA), indole-3-acetic acid (IAA) and diethylene glycol (DEG) by condensation polymerization. The hydrogels revealed a pH-sensitive swelling behaviour, with increased swelling in acidic media, then turns to decreased the swelling in the basic media. The hydrogel samples were tested for antifungal activity against Aspergillus fumigates, Rhizopusoryzae and Candida albicans at different concentrations using ketoconazole as positive control and DMSO as negative control for antifungal activity. Antioxidant activity increasing nature in DPPH than NO radical compared with rutin and confirmed non toxic property using cytotoxicity analysis. The biopolymeric hydrogels were characterized by Fourier transform infrared (FT-IR) spectroscopy, 1 H NMR, 13 C NMR, TGA, DSC followed by scanning electron microscopy (SEM). Such hydrogels with antioxidant properties is recommended for medical applications such as bandages, catheters, drains and tubes to prevent infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L.

    Science.gov (United States)

    Güllüce, M; Sökmen, M; Daferera, D; Ağar, G; Ozkan, H; Kartal, N; Polissiou, M; Sökmen, A; Sahin, F

    2003-07-02

    The present study was designated to evaluate the antimicrobial and antioxidant activities of the essential oil, obtained by using a Clevenger distillation apparatus, water soluble (polar) and water insoluble (nonpolar) subfractions of the methanol extracts from aerial parts of Satureja hortensis L. plants, and methanol extract from calli established from the seeds using Gamborg's B5 basal media supplemented with indole-3-butyric acid (1.0 ppm), 6-benzylaminopurine (N(6)-benzyladenine) (1.0 ppm), and sucrose (2.5%). The antimicrobial test results showed that the essential oil of S. hortensis had great potential antimicrobial activities against all 23 bacteria and 15 fungi and yeast species tested. In contrast, the methanol extract from callus cultures and water soluble subfraction of the methanol extract did not show antimicrobial activities, but the nonpolar subfraction had antibacterial activity against only five out of 23 bacterial species, which were Bacillus subtilis, Enterococcus fecalis, Pseudomonas aeruginosa, Salmonella enteritidis, and Streptococcus pyogenes. Antioxidant studies suggested that the polar subfractions of the methanol extract of intact plant and methanol extract of callus cultures were able to reduce the stable free radical 2,2-diphenyl-1-picrylhydrazyl to the yellow-colored diphenylpicrylhydrazine. In this assay, the strongest effect was observed for the tissue culture extract, with an IC(50) value of 23.76 +/- 0.80 microgram/mL, which could be compared with the synthetic antioxidant agent butylated hydroxytoluene. On the other hand, linoleic acid oxidation was 95% inhibited in the presence of the essential oil while the inhibition was 90% with the chloroform subfraction of the intact plant. The chemical composition of a hydrodistilled essential oil of S. hortensis was analyzed by gas chromatography (GC)/flame ionization detection (FID) and a GC-mass spectrometry system. A total 22 constituents representing 99.9% of the essential oil were

  16. Inactivation of tyrosinase photoinduced by pterin

    Energy Technology Data Exchange (ETDEWEB)

    Laura Dantola, M., E-mail: ldantola@inifta.unlp.edu.ar [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Boulevard 113 y 64, 1900, La Plata (Argentina); Gojanovich, Aldana D. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Boulevard 113 y 64, 1900, La Plata (Argentina); Thomas, Andres H., E-mail: athomas@inifta.unlp.edu.ar [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Boulevard 113 y 64, 1900, La Plata (Argentina)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Under UV-A radiation, tirosinase is photoinactivated by pterin. Black-Right-Pointing-Pointer The mechanism involves an electron transfer-initiated process. Black-Right-Pointing-Pointer The photochemical process affects both activities of tyrosinase. -- Abstract: Tyrosinase catalyzes in mammals the first and rate-limiting step in the biosynthesis of the melanin, the main pigment of the skin. Pterins, heterocyclic compounds able to photoinduce oxidation of DNA and its components, accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder in which the protection against UV radiation fails due to the lack of melanin. Aqueous solutions of tyrosinase were exposed to UV-A irradiation (350 nm) in the presence of pterin, the parent compound of oxidized pterins, under different experimental conditions. The enzyme activity in the irradiated solutions was determined by spectrophotometry and HPLC. In this work, we present data that demonstrate unequivocally that the enzyme is photoinactivated by pterin. The mechanism of the photosensitized process involves an electron transfer from tyrosinase to the triplet excited state of pterin, formed after UV-A excitation of pterin. The biological implications of the results are discussed.

  17. Inactivation of tyrosinase photoinduced by pterin

    International Nuclear Information System (INIS)

    Laura Dántola, M.; Gojanovich, Aldana D.; Thomas, Andrés H.

    2012-01-01

    Highlights: ► Under UV-A radiation, tirosinase is photoinactivated by pterin. ► The mechanism involves an electron transfer-initiated process. ► The photochemical process affects both activities of tyrosinase. -- Abstract: Tyrosinase catalyzes in mammals the first and rate-limiting step in the biosynthesis of the melanin, the main pigment of the skin. Pterins, heterocyclic compounds able to photoinduce oxidation of DNA and its components, accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder in which the protection against UV radiation fails due to the lack of melanin. Aqueous solutions of tyrosinase were exposed to UV-A irradiation (350 nm) in the presence of pterin, the parent compound of oxidized pterins, under different experimental conditions. The enzyme activity in the irradiated solutions was determined by spectrophotometry and HPLC. In this work, we present data that demonstrate unequivocally that the enzyme is photoinactivated by pterin. The mechanism of the photosensitized process involves an electron transfer from tyrosinase to the triplet excited state of pterin, formed after UV-A excitation of pterin. The biological implications of the results are discussed.

  18. Chemical composition and evaluation of antibacterial and antioxidant activities of the essential oil of Croton urucurana Baillon (Euphorbiaceae) stem bark

    Energy Technology Data Exchange (ETDEWEB)

    Simionatto, Euclesio; Bonani, Vanderlea F.L.; Peruzzo, Gisele M.; Peres, Marize T.L.P.; Hess, Sania C. [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Dept. de Hidraulica e Transportes]. E-mail: eusimionatto@yahoo.com.br; Morel, Ademir Farias Morel; Stuker, Caroline Z. [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Dept. de Quimica; Poppi, Nilva Re; Raposo Junior, Jorge Luiz [Universidade Federal de Santa Maria (UFMS), Santa Maria, RS (Brazil). Dept. de Quimica

    2007-07-01

    The essential oil obtained from the stem bark of Croton urucurana Baillon (Euphorbiaceae) was analysed by GC and GC-MS. 83 compounds were identified and borneol (14.7%), bornyl acetate (5.2%), 1-isopropyl-7-methyl-4-methylene-1,3,4,5,6,8-hexahydro-2H-naphthalane-4a-ol (14.7%), sesquicineole (10.5%) and {gamma}-gurjunene epoxide (5.4%) were the main components. The EC{sub 50} value of the crude essential oil in the DPPH free radical scavenging assay was 3.21 mg mL{sup -1}. The fraction of the crude essential oil that presented antioxidant activity was purified by prep-TLC on silica gel. GC and GC-MS analysis revealed that a-bisabolol (38.3%), a-eudesmol (9.3%) and guaiol (8.2%) were the main components of the antioxidant fraction. The EC{sub 50} value measured for the bioactive oil fraction in the DPPH assay was 1.05 mg mL{sup -1}. The antimicrobial activity of the crude essential oil was assayed against seven Gram-positive and Gram-negative bacteria and three yeasts. Measured MIC values ranged from 1.25 to 10.00 mg mL{sup -1}. (author)

  19. Chemical composition and evaluation of antibacterial and antioxidant activities of the essential oil of Croton urucurana Baillon (Euphorbiaceae) stem bark

    International Nuclear Information System (INIS)

    Simionatto, Euclesio; Bonani, Vanderlea F.L.; Peruzzo, Gisele M.; Peres, Marize T.L.P.; Hess, Sania C.; Morel, Ademir Farias Morel; Stuker, Caroline Z.; Poppi, Nilva Re; Raposo Junior, Jorge Luiz

    2007-01-01

    The essential oil obtained from the stem bark of Croton urucurana Baillon (Euphorbiaceae) was analysed by GC and GC-MS. 83 compounds were identified and borneol (14.7%), bornyl acetate (5.2%), 1-isopropyl-7-methyl-4-methylene-1,3,4,5,6,8-hexahydro-2H-naphthalane-4a-ol (14.7%), sesquicineole (10.5%) and γ-gurjunene epoxide (5.4%) were the main components. The EC 50 value of the crude essential oil in the DPPH free radical scavenging assay was 3.21 mg mL -1 . The fraction of the crude essential oil that presented antioxidant activity was purified by prep-TLC on silica gel. GC and GC-MS analysis revealed that a-bisabolol (38.3%), a-eudesmol (9.3%) and guaiol (8.2%) were the main components of the antioxidant fraction. The EC 50 value measured for the bioactive oil fraction in the DPPH assay was 1.05 mg mL -1 . The antimicrobial activity of the crude essential oil was assayed against seven Gram-positive and Gram-negative bacteria and three yeasts. Measured MIC values ranged from 1.25 to 10.00 mg mL -1 . (author)

  20. Mentha spicata Essential Oil: Chemical Composition, Antioxidant and Antibacterial Activities against Planktonic and Biofilm Cultures of Vibrio spp. Strains

    Directory of Open Access Journals (Sweden)

    Mejdi Snoussi

    2015-08-01

    Full Text Available Chemical composition, antioxidant and anti-Vibrio spp. activities of the essential oil isolated from the aerial parts of Mentha spicata L. (spearmint are investigated in the present study. The effect of the essential oil on Vibrio spp. biofilm inhibition and eradication was tested using the XTT assay. A total of 63 chemical constituents were identified in spearmint oil using GC/MS, constituting 99.9% of the total identified compounds. The main components were carvone (40.8% ± 1.23% and limonene (20.8% ± 1.12%. The antimicrobial activity against 30 Vibrio spp. strains (16 species was evaluated by disc diffusion and microdilution assays. All microorganisms were strongly affected, indicating an appreciable antimicrobial potential of the oil. Moreover, the investigated oil exhibited high antioxidant potency, as assessed by four different tests in comparison with BHT. The ability of the oil, belonging to the carvone chemotype, to inhibit or reduce Vibrio spp. biofilm warrants further investigation to explore the use of natural products in antibiofilm adhesion and reinforce the possibility of its use in the pharmaceutical or food industry as a natural antibiotic and seafood preservative against Vibrio contamination.

  1. Composition, antibacterial, antioxidant and antiproliferative activities of essential oils from three Origanum species growing wild in Lebanon and Greece.

    Science.gov (United States)

    Marrelli, Mariangela; Conforti, Filomena; Formisano, Carmen; Rigano, Daniela; Arnold, Nelly Apostolides; Menichini, Francesco; Senatore, Felice

    2016-01-01

    The essential oils from Origanum dictamnus, Origanum libanoticum and Origanum microphyllum were analysed by GC-MS, finding carvacrol, p-cymene, linalool, γ-terpinene and terpinen-4-ol as major components. The antioxidant activity by the DPPH and FRAP tests and the antiproliferative activity against two human cancer cell lines, LoVo and HepG2, were investigated, showing that the essential oil of O. dictamnus was statistically the most inhibitory on both the cell lines, while all the oils exerted a weak antioxidant activity. Furthermore, the samples were tested against 10 Gram-negative and Gram-positive bacteria; all the oils were active on Gram-positive bacteria but O. dictamnus essential oil was the most effective (MIC = 25-50 μg/mL), showing also a good activity against the Gram-negative Escherichia coli (MIC = 50 μg/mL). Data suggest that these essential oils and particularly O. dictamnus oil could be used as valuable new flavours with functional properties for food or nutraceutical products.

  2. Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines

    Directory of Open Access Journals (Sweden)

    Jiménez Pérez ZE

    2017-02-01

    Full Text Available Zuly Elizabeth Jiménez Pérez,1 Ramya Mathiyalagan,1 Josua Markus,1 Yeon-Ju Kim,2 Hyun Mi Kang,3 Ragavendran Abbai,1 Kwang Hoon Seo,2 Dandan Wang,2 Veronika Soshnikova,2 Deok Chun Yang1,21Department of Biotechnology and Ginseng Bank, 2Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea; 3Advanced Cosmeceutical Technology R&D Center, Suwon, Republic of KoreaAbstract: There has been a growing interest in the design of environmentally affable and biocompatible nanoparticles among scientists to find novel and safe biomaterials. Panax ginseng Meyer berries have unique phytochemical profile and exhibit beneficial pharmacological activities such as antihyperglycemic, antiobesity, antiaging, and antioxidant properties. A comprehensive study of the biologically active compounds in ginseng berry extract (GBE and the ability of ginseng berry (GB as novel material for the biosynthesis of gold nanoparticles (GBAuNPs and silver nanoparticles (GBAgNPs was conducted. In addition, the effects of GBAuNPs and GBAgNPs on skin cell lines for further potential biological applications are highlighted. GBAuNPs and GBAgNPs were synthesized using aqueous GBE as a reducing and capping agent. The synthesized nanoparticles were characterized for their size, morphology, and crystallinity. The nanoparticles were evaluated for antioxidant, anti-tyrosinase, antibacterial, and cytotoxicity activities and for morphological changes in human dermal fibroblast and murine melanoma skin cell lines. The phytochemicals contained in GBE effectively reduced and capped gold and silver ions to form GBAuNPs and GBAgNPs. The optimal synthesis conditions (ie, temperature and v/v % of GBE and kinetics were investigated. Polysaccharides and phenolic compounds present in GBE were suggested to be responsible for stabilization and functionalization of nanoparticles. GBAuNPs and GBAgNPs showed increased scavenging activity

  3. Screening of Peruvian Medicinal Plants for Tyrosinase Inhibitory Properties: Identification of Tyrosinase Inhibitors in Hypericum laricifolium Juss.

    Science.gov (United States)

    Quispe, Yanymee Nimesia Guillen; Hwang, Seung Hwan; Wang, Zhiqiang; Lim, Soon Sung

    2017-03-04

    Tyrosinase inhibitors are of far-ranging importance in cosmetics, medicinal products, and food industries. Peru is a diverse country with a wide variety of plants that may contain excellent anti-tyrosinase inhibitors. In the present study, the tyrosinase inhibitory properties of 50 medicinal plant extracts from Peru were investigated using tyrosinase assay. Among plant extracts, those that showed an inhibition rate >50% were Hypericum laricifolium Juss ., Taraxacum officinale F.H.Wigg ., and Muehlenbeckia vulcanica Meisn ., with H. laricifolium Juss. showing the greatest anti-tyrosinase activity. Although H. laricifolium Juss. has been widely used as a medicinal plant by Peruvians, little is known regarding its bioactive components and effects on tyrosinase activity. For this reason, we attempted to discover tyrosinase inhibitors in H. laricifolium Juss. for the first time. The bioactive components were separated by Sephadex LH-20 chromatography and eluted with 100% methanol. Eight compounds were discovered and characterized by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD): protocatechuic acid, p -hydroxybenzoic acid, chlorogenic acid, vanilic acid, caffeic acid, kaempferol 3- O -glucuronide, quercetin, and kaempferol. In addition, the concentration of these compounds required for 50% inhibition (IC 50 ) of tyrosinase activity were evaluated. Quercetin exhibited the strongest tyrosinase inhibition (IC 50 14.29 ± 0.3 μM). Therefore, the Peruvian plant H. laricifolium Juss. could be a novel source for anti-tyrosinase activity.

  4. Photocatalytic, antioxidant, antibacterial and anti-inflammatory activity of silver nanoparticles synthesised using forest and edible mushroom

    Science.gov (United States)

    Sriramulu, Mohana; Sumathi, Shanmugam

    2017-12-01

    Mushroom has been part of the human diet for thousands of years, and in recent times, the amounts consumed have risen greatly, involving a large number of species. Mushrooms used for nutritional and therapeutic purposes. In this study silver nanoparticles were synthesised using an edible mushroom (Agaricus bisporus) and forest mushroom (Ganoderma lucidum) extract. The synthesised nanoparticles were characterised by UV-vis spectroscopy, FTIR, powder XRD and SEM. Silver nanoparticles were synthesised at room temperature and at 60 °C. FTIR results recognised the presence of bioactive functional groups responsible for the reduction of silver nitrate to silver nanoparticles. From the XRD, it was observed that the nanoparticles are silver with an average size of 10-80 nm. The silver nanoparticles are explored for photocatalytic activity and biological activities such as in vitro antioxidant activity, anti-inflammatory activity and antimicrobial activity against Escherichia coli and Staphylococcus aureus organisms. 98% of textile dye (direct blue 71) degradation was noticed under UV light within 150 min for forest mushroom synthesised silver nanoparticles at room temperature.

  5. Comparative Analysis of Chemical Composition, Antioxidant and Antibacterial Activities of Mentha rotundifolia Essential oils from Algeria extracted by microwave and hydrodistillation

    Directory of Open Access Journals (Sweden)

    Nacéra HADDACHE

    2017-04-01

    Full Text Available The essential oil of Mentha rotundifolia (L. Huds growing wild from East Algeria (Naciria at 60Km in East of Algiers obtained by hydrodistillation (HD° and a microwave distillation process (MD have been analysed by means of GC-FID and GC/MS in combination with retention indices. In total, 54 constituents were identified (accounting for 96.7 and 95.6% in HD and MD oils, respectively. The main components were piperitone oxide (25.1 and 29.1% in HD and MD oils, respectively, piperitenone oxide (8.9 – 11.8%, terpinen-4-ol (9.3 – 3.4%, β-caryophyllene (5.4 – 7.3%, allo-aromadendrene (5.3 - 6.4% and Dgermacrène (5.4 – 7.1%. In comparison with HD, MD allows to obtain oil in a very short time, with the reduction of solvent used similar yields, comparable qualities and substantial savings of energy. The antioxidant activity was determined according to the ability of the tested samples to scavenge the free radicals 2,2- diphenyl-1-picrylhydrazyl (DPPH*. The essential oil were slightly active (32.6 and 21.8% in HD and MD oils, respectively comparing with BHT (64.7%. The antibacterial activities of the essential oils indicated that Staphylococcus aureus was the more sensitive strain tested to the oils of Mentha rotundifolia with the strongest inhibition zone 28.3 for HD and 26.5 mm for MO.

  6. Rapid Biosynthesis of AgNPs Using Soil Bacterium Azotobacter vinelandii With Promising Antioxidant and Antibacterial Activities for Biomedical Applications

    Science.gov (United States)

    Karunakaran, Gopalu; Jagathambal, Matheswaran; Gusev, Alexander; Torres, Juan Antonio Lopez; Kolesnikov, Evgeny; Kuznetsov, Denis

    2017-07-01

    Silver nanoparticles (AgNPs) are applied in various fields from electronics to biomedical applications as a result of their high surface-to-volume ratio. Even though different approaches are available for synthesis of AgNPs, a nontoxic method for the synthesis has not yet been developed. Thus, this study focused on developing an easy and ecofriendly approach to synthesize AgNPs using Azotobacter vinelandii culture extracts. The biosynthesized nanoparticles were further characterized by ultraviolet-visible (UV-Vis) spectroscopy, x-ray diffraction (XRD), Fourier transform infrared (FTIR), energy-dispersive spectrum, particle size distribution (PSD), and transmission electron microscopy (TEM). UV absorption noticed at 435 nm showed formation of AgNPs. The XRD pattern showed a face-centered cubic structure with broad peaks of 28.2°, 32.6°, 46.6°, 55.2°, 57.9°, and 67.8°. The FTIR confirmed the involvement of various functional groups in the biosynthesis of AgNPs. The PSD and TEM analyses showed spherical, well-distributed nanoparticles with an average size of 20-70 nm. The elemental studies confirmed the existence of pure AgNPs. The bacterial extract containing extracellular enzyme nitrate reductase converted silver nitrate into AgNPs. AgNPs significantly inhibited the growth of pathogenic bacteria such as Streptomyces fradiae (National Collection of Industrial Microorganisms (NCIM) 2419), Staphylococcus aureus (NCIM 2127), Escherichia coli (NCIM 2065), and Serratia marcescens (NCIM 2919). In addition, biosynthesized AgNPs were found to possess strong antioxidant activity. Thus, the results of this study revealed that biosynthesized AgNPs could serve as a lead in the development of nanomedicine.

  7. On the Metal Cofactor in the Tyrosinase Family

    Directory of Open Access Journals (Sweden)

    Francisco Solano

    2018-02-01

    Full Text Available The production of pigment in mammalian melanocytes requires the contribution of at least three melanogenic enzymes, tyrosinase and two other accessory enzymes called the tyrosinase-related proteins (Trp1 and Trp2, which regulate the type and amount of melanin. The last two proteins are paralogues to tyrosinase, and they appeared late in evolution by triplication of the tyrosinase gene. Tyrosinase is a copper-enzyme, and Trp2 is a zinc-enzyme. Trp1 has been more elusive, and the direct identification of its metal cofactor has never been achieved. However, due to its enzymatic activity and similarities with tyrosinase, it has been assumed as a copper-enzyme. Recently, recombinant human tyrosinase and Trp1 have been expressed in enough amounts to achieve for the first time their crystallization. Unexpectedly, it has been found that Trp1 contains a couple of Zn(II at the active site. This review discusses data about the metal cofactor of tyrosinase and Trps. It points out differences in the studied models, and it proposes some possible points accounting for the apparent discrepancies currently appearing. Moreover, some proposals about the possible flexibility of the tyrosinase family to uptake copper or zinc are discussed.

  8. Fermented Broth in Tyrosinase- and Melanogenesis Inhibition

    OpenAIRE

    Chin-Feng Chan; Ching-Cheng Huang; Ming-Yuan Lee; Yung-Sheng Lin

    2014-01-01

    Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed.

  9. Fermented Broth in Tyrosinase- and Melanogenesis Inhibition

    Directory of Open Access Journals (Sweden)

    Chin-Feng Chan

    2014-08-01

    Full Text Available Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed.

  10. In vitro antibacterial, antioxidant and cytotoxic activity of acetone leaf extracts of nine under-investigated Fabaceae tree species leads to potentially useful extracts in animal health and productivity.

    Science.gov (United States)

    Dzoyem, Jean P; McGaw, Lyndy J; Eloff, Jacobus N

    2014-05-05

    The Fabaceae family is the second largest family of medicinal plants, containing more than 490 species which are being used as traditional medicine. The aim of this study was to determine the antioxidant and antibacterial activity as well as the cytotoxicity of acetone leaf extracts of nine tree species from the Fabaceae family that have not been investigated well previously for possible use in animal health and production. The antibacterial activity was determined by a serial microdilution method against three Gram-positive and three Gram-negative bacteria. Antioxidant activity was determined using free-radical scavenging assays. The safety of the extracts was ascertained using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on Vero African green monkey kidney cells. Six of the nine acetone extracts had significant antibacterial activity against at least one of the six bacterial species with (MIC 20-80 μg/mL). The Crotalaria capensis extract had the highest activity against Salmonella typhimurium, followed by Indigofera cylindrica with MICs of 20 μg/mL and 40 μg/mL respectively. The Dalbergia nitidula extract had free radical scavenging capacity (IC50 of 9.31±2.14 μg/mL) close to that of the positive control Trolox in the DPPH assay. The Xylia torreana extract also had high activity (IC50 of 14.56±3.96 μg/mL) in the ABTS assay. There was a good correlation between antioxidant activity and total phenolic content (R2 values>0.8). The extracts had weak or no toxicity to Vero cells, compared to the positive control doxorubicin with the LC50 varying from 10.70±3.47 to 131.98±24.87 μg/mL at the concentrations tested. Extracts of D. nitidula, X. torreana, C. capensis and I. cylindrica had a low cytotoxicity and high antimicrobial and/or antioxidant activity. These species are therefore promising candidates for the development of useful antimicrobial/antioxidant preparations with a low cytotoxicity that may be useful in promoting

  11. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy.

    Science.gov (United States)

    Patra, Jayanta Kumar; Das, Gitishree; Baek, Kwang-Hyun

    2016-08-01

    The biological synthesis of nanoparticles has gained tremendous interest, and plants and plant extracts are preferred over other biological sources for this process because of their rich content of bioactive metabolites. In this study, silver nanoparticles (AgNPs) were produced utilizing the aqueous extract of watermelon rind (WRA), an agricultural waste material under photo exposed condition at room temperature, and tested for their antibacterial, anticandidal and antioxidant activities. The synthesized AgNPs showed surface plasmon resonance at 425nm with an average size of 109.97nm. The morphology and elemental composition was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric and differential thermogravimetric analysis (TG/DTG) confirmed that the bioactive compounds from the WRA extract were involved in the synthesis and capping of AgNPs. X-ray diffraction (XRD) revealed the crystallite nature of the AgNPs. The AgNPs exhibited strong broad spectrum antibacterial activity against five different foodborne bacteria with zones of inhibition 9.12-14.54mm in diameter. When AgNPs were mixed with kanamycin and rifampicin the mixture exhibited strong antibacterial synergistic activity. The AgNPs also exerted strong synergistic anticandidal activity when they were combined with amphotericin b. The AgNPs had high antioxidant activity and reducing power. Overall, the results confirmed the bio-potentials of the synthesized AgNPs using WRA, which could have applications in the biomedical, cosmetic, pharmaceutical, food preservation and packaging industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Tyrosinase Inhibitor Activity of Coumarin-Resveratrol Hybrids

    Directory of Open Access Journals (Sweden)

    Giovanna Delogu

    2009-07-01

    Full Text Available In the present work we report on the contribution of the coumarin moiety to tyrosinase inhibition. Coumarin-resveratrol hybrids 1-8 have been resynthesized to investigate the structure-activity relationships and the IC50 values of these compounds were measured. The results showed that these compounds exhibited tyrosinase inhibitory activity. Compound 3-(3’,4’,5’-trihydroxyphenyl-6,8-dihydroxycoumarin (8is the most potentcompound (0.27 mM, more so than umbelliferone (0.42 mM, used as reference compound. The kinetic studies revealed that compound 8 caused non-competitive tyrosinase inhibition.

  13. Tyrosinase inhibitor activity of coumarin-resveratrol hybrids.

    Science.gov (United States)

    Fais, Antonella; Corda, Marcella; Era, Benedetta; Fadda, M Benedetta; Matos, Maria Joao; Quezada, Elias; Santana, Lourdes; Picciau, Carmen; Podda, Gianni; Delogu, Giovanna

    2009-07-13

    In the present work we report on the contribution of the coumarin moiety to tyrosinase inhibition. Coumarin-resveratrol hybrids 1-8 have been resynthesized to investigate the structure-activity relationships and the IC(50) values of these compounds were measured. The results showed that these compounds exhibited tyrosinase inhibitory activity. Compound 3-(3',4',5'-trihydroxyphenyl)-6,8-dihydroxycoumarin (8)is the most potentcompound (0.27 mM), more so than umbelliferone (0.42 mM), used as reference compound. The kinetic studies revealed that compound 8 caused non-competitive tyrosinase inhibition.

  14. RFLP for TaqI at the human tyrosinase locus

    Energy Technology Data Exchange (ETDEWEB)

    Spritz, R; Strunk, K; Oetting, W; King, R

    1988-10-25

    A 1.4-kb EcoRI-PstI fragment from the mouse tyrosinase cDNA plasmid pTyrs-33 containing virtually the complete coding sequences. TaqI identifies a two-allele polymorphism with fragments of either 2.8 kb or 2.4 kb that contain most of the tyrosinase coding region. Three weak (1.4 kb, 0.9 kb, and 0.6 kb) and two very weak (5.0 and 3.2 kb) constant bands are also seen. The human tyrosinase gene has been regionally mapped to 11q14->21, and a wealy cross-hybridizing tyrosinase-related sequence mapped to 11p11.2->cen. Co-dominant segregation has been shown in two families. The RFLP was observed under normal hybridization and wash conditions.

  15. Tyrosine-like condensed derivatives as tyrosinase inhibitors.

    Science.gov (United States)

    Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Serra, Silvia; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella

    2012-05-01

    We report the pharmacological evaluation of a new series of 3-aminocoumarins differently substituted with hydroxyl groups, which have been synthesized because they include in their structures the tyrosine fragment (tyrosine-like compounds), with the aim of discovering structural features necessary for tyrosinase inhibitory activity. The synthesized compounds 4 and 7-9 were evaluated in vitro as mushroom tyrosinase inhibitors. Two of the described compounds showed lower IC50 (concentration giving 50% inhibition of tyrosinase activity) than umbelliferone, used as a reference compound. Compound 7 (IC50=53µm) was the best tyrosinase inhibitor of this small series, having an IC50 value 10-fold lower than umbelliferone. Compound 7 (3-amino-7-hydroxycoumarin) had amino and hydroxyl groups precisely mimicking the same positions that both groups occupy on the tyrosine molecule. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  16. Kinetics Investigation on Mushroom Tyrosinase Inhibition of Proso Millet

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2018-01-01

    Full Text Available Proso millet (Panicum miliaceum is rich in nutritive components and is widely used as a human food, feed and forage for animals, and fuel. This study investigated the effect of a proso millet extract on the inhibition of tyrosinase, a key enzyme in melanogenesis. High performance liquid chromatography analysis indicated that the proso millet extract contained phenolic tyrosinase inhibitors, such as syringic acid, p-coumaric acid, and ferulic acid. The extract had an IC50 for inhibition of tyrosinase activity of 14.02 mg/mL. A Lineweaver-Burk double reciprocal plot showed that the proso millet extract functioned as a mixed competitive and noncompetitive inhibitor. Proso millet has potential as a tyrosinase inhibitor that may have applications in the cosmetics industry.

  17. Identifying 8-hydroxynaringenin as a suicide substrate of mushroom tyrosinase.

    Science.gov (United States)

    Chang, Te-Sheng; Lin, Meng-Yi; Lin, Hsuan-Jung

    2010-01-01

    A biotransformed metabolite of naringenin was isolated from the fermentation broth of Aspergillus oryzae, fed with naringenin, and identified as 8-hydroxynaringenin based on the mass and (1)H- and (13)C-NMR spectral data. The compound showed characteristics of both an irreversible inhibitor and a substrate of mushroom tyrosinase in preincubation and HPLC analysis. These results demonstrate that 8-hydroxynaringenin belongs to a suicide substrate of mushroom tyrosinase. The partition ratio between the compound's molecules in the formation of product and in the inactivation of the enzyme was determined to be 283 +/- 21. The present study's results, together with our previous findings, which proved that both 8-hydroxydaidzein and 8-hydroxygenistein are suicide substrates of mushroom tyrosinase, show that 7,8,4'-trihydroxyl functional groups on flavonoids' skeletons play important roles in producing suicide substrate properties toward mushroom tyrosinase.

  18. Antibacterial textiles

    NARCIS (Netherlands)

    Amrit, Usha

    2015-01-01

    The aim of this thesis was the antibacterial functionalization of textiles and its application in professional laundries. The antibacterial functionalization was meant for the various textile packages lent out by the laundry companies to their customers from hotels, hospital or food industries. The

  19. Two Ganoderma species: profiling of phenolic compounds by HPLC-DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer's disease and skin disorders.

    Science.gov (United States)

    Zengin, Gokhan; Sarikurkcu, Cengiz; Gunes, Erdogan; Uysal, Ahmet; Ceylan, Ramazan; Uysal, Sengul; Gungor, Halil; Aktumsek, Abdurrahman

    2015-08-01

    This work reports the antioxidant, antimicrobial, and inhibitory effects of methanol and water extracts from Ganoderma applanatum (GAM: methanol extract and GAW: water extract) and G. resinaceum (GRM: methanol extract and GRW: water extract) against cholinesterase, tyrosinase, α-amylase and α-glucosidase. The total phenolics, flavonoids contents, and HPLC profile of phenolic components present in the extracts, were also determined. Antioxidant activities were investigated by using different assays, including DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating assays. Antimicrobial activity of the tested Ganoderma extracts was also studied by the broth microdilution method. Generally, the highest antioxidant (59.24 mg TEs per g extract for DPPH, 41.32 mg TEs per g extract for ABTS, 41.35 mg TEs per g extract for CUPRAC, 49.68 mg TEs per g extract for FRAP, 130.57 mg AAEs per g extract for phosphomolybdenum and 26.92 mg EDTAEs per g extract) and enzyme inhibitory effects (1.47 mg GALAEs per g extract for AChE, 1.51 mg GALAEs per g extract for BChE, 13.40 mg KAEs per g extract for tyrosinase, 1.13 mmol ACEs per g extract for α-amylase and 2.20 mmol ACEs per g extract for α-glucosidase) were observed in GRM, which had the highest concentrations of phenolics (37.32 mg GAEs g(-1) extract). Again, Ganoderma extracts possess weak antibacterial and antifungal activities. Apigenin and protocatechuic acid were determined as the main components in GRM (1761 μg per g extract) and GAM (165 μg per g extract), respectively. The results suggest that the Ganoderma species may be considered as a candidate for preparing new food supplements and can represent a good model for the development of new drug formulations.

  20. Crystal structure, DNA binding, cleavage, antioxidant and antibacterial studies of Cu(II), Ni(II) and Co(III) complexes with 2-((furan-2-yl)methylimino)methyl)-6-ethoxyphenol Schiff base

    Science.gov (United States)

    Venkateswarlu, Kadtala; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Daravath, Sreenu; Rangan, Krishnan; Shivaraj

    2018-05-01

    Three novel binary metal complexes; 1 [Cu(L)2], 2 [Ni(L)2] and 3 [Co(L)3] where, L (2-(((furan-2-yl) methylimino)methyl)-6-ethoxyphenol, C14H15NO3), were synthesized and characterized by various spectral techniques. Based on spectral studies square planar geometry is assigned for Cu(II) and Ni(II) complexes, whereas Co(III) owned octahedral geometry. Ligand, [Cu(L)2] and [Ni(L)2] are crystallized and found to be monoclinic crystal systems. CT-DNA absorption binding studies revealed that the complexes show good binding propensity (Kb = 5.02 × 103 M-1, 2.77 × 103 M-1, 1.63 × 104 M-1 for 1, 2 and 3 respectively). The role of these complexes in the oxidative and photolytic cleavage of supercoiled pBR322 DNA was studied and found that the complexes cleave the pBR322 DNA effectively. The catalytic ability of 1, 2 and 3 follows the order: 3 > 1 >2. Antioxidant studies of the new complexes revealed that they exhibit significant antioxidant activity against DPPH radical. The Schiff base and its metal complexes have been screened for antibacterial studies by Minimum Inhibitory Concentration method. It is observed that all metal complexes showed more activity than free ligand.

  1. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase.

    Directory of Open Access Journals (Sweden)

    Małgorzata Cieńska

    Full Text Available Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA by immobilized tyrosinase in the presence of ascorbic acid (AH2, which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native to 30% (immobilized enzyme. To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme and 70% (immobilized. A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity.

  2. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase

    Science.gov (United States)

    Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity. PMID:27711193

  3. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase.

    Science.gov (United States)

    Cieńska, Małgorzata; Labus, Karolina; Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity.

