WorldWideScience

Sample records for antineutrons

  1. Prospects for neutron-antineutron transition search

    International Nuclear Information System (INIS)

    Kamyshkov, Y.; Tennessee Univ., Knoxville, TN

    1996-01-01

    Presently-available sources of free neutrons can allow an improvement in the discovery potential of a neutron-antineutron transition search by four orders of magnitude as compared to that of the most recent reactor-based search experiment performed at ILL in Grenoble. This would be equivalent to a characteristic neutron-antineutron transition time limit of >10 10 seconds. With future dedicated neutron-source Facilities, with further progress in cold-neutron- moderator techniques, and with a vertical experiment layout, the discovery potential could ultimately be pushed by another factor of ∼100 corresponding to a characteristic transition time limit of ∼10 11 seconds. Prospects for, and relative merits of, a neutron-antineutron oscillation search in intranuclear transitions are also discussed

  2. Phenomenology of neutron-antineutron conversion

    Science.gov (United States)

    Gardner, Susan; Yan, Xinshuai

    2018-03-01

    We consider the possibility of neutron-antineutron (n -n ¯ ) conversion, in which the change of a neutron into an antineutron is mediated by an external source, as can occur in a scattering process. We develop the connections between n -n ¯ conversion and n -n ¯ oscillation, in which a neutron spontaneously transforms into an antineutron, noting that if n -n ¯ oscillation occurs in a theory with baryon number minus lepton number (B-L) violation, then n -n ¯ conversion can occur also. We show how an experimental limit on n -n ¯ conversion could connect concretely to a limit on n -n ¯ oscillation, and vice versa, using effective field theory techniques and baryon matrix elements computed in the MIT bag model.

  3. Search for free neutron-antineutron oscillations

    International Nuclear Information System (INIS)

    Bressi, G.; Calligarich, E.; Cambiaghi, M.; Dolfini, R.; Genoni, M.; Gigli Berzolari, A.; Lanza, A.; Liguori, G.; Mauri, F.; Piazzoli, A.; Ratti, S.P.; Torre, P.; Bini, C.; Conversi, M.; De Zorzi, G.; Gauzzi, P.; Massa, F.; Zanello, D.; Cardarelli, R.; Santonico, R.; Scannicchio, D.; Terrani, M.

    1989-01-01

    A search for free neutron-antineutron oscillations has been carried out at the Pavia Triga Mark II research reactor. A thin carbon target is crossed by a beam of thermal neutrons propagating in a 18.5 m long channel where the earth magnetic field is attenuated by a factor of 50. The total neutron current through the target is 3.2x10 10 n/s. Possible antineutron annihilations are identified by a large track detector surrounding the target. A lower limit on the oscillation time of 4.7x10 5 s (90% C.L.) has been reached. (orig.)

  4. Search for free neutron-antineutron oscillations

    International Nuclear Information System (INIS)

    Bressi, G.; Calligarich, E.; Cambiaghi, M.; Dolfini, R.; Gigli Berzolari, A.; Lanza, A.; Liguori, G.; Mauri, F.; Piazzoli, A.; Ratti, S.P.; Scannicchio, D.; Torre, P.; Conversi, M.; De Zorzi, G.; Massa, F.; Zanello, D.; Cardarelli, R.; Santonico, R.; Terrani, M.

    1989-01-01

    Small violations of the baryon number conservation law are predicted by the Grand Unified Theories. Several attempts have been made to observe a ΔB = 1 violation in proton decay experiments. The negative result of these searches can also be interpreted to give a lower limit in the range 10 7 /10 8 sec to the characteristic time of the ΔB = 2 process of n-anti n oscillations. But this limit rests on nuclear model assumptions. Only one experiment has been carried out so far to search directly for free neutron-antineutron oscillations, using cold neutrons from the ILL Grenoble reactor. (orig./HSI)

  5. Study of Antineutron Production at LEAR

    CERN Document Server

    2002-01-01

    The aim of this experiment is the study of antineutron ($\\bar{n}$) production at LEAR as a first step for the investigation of $\\bar{n}$-p $\\bar{n}$-n physics. A good method of producing high-quality $\\bar{n}$ beams is that of using the charge-exchange (CEX) reaction @*p~@A~$\\bar{n}$n on an external LH^2 target. The production of $\\bar{n}$ at 0|0 (see figure) may be most useful for some experiments, the production at different angles with the simultaneous detection of the associated neutron (tagged beam) most powerful for other measurements.\\\\ \\\\ The $\\bar{n}$ calorimeter consists of ten equal modules: each one is made of an iron slab, a scintillator wall and a plane of x-y streamer tubes, with a detecting area of @=~1~m|2. The $\\bar{n}$ calorimeter allows the determination of the time and the location of $\\bar{n}$ annihilations.

  6. An apparatus to search for free neutron-antineutron oscillations

    International Nuclear Information System (INIS)

    Bressi, G.; Calligarich, E.; Cambiaghi, M.; Dolfini, R.; Gigli Berzolari, A.; Lanza, A.; Liguori, G.; Mauri, F.; Piazzoli, A.; Ratti, S.P.; Scannicchio, D.; Torre, P.; Conversi, M.; De Zorzi, G.; Massa, F.; Zanello, D.; Cardarelli, R.; Santonico, R.; Terrani, M.

    1987-01-01

    After recalling the phenomenology of neutron-antineutron oscillations expected to occur if the baryon number is not rigorously conserved, the apparatus developed and used in a search for such a process, currently being carried out at the Pavia nuclear reactor, is described in some detail. The apparatus involves a large volume neutron channel (≅ 20 m 3 ) in which the earth magnetic field has been reduced by a factor 50, and large area detectors (scintillators, flash chambers and 'resistive plate counters') operating under conditions of extremely severe background from the reactor. (orig.)

  7. Neutron-antineutron oscillation and baryonic majoron: low scale spontaneous baryon violation

    Energy Technology Data Exchange (ETDEWEB)

    Berezhiani, Zurab [Universita dell' Aquila, Dipartimento delle Scienze Fisiche e Chimiche, L' Aquila (Italy); INFN, Laboratori Nazionali Gran Sasso, L' Aquila (Italy)

    2016-12-15

    We discuss the possibility that baryon number B is spontaneously broken at low scales, of the order of MeV or even smaller, inducing the neutron-antineutron oscillation at the experimentally accessible level. An associated Goldstone particle-baryonic majoron can have observable effects in neutron to antineutron transitions in nuclei or dense nuclear matter. By extending baryon number to an anomaly-free B - L symmetry, the baryo-majoron can be identified with the ordinary majoron associated with the spontaneous breaking of lepton number, and it can have interesting implications for neutrinoless 2β decay with the majoron emission. We also discuss the hypothesis that baryon number can be spontaneously broken by QCD itself via the six-quark condensates. (orig.)

