WorldWideScience

Sample records for antineutrons

  1. Antineutron physics

    CERN Document Server

    Bressani, Tullio

    2003-01-01

    Antineutrons ($\\overline{n}$'s) have been used only in the last few years as projectiles for nuclear and particle physics experiments, mainly in the low momentum region. The reason is that, in spite of some undoubted advantages (absence of Coulomb corrections, pure I=1 state for the ($\\overline{n}p$) system), the difficulties in obtaining beams of $\\overline{n}$'s of suitable intensity and energy definition were overwhelming. The setting-up of suitable beams at BNL and mainly at CERN LEAR (with momentum lower than 400 MeV/c) allowed a first round of interesting experiments. In this review a summary of the most important experimental issues obtained in this field will be presented. They range from studies on the antineutron annihilation dynamics, intended to shed light on the mechanisms responsible for the particles production as well as for the possible formation of quasinuclear nucleon-antinucleon bound states, to meson spectroscopy researches, aiming to identify the existence of new, possibly exotic, resona...

  2. Neutron antineutron oscillations

    International Nuclear Information System (INIS)

    Experimental observation of nucleon instability is one of the missing components required for the explanation of baryon asymmetry of the universe. Proton decay with the modes and rates predicted by the original (B-L)-conserving SU(5) GUT (great unified theory) scheme is not observed experimentally. There are reasons to believe that (B-L) might not be conserved in nature, thus leading to the nucleon decay into lepton+(X), neutrinoless double-beta decays, and most spectacularly to the transitions of neutrons to antineutrons. A motivation and a new experimental approach to search for transition of neutron to antineutron will be discussed. A new search of n-n-bar can be performed in a reactor-based experiment at HFIR/ORNL with a sensitivity ∼ 1000 times higher than in the previous experiments. (author)

  3. Neutron-antineutron oscillations

    International Nuclear Information System (INIS)

    The n anti n-oscillations in various media and systems were considered fenomenologically. The low limit of oscillation period was estimated. The requirements to experiment conditions for discovering the (n reversible anti n)-transition in free state were determined. The ways o+ search of transition of free neutron into antineutron are discussed. An experiment using a neutron source of the meson factory of the AN USSR IJI is proposed. It is shown that the realization of this proposal will allow to advance the n anti n-oscillation period measurement up to the value (0.5-1)x1010 s

  4. Neutron-antineutron oscillation in neutron stars

    International Nuclear Information System (INIS)

    It is investigated if the neutron-antineutron oscillation might affect the stability of a neutron star. Because of the very high density inside a neutron star the possibility is reduced drastically and it is shown that only a small percentage of the neutrons are capable of becoming antineutrons and thus are annihilated. Fixing the lower limit (referred to the vacuum) of τn,antin as 106 s, it is obtained that only 1021 erg/s are produced by this mechanism, so the thermodynamical equilibrium of the star is unaffected

  5. Search for free neutron-antineutron oscillations

    Science.gov (United States)

    Bressi, G.; Calligarich, E.; Cambiaghi, M.; Dolfini, R.; Genoni, M.; Berzolari, A. Gigli; Lanza, A.; Liguori, G.; Mauri, F.; Piazzoli, A.; Ratti, S. P.; Torre, P.; Bini, C.; Conversi, M.; de Zorzi, G.; Gauzzi, P.; Massa, F.; Zanello, D.; Cardarelli, R.; Santonico, R.; Scannicchio, D.; Terrani, M.

    1989-06-01

    A search for free neutron-antineutron oscillations has been carried out at the Pavia Triga Mark II research reactor. A thin carbon target is crossed by a beam of thermal neutrons propagating in a 18.5 m long channel where the earth magnetic field is attenuated by a factor of 50. The total neutron current through the target is 3.2×1010 n/s. Possible antineutron annihilations are identified by a large track detector surrounding the target. A lower limit on the oscillation time of 4.7×105 s (90% C.L.) has been reached.

  6. Neutron-Antineutron Oscillations: Theoretical Status and Experimental Prospects

    CERN Document Server

    Phillips, D G; Babu, K; Banerjee, S; Baxter, D V; Berezhiani, Z; Bergevin, M; Bhattacharya, S; Brooijmans, G; Castellanos, L; Chen, M-C; Coppola, C E; Cowsik, R; Crabtree, J A; Das, P; Dees, E B; Dolgov, A; Ferguson, P D; Frost, M; Gabriel, T; Gal, A; Gallmeier, F; Ganezer, K; Golubeva, E; Greene, G; Hartfiel, B; Hawari, A; Heilbronn, L; Johnson, C; Kamyshkov, Y; Kerbikov, B; Kitaguchi, M; Kopeliovich, B Z; Kopeliovich, V B; Kuzmin, V A; Liu, C-Y; McGaughey, P; Mocko, M; Mohapatra, R; Mokhov, N; Muhrer, G; Mumm, H P; Okun, L; Pattie, R W; Quigg, C; Ramberg, E; Ray, A; Roy, A; Ruggles, A; Sarkar, U; Saunders, A; Serebrov, A P; Shimizu, H M; Shrock, R; Sikdar, A K; Sjue, S; Striganov, S; Townsend, L W; Tschirhart, R; Vainshtein, A; Van Kooten, R; Wang, Z; Young, A R

    2014-01-01

    This paper summarizes the relevant theoretical developments, outlines some ideas to improve experimental searches for free neutron-antineutron oscillations, and suggests avenues for future improvement in the experimental sensitivity.

  7. Neutron-Antineutron Oscillations: Theoretical Status and Experimental Prospects

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D. G.; Snow, W. M.; Babu, K.; Banerjee, S.; Baxter, D. V.; Berezhiani, Z.; Bergevin, M.; Bhattacharya, S.; Brooijmans, G.; Castellanos, L.; et al.,

    2014-10-04

    This paper summarizes the relevant theoretical developments, outlines some ideas to improve experimental searches for free neutron-antineutron oscillations, and suggests avenues for future improvement in the experimental sensitivity.

  8. Neutron-Antineutron Oscillation as a Signal of CP Violation

    OpenAIRE

    Berezhiani, Zurab; Vainshtein, Arkady

    2015-01-01

    Assuming the Lorentz and CPT invariances we show that neutron-antineutron oscillation implies breaking of CP along with baryon number violation -- i.e. two of Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator in the effective Hamiltonian. This operator mixing neutron and antineutron preserves charge conjugation C and breaks P and T. External magnetic field always leads to suppression of oscillations. Its presence does not lead to any new operator mixing ...

  9. Antineutron physics at BNL and beyond

    International Nuclear Information System (INIS)

    The history of antineutron counter experiments below 1 GeV/c is rather short. Several measurements of the charge exchange total and differential cross-sections have been reported. In addition there have been a few low statistics attempts to measure the (anti np transmission and annihilation cross-sections. In 1981 at BNL, AGS Experiment 767 was proposed to simultaneously measure both the annihilation and the transmission cross-sections for anti np). The data were taken during the winter and spring of 1984 and very preliminary results were reported at Durham in July 1984. The results presented here represent a significantly more complete data analysis but some sources of systematic error are still under investigation, and as such only relative cross-sections will be quoted which should still be regarded as preliminary to some degree

  10. Neutron-antineutron oscillations on the lattice

    CERN Document Server

    Buchoff, Michael I; Wasem, Joseph

    2012-01-01

    One possible low energy process due to beyond the Standard Model (BSM) physics is the neutron-antineutron transition, where baryon number changes by two units. In addition to providing a source of baryon number violation in the early universe, interactions of this kind are natural in grand unified theories (GUTs) with Majorana neutrinos that violate lepton number. Bounds on these oscillations can greatly restrict a variety of GUTs, while a non-zero signal would be a "smoking gun" for new physics; however, to make a reliable prediction, the six-quark nucleon-antinucleon matrix elements must first be calculated non-perturbatively via lattice QCD. We review the current understanding of this quantity, describe the lattice formalism, and present preliminary results from $32^3\\times256$ clover-Wilson lattices with a pion mass of 390 MeV.

  11. Study of anti-neutron annihilations at low energy

    International Nuclear Information System (INIS)

    The results of a total cross section measurement for the reactions anti np and anti pn are plotted. These results indicate that the annihilation amplitudes are predominantly I = 1 at low energy. The S-wave unitarity limit is shown, and the data support the conclusion drawn from anti pp data that even at the lowest momenta P-wave and higher waves are very important. The technique of using antineutrons to study very low energy antineutrons to study very low energy antinucleon interactions is demonstrated to be feasible

  12. Baryogenesis and neutron-antineutron oscillation at TeV

    OpenAIRE

    Gu, Pei-Hong; Sarkar, Utpal

    2011-01-01

    We propose a TeV extension of the standard model to generate the cosmological baryon asymmetry with an observable neutron-antineutron oscillation. The new fields include a singlet fermion, an isotriplet and two isosinglet diquark scalars. There will be no proton decay although the Majorana mass of the singlet fermion as well as the trilinear couplings between one isosinglet diquark and two isotriplet diquarks softly break the baryon number of two units. The isosinglet diquarks couple to two r...

  13. Neutron-antineutron oscillations: Theoretical status and experimental prospects

    Science.gov (United States)

    Phillips, D. G.; Snow, W. M.; Babu, K.; Banerjee, S.; Baxter, D. V.; Berezhiani, Z.; Bergevin, M.; Bhattacharya, S.; Brooijmans, G.; Castellanos, L.; Chen, M.-C.; Coppola, C. E.; Cowsik, R.; Crabtree, J. A.; Das, P.; Dees, E. B.; Dolgov, A.; Ferguson, P. D.; Frost, M.; Gabriel, T.; Gal, A.; Gallmeier, F.; Ganezer, K.; Golubeva, E.; Greene, G.; Hartfiel, B.; Hawari, A.; Heilbronn, L.; Johnson, C.; Kamyshkov, Y.; Kerbikov, B.; Kitaguchi, M.; Kopeliovich, B. Z.; Kopeliovich, V. B.; Kuzmin, V. A.; Liu, C.-Y.; McGaughey, P.; Mocko, M.; Mohapatra, R.; Mokhov, N.; Muhrer, G.; Mumm, H. P.; Okun, L.; Pattie, R. W.; Quigg, C.; Ramberg, E.; Ray, A.; Roy, A.; Ruggles, A.; Sarkar, U.; Saunders, A.; Serebrov, A. P.; Shimizu, H. M.; Shrock, R.; Sikdar, A. K.; Sjue, S.; Striganov, S.; Townsend, L. W.; Tschirhart, R.; Vainshtein, A.; Van Kooten, R.; Wang, Z.; Young, A. R.

    2016-02-01

    The observation of neutrons turning into antineutrons would constitute a discovery of fundamental importance for particle physics and cosmology. Observing the n- n ¯ transition would show that baryon number (B) is violated by two units and that matter containing neutrons is unstable. It would provide a clue to how the matter in our universe might have evolved from the B = 0 early universe. If seen at rates observable in foreseeable next-generation experiments, it might well help us understand the observed baryon asymmetry of the universe. A demonstration of the violation of B- L by 2 units would have a profound impact on our understanding of phenomena beyond the Standard Model of particle physics. Slow neutrons have kinetic energies of a few meV. By exploiting new slow neutron sources and optics technology developed for materials research, an optimized search for oscillations using free neutrons from a slow neutron moderator could improve existing limits on the free oscillation probability by at least three orders of magnitude. Such an experiment would deliver a slow neutron beam through a magnetically-shielded vacuum chamber to a thin annihilation target surrounded by a low-background antineutron annihilation detector. Antineutron annihilation in a target downstream of a free neutron beam is such a spectacular experimental signature that an essentially background-free search is possible. An authentic positive signal can be extinguished by a very small change in the ambient magnetic field in such an experiment. It is also possible to improve the sensitivity of neutron oscillation searches in nuclei using large underground detectors built mainly to search for proton decay and detect neutrinos. This paper summarizes the relevant theoretical developments, outlines some ideas to improve experimental searches for free neutron oscillations, and suggests avenues both for theoretical investigation and for future improvement in the experimental sensitivity.

  14. Baryon number violation in supersymmetry: Neutron-antineutron oscillations as a probe beyond the LHC

    CERN Document Server

    Calibbi, Lorenzo; Milstead, David; Petersson, Christoffer; Pöttgen, Ruth

    2016-01-01

    We summarize the current status of baryon number violation in supersymmetry and provide prospects for going beyond the present reach by means of a new search for neutron-antineutron oscillations. The main motivation is the recently proposed neutron-antineutron oscillation experiment at the European Spallation Source in Lund, Sweden, which is projected to be able to improve the current bound on the transition probability in the quasi-free regime by three orders of magnitude. We consider various processes involving superpartners that give rise to neutron-antineutron oscillations and extract the corresponding simplified models, including only the most relevant superpartners and couplings. In terms of these models we recast and determine the exclusion limits from LHC searches as well as from searches for flavor transitions, CP violation and di-nucleon decays. We find that, for certain regions of the parameter space, the proposed neutron-antineutron experiment has a reach that goes beyond all other experiments, as...