  4. Data in support of covalent attachment of tyrosinase onto cyanuric chloride crosslinked magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Kourosh Abdollahi

    2016-12-01

    Full Text Available Preparation and characterization of cross linked amine-functionalized magnetic nanoparticles as an appropriate support for covalent immobilization on tyrosinase was presented in the study "Covalent immobilization of tyrosinase onto cyanuric chloride crosslinked amine-functionalized superparamagnetic nanoparticles: synthesis and characterization of the recyclable nanobiocatalyst" (Abdollahi et al., 2016 [1]. Herein, complementary data regarding X-ray powder diffraction (XRD to characterize the synthesized magnetic nanoparticles, and transmission electron microscopy (TEM to determine the size and morphology of tyrosinase immobilized magnetic nanoparticles (tyrosinase-MNPs were reported. The purification results of the extracted tyrosinase from mushroom Agaricus bisporus were provided in a purification table. The covalent immobilization of tyrosinase onto cyanuric chloride functionalized magnetic nanoparticles was proved by performing thermo-gravimetric and energy-dispersive X-ray spectroscopy analyses. The operational stability of immobilized tyrosinase was investigated by incubating tyrosinase-MNPs at different pH and temperatures.

  5. Plants from Brazilian Cerrado with potent tyrosinase inhibitory activity.

    Directory of Open Access Journals (Sweden)

    Paula Monteiro Souza

    Full Text Available The increased amount of melanin leads to skin disorders such as age spots, freckles, melasma and malignant melanoma. Tyrosinase is known to be the key enzyme in melanin production. Plants and their extracts are inexpensive and rich resources of active compounds that can be utilized to inhibit tyrosinase as well as can be used for the treatment of dermatological disorders associated with melanin hyperpigmentation. Using in vitro tyrosinase inhibitory activity assay, extracts from 13 plant species from Brazilian Cerrado were evaluated. The results showed that Pouteria torta and Eugenia dysenterica extracts presented potent in vitro tyrosinase inhibition compared to positive control kojic acid. Ethanol extract of Eugenia dysenterica leaves showed significant (p<0.05 tyrosinase inhibitory activity exhibiting the IC₅₀ value of 11.88 µg/mL, compared to kojic acid (IC₅₀ value of 13.14 µg/mL. Pouteria torta aqueous extract leaves also showed significant inhibitory activity with IC₅₀ value of 30.01 µg/mL. These results indicate that Pouteria torta and Eugenia dysenterica extracts and their isolated constituents are promising agents for skin-whitening or antimelanogenesis formulations.

  6. Codon Usage Patterns of Tyrosinase Genes in Clonorchis sinensis.

    Science.gov (United States)

    Bae, Young-An

    2017-04-01

    Codon usage bias (CUB) is a unique property of genomes and has contributed to the better understanding of the molecular features and the evolution processes of particular gene. In this study, genetic indices associated with CUB, including relative synonymous codon usage and effective numbers of codons, as well as the nucleotide composition, were investigated in the Clonorchis sinensis tyrosinase genes and their platyhelminth orthologs, which play an important role in the eggshell formation. The relative synonymous codon usage patterns substantially differed among tyrosinase genes examined. In a neutrality analysis, the correlation between GC 12 and GC 3 was statistically significant, and the regression line had a relatively gradual slope (0.218). NC-plot, i.e., GC 3 vs effective number of codons (ENC), showed that most of the tyrosinase genes were below the expected curve. The codon adaptation index (CAI) values of the platyhelminth tyrosinases had a narrow distribution between 0.685/0.714 and 0.797/0.837, and were negatively correlated with their ENC. Taken together, these results suggested that CUB in the tyrosinase genes seemed to be basically governed by selection pressures rather than mutational bias, although the latter factor provided an additional force in shaping CUB of the C. sinensis and Opisthorchis viverrini genes. It was also apparent that the equilibrium point between selection pressure and mutational bias is much more inclined to selection pressure in highly expressed C. sinensis genes, than in poorly expressed genes.

  7. Purification and Characterization of Melanogenic Enzyme Tyrosinase from Button Mushroom

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2014-01-01

    Full Text Available Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme, tyrosinase, catalyzes the first and only rate-limiting steps in melanogenesis. Since the discovery of its melanogenic properties, tyrosinase has been in prime focus and microbial sources of the enzyme are sought. Agaricus bisporus widely known as the common edible mushroom, it’s taking place in high amounts of proteins, enzyme, carbohydrates, fibers, and low fat contents are frequently cited in the literature in relation to their nutritional value. In the present study tyrosinase from Agaricus bisporus was purified by ammonium sulphate precipitation, dialysis followed by gel filtration chromatography on Sephadex G-100, and ion exchange chromatography on DEAE-Cellulose; the enzyme was purified, 16.36-fold to give 26.6% yield on total activity in the crude extract and final specific activity of 52.19 U/mg. The SDS-PAGE electrophoresis showed a migrating protein band molecular weight of 95 kDa. The purified tyrosinase was optimized and the results revealed that the optimum values are pH 7.0 and temperature 35°C. The highest activity was reported towards its natural substrate, L-DOPA, with an apparent Km value of 0.933 mM. This indicated that tyrosinase purified from Agaricus bisporus is a potential source for medical applications.

  8. Óleos essenciais de Cymbopogon nardus, Cinnamomum zeylanicum e Zingiber officinale: composição, atividades antioxidante e antibacteriana Essential oils of Cinnamomum zeylanicum, Cymbopogon nardus and Zingiber officinale: composition, antioxidant and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Milene Aparecida Andrade

    2012-06-01

    Full Text Available Objetivou-se neste estudo caracterizar quimicamente e avaliar as atividades antioxidante e antibacteriana dos óleos essenciais de citronela (Cymbopogon nardus, canela (Cinnamomum zeylanicum e gengibre (Zingiber officinale. A obtenção do óleo essencial foi realizada utilizando a técnica de hidrodestilação por meio do aparelho de Clevenger modificado e a identificação e quantificação dos constituintes pelas análises em CG/EM e CG-DIC. A avaliação da atividade antibacteriana foi realizada por meio da técnica difusão cavidade em ágar, utilizando os microrganismos Staphylococcus aureus ATCC 6538, Listeria monocytogenes ATCC 19117, Escherichia coli ATCC 11229, Salmonella Cholerasuis ATCC 6539 e Pseudomonas aeruginosa ATCC 15442. A atividade antioxidante foi avaliada utilizando sistema β-caroteno/ácido linoléico e o método de seqüestro de radicais DPPH. Nas análises cromatográficas, os constituintes majoritários encontrados no óleo essencial de C. nardus foram citronelal (47,12%, geraniol (18,56% e citronelol (11,07%, no óleo essencial de C. zeylanicum foram identificados (E- cinamaldeído (77,72%, acetato de (E-cinamila (5,99% e o monoterpenóide 1,8-cineol (4,66% e, para Z. officinale os majoritários foram geranial (25,06%, neral (16,47%, 1,8-cineol (10,98%, geraniol (8,51%, acetato de geranila (4,19% e o canfeno (4,30%. Os óleos essenciais apresentaram atividade antibacteriana tanto para bactérias Gram-negativas como para bactérias Gram-positivas, sendo que o óleo essencial de C. zeylanicum foi o mais eficiente. A atividade antioxidante foi evidenciada pelo teste β-caroteno/ácido linoléico, respectivamente, para C. nardus, seguido de Z. officinale e C. zeylanicum, e pelo teste do DPPH foi observada apenas para C. nardus.The aims of this study were to chemically characterize and to evaluate the antioxidant and antibacterial activities of the citronella (Cymbopogon nardus, cinnamon (Cinnamomum zeylanicum and ginger

  9. Inhibitory Effects of Resveratrol Analogs on Mushroom Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Nádia Rezende Barbosa Raposo

    2012-10-01

    Full Text Available Skin pigmentation disorders typically involve an overproduction or uneven distribution of melanin, which results in skin spots. Resveratrol can inhibit tyrosinase, the active enzyme in the synthesis of melanin, but it does not inhibit the synthesis of melanin to an extent that enables its use alone as a skin whitening agent in pharmaceutical formulations, so its use as a coadjuvant in treatment of hyperpigmentation is suggested. Six resveratrol analogs were tested for tyrosinase inhibitory activity in vitro. Among the analogs tested, compound D was the most powerful tyrosinase inhibitor (IC50 = 28.66 µg/mL, two times more active than resveratrol (IC50 = 57.05 µg/mL, followed by the analogs A, E, B, F and C, respectively. This demonstrated that the hydroxylation at C4' on the phenolic ring was the molecular modification with most importance for the observed activity.

  10. In vitro antibacterial and free radical scavenging activity of green hull of Juglans regia

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma

    2013-08-01

    Full Text Available Antioxidant supplements from plants are vital to count the oxidative damage in cells. We assessed the antioxidants and antibacterial activity of green hull of Juglans regia in this study. According to our results the maximum antibacterial activity was observed in ethanolic extract when compared to other extract. So, the ethanolic extract was studied for antioxidant activity which exhibited high antiradical activity against DPPH, hydroxyl, and nitric oxide radicals. In conclusion, green hull of J. regia showed strong reducing power activity and total antioxidant capacity. The results justify the therapeutic application of plant in the indigenous system of medicine. Keywords: Juglans regia, Ethanolic extract, Antioxidants, DPPH, Antibacterial activity

  11. Tyrosinase inhibitors from the wood of Artocarpus heterophyllus.

    Science.gov (United States)

    Nguyen, Nhan Trung; Nguyen, Mai Ha Khoa; Nguyen, Hai Xuan; Bui, Ngan Kim Nguyen; Nguyen, Mai Thanh Thi

    2012-11-26

    From the methanolic-soluble extract of the wood of Artocarpus heterophyllus, four new flavones, artocarmins A-D (1-4), and three new chalcones, artocarmitins A-C (5-7), have been isolated together with 13 known compounds. Their structures were determined on the basis of the spectroscopic data. Compounds 1-4, 6, 7, 9-16, and 20 displayed significant tyrosinase inhibitory activity. The most active compound, morachalcone A (12) (IC50, 0.013 μM), was 3000 times more active as a tyrosinase inhibitor than a positive control, kojic acid (IC50, 44.6 μM).

  12. Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Munoz, Jose Luis [GENZ - Grupo de Investigacion Enzimologia, Departamento de Bioquimica y Biologia Molecular-A, Facultad de Biologia, Campus Internacional de Excelencia Campus Mare Nostrum, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Berna, Jose [Grupo de Quimica Organica Sintetica, Departamento de Quimica Organica, Facultad de Quimica Campus Internacional de Excelencia Campus Mare Nostrum, Universidad de Murcia (Spain); Garcia-Molina, Maria del Mar; Garcia-Molina, Francisco [GENZ - Grupo de Investigacion Enzimologia, Departamento de Bioquimica y Biologia Molecular-A, Facultad de Biologia, Campus Internacional de Excelencia Campus Mare Nostrum, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Garcia-Ruiz, Pedro Antonio [QCPAI - Grupo de Quimica de Carbohidratos, Polimeros y Aditivos Industriales, Departamento de Quimica Organica, Facultad de Quimica Campus Internacional de Excelencia Campus Mare Nostrum, Universidad de Murcia (Spain); Varon, Ramon [Departamento de Quimica-Fisica, Escuela de Ingenieros Industriales de Albacete, Universidad de Castilla la Mancha, Avda. Espana s/n. Campus Universitario, E-02071 Albacete (Spain); and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer The action the copper complexes and tyrosinase on phenols is equivalent. Black-Right-Pointing-Pointer Isotope effect showed that nucleophilic attack to copper atom may be the slower step. Black-Right-Pointing-Pointer The value of {rho} (Hammett constant) supports an electrophilic aromatic substitution. Black-Right-Pointing-Pointer Data obtained in steady state pH 7 conditions support the mechanism of Scheme 1SM. -- Abstract: A study of the monophenolase activity of tyrosinase by measuring the steady state rate with a group of p-substituted monophenols provides the following kinetic information: k{sub cat}{sup m} and the Michaelis constant, K{sub M}{sup m}. Analysis of these data taking into account chemical shifts of the carbon atom supporting the hydroxyl group ({delta}) and {sigma}{sub p}{sup +}, enables a mechanism to be proposed for the transformation of monophenols into o-diphenols, in which the first step is a nucleophilic attack on the copper atom on the form E{sub ox} (attack of the oxygen of the hydroxyl group of C-1 on the copper atom) followed by an electrophilic attack (attack of the hydroperoxide group on the ortho position with respect to the hydroxyl group of the benzene ring, electrophilic aromatic substitution with a reaction constant {rho} of -1.75). These steps show the same dependency on the electronic effect of the substituent groups in C-4. Furthermore, a study of a solvent deuterium isotope effect on the oxidation of monophenols by tyrosinase points to an appreciable isotopic effect. In a proton inventory study with a series of p-substituted phenols, the representation of k{sub cat}{sup f{sub n}}/k{sub cat}{sup f{sub 0}} against n (atom fractions of deuterium), where k{sub cat}{sup f{sub n}} is the catalytic constant for a molar fraction of deuterium (n) and k{sub cat}{sup f{sub 0}} is the corresponding kinetic parameter in a water solution, was linear for all substrates. These results indicate that

  13. Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity

    International Nuclear Information System (INIS)

    Muñoz-Muñoz, Jose Luis; Berna, Jose; García-Molina, María del Mar; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon

    2012-01-01

    Highlights: ► The action the copper complexes and tyrosinase on phenols is equivalent. ► Isotope effect showed that nucleophilic attack to copper atom may be the slower step. ► The value of ρ (Hammett constant) supports an electrophilic aromatic substitution. ► Data obtained in steady state pH 7 conditions support the mechanism of Scheme 1SM. -- Abstract: A study of the monophenolase activity of tyrosinase by measuring the steady state rate with a group of p-substituted monophenols provides the following kinetic information: k cat m and the Michaelis constant, K M m . Analysis of these data taking into account chemical shifts of the carbon atom supporting the hydroxyl group (δ) and σ p + , enables a mechanism to be proposed for the transformation of monophenols into o-diphenols, in which the first step is a nucleophilic attack on the copper atom on the form E ox (attack of the oxygen of the hydroxyl group of C-1 on the copper atom) followed by an electrophilic attack (attack of the hydroperoxide group on the ortho position with respect to the hydroxyl group of the benzene ring, electrophilic aromatic substitution with a reaction constant ρ of −1.75). These steps show the same dependency on the electronic effect of the substituent groups in C-4. Furthermore, a study of a solvent deuterium isotope effect on the oxidation of monophenols by tyrosinase points to an appreciable isotopic effect. In a proton inventory study with a series of p-substituted phenols, the representation of k cat f n /k cat f 0 against n (atom fractions of deuterium), where k cat f n is the catalytic constant for a molar fraction of deuterium (n) and k cat f 0 is the corresponding kinetic parameter in a water solution, was linear for all substrates. These results indicate that only one of the proton transfer processes from the hydroxyl groups involved the catalytic cycle is responsible for the isotope effects. We suggest that this step is the proton transfer from the hydroxyl group

  14. Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm (Melissa offi cinalis L.) Tea with Symbiotic Consortium of Bacteria and Yeasts

    OpenAIRE

    Dragoljub D. Cvetković; Siniša L. Markov; Vesna T. Tumbas Šaponjac; Jelena J. Vulić; Aleksandra S. Velićanski

    2014-01-01

    Kombucha is a fermented tea beverage which is traditionally prepared by fermenting sweetened black or green tea (Camellia sinensis L.) with symbiotic consortium of bacteria and yeasts (SCOBY). In this study, lemon balm (Melissa offi cinalis L.) was used as the only nitrogen source for kombucha fermentation. During the seven-day fermentation process, pH value, titratable acidity (TA), total phenolic content, phenolic compounds, and antioxidant activity against hydroxyl (˙OH) and 1,1-diphenyl-2...

  15. Tyrosinase expression in malignant melanoma, desmoplastic melanoma, and peripheral nerve tumors

    DEFF Research Database (Denmark)

    Boyle, Jenny L; Haupt, Helen M; Stern, Jere B

    2002-01-01

    of tyrosinase expression in the differential diagnosis of melanoma, desmoplastic melanoma, and peripheral nerve sheath tumors. DESIGN: Immunoreactivity for tyrosinase, HMB-45 (anti-gp100 protein), S100 protein, CD34, and vimentin was studied in 70 tumors, including 15 melanomas (5 desmoplastic, 4 amelanotic, 6...... at 121 degrees C. RESULTS: All melanomas demonstrated positive immunostaining for tyrosinase, HMB-45, and S100 protein. Immunoreactivity for HMB-45 was generally stronger than that for tyrosinase in amelanotic lesions and significantly stronger in 1 of the desmoplastic lesions. The 4 pigmented...... neurofibromas were focally positive for tyrosinase, but did not stain for HMB-45. The pigmented schwannoma was focally positive for both tyrosinase and HMB-45. The malignant peripheral nerve sheath tumors, dermatofibrosarcoma protuberans, and dermatofibromas were nonreactive for tyrosinase and HMB-45...

  16. Antibacterial and Antioxidant Activities of Essential Oils from Artemisia herba-alba Asso., Pelargonium capitatum × radens and Laurus nobilis L.

    Science.gov (United States)

    Rafiq, Ragina; Hayek, Saeed A.; Anyanwu, Ugochukwu; Hardy, Bonita I.; Giddings, Valerie L.; Ibrahim, Salam A.; Tahergorabi, Reza; Kang, Hye Won

    2016-01-01

    Essential oils are natural antimicrobials that have the potential to provide a safer alternative to synthetic antimicrobials currently used in the food industry. Therefore, the aim of this study was to evaluate the antimicrobial and antioxidant activities of essential oils from white wormwood, rose-scented geranium and bay laurel against Salmonella typhimurium and Escherichia coli O157:H7 on fresh produce and to examine consumer acceptability of fresh produce treated with these essential oils. Our results showed that essential oil derived from rose-scented geranium exhibited the most effective antimicrobial activity at the same and similar minimum inhibition concentration levels (0.4%, v/v and 0.4% and 0.5%, v/v) respectively against Salmonella typhimurium and Escherichia coli O157:H7. All three essential oils showed antioxidant properties, with the highest activity occurring in bay laurel essential oil. In a sensory test, tomatoes, cantaloupe and spinach sprayed with 0.4% rose-scented geranium essential oil received higher scores by panelists. In conclusion, rose-scented geranium essential oil could be developed into a natural antimicrobial to prevent contamination of Salmonella typhimurium and Escherichia coli O157:H7 in fresh produce, plus this oil would provide additional health benefits due to the antioxidant properties of its residue. PMID:28231123

  17. Inhibition of melanogenesis and antioxidant properties of Magnolia grandiflora L. flower extract

    Directory of Open Access Journals (Sweden)

    Huang Huey-Chun

    2012-06-01

    Full Text Available Abstract Background Magnolia grandiflora L. flower is wildly used in Asian as a traditional herbal medication. The purpose of the study was to investigate the antimelanogenic and antioxidant properties of Magnolia grandiflora L. flower extract. In the study, the inhibitory effects of M. grandiflora L. flower extract on mushroom tyrosinase, B16F10 intracellular tyrosinase activity and melanin content were determined spectrophotometrically. Meanwhile, the antioxidative capacity of the flower extract was also investigated. Results Our results revealed that M. grandiflora L. flower extract inhibit mushroom tyrosinase activity (IC50 =11.1%; v/v, the flower extract also effectively suppressed intracellular tyrosinase activity (IC50 = 13.6%; v/v and decreased the amount of melanin (IC50 = 25.6%; v/v in a dose-dependent manner in B16F10 cells. Protein expression level of tyrosinase and tyrosinase-related protein 1 (TRP-1 were also decreased by the flower extract. Additionally, antioxidant capacities such as ABTS+ free radical scavenging activity, reducing capacity and total phenolic content of the flower extract were increased in a dose-dependent pattern. Conclusions Our results concluded that M. grandiflora L. flower extract decreased the expression of tyrosinase and TRP-1, and then inhibited melanogenesis in B16F10 cells. The flower extract also show antioxidant capacities and depleted cellular reactive oxygen species (ROS. Hence, M. grandiflora L. flower extract could be applied as a type of dermatological whitening agent in skin care products.

  18. Fatty acid profile and in vitro antioxidant and antibacterial activities of red grape (Vitis vinifera L. cvs. Oküzgözü and Boğazkere) Marc extracts.

    Science.gov (United States)

    Cibik, Bilge; Ozaydin, Zuhal; Böke, Nazli; Karabay, Ulkü; Pekmez, Murat; Arda, Nazhi; Kirmizigüla, Süheyla

    2009-03-01

    The marcs of two red grape (V. vinifera L.) varieties (Boğazkere and Oküzgözü), grown in eastern Anatolia (Elazig), were evaluated for their fatty acid composition, and antioxidant and antibacterial activities. The hexane extracts of both varieties were found to contain linoleic, palmitic, stearic and oleic acids by GC-MS analyses. The major fatty acid (linoleic acid) was detected relatively as 57.13% in Oküzgözü and 59.07% in Bogazkere in methylated hexane extracts. In addition, myristic and palmitoleic acids were observed in Boğazkere as minor components. The free radical (DPPH) scavenging activity of Oküzgözü was higher than that of Bogazkere. The IC50 values were calculated as 403.0 +/- 7.8 microg/mL for Oküzgozü and 552.0 +/- 23.6 microg/mL for Bogazkere. The extracts were found to be effective on the four gram (+) and four gram (-) test bacteria, but not as good as standard antibiotic, gentamycine by MIC method.

  19. A Novel Photoelectrochemical Biosensor for Tyrosinase and Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Jiexia Chen

    2016-01-01

    Full Text Available A novel photoelectrochemical biosensor for step-by-step assay of tyrosinase and thrombin was fabricated based on the specific interactions between the designed peptide and the target enzymes. A peptide chain with a special sequence which contains a positively charged lysine-labeled terminal, tyrosine at the other end and a cleavage site recognized by thrombin between them was designed. The designed peptide can be fixed on surface of the CdTe quantum dots (QDs-modified indium-tin oxide (ITO electrode through electrostatic attraction to construct the photoelectrochemical biosensor. The tyrosinase target can catalyze the oxidization of tyrosine by oxygen into ortho-benzoquinone residues, which results in a decrease in the sensor photocurrent. Subsequently, the cleavage site could be recognized and cut off by another thrombin target, restoring the sensor photocurrent. The decrease or increase of photocurrent in the sensor enables us to assay tyrosinase and thrombin. Thus, the detection of tyrosinase and thrombin can be achieved in the linear range from 2.6 to 32 μg/mL and from 4.5 to 100 μg/mL with detection limits of 1.5 μg/mL and 1.9 μg/mL, respectively. Most importantly, this strategy shall allow us to detect different classes of enzymes simultaneously by designing various enzyme-specific peptide substrates.

  20. Preparation of tyrosinase inhibitors and antibrowning agents using green technology.

    Science.gov (United States)

    Dong, Xue; Zhang, Yinan; He, Jia-Liang; Zhang, Shuang; Zeng, Mao-Mao; Chen, Jie; Zheng, Zong-Ping

    2016-04-15

    Chalcones and their derivatives have attracted great interests in recent years for their comprehensive biological activities. In this study, 2,4,2',4'-tetrahydroxychalcone and its two derivatives, 1,3,5-tris-(2,4-dihydroxy-phenyl)pentane-1,5-dione (new compound) and 7,2',4'-trihydroxyflavanone, were synthesized through one-pot green procedure catalyzed by boric acid in polyethylene glycol 400. Their structures were identified by ESI-MS and NMR spectral. Tyrosinase inhibitory activity and antibrowning test results showed that compounds 1-3 exhibited strong tyrosinase inhibitory activities and significant antibrowning effects on the fresh-cut lotus root slices at room temperature in 48 h. Among them, 0.01% 1,3,5-tris-(2,4-dihydroxy-phenyl)pentane-1,5-dione combined with 0.5% VC showed the best antibrowning ability. In brief, this study offers a protocol for one-pot green synthesis of high efficiency tyrosinase inhibitors which may be suitable as antibrowning agents for fresh-cut vegetables. More important, this study developed a new type of 1,5-dione derivative which may serve as new lead structures for novel tyrosinase inhibitors discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Structure and activity studies of tyrosinases and related proteins

    NARCIS (Netherlands)

    Lai, Xuelei

    2017-01-01

    The copper-containing enzyme tyrosinase catalyzes the conversion of tyrosine into DOPAquinone, which is the precursor of melanin in almost all organisms. In humans, melanin is an essential pigment that protects the skin and eyes against the UV radiation from the sun. Mutations in the genes of the

  2. A Novel Photoelectrochemical Biosensor for Tyrosinase and Thrombin Detection

    Science.gov (United States)

    Chen, Jiexia; Liu, Yifan; Zhao, Guang-Chao

    2016-01-01

    A novel photoelectrochemical biosensor for step-by-step assay of tyrosinase and thrombin was fabricated based on the specific interactions between the designed peptide and the target enzymes. A peptide chain with a special sequence which contains a positively charged lysine-labeled terminal, tyrosine at the other end and a cleavage site recognized by thrombin between them was designed. The designed peptide can be fixed on surface of the CdTe quantum dots (QDs)-modified indium-tin oxide (ITO) electrode through electrostatic attraction to construct the photoelectrochemical biosensor. The tyrosinase target can catalyze the oxidization of tyrosine by oxygen into ortho-benzoquinone residues, which results in a decrease in the sensor photocurrent. Subsequently, the cleavage site could be recognized and cut off by another thrombin target, restoring the sensor photocurrent. The decrease or increase of photocurrent in the sensor enables us to assay tyrosinase and thrombin. Thus, the detection of tyrosinase and thrombin can be achieved in the linear range from 2.6 to 32 μg/mL and from 4.5 to 100 μg/mL with detection limits of 1.5 μg/mL and 1.9 μg/mL, respectively. Most importantly, this strategy shall allow us to detect different classes of enzymes simultaneously by designing various enzyme-specific peptide substrates. PMID:26805846

  3. Detection of Misdistribution of Tyrosinase from Melanosomes to Lysosomes and Its Upregulation under Psoralen/Ultraviolet A with a Melanosome-Targeting Tyrosinase Fluorescent Probe.

    Science.gov (United States)

    Zhou, Jin; Shi, Wen; Li, Lihong; Gong, Qiuyu; Wu, Xiaofeng; Li, Xiaohua; Ma, Huimin

    2016-04-19

    Tyrosinase is regarded as an important biomarker of melanoma cancer, and its metabolism is closely related to some severe skin diseases such as vitiligo. Since tyrosinase is mainly located in the melanosomes of melanocytes, a probe that can specifically detect and image tysosinase in melanosomes would be in urgent demand to study the behavior of the enzyme in cells, but unfortunately, no melanosome-targeting tyrosinase fluorescent probe has been reported so far to the best of our knowledge. In this work, we have developed such a new probe, Mela-TYR, which bears morpholine as a melanosome-targeting group and 4-aminophenol as a tyrosinase reaction group. The probe exhibits not only a highly sensitive and selective off-on response to tyrosinase via oxidization cleavage, but also an accurate targeting ability toward the acidic organelles of melanosomes and lyososomes, which is validated by colocalization experiments with mCherry-tagged melanosomes as well as DND-99 (a commercial dye). The probe has been used to image the relative contents of tyrosinase in different cells. Notably, because of the tyrosinase deficiency in normal lysosomes, the probe only fluoresces in melanosomes in principle although it can accumulate in other acidic organelles like lysosomes. By virtue of this property, the misdistribution of tyrosinase from melanosomes to lysosomes in murine melanoma B16 cells under the stimulation of inulavosin is imaged in real time for the first time. Moreover, the upregulation of melanosomal tyrosinase in live B16 cells under the stimulation of psoralen/ultraviolet A is detected with our probe, and this upregulation is further verified by standard colorimetric assay. The probe provides a simple, visual method to study the metabolism of tyrosinase in cells and shows great potential in clinical diagnosis and treatments of tyrosinase-associated diseases.

  4. Phenolic tyrosinase inhibitors from the stems of Cudrania cochinchinensis.

    Science.gov (United States)

    Zheng, Zong-Ping; Zhu, Qin; Fan, Chun-Lin; Tan, Hui-Yuan; Wang, Mingfu

    2011-05-01

    The phytochemcal profiles of Cudrania cochinchinensis leaf, twig, stem and root were compared by HPLC analysis. It was found that C. cochinchinensis stem extract contained some unknown natural products with potential tyrosinase inhibitory activities. Therefore, the chemical constitutes in extract (95% ethanol) of C. cochinchinensis stem were further investigated in this study. A new racemic mixture, (±)2,3-cis-dihydromorin, and fifteen known phenolic compounds, dihydrokaempferol 7-O-β-d-qlucopyranoside, skimmin, quercetin-7-O-β-d-glucoside, 2,3-dihydroquercetin 7-O-β-d-glucoside, kaempferol-7-O-β-glucopyranoside, quercetin-3,7-di-O-β-d-glucoside, morin-7-O-β-d-glucoside, 1,3,5,8-tetrahydroxyxanthen-9-one, 2,3-trans-dihydromorin, aromadendrin, oxyresveratrol, genistin, protocatechuic acid, kaempferol 3,7-di-O-β-glucopyranoside, and naringenin were isolated. Spectral techniques (MS, (1)H NMR and (13)C NMR) were utilized for their structural identification and their inhibitory activities on mushroom tyrosinase were also evaluated. The results showed that tyrosinase inhibitory activities of (±)2,3-cis-dihydromorin (IC(50) = 31.1 μM), 2,3-trans-dihydromorin (IC(50) = 21.1 μM), and oxyresveratrol (IC(50) = 2.33 μM), were more potent than that of kojic acid (IC(50) = 50.8 μM), a well-known tyrosinase inhibitor, indicating that Cudrania cochinchinensis stem will be a great potential agent for the development of effective natural tyrosinase inhibitors.

  5. The Composition, Antioxidant and Antibacterial Activities of Cold-Pressed and Distilled Essential Oils of Citrus paradisi and Citrus grandis (L. Osbeck

    Directory of Open Access Journals (Sweden)

    Ming-Chiu Ou

    2015-01-01

    Full Text Available The chemical composition and functional activities of cold-pressed and water distilled peel essential oils of Citrus paradisi (C. paradisi and Citrus grandis (L. Osbeck (C. grandis were investigated in present study. Yields of cold-pressed oils were much higher than those of distilled oils. Limonene was the primary ingredient of essential oils of C. paradisi (cold 92.83%; distilled 96.06% and C. grandis (cold 32.63%; distilled 55.74%. In addition, C. grandis oils obtained were rich in oxygenated or nitrogenated compounds which may be involved in reducing cardiovascular diseases or enhancing sleep effectiveness. The order of free radical scavenging activities of 4 citrus oils was distilled C. paradisi oil > cold-pressed C. paradisi oil > distilled C. grandis oil > cold-pressed C. grandis oil. Cold-pressed C. grandis oil exhibited the lowest activity in all antioxidative assays. The order of antimicrobial activities of 4 citrus oils was distilled C. grandis oil, cold-pressed C. paradisi oil > distilled C. paradisi oil > cold-pressed C. paradisi oil. Surprisingly, distilled C. grandis oil exhibited better antimicrobial activities than distilled C. paradisi oil, especially against Escherichia coli and Salmonella enterica subsp. The results also indicated that the antimicrobial activities of essential oils may not relate to their antioxidative activities.

  6. Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties.

    Science.gov (United States)

    Saravanakumar, Arthanari; Peng, Mei Mei; Ganesh, Mani; Jayaprakash, Jayabalan; Mohankumar, Murugan; Jang, Hyun Tae

    2017-09-01

    Low cost and eco-friendly green synthesis of silver nanoparticles (AgNPs) from silver nitrate (AgNO 3 ) using Prunus japonica leaves extract as reducing agent by a simple method at room temperature. The biosynthesized nanoparticles (NPs) were characterized by UV-Vis, tunneling electron microscopy (HR-TEM), scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectrophotometer (EDAX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). In UV-Vis spectroscopy results, the λ max was observed at 441 nm. The AgNPs synthesized were spherical, hexagonal, and irregular in shapes. The EDAX and XRD spectrum confirmed the presence of silver ions and crystalline nature of synthesized AgNPs. FTIR showed the functional groups such as C = O, N-H and C-N groups involved in the reduction of Ag +  to Ag. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay was performed and it showed the percentage inhibition in concentration-dependent manner. The synthesized AgNPs showed antibacterial activity against Escherichia coli, Proteus vulgaris, Staphylococcus aureus and Bacillus cereus to different extents and the higher activity was observed in Proteus vulgaris.

  7. Recombinant Tyrosinase from Polyporus arcularius: Overproduction in Escherichia coli, Characterization, and Use in a Study of Aurones as Tyrosinase Effectors

    Czech Academy of Sciences Publication Activity Database

    Marková, Eva; Kotík, Michael; Křenková, Alena; Man, Petr; Haudecoeur, R.; Boumendjel, A.; Hardré, R.; Mekmouche, Y.; Dezord-Courvoisier, E.; Réglier, M.; Martínková, Ludmila

    2016-01-01

    Roč. 64, č. 14 (2016), s. 2925-2931 ISSN 0021-8561 R&D Projects: GA MŠk LD12049; GA MŠk LO1509; GA TA ČR TA04021212 Institutional support: RVO:61388971 Keywords : tyrosinase * Polyporus arcularius * Escherichia coli Subject RIV: CE - Biochemistry Impact factor: 3.154, year: 2016

  8. Chemical Constituents of YUZU and LIME Essencial Oils and Their Antioxidative Activities

    OpenAIRE

    Tachibana, Shinya; Tanimoto, Shinich; Murai, Yoshihiro; Watanabe, Yoshiyuki; Okada, Yoshiharu; Nomura, Masato

    2011-01-01

    [Abstract] In this examination, antioxidant activities and whitening effects of yuzu(Citrus junos Sieb.ex Tanaka ) and lime(Citrus aurantifolia S.) essencial oils which are widely used in food flavors were studied. As a result, we found out that 1% to 2% concentration yuzu essencial oil contains equal antioxidant activity to □-tocopherol which is a substance commercially used as antioxidant. Also, from the result of tyrosinase activity inhibition test, an evaluation test on whitening effect...

  9. Identification by shape-based virtual screening and evaluation of new tyrosinase inhibitors

    Directory of Open Access Journals (Sweden)

    Qi Li

    2018-01-01

    Full Text Available Targeting tyrosinase is considered to be an effective way to control the production of melanin. Tyrosinase inhibitor is anticipated to provide new therapy to prevent skin pigmentation, melanoma and neurodegenerative diseases. Herein, we report our results in identifying new tyrosinase inhibitors. The shape-based virtual screening was performed to discover new tyrosinase inhibitors. Thirteen potential hits derived from virtual screening were tested by biological determinations. Compound 5186-0429 exhibited the most potent inhibitory activity. It dose-dependently inhibited the activity of tyrosinase, with the IC50 values 6.2 ± 2.0 µM and 10.3 ± 5.4 µM on tyrosine and L-Dopa formation, respectively. The kinetic study of 5186-0429 demonstrated that this compound acted as a competitive inhibitor. We believe the discoveries here could serve as a good starting point for further design of potent tyrosinase inhibitor.