  8. A long neutron optical horn for the ILL neutron-antineutron oscillation experiment

    International Nuclear Information System (INIS)

    Bitter, T.; Eisert, F.; El-Muzeini, P.; Kessler, M.; Klemt, E.; Lippert, W.; Meienburg, W.; Dubbers, D.

    1992-01-01

    In the neutron-antineutron oscillation experiment at ILL the divergence of the free flying cold neutron beam was strongly reduced without loss of intensity by the use of a 34 m long neutron-optical horn system. The divergence reduction was accurately studied in order to maintain the total width of the neutron beam below 1.1 m after a neutron free flight distance of about 80 m. The fabrication and performance of this system are described. (orig.)

  9. Searches for Bound Neutron-Antineutron Oscillation in Liquid Argon Time Projection Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Hewes, Jeremy E.T. [Manchester U.

    2017-01-01

    The next-generation Deep Underground Neutrino Experiment’s liquid argon detector represents an opportunity to probe previously unexplored parameter space for beyond-Standard Model processes. One such process is baryon number violating neutron-antineutron oscillation, the observation of which would have profound implications on our understanding of the origin of the matter-antimatter asymmetry in the universe, and provide strong hints as to the nature of neutrino mass. A GENIE n

  10. Gauged B-L number and neutron-antineutron oscillation: long-range forces mediated by baryophotons

    Science.gov (United States)

    Addazi, Andrea; Berezhiani, Zurab; Kamyshkov, Yuri

    2017-05-01

    Transformation of a neutron to an antineutron n → {\\tilde{n}} has not yet been experimentally observed. In principle, it can occur with free neutrons in the vacuum or with neutrons bound inside the nuclei. In a nuclear medium the neutron and the antineutron have different potentials and for that reason n-{\\tilde{n}} conversion in nuclei is heavily suppressed. This transformation can also be suppressed for free neutrons in the presence of an environmental vector field that distinguishes the neutron from the antineutron. We consider the case of a gauge field coupled to the B-L charge of the particles (B-L photon), and we show that discovery of n-{\\tilde{n}} oscillation in experiment will lead to few order of magnitudes stronger limits on its coupling constant than present limits from the tests of the equivalence principle. If n-{\\tilde{n}} oscillation will be discovered via nuclear instability, but not in free neutron oscillations at a corresponding level, this would indicate the presence of such environmental fifth forces. In the latter case the B-L potential can be measurable by varying the external magnetic field for achieving the resonance conditions for n-{\\tilde{n}} conversion. As for neutron-mirror neutron oscillation, such potentials should have no effect once the fifth forces are associated to a common quantum number (B-L)-(B'-L') shared by the ordinary and mirror particles.

  11. A simple testable model of baryon number violation: Baryogenesis, dark matter, neutron-antineutron oscillation and collider signals

    Science.gov (United States)

    Allahverdi, Rouzbeh; Dev, P. S. Bhupal; Dutta, Bhaskar

    2018-04-01

    We study a simple TeV-scale model of baryon number violation which explains the observed proximity of the dark matter and baryon abundances. The model has constraints arising from both low and high-energy processes, and in particular, predicts a sizable rate for the neutron-antineutron (n - n bar) oscillation at low energy and the monojet signal at the LHC. We find an interesting complementarity among the constraints arising from the observed baryon asymmetry, ratio of dark matter and baryon abundances, n - n bar oscillation lifetime and the LHC monojet signal. There are regions in the parameter space where the n - n bar oscillation lifetime is found to be more constraining than the LHC constraints, which illustrates the importance of the next-generation n - n bar oscillation experiments.

  12. On the anti-neutron bomb movement in the Netherlands

    International Nuclear Information System (INIS)

    Hoek, T. van.

    1978-01-01

    The author reports on activities of the Dutch activists group Stop the neutron bomb in his country: Collection of signatures, statements made by about a hundred well-known theologians, two-thirds majority in parliament against the production and emplacement of the neutron bomb, International Forum 1978 in Amsterdam with mass demonstrations. President Carter is said to have been forced to delay the production of the neutron bomb temporarily by means of this international pressure. (HSCH) [de

  13. Monte-Carlo simulations on the antineutrino detection in heavy ion collisions

    International Nuclear Information System (INIS)

    Zude, E.

    1991-09-01

    Aim of the present thesis was to study, how far a large-area neutron detector with high efficiency operated at the Corporation for Heavy Ion Research in Darmstadt can also by applied for experiments on the sub-threshold antineutron production in heavy ion reactions for the study of the equation of state of highly excited nuclear matter. The experimental part consisted in the partition at the construction, the taking into operation, and the calibration measurements of the target-detector system, as well at the experiments with the LAND detector for the study of the Coulomb excitation of 136 Xe projectiles in the reaction 136 Xe+ 208 Pb at 700 respectively 800 MeV/u. Studies on the suppression of neutron events against antineutron events in the data acquisition in a typical SIS/LAND experiment on the antineutron production in heavy ion collisions were performed. The possibilities available on the level of the hardware trigger for the suppression of (multiple) neutron events were studied. Thereby resulted a reachable suppression factor of ≅ 10 -3 . Studies on the off-line analysis of antineutron events exhibited problems, which base on the high matter density in the detector. (orig./HSI) [de

  14. An experiment to measure the electromagnetic form factors of the neutron in the time like region at Adone

    International Nuclear Information System (INIS)

    Antonelli, A.

    1987-01-01

    A physics program is presented that will be run starting in 1987 at the Adone machine in Frascati, when it will come back to e + e - -yields antineutron neutron; other channels are under consideration for new measurements or monitoring purposes. The machine developments related to the e + e - - operation are discussed and the detection apparatus, presently under construction, is described

  15. Observation of an antimatter hypernucleus

    NARCIS (Netherlands)

    Abelev, B.I.; Braidot, E|info:eu-repo/dai/nl/304840874; Mischke, A.|info:eu-repo/dai/nl/325781435; Peitzmann, T.|info:eu-repo/dai/nl/304833959; van Leeuwen, M.|info:eu-repo/dai/nl/250599171

    2010-01-01

    Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons—comprising an antiproton, an antineutron, and an

  16. Baryon number violation and novel canonical anti-commutation relations

    Science.gov (United States)

    Fujikawa, Kazuo; Tureanu, Anca

    2018-02-01

    The possible neutron-antineutron oscillation is described by an effective quadratic Lagrangian analogous to the BCS theory. It is shown that the conventional equal-time anti-commutation relations of the neutron variable n (t , x →) are modified by the baryon number violating terms. This is established by the Bjorken-Johnson-Low prescription and also by the canonical quantization combined with equations of motion. This novel canonical behavior can give rise to an important physical effect, which is illustrated by analyzing the Lagrangian that violates the baryon number but gives rise to the degenerate effective Majorana fermions and thus no neutron-antineutron oscillation. Technically, this model is neatly treated using a relativistic analogue of the Bogoliubov transformation.