  15. Neutron-antineutron Oscillation and Baryonic Majoron: Low Scale Spontaneous Baryon Violation

    OpenAIRE

    Berezhiani, Zurab

    2015-01-01

    We discuss a possibility that baryon number $B$ is spontaneously broken at low scales, of the order of MeV or even smaller, so that the neutron-antineutron oscillation can be induced at the experimentally accessible level. An associated Goldstone particle, baryonic majoron, can have observable effects in neutron to antineutron transitions in nuclei or dense nuclear matter. By extending baryon number to $B-L$ symmetry, baryo-majoron can be identified with the ordinary majoron associated with t...

  16. Gauged B-L Number and Neutron--Antineutron Oscillation: Long-range Forces Mediated by Baryophotons

    CERN Document Server

    Addazi, Andrea; Kamyshkov, Yuri

    2016-01-01

    Transformation of neutron to antineutron is a small effect that has not yet been experimentally observed. %\\cite{Phillips:2014fgb}. In principle, it can occur with free neutrons in the vacuum or with bound neutrons inside the nuclear environment different for neutrons and antineutrons and for that reason in the latter case it is heavily suppressed. Free neutron transformation also can be suppressed if environmental vector field exists destinguishing neutron from antineutron. We consider here the case of a vector field coupled to $B-L$ charge of the particles ($B-L$ photons) and study a possibility of this to lead to the observable suppression of neutron to antineutron transformation. The suppression effect however can be removed by applying external magnetic field. If the neutron--antineutron oscillation will be discovered in free neutron oscillation experiments, this will imply limits on $B-L$ photon coupling constant and interaction radius few order of magnitudes stronger than present limits form the tests ...

  17. Neutron-antineutron transition as a test-bed for dynamical CPT violations

    Science.gov (United States)

    Addazi, Andrea

    2016-05-01

    We show a simple mechanism for a dynamical CPT violation in the neutron sector. In particular, we show a CPT-violating see-saw mechanism, generating a Majorana mass and a CPT-violating mass for the neutron. CPT-violating see-saw involves a sterile partner of the neutron, living in a hidden sector, in which CPT is spontaneously broken. In particular, neutrons (antineutrons) can communicate with the hidden sector through nonperturbative quantum gravity effects called exotic instantons. Exotic instantons dynamically break R-parity, generating one effective vertex between the neutron and its sterile partner. In this way, we show how a small CPT-violating mass term for the neutron is naturally generated. This model can be tested in the next generation of experiments in neutron-antineutron physics. This strongly motivates researches of CPT-violating effects in neutron-antineutron physics as a test-bed for dynamical CPT-violations in SM.

  18. Neutron-antineutron transition as a test-bed for dynamical CPT violations

    CERN Document Server

    Addazi, Andrea

    2015-01-01

    We show a simple mechanism for a dynamical CPT violation in the neutron sector. In particular, we show a {\\it CPT-violating see-saw mechanism}, generating a Majorana mass and a CPT violating mass for the neutron. CPT-violating see-saw involves a sterile partner of the neutron, living in a hidden sector, in which CPT is spontaneously broken. In particular, neutrons (antineutrons) can communicate with the hidden sector through non-perturbative quantum gravity effects called {\\it exotic instantons}. Exotic instantons dynamically break R-parity, generating one effective vertex between the neutron and its sterile partner. In this way, we show how a small CPT violating mass term for the neutron is naturally generated. This model can be tested in the next generation of experiments in neutron-antineutron physics. This strongly motivates researches of CPT-violating effects in neutron-antineutron physics, as a test-bed for dynamical CPT-violations in SM.

  19. Connecting Radiative Neutrino Mass, Neutron-Antineutron Oscillation, Proton Decay, and Leptogenesis through Dark Matter

    OpenAIRE

    Gu, Pei-Hong; Ma, Ernest; Sarkar, Utpal

    2016-01-01

    The scotogenic mechanism for radiative neutrino mass is generalized to include neutron-antineutron oscillation as well as proton decay. Dark matter is stabilized by extending the notion of lepton parity to matter parity. Leptogenesis is also a possible byproduct. This framework unifies the description of all these important, but seemingly unrelated, topics in physics beyond the standard model of particle interactions.

  20. A new high sensitivity search for neutron-antineutron oscillations at the ESS

    CERN Document Server

    Milstead, David

    2015-01-01

    A sensitive search for neutron-antineutron oscillations can provide a unique probe of some of the central questions in particle physics and cosmology: the energy scale and mechanism for baryon number violation, the origin of the baryon-antibaryon asymmetry of the universe, and the mechanism for neutrino mass generation. A remarkable opportunity has emerged to search for such oscillations with the construction of the European Spallation Source (ESS). A collaboration has been formed which has proposed a search at the ESS, which would provide a sensitivity to the oscillation probability which is three orders of magnitude greater than that achieved at an ILL experiment at which the present best limit on free neutron-antineutron oscillations was obtained.

  1. Neutron-antineutron Oscillation and Baryonic Majoron: Low Scale Spontaneous Baryon Violation

    CERN Document Server

    Berezhiani, Zurab

    2015-01-01

    We discuss a possibility that baryon number $B$ is spontaneously broken at low scales, of the order of MeV or even smaller, so that the neutron-antineutron oscillation can be induced at the experimentally accessible level. An associated Goldstone particle, baryonic majoron, can have observable effects in neutron to antineutron transitions in nuclei or dense nuclear matter. By extending baryon number to $B-L$ symmetry, baryo-majoron can be identified with the ordinary majoron associated with the spontaneous breaking of lepton number, with interesting implications for neutrinoless $2\\beta$ becay with the majoron emission, etc. We also discuss a hypothesis suggesting that baryon number maybe spontaneously broken by the QCD itself via the six-quark condensates.

  2. Inflationary baryogenesis with low reheating temperature and testable neutron-antineutron oscillation

    OpenAIRE

    Gu, Pei-Hong; Sarkar, Utpal

    2011-01-01

    Recently we extended the standard model by four TeV-scale fields including a singlet fermion, an isotriplet and two isosinglet diquark scalars to generate the cosmological baryon asymmetry with an observable neutron-antineutron oscillation. We now supersymmetrize our model but do not constrain it at the TeV scale. The superpartner of the singlet fermion can serve as an inflaton field. Its three-body decays, mediated by the isosinglet diquarks and their superpartners, can simultaneously provid...

  3. A new high sensitivity search for neutron-antineutron oscillations at the ESS

    OpenAIRE

    Milstead, David

    2015-01-01

    A sensitive search for neutron-antineutron oscillations can provide a unique probe of some of the central questions in particle physics and cosmology: the energy scale and mechanism for baryon number violation, the origin of the baryon-antibaryon asymmetry of the universe, and the mechanism for neutrino mass generation. A remarkable opportunity has emerged to search for such oscillations with the construction of the European Spallation Source (ESS). A collaboration has been formed which has p...

  4. First Observation of the Decay D_s^+ to proton anti-neutron

    CERN Document Server

    Athar, S B; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A G; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; López, A; Méndez, H; Ramírez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T

    2008-01-01

    Using e^+e^- -> D_s^*+ D_s^- data collected near the peak D_s production energy, E_cm=4170 MeV, with the CLEO-c detector, we present the first observation of the decay D_s^+ -> proton anti-neutron. We measure a branching fraction B(D_s^+ -> p anti-n = (1.30 +- 0.36 +0.12 -0.16) x 10^-3. This is the first observation of a charmed meson decaying into a baryon-antibaryon final state.

  5. Limiting Equivalence Principle Violation and Long-Range Baryonic Force from Neutron-Antineutron Oscillation

    OpenAIRE

    Babu, K. S.; Mohapatra, Rabindra N.

    2016-01-01

    We point out that if the baryon number violating neutron-antineutron oscillation is discovered, it would impose strong limits on the departure from Einstein's equivalence principle at a level of one part in $10^{19}$. If this departure owes its origin to the existence of long-range forces coupled to baryon number $B$ (or $B-L$), it would imply very stringent constraints on the strength of gauge bosons coupling to baryon number current. For instance, if the force mediating baryon number has st...

  6. Use of cold source and large reflector mirror guide for neutron-antineutron oscillation search (proposal)

    International Nuclear Information System (INIS)

    An ORNL-UTK-UW-Harvard group is exploring the possibility of performing a new experiment to search for neutron-antineutron oscillations either at the ORNL HFIR reactor or at the proposed neutron spallation source. The advanced layout, based on a large mirror focusing reflector, proposed for this experiment should allow improving the discovery potential of an n→n transition search by 3-4 orders of magnitude, as compared to the most recent similar experiment at ILL-Grenoble, and to reach the limit of the characteristic transition time of τnn>1010 seconds. Use of a cold neutron moderator operating at temperatures lower than conventional moderators can further enhance the discovery potential of an n→n search provided that neutrons can be thermalized at these lower temperatures. The latter assumption is an open question. (author) 2 figs., 2 tabs., 15 refs

  7. Prospects of a baryon instability search in neutron-antineutron oscillations

    International Nuclear Information System (INIS)

    The purpose of this article is to review the current status and the future prospects for an experimental neutron-antineutron transition search. Traditional and new experimental techniques are discussed here. In the n → anti n search in experiments at existing reactors, it would be possible to increase the discovery potential up to four orders of magnitude for vacuum n → anti n transitions relative to the existing experimental level or to achieve the limit of τn-antin∼ 1010s.. With dedicated future reactors and an ultimate experimental layout, it might be possible to reach the limit of 1011s. Significant progress in an intranuclear n → anti n transition search expected to be made during the next decade by the SuperKamiokande and Icarus detectors. It can be matched, or even exceeded, in a new alternative approach, where unstable long-lived isotopes of technetium are searched in non radioactive deep-mined ores

  8. Limiting Equivalence Principle Violation and Long-Range Baryonic Force from Neutron-Antineutron Oscillation

    CERN Document Server

    Babu, K S

    2016-01-01

    We point out that if the baryon number violating neutron-antineutron oscillation is discovered, it would impose strong limits on the departure from Einstein's equivalence principle at a level of one part in $10^{19}$. If this departure owes its origin to the existence of long-range forces coupled to baryon number $B$ (or $B-L$), it would imply very stringent constraints on the strength of gauge bosons coupling to baryon number current. For instance, if the force mediating baryon number has strength $\\alpha_B$ and its range is larger than a megaparsec, we find the limit to be $\\alpha_B \\leq 2\\times 10^{-57}$, which is much stronger than all other existing bounds. For smaller range for the force, we get slightly weaker, but still stringent bounds by considering the potential of the Earth and the Sun.

  9. Expectations for neutron-antineutron oscillation time from TeV scale baryogenesis

    International Nuclear Information System (INIS)

    A TeV scale extension of the standard model that incorporates the seesaw mechanism for neutrino masses along with quark-lepton unification is presented. It is shown that this model leads to the ΔB= 2 baryon number violating process of neutron-antineutron (n-bar n) oscillation. The model has all the ingredients to generate the observed baryon asymmetry of the universe using the B-violating decay of a scalar field involved in the seesaw mechanism. The B-violating decay arises from the exchange of color sextet scalars which have TeV scale masses. Baryogenesis occurs below the sphaleron decoupling temperature and has been termed post-sphaleron baryogenesis. Here we show that the constraints of TeV scale baryogenesis, when combined with the neutrino oscillation data and restrictions from flavor changing neutral currents mediated by the colored scalars imply an upper limit on the n-bar n oscillation time of 5 × 1010 sec. regardless of the quark-lepton unification scale. If this scale is relatively low, in the (200 - 250) TeV range, τn-barn is predicted to be less than 1010 sec., which is accessible to the next generation of proposed experiments.

  10. Antineutron-nucleus annihilation

    CERN Document Server

    Botta, E

    2001-01-01

    The n-nucleus annihilation process has been studied by the OBELIX experiment at the CERN Low Energy Antiproton Ring (LEAR) in the (50-400) MeV/c projectile momentum range on C, Al, Cu, Ag, Sn, and Pb nuclear targets. A systematic survey of the annihilation cross- section, sigma /sub alpha /(A, p/sub n/), has been performed, obtaining information on its dependence on the target mass number and on the incoming n momentum. For the first time the mass number dependence of the (inclusive) final state composition of the process has been analyzed. Production of the rho vector meson has also been examined. (13 refs).

  11. On the anti-neutron bomb movement in the Netherlands

    International Nuclear Information System (INIS)

    The author reports on activities of the Dutch activists group Stop the neutron bomb in his country: Collection of signatures, statements made by about a hundred well-known theologians, two-thirds majority in parliament against the production and emplacement of the neutron bomb, International Forum 1978 in Amsterdam with mass demonstrations. President Carter is said to have been forced to delay the production of the neutron bomb temporarily by means of this international pressure. (HSCH)

  12. Post-Sphaleron Baryogenesis and an Upper Limit on the Neutron-Antineutron Oscillation Time

    OpenAIRE

    Babu, K. S.; Dev, P. S. Bhupal; Fortes, Elaine C. F. S.; Mohapatra, R. N.