  10. Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4 cell line

    Directory of Open Access Journals (Sweden)

    Azizi S

    2017-12-01

    Full Text Available Susan Azizi,1 Mahnaz Mahdavi Shahri,2 Heshu Sulaiman Rahman,3–5 Raha Abdul Rahim,6 Abdullah Rasedee,5 Rosfarizan Mohamad1,7 1Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 2Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran; 3College of Veterinary Medicine, University of Sulaimani, Sulaimani Nwe, 4College of Health Science, Komar University of Science and Technology (KUST, Chaq-Chaq Qularaise, Sulaimani City, Iraq; 5Faculty of Veterinary Medicine, 6Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, 7Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia Abstract: Among nanoparticles used for medical applications, palladium nanoparticles (PdNPs are among the least investigated. This study was undertaken to develop PdNPs by green synthesis using white tea (W.tea; Camellia sinensis extract to produce the Pd@W.tea NPs. The Pd@W.tea NPs were characterized by UV–vis spectroscopy and X-ray diffractometry, and evaluated with transmission electron microscopy (TEM and scanning electron microscopy (SEM. The Pd@W.tea NPs were spherical (size 6–18 nm and contained phenols and flavonoids acquired from the W.tea extract. Pd@W.tea NPs has good 1-diphenyl-2-picrylhydrazyl (DPPH, OH, and NO-scavenging properties as well as antibacterial effects toward Staphylococcus epidermidis and Escherichia coli. MTT assay showed that Pd@W.tea NPs (IC50 =0.006 µM were more antiproliferative toward the human leukemia (MOLT-4 cells than the W.tea extract (IC50 =0.894 µM, doxorubicin (IC50 =2.133 µM, or cisplatin (IC50 =0.013 µM, whereas they were relatively innocuous for normal human fibroblast (HDF-a cells. The anticancer cell effects of Pd@W.tea NPs are mediated through the induction of apoptosis

  11. Tyrosinase inhibitory components from Aloe vera and their antiviral activity.

    Science.gov (United States)

    Kim, Jang Hoon; Yoon, Ju-Yeon; Yang, Seo Young; Choi, Seung-Kook; Kwon, Sun Jung; Cho, In Sook; Jeong, Min Hee; Ho Kim, Young; Choi, Gug Seoun

    2017-12-01

    A new compound, 9-dihydroxyl-2'-O-(Z)-cinnamoyl-7-methoxy-aloesin (1), and eight known compounds (2-9) were isolated from Aloe vera. Their structures were elucidated using 1D/2D nuclear magnetic resonance and mass spectra. Compound 9 exhibited reversible competitive inhibitory activity against the enzyme tyrosinase, with an IC 50 value of 9.8 ± 0.9 µM. A molecular simulation revealed that compound 9 interacts via hydrogen bonding with residues His244, Thr261, and Val283 of tyrosinase. Additionally, compounds 3 and 7 were shown by half-leaf assays to exhibit inhibitory activity towards Pepper mild mottle virus.

  12. Screening Marker Components Of Tyrosinase Inhibitor From Xylocarpus Granatum Stem

    Directory of Open Access Journals (Sweden)

    Latifah K Darusman

    2017-03-01

    Full Text Available The aim of our research was to screen the marker components of tyrosinase inhibitor from Xylocarpus granatum stem collected from Pulau Sebuku, South Kalimantan, Indonesia.  The screening method started from selection of part of X. granatum, stem or stem bark.  Stem and stem bark of X. granatum were dried and grounded before submitted to methanol.  The stem extracts is more potent as tyrosinase inhibitor (IC50 for monophenolase is 45.12 μg/ml and diphenolase is 31.59μg/ml compared to the bark extracts. The IC50 values of kojic acid as positive control are 17.43μg/ml for monophenolase and 20.69 μg/ml for diphenolase. The stem extract then separated with silica gel column chromatography and preparative thin layer chromatography.  The results showed that component with Rf 0,25 and 0.63 (TLC analysis with stationary phase silica gel GF254 and mobile phase ethyl acetic: methanol (8:2 are the marker components as tyrosinase inhibitor for X. granatum.

  13. Association of Tyrosinase (TYR and Tyrosinase-related Protein 1 (TYRP1 with Melanic Plumage Color in Korean Quails (

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2013-11-01

    Full Text Available TYR (Tyrosinase and TYRP1 (Tyrosinase-related protein 1 play crucial roles in determining the coat color of birds. In this paper, we aimed to characterize the relationship of TYR and TYRP1 genes with plumage colors in Korean quails. The SNPs were searched by cDNA sequencing and PCR-SSCP in three plumage color Korean quails (maroon, white and black plumage. Two SNPs (367T→C and 1153C→T were found in the coding region of TYRP1 gene, but had no significant association with plumage phenotype in Korean quails. The expression of TYR was higher in black plumage quails than that in maroon plumage quails. In contrast, the expression of TYRP1 was lower in black plumage quails than that in maroon plumage quails. This study suggested that the melanic plumage color in Korean quails may be associated with either increased production of TYR or decreased production of TYRP1.

  14. Study of preparations of bee pollen extracts, antioxidant and antibacterial activity Estudo das preparações de extratos de pólen apícola, atividade antioxidante e antibacteriana

    Directory of Open Access Journals (Sweden)

    Solange Teresinha Carpes

    2007-12-01

    Full Text Available The aim of this study was to determine the antioxidant activity, phenolic content and antibacterial activity of pollen extracts obtained with different concentrations of ethanol. Each extraction condition (ethanol solutions from 40 to 90% had a different effect in the phenolic compounds content. Although, the pollen extract obtained at 60, 70 and 80% of ethanol showed relatively higher levels of phenolic compounds (>10 mg/g and did not present statistical significant difference between the extraction conditions. The amount of total phenolics ranged from 3.6 to 8.1 and 6.6 to 10.9 mg GAE/g for Alagoas state and Parana state pollen, respectively. The higher value for antioxidant activity index was 83.30% for the pollen from Alagoas state and 81.15 % for Parana state pollen. The highest degree of antioxidant activity was found in the extraction at 60% of ethanol solution for Parana state pollen, which also showed the highest concentration of polyphenol compounds. Staphylococcus aureus was inhibited by the ethanolic extract of Alagoas state pollen in all the concentrations of solvent, except the ethanolic extract of pollen at 90%. The extract at 60% of ethanol solution (Parana sample inhibited Bacillus subtilis, Pseudomonas aeruginosa and Klebsiella sp.Objetivou-se, neste estudo determinar compostos fenólicos, a atividade antioxidante a antibacteriana dos extratos etanólicos de pólen, obtidos com diferentes concentrações de etanol. As diferentes condições de extração (etanol de 40 a 90% apresentaram diferentes efeitos no conteúdo dos compostos fenólicos extraídos. Os extratos de pólen obtidos com etanol a 60, 70 e 80% apresentaram maiores níveis de compostos fenólicos (>10 mg/g e não apresentaram diferenças estatísticas entre essas condições de extração. A quantidade de compostos fenólicos nos extratos de pólen variou de 3.6 a 8.1 e 6.6 a 11 mg de equivalente em ácido gálico por g de pólen (GAE, para os estados de Alagoas

  15. Antioxidant, antimicrobial, cytotoxic and analgesic activities of ethanolic extract of Mentha arvensis L.

    Directory of Open Access Journals (Sweden)

    Nripendra Nath Biswas

    2014-10-01

    Conclusions: These results suggest that the ethanolic extract of Mentha arvensis L. has potential antioxidant, antibacterial, cytotoxic and analgesic activities that support the ethnopharmacological uses of this plant.

  16. Investigation of the mechanisms by which UV irradiation activates the tyrosinase gene

    International Nuclear Information System (INIS)

    Bao, Y.

    2000-04-01

    Tyrosinase, tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2) are the enzymes involved in melanin pigment synthesis. They are expressed specifically in melanocytic cells. UV irradiation is the major physiological stimulant of melanogenesis. Tyrosinase is the rate-limiting enzyme in melanin synthesis and its activity is regulated by UV irradiation in melanocytes. The molecular mechanism underlying the activation of tyrosinase by UV is still not clear. In this thesis, the effects of UV irradiation on tyrosinase, TRP-1 and TRP-2 gene expression in mouse B16 melanoma cells were studied as well as the effects of UV irradiation on the activity of the tyrosinase promoter in mouse, and human melanoma cells. UV irradiation caused an increase in tyrosinase mRNA level, without change in either TRP-1 or TRP-2 mRNA levels, as determined by Northern blot analysis. In order to determine whether UV- induced increase of tyrosinase mRNA expression involved modulation of tyrosinase promoter activity, transient transfection approaches involving a series of constructs containing either chloramphenicol acetyl transferase (CAT) or luciferase reporter genes linked to different lengths of the tyrosinase gene- promoter were used. UV irradiation specifically induced CAT gene expression from both the mouse and the human tyrosinase promoters, suggesting that UV irradiation induced the transcription of the tyrosinase gene. These observations indicated that the promoter region between -250 and -150 bp of the human tyrosinase promoter may contain important cis-regulatory elements involved in the UV response. To localise the cis-regulatory elements responsible for the UV response of the tyrosinase promoter, the 100-bp between -250 bp and -150 bp of the tyrosinase promoter was inserted upstream of a CAT reporter. It was shown that transcription from the 100-bp promoter fragment was activated by UV irradiation. Mutations of a potential cAMP response element (CRE) motif

  17. Molecular Cloning and Characteristic Features of a Novel Extracellular Tyrosinase from Aspergillus niger PA2.

    Science.gov (United States)

    Agarwal, Pragati; Singh, Jyoti; Singh, R P

    2017-05-01

    Aspergillus niger PA2, a novel strain isolated from waste effluents of food industry, is a potential extracellular tyrosinase producer. Enzyme activity and L-DOPA production were maximum when glucose and peptone were employed as C source and nitrogen source respectively in the medium and enhanced notably when the copper was supplemented, thus depicting the significance of copper in tyrosinase activity. Tyrosinase-encoding gene from the fungus was cloned, and amplification of the tyrosinase gene yielded a 1127-bp DNA fragment and 374 amino acid residue long product that encoded for a predicted protein of 42.3 kDa with an isoelectric point of 4.8. Primary sequence analysis of A. niger PA2 tyrosinase had shown that it had approximately 99% identity with that of A. niger CBS 513.88, which was further confirmed by phylogenetic analysis. The inferred amino acid sequence of A. niger tyrosinase contained two putative copper-binding sites comprising of six histidines, a characteristic feature for type-3 copper proteins, which were highly conserved in all tyrosinases throughout the Aspergillus species. When superimposed onto the tertiary structure of A. oryzae tyrosinase, the conserved residues from both the organisms occupied same spatial positions to provide a di-copper-binding peptide groove.

  18. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis

    NARCIS (Netherlands)

    Lai, Xuelei; Wichers, Harry J.; Soler-Lopez, Montserrat; Dijkstra, Bauke W.

    2017-01-01

    Tyrosinase-related protein 1 (TYRP1) is one of three tyrosinase-like glycoenzymes in human melanocytes that are key to the production of melanin, the compound responsible for the pigmentation of skin, eye, and hair. Difficulties with producing these enzymes in pure form have hampered the

  19. Crystal Structure of Agaricus bisporus Mushroom Tyrosinase : Identity of the Tetramer Subunits and Interaction with Tropolone

    NARCIS (Netherlands)

    Ismaya, Wangsa T.; Rozeboom, Henriette J.; Weijn, Amrah; Mes, Jurriaan J.; Fusetti, Fabrizia; Wichers, Harry J.; Dijkstra, Bauke W.

    2011-01-01

    Tyrosinase catalyzes the conversion of phenolic compounds into their quinone derivatives, which are precursors for the formation of melanin, a ubiquitous pigment in living organisms. Because of its importance for browning reactions in the food industry, the tyrosinase from the mushroom Agaricus

  20. Crystal Structure of Agaricus bisporus Mushroom Tyrosinase: Identity of the Tetramer Subunits and Interaction with Tropolone

    NARCIS (Netherlands)

    Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W.

    2011-01-01

    Tyrosinase catalyzes the conversion of phenolic compounds into their quinone derivatives, which are precursors for the formation of melanin, a ubiquitous pigment in living organisms. Because of its importance for browning reactions in the food industry, the tyrosinase from the mushroom Agaricus

  1. Antibacterial and antioxidant activities of the essential oil of Artemisia echegarayi Hieron. (Asteraceae Actividad antibacteriana y antioxidante del aceite esencial extraído de Artemisia echegarayi Hieron. (Asteraceae

    Directory of Open Access Journals (Sweden)

    A. Laciar

    2009-12-01

    Full Text Available Artemisia echegarayi Hieron. (Asteraceae is commonly known in Argentina as “ajenjo”. Many studies report high efficacy of essential oils against food-borne pathogenic bacteria. The antimicrobial activity and minimal inhibitory concentration of A. echegarayi essential oil were evaluated against seven bacterial species of significant importance in food hygiene, by using the disc diffusion assay and the micro-well dilution method, respectively. Volatile components of the extract were analyzed by gas chromatography-mass spectrometry and major components were determined. Furthermore, the essential oil was tested for its antioxidant activity. The essential oil inhibited the growth of gram-positive and gram-negative tested bacteria, with the exception of Proteus mirabilis. A. echegarayi essential oil presented the lowest minimal inhibitory concentration against Listeria monocytogenes and Bacillus cereus. Two terpenes, thujone and camphor, were identified from this essential oil as the principal constituents responsible for antibacterial activity. The oil showed a free radical scavenging activity equivalent to 50% of the reference compound. These preliminary studies showed promising results since this essential oil may provide an alternative to promote its use as a natural food additive.Artemisia echegarayi Hieron. (Asteraceae, conocida como “ajenjo”, es una planta típica de la región de Cuyo (Argentina. En este trabajo se evaluó la actividad antimicrobiana in vitro y la concentración inhibitoria mínima del aceite esencial extraído de sus partes aéreas frente a especies bacterianas que con frecuencia contaminan los alimentos. Se utilizaron las técnicas de difusión con discos en agar y microdilución en placa respectivamente. Además, se determinó la actividad antioxidante de este aceite esencial in vitro por espectrofotometría. En general, tanto las bacterias gram-positivas como las gram-negativas fueron inhibidas por este aceite, con

  2. Melanoma cells present high levels of HLA-A2-tyrosinase in association with instability and aberrant intracellular processing of tyrosinase.

    Science.gov (United States)

    Michaeli, Yael; Sinik, Keren; Haus-Cohen, Maya; Reiter, Yoram

    2012-04-01

    Short-lived protein translation products are proposed to be a major source of substrates for major histocompatibility complex (MHC) class I antigen processing and presentation; however, a direct link between protein stability and the presentation level of MHC class I-peptide complexes has not been made. We have recently discovered that the peptide Tyr((369-377)) , derived from the tyrosinase protein is highly presented by HLA-A2 on the surface of melanoma cells. To examine the molecular mechanisms responsible for this presentation, we compared characteristics of tyrosinase in melanoma cells lines that present high or low levels of HLA-A2-Tyr((369-377)) complexes. We found no correlation between mRNA levels and the levels of HLA-A2-Tyr((369-377)) presentation. Co-localization experiments revealed that, in cell lines presenting low levels of HLA-A2-Tyr((369-377)) complexes, tyrosinase co-localizes with LAMP-1, a melanosome marker, whereas in cell lines presenting high HLA-A2-Tyr((369-377)) levels, tyrosinase localizes to the endoplasmic reticulum. We also observed differences in tyrosinase molecular weight and glycosylation composition as well as major differences in protein stability (t(1/2) ). By stabilizing the tyrosinase protein, we observed a dramatic decrease in HLA-A2-tyrosinase presentation. Our findings suggest that aberrant processing and instability of tyrosinase are responsible for the high presentation of HLA-A2-Tyr((369-377)) complexes and thus shed new light on the relationship between intracellular processing, stability of proteins, and MHC-restricted peptide presentation. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis, urease inhibition, antioxidant and antibacterial studies of some 4-amino-5-aryl-3H-1,2,4-triazole-3-thiones and their 3,6-disubstituted 1,2,4-triazolo[3,4-b]1,3,4-thiadiazole derivatives

    International Nuclear Information System (INIS)

    Hanif, Muhammad; Saleem, Muhammad; Rama, Nasim Hasan; Hussain, Muhammad Tahir; Zaib, Sumera; Aslam, Muhammad Adil M.; Iqbal, Jamshed; Jones, Peter G.

    2012-01-01

    A new series of 4-amino-5-aryl-3H-1,2,4-triazole-3-thiones, bearing various methoxybenzyl- and methoxyphenethyl groups, was synthesized by refluxing potassium hydrazinecarbodithioate salts in dilute aqueous solution of hydrazine hydrate. These salts were formed by the reaction of acid hydrazides and carbon disulfide in methanolic potassium hydroxide solution at 0-5 deg C. 4-Amino- 5-aryl-3H-1,2,4-triazole-3-thiones were condensed with different substituted aromatic acids to yield 3,6-disubstituted-1,2,4-triazolo[3,4-b]1,3,4-thiadiazoles. The structures of the synthesized compounds were characterized by infrared (IR), 1 H and 13 C nuclear magnetic resonance (NMR), elemental analysis and mass spectrometric (MS) studies. All the synthesized compounds were screened for their urease inhibition, antioxidant and antibacterial activities. Some compounds showed excellent urease inhibition activity, more than the standard drug. Others exhibited potent antioxidant activity. All the compounds showed significant antibacterial activities as compared to the standard drug. (author)

  4. DMEM enhances tyrosinase activity in B16 mouse melanoma cells and human melanocytes

    Directory of Open Access Journals (Sweden)

    Panpen Diawpanich

    2008-07-01

    Full Text Available Media components may affect the activities of cultured cells. In this study, tyrosinase activity was evaluated by using B16-F10 mouse melanoma cell lines (B16-F10 and primary human melanocytes cultured in different media. An optical density measurement and a L-dopa reaction assay were used as the determination of the tyrosinase activity. The study of B16-F10 found the optical density to be 2010, 2246 and 2961 in cells cultured in RPMI Medium 1640 (RPMI1640,Minimum Essential Medium (MEM and Dulbecco’s Modified Eagle Medium (DMEM, respectively. Moreover, compared to RPMI 1640 and MEM, DMEM showed the darkest color of melanin formation in culture media and in cells after the L-dopa reaction assay. Addition of kojic acid showed a significant inhibitory effect on tyrosinase activity in all media.Whereas MCDB153 showed no significant effect on human melanocytes, DMEM caused a dramatic increase in tyrosinase activity after 4 days of cultivation. Addition of kojic acid showed a significant tyrosinase inhibitory effect in DMEM only. Furthermore, an active ingredient in green tea, epigallocathechin gallate (EGCG could inhibit tyrosinase activity in both B16-F10 and human melanocytes cultured in DMEM. In summary, these results suggest that DMEM is a suitable medium that provides high detection sensitivity in a tyrosinase inhibition assay.

  5. Purification and characterization of RNA allied extracellular tyrosinase from Aspergillus species.

    Science.gov (United States)

    Inamdar, Shrirang; Joshi, Swati; Bapat, Vishwas; Jadhav, Jyoti

    2014-02-01

    Production of L-DOPA, an anti-Parkinson's drug, using biological sources is widely studied in which tyrosinase is known to play a vital role. Tyrosinase is an omnipresent type 3 copper enzyme participating in many essential biological functions. Understanding properties of tyrosinase is essential for developing useful tyrosinase-based applications. Hence, extracellular tyrosinase from Aspergillus flavus UWFP 570 was purified using ammonium sulphate precipitation and DEAE ion exchange chromatography up to 8.3-fold. Purified protein was a riboprotein in nature containing significant amount of RNA which was confirmed colorimetrically and by electrophoresis. Removal of RNA reduced the activity and altered the conformation of tyrosinase as suggested by spectroflurometric results. Optimum pH and temperature of this 140 kDa protein were 7 and 40 °C, respectively. Copper sulphate and magnesium chloride enhanced the activity whereas in contrast FeCl₃ inhibited the activity completely. Purified tyrosinase transformed L-tyrosine (5 mM) to L-DOPA within 5 h.

  6. Toxin detection using a tyrosinase-coupled oxygen electrode.

    Science.gov (United States)

    Smit, M H; Rechnitz, G A

    1993-02-15

    An enzyme-based "electrochemical canary" is described for the detection of cyanide. The sensing system imitates cyanide's site of toxicity in the mitochondria. The terminal sequence of electron transfer in aerobic respiration is mimicked by mediator coupling of tyrosinase catalysis to an electro-chemical system. An enzyme-coupled oxygen electrode is created which is sensitive to selective poisoning. Biocatalytic reduction of oxygen is promoted by electrochemically supplying tyrosinase with electrons. Thus, ferrocyanide is generated at a cathode and mediates the enzymatic reduction of oxygen to water. An enzyme-dependent reductive current can be monitored which is inhibited by cyanide in a concentration-dependent manner. Oxygen depletion in the reaction layer can be minimized by addressing enzyme activity using a potential pulsing routine. Enzyme activity is electrochemically initiated and terminated and the sensor becomes capable of continuous monitoring. Cyanide poisoning of the biological component is reversible, and it can be reused after rinsing. The resulting sensor detects cyanide based on its biological activity rather than its physical or chemical properties.

  7. Tyrosinase-Based Biosensors for Selective Dopamine Detection

    Directory of Open Access Journals (Sweden)

    Monica Florescu

    2017-06-01

    Full Text Available A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA. For increased selectivity, gold electrodes were previously modified with cobalt (II-porphyrin (CoP film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA, with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%, and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum.

  8. Evaluation of antibacterial, antitumor, antioxidant activities and ...

    African Journals Online (AJOL)

    Background: Lysimachia vulgaris L. (Yellow loosestrife) is a medicinal plant ... It has been used in the treatment of fever, ulcer, diarrhea and wounds in folk medicine. ... Conclusion: Future investigations should be focused on fractionation of the ...

  9. Antibacterial and antioxidant activities of Origanum compactum ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... consequently leads to the loss of the food quality and safety (Mau et al., 2004). ... they are widely used in perfumery, cosmetic, pharma- ceutical and food ... supplemented with the determination of its chemical composition.

  10. ANTIBACTERIAL AND IN VITRO ANTIOXIDANT ACTIVITIES OF ...

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... 4-AMINO-1,2,4-TRIAZOLE-5(4H)-THIONE DERIVATIVES. P. S. Manjula1, B. K. Sarojini 1,2 *, C. G. Darshan Raj1. 1Department of Chemistry, P.A College of Engineering, Nadupadavu, Mangalore–574153. 2Department of Industrial Chemistry, Mangalore University, Mangalagangothri,. Mangalore-574199.

  11. Antioxidant and antibacterial constituents of Steganotaenia ...

    African Journals Online (AJOL)

    GC-MS analysis of the hexane and dichloromethane was carried out to determine their chemical constituents. Results revealed that both extracts contained similar compounds (including cumene, xylene, citronellol and long chain hydrocarbons). In addition the dichloromethane extract contains cadinanol, ar-curcumene and ...

  12. The relationship between Na+/H+ exchanger expression and tyrosinase activity in human melanocytes

    International Nuclear Information System (INIS)

    Smith, Dustin R.; Spaulding, Deborah T.; Glenn, Hayden M.; Fuller, Bryan B.

    2004-01-01

    The activity of melanosome-associated tyrosinase in human melanocytes differs based on racial skin type. In melanocytes from Black skin, tyrosinase activity is high while in White melanocytes the activity of the enzyme is low. Recent studies suggest that low tyrosinase activity in White melanocytes may be due to an acidic pH environment within the melanosome. Because sodium/hydrogen (Na + /H + ) exchangers (NHEs) are known to regulate intracellular pH, melanocytes were treated with NHE inhibitors to determine what effect this inhibition might have on tyrosinase activity. Treatment of Black melanocytes with ethyl-isopropyl amiloride (EIPA) caused a rapid dose-dependent inhibition of tyrosinase activity. This inhibition was not due to either direct enzyme inhibition or to a decrease in tyrosinase abundance. In contrast, treatment of White melanocytes with EIPA, cimetidine, or clonidine resulted in little inhibition of tyrosinase activity. Reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis showed that both Black and White melanocytes expressed mRNA and protein for NHE-1, NHE-3, NHE-5, NHE-6, and NHE-7. Immunohistochemical analysis showed that NHE-7 and NHE-3 co-localized with the melanosomal protein, Tyrosinase Related Protein-1 (TRP-1). In addition, the vesicular proton pump, vesicular ATPase (V-ATPase), was found to be present in both White and Black melanosomes, indicating that organelles from both racial skin types are capable of being acidified. The results suggest that one or more NHEs may help regulate melanosome pH and tyrosinase activity in human melanocytes

  13. Antioxidative Characteristics of Anisomeles indica Extract and Inhibitory Effect of Ovatodiolide on Melanogenesis

    Directory of Open Access Journals (Sweden)

    Li-Ling Chang

    2012-05-01

    Full Text Available The purpose of the study was to investigate the antioxidant characteristics of Anisomeles indica methanol extract and the inhibitory effect of ovatodiolide on melanogenesis. In the study, the antioxidant capacities of A. indica methanol extract such as DPPH assay, ABTS radical scavenging assay, reducing capacity and metal ion chelating capacity as well as total phenolic content of the extract were investigated. In addition, the inhibitory effects of ovatodiolide on mushroom tyrosinase, B16F10 intracellular tyrosinase and melanin content were determined spectrophotometrically. Our results revealed that the antioxidant capacities of A. indica methanol extract increased in a dose-dependent pattern. The purified ovatodiolide inhibited mushroom tyrosinase activity (IC50 = 0.253 mM, the compound also effectively suppressed intracellular tyrosinase activity (IC50 = 0.469 mM and decreased the amount of melanin (IC50 = 0.435 mM in a dose-dependent manner in B16F10 cells. Our results concluded that A. indica methanol extract displays antioxidant capacities and ovatodiolide purified from the extract inhibited melanogenesis in B16F10 cells. Hence, A. indica methanol extract and ovatodiolide could be applied as a type of dermatological whitening agent in skin care products.

  14. Synthesis and antioxidant potential of some biscoumarin derivatives

    African Journals Online (AJOL)

    ... group at position-4 of aryl moiety along with 2-hydroxycoumarin being critical for antioxidant activity. ... nervous system, antibacterial and anti- inflammatory agents [3,5]. ..... showed higher reducing power as compared to standard compound ...

  15. SCREEN-PRINTED TYROSINASE-CONTAINING ELECTRODES FOR THE BIOSENSING OF ENZYME INHIBITORS

    Science.gov (United States)

    Disposal amperometric inhibition biosensors have been microfabricated by screen printing a tyrosinase-containing carbon ink. The decrease in the substrate (catechol) steady-state current, caused by the addition of various pesticides and herbicides, offers convenient quantitation ...

  16. Molecular Docking Studies and Anti-Tyrosinase Activity of Thai Mango Seed Kernel Extract

    Directory of Open Access Journals (Sweden)

    Patchreenart Saparpakorn

    2009-01-01

    Full Text Available The alcoholic extract from seed kernels of Thai mango (Mangifera indica L. cv. ‘Fahlun’ (Anacardiaceae and its major phenolic principle (pentagalloylglucopyranose exhibited potent, dose-dependent inhibitory effects on tyrosinase with respect to L-DOPA. Molecular docking studies revealed that the binding orientations of the phenolic principles were in the tyrosinase binding pocket and their orientations were located in the hydrophobic binding pocket surrounding the binuclear copper active site. The results indicated a possible mechanism for their anti-tyrosinase activity which may involve an ability to chelate the copper atoms which are required for the catalytic activity of tyrosinase.

  17. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    OpenAIRE

    Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Ro, Hyunju; Kim, Mi Yoon; Ma, Jin Yeul

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in ? -melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respect...

  18. Cinnamon from the selection of traditional applications to its novel effects on the inhibition of angiogenesis in cancer cells and prevention of Alzheimer's disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal, acaracidal, and repellent activities

    Directory of Open Access Journals (Sweden)

    Rafie Hamidpour

    2015-04-01

    Full Text Available The purpose of this article is to use search engines such as PubMed and Scifinder to locate scholarly articles and reports pertaining to Cinnamon (肉桂 ròu guì, its novel effects, preparation, analysis, and use in the prevention and treatment of serious illnesses, such as diabetes, cardiovascular diseases, Alzheimer’s disease, and cancer. Cinnamon has been used traditionally in food preparations and as an herbal medicine to treat a variety of ailments and their symptoms. Cinnamon is known to have antioxidant, antibacterial, anti-inflammatory, and other therapeutic properties. New studies reaffirm the importance of cinnamon as a spice but also suggest that it may be a natural remedy to treat serious diseases such as type 2 diabetes, chronic digestion problems, cardiovascular diseases, and even cancer and Alzheimer’s disease. This article presents a comprehensive analysis of the botanical, chemical, and pharmacological aspects of cinnamon.

  19. Oculocutaneous albinism type 1: link between mutations, tyrosinase conformational stability, and enzymatic activity.

    Science.gov (United States)

    Dolinska, Monika B; Kus, Nicole J; Farney, S Katie; Wingfield, Paul T; Brooks, Brian P; Sergeev, Yuri V

    2017-01-01

    Oculocutaneous albinism type 1 (OCA1) is an autosomal recessive disorder caused by mutations in the tyrosinase gene. Two subtypes of OCA1 have been described: severe OCA1A with complete absence of tyrosinase activity and less severe OCA1B with residual tyrosinase activity. Here, we characterize the recombinant human tyrosinase intramelanosomal domain and mutant variants, which mimic genetic changes in both subtypes of OCA1 patients. Proteins were prepared using site-directed mutagenesis, expressed in insect larvae, purified by chromatography, and characterized by enzymatic activities, tryptophan fluorescence, and Gibbs free energy changes. The OCA1A mutants showed very low protein expression and protein yield and are enzymatically inactive. Mutants mimicking OCA1B were biochemically similar to the wild type, but exhibited lower specific activities and protein stabilities. The results are consistent with clinical data, which indicates that OCA1A mutations inactivate tyrosinase and result in severe phenotype, while OCA1B mutations partially inactivate tyrosinase and result in OCA1B albinism. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  20. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    Science.gov (United States)

    Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Kim, Mi Yoon; Ma, Jin Yeul

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content. PMID:23781272

  1. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    Directory of Open Access Journals (Sweden)

    Hwayong Park

    2013-01-01

    Full Text Available To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content.

  2. Comparative Phenolic Fingerprint and LC-ESI+QTOF-MS Composition of Oregano and Rosemary Hydrophilic Extracts in Relation to their Antibacterial Effect

    OpenAIRE

    Florina Bunghez; Mihaela Ancuţa Morar; Raluca Maria Pop; Florina Romanciuc; Florina Csernatoni; Florinela Fetea; Zoriţa Diaconeasa; Carmen Socaciu

    2015-01-01

    Rosemary (Rosmarinus officinalis) and oregano (Origanum vulgare) are known aromatic plants used as spice, with good flavoring, preservative, antioxidant and antibacterial activity. Beside their known terpenoid content responsible for the antibacterial activity, the water-soluble compounds (phenolic derivatives) are of high interest not only for their antioxidant activity but as a good alternative or as a hydrophilic new antibacterial solution. Two hydrophilic extracts from each plant were obt...

  3. Hesperidin, A Popular Antioxidant Inhibits Melanogenesis via Erk1/2 Mediated MITF Degradation

    Directory of Open Access Journals (Sweden)

    Heun Joo Lee

    2015-08-01

    Full Text Available Regulation of melanogenesis has been the focus of treatment for hyperpigmentary skin disorders. Although hesperidin is one of the most well-known, naturally occurring flavonoids with antioxidant and anti-inflammatory effect, its anti-melanogenic effect is not known. The present study aims to determine the anti-melanogenic effect of hespiridin as well as its underlying molecular mechanisms. Melanin contents were measured in normal human melanocytes and B16F10 melanoma cells. Protein and mRNA levels of tyrosinase, microphthalmia-associated transcription factor (MITF, tyrosinase related protein-1 (TRP-1 and TRP-2 were determined. Melanogenesis-regulating signals were examined. In results, hesperidin strongly inhibited melanin synthesis and tyrosinase activity. Hesperidin decreased tyrosinase, TRP-1, and TRP-2 protein expression but increased phospho-extracellular signal-regulated kinase 1/2 (p-Erk1/2 expression. Specific inhibitor of Erk1/2 or proteasome inhibitor reversed the inhibition of melanogenesis induced by hesperidin. Taken together, hesperidin, a popular antioxidant, stimulated Erk1/2 phosphorylation which subsequently degraded MITF which resulted in suppression of melanogenic enzymes and melanin synthesis.

  4. Phytochemical study and antibacterial activity of different extracts of ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the phytochemical proprieties, antioxidant and antibacterial activities of different extracts of Pistacia lentiscus on two pathogenic bacteria. The concentration of total phenols was analyzed using Folin-Ciocalteu's method. Exracts of plant were evaluated for their antimicrobial ...

  5. Antibacterial components of honey

    NARCIS (Netherlands)

    Kwakman, Paulus H. S.; Zaat, Sebastian A. J.

    2012-01-01

    The antibacterial activity of honey has been known since the 19th century. Recently, the potent activity of honey against antibiotic-resistant bacteria has further increased the interest for application of honey, but incomplete knowledge of the antibacterial activity is a major obstacle for clinical

  6. New tyrosinase inhibitory decapeptide: Molecular insights into the role of tyrosine residues.

    Science.gov (United States)

    Ochiai, Akihito; Tanaka, Seiya; Imai, Yuta; Yoshida, Hisashi; Kanaoka, Takumi; Tanaka, Takaaki; Taniguchi, Masayuki

    2016-06-01

    Tyrosinase, a rate-limiting enzyme in melanin biosynthesis, catalyzes the hydroxylation of l-tyrosine to 3,4-dihydroxy-l-phenylalanine (l-dopa) (monophenolase reaction) and the subsequent oxidation of l-dopa to l-dopaquinone (diphenolase reaction). Thus, tyrosinase inhibitors have been proposed as skin-lightening agents; however, many of the existing inhibitors cannot be widely used in the cosmetic industry due to their high cytotoxicity and instability. On the other hand, some tyrosinase inhibitory peptides have been reported as safe. In this study, we found that the peptide TH10, which has a similar sequence to the characterized inhibitory peptide P4, strongly inhibits the monophenolase reaction with a half-maximal inhibitory concentration of 102 μM. Seven of the ten amino acid residues in TH10 were identical to P4; however, TH10 possesses one N-terminal tyrosine, whereas P4 contains three tyrosine residues located at its N-terminus, center, and C-terminus. Subsequent analysis using sequence-shuffled variants indicated that the tyrosine residues located at the N-terminus and center of P4 have little to no contribution to its inhibitory activity. Furthermore, docking simulation analysis of these peptides with mushroom tyrosinase demonstrated that the active tyrosine residue was positioned close to copper ions, suggesting that TH10 and P4 bind to tyrosinase as a substrate analogue. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Screening of plant extracts for human tyrosinase inhibiting effects.

    Science.gov (United States)

    Kim, M; Park, J; Song, K; Kim, H G; Koh, J-S; Boo, Y C

    2012-04-01

    Screening for tyrosinase (TYR) inhibitors potentially useful for control of skin pigmentation has been hampered by the limited availability of human TYR. To overcome this hurdle, we have established human embryonic kidney (HEK293)-TYR cells that constitutively express human TYR. In the current study, we assayed human TYR inhibition activities of 50 plant extracts using the lysates of transformed HEK293-TYR cells. The strongest inhibition of human TYR was shown by the extract of Vaccinium bracteatum Thunberg, followed by the extract of Morus bombycis Koidzumi. The former extract did not inhibit mushroom TYR activity whereas significant inhibition was observed with the latter extract, demonstrating the importance of using human TYR in the screening for human TYR inhibitors. Upon liquid-liquid partitioning of the extract from V. bracteatum, the active constituents were enriched in the ethyl acetate fraction, and the subsequent preparatory thin-layer chromatography identified p-coumaric acid (PCA) as the main active constituent. The hypo-pigmentation of PCA was verified in the MelanoDerm™ Skin Model. This study demonstrates that transformed HEK293-TYR cells could expedite the discovery of human TYR-specific inhibitors from natural sources which might be useful in the control of skin pigmentation. © 2012 The Authors. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  8. Global patterns of diversity and selection in human tyrosinase gene.