  17. Towards the results of global analysis of data on nucleon electromagnetic structure

    International Nuclear Information System (INIS)

    Bilen'kaya, S.I.; Dubnicka, S.; Dubnickova, A.Z.; Strizenec, P.

    1991-01-01

    Peculiar features of the recent global analysis of data on the nucleon electromagnetic structure are discussed on the detail in order to reconsider reliability of the predicted result that the electron-positron annihilation into a neutron-antineutron cross-section is considerably larger that the cross-section of the electron-positron annihilation into a proton-antiproton pair. 14 refs.; 3 figs.; 3 tabs

  18. A test of the Veneziano - like πNN form factor

    International Nuclear Information System (INIS)

    Cass, A.; Mckellar, H.J.

    1978-01-01

    Dominguez' Veneziano-like πNN form factor has been investigated by attempting to use it to fit dsigma/dt data for np → pn and (antiproton)p → (antineutron)n at 8 GeV/c and 23.5 GeV/c in the interval 0 2 . With n=5/2 as proposed by Dominguez it is not possible to fit the data. A fit can be obtaine for other values of n

  19. An apparatus for the measurement of antiproton-proton cross sections at low momenta

    International Nuclear Information System (INIS)

    Brueckner, W.; Doebbeling, H.; Guettner, F.; Kneis, H.; Paul, S.; Povh, B.; Ransome, R.D.; Treichel, M.; Walcher, T.; Majewski, S.; Nomachi, M.; Shibata, T.A.

    1988-01-01

    An experiment which aims at a precise measurement of anti pp cross sections at low momenta is presented. Its design and performance are described with emphasis on the particle identification capabilities. A calorimeter-like detector array which serves for the detection of antineutrons is discussed in some detail. Its properties were measured in a test experiment and are compared to Monte Carlo calculations. (orig.)

  20. Neutron oscillations and the primordial magnetic field

    International Nuclear Information System (INIS)

    Sarkar, S.

    1988-01-01

    It has been claimed that a primordial magnetic field must exist in order to suppress possible oscillations of neutrons into antineutrons which would otherwise affect the cosmological synthesis of helium. We demonstrate that such oscillations, even if they do occur, have a negligible effect on primordial nucleosynthesis, thus refuting the above claim. Hence the possible existence of a primordial magnetic field, relevant to current speculations concerning superconducting 'cosmic strings', remains an open question. (author)

  1. Institute of physics

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    A survey is given of the personnel and activities of the Institute of Physics. Research by staff of the Nuclear Physics Group includes mainly work on heavy ion reactions and investigations of rare earth nuclei. The Elementary Particle Group has studied antineutron and antiproton annihilations, neutral current pions minus and has used the CERN ISRs. The Cosmic Physics Group has used rockets, satellite data and balloons to study the electron and proton precipitation in the upper atmosphere and magnetosphere, and aurorae. (JIW)

  2. Measurement of the antiproton-nucleus annihilation cross-section at low energy

    Science.gov (United States)

    Aghai-Khozani, H.; Bianconi, A.; Corradini, M.; Hayano, R.; Hori, M.; Leali, M.; Lodi Rizzini, E.; Mascagna, V.; Murakami, Y.; Prest, M.; Vallazza, E.; Venturelli, L.; Yamada, H.

    2018-02-01

    Systematic measurements of the annihilation cross sections of low energy antinucleons were performed at CERN in the 80's and 90's. However the antiproton data on medium-heavy and heavy nuclear targets are scarce. The ASACUSA Collaboration at CERN has measured the antiproton annihilation cross section on carbon at 5.3 MeV: the value is (1.73 ± 0.25) barn. The result is compared with the antineutron experimental data and with the theoretical previsions.

  3. Compact source origin of cosmic ray antiprotons

    International Nuclear Information System (INIS)

    Dermer, C.D.

    1989-02-01

    The flux of cosmic ray antiprotons with kinetic energies between /approximately/1 and 15 GeV is /approximately/5 times greater than the flux predicted on the basis of the leaky-box model. This excess is attributed to secondary antineutron production in compact sources. Because the antineutrons are not confined by the magnetic field of the compact source, they leave the interaction site, decay in interstellar space and account for the apparent excess cosmic ray antiproton flux. The escape and decay of neutrons produced in association with the antineutrons is a source of cosmic ray protons. Observations of the angular variation of the intensity and spectral shape of 100 MeV γ-rays produced by neutron-decay protons in the reaction p + p → π 0 → 2γ could reveal compact-source cosmic ray production sites. COS-B observations of spectral hardening near point sources, and future high-resolution observations of galactic point sources by Gamma-1 and the Egret telescope onboard the Gamma Ray Observatory may provide supporting evidence for this model. 12 refs., 2 figs

  4. Higgs mass scales and matter-antimatter oscillations in grand unified theories

    Energy Technology Data Exchange (ETDEWEB)

    Senjanovic, G.

    1982-01-01

    A general discussion of mass scales in grand unified theories is presented, with special emphasis on Higgs scalars which mediate neutron-antineutron (n-anti n) and hydrogen-antihydrogen (H-anti H) oscillations. It is shown that the analogue of survival hypothesis for fermions naturally makes such particles superheavy, thus leading to unobservable lifetimes. If this hypothesis is relaxed, an interesting possibility of potentially observable n-anti n and H-anti H transitions, mutually related arises in the context of SU(5) theory with spontaneously broken B-L symmetry.

  5. A New Form of Matter — Unmatter, Composed of Particles and Anti-Particles

    Directory of Open Access Journals (Sweden)

    Smarandache F.

    2005-04-01

    Full Text Available Besides matter and antimatter there must exist unmatter (as a new form of matter in accordance with the neutrosophy theory that between an entity and its opposite there exist intermediate entities . Unmatter is neither matter nor antimatter, but something in between. An atom of unmatter is formed either by (1: electrons, protons, and antineutrons, or by (2: antielectrons, antiprotons, and neutrons. At CERN it will be possible to test the production of unmatter. The existence of unmatter in the universe has a similar chance to that of the antimatter, and its production also difficult for present technologies.

  6. Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J.; Kamyshkov, Y.A. [ed.

    1996-11-01

    These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base.