    2013-01-01

    A recently proposed scenario for baryogenesis, called post--sphaleron baryogenesis (PSB) is discussed within a class of quark--lepton unified framework based on the gauge symmetry SU(2)_L x SU(2)_R x SU(4)_c realized in the multi--TeV scale. The baryon asymmetry of the universe in this model is produced below the electroweak phase transition temperature after the sphalerons have decoupled from the Hubble expansion. These models embed naturally the seesaw mechanism for neutrino masses, and pre...

  13. A search for narrow states in antineutron-proton total and annihilation cross sections near anti NN threshold

    International Nuclear Information System (INIS)

    The anti np total and annihilation cross sections have been measured from near anti NN threshold (1880 MeV) to 1940 MeV with RMS resolution ranging from 0.08 MeV (1880 MeV) to 6.7 MeV (1940 MeV). No significant narrow meson structures were seen, with 90% CL upper limits of 40-180 mb-MeV on sigmaGAMMA for states with width less than our resolution. Combined with increasing unitarity bounds on sigma as one approaches threshold, these limits confine widths of possible predicted states below 1900 MeV to less than proportional1 MeV. (orig.)

  14. Damping and Decoherence in Neutron Oscillations

    CERN Document Server

    Kerbikov, B O; Kamyshkov, Y A; Varriano, L J

    2015-01-01

    An analysis is made of the role played by the gas environment in neutron-mirror-neutron and neutron-antineutron oscillations. In the first process the interaction with the ambient medium induces a refraction energy shift which plays the role of an extra magnetic field. In the second process antineutron annihilation in practice might lead to strong decoherence, which should be taken into account in experiments with free neutrons looking for the neutron to antineutron transformation.

  15. Baryon Number Violation

    CERN Document Server

    Babu, K S; Al-Binni, U; Banerjee, S; Baxter, D V; Berezhiani, Z; Bergevin, M; Bhattacharya, S; Brice, S; Brock, R; Burgess, T W; Castellanos, L; Chattopadhyay, S; Chen, M-C; Church, E; Coppola, C E; Cowen, D F; Cowsik, R; Crabtree, J A; Davoudiasl, H; Dermisek, R; Dolgov, A; Dutta, B; Dvali, G; Ferguson, P; Perez, P Fileviez; Gabriel, T; Gal, A; Gallmeier, F; Ganezer, K S; Gogoladze, I; Golubeva, E S; Graves, V B; Greene, G; Handler, T; Hartfiel, B; Hawari, A; Heilbronn, L; Hill, J; Jaffe, D; Johnson, C; Jung, C K; Kamyshkov, Y; Kerbikov, B; Kopeliovich, B Z; Kopeliovich, V B; Korsch, W; Lachenmaier, T; Langacker, P; Liu, C-Y; Marciano, W J; Mocko, M; Mohapatra, R N; Mokhov, N; Muhrer, G; Mumm, P; Nath, P; Obayashi, Y; Okun, L; Pati, J C; Pattie, R W; Phillips, D G; Quigg, C; Raaf, J L; Raby, S; Ramberg, E; Ray, A; Roy, A; Ruggles, A; Sarkar, U; Saunders, A; Serebrov, A; Shafi, Q; Shimizu, H; Shiozawa, M; Shrock, R; Sikdar, A K; Snow, W M; Soha, A; Spanier, S; Stavenga, G C; Striganov, S; Svoboda, R; Tang, Z; Tavartkiladze, Z; Townsend, L; Tulin, S; Vainshtein, A; Van Kooten, R; Wagner, C E M; Wang, Z; Wehring, B; Wilson, R J; Wise, M; Yokoyama, M; Young, A R

    2013-01-01

    This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Present and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.

  16. Measurement of the imaginary part of the I = 1 N-barN S-wave scattering length

    International Nuclear Information System (INIS)

    The survival time spectrum of slow antineutrons produced in a LH2 target has been measured. From these data the imaginary part of the I = 1 spin averaged S-wave antineutron proton scattering length has been deduced to be Im a1 = -0.83 +- 0.07 fm. The result lies within the range of values calculated from current potential models

  17. Measurement of the imaginary part of the I = 1 N-barN S-wave scattering length

    International Nuclear Information System (INIS)

    The survival time spectrum of slow antineutrons produced in a liquid-hydrogen target has been measured. From these data the imaginary part of the I = 1 spin-averaged S-wave antineutron proton scattering length has been deduced to be Ima1 = -0.83 +- 0.07 fm. The result lies within the range of values calculated from current potential models. In addition, by combining a1 with the antiproton-proton scattering length deduced from antiprotonic atoms, the imaginary part of the I = 0 spin-averaged N-barN scattering length was calculated to be Ima0 = -1.07 +- 0.16 fm

  18. Exotic states of matter in heavy meson decays

    OpenAIRE

    Rosner, Jonathan L.

    2003-01-01

    The potential of decays of mesons containing heavy quarks [including $B$ mesons and the $\\Upsilon(1S)$] for producing final states of matter with unusual quark configurations, such as $q q \\bar q \\bar q$ or $q q q q \\bar q$, is investigated. The usefulness of antineutron detection in such searches is stressed.

  19. A study of anti np annihilations around 0.65 GeV/c

    International Nuclear Information System (INIS)

    Anti np annihilations with >= 3 prongs with an incident antineutron momentum between 0.5 and 0.8 GeV/c are analysed. The authors present the topological branching ratios and cross sections, the resonance production rates and possible rho-ω interference effects. (Auth.)

  20. Monte-Carlo simulations on the antineutrino detection in heavy ion collisions

    International Nuclear Information System (INIS)

    Aim of the present thesis was to study, how far a large-area neutron detector with high efficiency operated at the Corporation for Heavy Ion Research in Darmstadt can also by applied for experiments on the sub-threshold antineutron production in heavy ion reactions for the study of the equation of state of highly excited nuclear matter. The experimental part consisted in the partition at the construction, the taking into operation, and the calibration measurements of the target-detector system, as well at the experiments with the LAND detector for the study of the Coulomb excitation of 136Xe projectiles in the reaction 136Xe+208Pb at 700 respectively 800 MeV/u. Studies on the suppression of neutron events against antineutron events in the data acquisition in a typical SIS/LAND experiment on the antineutron production in heavy ion collisions were performed. The possibilities available on the level of the hardware trigger for the suppression of (multiple) neutron events were studied. Thereby resulted a reachable suppression factor of ≅ 10-3. Studies on the off-line analysis of antineutron events exhibited problems, which base on the high matter density in the detector. (orig./HSI)

  1. Weak Gravity Conjecture as a Razor Criterium for Exotic D-brane instantons

    CERN Document Server

    Addazi, Andrea

    2016-01-01

    We discuss implications of Weak gravity conjecture (WGC) for exotic D-brane instantons. In particular, WGC leads to indirect stringent bounds on non-perturbative superpotentials generated by exotic instantons, with many implications for phenomenology: R-parity violating processes, neutrino mass, $\\mu$-problem, Neutron-Antineutron transitions and collider physics.

  2. CPT, CP, and C transformations of fermions, and their consequences, in theories with B-L violation

    CERN Document Server

    Gardner, Susan

    2016-01-01

    We consider the transformation properties of fermions under the discrete symmetries CPT, CP, and C in the presence of B-L violation. We thus generalize the analysis of the known properties of Majorana neutrinos, probed via neutrinoless double beta decay, to include the case of Dirac fermions with B-L violation, which can be probed via neutron-antineutron oscillations. We show that the resulting CPT phase has implications for the interplay of neutron-antineutron oscillations with external fields and sources and consider the differences in the Majorana dynamics of neutrinos and neutrons in the context of theories with self-conjugate isospin I=0 and I=1/2 fields.

  3. Project X: Physics Opportunities

    CERN Document Server

    Kronfeld, Andreas S; Al-Binni, Usama; Altmannshofer, Wolfgang; Ankenbrandt, Charles; Babu, Kaladi; Banerjee, Sunanda; Bass, Matthew; Batell, Brian; Baxter, David V; Berezhiani, Zurab; Bergevin, Marc; Bernstein, Robert; Bhattacharya, Sudeb; Bishai, Mary; Blum, Thomas; Bogacz, S Alex; Brice, Stephen J; Brod, Joachim; Bross, Alan; Buchoff, Michael; Burgess, Thomas W; Carena, Marcela; Castellanos, Luis A; Chattopadhyay, Subhasis; Chen, Mu-Chun; Cherdack, Daniel; Christ, Norman H; Chupp, Tim; Cirigliano, Vincenzo; Coloma, Pilar; Coppola, Christopher E; Cowsik, Ramanath; Crabtree, J Allen; Delahaye, Jean-Pierre; Denisov, Dmitri; deNiverville, Patrick; de Gouvêa, André; Dharmapalan, Ranjan; Dolgov, Alexander; Dvali, Georgi; Eichten, Estia; Engelfried, Jürgen; Ferguson, Phillip D; Gabriel, Tony; Gal, Avraham; Gallmeier, Franz; Ganezer, Kenneth S; Gardner, Susan; Glenzinski, Douglas; Godfrey, Stephen; Golubeva, Elena S; Gori, Stefania; Graves, Van B; Greene, Geoffrey; Griffard, Cory L; Haisch, Ulrich; Handler, Thomas; Hartfiel, Brandon; Hawari, Ayman; Heilbronn, Lawrence; Hill, James E; Huber, Patrick; Jaffe, David E; Johnson, Christian; Kamyshkov, Yuri; Kaplan, Daniel M; Kerbikov, Boris; Kiburg, Brendan; Kirk, Harold G; Klein, Andreas; Knoepfel, Kyle; Kopeliovich, Boris; Kopeliovich, Vladimir; Kopp, Joachim; Korsch, Wolfgang; Kribs, Graham; Lipton, Ronald; Liu, Chen-Yu; Lorenzon, Wolfgang; Lu, Zheng-Tian; Makins, Naomi C R; McKeen, David; Mills, Geoffrey; Mohapatra, Rabindra; Mokhov, Nikolai V; Mocko, Michael; Muhrer, Guenter; Mumm, Pieter; Okun, Lev; Neuffer, David; Palmer, Mark A; Palmer, Robert; Pattie, Robert W; Phillips, David G; Pronsikh, Vitaly; Pitts, Kevin; Pospelov, Maxim; Quigg, Chris; Ramberg, Erik; Ray, Amlan; Reimer, Paul E; Richards, David G; Ritz, Adam; Roy, Amit; Ruggles, Arthur; Ryne, Robert; Sarkar, Utpal; Saunders, Andy; Semertzidis, Yannis K; Serebrov, Anatoly; Shimizu, Hirohiko; Shrock, Robert; Snopok, Pavel V; Snow, William M; Sikdar, Arindam K; Soha, Aria; Spanier, Stefan; Striganov, Sergei; Tang, Zhaowen; Townsend, Lawrence; Urheim, Jon; Vainshtein, Arkady; Van Kooten, Richard J; Van de Water, Richard; Van de Water, Ruth S; Wehring, Bernard; Whitehead, Lisa; Wilson, Robert J; Worcester, Elizabeth; Young, Albert R; Wester, William C; Zeller, Geralyn

    2013-01-01

    Part 2 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". In this Part, we outline the particle-physics program that can be achieved with Project X, a staged superconducting linac for intensity-frontier particle physics. Topics include neutrino physics, kaon physics, muon physics, electric dipole moments, neutron-antineutron oscillations, new light particles, hadron structure, hadron spectroscopy, and lattice-QCD calculations.

  4. Anti-dark matter: a hidden face of mirror world

    CERN Document Server

    Berezhiani, Zurab

    2016-01-01

    B and L violating interactions of ordinary particles with their twin particles from hypothetical mirror world can co-generate baryon asymmetries in both worlds in comparable amounts, $\\Omega'_B/\\Omega_B \\sim 5$ or so. On the other hand, the same interactions induce the oscillation phenomena between the neutral particles of two sectors which convert e.g. mirror neutrons into our antineutrons. These oscillations are environment dependent and can have fascinating physical consequences.

  5. The discovery of geomagnetically trapped cosmic ray antiprotons

    OpenAIRE

    Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; M. Boezio; Bogomolov, E.A.; M. Bongi; Bonvicini, V.; Borisov, S.; Bottai, S.; Bruno, A.; F. Cafagna; Campana, D.; Carbone, R.; Carlson, P.