    Science.gov (United States)

    Hudjashov, Georgi; Villems, Richard; Kivisild, Toomas

    2013-01-01

    Global variation in skin pigmentation is one of the most striking examples of environmental adaptation in humans. More than two hundred loci have been identified as candidate genes in model organisms and a few tens of these have been found to be significantly associated with human skin pigmentation in genome-wide association studies. However, the evolutionary history of different pigmentation genes is rather complex: some loci have been subjected to strong positive selection, while others evolved under the relaxation of functional constraints in low UV environment. Here we report the results of a global study of the human tyrosinase gene, which is one of the key enzymes in melanin production, to assess the role of its variation in the evolution of skin pigmentation differences among human populations. We observe a higher rate of non-synonymous polymorphisms in the European sample consistent with the relaxation of selective constraints. A similar pattern was previously observed in the MC1R gene and concurs with UV radiation-driven model of skin color evolution by which mutations leading to lower melanin levels and decreased photoprotection are subject to purifying selection at low latitudes while being tolerated or even favored at higher latitudes because they facilitate UV-dependent vitamin D production. Our coalescent date estimates suggest that the non-synonymous variants, which are frequent in Europe and North Africa, are recent and have emerged after the separation of East and West Eurasian populations.

  9. Wearable Wireless Tyrosinase Bandage and Microneedle Sensors: Toward Melanoma Screening.

    Science.gov (United States)

    Ciui, Bianca; Martin, Aida; Mishra, Rupesh K; Brunetti, Barbara; Nakagawa, Tatsuo; Dawkins, Thomas J; Lyu, Mengjia; Cristea, Cecilia; Sandulescu, Robert; Wang, Joseph

    2018-04-01

    Wearable bendable bandage-based sensor and a minimally invasive microneedle biosensor are described toward rapid screening of skin melanoma. These wearable electrochemical sensors are capable of detecting the presence of the tyrosinase (TYR) enzyme cancer biomarker in the presence of its catechol substrate, immobilized on the transducer surface. In the presence of the surface TYR biomarker, the immobilized catechol is rapidly converted to benzoquinone that is detected amperometrically, with a current signal proportional to the TYR level. The flexible epidermal bandage sensor relies on printing stress-enduring inks which display good resiliency against mechanical deformations, whereas the hollow microneedle device is filled with catechol-coated carbon paste for assessing tissue TYR levels. The bandage sensor can thus be used directly on the skin whereas microneedle device can reach melanoma tissues under the skin. Both wearable sensors are interfaced to an ultralight flexible electronic board, which transmits data wirelessly to a mobile device. The analytical performance of the resulting bandage and microneedle sensing systems are evaluated using TYR-containing agarose phantom gel and porcine skin. The new integrated conformal portable sensing platforms hold considerable promise for decentralized melanoma screening, and can be extended to the screening of other key biomarkers in skin moles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis, antioxidative and whitening effects of novel cysteine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ji Hoon; Kim, Kyoung Mi; Jeong, Yoon Ju; Park, Young Min; Lee, Jae Young; Park, Soo Nam [Dept. of Fine Chemistry, Cosmetic R and D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jino [Daebong LS. Ltd, Incheon (Korea, Republic of)

    2017-01-15

    Recently, development of biocompatibility functional cosmetic agents as antioxidant or whitening agent has increased. In this study, synthetic cysteine derivatives (DBLS-21, -24, and -33) were developed containing syringic acid and cysteine moieties (l-cysteine ethyl ester, N-acetyl cysteine methyl ester, and N-acetyl cysteine ethyl ester), and their antioxidative and whitening activities were evaluated. The cellular protective effect (τ{sub 50}) of DBLS-21 was 51.1 min at 50 μM on {sup 1}O{sub 2} -induced hemolysis of erythrocytes. This activity was slightly higher than that of α-tocopherol (43.6 min) as a lipophilic antioxidant. In the melanogenesis inhibitory effect, DBLS-21, -24, and -33 was 1.6-, 1.8-, and 2.5-fold higher than arbutin, respectively. In particular, DBLS-21 and -33 was 112.8- and 6.1-fold higher than arbutin, respectively (293.4 μM) on tyrosinase inhibition activity (IC{sub 50} ). But DBLS-24 had no tyrosinase inhibitory activity. These results suggest that cysteine derivatives possess potential for use as an antioxidant agent (DBLS-21) and whitening agents (all derivatives) in cosmetics.

  11. Synthesis, antioxidative and whitening effects of novel cysteine derivatives

    International Nuclear Information System (INIS)

    Ha, Ji Hoon; Kim, Kyoung Mi; Jeong, Yoon Ju; Park, Young Min; Lee, Jae Young; Park, Soo Nam; Park, Jino

    2017-01-01

    Recently, development of biocompatibility functional cosmetic agents as antioxidant or whitening agent has increased. In this study, synthetic cysteine derivatives (DBLS-21, -24, and -33) were developed containing syringic acid and cysteine moieties (l-cysteine ethyl ester, N-acetyl cysteine methyl ester, and N-acetyl cysteine ethyl ester), and their antioxidative and whitening activities were evaluated. The cellular protective effect (τ_5_0) of DBLS-21 was 51.1 min at 50 μM on "1O_2 -induced hemolysis of erythrocytes. This activity was slightly higher than that of α-tocopherol (43.6 min) as a lipophilic antioxidant. In the melanogenesis inhibitory effect, DBLS-21, -24, and -33 was 1.6-, 1.8-, and 2.5-fold higher than arbutin, respectively. In particular, DBLS-21 and -33 was 112.8- and 6.1-fold higher than arbutin, respectively (293.4 μM) on tyrosinase inhibition activity (IC_5_0 ). But DBLS-24 had no tyrosinase inhibitory activity. These results suggest that cysteine derivatives possess potential for use as an antioxidant agent (DBLS-21) and whitening agents (all derivatives) in cosmetics

  12. Condensed Tannins from Longan Bark as Inhibitor of Tyrosinase: Structure, Activity, and Mechanism.

    Science.gov (United States)

    Chai, Wei-Ming; Huang, Qian; Lin, Mei-Zhen; Ou-Yang, Chong; Huang, Wen-Yang; Wang, Ying-Xia; Xu, Kai-Li; Feng, Hui-Ling

    2018-01-31

    In this study, the content, structure, antityrosinase activity, and mechanism of longan bark condensed tannins were evaluated. The findings obtained from mass spectrometry demonstrated that longan bark condensed tannins were mixtures of procyanidins, propelargonidins, prodelphinidins, and their acyl derivatives (galloyl and p-hydroxybenzoate). The enzyme analysis indicated that these mixtures were efficient, reversible, and mixed (competitive is dominant) inhibitor of tyrosinase. What's more, the mixtures showed good inhibitions on proliferation, intracellular enzyme activity and melanogenesis of mouse melanoma cells (B 16 ). From molecular docking, the results showed the interactions between inhibitors and tyrosinase were driven by hydrogen bond, electrostatic, and hydrophobic interactions. In addition, high levels of total phenolic and extractable condensed tannins suggested that longan bark might be a good source of tyrosinase inhibitor. This study would offer theoretical basis for the development of longan bark condensed tannins as novel food preservatives and medicines of skin diseases.

  13. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on mushroom tyrosinase.

    Science.gov (United States)

    Tokiwa, Y; Kitagawa, M; Raku, T

    2007-03-01

    A novel tyrosinase inhibitor, an arbutin derivative having undecylenic acid at the 6-position of its glucose moiety, was enzymatically synthesized. Its inhibitory activity was studied in vitro by using catechol and phenol as substrates. The IC(50) value of the arbutin ester on tyrosinase using catechol (4 x 10(-4) M) was 1% of that when arbutin (4 x 10(-2) M) was used. Using phenol, IC(50) of the arbutin ester (3 x 10(-4) M) as substrate was 10% of that of arbutin (3 x 10(-3) M). These results suggest that the arbutin ester inhibits the latter part of the tyrosinase reaction, which consists of hydroxylation and oxidation.

  14. Computational analysis of histidine mutations on the structural stability of human tyrosinases leading to albinism insurgence.

    Science.gov (United States)

    Hassan, Mubashir; Abbas, Qamar; Raza, Hussain; Moustafa, Ahmed A; Seo, Sung-Yum

    2017-07-25

    Misfolding and structural alteration in proteins lead to serious malfunctions and cause various diseases in humans. Mutations at the active binding site in tyrosinase impair structural stability and cause lethal albinism by abolishing copper binding. To evaluate the histidine mutational effect, all mutated structures were built using homology modelling. The protein sequence was retrieved from the UniProt database, and 3D models of original and mutated human tyrosinase sequences were predicted by changing the residual positions within the target sequence separately. Structural and mutational analyses were performed to interpret the significance of mutated residues (N 180 , R 202 , Q 202 , R 211 , Y 363 , R 367 , Y 367 and D 390 ) at the active binding site of tyrosinases. CSpritz analysis depicted that 23.25% residues actively participate in the instability of tyrosinase. The accuracy of predicted models was confirmed through online servers ProSA-web, ERRAT score and VERIFY 3D values. The theoretical pI and GRAVY generated results also showed the accuracy of the predicted models. The CCA negative correlation results depicted that the replacement of mutated residues at His within the active binding site disturbs the structural stability of tyrosinases. The predicted CCA scores of Tyr 367 (-0.079) and Q/R 202 (0.032) revealed that both mutations have more potential to disturb the structural stability. MD simulation analyses of all predicted models justified that Gln 202 , Arg 202 , Tyr 367 and D 390 replacement made the protein structures more susceptible to destabilization. Mutational results showed that the replacement of His with Q/R 202 and Y/R 363 has a lethal effect and may cause melanin associated diseases such as OCA1. Taken together, our computational analysis depicts that the mutated residues such as Q/R 202 and Y/R 363 actively participate in instability and misfolding of tyrosinases, which may govern OCA1 through disturbing the melanin biosynthetic pathway.

  15. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase.

    Science.gov (United States)

    Ashraf, Zaman; Rafiq, Muhammad; Seo, Sung-Yum; Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf

    2015-09-01

    The purpose of the present study was to discover the extent of contribution to antityrosinase activity by adding hydroxy substituted benzoic acid, cinnamic acid and piperazine residues to vanillin. The study showed the transformation of vanillin into esters as shown in (4a-4d), (6a-6b), and (8a-8b). In addition, the relationship between structures of these esters and their mushroom tyrosinase inhibitory activity was explored. The kinetics of inhibition on mushroom tyrosinase by these esters was also investigated. It was found that hydroxyl substituted benzoic acid derivatives were weak inhibitors; however hydroxy or chloro substituted cinnamic acid and piperazine substituted derivatives were able to induce significant tyrosinase inhibition. The mushroom tyrosinase (PDBID 2ZWE) was docked with synthesized vanillin derivatives and their calculated binding energies were compared with experimental IC50 values which provided positive correlation. The most potent derivative 2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate (6a) possesses hydroxy substituted cinnamic acid scaffold having IC50 value 16.13 μM with binding energy of -7.2 kcal/mol. The tyrosinase inhibitory activity of (6a) is comparable with standard kojic acid. Kinetic analysis indicated that compound 6a was mixed-type tyrosinase inhibitor with inhibition constant values Ki (13 μM) and Ki' (53 μM) and formed reversible enzyme inhibitor complex. The active vanillin analog (6a) was devoid of toxic effects as shown in cytotoxic studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone.

    Science.gov (United States)

    Ismaya, Wangsa T; Rozeboom, Henriëtte J; Weijn, Amrah; Mes, Jurriaan J; Fusetti, Fabrizia; Wichers, Harry J; Dijkstra, Bauke W

    2011-06-21

    Tyrosinase catalyzes the conversion of phenolic compounds into their quinone derivatives, which are precursors for the formation of melanin, a ubiquitous pigment in living organisms. Because of its importance for browning reactions in the food industry, the tyrosinase from the mushroom Agaricus bisporus has been investigated in depth. In previous studies the tyrosinase enzyme complex was shown to be a H(2)L(2) tetramer, but no clues were obtained of the identities of the subunits, their mode of association, and the 3D structure of the complex. Here we unravel this tetramer at the molecular level. Its 2.3 Å resolution crystal structure is the first structure of the full fungal tyrosinase complex. The complex comprises two H subunits of ∼392 residues and two L subunits of ∼150 residues. The H subunit originates from the ppo3 gene and has a fold similar to other tyrosinases, but it is ∼100 residues larger. The L subunit appeared to be the product of orf239342 and has a lectin-like fold. The H subunit contains a binuclear copper-binding site in the deoxy-state, in which three histidine residues coordinate each copper ion. The side chains of these histidines have their orientation fixed by hydrogen bonds or, in the case of His85, by a thioether bridge with the side chain of Cys83. The specific tyrosinase inhibitor tropolone forms a pre-Michaelis complex with the enzyme. It binds near the binuclear copper site without directly coordinating the copper ions. The function of the ORF239342 subunits is not known. Carbohydrate binding sites identified in other lectins are not conserved in ORF239342, and the subunits are over 25 Å away from the active site, making a role in activity unlikely. The structures explain how calcium ions stabilize the tetrameric state of the enzyme.

  17. Antibacterial activity of propolins from Taiwanese green propolis

    Directory of Open Access Journals (Sweden)

    Yue-Wen Chen

    2018-04-01

    Full Text Available Taiwanese green propolis is a prenylated flavonoid rich honeybee product and propolins isolated from Taiwanese green propolis exert a broad spectrum of biological activities, such as anti-cancer and anti-oxidant. However, the anti-bacterial effects of Taiwanese green propolis or propolins are still poorly understood. In the current study, the antibacterial effects of Taiwanese green propolis and propolins were evaluated. Results show that the maximum dry matter yields of Taiwanese green propolis were observed in the 95% and 99.5% ethanol extracts compared to other extraction methods. Consistently, the highest concentration of propolins C, D, F and G from Taiwanese green propolis was obtained in 95% and 99.5% ethanol extracts. Propolins inhibited the growth of gram-positive bacterial strains (Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes and Paenibacillus larvae. The average minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC of propolins from ethanol extracts were 20 μg/ml. Among the propolins, propolin C had the highest antibacterial activity. Furthermore, Taiwanese green propolis also showed antibacterial activity against methicillin-resistant S. aureus (MRSA. In conclusion, these results demonstrate that Taiwanese green propolis and propolins have significant antibacterial activity, particularly against gram-positive bacterial strains. Keywords: Antibacterial activity, Propolins, Taiwan, Green propolis

  18. Inhibitory and Acceleratory Effects of Inonotus obliquus on Tyrosinase Activity and Melanin Formation in B16 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Zheng-Fei Yan

    2014-01-01

    Full Text Available The aim of the present study is to preliminarily investigate the antimelanogenesis effect of Inonotus obliquus extracts by cell-free mushroom tyrosinase assay. It was found that petroleum ether and n-butanol extracts might contain unknown potential tyrosinase inhibitors, while its ethyl acetate extract might contain some unknown accelerators. Six compounds were isolated and their structures were identified by interpretation of NMR data and nicotinic acid was first discovered in Inonotus obliquus. In cells testing, betulin and trametenolic acid decreased tyrosinase activity and melanin content, while inotodiol and lanosterol significantly increased tyrosinase activity and melanin content, showing an AC⁡50 of 9.74 and 8.43 μM, respectively. Nicotinie acid, 3β,22,25-trihydroxy-lanosta-8-ene, had a little or no effect on tyrosinase. Betulin exhibited a mode of noncompetitive inhibition with a KI=KIS of 0.4 μM on tyrosinase activity showing an IC50 of 5.13 μM and being more effective than kojic acid (6.43 μM, and trametenolic acid exhibited a mode of mixed inhibition with a KI of 0.9 μM, KIS of 0.5 μM, and an IC50 of 7.25 μM. We proposed betulin and trametenolic acid as a new candidate of potent tyrosinase inhibitors and inotodiol and lanosterol as accelerators that could be used as therapeutic agent.

  19. The Effect of D-(−-arabinose on Tyrosinase: An Integrated Study Using Computational Simulation and Inhibition Kinetics

    Directory of Open Access Journals (Sweden)

    Hong-Jian Liu

    2012-01-01

    Full Text Available Tyrosinase is a ubiquitous enzyme with diverse physiologic roles related to pigment production. Tyrosinase inhibition has been well studied for cosmetic, medicinal, and agricultural purposes. We simulated the docking of tyrosinase and D-(−-arabinose and found a binding energy of −4.5 kcal/mol for theup-formof D-(−-arabinose and −4.4 kcal/mol for thedown-form of D-(−-arabinose. The results of molecular dynamics simulation suggested that D-(−-arabinose interacts mostly with HIS85, HIS259, and HIS263, which are believed to be in the active site. Our kinetic study showed that D-(−-arabinose is a reversible, mixed-type inhibitor of tyrosinase (α-value =6.11±0.98, Ki=0.21±0.19 M. Measurements of intrinsic fluorescence showed that D-(−-arabinose induced obvious tertiary changes to tyrosinase (binding constant K=1.58±0.02 M−1, binding number n=1.49±0.06. This strategy of predicting tyrosinase inhibition based on specific interactions of aldehyde and hydroxyl groups with the enzyme may prove useful for screening potential tyrosinase inhibitors.

  20. Chemical components and tyrosinase inhibitors from the twigs of Artocarpus heterophyllus.

    Science.gov (United States)

    Zheng, Zong-Ping; Chen, Sibao; Wang, Shiyun; Wang, Xia-Chang; Cheng, Ka-Wing; Wu, Jia-Jun; Yang, Dajiang; Wang, Mingfu

    2009-08-12

    An HPLC method was developed and validated to compare the chemical profiles and tyrosinase inhibitors in the woods, twigs, roots, and leaves of Artocarpus heterophyllus . Five active tyrosinase inhibitors including dihydromorin, steppogenin, norartocarpetin, artocarpanone, and artocarpesin were used as marker compounds in this HPLC method. It was discovered that the chemical profiles of A. heterophyllus twigs and woods are quite different. Systematic chromatographic methods were further applied to purify the chemicals in the twigs of A. heterophyllus. Four new phenolic compounds, including one isoprenylated 2-arylbenzofuran derivative, artoheterophyllin A (1), and three isoprenylated flavonoids, artoheterophyllin B (2), artoheterophyllin C (3), and artoheterophyllin D (4), together with 16 known compounds, were isolated from the ethanol extract of the twigs of A. heterophyllus. The structures of compounds 1-4 were elucidated by spectroscopic analysis. However, the four new compounds did not show significant inhibitory activities against mushroom tyrosinase compared to kojic acid. It was found that similar compounds, such as norartocarpetin and artocarpesin in the twigs and woods of A. heterophyllus, contributed to their tyrosinase inhibitory activity.

  1. Potent microbial and tyrosinase inhibitors from stem bark of Bauhinia rufescens (Fabaceae).

    Science.gov (United States)

    Muhammad, Aminu; Sirat, Hasnah Mohd

    2013-10-01

    The stem bark extracts of Bauhinia rufescens Lam. (Fabaceae) yielded 6-methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, alpha-amyrin acetate, beta-sitosterol 3-O-beta-D-xylopyranoside, 4-(2'-Hydroxyphenethyl)-5-methoxy-2-methylphenol, menisdaurin and sequoyitol. Their structures were determined using spectroscopic methods and comparisons with the literature data. For the antimicrobial assay Gram-positive and Gram-negative bacterial and fungal strains were tested, while the tyrosinase inhibition assay utilized L-DOPA as a substrate for the tyrosinase enzyme. 6-Methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, a-amyrin acetate, beta-sitosterol 3-O-D-xylopyranoside, menisdaurin and sequoyitol showed weak to moderate activities with minimum inhibition concentration (MIC) values in the range of 112.5-900 microg/mL against all bacterial strains, while the MIC values for the fungal strains were in the range of 28.1-450 microg/mL. In the tyrosinase inhibition assay, a-amyrin acetate was found to be moderately active against tyrosinase with an inhibition of 62% at 0.1 mg/mL. This activity was lower than that of the positive control, kojic acid (85%).

  2. Substrate-Dependent Kinetics in Tyrosinase-based Biosensing: Amperometry vs. Spectrophotometry

    NARCIS (Netherlands)

    Rassaei, Liza; Cui, Jin; Goluch, E.D.; Lemay, Serge Joseph Guy

    2012-01-01

    Despite the broad use of enzymes in electroanalytical biosensors, the influence of enzyme kinetics on the function of prototype sensors is often overlooked or neglected. In the present study, we employ amperometry as an alternative or complementary method to study the kinetics of tyrosinase, whose

  3. Albinism in the american mink (Neovison vison) is associated with a tyrosinase nonsense mutation

    DEFF Research Database (Denmark)

    Anistoroaei, Razvan Marian; Fredholm, Merete; Christensen, Knud

    2008-01-01

    Albino phenotypes are documented in various species including the American mink. In other species the albino phenotypes are associated with tyrosinase (TYR) gene mutations; therefore TYR was considered the candidate gene for albinism in mink. Four microsatellite markers were chosen in the prodicted...

  4. Determination of the Bridging Ligand in the Active Site of Tyrosinase

    Directory of Open Access Journals (Sweden)

    Congming Zou

    2017-10-01

    Full Text Available Tyrosinase is a type-3 copper enzyme that is widely distributed in plants, fungi, insects, and mammals. Developing high potent inhibitors against tyrosinase is of great interest in diverse fields including tobacco curing, food processing, bio-insecticides development, cosmetic development, and human healthcare-related research. In the crystal structure of Agaricus bisporus mushroom tyrosinase, there is an oxygen atom bridging the two copper ions in the active site. It is unclear whether the identity of this bridging oxygen is a water molecule or a hydroxide anion. In the present study, we theoretically determine the identity of this critical bridging oxygen by performing first-principles hybrid quantum mechanics/molecular mechanics/Poisson-Boltzmann-surface area (QM/MM-PBSA calculations along with a thermodynamic cycle that aim to improve the accuracy. Our results show that the binding with water molecule is energy favored and the QM/MM-optimized structure is very close to the crystal structure, whereas the binding with hydroxide anions causes the increase of energy and significant structural changes of the active site, indicating that the identity of the bridging oxygen must be a water molecule rather than a hydroxide anion. The different binding behavior between water and hydroxide anions may explain why molecules with a carboxyl group or too many negative charges have lower inhibitory activity. In light of this, the design of high potent active inhibitors against tyrosinase should satisfy both the affinity to the copper ions and the charge neutrality of the entire molecule.

  5. Use of Mushroom Tyrosinase to Introduce Michaelis-Menten Enzyme Kinetics to Biochemistry Students

    Science.gov (United States)

    Flurkey, William H.; Inlow, Jennifer K.

    2017-01-01

    An inexpensive enzyme kinetics laboratory exercise for undergraduate biochemistry students is described utilizing tyrosinase from white button mushrooms. The exercise can be completed in one or two three-hour lab sessions. The optimal amounts of enzyme, substrate (catechol), and inhibitor (kojic acid) are first determined, and then kinetic data is…

  6. Tyrosinase-Mediated Construction of a Silk Fibroin/Elastin Nanofiber Bioscaffold.

    Science.gov (United States)

    Hong, Yanqing; Zhu, Xueke; Wang, Ping; Fu, Haitian; Deng, Chao; Cui, Li; Wang, Qiang; Fan, Xuerong

    2016-04-01

    Elastin has characteristics of elasticity, biological activity, and mechanical stability. In the present work, tyrosinase-mediated construction of a bioscaffold with silk fibroin and elastin was carried out, aiming at developing a novel medical biomaterial. The efficiency of enzymatic oxidation of silk fibroin and the covalent reaction between fibroin and elastin were examined by spectrophotometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and size exclusion chromatography (SEC). The properties of composite air-dried and nanofiber scaffolds were investigated. The results reveal that elastin was successfully bonded to silk fibroins, resulting in an increase in molecular weight of fibroin proteins. ATR-FTIR spectra indicated that tyrosinase treatment impacted the conformational structure of fibroin-based membrane. The thermal behaviors and mechanical properties of the tyrosinase-treated scaffolds were also improved compared with the untreated group. NIH/3T3 cells exhibited optimum densities when grown on the nanofiber scaffold, implying that the nanofiber scaffold has enhanced biocompatibility compared to the air-dried scaffold. A biological nanofiber scaffold constructed from tyrosinase-treated fibroin and elastin could potentially be utilized in biomedical applications.

  7. Characterization of a New Flavone and Tyrosinase Inhibition Constituents from the Twigs of Morus alba L.

    Science.gov (United States)

    Zhang, Long; Tao, Guanjun; Chen, Jie; Zheng, Zong-Ping

    2016-09-02

    The twigs of Morus alba L. were found to show strong tyrosinase inhibition activity, and the responsible active components in the extract were further investigated in this study. A flavone, named morusone (1), and sixteen known compounds 2-17 were isolated from M. alba twigs and their structures were identified by interpretation of the corresponding ESI-MS and NMR spectral data. In the tyrosinase inhibitory test, the compounds steppogenin (IC50 0.98 ± 0.01 µM), 2,4,2',4'-tetrahydroxychalcone (IC50 0.07 ± 0.02 µM), morachalcone A (IC50 0.08 ± 0.02 µM), oxyresveratrol (IC50 0.10 ± 0.01 µM), and moracin M (8.00 ± 0.22 µM) exhibited significant tyrosinase inhibition activities, much stronger than that of the positive control kojic acid. These results suggest that M. alba twig extract should served as a good source of natural tyrosinase inhibitors for use in foods as antibrowning agents or in cosmetics as skin-whitening agents.

  8. Characterization of a New Flavone and Tyrosinase Inhibition Constituents from the Twigs of Morus alba L.

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2016-09-01

    Full Text Available The twigs of Morus alba L. were found to show strong tyrosinase inhibition activity, and the responsible active components in the extract were further investigated in this study. A flavone, named morusone (1, and sixteen known compounds 2–17 were isolated from M. alba twigs and their structures were identified by interpretation of the corresponding ESI-MS and NMR spectral data. In the tyrosinase inhibitory test, the compounds steppogenin (IC50 0.98 ± 0.01 µM, 2,4,2′,4′-tetrahydroxychalcone (IC50 0.07 ± 0.02 µM, morachalcone A (IC50 0.08 ± 0.02 µM, oxyresveratrol (IC50 0.10 ± 0.01 µM, and moracin M (8.00 ± 0.22 µM exhibited significant tyrosinase inhibition activities, much stronger than that of the positive control kojic acid. These results suggest that M. alba twig extract should served as a good source of natural tyrosinase inhibitors for use in foods as antibrowning agents or in cosmetics as skin-whitening agents.

  9. Large-scale recombinant expression and purificatoin of human tyrosinase suitabel for structural studies

    NARCIS (Netherlands)

    Lai, X.; Soler-Lopez, M.; Wichers, H.J.; Dijkstra, Bouke

    2016-01-01

    Human tyrosinase (TYR) is a glycoprotein that initiates the first two reactions in the melanin biosynthesis pathway. Mutations in its encoding gene cause Oculocutaneous Albinism type I (OCA1), the most severe form of albinism, which is a group of autosomal recessive disorders characterized by

  10. T Cell Receptors that Recognize the Tyrosinase Tumor Antigen | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute, Surgery Branch, Tumor Immunology Section, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize T Cells Attacking Cancer: T Cell Receptors that Recognize the Tyrosinase Tumor Antigen

  11. IMPROVED SELECTIVE ELECTROCATALYTIC OXIDATION OF PHENOLS BY TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR

    Science.gov (United States)

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil yielded a greater response to phenol and catechol than those using a higher viscosity oil of s...

  12. Aqueous humor tyrosinase activity is indicative of iris melanocyte toxicity.

    Science.gov (United States)

    Mahanty, Sarmistha; Kawali, Ankush A; Dakappa, Shruthi Shirur; Mahendradas, Padmamalini; Kurian, Mathew; Kharbanda, Varun; Shetty, Rohit; Setty, Subba Rao Gangi

    2017-09-01

    Antibiotics such as fluoroquinolones (FQLs) are commonly used to treat ocular infections but are also known to cause dermal melanocyte toxicity. The release of dispersed pigments from the iris into the aqueous humor has been considered a possible ocular side effect of the systemic administration of FQLs such as Moxifloxacin, and this condition is known as bilateral acute iris transillumination (BAIT). Bilateral acute depigmentation of iris (BADI) is a similar condition, with iris pigment released into the aqueous, but it has not been reported as a side effect of FQL. Iris pigments are synthesized by the melanogenic enzyme tyrosinase (TYR) and can be detected but not quantified by using slit-lamp biomicroscopy. The correlation between dispersed pigments in the aqueous and the extent of melanocyte toxicity due to topical antibiotics in vivo is not well studied. Here, we aimed to study the effect of topical FQLs on iris tissue, the pigment release in the aqueous humor and the development of clinically evident iris atrophic changes. We evaluated this process by measuring the activity of TYR in the aqueous humor of 82 healthy eyes undergoing cataract surgery following topical application of FQLs such as Moxifloxacin (27 eyes, preservative-free) or Ciprofloxacin (29 eyes, with preservative) or the application of non-FQL Tobramycin (26 eyes, with preservative) as a control. In addition, the patients were questioned and examined for ocular side effects in pre- and post-operative periods. Our data showed a significantly higher mean TYR activity in the aqueous humor of Ciprofloxacin-treated eyes compared to Moxifloxacin- (preservative free, p iris melanocytes. However, the reduced TYR activity in the aqueous of Moxifloxacin-treated eyes was possibly due to the presence of a higher drug concentration, which inhibits TYR activity. Consistently, immunoblotting analysis of the aqueous humor from both Ciprofloxacin- and Moxifloxacin-treated eyes showed the presence of soluble

  13. Comparative assessment of total polyphenols, antioxidant and antimicrobial activity of different tea varieties of Bangladesh

    Directory of Open Access Journals (Sweden)

    Yead Morshed Nibir

    2017-04-01

    Conclusions: Taken together, the results of this study demonstrated that Bangladeshi tea, especially the green tea, may act as a substitute for natural antioxidants and as a promising antibacterial agent for beneficial influence in human health.

  14. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations.

    Science.gov (United States)

    Schweikardt, Thorsten; Olivares, Concepción; Solano, Francisco; Jaenicke, Elmar; García-Borrón, José Carlos; Decker, Heinz

    2007-10-01

    Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxygens of M374 and V377 serving as hydrogen acceptors for the NH-groups of the imidazole rings of the copper-binding His367 and His180. Therefore, this loop is essential for the stability of the active site architecture. A double substitution (374)MS(375) --> (374)GG(375) or a single M374G mutation lead to a local perturbation of the protein matrix at the active site affecting the orientation of the H367 side chain, that may be unable to bind CuB reliably, resulting in loss of activity. The model also accounts for loss of function in two naturally occurring albino mutations, S380P and V393F. The hydroxyl group in S380 contributes to the correct orientation of M374, and the substitution of V393 for a bulkier phenylalanine sterically impedes correct side chain packing at the active site. Therefore, our model explains the mechanistic necessity for conservation of not only active site histidines but also adjacent amino acids in tyrosinase.

  15. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Science.gov (United States)

    Dolinska, Monika B; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T; Brooks, Brian P; Sergeev, Yuri V

    2014-01-01

    Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. The intra-melanosomal domain of human tyrosinase (residues 19-469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  16. Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region.

    Directory of Open Access Journals (Sweden)

    Marioara B Marin

    Full Text Available EDEM1 is a mannosidase-like protein that recruits misfolded glycoproteins from the calnexin/calreticulin folding cycle to downstream endoplasmic reticulum associated degradation (ERAD pathway. Here, we investigate the role of EDEM1 in the processing of tyrosinase, a tumour antigen overexpressed in melanoma cells. First, we analyzed and modeled EDEM1 major domains. The homology model raised on the crystal structures of human and Saccharomyces cerevisiae ER class I α1,2-mannosidases reveals that the major mannosidase domain located between aminoacids 121-598 fits with high accuracy. We have further identified an N-terminal region located between aminoacids 40-119, predicted to be intrinsically disordered (ID and susceptible to adopt multiple conformations, hence facilitating protein-protein interactions. To investigate these two domains we have constructed an EDEM1 deletion mutant lacking the ID region and a triple mutant disrupting the glycan-binding domain and analyzed their association with tyrosinase. Tyrosinase is a glycoprotein partly degraded endogenously by ERAD and the ubiquitin proteasomal system. We found that the degradation of wild type and misfolded tyrosinase was enhanced when EDEM1 was overexpressed. Glycosylated and non-glycosylated mutants co-immunoprecipitated with EDEM1 even in the absence of its intact mannosidase-like domain, but not when the ID region was deleted. In contrast, calnexin and SEL 1L associated with the deletion mutant. Our data suggest that the ID region identified in the N-terminal end of EDEM1 is involved in the binding of glycosylated and non-glycosylated misfolded proteins. Accelerating tyrosinase degradation by EDEM1 overexpression may lead to an efficient antigen presentation and enhanced elimination of melanoma cells.

  17. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Monika B Dolinska

    Full Text Available Tyrosinase (TYR catalyzes the rate-limiting, first step in melanin production and its gene (TYR is mutated in many cases of oculocutaneous albinism (OCA1, an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes.The intra-melanosomal domain of human tyrosinase (residues 19-469 and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure.The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  18. Evidence of Possible Evolutionary Divergence in Plant Genera Based on Antioxidant Properties

    Science.gov (United States)

    Asai, Elizabeth; Cao, Sharon

    2009-01-01

    The purpose of this investigation was to determine if three Western species of the Panax, Lycium, and Astragalus genera had antibacterial and/or antioxidant properties, and how their properties compared to Eastern herbs in the same genera. The group hypothesized that when compared, the corresponding herbs would have identical antibacterial and…

  19. Antioxidant and antibacterial effects of Lavandula and Mentha essential oils in minced beef inoculated with E. coli O157:H7 and S. aureus during storage at abuse refrigeration temperature.

    Science.gov (United States)

    Djenane, Djamel; Aïder, Mohammed; Yangüela, Javier; Idir, Lamia; Gómez, Diego; Roncalés, Pedro

    2012-12-01

    The essential oils (EOs) of Lavandula angustifolia L. and Mentha piperita L. were analyzed by gas chromatography mass spectrometry (GC/MS). The major constituents were linalool (22.35%), linalyl acetate (21.80%), trans-ocimene (6.16%) and 4-terpineol (5.19%) for L. angustifolia and menthol (33.28%), menthone (22.03%), and menthyl acetate (6.40%) for M. piperita. In vitro antibacterial activity of both EOs against Escherichia coli O157:H7 and Staphylococcus aureus CECT 4459 showed high inhibition against S. aureus. The lowest minimal inhibitory concentrations (MIC) were obtained with L. angustifolia (0.25 μL/mL) against S. aureus; M. piperita exhibited a MIC of 0.50 μL/mL against both microorganisms. Both EOs caused a significant decrease of bacterial growth in minced beef (p<0.05) stored at 9±1 °C. Minced beef treated with EOs showed the lowest TBARS values (lipid oxidation). Moreover, the results showed that the addition of EOs significantly extended fresh meat odor even at abuse temperature. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The oxadiazole antibacterials.

    Science.gov (United States)

    Janardhanan, Jeshina; Chang, Mayland; Mobashery, Shahriar

    2016-10-01

    The oxadiazoles are a class of antibacterials discovered by in silico docking and scoring of compounds against the X-ray structure of a penicillin-binding protein. These antibacterials exhibit activity against Gram-positive bacteria, including against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). They show in vivo efficacy in murine models of peritonitis/sepsis and neutropenic thigh MRSA infection. They are bactericidal and orally bioavailable. The oxadiazoles show promise in treatment of MRSA infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [Distiller Yeasts Producing Antibacterial Peptides].