  7. Exotic see-saw mechanism for neutrinos and leptogenesis in a Pati-Salam model

    Energy Technology Data Exchange (ETDEWEB)

    Addazi, Andrea [Dipartimento di Fisica, Università di L’Aquila,67010 Coppito, AQ (Italy); LNGS, Laboratori Nazionali del Gran Sasso,67010 Assergi AQ (Italy); Bianchi, Massimo [Dipartimento di Fisica, Università di Roma Tor Vergata,I.N.F.N. Sezione di Roma Tor Vergata,Via della Ricerca Scientifica, 1 00133 Roma (Italy); Ricciardi, Giulia [Dipartimento di Fisica “E. Pancini”, Università di Napoli “Federico II”,Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli (Italy); I.N.F.N. Sezione di Napoli,Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli (Italy)

    2016-02-04

    We discuss non-perturbative corrections to the neutrino sector, in the context of a D-brane Pati-Salam-like model, that can be obtained as a simple alternative to SO(10) GUT’s in theories with open and unoriented strings. In such D-brane models, exotic stringy instantons can correct the right-handed neutrino mass matrix in a calculable way, thus affecting mass hierarchies and modifying the see-saw mechanism to what we name exotic see-saw. For a wide range of parameters, a compact spectrum of right-handed neutrino masses can occur that gives rise to a predictive scenario for low energy observables. This model also provides a viable mechanism for Baryon Asymmetry in the Universe (BAU) through leptogenesis. Finally, a Majorana mass for the neutron is naturally predicted in the model, leading to potentially testable neutron-antineutron oscillations. Combined measurements in neutrino and neutron-antineutron sectors could provide precious informations on physics at the quantum gravity scale.

  8. The n-n-bar oscillation experiment at the Pavia reactor

    International Nuclear Information System (INIS)

    Bressi, G.; Calligarich, E.; Cambiaghi, M.; Dolfini, R.; Gigli, A.; Lanza, A.; Liguori, G.; Piazzoli, A.; Ratti, S.; Torre, P.; Cardarelli, R.; Conversi, M.; De Zorzi, G.; Massa, F.; Santonico, R.; Sebastiani, F.; Zanello, D.; Cesana, A.; Terrani, M.

    1986-01-01

    The n-n-bar oscillation experiment, presented at the Seventh European Conference of Triga Reactor Users in 1982, has recently entered the data collection phase. The possibility of a neutron-antineutron transition, under particular conditions, is foreseen by some Partial Unified Theory. The aim of the experiment is to detect any transition that should take place or to establish a lower limit for the transition time of at least 10 E7 s. A beam of slow neutrons, after a flight in a pipe, air exhausted and shielded against earth magnetic field, crosses a thin carbon target in which the produced antineutrons annihilate. The annihilation products (charged and neutral pions) are dejected in an apparatus situated all around the target. Due to the relatively low flux available a very large cross section beam (∼ 1 m 2 ) had to be used in order to obtain a neutron intensity adequate to the experimental requirements. This raised several problems concerning radiation protection and shielding, in particular in the detector region. The final experimental set up is described and the results concerning the shielding effectiveness and the intensity of the neutron beam obtained are compared with the values foreseen by computer code calculations. (author)

  9. New paradigm for baryon and lepton number violation

    International Nuclear Information System (INIS)

    Fileviez Pérez, Pavel

    2015-01-01

    The possible discovery of proton decay, neutron–antineutron oscillation, neutrinoless double beta decay in low energy experiments, and exotic signals related to the violation of the baryon and lepton numbers at collider experiments will change our understanding of the conservation of fundamental symmetries in nature. In this review we discuss the rare processes due to the existence of baryon and lepton number violating interactions. The simplest grand unified theories and the neutrino mass generation mechanisms are discussed. The theories where the baryon and lepton numbers are defined as local gauge symmetries spontaneously broken at the low scale are discussed in detail. The simplest supersymmetric gauge theory which predicts the existence of lepton number violating processes at the low scale is investigated. The main goal of this review is to discuss the main implications of baryon and lepton number violation in physics beyond the Standard Model.

  10. Quality surveillance for steel forgings of SA508 Gr.3 used on the main NI equipment of AP1000 nuclear island

    International Nuclear Information System (INIS)

    Liu Lizhao

    2011-01-01

    Being a type of steel with ideal weldability, outstanding ability of anti-neutron irradiation embitterment and good property of fracture toughness and impact toughness, the steel of ASME SA508-3 was used widely for the nuclear island equipment of PWR Nuclear Power Plant. For the 3rd generation nuclear power plant AP1000, all large forgings and some critical components of the SG, RV and PRZ adopt this steel. Through analysis on the critical technical points during manufacturing of the SA508-3 forgings, this article try to identify the key points should be paid attention during the quality surveillance for this type of forgings, and to put forward the supervision method and focus during quality surveillance activities. (author)

  11. String completion of an SU(3c⊗SU(3L⊗U(1X electroweak model

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2016-08-01

    Full Text Available The extended electroweak SU(3c⊗SU(3L⊗U(1X symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (unoriented open strings, on Calabi–Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron–antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.

  12. Measurement of the $\\bar{p}p \\rightarrow \\bar{n}n$ Charge-Exchange Differential Cross-Section

    CERN Multimedia

    2002-01-01

    The aim of this proposal is a measurement of the differential cross-section of the $\\bar{p}$p $\\rightarrow$ $\\bar{n}$n charge-exchange reaction with a point-to-point precision of 1\\% in the forward direction, and an absolute normalization error of 3\\%. The high precision of the data should allow, inter alia, a determination of the $\\pi$NN coupling constant to better than 2\\%.\\\\ \\\\ The measurement will be done using the existing neutron and antineutron detectors built for experiment PS199 and liquid hydrogen target. In one week of running time, with a $\\bar{p}$ beam intensity of 3 $ 10 ^{5} $ $\\bar{p}$/sec, the reaction will be measured at a few $\\bar{p}$ momenta, in the range 500 to 900~MeV/c.

  13. Professor Walter Oelert, leader of the team which created the first atoms of antihydrogen at the Low Energy Antiproton Ring (LEAR) in January 1996

    CERN Multimedia

    Laurent Guiraud

    1996-01-01

    Antiparticles were predicted in the work of Paul Dirac in the 1920's, since when physicists have identified all the necessary antiparticle constituents of an antiparticle atom - antielectrons (positrons), antiprotons and antineutrons. However, an antihydrogen atom wasn't produced until the PS210 experiment at CERN in 1995. PS210 used the LEAR accelerator, which was then nearing the end of its lifetime, so everything in the experiment had to work first time. After installing the equipment in spring 1995, the experiment took place in the autumn, in two hour periods over 4 weeks. The experiment team collided energetic antiprotons from LEAR with a heavy element, a challenge for them as well as the LEAR operators. Proving that antihydrogen atoms had been formed required several more weeks of data analysis, but the announcement that nine antihydrogen atoms had been produced came on 4 January 1996.