    2011-01-01

    The existence of a significant flux of antiprotons confined to Earth's magnetosphere has been considered in several theoretical works. These antiparticles are produced in nuclear interactions of energetic cosmic rays with the terrestrial atmosphere and accumulate in the geomagnetic field at altitudes of several hundred kilometers. A contribution from the decay of albedo antineutrons has been hypothesized in analogy to proton production by neutron decay, which constitutes the main source of tr...

  6. Institute of physics

    International Nuclear Information System (INIS)

    A survey is given of the personnel and activities of the Institute of Physics. Research by staff of the Nuclear Physics Group includes mainly work on heavy ion reactions and investigations of rare earth nuclei. The Elementary Particle Group has studied antineutron and antiproton annihilations, neutral current pions minus and has used the CERN ISRs. The Cosmic Physics Group has used rockets, satellite data and balloons to study the electron and proton precipitation in the upper atmosphere and magnetosphere, and aurorae. (JIW)

  7. Physics with antiprotons at LEAR in the ACOL ERA. Proceedings of the 3. LEAR Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Gastaldi, U.; Klapisch, R.; Richard, J.M.; Tran Thanh Van, J. (eds.)

    1985-01-01

    The programme covered the following topics: accelerator aspects (anti-p production, LEAR, advanced developments, cooling, LEAR design inspired machines). Nucleon antinucleon interactions (panti-p atom, scattering, annihilation, spin effects, antineutron physics, antibaryon physics). Spectroscopy (light mesons, hybrids, glueballs, baryonia, quarkonia). Rare channels (form factors, CP, CPT, C, T violation, quantum mechanics tests) anti-p nucleus interactions (exotic atoms, scattering, annihilation, hypernuclei). New ideas (antigravity, high precision experiments). New detectors (new experiments, general and/or technical aspects).

  8. Physics with antiprotons at LEAR in the ACOL ERA

    International Nuclear Information System (INIS)

    The programme covered the following topics: accelerator aspects (anti-p production, LEAR, advanced developments, cooling, LEAR design inspired machines). Nucleon antinucleon interactions (panti-p atom, scattering, annihilation, spin effects, antineutron physics, antibaryon physics). Spectroscopy (light mesons, hybrids, glueballs, baryonia, quarkonia). Rare channels (form factors, CP, CPT, C, T violation, quantum mechanics tests) anti-p nucleus interactions (exotic atoms, scattering, annihilation, hypernuclei). New ideas (antigravity, high precision experiments). New detectors (new experiments, general and/or technical aspects)

  9. New Paradigm for Baryon and Lepton Number Violation

    OpenAIRE

    Perez, Pavel Fileviez

    2015-01-01

    The possible discovery of proton decay, neutron-antineutron oscillation, neutrinoless beta decay in low energy experiments, and exotic signals related to the violation of the baryon and lepton numbers at collider experiments will change our understanding of the conservation of fundamental symmetries in nature. In this review we discuss the rare processes due to the existence of baryon and lepton number violating interactions. The simplest grand unified theories and the neutrino mass generatio...

  10. CP Violating Baryon Oscillations

    OpenAIRE

    McKeen, David; Nelson, Ann E.

    2015-01-01

    We analyze neutron-antineutron oscillation in detail, developing a Hamiltonian describing the system in the presence of electromagnetic fields. While magnetic fields can couple states of different spin, we show that, because of Fermi statistics, this coupling of different spin states does not involve baryon-number--changing transitions and, therefore, a two-state analysis ignoring spin is sufficient even in the presence of electromagnetic fields. We also enumerate the conditions necessary for...

  11. Proton Decay and Related Processes in Unified Models with Gauged Baryon Number:

    OpenAIRE

    Pal, Palash B.; Sarkar, Utpal

    1993-01-01

    In unification models based on SU(15) or SU(16), baryon number is part of the gauge symmetry, broken spontaneously. In such models, we discuss various scenarios of important baryon number violating processes like proton decay and neutron-antineutron oscillation. Our analysis depends on the effective operator method, and covers many variations of symmetry breaking, including different intermediate groups and different Higgs boson content. We discuss processes mediated by gauge bosons and Higgs...

  12. Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J.; Kamyshkov, Y.A. [ed.

    1996-11-01

    These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base.

  13. Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments

    International Nuclear Information System (INIS)

    These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base

  14. Position sensitive gas discharge detector with filmless optical data readout for nn-bar oscillation search experiment at the INR AS USSR meson factory

    International Nuclear Information System (INIS)

    A position-sensitive gas-discharge multilayer cylindrical detector with optical data readout for neutron-antineutron oscillation search experiments at the INR AS USSR mesn factory is considered. The detector consits of 7 sections each 7 long, with the inner diameter of 2 m and the outer diameter of 3.5 m. Gas-discharge gaps are spacings between steel coaxial tubes where anode wires are tensioned. Data readout from optical fiber matrices will be carried out using teleinput system based on charge coupled matrix device with fast optical key on he base of electron-optical converter. 11 refs.; 2 figs

  15. Noncyclic geometric phase for neutrino oscillation

    CERN Document Server

    Wang, X B; Liu, Y; Oh, C H; Wang, Xiang-Bin; Liu, Yong

    2001-01-01

    We provide explicit formulae for the noncyclic geometric phases or Pancharatnam phases of neutrino oscillations. Since Pancharatnam phase is a generalization of the Berry phase, our results generalize the previous findings for Berry phase in a recent paper [Phys. Lett. B, 466 (1999) 262]. Unlike the Berry phase, the noncyclic geometric phase offers distinctive advantage in terms of measurement and prediction. In particular, for three-flavor mixing, our explicit formula offers an alternative means of determining the CP-violating phase. Our results can also be extended easily to explore geometric phase associated with neutron-antineutron oscillations.

  16. Search for n-nbar oscillation in Super-Kamiokande

    OpenAIRE

    Collaboration, Super-Kamiokande; :; Abe, K.; Hayato, Y.; Iida, T; Ishihara, K; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.; Moriyama, S.; Nakahata, M.(University of Tokyo, Institute for Cosmic Ray Research, Kamioka Observatory, Kamioka, Japan); Obayashi, Y.; Ogawa, H.

    2011-01-01

    A search for neutron-antineutron ($n-\\bar{n}$) oscillation was undertaken in Super-Kamiokande using the 1489 live-day or $2.45 \\times 10^{34}$ neutron-year exposure data. This process violates both baryon and baryon minus lepton numbers by an absolute value of two units and is predicted by a large class of hypothetical models where the seesaw mechanism is incorporated to explain the observed tiny neutrino masses and the matter-antimatter asymmetry in the Universe. No evidence for $n-\\bar{n}$ ...

  17. On Baryogenesis and nn-Oscillations

    OpenAIRE

    Herrmann, Enrico

    2014-01-01

    We study a simple model where color sextet scalars violate baryon number at tree level but do not give rise to proton decay. In particular, we include one light and two heavy sextets with ΔB=2 baryon number violating interactions that induce neutron anti-neutron oscillations. This setup also suggests an intimate connection to the generation of the observed baryon asymmetry in the Universe via the out of equilibrium decay of the heavy sextet scalars at around 10^(14) GeV. The large SU(3)-color...

  18. On Baryogenesis and $n \\bar n$-Oscillations

    OpenAIRE

    Herrmann, Enrico

    2014-01-01

    We study a simple model where color sextet scalars violate baryon number at tree level but do not give rise to proton decay. In particular, we include one light and two heavy sextets with $\\Delta B=2$ baryon number violating interactions that induce neutron anti-neutron oscillations. This setup also suggests an intimate connection to the generation of the observed baryon asymmetry in the Universe via the out of equilibrium decay of the heavy sextet scalars at around $10^{14}$ GeV. The large $...

  19. Matter, Antimatter, and Unmatter

    CERN Document Server

    Smarandache, F

    1980-01-01

    Besides matter and antimatter there must exist unmatter (as a new form of matter) in accordance with the neutrosophy theory that between an entity and its opposite there exist intermediate entities . Unmatter is neither matter nor antimatter, but something in between. An atom of unmatter is formed either by (1): electrons, protons, and antineutrons, or by (2): antielectrons, antiprotons, and neutrons. At CERN it will be possible to test the production of unmatter. The existence of unmatter in the universe has a similar chance to that of the antimatter, and its production also difficult for present technologies.

  20. Exotic see-saw mechanism for neutrini and leptogenesis in a Pati-Salam model

    CERN Document Server

    Addazi, Andrea; Ricciardi, Giulia

    2015-01-01

    We discuss non-perturbative corrections to the neutrino sector, in the context of a D-brane Pati-Salam-like model, that can be obtained as a simple alternative to $SO(10)$ GUT's in theories with open and unoriented strings. In such D-brane models, exotic stringy instantons can correct the right-handed neutrino mass matrix in a calculable way, thus affecting mass hierarchies and modifying the see-saw mechanism to what we name exotic see-saw. For a wide range of parameters, a compact spectrum of right-handed neutrino masses can occur that gives rise to a predictive scenario for low energy observables. This model also provides a viable mechanism for Baryon Asymmetry in the Universe (BAU) through leptogenesis. Finally, a Majorana mass for the neutron is naturally predicted in the model, leading to potentially testable neutron-antineutron oscillations. Combined measurements in neutrino and neutron-antineutron sectors could provide precious informations on physics at the quantum gravity scale.

  1. Baryon Number Violating Scalar Diquarks at the LHC

    CERN Document Server

    Baldes, Iason; Volkas, Raymond R

    2011-01-01

    Baryon number violating (BNV) processes are heavily constrained by experiments searching for nucleon decay and neutron-antineutron oscillations. If the baryon number violation occurs via the third generation quarks, however, we may be able to avoid the nucleon stability constraints, thus making such BNV interactions accessible at the LHC. In this paper we study a specific class of BNV extensions of the standard model (SM) involving diquark and leptoquark scalars. After an introduction to these models we study one promising extension in detail, being interested in particles with mass of O(TeV). We calculate limits on the masses and couplings from neutron-antineutron oscillations and dineutron decay for couplings to first and third generation quarks. We explore the possible consequences of such a model on the matter-antimatter asymmetry. We shall see that for models which break the global baryon minus lepton number symmetry, (B-L), the most stringent constraints come from the need to preserve a matter-antimatte...

  2. Measurement of antiproton-proton cross sections at low momenta

    International Nuclear Information System (INIS)

    The present thesis describes an experiment which serves for the study of the antiproton-proton interaction at laboratory momenta between 150 MeV/c and 600 MeV/c. The arrangement permits the measurement of differential cross sections of the elastic scattering and the charge-exchange reaction as well as the cross section of the annihilation into charged and neutral pions. By the availability of an intense beam with low momentum uncertainty from the LEAR storage ring for low energy antiprotons at CERN a clear improvement of the measurement accuracy compared to earlier experiments at separated antiproton beams can be reached. A prototype of the antineutron calorimeter used for the measurement of the angular distribution of the charge-exchange reaction was subjected to a careful test in a separated beam. The results were compared with the results of a Monte-Carlo simulation of the antineutron detection. The cross sections measured in two beam periods in November and December 1983 are consistent with the published data in the hitherto available momentum range above about 350 MeV/c. Especially in the cross section of the annihilation into charged pions a statistically significant signal at a mass of 1937 MeV/c2 appears. However further measurements are necessary to study all systematic causes of errors. (orig.)

  3. Exotic see-saw mechanism for neutrinos and leptogenesis in a Pati-Salam model

    Science.gov (United States)

    Addazi, Andrea; Bianchi, Massimo; Ricciardi, Giulia

    2016-02-01

    We discuss non-perturbative corrections to the neutrino sector, in the context of a D-brane Pati-Salam-like model, that can be obtained as a simple alternative to SO(10) GUT's in theories with open and unoriented strings. In such D-brane models, exotic stringy instantons can correct the right-handed neutrino mass matrix in a calculable way, thus affecting mass hierarchies and modifying the see-saw mechanism to what we name exotic see-saw. For a wide range of parameters, a compact spectrum of right-handed neutrino masses can occur that gives rise to a predictive scenario for low energy observables. This model also provides a viable mechanism for Baryon Asymmetry in the Universe (BAU) through leptogenesis. Finally, a Majorana mass for the neutron is naturally predicted in the model, leading to potentially testable neutron-antineutron oscillations. Combined measurements in neutrino and neutron-antineutron sectors could provide precious informations on physics at the quantum gravity scale.