    Science.gov (United States)

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  2. Cosmetic applications of glucitol-core containing gallotannins from a proprietary phenolic-enriched red maple (Acer rubrum) leaves extract: inhibition of melanogenesis via down-regulation of tyrosinase and melanogenic gene expression in B16F10 melanoma cells.

    Science.gov (United States)

    Ma, Hang; Xu, Jialin; DaSilva, Nicholas A; Wang, Ling; Wei, Zhengxi; Guo, Liangran; Johnson, Shelby L; Lu, Wei; Xu, Jun; Gu, Qiong; Seeram, Navindra P

    2017-05-01

    The red maple (Acer rubrum) is a rich source of phenolic compounds which possess galloyl groups attached to different positions of a 1,5-anhydro-D-glucitol core. While these glucitol-core containing gallotannins (GCGs) have reported anti-oxidant and anti-glycative effects, they have not yet been evaluated for their cosmetic applications. Herein, the anti-tyrosinase and anti-melanogenic effects of a proprietary phenolic-enriched red maple leaves extract [Maplifa ™ ; contains ca. 45% ginnalin A (GA) along with other GCGs] were investigated using enzyme and cellular assays. The GCGs showed anti-tyrosinase activity with IC 50 values ranging from 101.4 to 1047.3 μM and their mechanism of tyrosinase inhibition (using GA as a representative GCG) was evaluated by chelating and computational/modeling studies. GA reduced melanin content in murine melanoma B16F10 cells by 79.1 and 56.7% (at non-toxic concentrations of 25 and 50 μM, respectively), and its mechanisms of anti-melanogenic effects were evaluated by using methods including fluorescent probe (DCF-DA), real-time PCR, and western blot experiments. These data indicated that GA was able to: (1) reduce the levels of reactive oxygen species, (2) down-regulate the expression of MITF, TYR, TRP-1, and TRP-2 gene levels in a time-dependent manner, and (3) significantly reduce protein expression of the TRP-2 gene. Therefore, the anti-melanogenic effects of red maple GCGs warrant further investigation of this proprietary natural product extract for potential cosmetic applications.

  3. Evaluation of the Antioxidant and Melanogenesis Inhibitory Properties of Pracparatum Mungo (Lu-Do Huang

    Directory of Open Access Journals (Sweden)

    Yu-Yu Kao

    2013-07-01

    Full Text Available Pracparatum mungo (Lu-Do Huang is a traditional Chinese functional medicine made from the natural fermentation of mung bean (綠豆 Lǜ Dòu mixed with other Chinese medicines. It has been recognized as having liver protecting and detoxifying effects. As mung beans have been verified to possess anti-inflammatory, antioxidant, antipyretic, and whitening actions, the present research utilized the in vitro, ex vivo, and in vivo experimental models to investigate the antioxidant and melanin inhibiting effects of P. mungo on the skin. The in vitro experiment revealed that P. mungo methanol extract (PMME and P. mungo ethanol extract (PMEE possess the capacity to clear α,α-diphenyl-2-picrylhydrazyl (DPPH radicals and inhibit tyrosinase activity. The ex vivo experiment indicated that PMEE can promote the growth of MDCK cells and increase the enzymatic activities of superoxide dismutase (SOD and catalase in MDCK cells. On the other hand, PMME and PMEE can suppress the proliferation of A375 cells, and PMEE can reduce the enzymatic activities of SOD and catalase in A375 cells. The in vivo results showed that P. mungo can enhance the enzymatic performance of SOD, Catalase, and glutathione peroxidase (GPx in the liver. The results also showed that P. mungo has antioxidant characteristics and can inhibit tyrosinase activity, thereby promoting the growth of skin tissues and suppressing the proliferation of A375 cells, and thus enhancing the effects that the antioxidant enzymatic performance has on the liver. These results can be applied in the development of tyrosinase inhibitors or antioxidants used for the inhibition of melanin biosynthesis or for auto-oxidation in further industrial applications, particularly those relating to functional food or cosmetic compositions.

  4. New Whitening Constituents from Taiwan-Native Pyracantha koidzumii: Structures and Tyrosinase Inhibitory Analysis in Human Epidermal Melanocytes

    Directory of Open Access Journals (Sweden)

    Rong-Dih Lin

    2015-12-01

    Full Text Available Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9 and 3,4-dihydroxy-5-methoxybiphenyl-2ʹ-O-β-d-glucopyranoside (13, as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver–Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics.

  5. New Whitening Constituents from Taiwan-Native Pyracantha koidzumii: Structures and Tyrosinase Inhibitory Analysis in Human Epidermal Melanocytes

    Science.gov (United States)

    Lin, Rong-Dih; Chen, Mei-Chuan; Liu, Yan-Ling; Lin, Yi-Tzu; Lu, Mei-Kuang; Hsu, Feng-Lin; Lee, Mei-Hsien

    2015-01-01

    Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata) Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9) and 3,4-dihydroxy-5-methoxybiphenyl-2ʹ-O-β-d-glucopyranoside (13), as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver–Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics. PMID:26633381

  6. Effects of Fumarprotocetraric Acid, a Depsidone from the Lichen Cladonia verticillaris, on Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Luiz Fabrício Gardini Brandão

    2017-10-01

    Full Text Available Lichens are widely distributed around the world. Their phenolic compounds, consisting mainly of depsides and depsidones, have been extensively studied for important biological activities. More recently, these compounds have been evaluated for their inhibitory activity against enzymes such as tyrosinase, a key agent in melanin biosynthesis. In the present investigation, the depsidone fumarprotocetraric acid isolated from the lichen Cladonia verticillaris (Raddi Fr. was evaluated for its inhibitory activity against this critical enzyme. Kinetic study showed that depsidone at 0.6 mM inhibited tyrosinase activity by 39.8%. Lineweaver–Burk plots revealed that fumarprotocetraric acid can act as an uncompetitive or mixed-type inhibitor, depending on concentration. DOI: http://dx.doi.org/10.17807/orbital.v9i4.999 

  7. Sequence analysis of tyrosinase gene in ocular and oculocutaneous albinism patients: introducing three novel mutations.

    Science.gov (United States)

    Khordadpoor-Deilamani, Faravareh; Akbari, Mohammad Taghi; Karimipoor, Morteza; Javadi, Gholamreza

    2015-01-01

    Albinism is a heterogeneous genetic disorder of melanin synthesis that results in hypopigmented eyes (in patients with ocular albinism) or hair, skin, and eyes (in individuals with oculocutaneous albinism). It is associated with decreased visual acuity, nystagmus, strabismus, and photophobia. The tyrosinase gene is known to be involved in both oculocutaneous albinism and autosomal recessive ocular albinism. In this study, we aimed to screen the mutations in the TYR gene in the nonsyndromic OCA and autosomal recessive ocular albinism patients from Iran. The tyrosinase gene was examined in 23 unrelated patients with autosomal recessive ocular albinism or nonsyndromic OCA using DNA sequencing and bioinformatics analysis. TYR gene mutations were identified in 14 (app. 60%) albinism patients. We found 10 mutations, 3 of which were novel. No mutation was found in our ocular albinism patients, but one of them was heterozygous for the p.R402Q polymorphism.

  8. Substrate-bound tyrosinase electrode using gold nanoparticles anchored to pyrroloquinoline quinone for a pesticide biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.Y.; Kang, M.S.; Shim, J.; Moon, S.H. [Gwangju Inst. of Science and Technology (Korea, Republic of). Dept. of Environmental Science and Engineering

    2008-07-01

    Enzyme electrodes are now being considered for use in the detection of pesticides. However, the electrodes do not have the sensitivity to detect low concentration pesticides, and external substrates are needed to measure changes in enzyme activity. This study discussed a chemical species designed to mimic a substrate in the preparation of a tyrosinase (TYR) electrode for use without substrate standard solutions. Pyrroloquinolone quinone (PQQ) was integrated within the tyrosinase electrode and used as an assimilated substrate for measuring the pesticide. Gold (Au) nanoparticles were also used to detect low concentration pesticides. The TYR was immobilized on the PQQ-anchored Au nanoparticles by a covalent bond. The tethered PQQ was then reduced by obtaining 2-electrons from the electrode. The study showed that the substrate-bound enzyme electrode can be used to detect pesticide without a substrate standard solution through the immobilization of the enzyme and the substrate on the Au nanoparticles.

  9. Identification of geranic acid, a tyrosinase inhibitor in lemongrass (Cymbopogon citratus).

    Science.gov (United States)

    Masuda, Toshiya; Odaka, Yuka; Ogawa, Natsuko; Nakamoto, Katsuo; Kuninaga, Hideki

    2008-01-23

    Lemongrass is a popular Asian herb having a lemon-like flavor. Very recently, potent tyrosinase inhibitory activity has been found in lemongrass in addition to various biological activities reported in the literature. The aim of the present study is to identify the active compounds in the lemongrass. An assay-guided purification revealed that one of the active substances was geranic acid. Geranic acid has two stereoisomers, which are responsible for the trans and cis geometry on the conjugated double bond. Both isomers are present in the active ethyl acetate-soluble extract of the lemongrass, and their IC50 values were calculated to be 0.14 and 2.3 mM, respectively. The structure requirement of geranic acid for the potent tyrosinase inhibitory activity was investigated using geranic acid-related compounds.

  10. Inhibitory effects of constituents of Morinda citrifolia seeds on elastase and tyrosinase.

    Science.gov (United States)

    Masuda, Megumi; Murata, Kazuya; Fukuhama, Akiko; Naruto, Shunsuke; Fujita, Tadashi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2009-07-01

    A 50% ethanolic extract (MCS-ext) from seeds of Morinda citrifolia ("noni" seeds) showed more potent in vitro inhibition of elastase and tyrosinase, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than extracts of M. citrifolia leaves or flesh. Activity-guided fractionation of MCS-ext using in vitro assays led to the isolation of ursolic acid as an active constituent of elastase inhibitory activity. 3,3'-Bisdemethylpinoresinol, americanin A, and quercetin were isolated as active constituents having both tyrosinase inhibitory and radical scavenging activities. Americanin A and quercetin also showed superoxide dismutase (SOD)-like activity. These active compounds were isolated from noni seeds for the first time.

  11. A diterpenoid sugiol from Metasequoia glyptostroboides with α-glucosidase and tyrosinase inhibitory potential

    Directory of Open Access Journals (Sweden)

    Vivek K. Bajpai

    2014-08-01

    Full Text Available Nowadays use of plant derived natural compounds have become a topic of increasing interest in food and medicine industries due to their multitude of biological and therapeutic properties. In this study, a diterpenoid compound sugiol, isolated from Metasequoia glyptostroboides was evaluated for α–glucosidase and tyrosinase inhibitory efficacy in terms of its potent anti-diabetic and anti-melanogenesis potential, respectively. As a result, sugiol at the concentration range of (100-10,000 µg/mL and (20-500 µg/mL showed potent efficacy on inhibiting α-glucosidase and tyrosinase enzymes in vitro ranging from 12.34-63.47% and 28.22-67.43%, respectively. These findings confirm the therapeutic potential of diterpenoid compound sugiol from M. glyptostroboides as a novel candidate for using in food and medicine industry which may have practical potential to cure skin and diabetes mellitus type-2 related disorders.

  12. Investigating the Effect of Glass Ion Release on the Cytocompatibility, Antibacterial Eflcacy and Antioxidant Activity of Y2O3 / CeO2 doped SiO2-SrO-Na2O glasses

    Directory of Open Access Journals (Sweden)

    Placek L. M.

    2018-02-01

    Full Text Available The effect on ion release and cytocompatibility of Yttrium (Y and Cerium (Ce are investigated when substituted for Sodium (Na in a 0.52SiO2-0.24SrO-0.24-Na2OMOglass series (where MO= Y2O3 or CeO2. Glass leaching was evaluated through pH measurements and Inductive Coupled Plasma-Optical Emission Spectrometry (ICP-OES analysiswhere the extract pH increased during incubation (11.2 - 12.5. Ion release of Silicon (Si, Na and Strontium (Sr from the Con glass was at higher than that of glasses containing Y or Ce, and reached a limit after 1 day. Ion release from Y and Ce containing glasses reached a maximum of 1800 μg/mL, 1800 μg/mL, and 10 μg/mL for Si, Na, and Sr, respectively. Release of Y and Cewas below the ICP- OES detection limit 75% of bacteria at a 9% extract concentration. Antioxidant capacity (mechanism for neuroprotection was evaluated using the ABTS assay. All glasses had inherent radical oxygen species (ROS scavenging capability with Con reaching 9.5 mMTE.

  13. Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves.

    Science.gov (United States)

    Cespedes, Carlos L; Balbontin, Cristian; Avila, Jose G; Dominguez, Mariana; Alarcon, Julio; Paz, Cristian; Burgos, Viviana; Ortiz, Leandro; Peñaloza-Castro, Ignacio; Seigler, David S; Kubo, Isao

    2017-11-01

    It is reported in this study the effect of isolates from leaves of Aristotelia chilensis as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase enzymes. The aim of the paper was to evaluate the activity of A. chilensis towards different enzymes. In addition to pure compounds, extracts rich in alkaloids and phenolics were tested. The most active F5 inhibited AChE (79.5% and 89.8% at 10.0 and 20.0 μg/mL) and against BChE (89.5% and 97.8% at 10.0 and 20.0 μg/mL), showing a strong mixed-type inhibition against AChE and BChE. F3 (a mixture of flavonoids and phenolics acids), showed IC 50 of 90.7 and 59.6 μg/mL of inhibitory activity against AChE and BChE, inhibiting the acetylcholinesterase competitively. Additionally, F3 showed and high potency as tyrosinase inhibitor with IC 50 at 8.4 μg/mL. Sample F4 (anthocyanidins and phenolic composition) presented a complex, mixed-type inhibition of tyrosinase with a IC 50 of 39.8 μg/mL. The findings in this investigation show that this natural resource has a strong potential for future research in the search of new phytotherapeutic treatments for cholinergic deterioration ailments avoiding the side effects of synthetic drugs. This is the first report as cholinesterases and tyrosinase inhibitors of alkaloids and phenolics from A. chilensis leaves. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase

    International Nuclear Information System (INIS)

    Toussaint, O.; Lerch, K.

    1987-01-01

    The usual substrates of tyrosinase, a copper-containing monooxygenase (EC 1.14.18.1), are monophenols and o-diphenols which are both converted to o-quinones. In this paper, the authors studied the reaction of this enzyme with two new classes of substrates: aromatic amines and o-aminophenols, structural analogues of monophenols and o-diphenols, respectively. They undergo the same catalytic reactions (ortho hydroxylation and oxidation), as documented by product analysis and kinetic studies. In the presence of tyrosinase, arylamines and o-aminophenols are converted to o-quinone imines, which are isolated as quinone anils or phenoxazones. As an example, in the presence of tyrosinase, 2-amino-3-hydroxybenzoic acid (an o-aminophenol) is converted to cinnabarinic acid, a well-known phenoxazone, while p-aminotoluene (an aromatic amine) gives rise to the formation of 5-amino-2-methyl-1,4-benzoquinone 1-(4-methylanil). Kinetic studies using an oxygen electrode show that arylamines and the corresponding monophenols exhibit similar Michaelis constants. In contrast, the reaction rates observed for aromatic amines are relatively slow as compared to monophenols. The enzymatic conversion of arylamines by tryosinase is different from the typical ones: N-oxidation and ring hydroxylation without further oxidation. This difference originates from the regiospecific hydroxylation (ortho position) and subsequent oxidation of the intermediate o-aminophenol to the corresponding o-quinone imine. Finally, the well-know monooxygenase activity of tyrosinase was also confirmed for the aromatic amine p-aminotoluene, with 18 O 2

  15. Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor

    International Nuclear Information System (INIS)

    Anh, Tuan Mai; Dzyadevych, Sergei V.; Prieur, Nicolas; Duc, Chien Nguyen; Pham, T.D.; Renault, Nicole Jaffrezic; Chovelon, Jean-Marc

    2006-01-01

    A conductometric tyrosinase biosensor for the detection of some toxic compounds including diuron, atrazine, and copper ions was developed. The work of this biosensor is based on the principle of change of conductivity of the enzyme membrane when tyrosinase either interacts with 4-chlorophenol substrate or is inhibited by pollutants. The different samples tested were solutions containing diuron, atrazine, copper, lead and zinc ions, mixtures of copper/atrazine or copper/diuron and real water samples coming from a Vietnamese river. In the last case, classical techniques such as GC-MS or atomic absorption spectrometry were used in order to estimate exact concentration of these species in real water samples. Results have shown that such a biosensor could be used as an early warning system for the detection of these pollutants, as no matrix effect coming from the real sample was observed and no synergetic or antagonist effects were found for the mixture of toxic compounds. In addition, results were coherent with the content of the tyrosinase inhibitors

  16. Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Anh, Tuan Mai [Laboratoire d' Application de la Chimie a l' Environnement, UMR CNRS 5634, Universite Claude Bernard Lyon I, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex (France); International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Dzyadevych, Sergei V. [Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kiev 03143 (Ukraine); Prieur, Nicolas [Institute of Natural Products Chemistry, Vietnam National Centre for Science and Technology, Hoang Quoc Viet Str., Hanoi, Vietnam (Viet Nam); Duc, Chien Nguyen [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Pham, T.D. [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Renault, Nicole Jaffrezic [Ecole Centrale de Lyon, CEGELY, UMR CNRS 5005, 36 Avenue Guy de Collongue, 69134 Ecully Cedex (France); Chovelon, Jean-Marc [Laboratoire d' Application de la Chimie a l' Environnement, UMR CNRS 5634, Universite Claude Bernard Lyon I, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex (France)]. E-mail: chovelon@univ-lyon1.fr

    2006-03-15

    A conductometric tyrosinase biosensor for the detection of some toxic compounds including diuron, atrazine, and copper ions was developed. The work of this biosensor is based on the principle of change of conductivity of the enzyme membrane when tyrosinase either interacts with 4-chlorophenol substrate or is inhibited by pollutants. The different samples tested were solutions containing diuron, atrazine, copper, lead and zinc ions, mixtures of copper/atrazine or copper/diuron and real water samples coming from a Vietnamese river. In the last case, classical techniques such as GC-MS or atomic absorption spectrometry were used in order to estimate exact concentration of these species in real water samples. Results have shown that such a biosensor could be used as an early warning system for the detection of these pollutants, as no matrix effect coming from the real sample was observed and no synergetic or antagonist effects were found for the mixture of toxic compounds. In addition, results were coherent with the content of the tyrosinase inhibitors.

  17. A rational workflow for sequential virtual screening of chemical libraries on searching for new tyrosinase inhibitors.

    Science.gov (United States)

    Le-Thi-Thu, Huong; Casanola-Martín, Gerardo M; Marrero-Ponce, Yovani; Rescigno, Antonio; Abad, Concepcion; Khan, Mahmud Tareq Hassan

    2014-01-01

    The tyrosinase is a bifunctional, copper-containing enzyme widely distributed in the phylogenetic tree. This enzyme is involved in the production of melanin and some other pigments in humans, animals and plants, including skin pigmentations in mammals, and browning process in plants and vegetables. Therefore, enzyme inhibitors has been under the attention of the scientist community, due to its broad applications in food, cosmetic, agricultural and medicinal fields, to avoid the undesirable effects of abnormal melanin overproduction. However, the research of novel chemical with antityrosinase activity demands the use of more efficient tools to speed up the tyrosinase inhibitors discovery process. This chapter is focused in the different components of a predictive modeling workflow for the identification and prioritization of potential new compounds with activity against the tyrosinase enzyme. In this case, two structure chemical libraries Spectrum Collection and Drugbank are used in this attempt to combine different virtual screening data mining techniques, in a sequential manner helping to avoid the usually expensive and time consuming traditional methods. Some of the sequential steps summarize here comprise the use of drug-likeness filters, similarity searching, classification and potency QSAR multiclassifier systems, modeling molecular interactions systems, and similarity/diversity analysis. Finally, the methodologies showed here provide a rational workflow for virtual screening hit analysis and selection as a promissory drug discovery strategy for use in target identification phase.

  18. Tyrosinase, could it be a missing link in ochronosis in alkaptonuria?

    Science.gov (United States)

    Taylor, Adam M; Kammath, Vishnu; Bleakley, Aaron

    2016-06-01

    The hypothesis that is proposed is that tyrosinase, an enzyme widely found within the human body is implicated in the ochronosis that occurs in alkaptonuria; an autosomal recessive condition first used by Archibald Garrod to describe the theory of "Inborn Errors of Metabolism." The disease results from the absence of a single enzyme in the liver that breaks down homogentisic acid; this molecule becomes systemically elevated in sufferers. The condition is characterised by a clinical triad of symptoms; homogentisic aciduria from birth, ochronosis (darkening) of collagenous tissues (from ∼30years of age) and ochronotic osteoarthropathy in weight bearing joints due to long term ochronosis in them (from ∼40years of age). Tyrosinase, a polyphenol oxidase has been shown in many species to contribute to the darkening of tissues in many organisms; including humans in the production of melanin. Tyrosinase under the right conditions shows alterations in its substrate specificity and may contribute to the darkening seen in AKU where it moves away from polymerising tyrosine but also homogentisic acid, the causative molecule in alkaptonuria, that is present in excess. Copyright © 2016. Published by Elsevier Ltd.

  19. Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase.

    Science.gov (United States)

    Muñoz-Muñoz, Jose Luis; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon; Tudela, Jose; Rodriguez-Lopez, Jose N; Garcia-Canovas, Francisco

    2011-12-01

    The kinetics of tyrosinase acting on o-aminophenols and aromatic amines as substrates was studied. The catalytic constants of aromatic monoamines and o-diamines were both low, these results are consistent with our previous mechanism in which the slow step is the transfer of a proton by a hydroxyl to the peroxide in oxy-tyrosinase (Fenoll et al., Biochem. J. 380 (2004) 643-650). In the case of o-aminophenols, the hydroxyl group indirectly cooperates in the transfer of the proton and consequently the catalytic constants in the action of tyrosinase on these compounds are higher. In the case of aromatic monoamines, the Michaelis constants are of the same order of magnitude than for monophenols, which suggests that the monophenols bind better (higher binding constant) to the enzyme to facilitate the π-π interactions between the aromatic ring and a possible histidine of the active site. In the case of aromatic o-diamines, both the catalytic and Michaelis constants are low, the values of the catalytic constants being lower than those of the corresponding o-diphenols. The values of the Michaelis constants of the aromatic o-diamines are slightly lower than those of their corresponding o-diphenols, confirming that the aromatic o-diamines bind less well (lower binding constant) to the enzyme. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Antibacterial activity of hemocyanin from red swamp crayfish (Procambarus clarkii).

    Science.gov (United States)

    Qin, Zhendong; Babu, V Sarath; Wan, Quanyuan; Muhammad, Asim; Li, Jun; Lan, Jiangfeng; Lin, Li

    2018-04-01

    Hemocyanins (HMC): the copper-containing respiratory proteins present in invertebrate hemolymph, which plays many essential roles in the immune system. Currently, little is known about the HMC domains of Procambarus clarkii (P. clarkii) and their function in antimicrobial immune response. In this present study, we comparatively studied the expression pattern of native PcHMC with the three recombinant proteins of variable domains of crayfish hemocyanin (PcHMC-N, N-terminal domain of hemocyanin; PcHMC-T, tyrosinase domain of hemocyanin; PcHMC-C, C-terminal domain of hemocyanin). The results showed that three purified recombinant proteins had a strong binding to various bacteria and lipopolysaccharides that further highly agglutinated. The HMCs recombinant proteins showed strong antibacterial activity against V. parahaemolyticus and S. aureus by bacterial growth inhibition, phenoloxidase (PO) and phagocytosis assays. Specifically, rPcHMC1-T and rPcHMC1-C inhibited both the bacteria efficiently, rPcHMC1-T was highly upregulated the PO activity than the other recombinant proteins. Whereas, recombinant proteins pretreated crayfish hemocytes participated in phagocytosis activity, rPcHMC1-N and rPcHMC1-C proteins had a profound effect than the rPcHMC1-T on S. aureus and V. parahaemolyticus phagocytosis. The crayfish hemocyanin domains clearly exhibited antibacterial and phagocytic activities against both the bacteria, suggesting that its variable domains of hemocyanin have the different function on specific pathogen during the assault of pathogens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Antibacterial Applications of Nanodiamonds.

    Science.gov (United States)

    Szunerits, Sabine; Barras, Alexandre; Boukherroub, Rabah

    2016-04-12

    Bacterial infectious diseases, sharing clinical characteristics such as chronic inflammation and tissue damage, pose a major threat to human health. The steady increase of multidrug-resistant bacteria infections adds up to the current problems modern healthcare is facing. The treatment of bacterial infections with multi-resistant germs is very difficult, as the development of new antimicrobial drugs is hardly catching up with the development of antibiotic resistant pathogens. These and other considerations have generated an increased interest in the development of viable alternatives to antibiotics. A promising strategy is the use of nanomaterials with antibacterial character and of nanostructures displaying anti-adhesive activity against biofilms. Glycan-modified nanodiamonds (NDs) revealed themselves to be of great promise as useful nanostructures for combating microbial infections. This review summarizes the current efforts in the synthesis of glycan-modified ND particles and evaluation of their antibacterial and anti-biofilm activities.

  2. Antibacterial Applications of Nanodiamonds

    Directory of Open Access Journals (Sweden)

    Sabine Szunerits

    2016-04-01

    Full Text Available Bacterial infectious diseases, sharing clinical characteristics such as chronic inflammation and tissue damage, pose a major threat to human health. The steady increase of multidrug-resistant bacteria infections adds up to the current problems modern healthcare is facing. The treatment of bacterial infections with multi-resistant germs is very difficult, as the development of new antimicrobial drugs is hardly catching up with the development of antibiotic resistant pathogens. These and other considerations have generated an increased interest in the development of viable alternatives to antibiotics. A promising strategy is the use of nanomaterials with antibacterial character and of nanostructures displaying anti-adhesive activity against biofilms. Glycan-modified nanodiamonds (NDs revealed themselves to be of great promise as useful nanostructures for combating microbial infections. This review summarizes the current efforts in the synthesis of glycan-modified ND particles and evaluation of their antibacterial and anti-biofilm activities.

  3. Hair Dyes Resorcinol and Lawsone Reduce Production of Melanin in Melanoma Cells by Tyrosinase Activity Inhibition and Decreasing Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF Expression

    Directory of Open Access Journals (Sweden)

    Shu-Mei Lee

    2015-01-01

    Full Text Available Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.

  4. Extracts of Morus nigra L. Leaves Standardized in Chlorogenic Acid, Rutin and Isoquercitrin: Tyrosinase Inhibition and Cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Marcela Medeiros de Freitas

    Full Text Available Melanogenesis is a process responsible for melanin production, which is stored in melanocytes containing tyrosinase. Inhibition of this enzyme is a target in the cosmetics industry, since it controls undesirable skin conditions such as hyperpigmentation due to the overproduction of melanin. Species of the Morus genus are known for the beneficial uses offered in different parts of its plants, including tyrosinase inhibition. Thus, this project aimed to study the inhibitory activity of tyrosinase by extracts from Morus nigra leaves as well as the characterization of its chromatographic profile and cytotoxicity in order to become a new therapeutic option from a natural source. M. nigra leaves were collected, pulverized, equally divided into five batches and the standardized extract was obtained by passive maceration. There was no significant difference between batches for total solids content, yield and moisture content, which shows good reproducibility of the extraction process. Tyrosinase enzymatic activity was determined for each batch, providing the percentage of enzyme inhibition and IC50 values obtained by constructing dose-response curves and compared to kojic acid, a well-known tyrosinase inhibitor. High inhibition of tyrosinase activity was observed (above 90% at 15.625 μg/mL. The obtained IC50 values ranged from 5.00 μg/mL ± 0.23 to 8.49 μg/mL ± 0.59 and were compared to kojic acid (3.37 μg/mL ± 0.65. High Performance Liquid Chromatography analysis revealed the presence of chlorogenic acid, rutin and, its major compound, isoquercitrin. The chromatographic method employed was validated according to ICH guidelines and the extract was standardized using these polyphenols as markers. Cytotoxicity, assessed by MTT assay, was not observed on murine melanomas, human keratinocytes and mouse fibroblasts in tyrosinase IC50 values. This study demonstrated the potential of M. nigra leaf extract as a promising whitening agent of natural source

  5. Experiment study of tyrosinase gene's expression in HEK293 cell by MR

    International Nuclear Information System (INIS)

    Yuan Jianpeng; Liang Biling; Zhong Jinglian; Xie Bangkun; Zhang Weidong; Zhang Lin

    2004-01-01

    Objective: To transfect the tyrosinase gene into HEK293 cell as a reporter gene, and to evaluate the tyrosinase gene's expression by using MRI based on the gene's property of synthesizing large amount of melanin, and to search a way for evaluating the results of gene expression by MR in vitro. Methods: The plasmid of pcDNA3tyr which carried the full-length cDNA of tyrosinase gene was transfected into HEK293 cell by lipofectin, and MR signals of expressed melanin was observed by scanning the transfected cells with MR sequences of T 1 WI, T 1 WI/SPIR, and T 2 WI. Fontana stain and electric microscopy were used to search for melanin granules in transfected cells, and RT-PCR method was used to search for cDNA of tyrosinase gene. Results: (1) Plasmids of pcDNA3tyr could be transfected into HEK293 cells and could synthesize a large amount of melanin in them. The synthetic melanin in 10 6 cells, which had been transfected with 5 μg, 10 μg, and 20 μg plasmids of pcDNA3tyr separately, were all sufficient to be detected by MR and appeared as high signal on MR T 1 WI, T 1 WI/SPIR, and T 2 WI sequences. The more the amounts of transfected plasmids, the higher the signal intensities of MR imaging. On the other hand, 6.25 x 10 4 cells with 20 μg-plasmid of pcDNA3tyr transfection could also be detected by MR; (2) The melanin granules could be found in HEK293 cells in Fontana stain; (3) The melanin granules and their front bodies could be found in intracytoplasm of HEK293 cell by electric microscopy. (4) The cDNA fragment of tyrosinase gene could be detected in transfected HEK293 cells by RT-PCR. Conclusion: The fact that MR could detect the synthetic melanin in HEK293 cells controlled by expression of exogenous gene demonstrated that medical imaging combined with molecular biology technology could evaluate the result of gene expression in vitro, and it also indicated that medical imaging could play an important role in the evaluation of gene therapy following the development

  6. Antioxidant capacity of chewing stick miswak Salvadora persica

    OpenAIRE

    Mohamed, Saleh A; Khan, Jalaluddin A

    2013-01-01

    Background Chewing stick (miswak Salvadora persica L.) is an effective tool for oral hygiene. It possessed various biological properties including significant antibacterial and anti-fungal effects. In the present study, we evaluated the antioxidant compounds in miswak. Method Miswak root was extracted with 80% methanol. Methanol extract as antioxidant was evaluated by using DPPH, ABTS and phosphomolybdenum complex assays and analysis by GC-MS. Peroxidase, catalase and polyphenoloxidase assays...

  7. Melanogenesis-Inducing Effect of Cirsimaritin through Increases in Microphthalmia-Associated Transcription Factor and Tyrosinase Expression

    Directory of Open Access Journals (Sweden)

    Hyo Jung Kim

    2015-04-01

    Full Text Available The melanin-inducing properties of cirsimaritin were investigated in murine B16F10 cells. Cirsimaritin is an active flavone with methoxy groups, which is isolated from the branches of Lithocarpus dealbatus. Tyrosinase activity and melanin content in murine B16F10 melanoma cells were increased by cirsimaritin in a dose-dependent manner. Western blot analysis revealed that tyrosinase, tyrosinase-related protein (TRP 1, TRP2 protein levels were enhanced after treatment with cirsimaritin for 48 h. Cirsimaritin also upregulated the expression of microphthalmia-associated transcription factor (MITF after 24 h of treatment. Furthermore, cirsimaritin induced phosphorylation of cyclic adenosine monophosphate (cAMP response element-binding protein (CREB in a dose-dependent manner after treatment for 15 min. The cirsimaritin-mediated increase of tyrosinase activity was significantly attenuated by H89, a cAMP-dependent protein kinase A inhibitor. These findings indicate that cirsimaritin stimulates melanogenesis in B16F10 cells by activation of CREB as well as upregulation of MITF and tyrosinase expression, which was activated by cAMP signaling. Finally, the melanogenic effect of cirsimaritin was confirmed in human epidermal melanocytes. These results support the putative application of cirsimaritin in ultraviolet photoprotection and hair coloration treatments.

  8. Mushroom Tyrosinase: A Model System to Combine Experimental Investigation of Enzyme-Catalyzed Reactions, Data Handling Using R, and Enzyme-Inhibitor Structural Studies

    Science.gov (United States)

    Nairn, Robert; Cresswell, Will; Nairn, Jacqueline

    2015-01-01

    The activity of mushroom tyrosinase can be measured by monitoring the conversion of phenolic compounds into quinone derivatives using spectrophotometry. This article describes a series of experiments which characterize the functional properties of tyrosinase, the analysis of the resulting data using R to determine the kinetic parameters, and the…

  9. Lineage-specific expansion and loss of tyrosinase genes across platyhelminths and their induction profiles in the carcinogenic oriental liver fluke, Clonorchis sinensis.

    Science.gov (United States)

    Kim, Seon-Hee; Bae, Young-An

    2017-09-01

    Tyrosinase provides an essential activity during egg production in diverse platyhelminths by mediating sclerotization of eggshells. In this study, we investigated the genomic and evolutionary features of tyrosinases in parasitic platyhelminths whose genomic information is available. A pair of paralogous tyrosinases was detected in most trematodes, whereas they were lost in cyclophyllidean cestodes. A pseudophyllidean cestode displaying egg biology similar to that of trematodes possessed an orthologous gene. Interestingly, one of the paralogous tyrosinases appeared to have been multiplied into three copies in Clonorchis sinensis and Opisthorchis viverrini. In addition, a fifth tyrosinase gene that was minimally transcribed through all developmental stages was further detected in these opisthorchiid genomes. Phylogenetic analyses demonstrated that the tyrosinase gene has undergone duplication at least three times in platyhelminths. The additional opisthorchiid gene arose from the first duplication. A paralogous copy generated from these gene duplications, except for the last one, seemed to be lost in the major neodermatans lineages. In C. sinensis, tyrosinase gene expressions were initiated following sexual maturation and the levels were significantly enhanced by the presence of O2 and bile. Taken together, our data suggest that tyrosinase has evolved lineage-specifically across platyhelminths related to its copy number and induction mechanism.

  10. Inhibitory Effects of Urginea maritima (L. Baker, Zhumeria majdae Rech. F. and Wendelbo and Physalis divaricata D. Don Ethanolic Extracts on Mushroom Tyrosinase

    Directory of Open Access Journals (Sweden)

    Foroogh Namjoyan, Alireza Jahangiri, Mohammad Ebrahim Azemi, Hamideh Mousavi

    2016-06-01

    Full Text Available Background: Tyrosinase is a key enzyme in melanin synthesis from tyrosine. To prevent or treat pigmentation disorders, tyrosinase inhibitors have been used increasingly for medicinal and cosmetic products. The aim of this study is to evaluate inhibitory effects of Urginea maritima (L. Baker, Zhumeria majdae Rech.f. & Wendelbo and Physalis divaricata D.Don on mushroom tyrosinase. Methods: The inhibitory activities of the hydroalcoholic extracts of plants against oxidation of L-DOPA (as a substrate by mushroom tyrosinase were investigated. The amount of formed DOPAchrome was determined at 475 nm as optical density. Results: The extracts showed anti-tyrosinase activity weaker than positive control (Kojic acid. The inhibitory activity of tested plants: U.maritima, Z.majdae and P.divaricata against mushroom tyrosinase were 38.61, 29.70 and 25.74 % at 1.67 mg/mL, respectively. Conclusion: The most tyrosinase inhibitory activity was seen for U.maritima. However more investigations on human tyrosinase, toxicological and clinical studies are needed to confirm its activity.