  14. Muon detector for the measurement of muon flux and lifetime of atmospheric muons

    International Nuclear Information System (INIS)

    Sidhu, Ragandeep Singh; Simrandeep Kaur; Bhatnagar, V.; Singh, J.B.

    2017-01-01

    For the present study, muon detector (consisting of four plastic scintillator paddles well equipped with DAQ) to i) measure the muon flux and ii) measure the lifetime of the atmospheric muons have been used. Measurement of lifetime of muons is a classic experiment to measure the time dilation in muons. The muon detector consisting of four scintillator paddles (forming a cuboidal geometry) is connected to PMT tubes from where we get an electrical signal whenever the muon passes. For the case of flux measurement, the coincidence signal is received from the upper and lower scintillator paddle. In the case of lifetime measurement, the muon of low energy decays into an electron (positron) and an antineutron (neutrino). The coincidence signal in this case is received from the top and the two side paddles. The major components of the muon detector are the part of Quark Net experiments developed by Fermilab which have been installed and setup at Panjab University

  15. Observation of an antimatter hypernucleus.

    Science.gov (United States)

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Alakhverdyants, A V; Alekseev, I; Anderson, B D; Arkhipkin, D; Averichev, G S; Balewski, J; Barnby, L S; Baumgart, S; Beavis, D R; Bellwied, R; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bonner, B E; Bouchet, J; Braidot, E; Brandin, A V; Bridgeman, A; Bruna, E; Bueltmann, S; Bunzarov, I; Burton, T P; Cai, X Z; Caines, H; Calderon, M; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, P; Clarke, R F; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; DePhillips, M; Derevschikov, A A; Derradi de Souza, R; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Dunlop, J C; Dutta Mazumdar, M R; Efimov, L G; Elhalhuli, E; Elnimr, M; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Evdokimov, O; Fachini, P; Fatemi, R; Fedorisin, J; Fersch, R G; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gangadharan, D R; Ganti, M S; Garcia-Solis, E J; Geromitsos, A; Geurts, F; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hamed, A; Han, L-X; Harris, J W; Hays-Wehle, J P; Heinz, M; Heppelmann, S; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, B; Huang, H Z; Humanic, T J; Huo, L; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jena, C; Jin, F; Jones, C L; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kauder, K; Keane, D; Kechechyan, A; Kettler, D; Kikola, D P; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Konzer, J; Kopytine, M; Koralt, I; Koroleva, L; Korsch, W; Kotchenda, L; Kouchpil, V; Kravtsov, P; Krueger, K; Krus, M; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lee, J H; Leight, W; Levine, M J; Li, C; Li, L; Li, N; Li, W; Li, X; Li, Y; Li, Z; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Luo, X; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mal, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Masui, H; Matis, H S; Matulenko, Yu A; McDonald, D; McShane, T S; Meschanin, A; Milner, R; Minaev, N G; Mioduszewski, S; Mischke, A; Mitrovski, M K; Mohanty, B; Mondal, M M; Morozov, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Pile, P; Planinic, M; Ploskon, M A; Pluta, J; Plyku, D; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Powell, C B; Prindle, D; Pruneau, C; Pruthi, N K; Pujahari, P R; Putschke, J; Qiu, H; Raniwala, R; Raniwala, S; Ray, R L; Redwine, R; Reed, R; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Sahoo, R; Sakai, S; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sangaline, E; Schambach, J; Scharenberg, R P; Schmitz, N; Schuster, T R; Seele, J; Seger, J; Selyuzhenkov, I; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, T D S; Staszak, D; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarini, L H; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Trainor, T A; Tram, V N; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Leeuwen, M; van Nieuwenhuizen, G; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Videbaek, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, Q; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wingfield, E; Wissink, S W; Witt, R; Wu, Y; Xie, W; Xu, H; Xu, N; Xu, Q H; Xu, W; Xu, Y; Xu, Z; Xue, L; Yang, Y; Yepes, P; Yip, K; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, J; Zhang, S; Zhang, W M; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, J; Zhong, C; Zhou, J; Zhou, W; Zhu, X; Zhu, Y H; Zoulkarneev, R; Zoulkarneeva, Y

    2010-04-02

    Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons--comprising an antiproton, an antineutron, and an antilambda hyperon--produced by colliding gold nuclei at high energy. Our analysis yields 70 +/- 17 antihypertritons ((Lambda)(3)-H) and 157 +/- 30 hypertritons (Lambda3H). The measured yields of Lambda3H ((Lambda)(3)-H) and 3He (3He) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and of nuclei containing strange quarks, have implications spanning nuclear and particle physics, astrophysics, and cosmology.

  16. Observation of the antimatter helium-4 nucleus.

    Science.gov (United States)

    2011-05-19

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4He), also known as the anti-α (α), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B antimatter nuclei and a benchmark for possible future observations of 4He in cosmic radiation.

  17. The HIBEAM Experiment at the ESS

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The European Spallation Source (ESS) offers an opportunity for a fundamental physics program with a unique reach which is complementary to that at other facilities. In this talk, the HIBEAM project is described. The HIBEAM collaboration has proposed a suite of searches and measurements which would use the Large ESS Beam Port with a high cold neutron flux. The program includes searches for conversions of free neutrons to antineutrons and to mirror neutrons with regeneration, as well as precision measurements of parity violation in nucleon-nucleon interactions. The high cold neutron intensity at HIBEAM would provide a higher sensitivity for the searches and measurements than was achieved at earlier experiments. The physics program addresses some of the central unresolved questions in particle physics and cosmology such as the energy scale and mechanism for baryon number violation, the origin of the baryon-antibaryon asymmetry of the universe, the composition of dark matter, and the mechanism for neutrino mass...

  18. В поисках альтернативы (Новая космологическая концепция без «Большого Взрыва»

    Directory of Open Access Journals (Sweden)

    Джахая Л. Г.