  4. Post-sphaleron baryogenesis and n- anti n oscillation in non-SUSY SO(10) GUT with gauge coupling unification

    International Nuclear Information System (INIS)

    ''Post-sphaleron baryogenesis'', a fresh and profound mechanism of baryogenesis accounts for the matter-antimatter asymmetry of our present universe in a framework of Pati-Salam symmetry. We attempt here to embed this mechanism in a non-SUSY SO(10) grand unified theory by reviving a novel symmetry breaking chain with Pati-Salam symmetry as an intermediate symmetry breaking step and as well to address post-sphaleron baryogenesis and neutron-antineutron oscillation in a rational manner. The Pati-Salam symmetry based on the gauge group SU(2)L x SU(2)R x SU(4)C is realized in our model at 105-106 GeV and the mixing time for the neutron-antineutron oscillation process having ΔB = 2 is found to be τn-antin ≅ 108-1010s with the model parameters, which is within the reach of forthcoming experiments. Other novel features of the model include low scale right-handed WR±, ZR gauge bosons, explanation for neutrino oscillation data via the gauged inverse (or extended) seesaw mechanism and most importantly TeV scale color sextet scalar particles responsible for an observable n- anti n oscillation which may be accessible to LHC. We also look after gauge coupling unification and an estimation of the proton lifetime with and without the addition of color sextet scalars. (orig.)

  5. Search For Neutron Oscillation And Study Of Neutrino Reaction Rates Using Multiprong Events In Soudan 2

    CERN Document Server

    Chung, J

    2001-01-01

    A search for neutron antineutron oscillations followed by n¯N annihilation has been conducted using the 5.56 fiducial kiloton-year exposure of the 963 metric ton Soudan 2 iron tracking calorimeter. Based upon realistic simulations of n¯N annihilation and of background neutrino processes, event selection criteria are specified. Candidate n¯N occurrences are required to have prong multiplicity ≥4 prongs and to have kinematics compatible with approximately stationary annihilation of two nucleon masses. Events having proton tracks or tracks which are likely to be muons are removed from consideration. We observe five candidate events; we estimate backgrounds to contribute 4.5 ± 2.2 events. We use these observations to set a new lifetime lower limit for neutron to anti-neutron oscillation to occur within iron nuclei. At 90% CL we find TA(Fe) > 7.2 × 1031 yr. Assuming that the nuclear suppression factor for iron has the value calculated by Dover et al, namely TR...

  6. Parity-doublet representation of Majorana fermions and neutron oscillation

    CERN Document Server

    Fujikawa, Kazuo

    2016-01-01

    We present a parity-doublet theorem for the representation of the intrinsic parity of Majorana fermions, which is expected to be useful also in condensed matter physics, and it is illustrated to provide a criterion of neutron-antineutron oscillation in a BCS-like effective theory with $\\Delta B=2$ baryon number violating terms. The CP violation in the present effective theory causes no direct CP violating effects in the oscillation itself, which is demonstrated by the exact solution, although it influences the neutron electric dipole moment in the leading order of small $\\Delta B=2$ parameters. An analogue of Bogoliubov transformation, which preserves P and CP, is crucial in the analysis.

  7. Antinucleon-nucleus interaction near threshold from the Paris $\\bar NN$ potential

    CERN Document Server

    Friedman, E; Loiseau, B; Wycech, S

    2015-01-01

    A general algorithm for handling the energy dependence of hadron-nucleon amplitudes in the nuclear medium, consistently with their density dependence, has been recently applied to antikaons, eta mesons and pions interacting with nuclei. Here we apply this approach to antiprotons below threshold, analyzing experimental results for antiprotonic atoms across the periodic table. It is also applied to antiproton and antineutron interaction with nuclei up to 400~MeV/c, comparing with elastic scattering and annihilation cross sections. The underlying $\\bar pN$ scattering amplitudes are derived from the Paris $\\bar NN$ potential, including modifications in the medium. Emphasis is placed on the role of the $P$-wave amplitudes with respect to the repulsive $S$-wave amplitudes.

  8. Low-Energy Antinucleon-Nucleus Interaction Revisited

    CERN Document Server

    Friedman, E

    2015-01-01

    Annihilation cross sections of antiprotons and antineutrons on the proton between 50 and 400 MeV/c show Coulomb focusing below 200 MeV/c and almost no charge-dependence above 200 MeV/c. Similar comparisons for heavier targets are not possible for lack of overlap between nuclear targets studied with $\\bar p$ and $\\bar n$ beams. Interpolating between $\\bar p$-nucleus annihilation cross sections with the help of an optical potential to compare with $\\bar n$-nucleus annihilation cross sections reveal unexpected features of Coulomb interactions in the latter. Direct comparisons between $\\bar n$-nucleus and $\\bar p$-nucleus annihilations at very low energies could be possible if $\\bar p$ cross sections are measured on the same targets and at the same energies as the available cross sections for $\\bar n$. Such measurements may be feasible in the foreseeable future.

  9. The discovery of geomagnetically trapped cosmic ray antiprotons

    CERN Document Server

    Adriani, O; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Borisov, S; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Consiglio, L; De Pascale, M P; De Santis, C; De Simone, N; Di Felice, V; Galper, A M; Gillard, W; Grishantseva, L; Jerse, G; Karelin, A V; Kheymits, M D; Koldashov, S V; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Mayorov, A G; Menn, W; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Nikonov, N; Osteria, G; Palma, F; Papini, P; Pearce, M; Picozza, P; Pizzolotto, C; Ricci, M; Ricciarini, S B; Rossetto, L; Sarkar, R; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G; Voronov, S A; Yurkin, Y T; Wu, J; Zampa, G; Zampa, N; Zverev, V G; 10.1088/2041-8205/736/1/L1

    2011-01-01

    The existence of a significant flux of antiprotons confined to Earth's magnetosphere has been considered in several theoretical works. These antiparticles are produced in nuclear interactions of energetic cosmic rays with the terrestrial atmosphere and accumulate in the geomagnetic field at altitudes of several hundred kilometers. A contribution from the decay of albedo antineutrons has been hypothesized in analogy to proton production by neutron decay, which constitutes the main source of trapped protons at energies above some tens of MeV. This Letter reports the discovery of an antiproton radiation belt around the Earth. The trapped antiproton energy spectrum in the South Atlantic Anomaly (SAA) region has been measured by the PAMELA experiment for the kinetic energy range 60--750 MeV. A measurement of the atmospheric sub-cutoff antiproton spectrum outside the radiation belts is also reported. PAMELA data show that the magnetospheric antiproton flux in the SAA exceeds the cosmic-ray antiproton flux by three ...

  10. Observation of an Antimatter Hypernucleus

    Energy Technology Data Exchange (ETDEWEB)

    STAR Collaboration; Abelev, Betty

    2010-07-05

    Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons - composed of an antiproton, antineutron, and antilambda hyperon - produced by colliding gold nuclei at high energy. Our analysis yields 70 {+-} 17 antihypertritons ({sub {bar {Lambda}}}{sup 3}{bar H}) and 157 {+-} 30 hypertritons ({sub {Lambda}}{sup 3}H). The measured yields of {sub {Lambda}}{sup 3}H ({sub {bar {Lambda}}}{sup 3}{bar H}) and {sup 3}He ({sup 3}{ovr He}) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and nuclei containing strange quarks, have implications spanning nuclear/particle physics, astrophysics, and cosmology.

  11. Professor Walter Oelert, leader of the team which created the first atoms of antihydrogen at the Low Energy Antiproton Ring (LEAR) in January 1996

    CERN Multimedia

    Laurent Guiraud

    1996-01-01

    Antiparticles were predicted in the work of Paul Dirac in the 1920's, since when physicists have identified all the necessary antiparticle constituents of an antiparticle atom - antielectrons (positrons), antiprotons and antineutrons. However, an antihydrogen atom wasn't produced until the PS210 experiment at CERN in 1995. PS210 used the LEAR accelerator, which was then nearing the end of its lifetime, so everything in the experiment had to work first time. After installing the equipment in spring 1995, the experiment took place in the autumn, in two hour periods over 4 weeks. The experiment team collided energetic antiprotons from LEAR with a heavy element, a challenge for them as well as the LEAR operators. Proving that antihydrogen atoms had been formed required several more weeks of data analysis, but the announcement that nine antihydrogen atoms had been produced came on 4 January 1996.

  12. The NNbar Experiment at the European Spallation Source

    CERN Document Server

    Frost, M J

    2016-01-01

    The observation of neutron to antineutron oscillation would be the first experimental evidence to show that baryon number is not a conserved quantity. It also provides an answer to the hypothesized post-sphaleron baryogenesis mechanism shortly after the Big Bang. The free oscillation time {\\tau_{n\\rightarrow\\bar{n}} has a lower limit at 8.7 x 10^7 seconds determined at ILL in 1994. Current beyond Standard Model theories of this oscillation time estimate the value to be on the order of 10^{10} seconds. A new experiment is proposed at the European Spallation Source that has 1000 times the sensitivity of the previous experiment, and would confirm the viability of those beyond Standard Model theories.

  13. Observable N-N Oscillation in High Scale Seesaw Models

    International Nuclear Information System (INIS)

    We discuss a realistic high scale (vB-L∼1012 GeV) supersymmetric seesaw model based on the gauge group SU(2)LxSU(2)RxSU(4)c where neutron-antineutron oscillation can be in the observable range. This is contrary to the naive dimensional arguments which say that τN-N∝vB-L5 and should therefore be unobservable for seesaw scale vB-L≥105 GeV. Two reasons for this enhancement are (i) accidental symmetries which keep some of the diquark Higgs masses at the weak scale and (ii) a new supersymmetric contribution from a lower dimensional operator. The net result is that τN-N∝vB-L2vwk3 rather than vB-L5. The model also can explain the origin of matter via the leptogenesis mechanism and predicts light diquark states which can be produced at LHC

  14. String completion of an SU(3)c ⊗ SU(3)L ⊗ U(1)X electroweak model

    Science.gov (United States)

    Addazi, Andrea; Valle, J. W. F.; Vaquera-Araujo, C. A.

    2016-08-01

    The extended electroweak SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry framework "explaining" the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (un)oriented open strings, on Calabi-Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron-antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.

  15. String completion of an SU(3c⊗SU(3L⊗U(1X electroweak model

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2016-08-01

    Full Text Available The extended electroweak SU(3c⊗SU(3L⊗U(1X symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (unoriented open strings, on Calabi–Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron–antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.

  16. Neutron Majorana mass from exotic instantons in a Pati-Salam model

    Science.gov (United States)

    Addazi, Andrea; Bianchi, Massimo

    2015-06-01

    We show how exotic stringy instantons can generate an effective interaction between color diquark sextets in a Pati-Salam model, inducing a Majorana mass term for the neutron. In particular, we discuss a simple quiver theory for a Pati-Salam like model, as an example in which the calculations of exotic instanton effects are simple and controllable. We discuss some different possibilities in order to generate oscillations testable in the next generation of experiments, Majorana mass matrices for neutrini and a Post-Sphaleron Baryogenesis scenario. Connections with Dark Matter issues and the Higgs mass Hierarchy problem are discussed, in view of implications for LHC and rare processes physics. The model may be viewed as a completion of a Left-Right symmetric extension of the Standard Model, alternative to a GUT-inspired scenario. Combined measures in Neutron-Antineutron physics, FCNC, LHC, Dark Matter could rule out the proposed model or uncover aspects of physics at the Planck scale!

  17. Neutron Majorana mass from Exotic Instantons in a Pati-Salam model

    CERN Document Server

    Addazi, Andrea

    2015-01-01

    We show how exotic stringy instantons can generate an effective interaction between color diquark sextets in a Pati-Salam model, inducing a Majorana mass term for the neutron. In particular, we discuss a simple quiver theory for a Pati-Salam like model, as an example in which the calculations of exotic instantons' effects are simple and controllable. We discuss some different possibilities in order to generate $n-\\bar{n}$ oscillation testable in the next generation of experiments, Majorana mass matrices for neutrini and a Post-Sphaleron Baryogenesis scenario. Connections with Dark Matter issues and the Higgs mass Hierarchy problem are discussed, in view of implications for LHC and rare processes physics. The model may be viewed as a completion of Left-Right symmetry, alternative to a GUT-inspired scenario. Combined measures in Neutron-Antineutron physics, FCNC, LHC, Dark Matter could rule out the proposed model or uncover aspects of physics at the Planck scale!

  18. Un-oriented quiver theories for Majorana neutrons

    Science.gov (United States)

    Addazi, Andrea; Bianchi, Massimo

    2015-07-01

    In the context of un-oriented open string theories, we identify quivers whereby a Majorana mass for the neutron is indirectly generated by exotic instantons. We discuss two classes of (Susy) Standard Model like quivers, depending on the embedding of SU(2) W in the Chan-Paton group. In both cases, the main mechanism involves a vector-like pair mixing through a non-perturbative mass term. We also discuss possible relations between the phenomenology of Neutron-Antineutron oscillations and LHC physics in these models. In particular, a vector-like pair of color-triplet scalars or color-triplet fermions could be directly detected at LHC, compatibly with limits. Finally we briefly comment on Pati-Salam extensions of our models.