  11. Carbon Nanomaterials as Antibacterial Colloids

    Directory of Open Access Journals (Sweden)

    Michael Maas

    2016-07-01

    Full Text Available Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.

  12. Antibacterial Au nanostructured surfaces

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all

  13. Skin protective effect of guava leaves against UV-induced melanogenesis via inhibition of ORAI1 channel and tyrosinase activity.

    Science.gov (United States)

    Lee, Dong-Ung; Weon, Kwon Yeon; Nam, Da-Yeong; Nam, Joo Hyun; Kim, Woo Kyung

    2016-12-01

    Ultraviolet (UV) irradiation is a major environmental factor affecting photoageing, which is characterized by skin wrinkle formation and hyperpigmentation. Although many factors are involved in the photoageing process, UV irradiation is thought to play a major role in melanogenesis. Tyrosinase is the key enzyme in melanin synthesis; therefore, many whitening agents target tyrosinase through various mechanisms, such as direct interference of tyrosinase catalytic activity or inhibition of tyrosinase mRNA expression. Furthermore, the highly selective calcium channel ORAI1 has been shown to be associated with UV-induced melanogenesis. Thus, ORAI1 antagonists may have applications in the prevention of melanogenesis. Here, we aimed to identify the antimelanogenesis agents from methanolic extract of guava leaves (Psidium guajava) that can inhibit tyrosinase and ORAI1 channel. The n-butanol (47.47%±7.503% inhibition at 10 μg/mL) and hexane (57.88%±7.09% inhibition at 10 μg/mL) fractions were found to inhibit ORAI1 channel activity. In addition, both fractions showed effective tyrosinase inhibitory activity (68.3%±0.50% and 56.9%±1.53% inhibition, respectively). We also confirmed that the hexane fraction decreased the melanin content induced by UVB irradiation and the ET-1-induced melanogenesis in murine B16F10 melanoma cells. These results suggest that the leaves of P. guajava can be used to protect against direct and indirect UV-induced melanogenesis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Antibacterial Au nanostructured surfaces.

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-07

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.

  15. Antibacterial activity of antileukoprotease.

    Science.gov (United States)

    Hiemstra, P S; Maassen, R J; Stolk, J; Heinzel-Wieland, R; Steffens, G J; Dijkman, J H

    1996-01-01

    Antileukoprotease (ALP), or secretory leukocyte proteinase inhibitor, is an endogenous inhibitor of serine proteinases that is present in various external secretions. ALP, one of the major inhibitors of serine proteinases present in the human lung, is a potent reversible inhibitor of elastase and, to a lesser extent, of cathepsin G. In equine neutrophils, an antimicrobial polypeptide that has some of the characteristics of ALP has been identified (M. A. Couto, S. S. L. Harwig, J. S. Cullor, J. P. Hughes, and R. I. Lehrer, Infect. Immun. 60:5042-5047, 1992). This report, together with the cationic nature of ALP, led us to investigate the antimicrobial activity of ALP. ALP was shown to display marked in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus. On a molar basis, the activity of ALP was lower than that of two other cationic antimicrobial polypeptides, lysozyme and defensin. ALP comprises two homologous domains: its proteinase-inhibitory activities are known to be located in the second COOH-terminal domain, and the function of its first NH2-terminal domain is largely unknown. Incubation of intact ALP or its isolated first domain with E. coli or S. aureus resulted in killing of these bacteria, whereas its second domain displayed very little antibacterial activity. Together these data suggest a putative antimicrobial role for the first domain of ALP and indicate that its antimicrobial activity may equip ALP to contribute to host defense against infection. PMID:8890201

  16. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property.

    Science.gov (United States)

    Kwon, Ho Joon; Lee, Yunki; Phuong, Le Thi; Seon, Gyeung Mi; Kim, Eunsuk; Park, Jong Chul; Yoon, Hyunjin; Park, Ki Dong

    2017-10-01

    Introducing antifouling property to biomaterial surfaces has been considered an effective method for preventing the failure of implanted devices. In order to achieve this, the immobilization of zwitterions on biomaterial surfaces has been proven to be an excellent way of improving anti-adhesive potency. In this study, poly(sulfobetaine-co-tyramine), a tyramine-conjugated sulfobetaine polymer, was synthesized and simply grafted onto the surface of polyurethane via a tyrosinase-mediated reaction. Surface characterization by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy demonstrated that the zwitterionic polymer was successfully introduced onto the surface of polyurethane and remained stable for 7days. In vitro studies revealed that poly(sulfobetaine-co-tyramine)-coated surfaces dramatically reduced the adhesion of fibrinogen, platelets, fibroblasts, and S. aureus by over 90% in comparison with bare surfaces. These results proved that polyurethane surfaces grafted with poly(sulfobetaine-co-tyramine) via a tyrosinase-catalyzed reaction could be promising candidates for an implantable medical device with excellent bioinert abilities. Antifouling surface modification is one of the key strategy to prevent the thrombus formation or infection which occurs on the surface of biomaterial after transplantation. Although there are many methods to modify the surface have been reported, necessity of simple modification technique still exists to apply for practical applications. The purpose of this study is to modify the biomaterial's surface by simply immobilizing antifouling zwitterion polymer via enzyme tyrosinase-mediated reaction which could modify versatile substrates in mild aqueous condition within fast time period. After modification, pSBTA grafted surface becomes resistant to various biological factors including proteins, cells, and bacterias. This approach appears to be a promising method to impart antifouling property on

  17. A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus.

    OpenAIRE

    Jackson, I J; Chambers, D M; Tsukamoto, K; Copeland, N G; Gilbert, D J; Jenkins, N A; Hearing, V

    1992-01-01

    We have cloned and sequenced mouse cDNAs corresponding to a third member of a family of melanocyte-specific mRNAs, which encode tyrosinase and related proteins. This new member, tyrosinase-related protein-2 (TRP-2), has approximately 40% amino acid identity with the two other proteins in the family and has the same structural features including two copper binding sites, two cysteine-rich regions, a signal peptide and a transmembrane domain. We now show that one of the cysteine-rich regions in...

  18. Investigation of antioxidative, antityrosinase and cytotoxic effects of extract of irradiated oyster mushroom

    Directory of Open Access Journals (Sweden)

    Nutsuda Banlangsawan

    2016-02-01

    Full Text Available Oyster mushroom (Pleurotus ostreatus Fries. is rich in nutrition and has many medicinal properties such as antioxidant and anticancer activities. It also contains a high amount of ergosterol which can be converted to vitamin D2 when exposing to UV light. Oyster mushroom powder was irradiated with UV-B for 180 min and extracted with 95% ethanol. Mushroom extract was determined for vitamin D2 concentration, total phenolic compound, antioxidative activity, tyrosinase inhibitory property and cytotoxicity effect on human keratinocytes (HaCaT and murine melanoma cells (B16F10 by MTT assay. The results demonstrated that the concentration of vitamin D2 of irradiated oyster mushroom extract was 153.96 µg/g, which is 13 times higher than that of non-irradiated mushroom extract. Total phenolic content, antioxidative and tyrosinase inhibitory activities of the two mushroom extracts were not significantly different. Neither oyster mushroom extract had a cytotoxic effect on keratinocytes, but on the other hand both inhibited the growth of murine melanoma cells.

  19. Effect of norfloxacin and moxifloxacin on melanin synthesis and antioxidant enzymes activity in normal human melanocytes.

    Science.gov (United States)

    Beberok, Artur; Wrześniok, Dorota; Otręba, Michał; Miliński, Maciej; Rok, Jakub; Buszman, Ewa

    2015-03-01

    Fluoroquinolone antibiotics provide broad-spectrum coverage for a number of infectious diseases, including respiratory as well as urinary tract infections. One of the important adverse effects of these drugs is phototoxicity which introduces a serious limitation to their use. To gain insight the molecular mechanisms underlying the fluoroquinolones-induced phototoxic side effects, the impact of two fluoroquinolone derivatives with different phototoxic potential, norfloxacin and moxifloxacin, on melanogenesis and antioxidant enzymes activity in normal human melanocytes HEMa-LP was determined. Both drugs induced concentration-dependent loss in melanocytes viability. The value of EC50 for these drugs was found to be 0.5 mM. Norfloxacin and moxifloxacin suppressed melanin biosynthesis; antibiotics were shown to inhibit cellular tyrosinase activity and to reduce melanin content in melanocytes. When comparing the both analyzed fluoroquinolones, it was observed that norfloxacin possesses greater inhibitory effect on tyrosinase activity in melanocytes than moxifloxacin. The extent of oxidative stress in cells was assessed by measuring the activity of antioxidant enzymes: SOD, CAT, and GPx. It was observed that norfloxacin caused higher depletion of antioxidant status in melanocytes when compared with moxifloxacin. The obtained results give a new insight into the mechanisms of fluoroquinolones toxicity directed to pigmented tissues. Moreover, the presented differences in modulation of biochemical processes in melanocytes may be an explanation for various phototoxic activities of the analyzed fluoroquinolone derivatives in vivo.

  20. Antibacterial Metallic Touch Surfaces

    Directory of Open Access Journals (Sweden)

    Victor M. Villapún

    2016-08-01

    Full Text Available Our aim is to present a comprehensive review of the development of modern antibacterial metallic materials as touch surfaces in healthcare settings. Initially we compare Japanese, European and US standards for the assessment of antimicrobial activity. The variations in methodologies defined in these standards are highlighted. Our review will also cover the most relevant factors that define the antimicrobial performance of metals, namely, the effect of humidity, material geometry, chemistry, physical properties and oxidation of the material. The state of the art in contact-killing materials will be described. Finally, the effect of cleaning products, including disinfectants, on the antimicrobial performance, either by direct contact or by altering the touch surface chemistry on which the microbes attach, will be discussed. We offer our outlook, identifying research areas that require further development and an overview of potential future directions of this exciting field.

  1. Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency.

    Science.gov (United States)

    Reish, O; Townsend, D; Berry, S A; Tsai, M Y; King, R A

    1995-01-01

    Deficiency of cystathionine beta-synthase (CBS) is a genetic disorder of transsulfuration resulting in elevated plasma homocyst(e)ine and methionine and decreased cysteine. Affected patients have multisystem involvement, which may include light skin and hair. Reversible hypopigmentation in treated homocystinuric patients has been infrequently reported, and the mechanism is undefined. Two CBS-deficient homocystinuric patients manifested darkening of their hypopigmented hair following treatment that decreased plasma homocyst(e)ine. We hypothesized that homocyst(e)ine inhibits tyrosinase, the major pigment enzyme. The activity of tyrosinase extracted from pigmented human melanoma cells (MNT-1) that were grown in the presence of homocysteine was reduced in comparison to that extracted from cells grown without homocysteine. Copper sulfate restored homocyst(e)ine-inhibited tyrosinase activity when added to the culture cell media at a proportion of 1.25 mol of copper sulfate per 1 mol of DL-homocysteine. Holo-tyrosinase activity was inhibited by adding DL-homocysteine to the assay reaction mixture, and the addition of copper sulfate to the reaction mixture prevented this inhibition. Other tested compounds, L-cystine and betaine did not affect tyrosinase activity. Our data suggest that reversible hypopigmentation in homocystinuria is the result of tyrosinase inhibition by homocyst(e)ine and that the probable mechanism of this inhibition is the interaction of homocyst(e)ine with copper at the active site of tyrosinase. Images Figure 1 PMID:7611281

  2. Isolation of tyrosinase inhibitors from Artocarpus heterophyllus and use of its extract as antibrowning agent.

    Science.gov (United States)

    Zheng, Zong-Ping; Cheng, Ka-Wing; To, James Tsz-Kin; Li, Haitao; Wang, Mingfu

    2008-12-01

    A new furanoflavone, 7-(2,4-dihydroxyphenyl)-4-hydroxy-2-(2-hydroxy propan-2-yl)-2, 3-dihydrofuro(3, 2-g)chromen-5-one (artocarpfuranol, 1), together with 14 known compounds, dihydromorin (2), steppogenin (3), norartocarpetin (4), artocarpanone (5), artocarpesin (6), artocarpin (7), cycloartocarpin (8), cycloartocarpesin (9), artocarpetin (10), brosimone I (11), cudraflavone B (12), carpachromene (13), isoartocarpesin (14), and cyanomaclurin (15) were isolated from the wood of Artocarpus heterophyllus. Their structures were identified by interpretation of MS,( 1)H-NMR,( 13)C-NMR, HMQC, and HMBC spectroscopic data. Among them, compounds 1-6 and 14 showed strong mushroom tyrosinase inhibitory activity with IC(50) values lower than 50 microM, more potent than kojic acid (IC(50) = 71.6 microM), a well-known tyrosinase inhibitor. In addition, extract of A. heterophyllus was evaluated for its antibrowning effect on fresh-cut apple slices. It was discovered that fresh-cut apple slices treated by dipping in solution of 0.03 or 0.05% of A. heterophyllus extract with 0.5% ascorbic acid did not undergo any substantial browning reaction after storage at room temperature for 24 h. The antibrowning effect was significantly better than samples treated with the extract (0.03 or 0.05%) or ascorbic acid (0.5%) alone. The results provide preliminary evidence supporting the potential of this natural extract as antibrowning agent in food systems.

  3. Phenols removal by immobilized tyrosinase reactor in on-line high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Girelli, Anna Maria [Dipartimento di Chimica, Universita degli Studi di Roma ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy)]. E-mail: annamaria.girelli@uniroma1.it; Mattei, Enrico [Dipartimento di Chimica, Universita degli Studi di Roma ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy); Messina, Antonella [Dipartimento di Chimica, Universita degli Studi di Roma ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy)

    2006-11-24

    The development of an immobilized enzyme reactor (IMER) based on tyrosinase immobilized on aminopropyl-controlled pore glass (AP-CPG) for the removal of phenols from model aqueous solutions was reported. To elucidate the influence of the substrate nature, the apparent (V{sup '}{sub max}, K{sup '}{sub m}) and the inherent (V{sub max}, K{sub m}) Michaelis-Menten constants were determined by Lineweaver-Burk method and the external diffusional contributions on measured enzyme activities were removed by a graphical method. The dephenolization process was realized by recycling the phenol solutions through the bioreactor connected to a chitosan trap in order to remove the colored quinone-type products of the tyrosinase reactions. The results indicated that a complete removal of phenol derivatives in the range of 150-300min, with the exception of 60% removal for phenol reached in 400min, was obtained. The observed sequence: cresol>4-methylcathecol>catechol>4-Cl-phenol-bar phenol was in accordance to the V{sup '}{sub max}/K{sup '}{sub m} values.

  4. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds

    International Nuclear Information System (INIS)

    Lu Limin; Zhang Li; Zhang Xiaobing; Huan Shuangyan; Shen Guoli; Yu Ruqin

    2010-01-01

    A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at -0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 μM, with a high sensitivity of 2.11 x 10 3 μA mM -1 cm -2 , and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 μM for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.

  5. α-Glucosidase and tyrosinase inhibitory effects of an abietane type diterpenoid taxoquinone from Metasequoia glyptostroboides.

    Science.gov (United States)

    Bajpai, Vivek K; Park, Yong-Ha; Na, MinKyun; Kang, Sun Chul

    2015-03-26

    Nowadays plant derived natural compounds have gained huge amount of research attention especially in food and medicine industries due to their multitude of biological and therapeutic properties as alternative medicines. In this study, a diterpenoid compound taxoquinone, isolated from Metasequoia glyptostroboides was evaluated for its α-glucosidase and tyrosinase inhibitory efficacy in terms of its potent anti-diabetic and depigmentation potential, respectively. As a result, taxoquinone at the concentration range of 100-3,000 μg/mL and 200-1,000 μg/mL showed potent efficacy on inhibiting α-glucosidase and tyrosinase enzymes by 9.24-51.32% and 11.14-52.32%, respectively. The findings of this study clearly evident potent therapeutic efficacy of an abietane diterpenoid taxoquinone isolated from M. glyptostroboides with a possibility for using it as a novel candidate in food and medicine industry as a natural alternative medicine to prevent diabetes mellitus type-2 related disorders and as a depigmentation agent.

  6. In vivo tyrosinase mini-gene transfer enhances killing effect of BNCT on amelanotic melanoma

    International Nuclear Information System (INIS)

    Kondoh, H.; Mishima, Y.; Hiratsuka, J.; Iwakura, M.

    2000-01-01

    Using accentuated melanogenesis principally occurring within melanoma cells, we have successfully treated human malignant melanoma (Mm) with 10 B-BPA BNCT. Despite this success, there are still remaining issues for poorly melanogenic Mm and further non-pigment cell tumors. We found the selective accumulation of 10 B-BPA to Mm is primarily due to the complex formation of BPA and melanin-monomers activity synthesized within Mm cells. Then, we succeeded in transferring the tyrosinase gene into amelanotic to substantially produce melanin monomers. These cells has demonstrated increased boron accumulation and enhanced killing effect of BNCT. Further, transfection of TRP-2 (DOPAchrome tautomerase) gene into poorly eumelanotic and slightly phenomelanotic Mm cells in culture cell systems also led to increased BPA accumulation. Thereafter, we studied in vivo gene transfer. We transferred the tyrosinase mini-gene by intra-tumor injection into poorly melanotic Mm proliferating subcutaneously in hamster skin, and performed BNCT. Compared to control tumors, gene-transferred tumors showed increased BPA accumulation leading to enhanced killing effect. (author)

  7. Tyrosinase inhibitors from Calceolaria integrifolia s.l.: Calceolaria talcana aerial parts.

    Science.gov (United States)

    Muñoz, Evelyn; Avila, Jose G; Alarcón, Julio; Kubo, Isao; Werner, Enrique; Céspedes, Carlos L

    2013-05-08

    As a defense mechanism of the aerial parts of Calceolaria talcana (Calceolariaceae; formerly Scrophulariaceae) against herbivore offenses and insect pest attack, diterpenoids, triterpenoids, phenylethanoids, flavonoids, and iridoids are rapidly accumulated along the aerial parts, resulting in a unique natural biopesticide complex from this plant. In addition to verbascoside a series of known compounds were screened for their inhibitory activity against mushroom tyrosinase and protease enzymes. Ethyl acetate and n-hexane extracts, together with cyclopropyl-7,15-ent-pimaradiene (1), abietatriene (2), ursolic acid (3), α-lupeol (4), β-sitosterol (5), 2-hydroxy-3-(1,1-dimethylallyl)-1,4-naphthoquinone (6), α-dunnione (7), verbascoside (8), martynoside (9), and some known model compounds proved to be inhibitors of oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) catalyzed by tyrosinase (EC 1.14.18.1) with an IC50 between 10.0 and 200 ppm or μM, respectively, suggesting that phenolic moieties in the molecules assayed are important for the activity.

  8. Syndecan-2 regulates melanin synthesis via protein kinase C βII-mediated tyrosinase activation.

    Science.gov (United States)

    Jung, Hyejung; Chung, Heesung; Chang, Sung Eun; Choi, Sora; Han, Inn-Oc; Kang, Duk-Hee; Oh, Eok-Soo

    2014-05-01

    Syndecan-2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan-2 in melanogenesis. Syndecan-2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA-mediated knockdown of syndecan-2 was associated with reduced melanin synthesis, whereas overexpression of syndecan-2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan-2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan-2 expression, and this up-regulation of syndecan-2 was required for UVB-induced melanin synthesis. Taken together, these data suggest that syndecan-2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin-associated diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. In vivo tyrosinase mini-gene transfer enhances killing effect of BNCT on amelanotic melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, H.; Mishima, Y. [Mishima Institute for Dermatological Research, Kobe, Hyogo (Japan); Hiratsuka, J. [Kawasaki Medical School, Dept. of Radiation Oncology, Kurashiki, Okayama (Japan); Iwakura, M. [Kobe Univ. (Japan). School of Medicine

    2000-10-01

    Using accentuated melanogenesis principally occurring within melanoma cells, we have successfully treated human malignant melanoma (Mm) with {sup 10}B-BPA BNCT. Despite this success, there are still remaining issues for poorly melanogenic Mm and further non-pigment cell tumors. We found the selective accumulation of {sup 10}B-BPA to Mm is primarily due to the complex formation of BPA and melanin-monomers activity synthesized within Mm cells. Then, we succeeded in transferring the tyrosinase gene into amelanotic to substantially produce melanin monomers. These cells has demonstrated increased boron accumulation and enhanced killing effect of BNCT. Further, transfection of TRP-2 (DOPAchrome tautomerase) gene into poorly eumelanotic and slightly phenomelanotic Mm cells in culture cell systems also led to increased BPA accumulation. Thereafter, we studied in vivo gene transfer. We transferred the tyrosinase mini-gene by intra-tumor injection into poorly melanotic Mm proliferating subcutaneously in hamster skin, and performed BNCT. Compared to control tumors, gene-transferred tumors showed increased BPA accumulation leading to enhanced killing effect. (author)

  10. Phenols removal by immobilized tyrosinase reactor in on-line high performance liquid chromatography

    International Nuclear Information System (INIS)

    Girelli, Anna Maria; Mattei, Enrico; Messina, Antonella

    2006-01-01

    The development of an immobilized enzyme reactor (IMER) based on tyrosinase immobilized on aminopropyl-controlled pore glass (AP-CPG) for the removal of phenols from model aqueous solutions was reported. To elucidate the influence of the substrate nature, the apparent (V ' max , K ' m ) and the inherent (V max , K m ) Michaelis-Menten constants were determined by Lineweaver-Burk method and the external diffusional contributions on measured enzyme activities were removed by a graphical method. The dephenolization process was realized by recycling the phenol solutions through the bioreactor connected to a chitosan trap in order to remove the colored quinone-type products of the tyrosinase reactions. The results indicated that a complete removal of phenol derivatives in the range of 150-300min, with the exception of 60% removal for phenol reached in 400min, was obtained. The observed sequence: cresol>4-methylcathecol>catechol>4-Cl-phenol-bar phenol was in accordance to the V ' max /K ' m values

  11. Antibacterial activity of Ficus capensis

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    Allium sativum) is used to reduce cholesterol levels and to boost immune system; it lowers high blood pressure and its oil has been seen to have antibacterial properties (Juurlink, 2001). Milk thistle. Silybum marianum has also ...

  12. Safety and Efficacy of Dextran-Rosmarinic Acid Conjugates as Innovative Polymeric Antioxidants in Skin Whitening: What Is the Evidence?

    Directory of Open Access Journals (Sweden)

    Ortensia I. Parisi

    2017-08-01

    Full Text Available Background: Melanins are high molecular weight pigments responsible for the mammalian skin and hair colour and play a key role in skin protection from UV radiation; however, their overproduction and excessive accumulation lead to pigmentation problems including melasma, freckles, uneven colouring, and age spots. Therefore, the modulation of melanin synthesis represents a critical issue in medicine and cosmetology. In the present study, an innovative polymeric antioxidant to be used as skin whitening agent is developed by the conjugation of dextran with rosmarinic acid. Methods: Dextran-rosmarinic acid conjugates (DEX-RA were synthesized in a one-pot method starting from Origanum vulgare aqueous leaf extract and dextran. The total polyphenol content and the antioxidant activity were assessed by Folin-Ciocalteau assay and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH and bleaching tests, respectively. The efficacy of DEX-RA was evaluated by inhibition of tyrosinase activity, in vitro diffusion and stability studies and in vivo studies. The biocompatibility of the conjugates was investigated by 3-[4,5-Dimethylthiaoly]-2,5-diphenyltetrazoliumbromide (MTT and EPISKIN™ model. Results: Efficacy and safety studies confirmed the antioxidant and tyrosinase inhibitory activities and the biocompatibility of the synthesized conjugates. Conclusion: The polymeric conjugates, comparing to the free antioxidant, show a long-lasting efficacy combined to an enhanced stability resulting in an improved performance of the cosmetic formulations prepared using this innovative whitening agent as a bioactive ingredient.

  13. Antibacterial resistance: an emerging 'zoonosis'?

    Science.gov (United States)

    Labro, Marie-Thérèse; Bryskier, Jean-Marie

    2014-12-01

    Antibacterial resistance is a worldwide threat, and concerns have arisen about the involvement of animal commensal and pathogenic bacteria in the maintenance and spread of resistance genes. However, beyond the facts related to the occurrence of resistant microorganisms in food, food-producing animals and companion animals and their transmission to humans, it is important to consider the vast environmental 'resistome', the selective pathways underlying the emergence of antibacterial resistance and how we can prepare answers for tomorrow.

  14. Antibacterial triterpenoids from Melia toosendan

    Directory of Open Access Journals (Sweden)

    Qin Zhu

    2015-01-01

    Full Text Available A new lanostan-type triterpenoid with hydroperoxy group, toosendanin A (1, together with two known triterpenoids, meliastatin 3 (2 and ursolic acid (3, w ere isolated and identified from the stems of Melia toosendan. The structures of these compounds were elucidated by 1D- and 2D-NMR spectra and other spectroscopic studies. These compounds were assayed for the antibacterial activities against some hospital pathogenic bacteria. Toosendanin A (1 exhibited strong antibacterial activity against K. pneumoniae .

  15. Development and application of a tyrosinase-based time-temperature indicator (TTI) for determining the quality of turbot sashimi

    Science.gov (United States)

    Xu, Fengjuan; Ge, Lei; Li, Zhenxing; Lin, Hong; Mao, Xiangzhao

    2017-10-01

    Time-temperature indicators (TTIs) are convenient intuitive devices that are widely used to predict food quality. The aim of this study is to develop a new simple device which can be attached to food packages as a quality indicator for turbot sashimi. In this study, a solid TTI based on the reaction between tyrosinase and tyrosine was developed. The Arrhenius behavior of this enzymatic TTI was studied. The kinetics of the tyrosinase-based TTI was investigated in the form of color change from colorless to dark black induced by the enzymatic reaction. The mathematical formula for the color alterations as a function of time and temperature was established. The longest indication time for the developed TTI was 50 hours at 4°C. The activation energy of the tyrosinase-based TTI was 0.409 kJ mol-1. The suitability of the tyrosinase-based TTI was validated for turbot sashimi using total plate count. The feasibility of using this TTI as a quality indicator for turbot sashimi was assessed based on the activation energy and indication time. Therefore, the tyrosinasebased TTI system developed in this study could be used as an effective tool for monitoring the quality changes of turbot sashimi during the distribution and storage.

  16. Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1.

    Science.gov (United States)

    De Filippo, Elisabetta; Schiedel, Anke C; Manga, Prashiela

    2017-02-01

    Developmental eye defects in X-linked ocular albinism type 1 are caused by G-protein coupled receptor 143 (GPR143) mutations. Mutations result in dysfunctional melanosome biogenesis and macromelanosome formation in pigment cells, including melanocytes and retinal pigment epithelium. GPR143, primarily expressed in pigment cells, localizes exclusively to endolysosomal and melanosomal membranes unlike most G protein-coupled receptors, which localize to the plasma membrane. There is some debate regarding GPR143 function and elucidating the role of this receptor may be instrumental for understanding neurogenesis during eye development and for devising therapies for ocular albinism type I. Many G protein-coupled receptors require association with other proteins to function. These G protein-coupled receptor-interacting proteins also facilitate fine-tuning of receptor activity and tissue specificity. We therefore investigated potential GPR143 interaction partners, with a focus on the melanogenic enzyme tyrosinase. GPR143 coimmunoprecipitated with tyrosinase, while confocal microscopy demonstrated colocalization of the proteins. Furthermore, tyrosinase localized to the plasma membrane when coexpressed with a GPR143 trafficking mutant. The physical interaction between the proteins was confirmed using fluorescence resonance energy transfer. This interaction may be required in order for GPR143 to function as a monitor of melanosome maturation. Identifying tyrosinase as a potential GPR143 binding protein opens new avenues for investigating the mechanisms that regulate pigmentation and neurogenesis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Identification of tyrosinase specific inhibitors from Xanthium strumarium fruit extract using ultrafiltration-high performance liquid chromatography.

    Science.gov (United States)

    Wang, Zhiqiang; Hwang, Seung Hwan; Huang, Bo; Lim, Soon Sung

    2015-10-01

    In this study, a strategy based on ultrafiltration-high performance liquid chromatography coupled with diode array detection (UF-HPLC-DAD) was proposed for screening tyrosinase specific inhibitors in Xanthii fructus. The false negatives were distinguished by optimizing the UF-HPLC-DAD parameters to reduce the background noise; the false positives were distinguished by introducing a blocked tyrosinase in the control group for comparison. To obtain the best blocker, the competitive experiments were performed using various known ligands. Using this strategy, three competitive inhibitors (protocatechuic acid; 3,5-di-O-caffeoylquinic acid; and 1,5-di-O-caffeoylquinic acid) and one mixed-type inhibitor (chlorogenic acid) were identified. These results were verified using tyrosinase inhibition assay, kinetic analysis, and structural simulation of the complex. Our experimental results suggest that the proposed strategy could be useful for high-throughput identification of tyrosinase specific inhibitors in natural products. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The anti-browning agent sulfite inactivates Agaricus bisporus tyrosinase through covalent modification of the copper-B site

    NARCIS (Netherlands)

    Kuijpers, T.F.M.; Gruppen, H.; Sforza, S.; Berkel, van W.J.H.; Vincken, J.P.

    2013-01-01

    Sulfite salts are widely used as antibrowning agents in food processing. Nevertheless, the exact mechanism by which sulfite prevents enzymatic browning has remained unknown. Here, we show that sodium hydrogen sulfite (NaHSO3 ) irreversibly blocks the active site of tyrosinase from the edible

  19. OCA1 in different ethnic groups of india is primarily due to founder mutations in the tyrosinase gene.

    NARCIS (Netherlands)

    Chaki, M.; Sengupta, M.S.; Mukhopadhyay, A.; Subba Rao, I.; Majumder, P.P.; Das, M.; Samanta, S.; Ray, K.

    2006-01-01

    Oculocutaneous albinism (OCA) is a heterogeneous group of autosomal recessive disorders characterized by an abnormally low amount of melanin in the eyes, skin and hair, and associated with common developmental abnormalities of the eye. Defects in the tyrosinase gene (TYR) cause a common type of OCA,

  20. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters

    Czech Academy of Sciences Publication Activity Database

    Martínková, Ludmila; Chmátal, Martin

    2016-01-01

    Roč. 102, October (2016), s. 90-95 ISSN 0043-1354 R&D Projects: GA TA ČR TA01021368; GA TA ČR(CZ) TA04021212; GA MŠk(CZ) LD12049 Institutional support: RVO:61388971 Keywords : Cyanide hydratase * Tyrosinase * Cyanide Subject RIV: CE - Biochemistry Impact factor: 6.942, year: 2016

  1. TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR FOR DETECTION OF PHENOLS: BINDER AND PRE-OXIDATION EFFECTS

    Science.gov (United States)

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil or paraffin wax oil yielded a greater response to phenol and catechol than those using the hi...

  2. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase

    Energy Technology Data Exchange (ETDEWEB)

    Miyaji, Akimitsu [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kohno, Masahiro [Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-G1-25 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Inoue, Yoshihiro [Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543 (Japan); Baba, Toshihide, E-mail: tbaba@chemenv.titech.ac.jp [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2016-03-18

    The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that {sup 1}O{sub 2} generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte. - Highlights: • Generation of singlet oxygen was observed during tyrosinase-catalyzed tyrosine oxidation. • The singlet oxygen generated when tyrosine was converted into dopachrome. • The amount of singlet oxygen is not sufficient for cell toxicity. • It decreased when the hydroxyl radicals and/or superoxide anions were trapped.

  3. Therapeutic potential of Gnidia capitata L.F.: investigations on its ...

    African Journals Online (AJOL)

    ... G. capitata for the treatment of certain skin conditions. The potent antioxidant activity could help control the negative effects associated with inflammatory mediators that are produced during the immune response in people that are affected by skin conditions. Keywords: Anti-acne, Anti-tyrosinase, Antibacterial, Antioxidant, ...

  4. Studying antioxidant, radioprotective and antibacterial actions of iron complexes

    International Nuclear Information System (INIS)

    Shamilov, E.N.

    2006-01-01

    Full Text: It was investigated regulation of the malone dialdehyde consent ration in the action of the chemical agents and radiation on the white rats liver tissue at participation of dittsiklopenthadienil-Fe and Fe-ru tinate, and it was also investigated the biological activity of some complexes of iron on some Gram positive bacteria strains of the genius of Basillus

  5. Styling antioxidant, radioprotective and antibacterial actions of iron complexes

    International Nuclear Information System (INIS)

    Shamilov, E.N.

    2006-01-01

    Full Text: It was investigated regulation of the malone dialdehyde consent ration in the action of the chemical agents and radiation on the white rats liver tissue at participation of dittsiklopenthadienil-Fe and Fe-ru tinate, and it was also investigated the biological activity of some complexes of iron on some Gram positive bacteria strains of the genius of Basillus

  6. Antibacterial, antioxidant and cytotoxic activities of extracts from the ...

    African Journals Online (AJOL)

    HALA

    2012-10-11

    Oct 11, 2012 ... capacity of each sample to scavenge the ABTS radical cation, we revealed that the EPS aqueous ... evaluated using the brine shrimp Artemia salina, as test organism. ..... released by cyanobacterium Arthrospira platensis.

  7. Investigations of antioxidant and antibacterial activity of leaf extracts ...

    African Journals Online (AJOL)

    Sulav

    2Padmashree Institute of Management and Sciences, Bangalore, India. Received 20 June, 2015; Accepted 5 November, 2015. Active ingredients of ..... investigation is needed to exploit the bioactive principles of A. indica for therapeutic utility.

  8. Evaluation of antioxidant and antibacterial activities of methanolic ...

    African Journals Online (AJOL)

    Yomi

    2012-05-22

    May 22, 2012 ... Full Length Research Paper ... Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Karnataka India- ... singly at the end of each stem. ..... of oxidizing DNA and causing strand breaks, resulting in.

  9. antibacterial and antioxidant activities of the essential oils

    African Journals Online (AJOL)

    Belmimoun A, Meddah B, Meddah A.T.T and Sonnet P

    2016-05-01

    May 1, 2016 ... Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0. International License. Libraries Resource Directory. We are ... The problems regarding application of conventional antibiotics, including antimicrobial resistance, environmental problems ...

  10. Metabolite profiling, antioxidant and antibacterial activities of Brazilian propolis

    NARCIS (Netherlands)

    Bittencourt, M.L.F.; Ribeiro, Paulo R.; Franco, R.L.P.; Hilhorst, H.W.M.; Castro, de R.D.; Fernandez, L.G.

    2015-01-01

    The production of propolis by honeybees results from a selective collection of exudates from various plant species and present many potentialities in the pharmaceutical industry. The objective of this study was to investigate the chemical profile of Brazilian propolis, as well as their in vitro

  11. Antibacterial and antioxidant properties of macrocyclic Schiff bases ...

    African Journals Online (AJOL)

    CLEMENT O BEWAJI

    Electronic spectra of the compounds were recorded on a digital spectrophotometer. ... Acetylacetone in ethanol with the solutions of Semicarbazide hydrochloride in hot water ... pre-incubated for 1 h at room temperature and incubated at 37°C for 24 h.8 Ofloxacin was used as standard. 2.4 Scavenging of nitric oxide. Sodium ...