    2015-02-01

    Full Text Available Metagalaxy in finite spatial and temporal boundaries is qualitatively certain material formation, a single, coherent financial system in the boundless expanse of the universe. Material substrate is Metagalaxy metagalactic vacuum as a real physical environment and the arena of action of all material processes in the Metagalaxy. In Metagalaxy there are two types of interactions: gravity and electromagnetism are two excited states Metagalactic vacuum, all the other interactions ("weak", "strong" are the consequence of these two fundamental interactions. Inertial motion of the real weight in a vacuum explains the paradox of d'Alembert-Euler, and gravity - "rolling up" in the "potential well" real masses and "black holes". The main feature of the metagalactic vacuum is its unequal optical density. In addition to the local optical inhomogeneities with the index of refraction greater than unity (n>1, the giant optical inhomogeneity is all metagalactic vacuum, with a maximum optical density (nmax in the center of Metagalaxy, c (n =1 "here" and "now" ("Time of Life " and then to (n <1 on the periphery of the Metagalaxy and s (n = 0 at its edge. At the heart of the author's cosmological model is based on two laws: the creation of pairs of particles and antiparticles in strong gravitational fields of rotating "cosmological black holes" and the Magnus effect. It's enough to born neutron-antineutrons páry, they scatter in opposite directions, and neutrons, according to the Magnus effect, go into outer space, and be absorbed antineutrons "black hole", all the remaining particles are obtained in the beta decay of a neutron into a proton, an electron and antineutrinos and is ready hydrogen. This calibration will gather around the "cosmological black hole" isotopes of hydrogen atoms (75% and helium (25%, which will form protogalaxies - on the principle of "one cosmological black hole - one protogalaxy" with a primary hydrogen-helium cloud, it is ejected from

  19. Standard model baryogenesis through four-fermion operators in braneworlds

    International Nuclear Information System (INIS)

    Chung, Daniel J.H.; Dent, Thomas

    2002-01-01

    We study a new baryogenesis scenario in a class of braneworld models with low fundamental scale, which typically have difficulty with baryogenesis. The scenario is characterized by its minimal nature: the field content is that of the standard model and all interactions consistent with the gauge symmetry are admitted. Baryon number is violated via a dimension-6 proton decay operator, suppressed today by the mechanism of quark-lepton separation in extra dimensions; we assume that this operator was unsuppressed in the early Universe due to a time-dependent quark-lepton separation. The source of CP violation is the CKM matrix, in combination with the dimension-6 operators. We find that almost independently of cosmology, sufficient baryogenesis is nearly impossible in such a scenario if the fundamental scale is above 100 TeV, as required by an unsuppressed neutron-antineutron oscillation operator. The only exception producing sufficient baryon asymmetry is a scenario involving out-of-equilibrium c quarks interacting with equilibrium b quarks

  20. Measurement of Antiproton-proton Cross-Sections at Low Antiproton Momenta

    CERN Multimedia

    2002-01-01

    The experiment is designed to measure four different cross sections in the momentum range 150~MeV/c to 600~MeV/c: 1)~~~~the differential elastic \\\\ \\\\ 2)~~~~the differential charge exchange\\\\ \\\\ 3)~~~~the annihilation into charged and neutral pions\\\\ \\\\ 4)~~~~and the total cross section via the optical theorem. \\\\ \\\\ The experiment allows one to search once again and with good precision for baryonium. Of special interest is the existence of the S-meson, for which a signal of about 20~MeV-mb was found in a 1981 experiment (performed in the East Hall).\\\\ \\\\ A second point of special interest is the momentum region below 300~MeV/c because the cross sections are basically unknown. We will be able to explore the momentum dependence of this region for the first time.\\\\ \\\\ The elastic cross section is measured by a cylindrical multiwire proportional chamber and a scintillator hodoscope placed around a scattering chamber under vacuum. The charge exchange cross section is measured by a ring of 32~anti-neutron detector...

  1. Study of $ \\bar{p} $ and $ \\bar{n} $ annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer

    CERN Multimedia

    2002-01-01

    % PS201 Study of $\\bar{p}$ and $\\bar{n}$ annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer \\\\ \\\\OBELIX is designed to study exclusive final states of antiproton and antineutron annihilations at low energies with protons and nuclei. \\\\ \\\\The physics motivations of the experiment are:\\\\ \\\\\\begin{itemize} \\item (gg, ggg), hybrids ($ q \\bar{q} g $), multiquarks ($ q q \\bar{q} \\bar{q} $) and light mesons ($ q \\bar{q} $) produced in $ N \\bar{N} $ annihilations and study of their spectroscopy and decays. Also broad structures will be searched for by comparing identical decay modes in exclusive final states of the same type occuring from initial states with different angular momentum or isospin. \\item Study of the dynamics of $ N \\bar{N} $ interactions and of the dependence of the final and intermediate resonant states of annihilation upon the quantum numbers of the initial $ N \\bar{N} $ state (angular momentum: S and P-wave in $\\bar{p}p $ at...

  2. Modeling of the Near-Earth Low-Energy Antiproton Fluxes

    Directory of Open Access Journals (Sweden)

    U. B. Jayanthi

    2011-01-01

    Full Text Available The local interstellar antiproton spectrum is simulated taking into account antineutron decay, (He,p interaction, secondary and tertiary antiproton production, and the solar modulation in the “force field” approximation. Inclusive invariant cross-sections were obtained through a Monte Carlo procedure using the Multistage Dynamical Model code simulating various processes of the particle production. The results of the simulations provided flux values of 4⋅10−3 to 10−2 and 10−2 to 1.7⋅10−2 antiprotons/(2 s sr GeV at energies of 0.2 and 1 GeV, respectively, for the solar maximum and minimum epochs. Simulated flux of the trapped antiprotons in the inner magnetosphere due to galactic cosmic ray (GCR interactions with the atmospheric constituents exceeds the galactic antiproton flux up to several orders. These simulation results considering the assumptions with the attendant limitations are in comprehensive agreement with the experimental data including the PAMELA ones.

  3. Anti-matter factory

    CERN Document Server

    Michaut, C

    2003-01-01

    In 1928 Paul Dirac predicted the existence of anti-matter as a consequence of his theory. The first experimental fact that supported this idea was the discovery of the positron in 1932. Anti-protons were produced in 1955 at the Bevatron facility in Berkeley and anti-neutrons the following year. Since 1964 scientists know that matter and anti-matter differ not only from their electrical charge but also from their behaviour concerning weak interaction. In 2002 the CERN announced the production of more than 50.000 atoms of anti-hydrogen which was a breakthrough because the last attempt in 1995 ended with the creation of only 9 atoms of anti-hydrogen whose speed neared the velocity of light while the speed of the last ones created is 100.000 times smaller. The next step is to carry out experiments in order to measure the spectra of anti-hydrogen in a very accurate manner and to test the effect of gravity on anti-matter. (A.C.)