  19. Un-oriented Quiver Theories for Majorana Neutrons

    CERN Document Server

    Addazi, Andrea

    2015-01-01

    In the context of un-oriented open string theories, we identify quivers whereby a Majorana mass for the neutron is indirectly generated by exotic instantons. We discuss two classes of (Susy) Standard Model like quivers, depending on the embedding of SU(2)_W in the Chan-Paton group. In both cases, the main mechanism involves a vector-like pair mixing through a non-perturbative mass term. We also discuss possible relations between the phenomenology of Neutron-Antineutron oscillations and LHC physics in these models. In particular, a vector-like pair of color-triplet scalars or color-triplet fermions could be directly detected at LHC, compatibly with n-\\bar{n} limits. Finally we briefly comment on Pati-Salam extensions of our models.

  20. The cosmic ray antiproton background for AMS-02

    International Nuclear Information System (INIS)

    The AMS-02 experiment is measuring the cosmic ray antiproton flux with high precision. The interpretation of the upcoming data requires a thorough understanding of the secondary antiproton background. In this work, we employ newly available data of the NA49 experiment at CERN, in order to recalculate the antiproton source term arising from cosmic ray spallations on the interstellar matter. We systematically account for the production of antiprotons via hyperon decay and discuss the possible impact of isospin effects on antineutron production. A detailed comparison of our calculation with the existing literature as well as with Monte Carlo based evaluations of the antiproton source term is provided. Our most important result is an updated prediction for the secondary antiproton flux which includes a realistic assessment of the particle physics uncertainties at all energies

  1. Experiments on lepton and baryon stability and oscillation phenomena

    International Nuclear Information System (INIS)

    The various experiments on lepton number conservation and on nucleon stability currently being done or prepared are reviewed, and their relative merits compared and discussed. The first part of the paper is devoted to the measurement of the neutrino mass and to the present limits on the conservation of the total lepton number and of the various lepton flavours. The existing results and future projects on the strictly connected problems of neutrino oscillations at nuclear reactors, pion factories and high energy accelerators will be also discussed, together with oscillations of solar and atmospheric neutrinos. The second part of the paper concerns the few results and the many planned detectors on nucleon decay with particular emphasis on the problems of background radioactivity and of the variety of experimental approaches. Oscillation experiments on neutron-antineutron oscillations at nuclear reactors are also considered. (author)

  2. Quality surveillance for steel forgings of SA508 Gr.3 used on the main NI equipment of AP1000 nuclear island

    International Nuclear Information System (INIS)

    Being a type of steel with ideal weldability, outstanding ability of anti-neutron irradiation embitterment and good property of fracture toughness and impact toughness, the steel of ASME SA508-3 was used widely for the nuclear island equipment of PWR Nuclear Power Plant. For the 3rd generation nuclear power plant AP1000, all large forgings and some critical components of the SG, RV and PRZ adopt this steel. Through analysis on the critical technical points during manufacturing of the SA508-3 forgings, this article try to identify the key points should be paid attention during the quality surveillance for this type of forgings, and to put forward the supervision method and focus during quality surveillance activities. (author)

  3. Secondary antiproton flux induced by cosmic ray interactions with the atmosphere

    International Nuclear Information System (INIS)

    The atmospheric secondary antiproton flux is studied for detection altitudes extending from sea level up to about three earth radii, by means of a three-dimensional Monte Carlo simulation, successfully applied previously to other satellite and balloon data. The calculated antiproton flux at mountain altitude is found to be in fair agreement with the recent BESS measurements. The flux obtained at balloon altitude is also in agreement with calculations performed in previous studies and used for the analysis of balloon data. The flux at sea level is found to be significant. The antineutron flux is also evaluated. The antiproton flux is prospectively explored up to around 2x104 km from the Earth. The results are discussed in the context of the forthcoming measurements by large acceptance experiments

  4. Direct generation of a Majorana mass for the neutron from exotic instantons

    Science.gov (United States)

    Addazi, Andrea

    2016-06-01

    We discuss a new mechanism in which non-perturbative quantum gravity effects directly generate a Majorana mass for the neutron. In particular, in string theory, exotic instantons can generate an effective six quark operator by calculable mixed disk amplitudes. In a low string scale scenario, with MS ≃ 10 ÷105 TeV, a neutron-antineutron oscillation can be reached in the next generation of experiments. We argue that protons and neutralinos are not destabilized and that dangerous FCNCs are not generated. We show an example of quiver theories, locally free by tadpoles and anomalies, reproducing MSSM plus a Majorana neutron and a Majorana neutrino. These models naturally provide a viable baryogenesis mechanism by resonant RH neutrino decays, as well as a stable WIMP-like dark matter.

  5. Design and realization of on-line selection device of annihilations for PP experiment at 100GeV

    International Nuclear Information System (INIS)

    This work relates the conception and then realisation of an on-line annihilation trigger for an antiprotons-protons experiment at 100 GeV. We specify the conditions of running for the European Hybrid Spectrometer (C.E.R.N.) to eliminate on-line with a good efficiency the non-annihilation interactions. We study the use on-line of a Cerenkov multicellular detector (to detect the antiprotons), a hadronic iron-scintillator calorimeter (to detect the antineutrons and neutrons) in association with two multicellular hodoscopes to select the non-annihilation events and to preserve the annihilations. A suggestion for improvement is to include this trigger in new experiments for charm and beauty search

  6. High energy accelerator and colliding beam user group: Progress report, March 1, 1987-February 29, 1988

    International Nuclear Information System (INIS)

    Progress is reported on the OPAL experiment at LEP, including construction and assembly of the hadron calorimeter and development of OPAL software. Progress on the JADE experiment, which examines e+e- interactions at PETRA, and of the PLUTO collaboration are also discussed. Experiments at Fermilab are reported, including deep inelastic muon scattering at TeV II, the D0 experiment at TeV I, and hadron jet physics. Neutrino-electron elastic scattering and a search for point-sources of ultra-high energy cosmic rays are reported. Other activities discussed include polarization in electron storage rings, participation in studies for the SSC and LEP 200, neutron-antineutron oscillations, and the work of the electronics support group. High energy physics computer experience is also discussed. 158 refs

  7. String completion of an $\\mathrm{SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ electroweak model

    CERN Document Server

    Addazi, Andrea; Vaquera-Araujo, C A

    2016-01-01

    The extended electroweak $\\mathrm{SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ symmetry framework "explaining" the number of fermion families is revisited. While $331$-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (un)oriented open strings, on Calabi-Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron-antineutron oscillations, with proton decay and R-parity violation strictly forbidden.

  8. Postsphaleron baryogenesis.

    Science.gov (United States)

    Babu, K S; Mohapatra, R N; Nasri, S

    2006-09-29

    We present a new mechanism for generating the baryon asymmetry of the Universe directly in the decay of a singlet scalar field S(r) with a weak scale mass and a high dimensional baryon number-violating coupling. Unlike most currently popular models, this mechanism, which becomes effective after the electroweak phase transition, does not rely on the sphalerons for inducing a nonzero baryon number. CP asymmetry in S(r) decay arises through loop diagrams involving the exchange of W+/- gauge bosons and is suppressed by light quark masses, leading naturally to a value of eta(B) approximately 10(-10). The simplest realization of this idea which uses a six quark DeltaB=2 operator predicts colored scalars accessible to the CERN Large Hadron Collider and neutron-antineutron oscillation within reach of the next-generation experiments. PMID:17026022

  9. Post-sphaleron baryogenesis and n- anti n oscillation in non-SUSY SO(10) GUT with gauge coupling unification

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Sudhanwa; Pritimita, Prativa [Siksha ' O' Anusandhan University, Center of Excellence in Theoretical and Mathematical Sciences, Bhubaneswar (India)

    2014-10-15

    ''Post-sphaleron baryogenesis'', a fresh and profound mechanism of baryogenesis accounts for the matter-antimatter asymmetry of our present universe in a framework of Pati-Salam symmetry. We attempt here to embed this mechanism in a non-SUSY SO(10) grand unified theory by reviving a novel symmetry breaking chain with Pati-Salam symmetry as an intermediate symmetry breaking step and as well to address post-sphaleron baryogenesis and neutron-antineutron oscillation in a rational manner. The Pati-Salam symmetry based on the gauge group SU(2){sub L} x SU(2){sub R} x SU(4){sub C} is realized in our model at 10{sup 5}-10{sup 6} GeV and the mixing time for the neutron-antineutron oscillation process having ΔB = 2 is found to be τ{sub n-} {sub anti} {sub n} ≅ 10{sup 8}-10{sup 10}s with the model parameters, which is within the reach of forthcoming experiments. Other novel features of the model include low scale right-handed W{sub R}{sup ±}, Z{sub R} gauge bosons, explanation for neutrino oscillation data via the gauged inverse (or extended) seesaw mechanism and most importantly TeV scale color sextet scalar particles responsible for an observable n- anti n oscillation which may be accessible to LHC. We also look after gauge coupling unification and an estimation of the proton lifetime with and without the addition of color sextet scalars. (orig.)

  10. В поисках альтернативы (Новая космологическая концепция без «Большого Взрыва»

    Directory of Open Access Journals (Sweden)

    Джахая Л. Г.

    2015-02-01

    Full Text Available Metagalaxy in finite spatial and temporal boundaries is qualitatively certain material formation, a single, coherent financial system in the boundless expanse of the universe. Material substrate is Metagalaxy metagalactic vacuum as a real physical environment and the arena of action of all material processes in the Metagalaxy. In Metagalaxy there are two types of interactions: gravity and electromagnetism are two excited states Metagalactic vacuum, all the other interactions ("weak", "strong" are the consequence of these two fundamental interactions. Inertial motion of the real weight in a vacuum explains the paradox of d'Alembert-Euler, and gravity - "rolling up" in the "potential well" real masses and "black holes". The main feature of the metagalactic vacuum is its unequal optical density. In addition to the local optical inhomogeneities with the index of refraction greater than unity (n>1, the giant optical inhomogeneity is all metagalactic vacuum, with a maximum optical density (nmax in the center of Metagalaxy, c (n =1 "here" and "now" ("Time of Life " and then to (n <1 on the periphery of the Metagalaxy and s (n = 0 at its edge. At the heart of the author's cosmological model is based on two laws: the creation of pairs of particles and antiparticles in strong gravitational fields of rotating "cosmological black holes" and the Magnus effect. It's enough to born neutron-antineutrons páry, they scatter in opposite directions, and neutrons, according to the Magnus effect, go into outer space, and be absorbed antineutrons "black hole", all the remaining particles are obtained in the beta decay of a neutron into a proton, an electron and antineutrinos and is ready hydrogen. This calibration will gather around the "cosmological black hole" isotopes of hydrogen atoms (75% and helium (25%, which will form protogalaxies - on the principle of "one cosmological black hole - one protogalaxy" with a primary hydrogen-helium cloud, it is ejected from

  11. Utilization of FADC for reconstruction and analysis of the background data in the Chooz neutrino experiment; Utilisation des FADC pour la reconstruction et l`analyse des donnees de bruit de fond dans l`experience neutrino de Chooz

    Energy Technology Data Exchange (ETDEWEB)

    Veron, Didier [Universite Claude Bernard, 69 - Lyon (France)

    1997-03-25

    This thesis describes a particular contribution to the Chooz experiment. The latter looks for the oscillations, over a distance of 1 km, of antineutrons emitted by two nuclear reactors. The electron-type antineutrinos are detected through their inverse beta interaction with a target`s proton. The neutron is detected through its capture by a gadolinium nucleus revealed by an 8 MeV gamma emission. In the first part we describe the reconstruction of events as simulated by the GIANT software. We show that the positron`s and neutron`s stopping point can actually be reconstructed with an accuracy of 10 and 20 cm respectively. In the second part, we proceed to the analysis of the calibration`s data as recorded with Fast Wave Form Digitizers. This confirms the reliability of the Monte-Carlo results and allows measurement of both the neutrons` capture probability and time by the target gadolinium. The last part deals with the background (reactor turned off) data analysis and the pin-pointing of its various sources. In order to reduce their contribution, we define spatial cuts. These cuts` reliability is validated by analysis of data obtained not only with a neutron source, but also with neutrons issued from cosmic rays. We end up with a background contribution of two to three events per day, about ten times less than the expected neutrino rate at full reactor power. (author) 81 refs., 152 figs.,43 tabs.

  12. The coarsening effect of SA508-3 steel used as heavy forgings material

    Directory of Open Access Journals (Sweden)

    Dingqian Dong

    2015-01-01

    Full Text Available SA508Gr.3 steel is popularly used to produce core unit of nuclear power reactors due to its outstanding ability of anti-neutron irradiation and good fracture toughness. The forging process takes important role in manufacturing to refine the grain size and improve the material properties. But due to their huge size, heavy forgings cannot be cooled down quickly, and the refined grains usually have long time to grow in high temperature conditions. If the forging process is not adequately scheduled or implemented, very large grains up to millimetres in size may be found in this steel and cannot be eliminated in the subsequent heat treatment. To fix the condition which may causes the coarsening of the steel, hot upsetting experiments in the industrial production environment were performed under different working conditions and the corresponding grain sizes were measured and analysed. The observation showed that the grain will abnormally grow if the deformation is less than a critical value. The strain energy takes a critical role in the grain evolution. If dynamic recrystallization consumes the strain energy as much as possible, the normal grains will be obtained. While if not, the stored strain energy will promote abnormal growth of the grains.