  12. Honey Antibacterial Effect Boosting Using Origanum vulgare L. Essential Oil.

    Science.gov (United States)

    Imtara, Hamada; Elamine, Youssef; Lyoussi, Badiâa

    2018-01-01

    The appearance of new bacterial strains which cause pathogenic diseases and which are resistant to the most used antibiotics requires probing new antibacterial agents sources. Therefore, the main aim of the present work was to follow the antibacterial activity of honey samples from Palestine and Morocco, after the combination with Origanum vulgare L. essential oil, and figure out whether the honey physicochemical parameters and geographic origin influence the final activity. The results of this study showed good geographical discrimination between the Palestinians and Moroccan honey samples. The antioxidant and antimicrobial activities showed a significant correlation with honey color, melanoidins, and phenolic and flavonoids contents. Furthermore, the possible effect of honey physicochemical parameters on the gained antimicrobial activities was assessed using the principal component analysis (PCA). Some parameters showed a promising effect and seem to be important in the process of honey samples selection. Namely, melanoidins content, phenolic content, electrical conductivity, and mineral content were shown to be positively influencing the gained antibacterial activity after the combination with essential oil against the tested strains, although a significant negative correlation was seen with the FIC only in the case of Escherichia coli (ATB: 57).

  13. Honey Antibacterial Effect Boosting Using Origanum vulgare L. Essential Oil

    Directory of Open Access Journals (Sweden)

    Hamada Imtara

    2018-01-01

    Full Text Available The appearance of new bacterial strains which cause pathogenic diseases and which are resistant to the most used antibiotics requires probing new antibacterial agents sources. Therefore, the main aim of the present work was to follow the antibacterial activity of honey samples from Palestine and Morocco, after the combination with Origanum vulgare L. essential oil, and figure out whether the honey physicochemical parameters and geographic origin influence the final activity. The results of this study showed good geographical discrimination between the Palestinians and Moroccan honey samples. The antioxidant and antimicrobial activities showed a significant correlation with honey color, melanoidins, and phenolic and flavonoids contents. Furthermore, the possible effect of honey physicochemical parameters on the gained antimicrobial activities was assessed using the principal component analysis (PCA. Some parameters showed a promising effect and seem to be important in the process of honey samples selection. Namely, melanoidins content, phenolic content, electrical conductivity, and mineral content were shown to be positively influencing the gained antibacterial activity after the combination with essential oil against the tested strains, although a significant negative correlation was seen with the FIC only in the case of Escherichia coli (ATB: 57.

  14. Dual Bioactivities of Essential Oil Extracted from the Leaves of Artemisia argyi as an Antimelanogenic versus Antioxidant Agent and Chemical Composition Analysis by GC/MS

    Directory of Open Access Journals (Sweden)

    Long-Zen Chang

    2012-11-01

    Full Text Available The study was aimed at investigating the antimelanogenic and antioxidant properties of essential oil when extracted from the leaves of Artemisia argyi, then analyzing the chemical composition of the essential oil. The inhibitory effect of the essential oil on melanogenesis was evaluated by a mushroom tyrosinase activity assay and B16F10 melanoma cell model. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis, and the volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS. The results revealed that the essential oil significantly inhibits mushroom tyrosinase activity (IC50 = 19.16 mg/mL, down-regulates B16F10 intracellular tyrosinase activity and decreases the amount of melanin content in a dose-dependent pattern. Furthermore, the essential oil significantly scavenged 2,2-diphenyl-1-picryl-hydrazyl (DPPH and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid ABTS radicals, showed an apparent reduction power as compared with metal-ion chelating activities. The chemicals constituents in the essential oil are ether (23.66%, alcohols (16.72%, sesquiterpenes (15.21%, esters (11.78%, monoterpenes (11.63%, ketones (6.09%, aromatic compounds (5.01%, and account for a 90.10% analysis of its chemical composition. It is predicted that eucalyptol and the other constituents, except for alcohols, in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from A. argyi leaves decreased melanin production in B16F10 cells and showed potent antioxidant activity. The essential oil can thereby be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products.

  15. Dual Bioactivities of Essential Oil Extracted from the Leaves of Artemisia argyi as an Antimelanogenic versus Antioxidant Agent and Chemical Composition Analysis by GC/MS

    Science.gov (United States)

    Huang, Huey-Chun; Wang, Hsiao-Fen; Yih, Kuang-Hway; Chang, Long-Zen; Chang, Tsong-Min

    2012-01-01

    The study was aimed at investigating the antimelanogenic and antioxidant properties of essential oil when extracted from the leaves of Artemisia argyi, then analyzing the chemical composition of the essential oil. The inhibitory effect of the essential oil on melanogenesis was evaluated by a mushroom tyrosinase activity assay and B16F10 melanoma cell model. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis, and the volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The results revealed that the essential oil significantly inhibits mushroom tyrosinase activity (IC50 = 19.16 mg/mL), down-regulates B16F10 intracellular tyrosinase activity and decreases the amount of melanin content in a dose-dependent pattern. Furthermore, the essential oil significantly scavenged 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzthiazoline- 6-sulphonic acid) ABTS radicals, showed an apparent reduction power as compared with metal-ion chelating activities. The chemicals constituents in the essential oil are ether (23.66%), alcohols (16.72%), sesquiterpenes (15.21%), esters (11.78%), monoterpenes (11.63%), ketones (6.09%), aromatic compounds (5.01%), and account for a 90.10% analysis of its chemical composition. It is predicted that eucalyptol and the other constituents, except for alcohols, in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from A. argyi leaves decreased melanin production in B16F10 cells and showed potent antioxidant activity. The essential oil can thereby be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products. PMID:23203088

  16. Dual bioactivities of essential oil extracted from the leaves of Artemisia argyi as an antimelanogenic versus antioxidant agent and chemical composition analysis by GC/MS.

    Science.gov (United States)

    Huang, Huey-Chun; Wang, Hsiao-Fen; Yih, Kuang-Hway; Chang, Long-Zen; Chang, Tsong-Min

    2012-11-12

    The study was aimed at investigating the antimelanogenic and antioxidant properties of essential oil when extracted from the leaves of Artemisia argyi, then analyzing the chemical composition of the essential oil. The inhibitory effect of the essential oil on melanogenesis was evaluated by a mushroom tyrosinase activity assay and B16F10 melanoma cell model. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis, and the volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The results revealed that the essential oil significantly inhibits mushroom tyrosinase activity (IC(50) = 19.16 mg/mL), down-regulates B16F10 intracellular tyrosinase activity and decreases the amount of melanin content in a dose-dependent pattern. Furthermore, the essential oil significantly scavenged 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) ABTS radicals, showed an apparent reduction power as compared with metal-ion chelating activities. The chemicals constituents in the essential oil are ether (23.66%), alcohols (16.72%), sesquiterpenes (15.21%), esters (11.78%), monoterpenes (11.63%), ketones (6.09%), aromatic compounds (5.01%), and account for a 90.10% analysis of its chemical composition. It is predicted that eucalyptol and the other constituents, except for alcohols, in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from A. argyi leaves decreased melanin production in B16F10 cells and showed potent antioxidant activity. The essential oil can thereby be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products.

  17. Anti–elastase, anti–tyrosinase and matrix metalloproteinase–1 inhibitory activity of earthworm extracts as potential new anti–aging agent

    Directory of Open Access Journals (Sweden)

    Nurhazirah Azmi

    2014-05-01

    Conclusions: Earthworms extract showed effective inhibition of tyrosinase, elastase and MMP-1 activities. Therefore, this experiment further rationalizes the traditional use of this worm extracts which may be useful as an anti-wrinkle agent.

  18. Antibacterial Effect of Surface Pretreatment Techniques against ...

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... 2018 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ... Objective: The aim of this study was to evaluate the antibacterial surface .... glass ionomer cement. ..... resin containing antibacterial monomer MDPB.

  19. Antibacterial surface design - Contact kill

    Science.gov (United States)

    Kaur, Rajbir; Liu, Song

    2016-08-01

    Designing antibacterial surfaces has become extremely important to minimize Healthcare Associated Infections which are a major cause of mortality worldwide. A previous biocide-releasing approach is based on leaching of encapsulated biocides such as silver and triclosan which exerts negative impacts on the environment and potentially contributes to the development of bacterial resistance. This drawback of leachable compounds led to the shift of interest towards a more sustainable and environmentally friendly approach: contact-killing surfaces. Biocides that can be bound onto surfaces to give the substrates contact-active antibacterial activity include quaternary ammonium compounds (QACs), quaternary phosphoniums (QPs), carbon nanotubes, antibacterial peptides, and N-chloramines. Among the above, QACs and N-chloramines are the most researched contact-active biocides. We review the engineering of contact-active surfaces using QACs or N-chloramines, the modes of actions as well as the test methods. The charge-density threshold of cationic surfaces for desired antibacterial efficacy and attempts to combine various biocides for the generation of new contact-active surfaces are discussed in detail. Surface positive charge density is identified as a key parameter to define antibacterial efficacy. We expect that this research field will continue to attract more research interest in view of the potential impact of self-disinfective surfaces on healthcare-associated infections, food safety and corrosion/fouling resistance required on industrial surfaces such as oil pipes and ship hulls.

  20. Substituted Hydroxyapatites with Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Joanna Kolmas

    2014-01-01

    Full Text Available Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency.

  1. Substituted Hydroxyapatites with Antibacterial Properties

    Science.gov (United States)

    Kolmas, Joanna; Groszyk, Ewa; Kwiatkowska-Różycka, Dagmara

    2014-01-01

    Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions) and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency. PMID:24949423

  2. Biosensor based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Ren, J.; Kang, T.F.; Xue, R.; Ge, C.N.; Cheng, S.Y.

    2011-01-01

    We describe a biosensor for phenolic compounds that is based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes (MWNTs). The MWNTs possess excellent inherent electrical conductivity which enhances the electron transfer rate and results in good electrochemical catalytic activity towards the reduction of benzoquinone produced by enzymatic reaction. The biosensor was characterized by cyclic voltammetry, and the experimental conditions were optimized. The cathodic current is linearly related to the concentration of the phenols between 0.4 μM and 10 μM, and the detection limit is 0.2 μM. The method was applied to the determination of phenol in water samples (author)

  3. Tyrosinase inhibitor screening in traditional Chinese medicines by electrophoretically mediated microanalysis.

    Science.gov (United States)

    Tang, Lilin; Zhang, Wenpeng; Zhao, Haiyan; Chen, Zilin

    2015-08-01

    A capillary-electrophoresis-based method for the screening of tyrosinase inhibitors in traditional Chinese medicines was developed. The method integrated electrophoretically mediated microanalysis with sandwich mode injection, partial filling, and rapid polarity switching techniques, and carried out on-column enzyme reaction and the separation of substrate and product. The conditions were optimized including the background electrolyte, mixing voltage, and the incubation time. Finally, the screening of nine standard natural compounds of traditional Chinese medicines was carried out. The inhibitors can be directly identified from the reduced peak area of the product compared to that obtained without any inhibitor. Chlorogenic acid (100 μM) showed inhibitory activity with the inhibitory percentage of 19.8%, while the other compounds showed no inhibitory activity. This method has great application potential in drug discovery from traditional Chinese medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bioactive Profiles, Antioxidant Activities, Nitrite Scavenging Capacities and Protective Effects on H2O2-Injured PC12 Cells of Glycyrrhiza Glabra L. Leaf and Root Extracts

    Directory of Open Access Journals (Sweden)

    Yi Dong

    2014-06-01

    Full Text Available This study compared the total flavonoid content of Glycyrrhiza glabra L. leaf and root extracts. Results suggested that the total flavonoid content in the leaf extract was obviously higher than that in the root extract. Pinocembrin, the main compound in the leaf extract after purification by column chromatography, showed good antioxidant activity and nitrite scavenging capacity, but moderate inhibitory effect on mushroom tyrosinase. Liquiritin was the main compound in root extract and possessed strong inhibitory effect on mushroom tyrosinase. Both compounds exhibited significant protection effect on H2O2-injured PC12 cells at a low concentration. These results indicate that Glycyrrhiza glabra L. leaf is potential as an important raw material for functional food.

  5. Nanostructured progesterone immunosensor using a tyrosinase-colloidal gold-graphite-Teflon biosensor as amperometric transducer

    Energy Technology Data Exchange (ETDEWEB)

    Carralero, Veronica [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain); Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain); Yanez-Sedeno, Paloma [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)]. E-mail: yseo@quim.ucm.es; Pingarron, Jose M. [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2007-07-16

    A novel progesterone immunosensor using a colloidal gold-graphite-Teflon-tyrosinase composite biosensor as amperometric transducer is reported. A sequential competitive configuration between the analyte and progesterone labelled with alkaline phosphatase (AP) was used. Phenyl phosphate was employed as the AP-substrate and the enzyme reaction product, phenol, was oxidized by tyrosinase to o-quinone, which is subsequently reduced at -0.1 V at the biocomposite electrode. Variables such as the concentration of phenyl phosphate, the amount of antibody attached to the electrode surface, immersion time in a 2% BSA solution, working pH and incubation times in progesterone and AP conjugate were optimized. A linear calibration graph for progesterone was obtained between 0 and 40 ng mL{sup -1} with a slope value of -82.3 nA ng{sup -1} mL, and a detection limit of 0.43 ng mL{sup -1}. The time needed to reach the steady-state current from the addition of phenyl phosphate was 30-40 s. These analytical characteristics improve substantially those reported for other progesterone immunosensors. A lifetime of 14 days with no need to apply any regeneration procedure was also achieved. The usefulness of the immunosensor was evaluated by determining progesterone in milk samples spiked with the analyte at 5.0 and 1.5 ng mL{sup -1} concentration levels. Following a very simple procedure, involving only sample dilution, mean recoveries (n = 7) of 98 {+-} 3% and 99 {+-} 3%, respectively, were obtained.

  6. A novel fluorescent biosensor for adrenaline detection and tyrosinase inhibitor screening.

    Science.gov (United States)

    Liu, Ziping; Liu, Shasha

    2018-04-17

    In this work, a novel simple fluorescent biosensor for the highly sensitive and selective detection of adrenaline was established. Firstly, water-soluble CuInS 2 quantum dots (QDs) capped by L-Cys were synthesized via a hydrothermal synthesis method. Then, the positively charged adrenaline was assembled on the surface of CuInS 2 QDs due to the electrostatic interactions and hydrogen bonding, which led to the formation of adrenaline-CuInS 2 QD (Adr-CuInS 2 QD) electrostatic complexes. Tyrosinase (TYR) can catalyze adrenaline to generate H 2 O 2 , and additionally oxidize the adrenaline to adrenaline quinone. Both the H 2 O 2 and the adrenaline quinone can quench the fluorescence of the CuInS 2 QDs through the electron transfer (ET) process. Thus, the determination of adrenaline could be facilely achieved by taking advantage of the fluorescence "turn off" feature of CuInS 2 QDs. Under the optimum conditions, the fluorescence quenching ratio I f /I f0 (I f and I f0 were the fluorescence intensity of Adr-CuInS 2 QDs in the presence and absence of TYR, respectively) was proportional to the logarithm of adrenaline concentration in the range of 1 × 10 -8 -1 × 10 -4  mol L -1 with the detection limit of 3.6 nmol L -1 . The feasibility of the proposed biosensor in real sample assay was also studied and satisfactory results were obtained. Significantly, the proposed fluorescent biosensor can also be utilized to screen TYR inhibitors. Graphical abstract Schematic illustration of the fluorescent biosensor for adrenaline detection (A) and tyrosinase inhibitor screening (B).

  7. Nanostructured progesterone immunosensor using a tyrosinase-colloidal gold-graphite-Teflon biosensor as amperometric transducer

    International Nuclear Information System (INIS)

    Carralero, Veronica; Gonzalez-Cortes, Araceli; Yanez-Sedeno, Paloma; Pingarron, Jose M.

    2007-01-01

    A novel progesterone immunosensor using a colloidal gold-graphite-Teflon-tyrosinase composite biosensor as amperometric transducer is reported. A sequential competitive configuration between the analyte and progesterone labelled with alkaline phosphatase (AP) was used. Phenyl phosphate was employed as the AP-substrate and the enzyme reaction product, phenol, was oxidized by tyrosinase to o-quinone, which is subsequently reduced at -0.1 V at the biocomposite electrode. Variables such as the concentration of phenyl phosphate, the amount of antibody attached to the electrode surface, immersion time in a 2% BSA solution, working pH and incubation times in progesterone and AP conjugate were optimized. A linear calibration graph for progesterone was obtained between 0 and 40 ng mL -1 with a slope value of -82.3 nA ng -1 mL, and a detection limit of 0.43 ng mL -1 . The time needed to reach the steady-state current from the addition of phenyl phosphate was 30-40 s. These analytical characteristics improve substantially those reported for other progesterone immunosensors. A lifetime of 14 days with no need to apply any regeneration procedure was also achieved. The usefulness of the immunosensor was evaluated by determining progesterone in milk samples spiked with the analyte at 5.0 and 1.5 ng mL -1 concentration levels. Following a very simple procedure, involving only sample dilution, mean recoveries (n = 7) of 98 ± 3% and 99 ± 3%, respectively, were obtained

  8. Xenogeneic murine tyrosinase DNA vaccine for malignant melanoma of the digit of dogs.

    Science.gov (United States)

    Manley, C A; Leibman, N F; Wolchok, J D; Rivière, I C; Bartido, S; Craft, D M; Bergman, P J

    2011-01-01

    Malignant melanoma of dogs is a highly aggressive neoplasm and is the 2nd most common digit tumor. Metastatic disease is a common sequela for which few effective treatment options exist. Studies show that xenogeneic tyrosinase DNA vaccination yields immune responses and prolongation of survival in dogs with oral malignant melanoma. Describe clinical findings and tumor characteristics of a cohort of dogs with digit malignant melanoma, and evaluate the prognostic utility of a proposed staging system. Determine if a novel xenogeneic DNA vaccine is safe and potentially effective for treatment of dogs with digit melanoma. Fifty-eight dogs with digit malignant melanoma treated at the Animal Medical Center between 2004 and 2007. Retrospective, medical records review of dogs with digit melanoma treated with xenogeneic DNA vaccine. Overall median survival time (MST) for dogs treated with loco-regional control and xenogeneic DNA vaccine was 476 days with a 1-year survival rate of 63%. MST for dogs presenting with metastasis was 105 days versus 533 days for dogs presenting without metastasis (P dogs in the latter group were alive at 2 and 3 years. A proposed staging system proved prognostic with stages I-IV dogs surviving >952, >1,093, 321, and 76 days, respectively. The xenogeneic murine tyrosinase DNA vaccine was safe and appears effective when used in conjunction with local and regional disease control. The proposed staging system was prognostic in this study and future studies might benefit from utilizing this staging system. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  9. Antibacterial Resistance Leadership Group: Open for Business

    OpenAIRE

    Chambers, Henry F.; Bartlett, John G.; Bonomo, Robert A.; Chiou, Christine; Cosgrove, Sara E.; Cross, Heather R.; Daum, Robert S.; Downing, Michele; Evans, Scott R.; Knisely, Jane; Kreiswirth, Barry N.; Lautenbach, Ebbing; Mickley, Brenda S.; Patel, Robin; Pettigrew, Melinda M.

    2014-01-01

    The Antibacterial Resistance Leadership Group (ARLG) is tasked with prioritizing, designing, implementing, and conducting clinical studies to address antibacterial resistance. This article outlines clinical research resources and opportunities made available by ARLG and encourages submission of proposals that address antibacterial resistance.

  10. Antibacterial activity of nitric oxide releasing silver nanoparticles

    Science.gov (United States)

    Seabra, Amedea B.; Manosalva, Nixson; de Araujo Lima, Bruna; Pelegrino, Milena T.; Brocchi, Marcelo; Rubilar, Olga; Duran, Nelson

    2017-06-01

    Silver nanoparticles (AgNPs) are well known potent antimicrobial agents. Similarly, the free radical nitric oxide (NO) has important antibacterial activity, and due to its instability, the combination of NO and nanomaterials has been applied in several biomedical applications. The aim of this work was to synthesize, characterize and evaluate the antibacterial activity of a new NO-releasing AgNPs. Herein, AgNPs were synthesized by the reduction of silver ions (Ag+) by catechin, a natural polyphenol and potent antioxidant agent, derived from green tea extract. Catechin acts as a reducing agent and as a capping molecule on the surface of AgNPs, minimizing particle agglomeration. The as-synthesized nanoparticles were characterized by different techniques. The results showed the formation of AgNPs with average hydrodynamic size of 44 nm, polydispersity index of 0.21, and zeta potential of -35.9 mV. X-ray diffraction and Fourier transform infrared spectroscopy revealed the presence of the AgNP core and cathecin as capping agent. The low molecular weight mercaptosuccinic acid (MSA), which contain free thiol group, was added on the surface of catechin-AgNPs, leading to the formation of MSA-catechin-AgNPs (the NO precursor nanoparticle). Free thiol groups of MSA-catechin-AgNPs were nitrosated leading to the formation of S-nitroso-mercaptosuccinic acid (S-nitroso-MSA), the NO donor. The amount of 342 ± 16 µmol of NO was released per gram of S-nitroso-MSA-catechin-AgNPs. The antibacterial activities of catechin-AgNPs, MSA-catechin-AgNPs, and S-nitroso-MSA-catechin-AgNPs were evaluated towards different resistant bacterial strains. The results demonstrated an enhanced antibacterial activity of the NO-releasing AgNP. For instance, the minimal inhibitory concentration values for Pseudomonas aeruginosa (ATCC 27853) incubated with AgNPs-catechin, AgNPs-catechin-MSA, and AgNPs-catechin-S-nitroso-MSA were found to be 62, 125 and 3 µg/mL, respectively. While in the case of

  11. Phytochemical Characterization, Antibacterial, Acetylcholinesterase Inhibitory and Cytotoxic Properties of Cryptostephanus vansonii, an Endemic Amaryllid

    Czech Academy of Sciences Publication Activity Database

    Moyo, M.; Aremu, A.O.; Chukwujekwu, J. C.; Grúz, Jiří; Skořepa, Jiří; Doležal, Karel; Katsvanga, C. A. T.; Van Staden, J.

    2017-01-01

    Roč. 31, č. 5 (2017), s. 713-720 ISSN 0951-418X R&D Projects: GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : in-vitro * alzheimers-disease * alkaloids * extracts * antioxidant * coumarins * apoptosis * phylogeny * medicine * bacteria * acetylcholinesterase inhibition * Amaryllidaceae * antibacterial * cytotoxicity * flavonoids * phenolic acids Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.092, year: 2016

  12. Antimelanogenic, Antioxidant and Antiproliferative Effects of Antrodia camphorata Fruiting Bodies on B16-F0 Melanoma Cells.

    Directory of Open Access Journals (Sweden)

    Jyh-Jye Wang

    Full Text Available Antrodia camphorata is a fungus that is endemic to Taiwan, and its fruiting body has been used as a folk medicine for the prevention or treatment of diverse diseases. The present study is aimed at investigating the antimelanogenesis and antioxidation effect of the ethanolic extract of Antrodia camphorata fruiting body (EE-AC, as well as its antiproliferation effects in B16-F0 melanoma cells. Regarding antimelanogenic effects, EE-AC had effective cupric ions reducing capacity and expressed more potent inhibitory effect than kojic acid on mushroom tyrosinase activity. Moreover, EE-AC significantly inhibited cellular tyrosinase activity and the melanin content in B16-F0 cells at 12.5 μg/mL concentration without cell toxicities. Regarding antioxidant effects, EE-AC exhibited potent DPPH radical- and SOD-like-scavenging activities. Regarding antiproliferative effects, EE-AC exhibited a selective cytotoxic effect and markedly inhibited the migration ability of B16-F0 cells. EE-AC increased the population of B16-F0 cells at sub-G1 phase of the cell cycle. EE-AC also caused the increase of early apoptotic cells and chromatin condensation, which indicated the apoptotic effects in B16-F0 cells. We demonstrated that EE-AC possessed antimelanogenic, antioxidant and anti-skin cancer actions. The results would contribute to the development and application of cosmetics, healthy food and pharmaceuticals.

  13. Chemical synthesis, redox transformation, and identification of sonnerphenolic C, an antioxidant in Acer nikoense.

    Science.gov (United States)

    Iwadate, Takehiro; Nihei, Ken-Ichi

    2017-04-15

    Sonnerphenolic C (3), which was predicted in a redox product of epirhododendrin (1) isolated from Acer nikoense, was synthesized for the first time via the epimeric separation of benzylidene acetal intermediates as a key step. From a similar synthetic route, 1 was obtained concisely. As a result of their antioxidative evaluation, only 3 revealed potent activity. The redox transformation of 1 into 3 was achieved in the presence of tyrosinase and vitamin C. Moreover, 3 was identified in the decoction of A. nikoense by HPLC analysis with the effective use of synthesized 3. Thus, a novel naturally occurring antioxidant 3 was developed through the sequential flow including redox prediction, chemical synthesis, evaluation of the activity, and identification as the natural product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Light-Enhanced Antibacterial Activity of Graphene Oxide, Mainly via Accelerated Electron Transfer.

    Science.gov (United States)

    Chong, Yu; Ge, Cuicui; Fang, Ge; Wu, Renfei; Zhang, He; Chai, Zhifang; Chen, Chunying; Yin, Jun-Jie

    2017-09-05

    Before graphene derivatives can be exploited as next-generation antimicrobials, we must understand their behavior under environmental conditions. Here, we demonstrate how exposure to simulated sunlight significantly enhances the antibacterial activity of graphene oxide (GO) and reveal the underlying mechanism. Our measurements of reactive oxygen species (ROS) showed that only singlet oxygen ( 1 O 2 ) is generated by GO exposed to simulated sunlight, which contributes only slightly to the oxidation of antioxidant biomolecules. Unexpectedly, we find the main cause of oxidation is light-induced electron-hole pairs generated on the surface of GO. These light-induced electrons promote the reduction of GO, introducing additional carbon-centered free radicals that may also enhance the antibacterial activities of GO. We conclude that GO-mediated oxidative stress mainly is ROS-independent; simulated sunlight accelerates the transfer of electrons from antioxidant biomolecules to GO, thereby destroying bacterial antioxidant systems and causing the reduction of GO. Our insights will help support the development of graphene for antibacterial applications.

  15. Synthesis of chiral pyrazolo[4,3-e][1,2,4]triazine sulfonamides with tyrosinase and urease inhibitory activity.

    Science.gov (United States)

    Mojzych, Mariusz; Tarasiuk, Paweł; Kotwica-Mojzych, Katarzyna; Rafiq, Muhammad; Seo, Sung-Yum; Nicewicz, Michał; Fornal, Emilia

    2017-12-01

    A new series of sulfonamide derivatives of pyrazolo[4,3-e][1,2,4]triazine with chiral amino group has been synthesized and characterized. The compounds were tested for their tyrosinase and urease inhibitory activity. Evaluation of prepared derivatives demonstrated that compounds (8b) and (8j) are most potent mushroom tyrosinase inhibitors whereas all of the obtained compounds showed higher urease inhibitory activity than the standard thiourea. The compounds (8a), (8f) and (8i) exhibited excellent enzyme inhibitory activity with IC 50 0.037, 0.044 and 0.042 μM, respectively, while IC 50 of thiourea is 20.9 μM.

  16. Combining molecular docking and QSAR studies for modeling the anti-tyrosinase activity of aromatic heterocycle thiosemicarbazone analogues

    Science.gov (United States)

    Dong, Huanhuan; Liu, Jing; Liu, Xiaoru; Yu, Yanying; Cao, Shuwen

    2018-01-01

    A collection of thirty-six aromatic heterocycle thiosemicarbazone analogues presented a broad span of anti-tyrosinase activities were designed and obtained. A robust and reliable two-dimensional quantitative structure-activity relationship model, as evidenced by the high q2 and r2 values (0.848 and 0.893, respectively), was gained based on the analogues to predict the quantitative chemical-biological relationship and the new modifier direction. Inhibitory activities of the compounds were found to greatly depend on molecular shape and orbital energy. Substituents brought out large ovality and high highest-occupied molecular orbital energy values helped to improve the activity of these analogues. The molecular docking results provided visual evidence for QSAR analysis and inhibition mechanism. Based on these, two novel tyrosinase inhibitors O04 and O05 with predicted IC50 of 0.5384 and 0.8752 nM were designed and suggested for further research.

  17. Structure and Antioxidant Activity of Polyphenols Derived from Propolis

    Directory of Open Access Journals (Sweden)

    Anna Kurek-Górecka

    2013-12-01

    Full Text Available Propolis is a potential source of natural antioxidants such as phenolic acids and flavonoids. Its wide biological effects have been known and used since antiquity. In the modern world natural substances are sought which would be able to counteract the effects of antioxidative stress, which underlies many diseases, such as cancer, diabetes and atherosclerosis. This paper aims to present the antioxidative activity of phenolic acids and flavonoids present in Polish propolis and the relationship between their chemical structure and antioxidative activity influencing its medicinal properties. Data concerning the biological activity of propolis are summarized here, including its antibacterial, anti-inflammatory, anticarcinogenic, antiatherogenic, estrogenic effects, as well as AIDS- counteracting and reparative-regenerative function.

  18. Evaluation of the Antibacterial Effects and Mechanism of Action of Protocatechualdehyde against Ralstonia solanacearum

    Directory of Open Access Journals (Sweden)

    Shili Li

    2016-06-01

    Full Text Available Protocatechualdehyde (PCA is an important plant-derived natural product that has been associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging and an anti-inflammatory agent. However, fewer reports concerning its antibacterial effects on plant-pathogenic bacteria exist. Therefore, in this study, protocatechualdehyde was evaluated for its antibacterial activity against plant pathogens along with the mechanism of its antibacterial action. PCA at 40 μg/mL was highly active against R. solanacearum and significantly inhibited its growth. The minimum bactericidal concentration and minimum inhibitory concentration values for PCA were 40 μg/mL and 20 μg/mL, respectively. Further investigation of the mechanism of action of PCA via transmission electron microscopy and biological assays indicated that the destruction of the cell structure, the shapes and the inhibition of biofilm formation were important. In addition, the application of PCA effectively reduced the incidence of bacterial wilt on tobacco under greenhouse conditions, and the control efficiency was as high as 92.01% at nine days after inoculation. Taken together, these findings suggest that PCA exhibits strong antibacterial activity against R. solanacearum and has the potential to be applied as an effective antibacterial agent for controlling bacterial wilt caused by R. solanacearum.

  19. TLC-bioautographic evaluation of in vitro anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil.

    Science.gov (United States)

    Misra, Biswapriya B; Dey, Satyahari

    2013-02-01

    Sandalwood oil, rich in sesquiterpenoid alcohols, has been used in traditional medicinal systems as a relaxant and coolant. Besides, sandalwood oil is used as an ingredient in numerous skin fairness enhancing cosmetics. However, there is no available information on biological activities that relate to the above applications. Hence, the anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil were probed by both TLC-bioautographic and colorimetric methods. Results obtained from colorimetric assays indicated that sandalwood oil is a potent inhibitor of tyrosinase (IC50 = 171 microg mL(-1)) and cholinesterases (IC50 = 4.8-58 microg mL(-1)), in comparison with the positive controls used in the assays, kojic acid and physostigmine, respectively. The TLC-bioautographic assays indicated that alpha-santalol, the major constituent of the oil, is a strong inhibitor of both tyrosinase and cholinesterase. These in vitro results indicate that there is a great potential of this essential oil for use in the treatment of Alzheimer's disease, as well as in skin-care.

  20. Novel piperonal 1,3,4-thiadiazolium-2-phenylamines mesoionic derivatives: Synthesis, tyrosinase inhibition evaluation and HSA binding study.

    Science.gov (United States)

    Lopes, Natália Drumond; Chaves, Otávio Augusto; de Oliveira, Márcia C C; Sant'Anna, Carlos Mauricio R; Sousa-Pereira, Danilo; Netto-Ferreira, José Carlos; Echevarria, Aurea

    2018-06-01

    A novel series of piperonal mesoionic derivatives (PMI 1-6) was synthesized. Tyrosinase inhibition in the presence of PMI-1, -2, -3, -4, -5 and -6 as well as human serum albumin (HSA) binding studies with PMI-5 and PMI-6 were done by spectroscopic and theoretical methods. The mesoionic compound PMI-5 is the most promising tyrosinase inhibitor with a noncompetitive inhibitory mechanism and an IC 50 =124μmolL -1 . In accordance with the kinetic profile, molecular docking results show that PMI-5 is able to interact favorably with the tyrosinase active site containing the substrate molecule, L-DOPA, interacting with Val-247, Phe-263 and Val-282 residues. The spectroscopic results for the interaction HSA:PMI-5 and HSA:PMI-6 indicated that these mesoionic compounds can associate with HSA in the ground state and energy transfer can occur with high probability. The binding was moderate, spontaneous and can perturb significantly the secondary structure of the albumin. The molecular docking results suggest that PMI-5 and PMI-6 are able to be accommodated inside the Sudlow's site I in HSA, interacting with hydrophobic and hydrophilic amino acid residues. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Anti-methicillin-resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. And their mechanism of antibacterial activity.

    Science.gov (United States)

    Chew, Yik Ling; Mahadi, Adlina Maisarah; Wong, Kak Ming; Goh, Joo Kheng

    2018-02-20

    Bauhinia kockiana originates from Peninsular Malaysia and it is grown as a garden ornamental plant. Our previous study reported that this plant exhibited fairly strong antioxidant and antimicrobial activities. This paper focused on the assessment of the antibacterial activity of B. kockiana towards methicillin-resistance Staphylococcus aureus (MRSA), to purify and to identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. Antibacterial activity of B. kockiana flower was evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts were examined. Phytochemical analysis was performed to determine the classes of phytochemicals in the extracts. Bioactivity guided isolation was employed to purify the antibacterial agents and identified via various spectroscopy methods. Scanning electron microscopy (SEM) technique was used to evaluate the antibacterial mechanism of extract and compounds isolated. B. kockiana flower was found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria used, MIC varies from 62.5-250 μg/mL. Tannins and flavonoids have been detected in the phytochemical analysis. Gallic acid and its ester derivatives purified from ethyl acetate extract could inhibit MRSA at 250-500 μg/mL. SEM revealed that the cells have undergone plasmolysis upon treatment with the extract and compounds. Tannins and polyphenols are the antibacterial components towards MRSA in B. kockiana. Massive leakage of the cell content observed in treated cells showed that the phytochemicals have changed the properties of the cell membranes. Amphiphilic nature of the compounds exhibited the antibacterial activity towards MRSA via three stages: (1) cell membrane attachment; (2) cell membrane fluidity modification; and (3) cell membrane structure disruption.

  2. Structural insight with mutational impact on tyrosinase and PKC-β interaction from Homo sapiens: Molecular modeling and docking studies for melanogenesis, albinism and increased risk for melanoma.