  4. The coarsening effect of SA508-3 steel used as heavy forgings material

    Directory of Open Access Journals (Sweden)

    Dingqian Dong

    2015-01-01

    Full Text Available SA508Gr.3 steel is popularly used to produce core unit of nuclear power reactors due to its outstanding ability of anti-neutron irradiation and good fracture toughness. The forging process takes important role in manufacturing to refine the grain size and improve the material properties. But due to their huge size, heavy forgings cannot be cooled down quickly, and the refined grains usually have long time to grow in high temperature conditions. If the forging process is not adequately scheduled or implemented, very large grains up to millimetres in size may be found in this steel and cannot be eliminated in the subsequent heat treatment. To fix the condition which may causes the coarsening of the steel, hot upsetting experiments in the industrial production environment were performed under different working conditions and the corresponding grain sizes were measured and analysed. The observation showed that the grain will abnormally grow if the deformation is less than a critical value. The strain energy takes a critical role in the grain evolution. If dynamic recrystallization consumes the strain energy as much as possible, the normal grains will be obtained. While if not, the stored strain energy will promote abnormal growth of the grains.

  5. Golden Jubilee photos: Welcome to the antiworld

    CERN Multimedia

    2004-01-01

    Professor Walter Oelert, leader of the team which created the first atoms of antihydrogen at the LEAR (Low Energy Antiproton Ring).Antiparticles were predicted in the work of Paul Dirac in the 1920's, since when physicists have identified all the necessary antiparticle constituents of an antiparticle atom - antielectrons (positrons), antiprotons and antineutrons. However, an antihydrogen atom wasn't produced until the PS210 experiment at CERN in 1995. PS210 used the LEAR accelerator, which was then nearing the end of its lifetime (see Bulletin 28/04), so everything in the experiment had to work first time. After installing the equipment in spring 1995, the experiment took place in the autumn, in two hour periods over 4 weeks. The experiment team collided energetic antiprotons from LEAR with a heavy element, a challenge for them as well as the LEAR operators. Proving that antihydrogen atoms had been formed required several more weeks of data analysis, but the announcement that nine antihydrogen atoms had been ...

  6. Baryon number and lepton universality violation in leptoquark and diquark models

    Directory of Open Access Journals (Sweden)

    Nima Assad

    2018-02-01

    Full Text Available We perform a systematic study of models involving leptoquarks and diquarks with masses well below the grand unification scale and demonstrate that a large class of them is excluded due to rapid proton decay. After singling out the few phenomenologically viable color triplet and sextet scenarios, we show that there exist only two leptoquark models which do not suffer from tree-level proton decay and which have the potential for explaining the recently discovered anomalies in B meson decays. Both of those models, however, contain dimension five operators contributing to proton decay and require a new symmetry forbidding them to emerge at a higher scale. This has a particularly nice realization for the model with the vector leptoquark (3,12/3, which points to a specific extension of the Standard Model, namely the Pati–Salam unification model, where this leptoquark naturally arises as the new gauge boson. We explore this possibility in light of recent B physics measurements. Finally, we analyze also a vector diquark model, discussing its LHC phenomenology and showing that it has nontrivial predictions for neutron–antineutron oscillation experiments.

  7. Proton: the particle.

    Science.gov (United States)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. Copyright © 2013 Elsevier Inc. All

  8. Testing B-violating signatures from exotic instantons in future colliders

    Science.gov (United States)

    Addazi, Andrea; Kang, Xian-Wei; Khlopov, Maxim Yu.

    2017-09-01

    We discuss possible implications of exotic stringy instantons for baryon-violating signatures in future colliders. In particular, we discuss high-energy quark collisions and transitions. In principle, the process can be probed by high-luminosity electron-positron colliders. However, we find that an extremely high luminosity is needed in order to provide a (somewhat) stringent bound compared to the current data on NN → ππ,KK. On the other hand, (exotic) instanton-induced six-quark interactions can be tested in near future high-energy colliders beyond LHC, at energies around 20–100 TeV. The Super proton-proton Collider (SppC) would be capable of such measurement given the proposed energy level of 50–90 TeV. Comparison with other channels is made. In particular, we show the compatibility of our model with neutron-antineutron and NN → ππ,KK bounds. A. A.’s work was Supported in part by the MIUR research grant “Theoretical Astroparticle Physics" PRIN 2012CPPYP7. XWK's work is partly Supported by the DFG and the NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” when he was in Jülich, and by MOST, Taiwan, (104-2112-M-001-022) from April 2017. The work by MK was performed within the framework of the Center FRPP Supported by MEPhI Academic Excellence Project (contract 02.03.21.0005, 27.08.2013), Supported by the Ministry of Education and Science of Russian Federation, project 3.472.2014/K and grant RFBR 14-22-03048

  9. DUSEL Theory White Paper

    International Nuclear Information System (INIS)

    Raby, S.; Walker, T.; Babu, K.S.; Baer, H.; de Gouvea, A.; Gabadadze, G.; Gal, A.; Gondolo, P.; Lande, K.; Olive, K.A.; Profumo, S.; Shrock, R.; Tavartkiladze, Z.; Whisnant, K.; Wolfenstein, L.

    2011-01-01

    The scientific case for a Deep Underground Science and Engineering Laboratory (DUSEL) located at the Homestake mine in Lead, South Dakota is exceptional. The site of this future laboratory already claims a discovery for the detection of solar neutrinos, leading to a Nobel Prize for Ray Davis. Moreover this work provided the first step to our present understanding of solar neutrino oscillations and a chink in the armor of the Standard Model of particle physics. We now know, from several experiments located in deep underground experimental laboratories around the world, that neutrinos have mass and even more importantly this mass appears to fit into the framework of theories which unify all the known forces of nature, i.e. the strong, weak, electromagnetic and gravitational. Similarly, DUSEL can forge forward in the discovery of new realms of nature, housing six fundamental experiments that will test the frontiers of our knowledge: (1) Searching for nucleon decay (the decay of protons and neutrons predicted by grand unified theories of nature); (2) Searching for neutrino oscillations and CP violation by detecting neutrinos produced at a neutrino source (possibly located at Brookhaven National Laboratory and/or Fermi National Laboratory); (3) Searching for astrophysical neutrinos originating from the sun, from cosmic rays hitting the upper atmosphere or from other astrophysical sources, such a supernovae; (4) Searching for dark matter particles (the type of matter which does not interact electromagnetically, yet provides 24% of the mass of the Universe); (5) Looking for the rare process known as neutrino-less double beta decay which is predicted by most theories of neutrino mass and allows two neutrons in a nucleus to spontaneously change into two protons and two electrons; and (6) Searching for the rare process of neutron- anti-neutron oscillations, which would establish violation of baryon number symmetry. A large megaton water Cherenkov detector for neutrinos and