  13. R-Parity violation in F-Theory

    CERN Document Server

    Romão, Miguel Crispim; King, Stephen F; Leontaris, George K; Meadowcroft, Andrew K

    2016-01-01

    We discuss R-parity violation (RPV) in semi-local and local F-theory constructions. We first present a detailed analysis of all possible combinations of RPV operators arising from semi-local F-theory spectral cover constructions, assuming an $SU(5)$ GUT. We provide a classification of all possible allowed combinations of RPV operators originating from operators of the form $10\\cdot \\bar 5\\cdot \\bar 5$, including the effect of $U(1)$ fluxes with global restrictions. We then relax the global constraints and perform explicit computations of the bottom/tau and RPV Yukawa couplings, at an $SO(12)$ local point of enhancement in the presence of general fluxes subject only to local flux restrictions. We compare our results to the experimental limits on each allowed RPV operator, and show that operators such as $LLe^c$, $LQd^c$ and $u^cd^cd^c$ may be present separately within current bounds, possibly on the edge of observability, suggesting lepton number violation or neutron-antineutron oscillations as possible signal...

  14. Modeling of the Near-Earth Low-Energy Antiproton Fluxes

    Directory of Open Access Journals (Sweden)

    U. B. Jayanthi

    2011-01-01

    Full Text Available The local interstellar antiproton spectrum is simulated taking into account antineutron decay, (He,p interaction, secondary and tertiary antiproton production, and the solar modulation in the “force field” approximation. Inclusive invariant cross-sections were obtained through a Monte Carlo procedure using the Multistage Dynamical Model code simulating various processes of the particle production. The results of the simulations provided flux values of 4⋅10−3 to 10−2 and 10−2 to 1.7⋅10−2 antiprotons/(2 s sr GeV at energies of 0.2 and 1 GeV, respectively, for the solar maximum and minimum epochs. Simulated flux of the trapped antiprotons in the inner magnetosphere due to galactic cosmic ray (GCR interactions with the atmospheric constituents exceeds the galactic antiproton flux up to several orders. These simulation results considering the assumptions with the attendant limitations are in comprehensive agreement with the experimental data including the PAMELA ones.

  15. Front-end electronics of the ALICE photon spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yin Zhongbao, E-mail: zbyin@mail.ccnu.edu.c [Institute of Particle Physics, Huazhong Normal University, Wuhan 430079 (China); Key Laboratory of Quark and Lepton Physics, Huazhong Normal University, Ministry of Education (China); Muller, Hans; Pimenta, Rui [CERN, PH Department, 1211 Geneva 23 (Switzerland); Roehrich, Dieter [Department of Physics and Technology, University of Bergen (Norway); Sibiriak, Iouri [Russian Research Center Kurchatov Institute, Moscow (Russian Federation); Skaali, Bernhard [Department of Physics, University of Oslo, Blindern 0316 (Norway); Wang Dong; Wang Yaping; Zhou Daicui [Institute of Particle Physics, Huazhong Normal University, Wuhan 430079 (China); Key Laboratory of Quark and Lepton Physics, Huazhong Normal University, Ministry of Education (China)

    2010-11-01

    The photon spectrometer (PHOS) in the ALICE experiment at LHC is dedicated to measuring photons, {pi}{sup 0}'s and {eta}'s in a broad p{sub T} range from about 100 MeV/c to 100 GeV/c, providing the best possible energy and position resolution in order to narrow the {pi}{sup 0} and {eta} mass peaks and thus to increase the signal to background ratio. The front-end electronics (FEE) of the PHOS is thus required to cover a large dynamic range, to have a timing resolution better than {approx}2ns in order to discriminate against 1-2 GeV/c (anti-)neutrons, and to provide high p{sub T} trigger to select rare high p{sub T} events. In addition, to equalize the gains of individual detector channels, it is desired that the PHOS FEE can regulate the bias voltage of APD. In this paper, we will present the performance and status of the 32-channel low noise front-end electronics for the PHOS with a dynamic range of 14 bits. Measurements with LED pulse at laboratory and results from beam test with the first PHOS module at T10 of the CERN PS show that its performance fulfills the PHOS requirements.

  16. Study of $ \\bar{p} $ and $ \\bar{n} $ annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer

    CERN Multimedia

    2002-01-01

    % PS201 Study of $\\bar{p}$ and $\\bar{n}$ annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer \\\\ \\\\OBELIX is designed to study exclusive final states of antiproton and antineutron annihilations at low energies with protons and nuclei. \\\\ \\\\The physics motivations of the experiment are:\\\\ \\\\\\begin{itemize} \\item (gg, ggg), hybrids ($ q \\bar{q} g $), multiquarks ($ q q \\bar{q} \\bar{q} $) and light mesons ($ q \\bar{q} $) produced in $ N \\bar{N} $ annihilations and study of their spectroscopy and decays. Also broad structures will be searched for by comparing identical decay modes in exclusive final states of the same type occuring from initial states with different angular momentum or isospin. \\item Study of the dynamics of $ N \\bar{N} $ interactions and of the dependence of the final and intermediate resonant states of annihilation upon the quantum numbers of the initial $ N \\bar{N} $ state (angular momentum: S and P-wave in $\\bar{p}p $ at...

  17. Golden Jubilee photos: Welcome to the antiworld

    CERN Multimedia

    2004-01-01

    Professor Walter Oelert, leader of the team which created the first atoms of antihydrogen at the LEAR (Low Energy Antiproton Ring).Antiparticles were predicted in the work of Paul Dirac in the 1920's, since when physicists have identified all the necessary antiparticle constituents of an antiparticle atom - antielectrons (positrons), antiprotons and antineutrons. However, an antihydrogen atom wasn't produced until the PS210 experiment at CERN in 1995. PS210 used the LEAR accelerator, which was then nearing the end of its lifetime (see Bulletin 28/04), so everything in the experiment had to work first time. After installing the equipment in spring 1995, the experiment took place in the autumn, in two hour periods over 4 weeks. The experiment team collided energetic antiprotons from LEAR with a heavy element, a challenge for them as well as the LEAR operators. Proving that antihydrogen atoms had been formed required several more weeks of data analysis, but the announcement that nine antihydrogen atoms had been ...

  18. Study of $J/\\psi\\to p\\bar{p}$ and $J/\\psi\\to n\\bar{n}$

    CERN Document Server

    Ablikim, M; Ambrose, D J; An, F F; An, Q; An, Z H; Bai, J Z; Ferroli, R B; Ban, Y; Becker, J; Berger, N; Bertani, M B; Bian, J M; Boger, E; Bondarenko, O; Boyko, I; Briere, R A; Bytev, V; Cai, X; Calcaterra, A C; Cao, G F; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, J C; Chen, M L; Chen, S J; Chen, Y; Chen, Y B; Cheng, H P; Chu, Y P; Cronin-Hennessy, D; Dai, H L; Dai, J P; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; Ding, W M; Ding, Y; Dong, L Y; Dong, M Y; Du, S X; Fang, J; Fang, S S; Fava, L; Feldbauer, F; Feng, C Q; Fu, C D; Fu, J L; Gao, Y; Geng, C; Goetzen, K; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, Y P; Han, Y L; Hao, X Q; Harris, F A; He, K L; He, M; He, Z Y; Held, T; Heng, Y K; Hou, Z L; Hu, H M; Hu, J F; Hu, T; Huang, B; Huang, G M; Huang, J S; Huang, X T; Huang, Y P; Hussain, T; Ji, C S; Ji, Q; Ji, X B; Ji, X L; Jia, L K; Jiang, L L; Jiang, X S; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Jing, F F; Kalantar-Nayestanaki, N; Kavatsyuk, M; Kuehn, W; Lai, W; Lange, J S; Leung, J K C; Li, C H; Li, Cheng; Li, Cui; Li, D M; Li, F; Li, G; Li, H B; Li, J C; Li, K; Li, Lei; Li, N B; Li, Q J; Li, S L; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, X R; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Liao, X T; Liu, B J; Liu, B J; Liu, C L; Liu, C X; Liu, C Y; Liu, F H; Liu, Fang; Liu, Feng; Liu, H; Liu, H B; Liu, H H; Liu, H M; Liu, H W; Liu, J P; Liu, Kun; Liu, Kai; Liu, K Y; Liu, P L; Liu, S B; Liu, X; Liu, X H; Liu, Y B; Liu, Y; Liu, Z A; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H; Lu, G R; Lu, H J; Lu, J G; Lu, Q W; Lu, X R; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lv, M; Ma, C L; Ma, F C; Ma, H L; Ma, Q M; Ma, S; Ma, T; Ma, X Y; Ma, Y; Maas, F E; Maggiora, M; Malik, Q A; Mao, H; Mao, Y J; Mao, Z P; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Morales, C Morales; Motzko, C; Muchnoi, N Yu; Nefedov, Y; Nicholson, C; Nikolaev, I B; Ning, Z; Olsen, S L; Ouyang, Q; Pacetti, S P; Park, J W; Pelizaeus, M; Peters, K; Ping, J L; Ping, R G; Poling, R; Prencipe, E; Pun, C S J; Qi, M; Qian, S; Qiao, C F; Qin, X S; Qin, Y; Qin, Z H; Qiu, J F; Rashid, K H; Rong, G; Ruan, X D; Sarantsev, A; Schulze, J; Shao, M; Shen, C P; Shen, X Y; Sheng, H Y; Shepherd, M R; Song, X Y; Spataro, S; Spruck, B; Sun, D H; Sun, G X; Sun, J F; Sun, S S; Sun, X D; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Thorndike, E H; Tian, H L; Toth, D; Ulrich, M U; Varner, G S; Wang, B; Wang, B Q; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, Q; Wang, Q J; Wang, S G; Wang, X F; Wang, X L; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z Y; Wei, D H; Weidenkaff, P; Wen, Q G; Wen, S P; Werner, M W; Wiedner, U; Wu, L H; Wu, N; Wu, S X; Wu, W; Wu, Z; Xia, L G; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, G M; Xu, H; Xu, Q J; Xu, X P; Xu, Y; Xu, Z R; Xue, F; Xue, Z; Yan, L; Yan, W B; Yan, Y H; Yang, H X; Yang, T; Yang, Y; Yang, Y X; Ye, H; Ye, M; Ye, M H; Yu, B X; Yu, C X; Yu, J S; Yu, S P; Yuan, C Z; Yuan, W L; Yuan, Y; Zafar, A A; Zallo, A Z; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J G; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, L; Zhang, S H; Zhang, T R; Zhang, X J; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y S; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, H S; Zhao, J W; Zhao, K X; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, S J; Zhao, T C; Zhao, X H; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, Y H; Zheng, Z P; Zhong, B; Zhong, J; Zhou, L; Zhou, X K; Zhou, X R; Zhu, C; Zhu, K; Zhu, K J; Zhu, S H; Zhu, X L; Zhu, X W; Zhu, Y M; Zhu, Y S; Zhu, Z A; Zhuang, J; Zou, B S; Zou, J H; Zuo, J X

    2012-01-01

    The decays $J/\\psi\\to p\\bar{p}$ and $J/\\psi\\to n\\bar{n}$ have been investigated with a sample of 225.2 million $J/\\psi$ events collected with the BESIII detector at the BEPCII $e^+e^-$ collider. The branching fractions are determined to be $\\mathcal{B}(J/\\psi\\to p\\bar{p})=(2.112\\pm0.004\\pm0.031)\\times10^{-3}$ and $\\mathcal{B}(J/\\psi\\to n\\bar{n})=(2.07\\pm0.01\\pm0.17)\\times10^{-3}$. Distributions of the angle $\\theta$ between the proton or anti-neutron and the beam direction are well described by the form $1+\\alpha\\cos^2\\theta$, and we find $\\alpha=0.595\\pm0.012\\pm0.015$ for $J/\\psi\\to p\\bar{p}$ and $\\alpha=0.50\\pm0.04\\pm0.21$ for $J/\\psi\\to n\\bar{n}$. Our branching-fraction results suggest a large phase angle between the strong and electromagnetic amplitudes describing the $J/\\psi\\to N\\bar{N}$ decay.