    Science.gov (United States)

    Banerjee, Arundhati; Ray, Sujay

    2016-10-30

    Human tyrosinase, is an important protein for biosynthetic pathway of melanin. It was studied to be phosphorylated and activated by protein kinase-C, β-subunit (PKC-β) through earlier experimentations with in vivo evidences. Documentation documents that mutation in two essentially vital serine residues in C-terminal end of tyrosinase leads to albinism. Due to the deficiency of protective shield like enzyme; melanin, albinos are at an increased peril for melanoma and other skin cancers. So, computational and residue-level insight including a mutational exploration with evolutionary importance into this mechanism lies obligatory for future pathological and therapeutic developments. Therefore, functional tertiary models of the relevant proteins were analyzed after satisfying their stereo-chemical features. Evolutionarily paramount residues for the activation of tyrosinase were perceived via multiple sequence alignment phenomena. Mutant-type tyrosinase protein (S98A and S102A) was thereby modeled, maintaining the wild-type proteins' functionality. Furthermore, this present comparative study discloses the variation in the stable residual participation (for mutant-type and wild-type tyrosinase-PKCβ complex). Mainly, an increased number of polar negatively charged residues from the wild-type tyrosinase participated with PKC-β, predominantly. Fascinatingly supported by evaluation of statistical significances, mutation even led to a destabilizing impact in tyrosinase accompanied by conformational switches with a helix-to-coil transition in the mutated protein. Even the allosteric sites in the protein got poorly hampered upon mutation leading to weaker tendency for binding partners to interact. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Choi Yoo

    2012-10-01

    Full Text Available Abstract Background In nature, mussel adhesive proteins (MAPs show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate

  4. Effects of heat treatment on antioxidative and anti-inflammatory properties of orange by-products

    Science.gov (United States)

    This study investigated the changes in functional components, antioxidative activities, antibacterial activities, anti-inflammatory activities of orange (Citrus sinensis (L.) Osbeck) by-products (OBP) by heat treatment at 50 and 100 degrees C (hereafter, 50D and 100D extracts, respectively). Optimal...

  5. A cDNA Cloning of a Novel Alpha-Class Tyrosinase of Pinctada fucata: Its Expression Analysis and Characterization of the Expressed Protein

    Directory of Open Access Journals (Sweden)

    Ryousuke Takgi

    2014-01-01

    Full Text Available Tyrosinase plays an important role in the formation of the shell matrix and melanin synthesis in mollusks shells. A cDNA clone encoding a 47 kDa protein was isolated from the pearl oyster Pinctada fucata. The cDNA was 1,957 base pairs long and encodes a 417 residue protein that has extensive sequence identity with tyrosinase (polyphenol oxidase: EC 1.14.18.1. This tyrosinase-like protein, termed PfTy, contains an N-terminal signal sequence and the two copper-binding domain signatures (CuA and CuB, suggesting that PfTy belongs to the α-subclass of type-3 copper proteins. Enzyme activity of PfTy was examined by a spectrophotometric method using the translation product derived from an S30 T7 high-yield protein expression system. Tyrosinase activity was seen in this recombinant product. RT-PCR analysis showed that PfTy mRNA was expressed in the mantle pallial, but not in the mantle edge. Therefore, PfTy may participate in insoluble shell matrix formation of the nacreous layer. PfTy expression was also observed in the foot, liver, and adductor muscle, suggesting that PfTy participates in the synthesis of melanins, which are effective scavengers of free radicals formed in multiple intracellular oxidative processes. This is the first report of a novel α-class tyrosinase from the pearl oyster P. fucata.

  6. Neurospora crassa glucose - repressible gene -1(Grg-1) promoter controls the expression of neurospora tyrosinase gene in a clock-controlled manner

    International Nuclear Information System (INIS)

    Tarawneh, A. K

    1997-01-01

    In this study sphareroplastes of white Neurospora crassa mutant auxotroph for aromatic am no acids a rom 9 q a-2 inv, was transformed by the pKF-Tyr7-wt DNA construct. This construct contains the promoter of neurospora crassa glucose-repressible gene-1 (G rg-1) usp stream of Neurospora tyrosinase gene. The co transformation of this mutant with pKF-Tyr-7-wt cincture's and the pKAL-1, a plasmid which contains the Neurospora q a-2+ gene transform it to photophor. The transform ant contains the tyrosinase gene which catalyzes the unique step in the synthesis of the black pigment melanin. The activity of the tyrosinase in this transform ant was followed by measuring the absorbance of the dark coloured pigment at 332 nm. The maximum of the tyrosinase activity was shown at 16.36 and 56 hours after the shift of the transformed mycelia from constant light (L L) to constant dark (Dd). The rate of the enzyme activity was changed according to ci radian cycle of 20 hours. This G rg 1/tyrosinase construct provides a good system to study to study the temporal control of gene expression and the interaction between the different environmental c uses that affects gene expression. (author). 20 refs., 4 figs

  7. Immobilization of Tyrosinase from Avocado Crude Extract in Polypyrrole Films for Inhibitive Detection of Benzoic Acid

    Directory of Open Access Journals (Sweden)

    André Brisolari

    2014-07-01

    Full Text Available Inhibition-based biosensors were developed by immobilizing tyrosinase (Tyr, polyphenol oxidase from the crude extract of avocado fruit on electrochemically prepared polypyrrole (PPy films. The biosensors were prepared during the electropolymerization of pyrrole in a solution containing a fixed volume of the crude extract of avocado. The dependence of the biosensor responses on the volume used from the crude extract, values of pH and temperature was studied, and a substrate, catechol, at different concentrations, was amperometrically detected by these biosensors. Benzoic acid, a competitive inhibitor of Try, was added to the catechol solutions at specific concentrations aimed at obtaining the inhibition constant, K’m, which ranged from 1.7 to 4.6 mmol∙L−1 for 0.0 and 60 µmol∙L−1 of benzoic acid, respectively. Studies on the inhibition caused by benzoic acid by using PPy/Try films, and catechol as a substrate, allowed us propose how to develop, under optimized conditions, simple and low-cost biosensors based on the use of avocado fruit.

  8. Albinism in the domestic cat (Felis catus) is associated with a tyrosinase (TYR) mutation

    Science.gov (United States)

    Imes, DL; Geary, LA; Grahn, RA; Lyons, LA

    2006-01-01

    Summary Albino phenotypes are documented in a variety of species including the domestic cat. As albino phenotypes in other species are associated with tyrosinase (TYR) mutations, TYR was proposed as a candidate gene for albinism in cats. An Oriental and Colourpoint Shorthair cat pedigree segregating for albinism was analysed for association with TYR by linkage and sequence analyses. Microsatellite FCA931, which is closely linked to TYR and TYR sequence variants were tested for segregation with the albinism phenotype. Sequence analysis of genomic DNA from wild-type and albino cats identified a cytosine deletion in TYR at position 975 in exon 2, which causes a frame shift resulting in a premature stop codon nine residues downstream from the mutation. The deletion mutation in TYR and an allele of FCA931 segregated concordantly with the albino phenotype. Taken together, our results suggest that the TYR gene corresponds to the colour locus in cats and its alleles, from dominant to recessive, are as follows: C (full colour) > cb (burmese) ≥ cs (siamese) > c (albino). PMID:16573534

  9. Effects of Gold Nanoparticles on the Response of Phenol Biosensor Containing Photocurable Membrane with Tyrosinase

    Directory of Open Access Journals (Sweden)

    Ahmad Musa

    2008-10-01

    Full Text Available The role of incorporation of gold nanoparticles (50-130 nm in diameter into a series of photocurable methacrylic-acrylic based biosensor membranes containing tyrosinase on the response for phenol detection was investigated. Membranes with different hydrophilicities were prepared from 2-hydroxyethyl methacrylate and n-butyl acrylate via direct photocuring. A range of gold nanoparticles concentrations from 0.01 to 0.5 % (w/w was incorporated into these membranes during the photocuring process. The addition of gold nanoparticles to the biosensor membrane led to improvement in the response time by a reduction of approximately 5 folds to give response times of 5-10 s. The linear response range of the phenol biosensor was also extended from 24 to 90 mM of phenol. The hydrophilicities of the membrane matrices demonstrated strong influence on the biosensor response and appeared to control the effect of the gold nanoparticles. For less hydrophilic methacrylic-acrylic membranes, the addition of gold nanoparticles led to a poorer sensitivity and detection limit of the biosensor towards phenol. Therefore, for the application of gold nanoparticles in the enhancement of a phenol biosensor response, the nanoparticles should be immobilized in a hydrophilic matrix rather than a hydrophobic material.

  10. Validating tyrosinase homologue MelA as a photoacoustic reporter gene for imaging Escherichia coli

    Science.gov (United States)

    Paproski, Robert J.; Li, Yan; Barber, Quinn; Lewis, John D.; Campbell, Robert; Zemp, Roger

    2015-03-01

    Antibiotic drug resistance is a major worldwide issue. Development of new therapies against pathogenic bacteria requires appropriate research tools for replicating and characterizing infections. Previously fluorescence and bioluminescence modalities have been used to image infectious burden in animal models but scattering significantly limits imaging depth and resolution. We hypothesize that photoacoustic imaging, which has improved depth-toresolution ratio, could be useful for visualizing MelA-expressing bacteria since MelA is a bacterial tyrosinase homologue involved in melanin production. Using an inducible expression system, E. coli expressing MelA were visibly black in liquid culture. Phosphate buffered saline (PBS), MelA-expressing bacteria (at different dilutions in PBS), and chicken embryo blood were injected in plastic tubes which were imaged using a VisualSonics Vevo LAZR system. Photoacoustic imaging at 6 different wavelengths (680, 700, 750, 800, 850 and 900nm) enabled spectral de-mixing to distinguish melanin signals from blood. The signal to noise ratio of 9x diluted MelA bacteria was 55, suggesting that ~20 bacteria cells could be detected with our system. When MelA bacteria were injected as a 100 μL bolus into a chicken embryo, photoacoustic signals from deoxy- and oxy- hemoglobin as well as MelA-expressing bacteria could be separated and overlaid on an ultrasound image, allowing visualization of the bacterial location. Photoacoustic imaging may be a useful tool for visualizing bacterial infections and further work incorporating photoacoustic reporters into infectious bacterial strains is warranted.

  11. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase.

    Science.gov (United States)

    Fang, Yi; Bullock, Hannah; Lee, Sarah A; Sekar, Narendran; Eiteman, Mark A; Whitman, William B; Ramasamy, Ramaraja P

    2016-11-15

    Volatile organic compounds have been recognized as important marker chemicals to detect plant diseases caused by pathogens. Methyl salicylate has been identified as one of the most important volatile organic compounds released by plants during a biotic stress event such as fungal pathogen infection. Advanced detection of these marker chemicals could help in early identification of plant diseases and has huge significance for agricultural industry. This work describes the development of a novel bi-enzyme based electrochemical biosensor consisting of salicylate hydroxylase and tyrosinase enzymes immobilized on carbon nanotube modified electrodes. The amperometric detection using the bi-enzyme platform was realized through a series of cascade reactions that terminate in an electrochemical reduction reaction. Electrochemical measurements revealed that the sensitivity of the bi-enzyme sensor was 30.6±2.7µAcm(-2)µM(-1) and the limit of detection and limit of quantification were 13nM (1.80ppb) and 39nM (5.39ppb) respectively. Interference studies showed no significant interference from the other common plant volatile compounds. Synthetic analyte studies revealed that the bi-enzyme based biosensor can be used to reliably detect methyl salicylate released by unhealthy plants. Copyright © 2016. Published by Elsevier B.V.

  12. Antibacterial activity of Artocarpus heterophyllus.

    Science.gov (United States)

    Khan, M R; Omoloso, A D; Kihara, M

    2003-07-01

    The crude methanolic extracts of the stem and root barks, stem and root heart-wood, leaves, fruits and seeds of Artocarpus heterophyllus and their subsequent partitioning with petrol, dichloromethane, ethyl acetate and butanol gave fractions that exhibited a broad spectrum of antibacterial activity. The butanol fractions of the root bark and fruits were found to be the most active. None of the fractions were active against the fungi tested.

  13. Resveratrol—Potential Antibacterial Agent against Foodborne Pathogens

    Science.gov (United States)

    Ma, Dexter S. L.; Tan, Loh Teng-Hern; Chan, Kok-Gan; Yap, Wei Hsum; Pusparajah, Priyia; Chuah, Lay-Hong; Ming, Long Chiau; Khan, Tahir Mehmood; Lee, Learn-Han; Goh, Bey-Hing

    2018-01-01

    Bacterial foodborne pathogens are a significant health burden and the recent emergence of pathogenic resistant strains due to the excessive use of antibiotics makes it more difficult to effectively treat infections as a result of contaminated food. Awareness of this impending health crisis has spurred the search for alternative antimicrobials with natural plant antimicrobials being among the more promising candidates as these substances have good acceptability and likely low toxicity levels as they have long been used in traditional medicines. Resveratrol (3,5,4′-trihydroxystilbene) is a naturally occurring stilbenoid which has been gaining considerable attention in medical field due to its diverse biological activities - it has been reported to exhibit antioxidant, cardioprotective, anti-diabetic, anticancer, and antiaging properties. Given that resveratrol is phytoalexin, with increased synthesis in response to infection by phytopathogens, there has been interest in exploring its antimicrobial activity. This review aims to provide an overview of the published data on the antibacterial activity of resveratrol against foodborne pathogens, its mechanisms of action as well as its possible applications in food packing and processing; in addition we also summarize the current data on its potential synergism with known antibacterials and future research and applications. PMID:29515440

  14. Resveratrol—Potential Antibacterial Agent against Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Dexter S. L. Ma

    2018-02-01

    Full Text Available Bacterial foodborne pathogens are a significant health burden and the recent emergence of pathogenic resistant strains due to the excessive use of antibiotics makes it more difficult to effectively treat infections as a result of contaminated food. Awareness of this impending health crisis has spurred the search for alternative antimicrobials with natural plant antimicrobials being among the more promising candidates as these substances have good acceptability and likely low toxicity levels as they have long been used in traditional medicines. Resveratrol (3,5,4′-trihydroxystilbene is a naturally occurring stilbenoid which has been gaining considerable attention in medical field due to its diverse biological activities - it has been reported to exhibit antioxidant, cardioprotective, anti-diabetic, anticancer, and antiaging properties. Given that resveratrol is phytoalexin, with increased synthesis in response to infection by phytopathogens, there has been interest in exploring its antimicrobial activity. This review aims to provide an overview of the published data on the antibacterial activity of resveratrol against foodborne pathogens, its mechanisms of action as well as its possible applications in food packing and processing; in addition we also summarize the current data on its potential synergism with known antibacterials and future research and applications.

  15. Toxicity tests, antioxidant activity, and antimicrobial activity of chitosan

    Science.gov (United States)

    Kurniasih, M.; Purwati; Dewi, R. S.

    2018-04-01

    Chitosan is a naturally occurring cationic biopolymer, obtained by alkaline deacetylation of chitin. This research aims to investigate the toxicity, antioxidant activity and antibacterial activity of chitosan from shrimp chitin. In this study, chitin extracted from shrimp waste material. Chitin is then deacetylation with 60% NaOH so that chitosan produced. Degrees of deacetylation, molecular weight, toxicity test, antioxidant activity and antimicrobial activity of chitosan then evaluated. Toxicity test using Brine Shrimp Lethality Test. The antioxidant analysis was performed using DPPH method (2, 2-diphenyl-1-picrylhydrazyl) and FTC method (ferric thiocyanate) in which the radical formed will reduce Ferro to Ferri resulting in a complex with thiocyanate. To determine the antibacterial activity of Staphylococcus aureus, antifungal in Candida albicans and Aspergillus niger by measuring antimicrobial effects and minimum inhibitory concentrations (MIC). Based on the result of research, the value of degrees of deacetylation, molecular weight, and LC50 values of chitosan synthesis was 94,32, 1052.93 g/mol and 1364.41 ppm, respectively. In general, the antioxidative activities increased as the concentration of chitosan increased. MIC value of chitosan against S. aureus, C. albicans, and A. niger was 10 ppm, 15.6 ppm, and 5 ppm, respectively.

  16. The Effect of Alkaloidal Fraction from Annona squamosa L. against Pathogenic Bacteria with Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Abdulmushin M. Shami

    2017-12-01

    Full Text Available Background: Annona squamosa is used in different places such as India as a general tonic to enrich blood, relieve vomiting, cancer, as a vermicide, for skin complaints and also applied to wounds and ulcers. The purpose of the study was to evaluate the antibacterial and antioxidant properties from of the alkaloidal fraction of A. squamosa. Methods: Well diffusion assay, minimum inhibitory concentration and the minimum bactericidal concentration (MBC were used to evaluate antibacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus cereus, Pseudomonas aeruginosa, MRSA and Helicobacter pylori. DPPH and SOD assays were used to evaluate antioxidant activity. LC-MS analysis was used to identify alkaloids and scanning electron microscopy studies that revealed mode of action. Results: Alkaloidal fraction of A. squamosa exhibited significant inhibition against the tested bacteria. Extracted alkaloids from the leaves of A. squamosa showed high level of antioxidant activities. LC-MS analyses of alkaloids of the plant were identified as corydine, sanjoinine, norlaureline, norcodeine, oxanalobine and aporphine in the leaves of A. squamosa. SEM analysis of the interaction of these substances with the bacteria showed morphological changes of cell wall and lysis of the targeted bacterial cells. Conclusions: It could be concluded that the alkaloids isolated from A. squamosa showed good antibacterial and antioxidant activity. The results suggest the alkaloids can be a new source of antimicrobial agents against pathogenic bacteria and antioxidant source.

  17. Investigation of the Anti-Melanogenic and Antioxidant Characteristics of Eucalyptus camaldulensis Flower Essential Oil and Determination of Its Chemical Composition

    Science.gov (United States)

    Huang, Huey-Chun; Ho, Ya-Chi; Lim, Jia-Min; Chang, Tzu-Yun; Ho, Chen-Lung; Chang, Tsong-Min

    2015-01-01

    The effects of essential oil from Eucalyptus camaldulensis flowers oil on melanogenesis and the oil’s antioxidant characteristics were investigated. Assays of mushroom and cellular tyrosinase activities and melanin content of mouse melanoma cells were performed spectrophotometrically, and the expression of melanogenesis-related proteins was determined by Western blotting. The possible signaling pathways involved in essential oil-mediated depigmentation were also investigated using specific protein kinase inhibitors. The results revealed that E. camaldulensis flower essential oil effectively suppresses intracellular tyrosinase activity and decreases melanin amount in B16F10 mouse melanoma cells. The essential oil also exhibits antioxidant properties and effectively decreases intracellular reactive oxygen species (ROS) levels. The volatile chemical composition of the essential oil was analyzed with gas chromatography–mass spectrometry (GC/MS). The chemical constituents in the essential oil are predominately oxygenated monoterpenes (34.9%), followed by oxygenated sesquiterpenes (31.8%), monoterpene hydrocarbons (29.0%) and sesquiterpene hydrocarbons (4.3%). Our results indicated that E. camaldulensis flower essential oil inhibits melanogenesis through its antioxidant properties and by down-regulating both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways. The present study indicates that the essential oil has the potential to be developed into a skin care product. PMID:25961954

  18. Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma.

    Science.gov (United States)

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Maatouk, Mouna; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    The lack of an efficient agent that does not have the disadvantage of low activity (kojic acid), high cytotoxicity, and mutagenicity (hydroquinone), poor skin penetration (arbutin), or low stability in formulation (glabridin) led us to continue our research on new antipigmentation/skin-lightening agents. Therefore, research of natural products that can modulate the metabolism of pigmentation is of great interest. Otherwise, malignant melanoma is one of the most aggressive forms of skin cancer, with high metastatic potential, and currently, there is no effective chemotherapy against invasive melanoma. Therefore, it is necessary to develop new drugs with potent activity and weak side effects against melanoma. The in-vitro anticancer effect of hawthorn was analyzed against B16F10 melanoma cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of isolated compounds from hawthorn on melanogenesis in B16F10 melanoma cells was investigated by measuring the amounts of melanin and tyrosinase spectrophotometrically at 475 nm. Balb/c mice models inoculated with B16F10 mouse tumor cells were used to evaluate the in-vivo antitumoral potential of hawthorn by assessing its effect on the growth of transplanted tumors. The antioxidant potential of tested samples was evaluated in B16F10 and primary human keratinocyte cells using a cellular antioxidant activity assay. Hawthorn tested samples inhibited effectively the growth of melanoma cells in vitro. Furthermore, it appears that tested samples from hawthorn reduced melanogenesis by inhibiting the tyrosinase activity of B16F10 cells in a dose-dependent manner. In-vivo studies showed that hawthorn total oligomer flavonoids extract treatment at a dose of 150 mg/kg body weight for 21 days in implanted tumor mice resulted in significant inhibition of the tumor growth volume and weight. In addition, tested samples showed significant cellular antioxidant capacity against the reactive oxygen species

  19. Solvent 1H/2H isotopic effects in the reaction of the L-Tyrosine oxidation catalyzed by Tyrosinase

    International Nuclear Information System (INIS)

    Kozlowska, M.; Kanska, M.

    2006-01-01

    Tyrosinase is well known catalyst in the oxidation of L-Tyrosine to L-DOPA and following oxidation of L-DOPA to dopachinone. The aim of communication is to present the results of studies on the solvent isotopic effects (SIE) in the above reactions for the 1 H/ 2 H in the 3',5' and 2',6' substituted tyrosine. Obtained dependence of the reaction rate on the substrate concentration were applied for optimization of the kinetic parameters, k cat and k cat /K m , in the Michaelis-Menten equation. As a result - better understanding of the L-DOPA creation can be achieved

  20. Fast Screening of Antibacterial Compounds from Fusaria

    DEFF Research Database (Denmark)

    Sondergaard, Teis Esben; Fredborg, Marlene; Christensen, Ann-Maria Oppenhagen

    2016-01-01

    Bio-guided screening is an important method to identify bioactive compounds from fungi. In this study we applied a fast digital time-lapse microscopic method for assessment of the antibacterial properties of secondary metabolites from the fungal genus Fusarium. Here antibacterial effects could...

  1. Antibacterial effects and toxigenesis of Penicillium aurantiogriseum ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... The toxigenesis of one Penicillium aurantiogriseum and one Penicillium viridicatum isolates was investigated. Sterile culture filtrates of both fungi had a clear antibacterial effect only against Bacillus subtilis. The effect on B. subtilis varied with amount of filtrate used and temperature. The antibacterial.

  2. What makes a natural clay antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (2+ solubility.

  3. Sensitive amperometric biosensor for phenolic compounds based on graphene-silk peptide/tyrosinase composite nanointerface.

    Science.gov (United States)

    Qu, Ying; Ma, Ming; Wang, Zhengguo; Zhan, Guoqing; Li, Buhai; Wang, Xian; Fang, Huaifang; Zhang, Huijuan; Li, Chunya

    2013-06-15

    New graphene-silk peptide (Gr-SP) nanosheets were prepared and successfully fabricated with tyrosinase (Tyr) as a novel biosensor for the determination of phenolic compounds. The Gr-SP nanosheets were fully characterized with transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, UV/Vis and FTIR spectra. The developed biosensors were also characterized with scanning electronic microscopy and electrochemical impedance spectroscopy. Using bisphenol A (BPA) as a model substrate in the sensing system, a number of key factors including the volume of Gr-SP-Tyr solution, the applied potential, pH values, temperature, and the Tyr/Gr-SP ratio that influence the analytical performance of the biosensor were investigated. The biosensor gave a linear response on the concentration ranges of 0.001-16.91 μM for catechol with the sensitivity of 7634 mA M(-1)cm(-2), 0.0015-21.12 μM for phenol with the sensitivity of 4082 mA M(-1)cm(-2), and 0.002-5.48 μM for BPA with the sensitivity of 2511 mA M(-1)cm(-2). The low detection limits were estimated to be 0.23, 0.35 and 0.72 nM (S/N=3) for catechol, phenol and BPA, respectively. The biosensors also exhibit good repeatability and long-term stability. The practical application of the biosensor was also demonstrated by the determination of BPA leaching from commercial plastic drinking bottles. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Structure-based function prediction of the expanding mollusk tyrosinase family

    Science.gov (United States)

    Huang, Ronglian; Li, Li; Zhang, Guofan

    2017-11-01

    Tyrosinase (Ty) is a common enzyme found in many different animal groups. In our previous study, genome sequencing revealed that the Ty family is expanded in the Pacific oyster ( Crassostrea gigas). Here, we examine the larger number of Ty family members in the Pacific oyster by high-level structure prediction to obtain more information about their function and evolution, especially the unknown role in biomineralization. We verified 12 Ty gene sequences from Crassostrea gigas genome and Pinctada fucata martensii transcriptome. By using phylogenetic analysis of these Tys with functionally known Tys from other molluscan species, eight subgroups were identified (CgTy_s1, CgTy_s2, MolTy_s1, MolTy-s2, MolTy-s3, PinTy-s1, PinTy-s2 and PviTy). Structural data and surface pockets of the dinuclear copper center in the eight subgroups of molluscan Ty were obtained using the latest versions of prediction online servers. Structural comparison with other Ty proteins from the protein databank revealed functionally important residues (HA1, HA2, HA3, HB1, HB2, HB3, Z1-Z9) and their location within these protein structures. The structural and chemical features of these pockets which may related to the substrate binding showed considerable variability among mollusks, which undoubtedly defines Ty substrate binding. Finally, we discuss the potential driving forces of Ty family evolution in mollusks. Based on these observations, we conclude that the Ty family has rapidly evolved as a consequence of substrate adaptation in mollusks.

  5. Condensed tannins from Ficus virens as tyrosinase inhibitors: structure, inhibitory activity and molecular mechanism.

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Chen

    Full Text Available Condensed tannins from Ficus virens leaves, fruit, and stem bark were isolated and their structures characterized by 13C nuclear magnetic resonance spectrometry, high performance liquid chromatography electrospray ionization mass spectrometry, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results showed that the leaves, fruit, and stem bark condensed tannins were complex mixtures of homo- and heteropolymers of B-type procyanidins and prodelphinidins with degrees of polymerization up to hexamer, dodecamer, and pentadecamer, respectively. Antityrosinase activities of the condensed tannins were studied. The results indicated that the condensed tannins were potent tyrosinase inhibitors. The concentrations for the leaves, fruit, and stem bark condensed tannins leading to 50% enzyme activity were determined to be 131.67, 99.89, and 106.22 μg/ml on monophenolase activity, and 128.42, 43.07, and 74.27 μg/ml on diphenolase activity. The inhibition mechanism, type, and constants of the condensed tannins on the diphenolase activity were further investigated. The results indicated that the condensed tannins were reversible and mixed type inhibitors. Fluorescence quenching, copper interacting, and molecular docking techniques were utilized to unravel the molecular mechanisms of the inhibition. The results showed that the hydroxyl group on the B ring of the condensed tannins could chelate the dicopper irons of the enzyme. Moreover, the condensed tannins could reduce the enzyme product o-quinones into colourless compounds. These results would contribute to the development and design of antityrosinase agents.

  6. Kinetic, Thermodynamic and Structural Studies of Native and N-Bromosuccinimide-Modified Mushroom Tyrosinase

    Directory of Open Access Journals (Sweden)

    Saeed Emami

    2016-10-01

    Full Text Available Background Mushroom tyrosinase (MT as a metalloenzyme is a good model for mechanistic studies of melanogenesis. To recognize the mechanism of MT action, it is important to investigate its inhibition, activation, mutation, and modification properties. Objectives In this study, the chemical modification of MT tryptophan residues was carried out by using N-bromosuccinimide (NBS and then, the activity, stability, and structure of the native and modified enzymes were compared. Methods Chemical modification of MT tryptophan residues was accomplished by enzyme incubation with different concentrations of NBS. The relative activity of native and modified MT was investigated through catecholase enzyme reaction in presence of dihydroxyphenylalanine (L-Dopa as substrate. Thermodynamic parameters including standard Gibbs free energy change (∆G25°C and Melting temperature (Tm were obtained from thermal denaturation of the native and modified enzymes. The circular dichroism and intrinsic fluorescence techniques were used to study secondary and tertiary structure of MT, respectively. All experiments were conducted in 2015 in biophysical laboratory of Qazvin University of Medical Sciences and Islamic Azad University, Science and Research Branch, Tehran. Results The relative activity reduced from 100% for native enzyme to 10%, 7.9%, and 6.4% for modified MT with different NBS of concentrations 2, 10, and 20 mM, respectively. Thermal instability of modified enzyme was confirmed by decreased Tm and ∆G25°C values after modification. In accordance with kinetic and thermodynamic results, the lower stability of modified MT was observed from the changes occurred on its secondary and tertiary structures. Conclusions Chemical modification of tryptophan residues with NBS reduces the activity and stability of MT simultaneously with its structural change. Thus, this study emphasizes the crucial role of tryptophan residues in the structure-function relationship of MT

  7. Dietary antioxidants and exercise.

    Science.gov (United States)

    Powers, Scott K; DeRuisseau, Keith C; Quindry, John; Hamilton, Karyn L

    2004-01-01

    Muscular exercise promotes the production of radicals and other reactive oxygen species in the working muscle. Growing evidence indicates that reactive oxygen species are responsible for exercise-induced protein oxidation and contribute to muscle fatigue. To protect against exercise-induced oxidative injury, muscle cells contain complex endogenous cellular defence mechanisms (enzymatic and non-enzymatic antioxidants) to eliminate reactive oxygen species. Furthermore, exogenous dietary antioxidants interact with endogenous antioxidants to form a cooperative network of cellular antioxidants. Knowledge that exercise-induced oxidant formation can contribute to muscle fatigue has resulted in numerous investigations examining the effects of antioxidant supplementation on human exercise performance. To date, there is limited evidence that dietary supplementation with antioxidants will improve human performance. Furthermore, it is currently unclear whether regular vigorous exercise increases the need for dietary intake of antioxidants. Clearly, additional research that analyses the antioxidant requirements of individual athletes is needed.

  8. Antibacterial activity of selected Myanmar medicinal plants

    International Nuclear Information System (INIS)

    Nwe Yee Win; Nyunt Wynn; Mar Mar Nyein; Win Myint; Saw Hla Myint; Myint Khine

    2001-01-01

    Thirteen plants which are traditionally used for the treatment of dysentery and diarrhoea in Myanmar were selected and tested for antibacterial activity by using agar disc diffusion technique. Polar and nonpolar solvents were employed for extraction of plants. The minimum inhibitory concentration (MIC) of the extracts with the most significant predominant activity were evaluated by plate dilution method. The plants Eugenia jambolana, Quisqualis indica, Leucaena glauca and Euphorbia splendens var. 1 were found to show significant antibacterial activity. It was also observed that extracts using nonpolar solvents did not show any antibacterial activity and extracts using polar solvents showed antibacterial activity on tested bacteria, indicating that the active chemical compound responsible for the antibacterial action must be a polar soluble compound. (author)

  9. Antibacterial activity of baking soda.

    Science.gov (United States)

    Drake, D

    1997-01-01

    The antibacterial activity of baking soda (sodium bicarbonate) was assessed using three different experimental approaches. Standard minimum inhibitory concentration analyses revealed substantial inhibitory activity against Streptococcus mutans that was not due to ionic strength or high osmolarity. Short-term exposure assays showed significant killing of bacterial suspensions when baking soda was combined with the detergent sodium dodecylsulfate. Multiple, brief exposures of sucrose-colonized S mutans to baking soda and sodium dodecylsulfate caused statistically significant decreases in numbers of viable cells. Use of oral health care products with high concentrations of baking soda could conceivably result in decreased levels of cariogenic S mutans in saliva and plaque.

  10. Analysis of anti-bacterial and anti oxidative activity of Azadirachta indica bark using various solvents extracts

    Directory of Open Access Journals (Sweden)

    Raid Al Akeel

    2017-01-01

    Full Text Available Herbal medications have been used for relief of symptoms of disease. Regardless of the great advances observed in current medicine in recent decades, plants still make a significant contribution to health care. An alarming increase in bacterial strains resistant to a number of antimicrobial agents demands that a renewed effort be made to seek antibacterial agents effective against pathogenic bacteria resistant to or less sensitive to current antibiotics. Anti-bacterial activity of Azadirachta indica stem bark was tested against pathogenic Salmonella paratyphi and Salmonella typhi using various solvent extracts. The in vitro anti-bacterial activity was performed by agar well diffusion method and the results were expressed as the average diameter of zone of inhibition of bacterial growth around the well. The ethanol and methanol extracts showed better anti-bacterial activity with zone of inhibition (20–25 mm when compared with other tested extracts and standard antibiotic Erythromycin (15 mcg with zone of inhibition (13–14 mm. Using Fisher’s exact test of significance difference was found between two Salmonella strains sensitivity patterns against tested extracts (P ⩽ 0.035. Extracts of A. indica stem bark also exhibited significant antioxidant activity, thus establishing the extracts as an antioxidant. The results obtained in this study give some scientific support to the A. indica stem bark for further investigation of compounds and in future could be used as drug.

  11. IN VITRO AND IN VIVO EVALUATION OF ANTIMICROBIAL AND ANTIOXIDANT POTENTIAL OF STEVIA EXTRACT.

    Science.gov (United States)

    Moselhy, Said S; Ghoneim, Magdy A; Khan, Jehan A

    2016-01-01

    The current trend globally is the utilization of natural products as therapeutic agents given its minimum side effects. The leaves of Stevia contain several active ingredient compounds such as rebaudioside. Stevia extract have been used for many purposes. Active oxygen radicals can induce base modifications, DNA breakage, and intracellular protein crosslink's. This study was done to evaluate the potential of stevia extract as antibacterial and antioxidants actions. Antibacterial activity of different extracts of stevia was tested in vitro against different species of bacteria and hepato-protective efficacy was testes in rats injected with CCl 4 as hepatotoxic. Acetone extract exhibited antibacterial activity against selected five bacteria species. The acetone extract suppressed the elevation of serum ALT (p stevia extract showed prevention against deleterious effects of CCl 4 by lowering lipid peroxidation and enhancement of antioxidant activities as SOD and CAT. The protection trial is better than treatment trial. Total phenolic content of aqueous and acetone extracts were found 30 mg and 85 mg gallic /gm extract respectively. While the total flavonoids were 40 mg and 80 mg quercetin/g respectively. The GC-MS analysis showed that monoterpene and indole are the main components. Aqueous extract don't show any antibacterial activity against the tested strains. The antioxidant properties were attributable to its phenolic content to scavenge free radicals. Acetone extract possess a potent antimicrobial and activity against deleterious effect of CCl 4 -caused liver damage.

  12. Antibacterial Activity of Silicate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; NING Congqin; ZHOU Yue; CHEN Lei; LIN Kaili; CHANG Jiang

    2011-01-01

    Four kinds of pure silicate ceramic particles, CaSiO3, Ca3SiO5, bredigite and akermanite were prepared and their bactericidal effects were systematically investigated. The phase compositions of these silicate ceramics were characterized by XRD. The ionic concentration meas urement revealed that the Calcium (Ca) ion concentration were relatively higher in Ca3SiO5 and bredigite, and much lower in CaSiO3 and akermanite. Accordingly, the pH values of the four silicate ceramics extracts showed a positive correlation with the particle concentrations. Meanwhile, by decreasing the particle size, higher Ca ion concentrations can be achieved, leading to the increase of aqueous pH value as well. In summary, all of the four silicate ceramics tested in our study showed antibacterial effect in a dose-dependent manner. Generally, the order of their antibacterial activity against E.coli from strong to weak is Ca3SiO5, bredigite, CaSiO3 and akermanite.

  13. The unfolded protein response in melanocytes: activation in response to chemical stressors of the endoplasmic reticulum and tyrosinase misfolding.

    Science.gov (United States)

    Manga, Prashiela; Bis, Sabina; Knoll, Kristen; Perez, Beremis; Orlow, Seth J