  10. DUSEL Theory White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Raby, S.; /Ohio State U.; Walker, T.; /Ohio State U. /Ohio State U., Dept. Astron. /Ohio State U., CCAPP; Babu, K.S.; /Oklahoma State U.; Baer, H.; /Florida State U.; Balantekin, A.B.; Barger, V.; /Wisconsin U., Madison; Berezhiani, Z.; /Gran Sasso; de Gouvea, A.; /Northwestern U.; Dermisek, R.; /Princeton U.; Dolgov, A.; /Moscow, ITEP /Ferrara U.; Fileviez Perez, P.; /Wisconsin U., Madison; Gabadadze, G.; /New York U.; Gal, A.; /Hebrew U.; Gondolo, P.; /Utah U.; Haxton, W.; /Washington U., Seattle; Kamyshkov, Y.; /Tennessee U.; Kayser, B.; /Fermilab; Kearns, E.; /Boston U.; Kopeliovich, B.; /Santa Maria U., Valparaiso; Lande, K.; /Pennsylvania U.; Marfatia, D.; /Kansas U. /Maryland U. /Northeastern U. /UC, Berkeley /LBL, Berkeley /Minnesota U. /SLAC /UC, Santa Cruz /SUNY, Stony Brook /Oklahoma State U. /Iowa State U. /Carnegie Mellon U.

    2011-11-14

    The scientific case for a Deep Underground Science and Engineering Laboratory [DUSEL] located at the Homestake mine in Lead, South Dakota is exceptional. The site of this future laboratory already claims a discovery for the detection of solar neutrinos, leading to a Nobel Prize for Ray Davis. Moreover this work provided the first step to our present understanding of solar neutrino oscillations and a chink in the armor of the Standard Model of particle physics. We now know, from several experiments located in deep underground experimental laboratories around the world, that neutrinos have mass and even more importantly this mass appears to fit into the framework of theories which unify all the known forces of nature, i.e. the strong, weak, electromagnetic and gravitational. Similarly, DUSEL can forge forward in the discovery of new realms of nature, housing six fundamental experiments that will test the frontiers of our knowledge: (1) Searching for nucleon decay (the decay of protons and neutrons predicted by grand unified theories of nature); (2) Searching for neutrino oscillations and CP violation by detecting neutrinos produced at a neutrino source (possibly located at Brookhaven National Laboratory and/or Fermi National Laboratory); (3) Searching for astrophysical neutrinos originating from the sun, from cosmic rays hitting the upper atmosphere or from other astrophysical sources, such a supernovae; (4) Searching for dark matter particles (the type of matter which does not interact electromagnetically, yet provides 24% of the mass of the Universe); (5) Looking for the rare process known as neutrino-less double beta decay which is predicted by most theories of neutrino mass and allows two neutrons in a nucleus to spontaneously change into two protons and two electrons; and (6) Searching for the rare process of neutron- anti-neutron oscillations, which would establish violation of baryon number symmetry. A large megaton water Cherenkov detector for neutrinos and

  11. Grands principes de symétrie à l'épreuve de l'expérience

    Science.gov (United States)

    Depommier, P.

    interesting observable seems to be the electric dipole moment of the neutron, which vanishes under time-reversal invariance (assuming parity violation). The magnitude of the theoretical predictions varies considerably, therefore the electric dipole moment of the neutron constitutes a very valuable test of time-reversal invariance. The conservation of parity and time reversal in the strong interaction raises a delicate problem in Quantum Chromodynamics. In order to get rid of parity and time reversal violating terms in the QCD Lagrangian one invokes a new symmetry which introduces a light pseudoscalar particle, the axion. This particle has been searched for but not found. Recent findings in heavy-ion collisions (the famous e+ -e- pairs) have probably nothing to do with axions. Chapter 7 deals with baryon number nonconservation. Grand unification theories have been introduced to cure several deficiencies of the Standard Model. One of the most dramatic consequences of these theories is the violation of baryon number conservation, resulting in the instability of the nucleon and other effects like neutron-antineutron oscillations. The economical model based on the unification group SU(5) fails in the prediction of the proton lifetime. Alternative unification groups have been proposed. Proton decay and neutron-antineutron searches are fundamental experiments which are pushed very strongly with a variety of experimental techniques. Lepton number nonconservation is the subject of chapter 8. The search for nuclear neutrinoless double beta decay is another activity which has become important in the attempt to elucidate the nature of the neutrino. Neutrinoless double beta decay can only occur with Majorana neutrinos if these neutrinos are massive and/or weak currents are not exactly V — A. In the context of the gauge theories the observation of this process would be a proof of massive Majorana neutrinos. Various isotopes can be used to search for double beta decay (with or without

  12. CMB and the elementary particles structure deduced from QFT of non-dot model

    Science.gov (United States)

    Chen, Shao-Guang

    electron. The p (+) and p (-) : (5) m + (4) m + ({3) }m + ({2) -1}m(2) = 1836 m_{e}, its outside layer is (2) m_{0} ({2) }(120 m _{nu}), \\underline{e} (18 m _{nu}) and one _{0} nuυ with 139 m_{nu} = (139/1369) m _{e} = 0.1 m_{e}, it is just the proton p (+) with 1836.10 m_{e}. The antiproton p (-) : with 1836.10 \\underline{m}_{e}, one e and one nuυ_{0}. The n and \\underline{n} : In p (+) outside layer the _{0} nuυ (1 m _{nu} ), e (18 m_{nu}) and (2) m_{0} (2) (120 m _{nu}) are replaced by two nuυ_{mu}(0) and one sub-nuυ_{mu} (0) which (5) m_{0} exchange into (4) m_{0}) become 1838.64 m_{e}), again absorb one vacuum nuυ_{0} become the neutron n. The anti-neutron n has 1838.64 \\underline{m}_{e} and one _{0}nuυ. The essence of strangeness is that: one left turn anti-mass ({2) -1} \\underline{m}(2) (132 m_{e}) interfuse in great right mass particle then the strange number S = -1, such as K (0) , LambdaΛ(0) , Sigma∑(0,+,-) , two (2-1) \\underline{m}(2) then S = -2 such as XiΞ(0,-) ; one right turn mass ({2) -1}m(2) (132 m_{e}) interfuse in great left turn anti-mass particle then the strange number S = + 1 such as \\underline{K}(0) , \\underline{LambdaΛ} (0) , \\underline{Sigma∑}(0,+,-) , two ({2) -1}m(2) then S = + 2 such as \\underline{XiΞ}(0,-) . All strange particles as positive -negative pair to be produced from the particle’s momentum in accelerator, on the fountainhead, all come from the neutral microwave photons. Only from the collective structure of the photons, rest mass and charge quanta we can understand the strange particles producing process and the strange number invariable law. From the structure of elementary particles it may be obtained that the gravitational constant is likely dependent on the absolute velocity of galaxy.