  19. Measurement of Antiproton-proton Cross-Sections at Low Antiproton Momenta

    CERN Multimedia

    2002-01-01

    The experiment is designed to measure four different cross sections in the momentum range 150~MeV/c to 600~MeV/c: 1)~~~~the differential elastic \\\\ \\\\ 2)~~~~the differential charge exchange\\\\ \\\\ 3)~~~~the annihilation into charged and neutral pions\\\\ \\\\ 4)~~~~and the total cross section via the optical theorem. \\\\ \\\\ The experiment allows one to search once again and with good precision for baryonium. Of special interest is the existence of the S-meson, for which a signal of about 20~MeV-mb was found in a 1981 experiment (performed in the East Hall).\\\\ \\\\ A second point of special interest is the momentum region below 300~MeV/c because the cross sections are basically unknown. We will be able to explore the momentum dependence of this region for the first time.\\\\ \\\\ The elastic cross section is measured by a cylindrical multiwire proportional chamber and a scintillator hodoscope placed around a scattering chamber under vacuum. The charge exchange cross section is measured by a ring of 32~anti-neutron detector...

  20. Is it possible to conserve electric charge without separately conserving baryonic number and leptonic number?

    International Nuclear Information System (INIS)

    Charges that are sources of fields must be universally conserved. Any quantity which is proved to be violated in certain circumstance cannot be a source of field. To account for the asymmetry of our Universe baryon number A has to be violated; thus A cannot be a charge. We postulate a new interaction, matter creation, with (A–L) as charge and Z* as messenger. Conservation of (A–L) instead of (3A–L) suggested by Sakharov is deduced on the one hand from observational facts (our Universe is both material and neutral) and on the other hand from the generalized Gell-Mann and Nishijima formula. Conservation of (A–L) forbids neutrinoless double beta decay and neutron antineutron oscillations. The union of four interactions — electromagnetism, the MC interaction, the weak interaction and the strong interaction — considered as the product U(1) × U(1) × SU(2) × SU(3) would account for available experimental and observational data. Observation of processes violating baryon number conservation would be of great interest in falsifying this suggestion. (author)

  1. Proton: The Particle

    International Nuclear Information System (INIS)

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈1080. Protons were created at 10−6 –1 second after the Big Bang at ≈1.37 × 1010 years beforethe present. Proton life span has been experimentally determined to be ≥1034 years; that is, the age of the universe is 10−24th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W+, W−, Z0, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter

  2. AP1000核岛主设备用SA508-3钢锻件的监造%Quality surveillance for steel forgings of SA508 Gr.3 used on the main NI equipment of AP1000 nuclear island

    Institute of Scientific and Technical Information of China (English)

    刘利钊

    2011-01-01

    Being a type of steel with ideal weldability,outstanding ability of anti-neutron irradiation embitterment and good property of fracture toughness and impact toughness,the steel of ASME SA508-3 was used widely for the nuclear island equipment of PWR Nuclear Power Plant.For the 3rd generation nuclear power plant AP1000,all large forgings and some critical components of the SG,RV and PRZ adopt this steel.Through analysis on the critical technical points during manufacturing of the SA508-3 forgings,this article try to identify the key points should be paid attention during the quality surveillance for this type of forgings,and to put forward the supervision method and focus during quality surveillance activities.%ASME SA508-3钢具有优越的可焊性、较好的抗中子辐照脆化性能和非常好的断裂韧性以及冲击韧性,因此被广泛应用于压水堆核电站核岛压力容器的制造中。AP1000三代核电机组的一些主设备,如反应堆压力容器、蒸汽发生器、稳压器的全部大锻件及一些重要部件均采用了这一钢种。通过对SA508-3钢锻件制造过程中的技术要点的分析,指出了该钢种的锻件在制造过程中的质量关注重点,提出了对该钢种锻件实施监造过程中的监督方法和监督重点。

  3. HYPOTHESIS OF THE ORIGIN OF THE UNIVERSE, SOLAR SYSTEM AND EARTH

    Directory of Open Access Journals (Sweden)

    Alexandrov B. L.

    2016-04-01

    Full Text Available It is assumed that in the primordial state of the Universe was missing the elements of matter, it was submitted to electromagnetic photon field in a broad frequency band. Photons with energy ε=1,02 born MeV electrons and positrons, and photons with energy ε=1,87 born МeV protons and antiprotons. The Association of protons, electrons and essential spectrum of photons created a sustainable hydrogen atoms and neutrons. Association of hydrogen atoms led to the creation of hydrogen clusters, and merging neutron – neutron creation of clusters (pulsars. As a result, the concentration of photons in the Universe decreased and the universe were compressed. The gravitational interactions between the hydrogen and neutron clusters was coming off of a mass of matter from both. The torn mass of hydrogen clusters were created on the planet. Separation of the mass from neutron clusters led to the neutron exposure of the main hydrogen clusters and loose parts from him (future planets. The latter, being closer to the main hydrogen accumulation, under the influence of neutron flux were redesigned to all elements of the periodic table. The article describes nuclear reactions convert one chemical element to another. After irradiation of the primary hydrogen clusters of neutrons and the emergence of the heavy and superheavy hydrogen, started fusion reactions with the release of photon energy and the transition of hydrogen clusters in Stellar condition. They began to glow. The selection of the photon energy of the Stars led to the increase in the concentration of photons in the Universe, the increase of the pressure and the expansion of the Universe, which is what happens at the present stage of its development. Combining antiprotons, electrons (positrons with the required spectrum of photons created sustainable antihydrogen and antineutrons, and their clusters – clumps of antimatter in the Universe

  4. DUSEL Theory White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Raby, S.; /Ohio State U.; Walker, T.; /Ohio State U. /Ohio State U., Dept. Astron. /Ohio State U., CCAPP; Babu, K.S.; /Oklahoma State U.; Baer, H.; /Florida State U.; Balantekin, A.B.; Barger, V.; /Wisconsin U., Madison; Berezhiani, Z.; /Gran Sasso; de Gouvea, A.; /Northwestern U.; Dermisek, R.; /Princeton U.; Dolgov, A.; /Moscow, ITEP /Ferrara U.; Fileviez Perez, P.; /Wisconsin U., Madison; Gabadadze, G.; /New York U.; Gal, A.; /Hebrew U.; Gondolo, P.; /Utah U.; Haxton, W.; /Washington U., Seattle; Kamyshkov, Y.; /Tennessee U.; Kayser, B.; /Fermilab; Kearns, E.; /Boston U.; Kopeliovich, B.; /Santa Maria U., Valparaiso; Lande, K.; /Pennsylvania U.; Marfatia, D.; /Kansas U. /Maryland U. /Northeastern U. /UC, Berkeley /LBL, Berkeley /Minnesota U. /SLAC /UC, Santa Cruz /SUNY, Stony Brook /Oklahoma State U. /Iowa State U. /Carnegie Mellon U.

    2011-11-14

    The scientific case for a Deep Underground Science and Engineering Laboratory [DUSEL] located at the Homestake mine in Lead, South Dakota is exceptional. The site of this future laboratory already claims a discovery for the detection of solar neutrinos, leading to a Nobel Prize for Ray Davis. Moreover this work provided the first step to our present understanding of solar neutrino oscillations and a chink in the armor of the Standard Model of particle physics. We now know, from several experiments located in deep underground experimental laboratories around the world, that neutrinos have mass and even more importantly this mass appears to fit into the framework of theories which unify all the known forces of nature, i.e. the strong, weak, electromagnetic and gravitational. Similarly, DUSEL can forge forward in the discovery of new realms of nature, housing six fundamental experiments that will test the frontiers of our knowledge: (1) Searching for nucleon decay (the decay of protons and neutrons predicted by grand unified theories of nature); (2) Searching for neutrino oscillations and CP violation by detecting neutrinos produced at a neutrino source (possibly located at Brookhaven National Laboratory and/or Fermi National Laboratory); (3) Searching for astrophysical neutrinos originating from the sun, from cosmic rays hitting the upper atmosphere or from other astrophysical sources, such a supernovae; (4) Searching for dark matter particles (the type of matter which does not interact electromagnetically, yet provides 24% of the mass of the Universe); (5) Looking for the rare process known as neutrino-less double beta decay which is predicted by most theories of neutrino mass and allows two neutrons in a nucleus to spontaneously change into two protons and two electrons; and (6) Searching for the rare process of neutron- anti-neutron oscillations, which would establish violation of baryon number symmetry. A large megaton water Cherenkov detector for neutrinos and

  5. BLV-2011 Workshop, September 22-24, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Y. A. Kamyshkov (University of Tennessee) co-Chair of the Workshop Organizing Committee; P. Fileviez Perez (University of Wisconsin) co-Chair of the Workshop Organizing Committee; W. M. Snow (Indiana University), member of Workshop Organizing Committee; A.R. Young (North Carolina State University), member of Workshop Organizing Committee

    2011-09-24

    ’L) violation, as a probe of unification, baryo- and lepto-genesis, Left-Right symmetry restoration, matter-antimatter asymmetry, sterile matter, mirror matter, dark matter, low-scale gravity, etc. Related experimental observations to these physics aspects included searches for Majorana neutrinos (2β0ν decays), proton decays, neutron-antineutron oscillations, μ-e transitions, mirror and sterile matter transformations, and possible other new phenomena that can be seen at LHC and future colliders. Combination of theoretical and experimental discussions at the Workshop was most stimulating for germinating of new theoretical ideas and promoting new experimental efforts in particle physics. As one of new developments stemmed from this Workshop was an idea of performing new neutron-antineutron transformation search at the Project X accelerator to be built at Fermilab. BLV2011 Workshop website: http://www.phys.utk.edu/BLV2011/ contains all the talks delivered at this Workshop. Agenda of the Workshop can be found in Appendix 2 to this report. During the Workshop all presentation talks were available at the web in parallel with the talks. This made the discussions of the new ideas and results at the meeting more prompt and efficient. Previous Workshops on Baryon and Lepton Number Violation search in 2007 at LBL and 2009 at the University of Wisconsin were organized essentially by the same initiative group of people as this Workshop. We are observing increased interest in the community to this physics topic. Next BLV-2013 Workshop now at bi-annual basis is being organized at the Max Plank Institute at Heidelberg by Pavel Fileviez Perez.

  6. PREFACE: Fundamental Neutron Physics: Introduction and Overview Fundamental Neutron Physics: Introduction and Overview

    Science.gov (United States)

    Holstein, Barry R.

    2009-10-01

    fundamental nature, the structure of the neutron itself can be used to probe hadronic structure, via measurement of its electromagnetic form factors and/or polarizabilities. This aspect of neutron physics is discussed in the article by Daniel Phillips. In a set of measurements at Grenoble, the neutron has been used to study its quantum mechanical gravitational bound state in the vicinity of the Earth's surface. This work is described in the article by Stefan Baessler. Finally, possible beyond standard model physics is probed by experimental searches for neutron-antineutron oscillations, as discussed in the article by Rabi Mohaptatra. There exist many other areas wherein the neutron has been used as a probe of fundamental pieces of contemporary physics. Examples include the use of neutron interferometry to measure the Earth's rotation and gravitational field and the recent use of light cone methods to study the transverse charge distribution of the neutron. Indeed, a full report on all such aspects could fill an entire volume of Journal of Physics G: Nuclear and Particle Physics. The six articles which appear here in this focus section are presented rather as a brief overview, to possibly whet the appetite of the reader for such work. Hungrier readers can fill their plate with additional and more detailed information available in the many references cited by the focus articles or in more extensive discussions available elsewhere. An example is the article on experiments in fundamental neutron physics by Jeff Nico and Mike Snow published in Annual Reviews of Nuclear and Particle Science 2005 55 27-69, but there are many others.

  7. Grands principes de symétrie à l'épreuve de l'expérience

    Science.gov (United States)

    Depommier, P.

    interesting observable seems to be the electric dipole moment of the neutron, which vanishes under time-reversal invariance (assuming parity violation). The magnitude of the theoretical predictions varies considerably, therefore the electric dipole moment of the neutron constitutes a very valuable test of time-reversal invariance. The conservation of parity and time reversal in the strong interaction raises a delicate problem in Quantum Chromodynamics. In order to get rid of parity and time reversal violating terms in the QCD Lagrangian one invokes a new symmetry which introduces a light pseudoscalar particle, the axion. This particle has been searched for but not found. Recent findings in heavy-ion collisions (the famous e+ -e- pairs) have probably nothing to do with axions. Chapter 7 deals with baryon number nonconservation. Grand unification theories have been introduced to cure several deficiencies of the Standard Model. One of the most dramatic consequences of these theories is the violation of baryon number conservation, resulting in the instability of the nucleon and other effects like neutron-antineutron oscillations. The economical model based on the unification group SU(5) fails in the prediction of the proton lifetime. Alternative unification groups have been proposed. Proton decay and neutron-antineutron searches are fundamental experiments which are pushed very strongly with a variety of experimental techniques. Lepton number nonconservation is the subject of chapter 8. The search for nuclear neutrinoless double beta decay is another activity which has become important in the attempt to elucidate the nature of the neutrino. Neutrinoless double beta decay can only occur with Majorana neutrinos if these neutrinos are massive and/or weak currents are not exactly V — A. In the context of the gauge theories the observation of this process would be a proof of massive Majorana neutrinos. Various isotopes can be used to search for double beta decay (with or without